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ELASTIC-PLASTIC ANALYSIS OF TRUSSES

BY THE GRADIENT PROJECTION METHOD*

by

Tsuneyoshi Nakamura
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J. B. Rosen

Abstract

The gradient projection method has been applied to the problem of

obtaining the elastic-plastic response of a perfectly plastic ideal truss

with several degrees of redundancy to several independently varying sets of

quasi-static loads. It is proved that the minimization of stress rate

intensity subject to a set of yield inequalities 1s equivalent to the

maximization process of the gradient projection method. This equivalence

proof establishes the basis of the computational method. The technique is

applied to the problem of investigating the possibilities of shake down and

to limit analysis. A closed convex "safe load domain" 1s defined to represent

the load carrying capacity characteristics of a truss subjected to various

combinations of the several sets of loads.

*Prepared under NASA grant NS G 565 at Stanford University. Reproduction
in Whole or in Part 1s Permitted for any Purpose of the United States
Government.
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1. Introduction.

This paper 1s concerned with the elastic-plastic analysis of trusses

by means of the gradient projection method of nonlinear programming which

has been developed by one of the authors [4, 5], It is a method of obtaining

the global maximum of a nonlinear concave function in a convex region defined

by linear or nonlinear constraints. In this paper, however, the application

of the method is restricted to the case of linear constraints.

The geometrical representation of a state of stress given by Prager

enables one to represent a change of state of stress 1n a truss as an

infinitesimal vector in a convex yield polyhedron defined in a stress space.

The minimum principle of Greenberg [1] is interpreted in this geometrical

context. It 1s proved that the infinitesimal response vector obtained by

use of the minimum principle 1s 1dentical with that described by the

maximization process of the gradient projection method, provided that the

objective function 1s so chosen that the gradient vector always coincides

with the direction determined by the increments of the load factors. The

equivalence proof establishes the basis for the application of the computational

method. The technique 1s illustrated by means of a simple example.

: If the prescribed loading path 1s piecewise linear, the number of

maximization steps 1s equal to the number of segments of the path, regardless

of the degrees of redundancy of the truss., Because of this fact, we can

readily investigate the possibilities of shakedown [3,6,7] if a loading cycle

1s prescribed or 1f it can be assumed that all the variations of the applied

loads are bounded by a polyhedron or by a parallelopiped. A practical

example 1s studied in detail to 1llustrate the technique. The results

obtained from GP are shown to be identical with those which can be obtained



graphically for this relatively simple case The load carrying capacity

must be defined with respect to a particular combination of the applied loads.

A set of all the load carrying capacities defines a closed convex "Safe Load

Domain". This may be obtained by the GP procedure.

It 1s expected that this computational technique can be applied to

frame structures. In this case an infinite number of yield strips are

obtained corresponding to an infinite number of cross-sections of the members

of a frame. Each yield strip represents the yield condition for a particular

cross-section. The fact that most collapse modes of frames consist of a

finite number of plastic hinges implies that even 1f continuously distributed

loads are applied to a frame, the corresponding yield conditions can be

represented by a polyhedron and not by a smooth convex hypersurface.

Therefore we have again linear constraints and the gradient projection method

can be used without modification.

2. Geometrical Representation of State of Stress.

The geometrical representation of a state of stress as given by Prager

[2, 3] is introduced here in a generalized form to prepare for the ensuing

—discussion.

An 1deal truss 1s composed of n bars of elastic-perfectly-plastic

materials. It 1s assumed that the velocities of settlement of the supports

are-all zero. Let f be the number of reactions and h the number of

joints. Suppose there are s sets of loads characterized by s independent

load factors {€.] in the form

(61 Prghs {85 Bpplseen onl By)
(2.1)

(2 = 1,2,...,h).
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acting upon the given ideal truss. Then the equations of equilibrium form

an 1nhomogeneous system of linear algebraic equations of the form

n+f S

3 a, Se = r E, Db. (¢ = 1,2,...,2h) (2.2)
k=1 =1

where 31 Sy sees S denote the internal forces in the bars, NEPRERFI IP

the reactions at supports and YIRSY multiplied by a direction cosine,

The coefficients 8, are essentially the direction cosines of the kth

bar. Unknown quantities are (5,) (k = 1,2,...,n+f).

If ntf-2h =r > 0, then the set {8} 1s not uniquely determined by

(2.2) and the truss has r degrees of redundancy. Let

(81335 (8p)... (8.11

by a set of s particular solutions of the s inhomogeneous systems the

ith of which 1s obtained by replacing the right-hand side of (2.2) by the

ith inhomogeneous term (bo, ,) and

a set of r linearly independent solutions of the homogeneous equation

obtained from (2.2). Although (2.2) cannot have a unique solution, any

solution of (2.2) must be contained in the general solution given by a linear

combination of s linearly independent particular solutions (8, 4] and r

linearly independent solutions (Ry 4) of the homogeneous system obtained
from (2.2).



S r

3 Ll 10) oh Mk i;
(2.3)

(3 = 1,2,...,n+F).

where My 'S are arbitrary parameters. The particular solution (8; 4} can
be obtained by imposing r additional conditions on deformation that the

truss responds elastically under the particular set of loads (bo, ,) (¢ = 1,2,...,2h).

Thus (8;4] represents an elastic state of stress. (Ry, } is obtained by
considering the statically determinate structure which can be produced by

replacing r redundant forces by a set of known forces. (Ry 5} then represents
a state of self-stress.

It is always possible[2] by forming linear combinations of (8,5) or (By 5}
to construct an orthonormal set of (s+r) solutions in the sense

1 0

5 L a Sd 5, 3 = SI

= 7 a, S..R,, =0 (2.4)
2 j=1 J ij “83 )

n

2 LL as Rys Rig = Om
(x, i =1,2,...,8; I, m =1,2,...,r).

I.

where os = i 5 Ls denoting the length of bar J, By its cross-section
and E. its Llostic modulus, and where Os and Sm are Kronecker delta's,
It is to be understood in the following that (5; and (Rs) denote
elements of this orthonormalized set where J varies from 1 to n. The

original load factors can then be expressed by linear combinations of the

E.'s for this orthonormalized set.
4



The elastic strain energy corresponding to the set of internal forces

(5, given by (2.3) is defined by

n

c-3 L a 5
5=1 Jd J

2s - (2
==) oa. [} E& S..+ ) nm R.]

SO i BO esBE on AR

By virtue of the orthonormality (2.4), (2.5) is reduced to

S r
2 2

i=1 k=1

With this preparation, we can now make use of the concept of "s-tress

space." Any solution (8,1, and the corresponding strain energy, 1s
completely determined by the set of parameters

CITI YIRRYI UITRRRRRTY (2.7)

as shown by (2.3) and (2.6). If we consider an (s+r)-dimensional stress

space whose Cartesian coordinates are SFL PYREERPL I UE CYRRERPL NY then

any state of stress of the truss can be represented by a point in this space.

Any state of loading is then represented by the set (8156s eeest) while

any state of residual stress by (ome veesn),
Since all the bars are assumed to be composed of perfectly-plastic

materials, the corresponding yield conditions must be satisfied. The

condition that the stress 1n any bar should not exceed the yield limit can

be written



S r |

% S Ll 10 EZ ERE (2.8)
(3 = 1,2,....,n)

where C3 and t, denote the yield limits of bar J in compression and
in tension, respectively. Each one of the n inequalities in (2.8) defines

a strip between two hyperplanes. The set of all the inequalities define a

convex polyhedron in (s+tr)-dimensional stress space as the common region

of all the yield strips. Therefore, only the set of points on or inside

the yield polyhedron can represent actual states of stress.

3. Geometrical Interpretation of the Minimum Principle.

The minimum principle of Greenberg [1] 1s expressed 1n the geometrical

terms according to Prager [3] to prepare for the later use in Section 4.

In order to obtain the response of a given truss to a particular

loading program, (s-1) relations between s load factors must be prescribed

resulting in a "loading path" in the s dimensional load factor subspace.

Let a vector

-

dt = (dg, dE,....,dE)

define a set of infinitesimal changes of load factors from an instantaneous

state of loading (61585... 58), dt being a tangent vector to the loading
path. Corresponding to this change 1s an infinitesimal translational

displacement of the r-dimensional subspace of equilibrium. The corresponding

new state of stress must be represented by a point in this displaced subspace

of equilibrium. If we consider a local coordinate axis & in the direction

of at at a stress point denoted by
0



R = CIT PITRE NysMps eam),

and an (r+l)-dimensional cross-section of the yield polyhedron spanned

by ¢, MyseeeeyN, axes, then any stress change due to df can be represented

by a vector

dx = (at, Any yee. ,dn).

where dn, AMpy eve sdn, denote the variation in UE ps eee,m,, corresponding
to dE. The problem is then to determine ax which does not violate the yield

conditions (2.8).

The quantity termed as stress rate intensity by Greenberg may be

written as

Ae = at” + an’ Ford”
(3.1)

- Fl

Since the new stress point must lie in the displaced subspace of equilibrium

| (a hyperplane in E..q1) and in the yield polyhedron, a vector dx 1s said
to be admissible 1f the point Xx + dx is in the displaced hyperplane of

equilibrium bounded by the yield polyhedron. Admissible vectors form a

family any one of which can represent an admissible stress change. The

minimum principle can be stated as follows: For a given dt, the actual

stress change 1s given by the vector which minimizes the absolute value of

dx among all the admissible vectors. In other words, we wish to obtain the

shortest distance from an 1nitial point to the intersection of the equilibrium

hyperplane and the yield polyhedron.

1



4, Equivalence Theorem.

The use of the gradient projection (GP) method is based essentially

on the fact that in GP the global maximum is sought by cutting across the

interior of the convex region of definition, if possible. It 1s proved 1in

—)

this section that the stress change dx obtained by use of the minimum

principle stated above exactly coincides with the vector determined by GP,

provided that the objective function F 1s chosen so that the gradient

vector 1s always 1n the direction of the tangent to a prescribed loading

path.

A hyperplane of equilibrium is expressed by

H, : & = const. (4.1)

The afore-mentioned condition will be satisfied if F 1s defined by

F = ¢ (4.2)

in the local coordinate system. Then

=4

. grad F = 8, = (1, 0,...,0) (4.3)

and

4

The following preliminary results are required for the equivalence

proof. Given an m x n real matrix A we let the finite set (4)

represent all submatrices which can be formed with linearly independent

8



columns of A. For each such A, we can form the m x m projection

matrix P. = I - A. (A A) AL, which takes any m-dimensional vector into
the space orthogonal to that spanned by the columns of A, We let

P= (P;, 1] be the finite set of all Pp. and the m x m identity matrix.

Lemma

Given an m-dimensional vector g and the convex cone A x > 0, the

gradient projection algorithm will form the projection matrix Pe P, such

that

io oll = ws {irl [02,6 2 0) 5)P.eP

The proof follows directly from equation (4.48) in reference [5], which

shows that an appropriate basis change 1s made whenever such a change will

increase the norm of the projected gradient, subject to the feasibility

restriction.

The minimum principle [1] for the elastic-plastic truss can be stated

as that of finding a vector x which satisfies the following quadratic

programming problem

min {x'x Ax > 0, g'x = 1) (4.06)

The columns of A represent the active constraints of the yield polyhedron

at the point considered, and g is a normal vector to the equilibrium

hyperplane H,- The desired stress change dx 1s then given by dx = xdt.

Equivalence Theorem

If Pg is thesolution of (4.5), then x = aP,g isthe_solution

of (4.0), where a > 0 is ascalar.

9



Proof: We consider all the possible projection matrices Pel, and let

X, = a.P.g. In order to satisfy g'x. = 1, we require
2 -2

! = = —_ P.06g = a, [Pel® = 1, or o =lpel™

Then XX. = Ip. ell”, so that the value 1 =! which maximizes IP. ell
in (4.5) also gives the desired minimum in (4.6)

5, Three-bar truss.

A truss consisting of three bars shown in Figure 1 1s subjected to a

vertical varying load P. Let the internal forces transmitted by the bars 1

(or 3) and 2 be 5, and 5,3 and the tensile rigidity (2,/A.E) be 1 and 2
for simplicity.

The equation of equilibrium 1s written as

= 1S, +8, =p (5.1)

and the compatibility equation

28, = 2 .1 = (5.2)

.The solution of (4.1) and (4.2) is

P _P

the normalized set 1s

1 1

The state of self-stress is shown in Fjgure 2. After normalization, we obtain

(R,,, Ro, = (2 (5.5)

thus a typical state of stress can be written

10



I 0.
AE AE2

1 2 3.4 ,
2 AE

Figure 1. THREE-BAR TRUSS

1
~~ a 2”

~]
Figure2. STATE OF SELF-STRESS
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S. = £ + A
1 2

I? & (5.0)
sg - £ _ 2

For the sake of simplicity, let the yield limits of the bars 1(3) and

2 be +42 and ~ [2 respectively. Then the yield conditions are- —/2

-2< EE +n<2
(5.7)

-1<¢ -n<1

The feasible region R is determined by the yield conditions (5.7) and

the lines of equilibrium. Figure 3 shows the yield polygon (H,, Hy, Hy H,),

the upper and lower extreme values of the load factor ¢ Lh H) and the
correspondingly inward drawn unit vectors, n, (i =1,2,...,6). The objective
function is F = ¢&¢ whose contour lines are a family of equally-spaced

parallel dotted lines which are the lines of equilibrium themselves.

Consider the loading and unloading process given by

E: 0-14 505 -1.2 50 1.4 (5.8)

The initial point 1s the origin with the gradient € | = 1.0. The largest

permitted step length in the direction of g without leaving R 1s to i.

The projection Pg, is shown in the Figure 3, where Py 1s the corresponding

projection matrix to i. Since P.g{ = (5,3) the new direction
— — — CL

2, = P,g /|Pe | is AB. The largest step length 1s to H, giving

2 = g as shown. At this point B, the projection of g, on i becomes

12
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Figure 3. THE YIELD POLYGON
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zero because He is one of the contour lines. Thus at B the maximum
of F =¢& is achieved first. The computer describes exactly the path

OA, AB which represent the actual response of the truss. It should be

noted that the computer stops at the point B where the maximum first

achieved although there are an infinite number of points of maxima along He.

For the unloading process, €, 1.4- 0 = -1.2, the program must be

started with the new initial point B. The corresponding mathematical

problem 1s stated as follows:

Maximize F = -§

subject to the constraints §¢ > -1.2, ~¢£ > -1.4 and (5.7) with the

new 1nitial point B.

Tables 1&2 showtheresults obtained by GP. Theydemonstrate that the actual

response of the truss to the prescribed variation of & 1s exactly traced

by the computer within the round-off errors in the last digit.

14



Table 1. Response I. No shakedown.

Ea
0 0 _ 0 +

1 0 A Loading

1.40000000 0-39999997 B

-0. 60000002 0.39999997 C

-1.20000000 -0.19999997 D Unloading

0. 80000003 -0.19999997 E +

1.40000000 0.39999997 B Loading

Table 2. Response II. Shakedown.

0 0 0 +

1 0 A Loading

1.40000000 0.39999997 B

0-59999999 0.39999997 | C Unloading

0-59999999 0-39999997

15



0. Shakedown.

In many practical cases, the precise variations of the loads applied

to a structure are not known or are so complicated that 1t 1s difficult to

prescribe them. For the purpose of designing structures, certain bounds on

the working loads can be assumed which are based on statistical data. It is

assumed here that the variable loads applied to the structure have a finite

period.

The shakedown problem may be stated as follows: Consider a structure

subjected to a set of periodically varying loads, whose bounds of variations

are prescribed. We wish to determine whether the structure will shakedown

to a state of self-stress after a finite number of cycles of loading and

unloading process such that 1ts response to all further cycles becomes

purely elastic. ,

An example will be considered first. Figure L(a) shows a simply

redundant ideal truss of 8 bars with 5 joints subjected to a vertical load

P and a horizontal load Q which vary independently. The elements

(8141, (8,41 and (Ry) of the orthonormal stress set for the present
example are shown in Figure 4(f) and in Table 3. The original varying loads

bP and Q may then be written as

p — ow§
J 30 2

2 1

Q=r55%" T30 Er

The yield conditions for the eight members may be expressed as

16



PIPETTE CR
3/5 J 30 3

L 1 Jo
5/5 J30 = 3

-2 < V2 E _ al 3 < 2
J5 "1 30 2

I (6.1)1 ND-1 < — + 1 LL e= n <1
35 517 30 2-7 =

-1 < Fe "1+ [30 22 +23 n<1
-. y

[~

1 < oV2 £ Az E, + = n<1= 3s "1 fo 3 =

1< - = E+ CR
. 5/5 J30 3

where the yield limits of the bars are chosen as

L, = Ie J = 1 for j = 1,2,5,6,7,8,

= 2 for ] = 3h,

This choice of ts and C5 prevents the truss from collapsing due to
yielding of the bars 3 and 4 in an incomplete mode. The vield polyhedrony Poly

for this truss is shown in Figures 5 and 6. Suppose a complicated peri-

odical loading path 1s entirely contained in a rectangular region given by

-1.5 <&,< 0.5
(6.2)

-1.2 < Es < 0.1

17



Table 3. THE ORTHONORMAL SET OF STRESS SETS

_ 2 _ 2 -

1 1 3/5 NEL {2
3

2 1 4 1 K2
3/5 [3 Fi 3

E. 30 :
4 2 — 0

55s Bho

5 2 1 L Ry
3/5 [3 fo 3

6 1 142 oh 2
35 J30 3
ie | 2
5 30 3

8 1 —— 2 BE bh

35 5 03 30 3

18



(a) The Truss - (e) The Yield Limits of Bars

| 4

RL 0 3K LL,
Cy |

ey 2 2
| -+Q 3/5

Q £

(b) The Stresses due to Q (£) 5]
-sP - il a

- 1 | | 2/2

i ip AS, 2
2 /30

Pt Pp oz 3 1 3

(c) The Stresses due to P (fa). (s,,} | a oo
-R 3

0 | 0 3

R A 1 4 Es
| 3

0 -R : 0 _ ra

(d) A State of Residual Stress (5) (R,} ’
Figure 4

19



According to the general shakedown theorem, 1f there exists any state of

self-stress which would enable the truss to respond.in a purely elastic

manner to all further cycles of loading, then it will shakedown. In order >

to show that the truss will shakedown, 1t suffices therefore to find only

one state of residual stress to which it might shake down. Any purely

elastic response 1s characterized by the fact that the response curve 1s

entirely on a plane parallel to £1 E5 plane. Then the problem may be

conceived geometrically as that of imbedding the prescribed region of

loading program into the yield polyhedron by a translational displacement

normal to itself Only [3]. This leads us to investigate the possibility of

imbedding the rectangular region defined by (6.2) into the yield polyhedron.

The imbedding can be achieved 1f the fictitious response to the worst

possible loading cycle,which consists of the circumference of the rectangle,

shows that n becomes a constant eventually.

In the yield polyhedron shown in Figure ), the response to the piecewise

linear cycle: 0 21 ~2 93 sk 55 52

2(-1.5,IC 0.1)
0(o, 0)

I

3(0.5, -1.2) _>W(0.5, 0.1)

1s constructed as shown by the arrows

T; 2, 2; 3s ng 5", 5; eg, 6

20
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the corresponding stepwise formulation of the problem in terms of GP 1s

given in Table 4. The result given in Table 5 shows the coincidence with

that obtained graphically. The steps 5 and6 require plastic deformation

so that the truss will not shake down if all possible arbitrary loading

cycles in the rectangular region must be taken into account.

In order to illustrate the case where shakedown actually occurs, the

response to the small rectangular region

-1.3 < &; 0.5
(6.3)

-1.2 < & < 0.1

has been obtained as shown in Table 6. The result illustrated in Figure 6

shows that this smaller rectangular region 1s indeed imbedded in the

polyhedron.

This procedure can easily be generalized. If a truss ofr degrees

of redundancy 1s subjected to s sets of loads characterized by s load

factors whose bounds are prescribed by

L, <& SU. (i = 1,2,...,s) (6.4)

where L, and U, denote the lower and upper bounds on £1 respectively,

then any conceivable variation of the set (€) 1s contained in the

parallelopiped definedby (6.4). In this case we have r n-type parameters

which will be denoted by UTERREFL A yield polyhedron is then considered

in an (s+r)-dimensional stress space. Shakedown will occur under any

loading cycle contained in the parallelipiped if 1t can be imbedded in the

yield polyhedron by translation normal to itself only. By virture of the

22



convexity of the yield polyhedron, it is sufficient to consider a fictitious

response of the truss to that loading cycle which passes through all the

corners of the parallelopiped. If this response shows that all the My 8

become constant after a finite number-.of cycles, then the imbedding of the

parallelopiped 1s indeed achieved and shakedown occurs, The loading cycle

may be piecewise linear from one corner to another. Hence the GP program

can be applied. On this basis it appears that the number of steps required

to show the shakedown will be at least 0° and at most 2 x 2 In the

case of the example, s = 2. The number of steps N required should be

L<N<8

S1x steps were necessary for the loading path chosen as above.

Table 4%. FORMULATION FOR THE NON-SHAKEDOWN CYCLE

E,— Xq. Eo Xs, PX
im Subject to: 000 0

Step paximize Subject to
- path

| 1 -X, x; > -1.5 x,> =0.5 | (6.1) ~ (6.16) |x, =o
_ " — _

2 X5 L xy 2 -1.2 Xo, 2 0.1 | x; 1.5
5 x, |x, > -1.5 -x. > —0.5 ! X, - -1.2

X, I x, > -1.2 -x, > 0.1 x, 0.5

+ 5 | -X, © > —-1.5 -x, > -0.5 | " | x,= 0.1“ - lL = ~
4 x -

6 | - x, > -1.2 2> 0.1 . Lo -h

23



Table 5. THE RESPONSE TO THE NON-SHAKEDOWN CYCLE |

1 1.50000000 -1.5000000 0 0

2 -1.5000000 -0.71174686 0

2 1.20000000 -1.5000000 -1.20000000 0.378199232

3 0.50000000 0.50000000 -1.20000000 0.37819922

hy 0. _....... 0.50000000 oO. 0. 37819922

5 -1.3474396 0.3781992%

5 1.50000000 -1.50000000 oO. 0.1852239(C

6 -1.50000000 -0.95086989 .. 1852239

6 1.20000000 -1.50000000 -1.20000000 0.37819923

Table 6. FORMULATION FORA SHAKEDOWN CYCLE

Step Maximize | subject to:

1 - X xX) > -1.3 -X, > -0.5 (6.1) ; (6.10) X, =0
2 - X, X, > -1.2 -X, > -0.1 Xx _ -1.5

3 xX, xX, > -1.3 -X) > -0.5 X, = -1.2
4 X, X, > -1.2 -X,, > -0.1 Xy = 0.5
0 - X, xq > -1.3 -Xy > -0.5 X, = 0.1
0 - X, X, > -1.2 ~X, > -0.1 " xX) = -1.5

Table 7. THE RESPONSE TO THE SHAKEDOWN CYCLE

1 1.30000000 -1.30000000 0 0

2 1.20000000 -1.30000000 -1.20000000 0.2517081k4

3 0.50000000 0.50000000 -1.20000000 0.25170811¢+

In 0.09999999 0.50000000 O 0.25170814+

5 1.30000000 -1.30000000 0.25170814+

6 1.20000000 -1.30000000 -1.20000000 0.25170814¢+
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To 1nvestigate more extensively under what kind of loading cycles the

given truss will shake down, it is necessary to know the shapes of the

elastic subspaces defined by n = cons-t. 1.e., cross-sections of the yield .

polyhedron parallel to 3 E, plane. Responses of the truss are characterized

by a family of an infinite number of elastic subspaces to which the truss

could shake down. Since the original yield polyhedron 1s convex, these

elastic subspaces are convex polygons. We will tentatively call any of these

polygons a "shakedown polygon". Any loading cycle under which the given

truss will shake down must therefore be contained in one of this family of

an infinite number of shakedown polygons. For practical purposes, several

shakedown polygons will be sufficient to reveal the shakedown characteristics

of a truss. If we can draw them by some means, then it can be immediately

inspected whether or not a given loading cycle or region can be imbedded

into the yield polyhedron, or how it may be enlarged or should be shrunk, if

the truss 1s to shake down.

In the present example it 1s not difficult to obtain these shakedown

polygons graphically since there are only eight inequalities as given by

(6.1). However, as the number of bars increases, the graphical solution

becomes cumbersome. Furthermore, if the truss has r degrees of redundancy

then a shakedown polygon is an intersection of the yield polyhedron (E,.,)

and r hyperplanes given by

My = const., Ny = CONST, eevee, = const.

where the truss 1s subjected to two independently varying sets of loads.

These shakedown polygons can easily be obtained by use of the GP as

follows. Since any shakedown polygon 1s convex, 1t 1s always possible to
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circumscribe it by a rectangle as shown in Figure 7. There are, in general,

four points of contact with the rectangle or some of the sides of the polygon

may coincide with those of the rectangle. Then it is obvious that the

following five steps of maximization suffice to describe the polygon com-

pletely.

1: max. Fy = 3 with the initial point 0

1» 2: max. F, = 3 " » 1

2-3: max. Fs = - " , 2

3»4: max. Fo=-& ! , 3

b— 1: max. Fe = & " , k

As long as the truss 1s subjected only to two independently varying loads,

Fq Fosenes Fg remain the same through all the shakedown polygons of the

family. Only the right-hand sides of r equality constraints (n, = const.}
are changed. The results from the GP program give all the vertices of the

polygons. If the number of independent load factors is greater than two,

then this technique cannot be used because 1t 1s very difficult to describe

all the vertices of a complicated polyhedron by means of GP.

7. Load Carrying Capacity and Safe Load Domain.

. If a structure 1s subjected to a set of loads characterized by only

one load factor, then the corresponding load carrying capacity 1s uniquely

defined. However, if it is subjected to s sets of loads characterized

by s independently varying load factors (&,3, then the set (€, at
collapse depends upon the prescribed loading path. In order to obtain all

the sets (€,) at collapse, 1t suffices to consider a family of straight

line paths defined by
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where (my, my... my) 1s a set of numbers which determine the ratios

between £.'s. This family covers the s-dimensional load factor subspace

completely. To every one of these paths there corresponds a set (£1, E5yeeesty)

at collapse. All these sets (&,, Enyeeesby) form a closed hypersurface 1in

the s-dimensional load factor subspace. Since this hypersurface can be

regarded as a projection of the yield polyhedron into the s-dimensional load

factor subspace, 1t must be a convex polyhedron in Eg. This will be called

the "safe load domain". This domain 1s characterized by the property that

any combination of the s sets of loads represented by a point interior to

1t does not cause collapse 1f the loads are monotonically increased from

zero. This can easily by obtained by the GP method since some equality

constraints have only to be added.

It should be noted that 1f we denote an infinite number of regions of

shakedown polygons by Dis DoseeesD penne then the union D, U D, U...UD VU...

gives a safe load domain approximated from inside 1i.e., from safe side.

; In the case of the example, since there are two load factors all the

ratios E/E, must be considered. By virtue of the symmetry of the yield

polyhedron, we have only to consider a family of straight line paths

originating from the origin which cover a half €1 &5 plane completely.

The safe load domain in this case 1s a polygon and practically several

straight line paths suffice to draw the polygon. The result is shown in

Figure 8.
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8. Concluding Remarks.

An application of the gradient projection method of nonlinear

programming to the elastic-plastic analysis of trusses has been shown to be

straightforward and fruitful. It should be emphasized that as long as

loading paths are piecewise linear, GP automatically gives integral results

for every segment of the paths and the exact elastic-plastic responses of

multiply redundant trusses to several independently varying loads can

readily be obtained by GP.

It has also been shown that the gradient projection method 1s useful

and powerful to investigate shakedown and load carrying capacities of

trusses. Frame structures can be treated in the same manner as trusses

without modification. In the case of a frame, it is expected that we have

an infinite number of yield inequalities corresponding to an infinite number

of cross-sections of its members. However, since most of the collapse modes

of frames contain a finite number of plastic hinges, 1t appears that we

should expect to obtain yield polyhedrons rather than smooth convex

hypersurfaces. Hence those linear constraints make it possible to use the

same technique as above.
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