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Abstract

The gradient projection method has been applied to the problem of
obtaining the elastic-plastic response of a perfectly plastic ideal truss
with several degrees of redundancy to several independently varying sets of
quasi-static loads. It is proved that the minimization of stress rate
intensity subject to a set of yield inequalities 1is equivalent to the
maximization process of the gradient projection method. This equivalence
proof establishes the basis of the computational method. The technique is

applied to the problem of investigating the possibilities of shake down and

to limit analysis. A closed convex "safe load domain" is defined to represent

the load carrying capacity characteristics of a truss subjected to wvarious

combinations of the several sets of loads.
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in Whole or in Part is Permitted for any Purpose of the United States
Government.






1. Introduction.

This paper is concerned with the elastic-plastic analysis of trusses
by means of the gradient projection method of nonlinear programming which
has been developed by one of the authors [4, 5], It is a method of obtaining
the global maximum of a nonlinear concave function in a convex region defined
by linear or nonlinear constraints. 1In this paper, however, the application
of the method is restricted to the case of linear constraints.

The geometrical representation of a state of stress given by Prager
enables one to represent a change of state of stress in a truss as an
infinitesimal vector in a convex yield polyhedron defined in a stress space.
The minimum principle of Greenberg [1] is interpreted in this geometrical
context. It is proved that the infinitesimal response vector obtained by
use of the minimum principle is identical with that described by the
maximization process of the gradient projection method, provided that the
objective function is so chosen that the gradient vector always coincides
with the direction determined by the increments of the load factors. The
equivalence proof establishes the basis for the application of the computational
method. The technique is illustrated by means of a simple example.

If the prescribed loading path is piecewise linear, the number of
maximization steps is equal to the number of segments of the path, regardless
of the degrees of redundancy of the truss., Because of this fact, we can
readily investigate the possibilities of shakedown [3,6,7] if a loading cycle
is prescribed or if it can be assumed that all the variations of the applied
loads are bounded by a polyhedron or by a parallelopiped. A practical
example 1s studied in detail to illustrate the technique. The results

obtained from GP are shown to be identical with those which can be obtained




graphically for this relatively simple case The load carrying capacity
must be defined with respect to a particular combination of the applied loads.
A set of all the load carrying capacities defines a closed convex "Safe Load
Domain". This may be obtained by the GPlprocedure.

It is expected that this computational technique can be applied to
frame structures. In this case an infinite number of yield strips are
obtained corresponding to an infinite number of cross-sections of the members
of a frame. Each yield strip represents the yield condition for a particular
cross-section. The fact that most collapse modes of frames consist of a
finite number of plastic hinges implies that even if continuously distributed
loads are applied to a frame, the corresponding yield conditions can be
represented by a polyhedron and not by a smooth convex hypersurface.
Therefore we have again linear constraints and the gradient projection method

can be used without modification.

2. Geometrical Representation of State of Stress.

The geometrical representation of a state of stress as given by Prager
[2, 3] is introduced here in a generalized form to prepare for the ensuing
-discussion.

An ideal truss 1is composed of n bars of elastic-perfectly-plastic
materials. It is assumed that the velocities of settlement of the supports
are-all zero. Let f be the number of reactions and h the number of
joints. Suppose there are s sets of loads characterized by s independent

load factors {gi} in the form

{8 Prghs {85 Poplseeeon{bg Pyl

(2.1)
(£ = 1,2,...,h).




acting upon the given ideal truss. Then the equations of equilibrium form

an inhomogeneous system of linear algebraic equations of the form

n+f s
a, S = _E E, D, (¢ =1,2,...,2n) (2.2)
k=1 =1
where Sl’ SZ""’Sn denote the internal forces in the bars, Sn+l’“"sn+f’

the reactions at supports and bil’Pil

The coefficients 8y are essentially the direction cosines of the kth

multiplied by a direction cosine,

bar. Unknown quantities are {Sk] (k = 1,2,...,n+f).
If n+tf-2h = r > 0, then the set [Sk] is not uniquely determined by

(2.2) and the truss has r degrees of redundancy. Let

(Slj}} [Szj}t © o {SSJ.j
by a set of s particular solutions of the s inhomogeneous systems the
ith of which is obtained by replacing the right-hand side of (2.2) by the
ith inhomogeneous term {bil} and

(Ryy)s (Roylseeos (B,
a set of r linearly independent solutions of the homogeneous equation
obtained from (2.2). Although (2.2) cannot have a unique solution, any
solution of (2.2) must be contained in the general solution given by a linear
combination of s linearly independent particular solutions {Sij] and r

linearly independent solutions {Rkj} of the homogeneous system obtained

from (2.2).
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1,2,...,n+f).

where M s are arbitrary parameters. The particular solution (Sij} can
be obtained by imposing r additional conditions on deformation that the
truss responds elastically under the particular set of loads {b“] (¢ = l,2,...,2h).
Thus [Sij] represents an elastic state of stress. {RkJ.] is obtained by
considering the statically determinate structure which can be produced by
replacing r redundant forces by a set of known forces. {Rkj] then represents
a state of self-stress.
It is always possible[2] by forming linear combinations of {S,.} or {Rkj]

1J
to construct an orthonormal set of (s+r) solutions in the sense

1 n

= a. S S.. =90,.

ejgl J kij 1id ki

1 B

5 3'?1 a siJ. Rtj =0 (2.4)

1 n
5 jg,l as Ry R, o= 8,

(kx, 1 =1,2,...,s; L, m = 1,2,...,r).

where OtJ_i =% JA s l,j denoting the length of bar j, A:] its cross-section
J J
and E:] its elastic modulus, and where aki and alm are Kronecker delta's,

It is to be understood in the following that (Sij} and [Rkj} denote
elements of this orthonormalized set where Jj varies from 1 to n. The
original load factors can then be expressed by linear combinations of the

gi's for this orthonormalized set.




The elastic strain energy corresponding to the set of internal forces

{SJ.] given by (2.3) is defined by

n
c-3 L a5
j=1 ¥
Ca . o)
=z )y a. [} & 8.+ ) n R.]
2 521 Jd oy i ] k ng
By virtue of the orthonormality (2.4), (2.5) is reduced to
r
2 2
€ = Zﬁi + Z My (2.6)
i=1 k=1

With this preparation, we can now make use of the concept of "s-tress
space." Any solution {Sj}, and the corresponding strain energy, is

completely determined by the set of parameters

(EpsEpevesbgs  Mppeeeeesn) (2.7)
as shown by (2.3) and (2.6). If we consider an (s+r)-dimensional stress
space whose Cartesian coordinates are gl,gg,..o.,gs, MysMos e e sy then

any state of stress of the truss can be represented by a point in this space.
Any state of loading is then represented by the set (gl,§2,”,.,§s) while
any state of residual stress by Ohan,.”.,nr)

Since all the bars are assumed to be composed of perfectly-plastic
materials, the corresponding yield conditions must be satisfied. The

condition that the stress in any bar should not exceed the yield limit can

be written




k=1 (2.8)

where cj and t., denote the yield limits of bar j in compression and
in tension, respectively. Each one of the n inequalities in (2.8) defines
a strip between two hyperplanes. The set of all the inequalities define a
convex polyhedron in (s+r)-dimensional stress space as the common region

of all the yield strips. Therefore, only the set of points on or inside

the yield polyhedron can represent actual states of stress.

3. Geometrical Interpretation of the Minimum Principle.

The minimum principle of Greenberg [1] 1is expressed in the geometrical
terms according to Prager (3] to prepare for the later use in Section 4.

In order to obtain the response of a given truss to a particular
loading program, (s-1) relations between s load factors must be prescribed

resulting in a "loading path" in the s dimensional load factor subspace.

Let a vector

-—
dg¢ = (dgl’ d§2,----,d§s)

define a set of infinitesimal changes of load factors from an instantaneous
state of loading (gl,ge,,,,,,gsL 52 being a tangent vector to the loading
path. Corresponding to this change is an infinitesimal translational
displacement of the r-dimensional subspace of equilibrium. The corresponding
new state of stress must be represented by a point in this displaced subspace
of equilibrium. If we consider a local coordinate axis & in the direction

of 52 at a stress point denoted by




X = (gl;§2:--“:§85 ﬂl,ng,---mr);

and an  (r+l)-dimensional cross-section of the yield polyhedron spanned

by ¢, MyseeeeyM,  aXes, then any stress change due to d¢ can be represented

by a vector

dx = (ae, dnl,....,dnr).

where dnl, dne,...,,dnr denote the variation in ”1’“2"--°’“r corresponding
. \ —>

to d€. The problem is then to determine dx which does not violate the yield

conditions (2.8).

The quantity termed as stress rate intensity by Greenberg may be

written as

Ac
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(3.1)
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Since the new stress point must lie in the displaced subspace of equilibrium

(a hyperplane in E and in the yield polyhedron, a vector 5% is said

r+l)
to be admissible if the point X + d¥ is in the displaced hyperplane of
equilibrium bounded by the yield polyhedron. Admissible vectors form a
family any one of which can represent an admissible stress change. The
minimum principle can be stated as follows: For a given EE, the actual
stress change is given by the vector which minimizes the absolute value of
dx among all the admissible vectors. In other words, we wish to obtain the

shortest distance from an initial point to the intersection of the equilibrium

hyperplane and the yield polyhedron.




4, Equivalence Theorem.

The use of the gradient projection (GP) method is based essentially
on the fact that in GP the global maximum is sought by cutting across the
interior of the convex region of definit%on, if possible. It is proved in
this section that the stress change 8% obtained by use of the minimum
principle stated above exactly coincides with the vector determined by GP,
provided that the objective function F is chosen so that the gradient
vector is always in the direction of the tangent to a prescribed loading
path.

A hyperplane of equilibrium is expressed by

H : & = const. (4.1)
The afore-mentioned condition will be satisfied if F is defined by
F=t (4.2)
in the local coordinate system. Then

—
grad F = g = (1, 0,...,0) (4.3 )

and

e
qe = de g (4.4)
The following preliminary results are required for the equivalence
proof. Given an m x n real matrix A we let the finite set (Ai)

represent all submatrices which can be formed with linearly independent




columns of A. For each such Ai we can form the m x m projection
matrix P, = I - Ai(Ai Ai)-l Al, which takes any m-dimensional vector into
the space orthogonal to that spanned by the columns of Ai' We let
P= [Pi,I] be the finite set of all P, and the m x m identity matrix.
Lemma

Given an m-dimensional vector g and the convex cone A x > 0, the
gradient projection algorithm will form the projection matrix Pze P, such

that

Iy el = e dlmyel 55 2 o} (+.5)
Pie P

The proof folloﬁg directly from equation (4.48) in reference [5], which
shows that an appropriate basis change is made whenever such a change will
increase the norm of the projected gradient, subject to the feasibility
restriction.

The minimum principle [1] for the elastic-plastic truss can be stated

as that of finding a vector x which satisfies the following quadratic

programming problem

min {x'x I A'x > 0, g'x = 1} (4.6)

The columns of A represent the active constraints of the yield polyhedron
at the point considered, and g is a normal vector to the equilibrium
hyperplane He' The desired stress change dx is then given by dx = xdt.

Equivalence Theorem

If P,g is the solution of (k.5), then x = aP,g is the_solution

of (4.6), where a > 0 is a scalar.




Proof: We consider all the possible projection matrices P, eF, and let

X, = aiPig. In order to satisfy g'§:= 1, we require

1
2 _ -2

oepe - o Ipel? - 1, or o = Ipgl”

Then xixi = HPigWQ, so that the value 1 = { which maximizes HPigH

in (4.5) also gives the desired minimum in (4.6)

5. Three-bar truss.

A truss consisting of three bars shown in Figure 1 is subjected to a
vertical varying load P. Let the internal forces transmitted by the bars 1
(or 3) and 2 be 8 and §,, and the tensile rigidity (li/AiE) be land 2

for simplicity.

The equation of equilibrium is written as

S. +S =P (5.1)

and the compatibility equation

.The solution of (4.1) and (4.2) is

wm
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the normalized set is

1 1

[Sll’le] = {ﬁ b} ﬁ} (5.4)

The state of self-stress is shown in Fjgure 2. After normalization, we obtain

1
[Rll’ 127 = {ﬁ ’ »/5 (5.9)

thus a typical state of stress can be written

R

10




Figure l.THREE-BAR TRUSS

Figure 2.STATE OF SELF-STRESS
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For the sake of simplicity, let the yield limits of the bars 1(3) and
2 be +J§ and +A/_£_ respectively. Then the yield conditions are
- —J2
_2<E+n<2

-1<¢g-1<1

The feasible l:_egion R is determined by the yield conditions (5.7) and
the lines of equilibrium. Figure 3 shows the yield polygon (Hl’ H,, By Hh)’
the upper and lower extreme values of the load factor ¢ (H5' H6) and the
correspondingly inward drawn unit vector_s)l n. (i =1,2,...,6). The objective
function is F = ¢t whose contour lines are a family of equally-spaced
parallel dotted lines which are the lines of equilibrium themselves.

Consider the loading and unloading process given by
tE: 0 =14 50 5 -1.2 50 1.k (5.8)

The initial point is the origin with the gradient |§)O| = 1.0. The largest

permitted step length in the direction of E’o without leaving R is to Hl'

The projection Plgl is shown in the Figure 3, where Pl is the corresponding

projection matrix to Hl' Since Plgl =(-]é'-,-}£) the new direction

-> - - . . .
Z, = Plgl/|Plgl| is AB. The largest step length is to H, giving
-

g = é’o as shown. At this point B, the projection of g, on H5 becomes

12
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Figure 3. THE YIELD POLYGON
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zero because H5 is one of the contour lines. Thus at B the maximum
of F = ¢ 1is achieved first. The computer describes exactly the path
63,3% which represent the actual response of the truss. It should be
noted that the computer stops at the point B where the maximum first
achieved although there are an infinite number of points of maxima along HB.
For the unloading process, §i: 1.4 0= -1.2, the program must be
started with the new initial point B. The corresponding mathematical
problem is stated as follows:
Maximize F = -¢
subject to the constraints &> -1.2, =-¢ > -1.4 and (5.7) with the
new initial point B.
Tables 1&2 showtheresults obtained by GP. Theydemonstrate that the actual

response of the truss to the prescribed variation of & 1is exactly traced

by the computer within the round-off errors in the last digit.

14




Table 1. Response I. No shakedown.
Xl@ ) Xg(ﬂ) Loading
0 0 +
1 0 Loading
1.40000000 0-39999997
-0.60000002 0.39999997
-1.20000000 -0.19999997 Unloading
0. 80000003 -0.19999997 *
1.40000000 0.39999997 Loading
Table 2. Response II. Shakedown.
Xi( ) Xe(n) Loading
0 0 +
1 0 Loading
1.40000000 0.39999997
0-59999999 0.39999997 Unloading
1.40000000 0.39999997 Loading
0-59999999 0-39999997 Unloading

15




0. Shakedown.

In many practical cases, the precise variations of the loads applied
to a structure are not known or are so complicated that it is difficult to
prescribe them. For the purpose of designing structures, certain bounds on
the working loads can be assumed which are based on statistical data. It is
assumed here that the variable loads applied to the structure have a finite
period.

The shakedown problem may be stated as follows: Consider a structure
subjected to a set of periodically varying loads, whose bounds of variations
are prescribed. We wish to determine whether the structure will shakedown
to a state of self-stress after a finite number of cycles of loading and
unloading process ;;ch that its response to all further cycles becomes
purely elastic. ,

An example will be considered first. Figure 4(a) shows a simply
redundant ideal truss of 8 bars with 5 joints subjected to a vertical load
P and a horizontal load Q which vary independently. The elements
(Slj], {S2j} and [Rj} of the orthonormal stress set for the present
example are shown in Figure 4(f) and in Table 3. The original varying loads

P and Q may then be written as

_ 2
p= ,5652

2 1
Q_\/'5'§51+‘/_5—o £

The yield conditions for the eight members may be expressed as

16




o2 2 2
-l < - — - - — <1
L 1 2
-1 —— - — - —_ 1

V2 22
-2 < 75- gl-'/——gz §2 <2
2« fs ok 10 ey <2
? (6.1)
_ 21 1 V2
PYORF Mt -y MY
-1 < ﬂ;é §l+4/§o 52+2—3 n<1
[
V2 »/5 2
-l < - Yo - = - 1
< 3/; 3 550 €, + P n <
2 3 o
Sl < - ——— E 4R E - = <1
=T3f5 1o 275 "E

where the yield limits of the bars are chosen as

tJ. = chL

I
—

for j = 1,2,5,6,7,8,

1l

]
n

for j = 3,k.

This choice of tj and Cj prevents the truss from collapsing due to
yielding of the bars 3 and 4 in an incomplete mode. The yield polyhedron
for this truss is shown in Figures 5 and 6. Suppose a complicated peri-

odical loading path is entirely contained in a rectangular region given by

-1.5 <§, <05
(6.2)
-1.2 <&, < 0.1

7



Table 3. THE ORTHONORMAL SET OF STRESS SETS

J 1] 23 J
__2 _ 2
1 3/5 V30 22
3
) 4 1 o2
5[5 i Fo 3
. 2
’ /525 " J30 ’
2 i
'/;5 1/3-«/50 °
2 — .1_ —‘(2-—2
3/5 B o 3
1 142 Iy 2
35 30 3
1 —ve | ko 2
W% J30 3
1 -— 2 —3 --‘52
3 5 {3 30 3
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(a) The Truss - (e) The Yield Limits of Bars

(£3)
Figure 4

(d) A State of Residual Stress
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According to the general shakedown theorem, if there exists any state of
self-stress which would enable the truss to respond.in a purely elastic
manner to all further cycles of loading, then it will shakedown. In order
to show that the truss will shakedown, it suffices therefore to find only
one state of residual stress to which it might shake down. Any purely
elastic response is characterized by the fact that the response curve is
entirely on a plane parallel to §l §2 plane. Then the problem may be
conceived geometrically as that of imbedding the prescribed region of
loading program into the yield polyhedron by a translational displacement
normal to itself Only [3]. This leads us to investigate the possibility of
imbedding the rectgngular region defined by (6.2) into the yield polyhedron.
The imbedding can be achieved if the fictitious response to the worst
possible loading cycle,which consists of the circumference of the rectangle,
shows that n becomes a constant eventually.

In the yield polyhedron shown in Figure 5, the response to the piecewise

linear cycle: 0 =21 =22 93 a2k 55 52

2(-1.5, -l1.2)« 5(-1.5, 0.1)

1(-1.5, 0)

o(o, 0)

3(0.5,I-1.2) > 4(0.5, 0.1)

is constructed as shown by the arrows

T, 2,238, 5,56, 86

20




TC

X, (&)

Figure 5. NON-SHAKEDOWN CYCLE




the corresponding stepwise formulation of the problem in terms of GP is
given in Table 4. The result given in Table 5 shows the coincidence with
that obtained graphically. The steps 5 and 6 require plastic deformation
so that the truss will not shake down if all possible arbitrary loading
cycles in the rectangular region must be.taken into account.

In order to illustrate the case where shakedown actually occurs, the

response to the small rectangular region

-1.3 <&, <05
(6.3)
-1.2 < §2 < 0.1
has been obtained as shown in Table 6. The result illustrated in Figure 6

shows that this smaller rectangular region is indeed imbedded in the
polyhedron.

This procedure can easily be generalized. If a truss of r degrees
of redundancy is subjected to s sets of loads characterized by s load

factors whose bounds are prescribed by

LiﬁilﬁU-l (i = 1,2,...,s) (6.4)

where L.l and Ui denote the lower and upper bounds on §l, respectively,
then any conceivable variation of the set [gl] is contained in the
parallelopiped defined by (6.4). In this case we have r n-type parameters
which will be denoted by nl,“.,nr.Aiyield polyhedron is then considered
in an (str)-dimensional stress space. Shakedown will occur under any
loading cycle contained in the parallelipiped if it can be imbedded in the

yield polyhedron by translation normal to itself only. By virture of the

22




convexity of the yield polyhedron, it is sufficient to consider a fictitious
response of the truss to that loading cycle which passes through all the
corners of the parallelopiped. If this response shows that all the nk's
become constant after a finite number-.of cycles, then the imbedding of the
parallelopiped is indeed achieved and shakedown occurs, The loading cycle
may be piecewise linear from one corner to another. Hence the GP program
can be applied. On this basis it appears that the number of steps required
to show the shakedown will be at least 2° and at most 2 X 2", In the

case of the example, s = 2. The number of steps N required should be
L <N<8

Six steps were necessary for the loading path chosen as above.

Table 4. FORMULATION FOR THE NON-SHAKEDOWN CYCLE

glf»xl. g2—>x2, q—>x3
Step gaﬁlmlze Subject to:

B Bounds Yield Ineq. Path

= x > -1.5 x> =0.5 (6.1) ~ (6.16) | x, = ©
X5 % XQ.E -1.2 'ngi. 0.1 l X 1.5
5 X, X, >_~1.5 -x, > -0.5 | X, - -1.2
I_ IlL | X, Ix,_az_—l.Z -x,2>__—0 1 X _ 0.5
5 | -x; x, > -1.5 -x, > =0.5 " x, = 0.1

L X -
6 2 X, > -1.2 2> 0.1 ! " oL

23



Table 5.

THE RESPONSE TO THE NON-SHAKEDOWN CYCLE

Step Maximum F X, (gl) X, (§2) Xy (n)
1 1.50000000 -1.5000000 0 0
2 -1.5000000 -0.71174686 0
2 1.20000000 -1.5000000 -1.20000000 0.37819922
3 0.50000000 0.50000000 -1.20000000 0.37819922
4 0. 0.50000000 O . ... 0.37819922
5 -1.3474396 . 0.3781992%
5 1.50000000 -1.50000000 O . ... 0.185223 9C
6 -1.50000000 -0.95086989 .. 1852239(C
6 1.20000000 -1.50000000 -1.20000000 0.37819922
Table 6. FORMULATION FOR A SHAKEDOWN CYCLE
Ste Maximize Subject to:
Pr- Bounds Yield Ineq. Path
1 - X xl> -1.3 —xl> -0.5 (6.1) ~ (6.16) X, =0
- x,) x, > 1.2 -x, > -0.1 ! x, _ 1.5
3 Xy X > -1.3 = > -0.5 " X, = -1.2
4 X, X, > -1.2 X, > -0.1 X, = 0.5
5 - X, Xy > -1.3 -xl > -0.5 X, = 0.1
) - X, X, > -1.2 -Xy > -0.1 X = -1.5
Table 7. THE RESPONSE TO THE SHAKEDOWN CYCLE
S’l:ep Maximum F Xy (51) X5 (§2) %5 (n)
1 1.30000000 -1.30000000 0 0
2 1.20000000 -1.30000000 -1.20000000 0.25170814
3 0.50000000 0.50000000 -1.20000000 0.25170811H
L 0.09999999 0.50000000 O . . 0.25170814+
5 1.30000000 -1.30000000 e e 0.25170814¢+
6 1.20000000 -1.30000000 -1.20000000 0.25170814+

24
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To investigate more extensively under what kind of loading cycles the
given truss will shake down, it is necessary to know the shapes of the
elastic subspaces defined by f = cons-t. i.e., cross-sections of the yield
polyhedron parallel to gl 52 plane. Responses of the truss are characterized
by a family of an infinite number of elastic subspaces to which the truss
could shake down. Since the original yield polyhedron is convex, these
elastic subspaces are convex polygons. We will tentatively call any of these
polygons a "shakedown polygon". Any loading cycle under which the given
truss will shake down must therefore be contained in one of this family of
an infinite number of shakedown polygons. For practical purposes, several
shakedown polygons will be sufficient to reveal the shakedown characteristics
of a truss. If w;'can draw them by some means, then it can be immediately
inspected whether or not a given loading cycle or region can be imbedded
into the yield polyhedron, or how it may be enlarged or should be shrunk, if
the truss is to shake down.

In the present example it is not difficult to obtain these shakedown
polygons graphically since there are only eight inequalities as given by
(6.1). However, as the number of bars increases, the graphical solution
becomes cumbersome. Furthermore, 1if the truss has r degrees of redundancy

then a shakedown polygon is an intersection of the yield polyhedron (Er+2)

and r hyperplanes given by

nl = const., Ny = const,......,nr = const.

where the truss is subjected to two independently varying sets of loads.
These shakedown polygons can easily be obtained by use of the GP as

follows. Since any shakedown polygon is convex, it is always possible to
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circumscribe it by a rectangle as shown in Figure 7. There are, in general,
four points of contact with the rectangle or some of the sides of the polygon
may coincide with those of the rectangle. Then it is obvious that the

following five steps of maximization suffice to describe the polygon com-

pletely.
1: max. Fl = §l with the initial point 0
1- 2: max. F2 = §2 " s 1
2»3: max. Fy =- £, " , 2
35 4: max. F, = &5 I , 3
b 1: max. F5 =& " , b

-

As long as the truss is subjected only to two independently varying loads,
Fl’ F2,...,F5 remain the same through all the shakedown polygons of the
family. Only the right-hand sides of r equality constraints {ni = const. }
are changed. The results from the GP program give all the vertices of the
polygons. If the number of independent load factors is greater than two,
then this technique cannot be used because it is very difficult to describe

all the vertices of a complicated polyhedron by means of GP.

7. Load Carrying Capacity and Safe Load Domain.

If a structure is subjected to a set of loads characterized by only
one load factor, then the corresponding load carrying capacity is uniquely
defined. However, if it is subjected to s sets of loads characterized

by s independently varying load factors [gl}, then the set [gi] at
collapse depends upon the prescribed loading path. In order to obtain all

the sets [gi] at collapse, it suffices to consider a family of straight

line paths defined by
o7
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where (ml’nb’°’"“’ms) is a set of numpers which determine the ratios
between §i's. This family covers the s-dimensional load factor subspace
completely. To every one of these paths there corresponds a set (gl,ge,.”,gs)
at collapse. All these sets (gl,§2,...,§s) form a closed hypersurface in
the s-dimensional load factor subspace. Since this hypersurface can be
regarded as a projection of the yield polyhedron into the s-dimensional load
factor subspace, it must be a convex polyhedron in ES. This will be called
the "safe load domgin". This domain is characterized by the property that
any combination of the s sets of loads represented by a point interior to
it does not cause collapse if the loads are monotonically increased from
zero. This can easily by obtained by the GP method since some equality
constraints have only to be added.

It should be noted that if we denote an infinite number of regions of

~

shakedown polygons by Dl’DZ’“"Dm’”"' then the union Dl U D2 U..JE%U.“
gives a safe load domain approximated from inside i.e., from safe side.

In the case of the example, since there are two load factors all the
ratios §1/§2 must be considered. By virtue of the symmetry of the yield
polyhedron, we have only to consider a family of straight line paths
originating from the origin which cover a half §l§2 plane completely.

The safe load domain in this case 1is a polygon and practically several

straight line paths suffice to draw the polygon. The result is shown in

Figure 8.
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8.  Concluding Remarks.

An application of the gradient projection method of nonlinear
programming to the elastic-plastic analysis of trusses has been shown to be
straightforward and fruitful. It should be emphasized that as long as
loading paths are piecewise linear, GP automatically gives integral results
for every segment of the paths and the exact elastic-plastic responses of
multiply redundant trusses to several independently varying loads can
readily be obtained by GP.

It has also been shown that the gradient projection method is useful
and powerful to investigate shakedown and load carrying capacities of
trusses. Frame structures can be treated in the same manner as trusses
without modification. In the case of a frame, it is expected that we have
an infinite number of yield inequalities corresponding to an infinite number
of cross-sections of its members. However, since most of the collapse modes
of frames contain a finite number of plastic hinges, it appears that we
should expect to obtain yield polyhedrons rather than smooth convex
hypersurfaces, Hence those linear constraints make it possible to use the

same technique as above.
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