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CHAPTER 1

INTRODUCTION AND FRELIMINARIES

1.0 Introduction.

The central problem considered in this paper is the following: Given

an n by n matrix A of complex elements, find those normal matrices

(cailed v~-minimsl matrices) of order n which are closest to A in the

gense of a metric defined in terms ¢f a norm v. A related problem is

that of determining the distance a(A) between A and the subset 77
of all normal matrices of order n. The historical background and precise

definition of these problems are given in Section 1.2. The dlstance

problem mentioned above was first studied by Mirsky, who offered Conjecture

1.35 as the general solution for all unitarily invariant norms.

After a proof that v-minimal matrices always exist (Section 1.5),

it is shown in Chapter 2 that the property of venminimelity and certain

other quantities are invariant under certain transformations of matric

space. An inequality of Mirsky is sharpened in Chapter 3. A mumter of

important necessary conditions for €-minimal matrices (€ derotes the

familiar Euclidean norm) are derived in Chapters 4 and 7. In Chapter 9

it is shown that all eigenvalues of an €-minimal matrix lie in the field

of values F(A) of A; these eigenvalues are shown to be special ex-

treme points of F(A) in the case n =2. In the final Chapter 10 an

iterative computational procedure for finding d_(A) or an €-minimal

matrix is proposed, but its convergence is not proved.



Probably the most important results of the paper are the following:

1) A characterization of any e-minimal matrix in terms of the Maximum

Problem 5.11 (Thecrem 5.13).

2) A determination of all ¢-minimal matrices of order 2 (Theorem 6.24).

3) Mrsky's Conjecture 1.35 is shown to be true for v=¢ and ns 2

(heorem 6.80), false for vs ¢ and n> 3 (Theorem 8.5) and false for

n>2 and v= vp (2<p< ), where vo is defined by (1.15) (Theorem 8.9).

[Rote: The fact that Mirsky's conjecture is false for vs=¢ and n>3

was first proved by P. J. Eberlein.)

All results stated herein which are not spec¢ifically labeled as known

or for which no reference is given are believed to be new.
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1.1 Notation and Preliminary Definitions.

Let R and C denote respectively the real ind complex i:umber

fields and let m_ denote the algebra of all n by n matrices over (C,

vhere n 1s a positive integer. If X € /% we denote its complex con-
* #* *

jJugate transpose by X . A matrix X is called normal if XX =XX ; in

* »

particular X 1s called hermitian if X =X, skew-hermjtian if X = -X,
%*

and unitary if X X = I, where I denotes the identity matrix of the same

order as X. Let 7, 7n’ ; and LD denote respectively the
subsets of all normal, hermitlun, unitary and diagonal matrices in x
(We shall sometimes omit the subscript n, if the value of n need not be

specified.)

For the meaning of terminology or notation not explicitly defined in

this paper, the reader is referred to one of the standard textbooks on the

theory of matrices (e.g., Perlis 2h).
A real valued function v defined on 7% is called a norm if the con-

ditions

(1.1) v(A) > 0 if A #0 ,

(1.2) v(ica) = |e| v(A) ,

(1.3) v(A + B) < v(A) + v(B)

are satiefied for all A, B € MM and for all c¢c € C. A norm v is said

Numbers in square brackets refer to references listed.in the bibliog-

raphyat the end of this paper.
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to be unitarily invariant if, in addition to (1.1) - (1.3),

(1.4) v(UA) = v(AU) = v(A)

holds for a11 A € J and for all U € I{. Moreover, a norm v 1s said

to be multiplicative if, for arbitrary A, B € 777,

(1.5) v(AB) < v(A) v(B) .

Unitarily invariant norms were characterized by von Neumann [19] (see

also Fan and Horfman (9)]) as follows. A real-valued function |

- fu) = o(u, ,u,, cos u ) defined for all real n-vectors u = (ug suy50005u )
is called a symmetric gauge function if it satisfies, for arbitrary real

vectors u, v and real scalars a, the following corditions

(1.6) o(u) > 0 i? ufo ,

(1.7) olcu) = |x| o(u) ,

(1.8) ou + v) < ou) + o(v) ,

, (1.9) ou, ,u,, ses uy) = oloyy, 5 02%,’ ees Tnx ) »

vhere ©, can be either of the signs +1 (1 21,2, ... , n) and where

(x75, see » x) is any permutation of (1,2, vee n).

1.10 Definition. Let A € 777. The nonnegative square roots of the eigen-

values of AA are called the singular values of A.

Remark. Since the spectrum of A coincides with that of ATA, the

singular values of A are the same as those of A.

Lh :



I

1.11 Theorem (von Neumann [19]). A nora v on iy is unitarily invariant

if and only if there exists a symmetric gauge function ?, of n real
varlables such that

(1.12) v(A) = (2 5%, coe a) for all A € 777.

where &) 1G, cos a are the singular values of A.

As examples of symmetric gauge functions we may cite

n p 1/p
(1.13) (wy, ... su) = (X lu I) for 1<p<= .

As Dp =», the function in (1.13) converges to

(1.14) 0,1 sus, cee u_ ) = Max (uy) .

vhich 1s also a symmetric gauge function. Thus, for 1 <p < =,

(1.15) (a) =e (ay, ... ya)

is a unitarily invariant norm, where a,yg soe a are the singular values

of A. The norm v, is known ag the spectral norm of A and is some-

times denoted by the symbol o, i.e., o(A) = v(A) for all A € ”.-

For p = 2 v (A) in (1.15) coincides with the familiar Euclidean norm
€(A) defined by

n

(1.16) (a) = X lays 2i,J=1

p



where A = (a.,) € 77], and where by 2(A) we mean [e€(A)]°. It can be
shown (see e.g., Faddeev and Faddeeva [7] pp. 105-111) that both © end

¢ are multiplicative ncrms.

It is vell known that m, is a Banach algebra with respect to the

norm (1.16), that is, Mm, is a Banach space when considered as a linear
| space vith norm €, and the multiplication operation (transformation)

(A,B) = AB 4s a continuous mapping from the product space 7770 X 7,
onto ” (Cf. Hille and Phillips [13], p. 22.)

1.17 Definition. Let the eigenvalues of M € 77% be denoted by

A (M), AM), coe A (M) in some order. Then #(M) 1s defined by

Q(X) = diag(x, (M), cee 5h (M))

For any N = (mw, ,) € ” the trace of M 1s defined by

(1.18) tr(M) = $ m .
fm 11

We note the following well-known properties of the trace functional:

(1.19) tr(AB) = tr(BA) ;

(1.20) tr(GA + BB) =a tr(A) + Bp tr(B) ;

(1.21) tr(M) = tr(M) ;

(1.22) (M) = tr(M'H) = tr(d’) .

Bere A, B, M are any matrices in ” and «, B are any complex nuabers.

6
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1.23 Definition. Let M = (my) 2M, The diagonal of M is defined
by

Likewise the off-diagonal of M is defined by

(1.25) offdg(M) = M - dg(M) .

1.2 Distance Problems; Mirsky's Conjecture and Bound.

Let A 77, let v be any norm on 777, and let J be any subset

of 77. By a distance problem we mean the problem of determining the

"distance"

(1.26) Inf v(A - X)
X eo

between A and £ with respect to the norm v. In any case in which tke

infimum (1.26) is attained by a matrix in 4 we may consider the related

minimum problem of finding (at least one meirir and preferably all) matrices

X0 pq such that

v(A -X) = Min  v(A- X) .
© xe o

Several such problems have been considered and solved in the past. We now

describe some of these results.

7



1.27 Theorem (Fan and Hoffman [9]). let Ac N, let a 4 denote the

subset of all hermitian matrices in 77 y and let v denote any unitarily

invariant norm on 77 + Then

* »

(1.28) Min WA -X)=vA-2(A+A)) =ZvA-4) :
x € HN

1.29 Theorem (Fan and Hoffman [9]). Let Z¢ denote the subset of all

unitary matrices in 777 and let v denote any unitarily invariant norm

on 77°C. Let A € 77% and suppose A = UH wher: H € HN 1s positive

gsenidefinite and U € ZU . Then

(1.30) Min vA -X) = v(diag(a, , cee a) -I)=v(A -U)
X € WU

vhere Xyy eee , & are the singular vaiues of A.

The next result is apparently new, although its interpretation (see

Amir-Moez and Horn [2] and [9] regarding a well-known analogy between

matrices and complex numbers) and the method of proof are strictly analogous

to ,those associated with Theorem 1.27.

1.31 Theorem. Let A € 77, let of denote the subset of all skew-

hermitian matrices in 777, and let v denote any unitarily invariant

norm on m . Then

% *

(1.32) Min, vA =X) = WA -2a-A))=3Wa+4A") .xe d

Proof. Let 8 be any skew=hermitian matrix. We have

8



* * *

A - A-A_ _ A-S + AS _ A-S | (A-S)
2 2 2 2 2

vhence

* *

v(A - =A -A))<= va-8)+=v((a-8)) .
2 - 2 2

By Theorem 1.11 and the remark following Definition 1.10,

»*

v((A - 8) ) = v(A - 8); consequently

1 *

(1.33) v(A - 5(A -A)) < vA - 8)

holds for all §S € od. This proves (1.32).

Let k denote an integer such that 1 < k <n. In [15] Mirsky sclved

distance problems for the subsets (X ; X c/n, and rank (X) < k} and

(X; Xe m_ and rank(X) = k}. As in the above results, the formula

for the distance can be put in the same form for all unitarily invariant

norms.

In this paper we shall be primarily interested in distance and extremum

problems assoclated with the subset 21 of all normal matrices in 2%.

The distance problem was apparently first studied by Mirsky [15]. Let A

be any fixed element of 7 , let v be any norm on 771 and define

(1.34) a (4) = inf v(A - X) .
X € 2

Mirsky was unable to determine a _(a) , even for special choices of v,

but he obtained an upper bound for a (A) (see Theorem 1.37 below) and

9



offered the following conjecture for the general solution when v is

unitarily invariant.

1.35 Conjecture (Mirsky). Let v denote any unitarily invariant norm on

M,- Then

1 2

(1.36) aS(a) = 302(4) - V*(a(a))

2 2 2 2

holds for all A em, vhere d(A) = [a(a)])%, +7(A) = [v(A)]® and

where fil.) is defined in Definition ..1T.

Note. By (1.9) the right side of (1.36) ie independent of the order

of the A's in (A). The singular values of A are the eigenvalues of
1

the positive semidefinite square root (denoted by (A"A)%) of AA;
*iy3consequently v(A) = vw(Q((A A)2)). A further interpretation of Mirsky's

conjecture is contained in Chapter 2 where the nonnegativity of the right

side of (1.36) is proved (Lemma 2.4).

1.37 Theorem (Mirsky). Let A € 7%. Ve have

2

(1.38) SA) = int (a - Xx) < HEA) - |ex(A®)])
X €N

1.39 Definition. Let A em, and let v be any norm on m . A

matrix K € 77 such that

(1.40) v(A -N) =d (A) = inf v(A - X)
14

x €¢?
n

is called a v-minimizing normal matrix (for A) or N is said to be

veminimal (for A).

10



1.3 Differentiable Curves in Matric Space.

Let A(t) = (a; 4(¢)) be & matrix function of the real variable t
which is defined for - » <a <t <b <=. In the sequel we shall assume

that each of the scalar functions ay4(t) is sufficiently differentiable
throughout its domain of definition. We define the derivative of A(t)

by

dA _ d da,

higher order derivatives are defined in a similar fashion. The exponential

function exp(A) is defined by the power series

aD

(1.42) Ars FT Loa
k=1 ™*

vhich converges for all A € 77].

1.43 Lemma. Let A(t), B(t) be any differentiable matrices in 2? and

let C be any constant matrix in /?]. We have

(1.04) 4 (a(t) B(t)) = BL) pt) 4 age) BED ,dt dt dt

(1.45) dW coc. tC ,dt

d (dat)
(1.46) ria tr(a(t)] = tr( 5 )

d _.,dA(t(1.47) 2 se(a(t)) = ag@Alt)y

11



*

a ,*o.y _ dA(t)

* *

where A (t) = [A(t)] and where dg is defined by (1.24).

The proof of Lemma 1.43 will be omitted since each equation ia either

very elementary or well known.

1.49 Definition. Let od ve any subset of 77. A matrix function A(t)
whose range is in yp and which is differentiable in some interval -a < t <b

(a < b) 41s called a differentiable curve in J .

For any differentiable curve A(t), the tangent vector to A(t) at

any t  € (a,b) 1s defined to be the matrix ([aa(t)/at],, -
)

Let U(t) be an arbitrary differentiable curve in the subset ZL of
*

all unitary matrices in #77. Then U (t) U(t) = I and U(t) U(t) =I

are identities in ¢t. Differentiating these identities and using the

rule (1.44) we obtain

>=»

(1.50) WL) ys) + ute) Wd wo

%*
»

(1.51) au(t) U (t) + u(t) au (t) =0dt at

From either of the last two equations we obtain

od

(1.52) au(t) = - U(t) au (t) u(t) .dt dt

1.53 Lemma. Let U(t) be any differentiable curve in (( and let

8,(¢t) ’ 8,(t) be given by the equations

12



+

(1.54) s,(t) = - u(t) u(t) ,1 dt

au” (t)
(1.53) 5,(t) = - u(t) = .

Then 8,(¢) and 8,(t) are skew-hermitian for every t € (a,b) and the

tangent vector to Ut) at t, is given vy

dUu(t _ _

(1.56) = = u(t) 5,(t,) = 5,(t,) u(t) ‘
t=t

0

Proof. Using (1.48) and the definitions of 5,(t) and 5,(t) ve see
* *

from (1.50) and (1.51) that 5,(t) + 5,(¢) = 0, s,(t) + 5,(t) = 0; i.e.,

84 and S, are skew-hermitian for each value of t. The expression

(1.56) follows immediately from (1.52).

let S be any skew-hermitisn matrix. It is easy tc see that

exp(tS) is unitary for all finite values of the real variable +t. In fact,
*

from the definition of the exponential function, ([exp(tS)] = exp(-t§)

and, since tS commutes with -tS, we have

%* - -

(eP5)* tS . "15 18 _ 18-8 _ oo _ 1 |

Thus, letting U(t) = exp(tS), we see from (1.45) that

aut) = = hdTt u(t) 8s = 8 u(t) ;

13



consequently any skew-hermitian matrix 8S can occur in place of 8,(t,)

and 8,(t,) in (1.56) (for some differentiable curve U(t) in ¢C)

and for any value of tye |

1.4 Normal Matrices.

In the next theorem we list several known characterizations of normal

matrices, already defined in Section 1.1.

1.57 Theorem. Let the eigenvalues of N € ”pn Ue denoted by |

SPY ces Ae Then N is normal if and only if any one of the following

propositions is true:

(a) N=H +i, vhere H and KH, are hermitianand

BH, = BH.

(b) N has a complete orthonormal set of eigenvectors.

(¢) (Toeplitz (23]) N 1s unitarily similar to a diagonal matrix:

| R=u'mv (vel, D € NB) .

(a) (Wintner and Murnaghan [26] and Williamson [25], see also Halmos

| [11], pp. 169-170) There is a positive semidefinite hermitian

matrix H and a unitary matrix U such that |

(1.58) N=UE =HU .

(e) (Parker [20], p. 522) There exists a unitary matrix U euch
%, %

that UN +N)€H amd UN -N)U € BD,

1



(f) (Parker [20], Theorem 1) The eigenvalues of NN are

LO SP PY PO LN oF

(g) (Parker [20], Theorem 2) The eigenvalues of N + N are

A + ys A + hy) THR +X.

1.59 Theorem (Toeplitz [23] and Parker [20]). A triangular matrix in 772

is normal if and only if it is diagonal.

We shall be interested later in utilizing differentiable curves in

72.. One way of constructing such curves is to use Theorem 1.57 (c¢) and

differentiable curves U(t) and D(t) in U and AD respectively. Then

N(t) = u(t) D(t) U(t) is a differentiable curve in 7{. Furthermore we

can construct differentiable curves in 71 which pass through a given

normal matrix N_ = u_ D, U, (Ue ww, D, € RN) for some value of t
~ (say t = 0) by merely requiring that U(0Q) = U, end D(0) = D_. For

curves u(t) in UW we shall use the formula

(1.60) u(t) = yet

where H 1s hermitian. There is no loss of generality in restricting

ourselves to the formula (1.60) since we shall be concerned with evaluations

of the derivative of I(t) at t = O. Note that, as H runs through A,

iH runs through the set of all skew-hermitian matrices, so, by Lemma 1.53,

all possible tangent vectors to a differentiable curve U(t) in Uu at

t = 0 can occur for curves of the type given by (1.60)

We ghall have a ne=d later on for the following result concerning

differentiable curves in A o

15



1.60 Lemma. If D(t) is any differentiable curve in AY, then

ap(t)/at| is in A + Purthermore every A € A can occur as
t=0 .

ap(t)/at| for some differentisble curve D(t) in A.
t=0

Proof. Let D(t) = ateg(a (t), ... , &(t)). Each of the scalar

functions a,(t) has a scalar derivative so dD(t)/dt 1s in A for
every value of t. Let z, (1 =1, ... , n) be any complex numbers. Then

the derivative of D(t) = t dieg(z, ,2,, see z ) equals d18g(2,,+0+52,),
an arbitrary matrix in A, for all t.

1.62 Theorem. let X, Y€ 7. Then K =X +Y¢ 7] if and only if

» * *

(1.63) XY -YX+XX -XY=0 .

Proof. Bince X and Y are normal and have

mo XN = (xe) AY) - (x + Y)(X + Y)

Li * % ad %* * * »*
=XX +XY +X +YY -(XX+XY+YX+YY)

xy -YX+mX -X7Y

vhence N is normal if and only if (1.63) holds.

1.54 Corollary. Let z be any fixed complex number. Then XN € 7 if

and only if N + z2I €7].

Proof. Clearly 21 € 7] for all z € C. Setting X =N, ¥ =2I we
£ind that (1.63) is satisfied for all z:

%* -— -
XY c YX +X«XY=ZN-ZN+2H - 28 =0 .

16



Thus, by Theorem 1.62, N € 7 implies N + 2I € 7. The converse

implication is clear since (N + 2I) - zI = N.

1.65 Theorem. Let X€ >]. Then X + tY € 77 for all values of t in

a real interval of positive length if and only if Y € | ard (1.63) holds.

Proof. Let N =X + tY. A short computation, using the fact that

t 1s reel and X € 77, ylelds

(1.66) BN =NK=t3(YY -Y¥)+t(XyY -YX+w -%xY) .

A polynomial of second degree can have at most two zeros unless all of its

coefficients vanish. Thus the assumption that N € 2 for more than two

values of t implies immediately (1.63) and YY -YY=o0 i.e.,

Y €¢ 7]. Conversely Y € 7? and (1.63) imply via (1.66) that X + tY € 7

for all real values of t.

1.67 Theorem. Let P, (X) =2.I+ r. z Xx! denote a polynomial of
degree k( > 1) in a matrix X € nN with arbitrary complex coefficients

z,. Then N € 7] implies P(N) € 72.

Proof. If N € 7] then by Theorem 1.57 (c) it has a decomposition

N=Upu (UEWU, De A) end clearly N =U DU for all positive

integers i. Thus P(N) = up, (D)U, P,(D) € A 80 by Theorem 1.57 (c)
P(N) 1s normal.

1.68 Corollary. Suppose N € 1. Then N~ € 7l for k=2, 3, 4, ... .

Furthermore if N © exists then N° e?l for k=1,2,3, ....

Proof. That N® € 71 for k > 2 is obvious from Theorem 1.67. If

Nt exists then, by the Cayley-Hamilton Theorem, nt is a polynomial in

N whence Nt is normal. Applying Theorem 1.67 again we see that

17



wk. (N"1)K is normal for k > 2.

1.69 Theorem. Let A €77{ and let O end PB be complex numbers. If

A is normal then QA + BA € 7T for all a,B; if A is not normal,
* :

Gh+ PA € 7] if and onlyif |x|= |B|

Proof. Setting N =QA + BA we find thet

%* % %*

(1.70) mw - NN (jaf - [BF)AA" - a")

The conclusions of the theorem follow immediately from the relation (1.70).

1.71 Corollary. If A €77] and a,8 € C with |a| = |B], then

P, (aA + BA’) € nl vhere Py is an arbitrary polynomial of degree k with
coefficients in C.

Proof. This is an obvious ccnsequence of Theorems 1.67 and 1.69.

1.2 Theorem. B8uppose Q € Cc (a #0), z € C, and U € WU are fixed.

Then each of the transformations i

(2.73) T,(N) =N ,

»

(2.75) Ty(¥) =U NU

defines a one-to-one mapping of 7 onto itself.

Proof. Let N be any normal matrix. Then from Theorem 1.67,

Corollary 1.64, and Theorem 1.57 (c) we see that ain, N -zI, and

wu respectively are in n «. Thus N = T_(a”'¥) = T,(N-2I) = » (usu")
vhich proves that each of the transformations (1.73), (1.74), and (1.75)

| 18



is onto. Letting N, » Ny denote any pair of normal matrices, one sees

easily that any one of the equations To (Ky) = T,(N,), 7 (N,) = T,(R,),

T,(N, ) = Ty(No) implies N, = N,, whence each of the transformations is
one-to-one. |

1.9 Existence of v-Minimal Matrices.

The definition of a v-minimal (or ve-minimizing normal) matrix has al-

ready been given in Section 1.2 (Definition 1.39). Let v denote any

norii on 7?) . Suppose first that A€ 71. Then there is a unique v-

minimal N_, namely N_ =A; for if A € /{ then 4 (A) =O and the
infimum in (1.34) is assumed if and only if X = A. Our main purpose in

the present section is to show that, for any A € 777 and any norm v,

there exists a v-minimal matrix.

Note. Any two normed linear spaces (over C) of the same finite

dimension are topologically isomorphic (see e.g., [13], p. 13). This

implies that the norm topologies induced in ”. .y any two norms are the

same; consequently there is only one norm topology for A and we refer

to it as the norm topology of 777.

1.76 Lemma. The set 77 of all normal matrices (in 77() is closed in

the norm topology of 777.

Proof. Matrix multiplication is continuous in the norm topology

since it is continuous with respect to the €-norm topology (cf. Section

1.1). Let N be any matrix in the closure 71 of 71. Then there is

a sequence (N,) (N, €7¢ for 1i=1,2, 3, ...) euch that N, -» N.

8ince each N, is normal we nave
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%* %*

(1.77) N,N, = NN, (1 =1, 2, ees)

By virtue of the continuity of multiplication we may pass to the limit in

(1.77) and obtain NN = NN, i.e., N is normal. This implies >? < 7

which proves that 727 is closed.

1.78 Theorem. Let Vv be any norm on 7. and let A be any fixed

matrix in 7. Then there is a v-minimal matrix N_ (for A).

Proof. We assume a (a) > 0 (see (1.34)) since otherwise the theorem

1s trivial. By the definition of a (A) » there is a sequence (N,} of

normal matrices such that v(A = N,) - a_(A). The subset

A . (X ; X € 77, and da (a) < vA -X)< 2d (A)) is closed and bounded,
hence compact, in 7. Clearly there 1s an index k 80 that KN, € 1624
for 12> k,- Thus, since XxX is compact (and therefore countably compact),

there is a subsequence (By } (1, > k for k=1,2, 3, ...) which
converges to a matrix LA € x » This No 18 & point of closure of 7?
80, by Lemma 1.76, it is normal. Finally

(1.79) a(A) <(A-N)<va- Ny ) + vy -N) ;

and, since v(A - Ny ) ~<a (A), we have

via - Ny ) =a (A) + 8, > a (A) )

vhere By +0 @3 k =~. Thus, given € > O, there is an index k, such

that the right side of (1.79) 1s less than 4(A) + € for k > k,. Since
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€ is arbitrary we have d (A) < v(A - N_) < a (A) which completes the

proof of Theorem 1.78.

Theorem 1.78 shows that the distance problem of finding da _(4) is

actually & minimum problem for all v and for all A. This suggests the

possibility of finding d(A) by determining a v-minimal matrix. We

shall investigate this aspect of the distance problem in subsequent sections

of this paper.

Since /} , 18 not a convex set (the sum of two normal matrices is

not necessarily normal), we naturally expect that there might exist

matrices A € ”, fcr which there is no unique v-minimal matrix. We shall

show, at least for v =€¢ and n =2, that this 1s the case.
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CHAPTER 2

EQUIVALENCE THEOREMS CONCERNING MIRSKY'S CONJECTURE, v-MINIMAL

MATRICES, AND DISTANCE FORMULAS.

Now that the existence of v-minimal matrices has been established, it

18 of interest to determine what transformations of 7”, leave the
preperty of minimality invariant. In this section we shell give three

results of this type and we shall also prove three closely parallel results

ccncerning distance formulas resembling Mirsky's formula (1.36). We begin

with an examination of the meaning of Mirsky's conjecture.

2.1 Mirsky's Conjecture.

2.1 Definition. Anorm v on /77 such that

(2.2) v(A) = v(Q(a)) for all A € 77_

and

(2.3) v(A) > v(n(A)) for all A €77, A ¢ 7 ,

where Q(A) 1s defined in Definition 1.17, 1s said to have property S.

2.4 Lemma. The Buclidean norm € has property 8S. Furthermore, for any

unitarily inveriant norm v, we have

*

(2.5)  Wa((A"WD) = va) 2 v(a(A)) forall A € 7

with equality holding in (2.5) for all A € 2,
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| Proof. By a well-known theorem of Schur [22] (see e.g., [16], p.

307) every A c. is unitarily similar to a triangular matrix:

*

(2.6) VAV = Q(A) + M (V ¢ UU.)

where in M only elements above the principal diagonal may be different

from zero. Thus, by (1.16), we have

€2(A) = (vav") = e2(a(a)) + <2(M)

50

: 2 2 2
(2.7) € (4) - €°(a(a)) = e"(M)

By Theorem 1.59 M =O if and only if A € 77; hence from (2.7) we see

that € has property 5S.

In order to prove (2.5) we shall need the following two results.

2.8 Theorem (Fan [8], Theorem 4). Let a, >a, > :+- > a >0,

b, 2b,> +c >b> 0. Then

holds for all symmetric gauge functions ¢@ of n real variables if and

only if

(2.10) 5 52.10 a, < b (L<k<n) .
= 1-4
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2.11 Theorem (Weyl (24), p. UOJ). Let the eigenvalues My and siigular

values Q, of AE /?) be arranged so that [A [> [A> 02> [A |,

a 2 x, > eee 2a. Then, for any real exponent 8 > O,

= 8 k
(2.12) 3 ohts Lod (L<k<n)i=] i=

Since (A) is diagonal (and therefore normal) its singular values

are I 1s cee x | (see Theorem 1.57 (f£)). The inequality (2.5) now

follows immediately by combining Theorem 1.11, Theorem 2.8 (here we set

a = LP b, = a), and Theorem 2.11 (use s = 1). If A is normal it

1s unitarily similar to (A) whence equality holds in (2.5) for all

Ae.
The question of which unitarily invariant norms v § € have property

8 (i.e., which ones satisfy (2.3)) is apparently open. We shall presently

show that the spectral norm o does not have property 8S.

2.13 Definition. Let v be any norm on 7, vhich has property S.
Then we define

(2.14) (A) 4, A ¢n. P BS ————— for .
BETA)- Baa) i

For any v with property 8 we gee from the definition of a, (A)

end (2.3) that p (A) 1s a well-defined positive quantity so thatb

d,(A) can be expressed in the form

2 Pa) - 2(2.15) d°(A) = P,, (A) (A) - v“(2(A))) for all Ac 7.» Agn,
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If we assigned to Py nl) some convenient finite value for A € 27.
then (2.15) would be valid for all A €/27],. Note that (2.15) has the

same general form as Mirsky's formula (1.36). We now prove the following

characterization of Mirsky's conjecture for a particular norm v.

2.16 Theorem. Let Vv be a norm on 7. Mirsky's conjectured formula

(1.36) for a (A) holds for all A € m, if and only if Vv has property
S and

(2.17) p, (A) = 3
v,n 2

for all A e777 , Ad 7, and for n =2, 3, «vo «

Proof. Since 7, is closed as a subset of 72, ve see from

(1.34) that d (A) 1s zero when A €77 and strictly positive when

Ad 2, Thus, if (1.36) holds for all A €? , v has property 8
and (2.17) holds. The converse is obvious.

Let the n by n matrix A (n> 3) be given by

B O 2 0 ©

(2.18) u| | where bo a ) .0 0 0 0 0

The nonzero singular values of A are 2, V2 and the nonzero singular

values of (A) are 2, 1. From (1.14) and (1.15) we have

o(A) = o(9(A)) = 2 while, by Theorem 1.59, A is not normal. Thus (2.3)

does not hold for v = 0; consequently o fails to have property S

for n> 3. We have proved
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2.19 Theorem. The spectral norm ¢ does not have property 8S for

n> 3. Mirsky's vunjecture 1.35 igs false for v =g and for n > 3.

In Chapter 8 where we discuss some other counterexamples we shall

prove that Mirsky's conjecture also fails for v =¢g and n =2, (See

Theorem 8.9).

| 2.2 Invariance of v-Minimal Matrices.

The content of the next three theorems is, roughly speaking, the

following: v-minimality 1s generally invariant under the transformations

(1.73) = (1.75). The accompanying corollaries show that uniqueness of a

veminimal matrix is also invariant under the same transformations.

2.20 Theorem. Let Vv be any normon 7% and suppose & € C,

a 40. Then N_ is v-minimal for A€7] if and only 1f oN_ is
veminimal for CGA. Furthermore

(2.21) d(ca) = ar [a, (A) .

Proof. By Theorem 1.72 ON runs through 7 as N runes through 77.

Consequently v(A - N) assumes its minimum for N = N, if and only if

jx| «+ (A - N) = v(cA - aN) assumes its minimum for N = N,. If aN,
is veminimal for CGA ther

d (aa) = v(GA - ox) = ja] v(A - XK) = a a(a) .

2.22 Corollary. let v be any norm on , and suppose & € C,

a fo. AEM, has & unique v-minimal matrix if and only if QA has a

unique v-minimal matrix. 62



Proof. If N, is the unique v-minimal matrix for A and if N,, N,

are v-minimal for QA, then by Theorem 2.20 N, = aN, = a”, whence
N, w= N,. The converse is proved 1n a similar manner.

2.23 Theorem. Let v denote any norm on 77. If N, is v-minimal for

A€ 77] then N, + 2I 1s v-minimal for A + 2I for all z € C. Conversely,

if N, + 2I 1s v-minimal for A + 2zI for one value of z € C then N,

is v-minimal for A. Furthermore, for all z ¢€ C, we have

(2.24) d (A+ 2I) =d (A) .

Proof. OlLviously

(2.25) v(A - N) = v[(A + 2zI) - (N + 2I)]

holds for ony norm v, for all A, N ¢ 777, and for all 2z € C. By

Theorem 1.72 T, (N) = N + zI runs through 277 in a one-to-one manner as
N runs through MN. Thus, as N runs through MN » the left and right

sides of (2.25) assume their minima simultaneously. This proves the first

two statements of Theorem 2.23. The relation (2.24) follows immediately

from (2.25) if one assumes that N is v-minimal for A.

2.26 Corollary. Let v be any norm on 7?) and suppose z € C. Then

A €77] has a unique veminimal matrix if and only if A + 2I has a

wilque v=minimal matrix.

Proof. The proof is strictly analogous to that for Corollary 2.22.

2.27 Theorem. Let v denote any unitarily invariant norm on 777 and

let U € I by fixed. Then N, is v-minimal for A€ 7 if and only if
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* #*

U NU is v-minimal for U AU. Furthermore

(2.28) a (u'au) =a (a) .

Proof. Since v is unitarily invariant

* *

(2.29) v(A - N) = v(U AU - U NU)

holds for ell A, N€ 77] and for all U € 2{ . By Theorem 1.72

T,(N) = U NU runs through 27 in a one-to-one manner az N runs
through 77 . Therefore, as N runs through 77, the left and right

sides of (2.29) assume their minima simultaneously. This proves the first

assertion in Theorem 2.27. Equation (2.28) follows from (2.29) if it is

assumed that N is v-minimal for A.

2.30 Corollary. Let v be any unitarily invariant norm on 77 and let
*

U €e UU. Then Ac Ve has a unique v-minimal matrix if and only if U AU
has a unique v-minimal matrix.

The proof is analogous to that for Corollary 2.22 and is therefore

omitted.

2.3 Invariance of Distance Formulas.

2.31 Definition. A transformation T whose domain space is 77] amd

vhose range space is contained in 7, is said to be discriminating if

™M) ¢ 7, for M ¢ 1,
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and

™(M) € 7, for M € 2.

We have already seen that, for any norm Vv with property S, d (A)

can be represented by the formula

2 2 2 77(2.32) d(8) =p, (AVA) - v(a(a))), (ae 77, a ¢ 77)

where p_ (A) is defined by (2.14). The question neturalliy arises ac2

to what happens to p (A) when A is subjected to various discriminating>

transformations. The next three theorems provide some answere to this

question for the discriminating transformations (1.73) - (1.75).

2.33 Theorem. Let Vv be any norm on 7. which has property S.

Let @ € C,a #0 and let A €”, Ag 7). Then

(2.34) P,o(aR) = Py nA) :

Proof. If M , hy y wee A are the eigenvalues of A then

ar, ar, py see ar are the eigervalues of QA; consequently (cf.

Definition 1.17) (axa) = aQ(A). Using that fact, (2.32), and (2.21) we

obtain

2 e 2

da(aa) = |a|® 47(A)
2 2

=p, ,(A)(v (ar) - v“(aa(a)))

2 2

=p, JAF) - F(a)
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The first fa-tor in the last line must be p (OR) which proves (2.34).b J

2.35 Theorem. Let € denote the Euclidean norm (1.16) on m,. Let

A be any nonnormal matrix in 77] and let z € C. Then

(2.36) Pe oA + 51) = 1, (A)

Proof. Let A, (1 =1,2, ... , n) denote the eigenvalues of

A= (a4) From (1.16) we have

2(A +21) = 4 lay 2 + lay, + z|°155 i=

2 - gp 2

= ¢“(A) +z STR NUTR EI ;im} =

n n

and, since A, = a,.,y ve obtain

’ L i 3 1 11 ana
n n

(2.37) (A +2) = (a) +n xz At o2 PN x + n|z|° .

Furthermore, since (A, +g) (1=1, ... , n) are the eigenvalues of

A +3],

> n - -

ce(0(A + 21)) = PN (A, +2)(Ay +2)
(2.38)

2 - & e = 2

= (aA)+ % Lhe) bsnl .{= =

30



Combining (2.37) and (2.38) we find that

(2.39) (a) - (aa) = (A + 21) - (AA + 21)

Applying (2.24) in the case v = €¢ and using (2.39) we obtain

a5(a + 21) = 2A) =p (A)((A) - €((A))),n

2 2

= Pe o(A)(e (A + 2zI) - €°(a(A + 2I))) .

The relation (2.36) now follows from the last equation.

2,40 Theorem. Let Vv ‘be any upitarilv invariant norm on ”, which

has property S. Let A be any nonnormal matrix in ”, and let

U € u.. Then

k; (u"Av) )(2.42) P, n(U AU) = P, nA .

Proof. The eigenvalues of a matrix are invariant under a unitery

»*

similarity transformation so Q(U AU) = Q(A). Consequently, since v is

unitarily invariant, we have

*

(2.42) P(A) - Va(a(a)) = VUtau) - Fata)

From (2.28) we have

2, x» od 2
(UA) = a2(a) =p, (A)(¥(A) - V(a(A)))2

and, combining this with (2.42) we obtain (2.41).
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CHAPTER 3

IMPROVEMENTS OF MIRSKY'S BOUND

3.1 A New Bound.

In this section we shall obtain an upper bound for d5(A) which is
sharper than the bound (1.38) obtained by Mirsky. Before doing this we

prove & lemma which sheds some light on Mirsky's result (Theorem 1.37).

This lemma furnishes at least a partial answer to the question: given

A € Ms vhat normal matrices lie at the distance from A which 1s
given by Mirsky's bound?

3.1 Definition. For any A € 7, ve define

2
(er (8%) / [ex (A%) |} ir tr(a°) f 0

(3.2) n(A) =

(z;2€ C and |g] =1) if tr(A%) =O ;

1 »

(3.3) M (A) = (3 (A+104) 5; 1 € n(A)) |

Rote. 7(A) 1s a set of complex numbers of unit modulus. If

cr(A%) # 0 then n(A) contains a single well-defined number but, if

tr(A°) = 0, 7(A) consists of all complex numbers on the boundary of the

uit disk. An anslogous remark applies to the set M (A).

j.b_ Lemma. Let A be any matrix in 77). Then every matrix in the set

NM (A) is normal. Furthermore
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(3.5) (A - X) = 3 ((a) - |tr(A%)]) for all X € M_ (A) .

Proof. The fact that M_(a)C 2n follows immediately from Theorem

1.69. Assuming that |n| =1 and using the properties (1.20) and (1.22)

of the trace, we obtain

* - *

(A - 2 (a +a") =F trl(a" - TAXA - 7a")

(3.6)

1 * #2 — 2 *
=f [tr(A A) - qn tr(A ) - 7 tr(A”) + tr(AA)] .

Using (1.22) sgair and (1.21) we see that the last equation becomes

2 1 * l 2 1 2 -— 2
(3.7) €(A-5(a+na)) =5 (a) - 1 (ntr(a7) +1 tr(8)) .

2 Tn =. 2
If tr(A°)# 0 and 1 € y(A) then (3.2) implies nq tr(A) = q tr(A®) =

1tr(A°) |, whence (3.7) implies (3.5). If tr(A%) = 0 then the last term

on the right side of (3.7) vanishes for all 1 € n(A) end the right sides

of both {3.5) and (3.7) reduce to (1/2) « (a). This proves Lemma 3.L.

Remark. The author believes that the set M(A) contains all
»

matrices of the form QA + BA {with |x| = |B|) which satisfy

2 * l , 2 2

[A- (aa =8r)] =3 (°(a) = |tr(AT)])

However, no attempt will be made here to prove that assertion.

3.8 Definition. For any A € 777 we define
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((er(A%) = (1/n)(tx(A))%)/|ex(A%) - (1/n)(tr(A))?[)

(3.9) g(a) = 1 tr(a%) #3 (tr(a))°

(2;2 € C and |z| =1} if tr(A°) = 2 (tr(A))° ;

(3.20)  M(A) = (3 (A + ¢A") + 5 tr(A- CAI; € SA)

Note. The situation with {(A) and M(A) is exactly the seme as

that for n(A) and M_(A) (see the note following Definition 3.1). If

tr(A°) A (1/n)(tr(A))° ve use the symbol N(A) to denote the (single)

matrix in M(A). In the ambiguous case tr(A%) = (1/n)(tr(A))° of (3.9)

we shall use the notation Ny(A) (or RN, (4)) to denote the particular
matrix in M(A) which corresponds to the element { = exp(16) of {(A)

(here 6 is real).

3.11 Theorem. Let A€ 7) and let ¢ denote the Euclidean norm (1.16)

on ”. Then every matrix in the set M(A) is normml. Furthermore

2 2 |

(3.22)  A(a-x) = (Ba) - LEBL geri?) C2) Co

for all X € M(A) .

Proof. The fact that M(A)C 77 follows immediately from Corollary
1.72. Let

B=A- 210) I.

3 ,



Then

£2. 2tra) , , (er(a)®
n 2

n

whence

(3.13) tr(B) = tr(aA)-1 (er(a))® .

A comparison of the definitions of the sets (3.2) znd (3.9) reveals that

(3.13) n(B) = {(A) .

Furthermore

J

A - & (A+ CA) += tr(a - (AI) = 3 (a - EA) 1) - 5 ta . xl) 4)

=5(B-¢B)=B-3(B+¢tR) ;

consequently, from (3.5) and (3.il4), we obtain

(3.15) CA - (5 (A+ 2A) +2 tr(A = LAD) = 5 (4(B) - [tr(B)])

for all CL € L(A) .

Now

©(B) = tr(A" - tra) I)(A - 240) I)]
%* %* * 2

(3.16) = trla’a - EA) Se at RE ok
n
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Combining (3.13) - (3.16) we obtain (3.12) and this proves Theorem 3.11.

An obvious consequence of Thecrem 3.11 is

3.17 Theorem. We have, for all A € 77,

2 2

(3.18) 3A) <3 (Ba) - LEAL | pep) - Lex) py

We shall show that the bound (3.18) is sharper than Mirsky's bound

(1.38). We first prove

3.19 Lemma. If A em then

2 2

(3.20) Ea) - LEAL _ era?) - LA) 20) © era?)

If tr(A) = O we have equality in (3.20) and, if tr(a) # 0, equality

holds in (3.20) if and only if

2 .

(3.21) atr(h) 5,
(tr(a))

Note. The inequality (3.21) is to be interpreted as follows: it is

satisfied if and only if the left hand side of (3.21) is both real and

greater than or equal to unity.

Proof. The inequality (3.20) and the conditions of equality in it for

| the case tr(A) f O are an immediate consequence of the triangle inequality

and its conditions of equality (see e.g., [1] pp. 8-9).

¥hile Lemma 3.19 provides, in a certain sense, a complete answer to

the questions of equality and inequality of the upper bounds in (1.38)

and (3.18), there remain the more interesting questions of what relationship

36



these bounds have to the actual distance de and to the conjectured

distance (1.36) in the case v = €. We shall discuss the former question

in connection with some counterexamples in Chapter 8. The next three

results delineate a partial answer to the latter question.

3.22 Lemma. Let SELL cos AM denote complex numbers. Then

no, n >
| Y SES) |», |© with equality holding if and only if all non-k! —- kk=1 ‘k=1

zero A's lie on a single straight line through the origin in the complex

plane.

Proof. By the triangle inequality (see [1], p. 9) the desired

inequality holde with equality holding if and only if the ratio of the

squares of any pair of nonzero A's 1s positive:

N [5
(3.23) ==|x=] >0, (A £0, 1, £0) .2 A J

A J
J

Obviously (3.23) holds if and only if MNy is real so that, if

AM = Ty exp(16, ) (k = 1,2, ... , n) where r, 20 and 6 is the

principal value of arg(h, ), expli(e,_ - 6,)] = + 1 whence either

0, - 6, = 0 (mod 2x) or 6, - 6, = x (mod 2%) i.e., either 6, = 0,

or Oy = 6, 2 x.

3.24 Corollary. Let Ae? We have

2 2
(3.25) |tr(a%)] < €“(2(a))

with equality holding if and only if all nonzero eigenvalues of A lie on

a single straight line through the origin in the complex plane.
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Proof. Let Ms cen A denote the eigenvalues of A. Then by

Lemma 3.22

2 2 2 L 2 2
(3.26) ler(A°)] = | Ms L IIT = (aa)

k=1 k=1

vith equality holding as stated in Corollary 3.24.

3.27 Lemma. Let A € ZA be given. If, for this particular matrix A,

Mirsky's bound in (1.38) is equal to the conjectured distance (1.36)

(3.28) [tr(a%)| = (a(n) ,

then the bound in (3.18) 1a also equal to the conjectured distance, i.e.,

2 2

(3.29) LEAL, era?) LAL 20)

| and

2 1,.2 2

(3.30) CU -X) =5 (5(A) - 7(a(A))) for all X € M(A)

vhere M{A) 1s defined in Definition 3.8. .

Proof. By Corollary 3.24 (3.28) holds if and only if the eigenvalues

of A can be written in the form A, =r, exp[i(6 + PJ] (k = 1,2, eee 4, Dn)

vhere r, 20, exp(ip, m+] (k=1,2, ¢so , 0) and 0 1s a real
constant. Thus |

2, @ 2 120 @ 2 Lr 49 2

(3.31) tr(s°) = L -e rs oe -e rhx & x L k
B



lp, 2 n ip, 2
2 i 2 10 ¢ Py 120 Px

(3.33) (x(a)=() A)"= (e re |) =e (1 7 )Ly k L, k k= K

Clearly

(333) (F re ™ <(F rn)lcny of3.33 re < L r <n X ro.k=1 K =n K wo kK

By Lemma 3.19 and (3.28), (3.29) holds if +tr(A) =0. If +tr(A) # 0,

then at least one r, is positive and, from (3.31), (3.32), and (3.33),

we have

2 2

n tr(a) _ n} ry JRL
2 2 = 2 *

(tr(a)) () ry exp(1ip, )) n Lr,

Therefore, if tr(A) # 0, (3.21) holds so that equality holds in {3.20).

This proves (3.29). Equation (3.30) then follows immediately from (3.12).

Thies completes the proof of Lemma 3.27.

Remark. The equality (3.29) can hold also in many cases in which

(3.28) is not satisfied; furthermore the bound in (3.18) can lie between

the bound in (1.38) and the conjectured distance (1.36) (with v = €)

as the following examples show. Suppose A 18 of order U4 and has

eigenvalues -1 + 1, =1 +1, -1 +31, and 2 + 6i. Then straightforward

computations show that

tr(a) |? 2 (tr(a))° 2
= + [tr(A7)- —==L0] = €5(a(A))= 46
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vhile

36.71 < |tr(A%) | < 3.72 .

Again, if A is of order 4 and has eigenvalues 1, 1, 1, and -i,

then

2 2

(aa) = b, BCH + |tr(a%) - fez) =2, |tr(&)] =0 .

We shall show later (Lemma 6.5) that (3.29) and (3.30) hold for all

A€ 77ye

3.2 Methods for Obtaining Other B.iinds.

Another upper bound for de (A) will be obtained in Chapter 5

(Theorem 5.24) in connection with a maximun problem which is closely

related to €-minimal matrices.

We shall now described some problems whcse solutions, if they were

known, would give rise to upper bounds for a (A).

Let A € 77]. For each natural number k > 1 we define the follow-

ing subsets of roi

x ; "ye(3.38) o£(A) = (z+ I zt (A+CA)5 Cec [8] =1, 8, €C
) (@=0,1, ..., k)} ,

k ay
(3.35) KL (Ag) =(eI+) 2(A+fA);2 € C (@=0,1,... , k))

k 0 d= a o
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where in (3.35) we require { € C and [{| = 1. From Theorems 1.67

and 1.69 we obtain

(3.36) Lac n, for Ae

(3.37) L.(a0) c XZ(a) forann fg] =1 .

Also, obviously,

(3.38) L wc Xo, ZL.(h58) © L (at)  (kx2)

From the Cayley-Hamilton Theorem one may deduce

(3.39) KX, (a) cL (a), XL(a0) c XL _(AL) vhere A € 77,

k>n .

3.40 Problem. Let A € 7% . Find

(3.141) iy e(A - X) (1<k<n-1)X € (A)

and find all matrices in X, (A) for which the minimum in (3.41) is
assumed.

A simpler problem is the following

3.42 Problem. Let A € 7 and let { be a fixed complex number

satisfying |{| = 1. Find

(3.43) Min e2(A - X) (l<k<n-1)
x € XL, (A;)

'§



and find all matrices in &(A;{) for which the minimum in (3.43) ie
assumed.

By virtue of (3.36) and (3.37) a solution to eitner of the above

problems would yield an upper bound for a (a).

Remark. The author believes that the set (A) defined in Definition

3.8 provides a complete solution to Problem 3.40 for k = 1. No attempt

to prove that assertion will be made here.
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CHAPTER 4

NECESSARY CONDITIONS FOR €-MINIMAL MATRICES

4.1 Primary Results.

In this section we shall derive a number of conditions which a

matrix N, must satisfy if it 1s €-minimal. One method which we employ

involves the notion of a differentiable curve N(t) in 7. If N, is

v-minimal for A then, by elementary calculus, we know that

(4.1) = v(A - N(t))]| =0 or = V(A - N(t))| = 0
t=0 t=0 |

must hold for every differentiable curve N(t) such that N(O) = N,

provided the derivatives indicated in (4.1) exist in an interval containing

t = 0 in ite interior. This brings up the (possibly difficult) question

of how to differentiate an arbitrary (unitarily invariant) norm or some

other function whose minima coincide with those of v(A - N{t)) (such

as (A - N(t))). In the case where Vv is the Euclidean norm, the

derivatives of all orders can easily be computed. Indeed, from (1.22),

we have

n »

2 Sa - W(t) = 5 trl(a - BE)" (A - H(t)
(4.2)

»* + %* 3%

. & tr(A A + N (t)N(t) - A N(t) - ¥ (t)A)

Using (1.20) and (1.46), we have
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2%
*[wo 4 2a - w(t) = & er (LN) - er(a” SE), ALL) ,)

In the proof of the next theorem we shall need the following three

elementary lemmas.

L.4 lemma. Let N(i) = v(t) DU(t) vhere Dis any fixed element of
ena U(t) is any differentiable curve in Z(_. Then

(4.5) tr(N (£)8(t)) = ¢*(p_)

Proof. This follows immediately from (1.22) and the unitary

invariance of €.

4.6 Lemma. (von Neumann [19], p. 290) Let A € 77. Then tr(AH) =O

for all BE € Y_ if and onlyif A =O.

| 4.7 Lemma. Let A = (a,) €7%,. Then Re tr(A A) =O for all
A € A, if ena only if

(4.8) 84 = 0 (1 = 1,2, cos n) °

Proof. letting A= disg(a, ,o,, cen a), the sufficiency of (L.8)
is obvious from

n n

(h.9) Re tr(AA) = Re L oe, PN Re(a,n,,) .

For the recessity ve set A= dteg(s,, 8,ys eee 8) obtaining
| he tr(M) = § le, 12 = 0 which implies (4.8).

ia)
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4.10 Theorem. Let A € Ve, and define, for all X € Ve » the operator

L,(X) vy

%*

(4.11) L(X) =XA" - AX +XA-AX .

* € WU ec §if KN°o = })o D, U,» where Ug nd D, » 1s €-minimal for
A then

(4.12) L,(N) = Q

and

(4.13) D = dg(U AU.)+13 o ~ “8 YM,

where the function dg is defined by (1.24).

Proof. We first utilize differentiable curves of the form

*

R(t) =U (t) D, U(t), where U(t) is given by (1.60) and H is any

matrix in AY. For every H € # we nave N(OQ) = N, and

(b.14) Quit) | gy pelt, QU) yydt 0 dt o)
t=0

*

dan(t) _ au (t) * du(t)
at = at Dut) + u(t) D, S=

(4.15) Be), = i(NH-HN_) .0 0
t=0

Using (4.3), Lemma 4.4, (1.48), and (4.15) we obtain
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L E(-n(t))] = tr - HN) - 1(EN, - NHA]
t=0

%* * »* *

(4.16) = 1 tr(A HN -ANH+HRA- N_HA)

* #* ¥* *

= 1 tr[(NA - A N, + NA - AN_)H]

vhere, in the last step, we used (1.19) twice. According to (k.1) the last

expression in (4.16) must vanish for all H € 7. Therefore, by Lemma

4.6, we obtain

* »* * +*

(4.17) BA -AN +NA-AN =0,

i.8., (4.12) holds.

Next let N(t) = u D(t)u, where D(t) is a differentisble curve
in po, satisfying D(O) = D,- In using (4.1) with this type of curve
H(t) we are concerned only with the derivaiive of D(t) (evaluated at

t = 0) end not D(t) itself. By lemmm 1.61 we obtain complete generality

by setting

| (4.18) apie) nat

vhers A denotes an arbitrary diagonal matrix. We define N, by

®, =U AU, and note that

an( » ap(t) .
at Lo © dt “ol,4 oO © l

| v3



Thus, by (1.44),

a »* * »
(4.20) i IN (£)N(t)]} = NN +NK

t=0

and, using (4.3), (4.19), and (4.20), we obtain

d 2 * #* #* #*
at © (A - Ne = tr(N,N_ + NN, - A N, - N,A)

* * %* %* * %*

=tr(AD, +DA -UAUA -A U_AU,)
(h.21)

* %* %* %*, ¥

= tr{A (D, - U AU.) + [A (D, - UAU,)] )

2 Re trlA (D *)]

It follows from (4.1) that (4.21) must vanish for all A € A ; conse-
*

quently, by Lemma 4.7, all diagonal elements of the matrix D, - UU
vanish, i.e., (4.13) holds.

Remark. It is instructive to investigate the result of applying

(4.1) in the more general situation in which N(t) = U (£)D(t)u(t), vhere

v(t) is egain given by (1.60) and D(t) is any differentiable curve in

hy euch that D{0) = D,. The computations can be summarized as follows:
+

* *

(4.22) an(t) = UU (t) an(t) u(t) + au (t) D(t)u(t) + U (t)n(t) au(t) ’at dt at dt

(4.23) dN(t) «= N, + 1(NH- -Y) ,dt ! 1 Lo) ot=0

vhere N, is given by (4.19), and
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(4.24) a 2 * *
3c © (A - NED 2 Re trla (D, - UAU_)]

+1 tr[(NA" - A'N_ + NA - ANE]

Of course the right side of (4.24) must vanish for all A ed and for

all H € J; but, from (4.16) and (4.21), we see that this is implied

by the separate arguments used in the proof of Theorem 4.10. Therefore

nothing new can be obtained by using the more general type of differentiable

curves in 7. |

h.25 Theorem. Let A € JW. If N_ is ¢-minimal for A then

(4.26) tr(A) = tr(N)) ,

% %*

(27) tri g(a KN) =tr[(A-N)NK]=0 .

Remark. The reader will note from the following proof that both

(k.26) and (4.27) are consequences of (4.13), as are also the following

equalities which are equivalent with (4.27):

(4.28) (5) = tr(AN) = tr(WA) , |

 (b.29) Gn) = F(a -n) = FR)- Em)

Proof. Since tr(D,) - tr(n), (h.26) is an immediate consequence
%*

| of (h.13). Writing N, = UDU, as before, we have

| | i"



%* %* 4% ¥*

tr(N_(A - N)] = tr (UR UU (A - Nu]

(4.30) . .
= tr [D_(U_AU - D)] .

»* | |
By (4.13) all diagonal elements of the matrix UAU  - Dare zero,

* *

consequently the same holds for the matrix D_(U_AUoD5) hence
%* %*

tr(D_(UAU_ - D)] = O. Thus, from (4.30), we have

(4,31) tr(N(A -N)] =0

*

The last equality implies that tr(N(A - K)] is real; consequently

the rest of (4.27) follows from (1.21).

Remark. Let A, B € MM, The set ”, can be considered as a
complex Hilbert space with respect to the inner product

*

(4.32) (A,B) = tr(aB ) .

Comparing (4.32) with (4.27) we see that, if N, is ¢-minimal for A,

(4.33) (A - N_,F) =0 ;

that is, N, is orthogonal to A - N, This geometrical reformulation of

the necessary condition (4.27) 1s not too surprising. Indeed, if N,

is €-minimel, then it must also be €-minimal among all members of the

one-dimensional linear subspace (of ».): |

=x; x =a vhere z € (]

9 |



vhich is contained in nN, Pi is precisely the "straight line" through
N, and the null matrix. 8ince no point on od can be cloger to A
than N, ve see that N, must be the point of intersection of p and
the line through A which ig perpendicular to ps . This gives
immediately the result (4.33) so we have proved (4.27) a second time withe

out using differentiable curves and calculus. One can also prove (4.27)

directly (without using (4.13)) by using (4.1) and the particular

differentiable curves NK(t) = (1 - t)N and N(t) = (1 - it)N,. The

latter proof, which will not be worked out in detail here, appears to

be essentially an analytic reformulation of the geometric considerations

just mentioned.

We shall prove later (Theorem 5.13) that (4.13) and another condition

on U, constitute necessary and sufficient conditions for €-minimelity.

It appears that (4.13) is a much more stringent condition than (4.12);

however, the latter is much easier to check than (4.13) and this fact

enhances its value. We now describe some consequences of the necessary

condition (4.12).

4bo3h Theorem. Let A € 7%, N_€ 77]. Then the following statements
are equivalent.

(a) L,(¥)=0 ;

(5) NA" +¥A eH ;

(c) (wm, -aaA" + (N -PA)A €X foram ap€ B ;

(4) =m (A - oi)" + N (A -gN)€N foray ap€ BR ;

(e) M(A-28)" +X (A-w)= ON (A-wn) +ui(a-mn)l
| holds for any 3, v € C provided X_ ¢ 77.



Proof. Statement (a) is equivalent to (4.17) and we shall show that

(b), (c), (d), and (e) are equivalent to (4.17). First note that (4.17)

can be rewritten in the form

»* * »* *
NA t+NA=AN, +AN, .

%* %

The right side of the last equation obviously equals [NA + N Al which
shove that (b) is equivalent to (4.17). For any real numbers a and £

we note that

* * * nN * a * *NA - ON N_ -AN +BNN +N -PRN, -AN +ONN =0 ,

* * +* »* * * %
NA -CGAA -~-AN +PBAA+NA-BAA-AN +QAA =0

eo) 0 0 lo

are equivalent to (4.17). Clearly the last two equations are equivalent

respectively to

»* * * »*
N(A-oF) -(A-BN)N +N (A-pN)-(A-oN)K =0 ,

#*

(N_ - GAA = A(N_- pA) + (N_ - BAYA- A(N_ - aA)" = ©
0 0 0 ©

which are equivalent respectively to statements (¢) and (d). If we

assume that N, is normal and let z and wv De any complex numbers,

we obtain from (4.17)

KA" -ZNN -AN +ZNN_+K. "NW -AN+ WN =OoF ~ “oo oo * Hop - wR.N, - AN, + WK5,

, oF
| * » * *

N(A-2K) -(A-2N)N +N (A-wi)-(A-wN)N =0

which is equivalent to (e). This proves Theorem k.34.
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In terms Of the operator (4.11) we observe the following rather

obvious consequences of Theorem 4.34. If A, N_€ 77%, then the following

statements are equivalent to (4.12):

(4.35) | L(x, «-GA) = 0 for any ® € R ,

(4.36) Lpcoy (No! = 0 for any G € R ,

(4.37) Er-on_(Fo) = Q for any z € C provided XN € 77.

Lh. 38 Lemna. Let A € Ve and suppose the operator L,(X) is defived

by (4.11). Then, for all X, Y € 77s ve have

(4.39) L, (ax) = ob, (Xx) for all @ € R ,

(4.40) L,(x +Y) =L(X) + L(Y) .

Proof. Forany @ € C we have

(4.11) L(x) = a(xa” - A'X) + G(x"A - Ax")

vhence (4.39) holds if QO dis resl. The verification of (L.LO) 1s equally

| simple and need not be given here.

Pewark. Equations (4.39) and (4.40) show that, given any A € 77,

X;X € 77 ad L,(X) = 0]

48 a real linear subspace of 277, 1i.e., & linear subspace of 777 over

~~ the field R Of real scalaws.
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| ™e result (4.39) cannot in genersl be extended to all complex scalers

| GC as the following simple example ahowe- Suppose A ¢ 27. Then from

| {b.11) and (4.41) we find that L(A) = 0 but L, (14) = 24(AA" - ATA) # 0.
Of course, in certain special situations, (4.39) cen hold for all a € C.

Examples of the latter cen be deduced from the following eae ily verified |

results which ere valid for any A € 7”n’ oo |

(4.42) L,(2I) = 0 for all z € C ;

(4.43) L, (cA) x 0 for all a € R ; |

*.k

(bh. 44) L,(z(a )) =0 for 811 z € C end for k=1,2, ... ;

2 ~-, B® * |

(4.45) L,(zA" + z(AR +44) =0 forall z €C ; |

%*

(4.46) Ly(cA + 247) = 0 forall a €R, z €C; |

(L.47) L{2(a + A) =0 for all z € C with z #0.

Rote. The content of the next lemma is that every matrix in the set

M(A) defined in Definition 3.8 satisfies (for any value of n) all of

the necessary conditions given in Theciems 4.10 and 4.25 with the possible

exception of (4.13).

Remark. While condition (4.13) is apparently the most crucial test

of a candidate for €-minimality of all the necessary conditions derived

go far, it cannot be checked unless the normal matrix in question is

first dlagonalized by a unitary transformation.
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448 lemme, Let A € M{_ and let M(A} be defined as in Definition oo
3.8. Then the necessary coniitions (4.12), (4.26), end [(k.2T) are | oC |

+ satisfied when N_ 1s replaced by amy matrix in N(A). E oo

(4.19) SORE SIRT RY SEN’ I RETR

The fact that P,(A) satisfies (4.12) for all { € C follows immediately ;
from (4.10), (4.42), and (b.L6). This implies that every matrix tn = =

MA) satisfies (4.12). Furthermore | I B k E

tr(P (A) = 3 tr{A) + % 4 tr(a") + x tr(A - eA”) = tr(A) | B .

for all { € C hence every matrix in M(A) asstisfies (4.26). Let EE

(4.50) 2 =2u(a-a) SE

Then t = (1/n) tr(A - TA), P(A) = (1/2)(A + Ty + 2I), and | }
Ae P(A) = (1/2)(A - tA - 21). Consequently, for |¢| =1,

Fo(AXA « BA) =F (A" + TA + TINA - ¢A" - 22)

2S - - -
sd (AA + oma = z(A" + TA) + 2(A - (A) - 2D)

so that

5h |



~ {w5) ob tr{P (A)(A . P(a))} «Tr(d)-gtr(h )ozex(a +0) ©

FE So oo +z tr(A - oh) enzz, (itl =1) . oo |

Using (4.50) in the last term of equation (4.51) we see that the last oo
two terms on the right side of (4.51) cancel. Using (4.50) again we find,

| | for 14 = 1, - | EEE | |

Cz er(A TA) = 2 re(a) - € tra) en(A") + T e(A)] oo 3

Cows2) = der + Ter)? gee? - ffl

BE (CTV RTC0) ooJ

Combining (4.51) and (4.52) we obtain | | |

(4.53) b tr(B,(A)(A - B,(4))]

= T(er(A%) - 2 (4r(A))®) - g(er(A®) - 2 (£r(A))?)

If tr(A°) = (1/n)(tr(A))? then the right side of (4.53) vanishes for

all { € L(A). On the other hand, if tr(A°%) # (1/n)(tr(A))° then by

(3.9) the right side of (4.53) becomes

[tr(A°) - 2 (tr(a))?] - [tr(A%) - = (tra)? =0 .

bp)



Thus every matrix in M{A) satisfies (4.27) and this proves Lemme 4.L8,

In the light of Lemms 4.48, It is natural to sak vhether the matrices

in the set M{A) can ever be <-minimsl. We shall ansver this question

in the affirmative in Section 6.2 below. oo oo :

: - "] " - © 4.2 Use of Lagrange Multipliers tn = : oo
ME, 3 cL Finding Necessary Conditions.

EN As vas observed in Section 1.5, the problem of finding a veminizal
- matrix can be considered as a problem of minimizing a real valued function
: of several complex variables. The minimum mist be taken over normal

matrices only, 80 certain constraints on the variables are inevitable. |

. This point of view suggests that the method of Lagrange multipliers might
be useful in deriving necessary conditions for a ve-minimel matrix. Since

| the variables and constraints sre complex, it first appears that the
initial computational labor of deriving such conditions would be prohibi- |

tive. However, by using conjugate complex coordinates (see e.g., [18]

pp. 16-21) and the complex (matrix) differential calculus, the algebraic

manipulations can be made almost inconsequential. In the next two para-

graphe we outline briefly the mathematical basis of the technique: we

shall use in deriving necessary conditions for €-minimal matrices. The

equations which will be derived appear to be very difficult to solve in

general, primarily because they involve a large number of auxiliary

unknown variables (Lagrange multipliers). As a consequence these

equations are not of immediate value in finding €-minimal matrices.

Nevertheless, the equations themselves and the technique cf deriving
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them seem interesting. Furthermore as byproducts we obtain alternative |

derivations of the primary necessary conditions (4.12), (4.13) and also

Additional necessary conditions for €-minimal matrices involving theoreti-

cally interesting interpretations of certain Lagrange multipliers.

Let x and y denote a pair of real variables (coordinates).

‘Pollowing Nehari [18] we define 2z = x + iy and Z =x - iy to he the

corresponding pair of conjugate complex variables (coordinates). We

define formally a pair otf "partial differential operators” by the

expressions | | |

oo 3 1,3 2 Ee
~ (b.5k) N CC Et lx-iy |

| | d 1,9 a
k, SR -— = a + 1 v

As shown by Nehari, these operations can be carried out, at least for a

wide class of functions of x and y (or equivalently of z and z),

by treating z and z &s independent variables and differentiating by

the usual rules of calculus. As a simple illustration of the method,

suppose g(x,y) = £(z,z) 1s a real valued function for which the

stationary pointe are desired. The standard method of elementary calculus
Ta)

involves solving the simultaneous pair of equations

3 d

whereas in the conjugate variables method one merely works with the

single (complex) equation

27



(57) | 2.0
| dz

| whieh ig equivalent to the pair of equations (4.56). It is obvious how | )
one may extend this procedure to the problem of finding stationary points

of real valued functions of 2k real variables vhere k = 2,3, .,. .

An alternative technique, which is often essier to apply in matrix

problems, ie based on the use of differentials. Nehari showed that the

operators (4.54) and (4.55) behave like genuine partisl derivatives in

tho sense that the differential of a real function g(x,y) = £(s,2) 18  -

(58) ©  agedteFa+Ha LT

- Vere ds =x + 1dy and 4% = dx - 14dy. In elementary calculus the
equivalent formulation of (4.56) in terms of differentials is the state- B

went that 4g = (dg/2x)ax + (dg/dy)dy vanishes for sll values of the

| independent differentials dx and dy. This does not correspond =

exsctly to the statement thet (4.58) vanishes for all dz and 4x

considered sc independent differentials. For, from that statement, one

would obtain both Of/dz = 0 and Of/dz = 0 which would imply (4.56)

twice since df/Oz = 0 if and only if Jf/dz = O. It is sufficient to

compute the complex "half differentisl® |

(ag)_ = (ag) . of dz
z tr Ot
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and say that it must vanish for ell dz. In the cease of functions of = =

sore than two reel variables, this rule for deriving necessary conditions -

can be generalized as follows. oo -

4,59 Theorem. Let z = (z,,2,, ... , %) denote & vector with complex

components and suppose #(z,z) ® oz, ,2,, cers Ty 21%, eve » 2.) REN
is a resl valued differentiable function of the 2k real variables oo

Xy>Yg (x =1, ... , k)}) where Zy = Ag * 1 Yy (d=1, «vo. , k). Let the

half differential (49) be defined by | |
)

| v oz, Z, oz, EE

If @ has sn extreme value at the point z, = (24, ses 2K), then
(ae) _( z ,5,) mist vanish for all values of the irdependent differentials

g

az, ,dx,, vee dr. . | |
We refrain from giving a proof of Theorem 4.59. |

Let A = (ay) € 7, and KN = (ny) € 7, We first consider the
straightforward problem of minimizing 2(N - A) subject to the constraint

(4.61) NK-NN =0 . |

Since the matrix KN - NN is hermitian, the matrix equation (4.61)

amounte to: (1) at most (1/2)n(n - 1) independent complex constraints

on the n,3 (these correspond to all elements of (4.61) which lie on
one side of the diagonal), and (2) at moet n independent real constraints

(these correspond to the n (real) diagonal elements of (4.61)). Thus

59



: - {(k.61) involves at wos" ne roal constraints on the 2 complex Lo

3 quantities n,3° Cle:rly then, ve need at most 0° real Lagrange ES
od multipliers. Nevertheless, it is convenient in deriving the necessary | :

a + conditions to introduce at the heginning 2° real Lagrange miltipliers, |

: (b.625  Bel(W'M - w'),,) -0 , ml(n'N - mn), «0 Co

where 1<€1<n, 1<J<n The introduction of superfluous Lagrange

© multipliers causes no difficulty since the superfluous ones either drop

out or combine sutomatically with others to form the maximal number of oo

| . independent multipliers. We let Aygo Keg be real Lagrange multipliers
"which correspond (in that order) to the constraints (4.62). We now define

co the scalar quantities |

| (4.53) Tay = Mg tng (<1, 4 <n)

. and call the Tey complex Lagrange multipliers. For later use we also
define the matrix |

(4.6h) T= (r,) .

In the classical way of applying the method of Lagrange multipliers

one would cousider thse function

(5.65) SM-a)+ ¥ (,. Belm1"), ) +n, Il(H-0"),,]Ps 13] * Ma 1]
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| and differentiate it partislly with respect to the real variables |

Re(n_ ), In{n_) (1 £7, ¢ <n). As vas suggested above, this procedure

1s unnecessarily complicated and can te greatly simplified and shortened | |
! by using complex analysis. oo

SL oo ” ” . | » | » » | :
- hy Re[(N N - NN yy] * Hyg Im{(NK - NN Dg; = RelT, ,(¥ N - NN )gy] BN

go that the sum on the right eide of (4.65) can be written in the form - |

oo | 2 . =x » » » )
| Re( tT, (NN-M) ,J=sRtr{(NN-N)T] |
: i,m 1

(66) a3 (wlF mr) + ely my)

«1 er[(a'n - m)(T + 27)) So

~ where T 1s given by (4.64). In view of the form of the constraint Co =
equations (4.61) the factor (1/2) in (4.66) can be omitted upon sub=

stitution of (4.66) into (4.65). Thus, writing €-(N - A) = Co

trl(N - A) (N = A)], we consider the problem of minimizing the function

*

(4.67)  ®(N,K) = trl(N - A XN - A)] + trl(NN - NN" )H) oo

vhere H 1s given by : oo

. | |
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Equation (4.67) shows that, as far as the Lagrange multipliers (4.63)

are concerned, it is the matrix H which has a definite meaning (i.e.,

which has to be d=termined using (4.61)) and not T. Clearly the Lagrange

multipliers ys (1 =1, «eo , n) which correspond to nonexistent

constraints in (4.61) have dropped out and the others have combined to

form the n2 "actual Lagrange multipliers”:

2 My, (1=1, ..., n) ,

TRE ITEE Hiy = by (1<1<3i<n) .

Differentiating (4.67) we obtain

(ae) , = tr(aN(§ - A) + (ONN - NaN)H]
N

(4.69) .
= trf(N-A+NH -HN)AN ]

By Theorem 4.59 @ hes a minimum at the point (matrix) N only if

(d¢) , vanishes for all matrices an’. It is easy to show from von
X

Neunann's Lemma 4.6 that (4.69) vanishes for all an’ € , 4f and
only if a

N-A+NH-H =0 .

’
If v= rewrite the last equation and the constraint (4.61) and note that

(b.68) implies H € we obtain the followingset of three

simultanecus matrix equations for the unknown matrices N and H.

(k.T70)  N+EKH-HN=A,

&a



*

(4.71) H=H ,

* *

4,73 Theorem. Let A € 77. If KN is €-minimal for A then there

exists a matrix H_ € 7, such that (4.70), (4.71), and (4.72) are

satisfied when N and H are replaced respectively by N, and H,-

Proof. If N, is €-minimal it minimizes the functional = (N - A)

and satisfies (4.72). Consequently N, is a stationary point of

2 (N - A) which implies the existence of complex Lagrange multipliers

Ty such that N_ is also a stationary point of (4.67). By the above

derivation of equation (4.70) there exists a hermitian matrix H such

that N_ + NH - HN =A. This proves Theorem 4.73. !

Remark. It should be noted that the hermitian matrix H of Lagrange

multipliers need not necessarily be of the form of the most general

hermitian matrix. For example in the cease n =2 the diagonal elements of

the left side of (4.72) differ only in sign (cf. Lemma 6.1 below) so one

additional real Lagrange multiplier can be eliminated, allowing H to

assume the form

AM A+ ip
H =

A-1ip -M

where Ayo A, and pu are real. It should also be noted, however, that

H may be assumed tc be a general hermitian matrix. There is no harm

in repeating constraints in the method of Lagrange multipliers.
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Since at least one solution of the necessary condition described

in Theorem L4.T3 is €-minimal, it is natural to investigate the problem

of solving the system (4.70) - (4.72). In theory one cculd carry out

the following procedure. Assuming that H 1s hermitian, solve (4.70)

(bh) N = F(A,H) .

Then substitute (4.74) into (4.72) and solve the latter equation for the

hermitian matrix H. Once H was determined it would be eliminated

by substitution into (4.74) which would yield a normal matrix.

Actually, it is possible to solve the system (4.70) - (4.72)

formally, although not explicitly, by a method which runs somewhat along

the lines of the procedure outlined in the previous paragraph. Since the

matrix H of Lagrange multipliers is hermitian it can be diagonalized

by a unitary transformation:

*

(4.75) UHU = D (Vv €eW, De A)

vhere D 1s real. By means of (4.75) we replace the unknown hermitian

- matrix H by two other matrices, namely an unknown unitary matrix U

and an unknown diagonal matrix D. Now let

1.76 ) *(4.76) UNU =M=(n,) , vAU = B = (b,,)

where U 4s the same matrix which occurs in (4.75). By premultiplication

by U and postmiltiplication by U" we see that the equations (4.70) and

(.T2) are equivalent respectively to

64



(4.77) M+M-IM=B

and

* *

(4.78) MM-MM =0 .

Note that N is normal if and only if M 1s normal.

4.79 Definition. Let the matrix (4.75) be given by D = diag(d,,d,s-«-,d ),

let 4, = d, - dy (1<1, <n), and let A = (Bg 43 l1<1<j<n).
Then M(A,U,A) is defined to be the matrix

by
(4.80) M(A,U,8) = (—d—)l +4

1J

where B = (by 4) is defined by (4.76).
Using the notation of (4.76) and the preceding definition we see

that (4.77) (which can be rewritten in the fcrm M(I + D) - DM = B)

amounts to a set of scalar equations:

m,(1 + d,) - 4, m, = by 4
or

(4.81) m, 4(1 +d, - d,) = m, ,(1 +84) = by, (<1, <n) .

If ve choose the d,'s in such a way that 1 + a, -d, =1+ By #0

for all pairs (i,j) then we can solve (4.81) for the my From (4.80)
we obtain M = M(A,U,A), a known function of A, U, and A. The set

A is determined by D so the matrix (4.90) is actually a function of

A, Uy, and D. Thus, if we choose U and D so as to make the matrix

(4.80) normal then
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oo

and

(14.89) Eu au -m . (A)) = Min (oar - T, L(A)
0 © U,,8, u,A

where the minimum is taken over all U, D such that Tu,Al4) € A,
and where A and 4, are determined respectively by D and D, ar in

Definition 4.79.

In order to examine this problem we note that the transformation

(4.86) is the composition T, - T , where the transformation on the
U

right is to be carried out first, where T,; 1s defined by (1.75), and
where

m

= A = -
(4.90)  T,(M) = (3 5.7) y M=(m,)e 77, , 8,0 F-1)

Thue T,, (A) = T.(T .(A)). If # 1s not normal, then neither is |
U,Aa a uo

B=7T _,(A); hence the second transformation T, pleys an indispensable
v

role in achieving the normality of Ty AA). On the other hand, it can4

be shown by examples that T (A) £ 7¢ can hold for all A's wvhichI1,A n

arise from real diagonal matrices D. Thus we have gained some insight

into the meaning and roie of the matrix H of Lagrange multipliers:

The possibility that

(4.91) Ty,alA) € 71,
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for some A depends on the choice of U; the actual realization of

(4.91) depends on the choice of A and not on U. If we translate back

into the coordinate system of the set of equations (4.70) - (4.72), we

can summarize those observations in the following manner.

4.92 Theorem. let A€ 77, A £7] =andlet HE€ 7. Then the
possibility that (4.70) has a normal solution N (for some choice of

the eigenvalues of H) depends on the eigenvectors of H. The choice

of the eigenvalues (and not the eigenvectors) of H determines wnether

or not (4.70) hae a normal solution N.

Proof. We need only observe from (4.75) that the eigenvectors of

H are the columne of v and that A is determined by the eigenvalues

a, or H ve
Instead of Problem 4.87 we may consider the simpler

4,93 Problem. Let A €77%7,, A £77 and define

JA) = (U; U € UU, amd T;(A) € 77, for some sdmiseidle 4} .

rind a U ¢€ (a). Then, for this U, find a D, € L_ such that

Tu,a 4) € 2,

an

Eun” - Ty,(A) = Min Eu” - zy(4)

where the minimum is taken over all D such that Ty,ala) € 77, om
where A and a, are determined respectively by D and D, as in

Definition 4.79.
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The explicit determination of solutions to either Problem 4.87 or

Problem 4.93 appears to be difficult to carry out for n > 3. The author

has found solutions to Problem 4.93.for all A € ”, and, on the basis

of the results in Chapter 6 below, these have all been €-minimal. No

further investigation of Problems 4.87 or 4.93 will be made here except

for the following simple observation.

L.Oh Lemma. Let U € [24% and let A = (4, ,) (1<1, J<n) where

8, #=-1 forall 1 and J. Then the transformation Ty,A(A) defined
by (4.86) is & linear iransformation on 7.

Proof. The transformations T, of (1.75) and 7, of (4.90) are

both obviously linear. Thus Ty,IX being a composition of linear trans-
formations, 1s linear too.

Note. We shall find another application for equation (4.70) in

Chapter 7 below.

We consider next another approach to the use of Lagrange multipliers.

By Theorem 1.57 (c) N = uu runs through 1, as U and D run
independently through U, and A respectively. Thus we can find
an €-minimal matrix for A by minimizing

(4.95) 2(U'DU - A) = tr{(U'DU - AV) (UU - A)]

subject to the constraints

(4.96) vu=1 ,

(k.97) ped) .
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As in the case of the constraint (4.61) we introduce complex I.agrange
*

multipliers Ty corresponding to the (i,J) elements (UU - I)yy of

the constraint equation (4.96) and write T = (144) as before. If we
merely keep in mind that D 1s diagonal, we need not introduce any

Lagrange multipliers for the constraint (4.97). We have

2 Re tr(U UT) = trlUU(T + T°) .

Here, as in the previous constrained minimization problem, it is not T

which has to be determined but the hermitian matrix H =T7T + T. Therefore

the function we wish to minimize in the method of Lagrange multipliers

is

+* %* ®* * » * *

(4.98) ®(U,u ,D,D ) =tr[(UDU - A )(UDU - A) + UUH] .

Differentiating this we obtain

* 9% * * ¥%

(a0) , , =trlaUD U(U'DU - A) + (UD U - A)aUDU + au’ UH]
uv ,D

* *

+ tr{U aD U(U DU = A)]

» *_#

= tr([D UUDL - A) + DU(U'DU - A") + um)au™)

+ trap (VU DU - AW) .

*

By Theorem 4.59 @ hes e minimum at the point U DU only if (a8) ,
U,D

*

vanishes for all dU ¢ 77, and ap’ € Q.. Setting au” = 0,
varying ap in ns and using Lemma 4.7 we obtain (4.99) below.

70



»* *
Setting dD = 0 and varying dU we obtain (4.100) below. If we

write down all the relevant constraints with these equations we obtain

the following complete set of five simultaneous matrix equations for the

unknown matrices U, D, and H.

* *

(4.99) dgfu(upu - Au] =0 ,

*

(4.100) DU(UDU - A) + DU(U'DU - A) + UH =0 ,

¥*

(4.101) uu=1 ,

*

(Lh.1Q2) H=H |,

(4.103) offdg(D) = 0 .

*

4.104 Theorem. Let A € 77, If N,=U DU, where U_ € U, and

D, € 0 is €-minimal for A, then there exists a matrix HJ € 77%,
such that (4.99) through (4.103) are satisfied when U,D, and KH are

replaced by U, , D,, and H, respectively.

Proof. The proof of Theorem 4.104 follows along the same lines as

the proof of Theorem 4,73.

Remark. We can use Theorem 4.104 to derive again the necessary
»

conditions (4.12) and (4.13). Let N, =U DU, be ¢-minimal as in

Theorem 4.104 and let H be a hermitian matrix of Lagrange multipliers

which corresponds to it. Then using the conclusion of Theorem 4.104 we

can immediately combine (4.99) and (4.101) to obtain dg(D - U AU) = 0
»*

which is the same as (4.13). Premultiplying (4.100) by U, and again

TA



#*

using (4.101) we find, upon setting N, =U DU, that

NN +8N +H=NA+NAoto THN, tH = NA +R,

The last equation shows clearly that NA + NA is hermitian so, by
Theorem 4.34, we have again derived the necessary condition (4.12).

Still another approach to the use of Lagrange multipliers is

suggested by the representation of normal matrices given by Theorem

1.57 (a). Here we set

(L.205) N=H¢+iK .

By Theorem 1.57, (4.105) runs through 77 as H and K run through

the set of all pairs of commuting hermitian matrices. Thus we try to

minimize (Hn + 1K - A) subject to the constraints

- * *
(4.106) H=H , K=K |, and HK= KH .

We introduce matrices 2, JI, and T of complex Lagrange multipliers

vhich correspond respectively to the matrix constraints (4.106). Without

going through the computational deteils we simply give here the results

of the differentiations, which again turn out to be matrix equations:

* * »*

(4.107) H+iK-A+TK -KT+(2-2)=0 ,

* * %*

(4.108) 4(H+1K-A) +HT-TH + (I-01 )=0 .

Here, by analogy with what happened in the previous derivations, it is

not the matrices Z and II which have to be determined but the
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%* %*
skewv-hermitian matrices S =Z - 2 and P=] «II instead. Note,

however, that no combinations of elements of T occurs so that every

element of T is an “actual Lagrange multiplier". This was to be

expected, since the equation HK = KH involves no duplications.

»* »
If we rewrite (4.107) and (4.108), replacing 2 -2Z and Il = II

by S and P respectively, and write down all the relevant auxiliary

equations we obtain the following set ¢f simultaneous matrix equations

for the five unknown matrices H, K, T, S, and P.

| * *

(4.109) H+4K -A+TK-KT +S =0 ,

* *

(4.110) -iH+ K+ 3A +HT-TH +P=0,

%*

(4.111) H=H ,

9%

(4.112) K=K ,

(4.113) HK = KH |,

*

(4.114) S+8 =0 ,

*

(4.115) P+P =0 .

As in the previous constrained minimization probleme (cf. Theorems 4.T3

and 4.104) we can prove

4.116 Theorem. Let A €77],. If KN =H + 1K where H, K cA

and HX, = KH is €-minima.. for A then there exist matrices Tyo 8,»

PE 7, such that (4.109) through (4.115) are satisfied when

H, K, T, S, and P are replacedLy H., Ks T,, Sy» and P respectively.
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CHAPTER 5

CHARACTERIZATION OF €-M.NIMAL MATRICES

We begin the present chapter by proving the following simple

. 5.1 Lemma. Let v denote any norm on ” . We have
\

%*

a (A) = inf Vv(A-UDU) = inf ( inf _ wv(A - uu)
U € 5 UeWU pel(5.2) be

| = inf _( inf v(A -UDU)) .
| Del vel

Proof. Let |
*d' = inf ANA -Uw)) ,

| velW pe A

) |
. % .

: aU)= inf v(iA -U DU) .
oo ~.D ¢ &

We went to show that 4' = a (A). Clearly d' <a(U) and |

(5.3) a (A) cau) ~~

hold for all U €UL. Taking the infimum over U on the right side

of (5.3) we obtain da (a) < d'. Suppose d (A) < d'; then there is a
, ad

pair or matrices vu, € “U, D, € A such that v(A - Us DU.) <4’.
But this implies au ) < u'* which contradicts the inequality

a’ < a(u,). Thus d (A) = d' which proves the second equality in (5.2).
A similar argument will establish the last equality in (5.2).

. Th



By very much the same arguments used in proving Theorem 1.78, It can

be shown that any of the infima over Fy in (5.2) are assumed for some

D-€ A. Furthermore, since v is continuous and {{ is compact in the

norm topology of 77, all infima over (A are likewice assumed. Thus,

in (5.2), we can replace "inf" by "Min" in every instance. We shall use

this fact in proving

5.4 Theorem. let A € 277 and let € denote the Euclidean norm (1.16)

on ”. Then :

2 2 2 *

(5.5) d_(A) = €"(A) - Max e€(dg(vAU )) .
U € WU

Proof. Since € 1s unitarily invariant we have

%* *

(5.6) (A -UDU) = €°(UAU -D) .

From Definition 1.23 and (1.16) we can easily deduce the fcllowing

equalities which hold for any Me 27:

c 2
(5.7) Min . €°(M = D) = €“(offdg(M)) ,

pe A

2 2 2 2,,
(5.8) €“(M) = e“(offdg(M) + dg(M)) = €“(offdg(M)) + €/ g(M))

where, in (5.7), the minimum is assumed if and only if D = dg(M). Thus,

for every U ¢€ U 5 Wwe have

%* * *
(5.9) Min. €2(UAU" - D) = €=(UAU" - ag(uau’))

ped
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whence, using (5.2),

. +» %*

(5.10) a(n) = Min <S(UAU - ag(uau’))
U el |

Noting that  (uau’) = e2(A) and combining (5.8) and (5.10) we obtain

a2(a) = min (e5(uar™) - €*(aguav’))]
Ue UU

= Min [¥(A) - €(dg(uau’))]
U € W

= (A) - Max © (ag(uau™))
U €e TW

which proves (5.5).

5.11 Maximum Problem. Let A € 7%. Find a U, € U, such that

2 * z *

(5.12) “(ag(uau )) = Max  <(ag(uav)) .o
U €U

n

2-13 Theorem (Characterization Theorem). Let A € 77, and let
9%

N, = U, DU, where u, € &, and D,€ A. Then N, is €-minimal
for A if and only if U_ satisfies (5.12) (i.e. U, solves the

Maximum Problem 5.11) and

4) (U_AU)

Proof. Let U_ be any unitary matrix which satisfies (5.12) and

let D_, be given by (5.14). Then, from (5.5), we have
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*

a> (a) = €2(a) - ?(ag(u_AU"))Oo ©

_ 2 * 2 *
= € (U_AU_) - € (dg(u_Au_))

= © *
= € (offdg(U_AU_))

2 * reo 2 *
= € (U_AU_ - dg(u_AU_)) = € (U_AU - D,)

_ 2 * 2 _
= € (A U, DU.) = € (A N)

so that N, is €-minimal for A. This proves the sufficiency of the

conditions (5.12) and (5.14). For their necessity we first note from

Theorem 4.10 that the necessity of (5.14) has already been established.

Thus, if N, is €-minimal for A, we have

| 2 2 _ 2 *
d(A) = €° (a - N,) = € (UAU - D.)

_ 2 #* *
= € (U_AU_ - dg(U_AU_))

= 2 *
= ¢(offdg(U_AU))

2 * 2 *
= €(VAU) - € (de(u au ))

jo *= e2(a) - lagu au’)
oO 0

Comparing the last equation with (5.5) we see that U, satisfies (5.12).

This completes the proof of Theorem 5.13.

An immediate corcllary of Theorem 5.13 is the following result which

indicates the importance of the Maximum Probiem 5.11 in so far as

€-minimal matrices are concerned.
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5.15 Thecrem. Let vu, be a solution of the Maximum Problem 5.11. Then

* %

(5.16) u, dg(U_AU_)U_

is ¢-minimal for A.

Let u and v denote complex column n-vectors. The (Euclidean)

inner product of u and v is defined by

*

(u,v) = v u

where v denotes the conjugate transpose of v. We call u and vv

orthogonal if (u,v) = 0. A set of vectors Uyslsy eee 5 Wy (k < n)
is called orthonormal if

l1 , 1=

(ug u,) = 8; = .
0 , 14

.17 Maximum Problem. Let A € 77, - Find an orthonormal set of

.  ¢¢lumn n-vectors Wy sly eee 5 UY such that

= 2 D 2

Ny | (Aug uy) |" = Max NX |(Avy,v,) |. {= {=

vhere the maximum is taken over all orthonormal sets VerVps see 5 Vo

of column n-vectors.

Suppose U € 27, and let Vis see 3 Vo denote the columne of the
%

matrix U . Clearly U is unitary if and only if Vis see» Vo is
*

orthonormel. Since v Au = (Au,v) for all vectors u,v, we gee from
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(1.24) that

¥* i

dg(UAU") = diag((Av,,v,), «.. , (Av,v )) lev,

whence, by (1.16),

2 * c 2

(5.19) €“(ag(uau’)) = L [(avy,v3°i=

From (5.12), (5.18), and (5.19) one can immediately deduce

2.20 Theorem. The Maximum Problems 5.11 and 5.17 are equivalent in the

sense that a solution of one yields immediately a solution of the other.

»*

From the decomposition N, = u, DY. one finds that the columns
+*

of Us are elgenvectors of N,- Therefore, by Theorem 5.13, we have

5.21 Theorem. Let A € 7, and let N_ =U DU, vhere U_ € Uu,

end D,€ A _. Then N_ is e-minimal for A if and only if it has
an orthonormal set of eigenvectors which solves the Maximum Problem 5.17.

The next result exhibits the relationship between the maximum

(5.12) and distance formulas of the t:pe (2.32).

5.22 Lerma. Let A € 7. A £77 and let Pe,nl) be defined by
Definition 2.13 in the case v = €. Then

2 * 2 2

(5.23) Max =<" (ag(uau )) = (1 - p. (A))e"(A) +p. (A) €(a(A)) .Jd nNUeld
n

Proof. Since € has property S (see Definition 2.1), (2.32) holds

for v = €. That equation and (5.5) yield immediately (5.23).

Remark. Theorem 5.4 opens up a new avenue for obtaining estimates

of dc(A). Thus, a lower bound for the maximum (5.12) will yield an
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upper bound for da.(A) and an upper bound for (5.12) will furnish a

lower bound for a (a). The next theorem is a result of this type.

5.24 Theorem. Let A € 77 and let A = WH where H is positive

semidefinite hermitian and WwW € Uy, Furthermore let Yys¥ps c= 2 Vy

be an orthonormal set of eigenvectors of H, 1l.e., Hy, = Ry

(1 £1 <n) where @, are the singular values of A and (yys¥y) = 5 5
(<1, J <n). Then

n
2 2.

(5.25) ws oh(1 - (wy ,y)P) -
Proof. We have

7

Since y,, ... , y, 1s an orthonormal set, ve see from (5.18) and (5.19)
that

n n
2 2

(5.26) PRICAEATEDN of | (Wy, ,v,)]

is a lover bound for the maximum (5.12). As was observed in Section 1.1,

€(A) coincides with (1.15) for p = 2; consequently

2 a 2
(5.27) (a) = } of .

i=)

Therefore, from (5.5), (5.26), and (5.27) we obtain
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n n
2 2

de(A) < L o; - PN of | (Wy ,¥,)]

which is the same as (5.25). |

The next result provides a slight simplification of the problem of

finding a solution to the Maximum Problem 5.11.

5.28 Lemma. Let UU: denote the set of all unitary matrices of order
n which have nonnegative diagonal elements. Then, for any A € 7,»
we have

* *

(5.29) Max €(ag(UaU™)) = Max | €“(ag(uau’)) .
Ueld UelU

n n

Proof. Let U be any unitary matrix of order n and let

Wy = Ty exp(16, ) be its k-th diagonal element where r, > 0 and 6,

is real. By factoring out exp(i6, ) from the k-th row of U

(k =1,2, «o. , n) we can write U = AV where V «U, and

A= aiag(exp(16, ), cee exp(16_)) is a diagonal unitary matrix, i.e.,
%* :

an element of A n n U. Noting that dg(AMA ) = dg(M) holds for
all M € 7% and for all A€ A NU, we find that

* * *

2(ag(Uau”)) = €2(dg(AvAV A") = 2(ag(vav’)) .

The last equation shows that, in computing the maximum (5.12), it

suffices to consider only unitary matrices in U.:- The proof of Lemma
5.28 1s now complete.
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CHAPTER 6

€-MINIMAL MATRICES OF CRDER 2

6.1 Preliminaries Concerning 2 by 2 Matrices.

6.1 lemme. Let N € 0, be given by

gs TI”
(6.2) N= .

3 n,

Then N is normal if and only if

(6.3) [ny I = Ing?
and

(6.4) (n, - ny )n, = n,(n, - n,) .

root. Ve have

2 2 - -

, [ml rimming + nny
NN = ,

may + om, Ing + In Jf

Lo [mE ring mn, +E
NK =

- - 2

mn, + nan) In, |° + In, |

vhence NS - NN = 0 if and only if (6.3) and (6.4) hold.
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6.5 lemma. Let A € 2 Let (A) and M(A) be defined as in
Definitions 1.17 and 3.8 respectively. Then

2 l , 2 2

(6.6) “(A -X) = 5 (e (A) - €(n(A))) for all X € MA) .

Proof. Let the eigenvalues of A be denoted by Ayahge Then the

eigenvalues of A° are he and ho 80 we have tr(A) = Ay + Ay and
2, _.2 2

tr(A”) = MN + Aye Thus

1 2 _1 - =
5 |tr(a)|" = 5 (ry + My) (A + A)

_ 1 2 2 - -
= 5 (In| + A, | + Ah, + My)

or

1 2 1 2 =
(6.7) = tr(a)|” = 5 € (a(Aa)) + Re(r A) .

Furthermore |

2 1 2 2 2 1 2

tr(A®) - 2 (tr(A))° = Mth = 35 (A + A)

2 2 1 ,.2 2

Moth = 5 (A +h, + 2A hy)

or

2 1 2 _ 1 2
(6.8) tr(aA°) - 5 (tr(A))” =5 (A - A)

From the last equation we obtain
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2, 1 2, _ 1 2
|tr(A%) - 5 (tr(A))°] = 5 [Ay - A,

= (x, NE =X)
2 1 2 1 e

1 2 2 w -

= (+ Pol™ = ary =)

or

c l 2 -

(6.9) |tr(A%) - F (¢r(A))?| = 3 (a(A)) - R(X)

Combining (6.7) and (6.9) we find that

2 2

(6.10) LAL, (era?) - LA) © Pan)

The equation (6.6) now follows immediately from (6.10) and Theorem 3.11.

The next lemma shows how the simplification provided by Lemma

5.28 works out in the case n = 2.

6.11 lemma. Let A€ /7%/,. Let pu €C and let

1 , =

1 + uu MH 1

Then W(u) € U, for all pu € C and

2 » 2 *
(6.13) Max €“(dg(UAU )) = Max €“(ag(W(u) aw (u))) .

U €¥L, nec

Proof. It was shown in [3] (see also [17] for another perametrization

of 2 by 2 unitary matrices) that every U € U, can be obtained
from the formula
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eid cos 6 if sin 6

(6.14) U = | |ed? sin © nL cos 9

vhere € € R and where a, PB, 7, 0 are real numbers satisfying

(6.15) Q-P-y+8=0 (mod 2x) .

By factoring out exp(ix) and exp(id) respectively from the first

and second rows of (6.14) and using (6.15) we see that (6.14) can be

written in the form

ei 0 cos 6 e~1(r-8) sin ©
(6.16) U = = AW(p)

0 10 1(7-0) sin 6 cog 6

vhere A = diag(exp(ia), exp(id)) and where W(u) is given by (6.12)

with un = expli{y-8)]tan 6. Since the real quantities 6, a, B, y, 5

in (6.14) are arbitrary except for the constraint (6.15) which was used

in obtaining (and which is automatically satisfied by) the product

M(p) in (6.16), one sees easily that (6.16) furnishes a parametrization

of all U €U, in the following manner. If we consider 6, &, 5,

and ¢y = yy - ® as independent real variables, or, alternatively, if we

consider & and © as independent real variables and pu = exp(iy)tan @

as an independent complex variable, then, ae u runs through C and

as Q, 8 run through R, U =AW(u) rune through U,- As was shown

in the proof of Lemma 5.28, the factor A in (6.16) can be disregarded
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| | in computing 2(ag(uau’)). Therefore only the complex parameter

matters and we have (6.13).

6.17 Lemma, Let A €77,, A ¢ 72,. Then A ie uniterily similar
either to a matrix of the form

8, 8,
(6.18) A = vith a, #0

| 0 =a
1

or to a matrix of the form

Mn %2

(6.19) A =e, a, with a; £0, a, #0 .

Proof. By Schur's theorem [22] (or see [16] p. 307) every A >

is unitarily similar to a triangular matrix:

6.20) oa A el ( :( 2 = = 0 b, : VE Uy) ’

and, if A d 725» we have Db, 4 0. If by =b,, i.e., if the two
eigenvalues of A are equal, then (6.20) is already of the form {6.18).

It remains only to show that, if by # by» A is unitarily similar to

a matrix of the form (6.19). To prove the latter statement we consider

a

(6.21) Wu) Bi (4) { 1 2)a, a

3 4

vhere W(u) is given by (6.12) and where ux €¢ C. We have

- =] -

’, -a = (1 + ha) [(v, - b,)(1 - py) - 2ub, ]
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hence a, =a, if and only if 2ub, = (by - b,)(1 - uu) or

i arg d i arg(b,-b,)i 2 1h 2
2lule” EH (be = |b, - bye (1- ju|%) .2 1 4

The last equation will be ::atisfied if

(6.22) arg yu = arg(b, - o,) - arg b, (mod 2x) and

2 2

an oy vVI, B+ by - by
by ®)

Thus, if pu is chosen to satisiy (6.22) and (6.23), a, =a, holds in

(6.21). Furthermore, for this choice of un, neither ay nor ag

in (6.21) can vanish since otherwise the eigenvalues of A, namely by

and bys would have to be equal. This completes the proof of Lemma

6.17.

6.2 Determination of all 2 by 2 €-Minimal Mairices.

6.24 Theorem. Let A € 7%, and let M(A) be defined as in Lefinition

3.8. Then the set M(A) represents the totality of all €-minimal

matrices for A.

Proof. Suppose first that A € 71. Then by Lemma 2.4
(A) = e2(a(A)) whence Lemma 6.5 implies

a

(6.25) €(A-X)=0 for all X € M(A) where A e727, .
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The meaning of the last equation is that every matrix in the set (3.10)

is equal to A:

(6.26) M(A) = (A) (A € 72,)

that is, if A € 2, , then the set (3.10) contains exactly one matrix,

namely A itself! This proves Theorem 6.24 in the case A ¢ 275-
We assume henceforth in this proof that A ¢ 1, The principal

tools we shall employ in the case A ¢ 27, are Theorem 5.13 and Lemma
| 6.11. In order to keep the computations manageable we shall employ a

change of coordinates defined by a unitary matrix which transforms A

into one of the forms (6.18) or (6.19). This procedure is Justified

in the next paragraph. The general outline of our proof is as follows.

We shall first show that every matrix in the set M(A) is €-minimal.

Following this we show that there are no other €-minimal matrices.

From (3.9) and the invariance of the trace under unitary similarity

we have

*

(6.27) §(a) = gua’) (Ae 70, , ve WU) .

In like manner we obtain the identity

#* »
(6.28)  P,(UAU') = UR, (A)U (Ae 7%, , Ve “U,)

for all §{ € C where Pe is defined by (4.49). In view of (3.10),
(6.28), and Theorem 2.27 it will suffice to prove the conclusion of

Theorem 6.24 for some unitary transform of A. As mentioned in the
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preceding paragraph we ghall use the forms (6.18) and (6.19) for this

purpcse.

We first observe from (6.8) that the case in which A is unitarily

similar to (6.18) corresponds to the ambiguous case of (3.9). Similarly

the case in which A is similar to (6.19) corresponds to the non-

embiguous case of (3.9) where ({(A) contains exactly one number. As

stated in the note following Definition 3.8, we use the notation No(A,)

to denote one of the matrices in M(A,) and N(A,) to denote the

(single) matrix in M(A,). Straightforward calculations based on

Defintion 3.8 yield

a Za
1 e 2

(6.29) Ny(A,) = (6 € R) ,

oh 2a. a
2 2 1

1 -

i! 5 (ay + tay) aa
(6.30) N(A,) = vhere { = ToT .

5 (ag + Ca, ) a,

In order to prove that N(A) is €-minimal for A, for all 6 € R

and that N(A,) is €-minimal for A,, we shall diagonalize (6.29) and
(6.30) by unitary matrices of the form (6.12) and verify the sufficient

conditions of Theorem 5.13.

Let

y 2 To“Am, m
3 4

and let W(u) be given by (6.12); then
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(6.31) W(u)MW (u) = ——— > _ _ :
1+ up KIL = my is - Hi), HET, +m, tum tm),

In order to diagonalize N (A) and N(A,) it will suffice, by Theorem

1.59, to triangularize them. Thus, from (6.29) and (6.31) we see that
*

Wk, IN (A IW (bpp) is diagonal if and only if

a RL
2 _ 2

*

Similarly, Wi, JN(A IW (ky) is diagonal if and only if

, a, + Ca, a aja, | + la, I° ale,|

7, + fag %2 a8, + jas] 21™3 :

For notational simplicity we shall usually omit the subscript 6 from

kg and write only Hy However, it should always be understocd that

u, depends on the parameter 6. Clearly, each of equations (6.32) and

(6.33) has two solutions and we are at liberty to choose elther solution

in diagonalizing No(A,) or N(A,). In what follows it will not matter

which solution is chosen, 80 we use the symbols Hy and Ho to denote

any solutions of (6.32) and (6.33). We note from (6.32) that

2 2 2 16

(6.35) Highs = las] ee
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From (6.33) we have

(6.36) Hpaoas " CCH = laa, >0 ;

and, from (6.30), (6.33), and Lemma 6.1 {equation (6.3)), we obtain

(6.37) [TY =1 .

By straightforward calculations we find that

1 -— 18

. x 2a, = 3 (kay ae) °
(6.38) Wlg(AWW (uy) = 2 :

0 2a, + > (hy 408,60)

28, - Slip (ay+8a,) + ny(a +a) 0

(6.39) Wu,IN(ALW(iy) A | ;¢C 2a + 3luy(a,485,) + uy(a +a)

. NEES a5

- Ws a, 2a, + Hy8s

" 1 2a) - (ua, + Ha) 8 - Hots
(6.41)  W(w,)ANW (u,) = 3 , .

83 = Hy; 2a, + (uy 8, + Hots)
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From (6.32) and (6.34) we obtain Hy8, = ki8, exp(16) whence, using

(6.38) and (6.40),

(6.42)  WluyJNAIW (wy) = 2 diag(2a,-uya,,28+uy8,) = ag(W(u,JAW (k))) .

Using (€.37) we can write |

uy (a, + ta.) + TCH + Ce,,) = w, luoa, + upta, + 8g + Ca, )

and, by (6.30) and (6.36), we have

2- 2 —- 1 _

ALE = Hp858 3 Taagl a3 = a3 2
- aa 1 2
Ca, = 8 a8 = 8 5 TH3 Ha

80 that

(6:43)  uy(8y#0a,) + iy(8,408,) = Zh (a8, %e 3) = 2(uy8, p85)

Combining (6.39), (6.41) and (6.43) we obtain |

WiigINA W (1p) = 5 dlaglon) = (iy 9,85), 28) + (y8,%,8,)]
(6.44)

= ag(W(u, JAW (ky) .

Equations (6.42) and (6.44) merely express the fact that the decomposi-

tions of Ny(A) and N(A,) implied in (6.38) and (6.39) satisfy the

condition (5.14)of Theorem 5.13.
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In order to show thut every matrix in the set M(A) is €-minimal

for A, it remains only to prove that W(u3) solves the Maximum

Problem 5.11 for A, (1 = 1,2). By Lemma 6.11 it will suffice to prove
that

(6-55) 0,(0) < «“lag(W(uy)AV (u,))] (1 = 1,2)

hold for 211 A € C where

(6.56) 0,(1) = <* [ag(W(AW(u,JAN" (1 W (1))] (1=1,2) .

Straightforward calculations using (6.12), (6.32) through (6.37), (6.40),

and (6.41) yield

(6.47) laguJaw (wl =2 Ja 2 +1 0?

(6.48)  €*[ag(Wliy)ANM" (w))] =2 a [° + 3 (lay] + [a,1)%

(6.49) 0,(A) = w: (loa, + p,8,1° + Joa, - Ba, [?) ,

(6.50) o,(2) = > (laa, + Boe, + Bes” * jaa, = Boas - CAN
where

(6.51) a =2(1 + AN)

and
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(6.52) B, = Hh + wAX - py = A (4 =1,2) .

After further calculations we find that

2

28,
(6.53) o,()) = 2a, |° + —— la, | ’

(6.54) op(h) = 2]a,| + > Bos, + Boos”

(6.56) lo,| = Iu; - »°] (1 =1,2) .

Rewriting (6.45) using (6.47) and (6.48) we obtain

(6.57) o,(A) <2]a,1° «5 [ay]

(6.58) 0,(\) <2fa[7 + 2 (lay) + la, 1) :

We wish to show that (6.57) and (6.58) hold for all A € C. One sees

trom (6.53) that (6.57) holds if and only if 2B, 2/o® < 1/2 tmat is
2

8,|
(6.59) — <1 for all A € C .

(1 + 2)

Furthermore equality hclds in (6.57) if ard only if equality holds in

(6.59). From (6.34) and (6.37) we have uy | =1 (1 =1,2);
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consequently

WS = 2%) < lugl® + AE =1 +X (1 = 1,2)

so, from (6.56) and the last inequality, we see that

2 2 2,2
|B, | uy = A] T)2

(6.60) —d a), (1 =1,2)
(1 + AN) (1 + AN) (1 + AX)

~ 2,2
hold for all \ € C. Equality holde in (6.60) if and only if - VE

is real and nonnegative, i.e., - rw > 0. By the triangle inequality

= 2 2 2

(6.61) B85 + Boas|” < IB,1° (lag) + [a])

vith equality holding if and only if Boe, > C. From (6.36) and (6.55)
we have

2 — 2 = 2, =2_ 2/— =\2

(6.62) Bose; = Hosa (ky + 2) (by - A) = lage; (ky + A) (by - A)

From (6.51), (6.54), and (6.61) we obtain

(A) < 2a, |? ey 3 (lay| + la |)?o.(A) <2]a + ———— . = (1a + |a

a\t/ = <17 (1 + )2 2 2 3

consequently, by (6.60) and (6.62), (6.58) is valid for a11 A € C

with equality if and only if

(5.63) (by + A) (uy, =A)" 20
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and

(6.64) “WA20

Furthermore, from (6.60) and (6.59), we see that (6.57) holds for all

A€ C with equality if and only if :

-2 2

This completes the proof of the fact that every matrix in tte set M{A)

is €-minimal for A.

In order to determine all €-minimal matrices for A it will suffice ’

by Theorem 2.27 and Lemma 6.17, to determine all €-minimal matrices for
*

B, = Win, JAW (pni) (1 = 1,2). The following lemma will provide help
in meking that determination.

*

6.66 Lemma. Let B € 27), and let RK =U DU, where U_  € WU,

and D, € A, be €-minimal for B. Then there exists a Ms eC
such that

N o=% (0) dg(wn sd (A Wh)o o’ 98 0 o of °

Proof. By the parametric representation of U, developed in the

proof of Lemma 6.11 there exist Ao € A, 0 U, and A € C such
*

that U = AWA). Thus, recalling that ag(A_MA0) = dg(M) for any

ME Mss we have

(UB) = ag(W(x)BW (A)= [

dg og ag 0 0 )
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consequently by Theorem 5.13 and the fact that diagonal matrices commute

+* *

N, =U, ag(W(x JEW (A),

»* * %* : | |
=w (AA ag(Wwir )Ba (A ))A WOK)

=W (rn) ag(Wr BF(A )IW(r=w (x) ag(w(x )Bd (x _))W(r)

as desired.

Since W(u,) solves the Maximum Problem 5.11 for A, (1=1,2) we

see from Lemma 6.66 that, if we determine all A € C such that.

2 NE *
¢“(ag(B,)) = «“(de(Wir )B,W (3)))

then we will have determined all ¢-minimal matrices for B, (1 = 1,2).

By the definition (6.46) of 0, (3) this amounts to determining all

cases of equality in (6.57) and (6.58). We shall do this by using the

next two lemmas.

6.6] Lemma. The inequalities

(6.68) -PA¥ > 0 (k = 1,2)

hold if and only if

(6.69) A= pil Hye (k =1,2)

vhere p is real.

Proof. Let MA =r exp(ip) where r > 0 and ¢ is real. Since

[™ =1 (k =1,2) we can set He = exp(ip, ). Thus
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i 2(o-9,)

(6.70) ST SEP k*

Obviously (6.68) holds if r =0. If r > O then, from (€.70), we see

that (6.68) holds if and only if expli 2(p -@)] =-1 i.e., if and

only if exp(ig) =+ iw or A =2+rip. Setting p=+r ve see

that (6.68) holds if and only if A has the form (6.69) where p is

any real number.

6.71 Lemma. The inequality (6.63) holds if and only if

vere o is real.

Proof. Straightforward calculations using (6.37) yield

2/= =\2 2 h 2~L2 ts - -
(6.73) (u, 9) (yA) = [1-47 |“+x|]" + 2 Re(a ms) J+ [2( [A “1 )(uph=uN)] .

The first term in square brackets on the right of (6.73) is real while

the second such term is pure imaginary. Therefore in order that (6.63)

hold it is necessary and sufficient that

(6.74) (IMP - 1) (uk = TA) = ©

end

(6.75) tm) =1 = bp + NF +2 ROB) 30

Obviously (6.74) holde if and only if either |A| =1 or TY - Bohs
If |A] = 1 then
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2-9
£(3 uy) = 2(Re(Muy) - 1) <0

vhence (6.75) holds if and only if equality holds in the last inequality,

i.e.,

(6.76) MEd,

If |»| #1 then (6.74) holde if and only if uh = Woh, i.e,

A = ok. Let A =r exp(ip) where r>0 and @ ie real. We need
consider only the case r > O since (6.63) holds if A = O. Thus

2 2

r exp(19) = u, r exp(-i9) or exp(i29) = u; or exp(ip) = + u,.

Consequently

(6.77) A=tra,

Substituting this into £(%, uy) defined in (6.75) we have

£(x,n,) = 1 «br RP =r. 2r° +1 = (r° - 12 > 0

for all r. Setting o = + r and combining (6.76) and (6.77) ve see

that (6.74) and (6.75) hold simultaneously if and only if A has the

form (6.72) vhere ¢ is any real number. This completes the proof of

Lemma 6.71.

Consider first the case in which M(A) contains exactly one matrix,

i.e., the case in which A is unitarily similar to A,. Here we wish

to determine all cases of equality in (6.58). We have previously
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observed that equality holds in (6.58) if and only if (6.63) and (6.64)

hold simultaneously. Therefore by Lemmas 6.67 and 6.71 we must have

A= Oh, and A = pip, vhere p and o are real. But the last two

equations repreeent straight lines in the complex plane which intersect

only for p=0=0, i.e., only for A = 0. Thus equality holds in

(6.58) only for A = 0. Since W(0) = I we see from Theorem 5.13 and

Lemma 6.66 that

%* *

NA) = W (ky) dg(W(uy JAW (u,))W(u,)

is the only €-minimal matrix for Ase By Corollary 2.30 A has exactly

one €-minimal matrix, namely N({A).

Now consider the case in which A 1s unitarily similar to A.

Here M(A) contains infinitely many matrices and we wish to determine

all cases of equality in (6.57). We observed previously that equality

in (6.57) if and only if (6.65) holds. By Lemma 6.67 equality holds in

(6.57) 1f and only if A = piu,, where p 1s real and u,, 1s defined

by (6.32). Using (6.34) and (6.12) w= obtain

1 piu 1 -u.1 1 Hy
WO W(w,) =

Ye V1 + i: pin, 1 #y 1l

] 1 1 + pi ky (1 + pi)
Vz V1 + R- hy (1+p1) l-op1

on. (Lei

_ 1 5 + pi 0 1 | l 4 (F257)V 2 - 1+pi1 +p ¢) l -pijy¥ye Hy 1-p1 1
10 [2
P

= Al Wine )
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where

l + pi 0

Y, 2l +p
A =A eM, nu,

0 l « pi

V1 + 0°

and where

ie [2
e FP _ 1 + pd .

l- pi

From (6.32) we have

e+0

18 /2 § —£
0 -Ve. Ja e _

He © =Vey/a, e = “1,648

Therefore by Lemma 6.66 every €-minimal matrix for A, is of the form

* ¥* %* *

W (uyIW (0) ag(WM)w(u JAW (uy)JW (A) WOMW(,)

* * %* »*

=W (4) ges JA ag(A Wk 5.0 JAW (by g+6 AAW og )
Pp P (* P

*( ) agl AW ( DW )=W (ny gig ) a&(W(ygo 0 IAW (by go MWK 40
Pp P 0 oO

= Noug (Ay)
p

which is Just another one of the matrices in the set M(A, ) no matter

whet the value of p is. Thus M(A,) contains all the €-minimal

matrices for A,. This completes the proof of Theorem 6.24.

Scme immediate consequences of Theorem 6.24 are the following.
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6.78 Corollsry. If A € 77, then the set (3.10) contains exactly one
matrix, namely A.

6.79 Theorem. Let Ay and Ay denote the eigenvalues of A € 7,

It A¢ 1, then there is a unique €-minimal matrix for A if and

only if \, # Ay; if A =), there are infinitely many €-minimal
matrices for A.

Proof. By Theorem 6.24 A has a unique €-minimal matrix if and

only if tr(A°) - (1/2)(tr(A))° # 0 (cf. Definition 3.8). By (6.8)

this happens if and only if # My. Similarly, if A; =X,, M(A)
contains an infinite number of matrices.

6.80 Theorem. Mirsky's Conjecture 1.35 is true for v = € and n = 2.

Proof. This follows immediately from Theorem 6.24, Lemma 6.5, and

the definition (1.34) of 4d(A).

6.81 Theorem. The set M(A) of (3.10) provides a complete solution

tc Problem 3.40 for n=2 and k = 1.

| Proof. Clearly M(A) C &(A)C 77, so by Theorem 6.24 we have
‘the desired conclusion.

For any subset 4 of 7 ve denote the set of all real matrices
in by o/R (read: | restricted to R). Theorem 6.24 provides

a complete solution to the distance problem (and associated minimum

problem) of finding (1.26) where v =€¢, A € 20,/R and where 4 1s
replaced by 21,/R- For, If A ¢€ 77./R has eigenvalues oY sho » then

the set M(A) contains all matrices in 77, which are €-minimal for

A. If NFA, (cf. (6.8)) then by (3.9) f(A) contains exactly one
number and that is real; consequently by (3.10) M(A) contains exactly

one matrix and that is resl. If XA, =), then L(A) contains all

10



complex numbers of unit modulus and by (3.10) Ny(A) is real if and only
if either { =+1 or { = - 1. We have proved

6.82 Theorem. Let A € 77, /R, A ¢ 77, and let the eigenvalues of

A be denoted by AM0 If A # A, there is a unique real €¢-minimal

matrix for A given by (3.10). If M =\, there are exactly two real

€-minimal matrices for A, namely

1 » 1 I

5 (AA )- +; tr(A +A )1 .

6.3 The Maximum Problem 5.11 in the Case n = 2.

6.83 Theorem. Let A € 7/,. The identity matrix I solves the

Maximum Problem 5.11 for A, 1i.e., A satisfies

2 2 *
(6.84) €“(ag(A)) = Max €“(ag(uav )) ,

U €Y,

if and only if

(6.85) arte RS,

for some { in the set {(A) defined by (3.9).

Proof. If (6.85) holds for { € (L(A) then by (3.10) Ny(a) € A,
whence 1 diagonalizes No(4). By Theorem 6.24 N (4) is €-minimal so
by Theorem 5.13 1 solves the Maximum Problem 5.11. Suppose now that

(6.84) holds. Then by Theorem 5.13 dg(A) 1s €-minimsl for A whence

dg(A) € M(A) by Theorem 6.24. Thus there is a { € (A) such that
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No (A) = dg(A), i.e., N,(4) € A, and this implies (6.85).
6.86 Theorem. Let A € 77 U, solves the Maximum Problem 5.11 for

A if end only if U_¢€ UU, end

*, #*

(6.87) u_(A + LA VU € PD,

for some { in the set {(A) defined by (3.9).

Proof. Every V € UU, can be written uniquely as V = LL and

V runs through U, if and only if U runs through uU.,. Thus

%* *.  ¥

(6.88) (dg(U AU )) = Max €2(dg(U(u AU) ))
0 0 © 0

U € U,

%

whence UAU satisfies (6.88) if and only if U, solves the Maximum

Problem 5.11. By virtue of (5.27) Theorem 6.86 follows immediately

from Theorem 6.83.

Remark. The significance of Theorem 6.86 lies in the fact that it

| characterizes any solution of the Maximum Problem 5.11 (for n = 2) in

terms of an algebraic condition which is very easy to check.

Note. A more precise determination of the values of { for which

(6.85) and (6.87) hold in the ambiguous case of (3.9) will be made in

Chapter 7 (Theorems 7.24 and 7.26).
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CHAPTER T

FURTHER NECESSARY CONDITIONS FOR €-MINIMAL MATRICES

According to Theorem 5.13 all €-minimal matrices are determined

by solutions to the Maximum Problem 5.11. Therefore a necessary condition

on a unitary matrix solving this maximum problem will, indirectly, be

a necessary condition on an €-minimal matrix. By working through the

Maximum Problem 5.11 we shall be able to derive some additional necessary

conditions in the present chapter.

The identity matrix I solves the Maximum Problem 5.11 for

B € aa if and only if B satisfies the condition

2 2 *
(7.1) €“(dg(B)) = Max  € (ag(um)) .

U € Uw,

If B satisfies (7.1) then, by Theorem 5.15, dg(B) is €-minimal for

B and, by Theorem 4.10, dg(B) satisfies the necessary condition (4.12),

i.e.,

#* * * %*
(7.2) dg(B)B - B dg(B) + dg(B )B-Bdg(B ) =0 .

Letting B = (by 5) we can express the last ecuation in terms of the
elements of B as follows

(7.3) byy(byy - by) + by 4(byy - by) =0 (1<1i, J<n) .

In like manner we find from Theorem 4.73 that there is a hermitian matrix

H such that
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dg(B) + dg(B)H - H dg(B) = B = dg(B) + ofrdg(B)

or

offdg(B) = dg(B)H - H dg(B) .

Writing H = (h,5) we can express the last equation in terme of the
elements of B and H as follows

by jg = hyy(Pyy - by) (1 #3) .

Since H is hermitian we have hy = hy, 80 bys = hy (by, - by) =

- hy, (b,, - big) Therefore we find that every 2 by 2 principal
submatrix By of B is of the form

byy Py P11 hy s(Pysbyy)
b b - -b bjt °y hy y(Byy-byy) 33

Consider now unitary matrices U = (u_.) €U, of the following

special type. For any pair (i,j) of row ond column indices satisfying
oe

l1<1<j<n welet the 2 by 2 principal submatrix

Ys Y4y

"13 ] u,, u
Ji JJ

be unrestricted (except for the requirement U € UU.) and specify that
all other elements of U satisfy
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l , r=ec
u =9%__ = .

rc rc 0 , Tr # C

One may easily verify that U 1s unitary if and only if uy3 is
%*

unitary. If B satisfies (7.1) then certainly «-(dg(B)) > e?(ag(us"))

holds for all U of the special type just described. The effect of

+

the transformation UBU on the submatrix B13 is that of repiacing
%*

B, 4 by Uy 5 By Uys ; therefore, since Us 3 can be any matrix in U,,
ve see that B,, itself satisfies (7.1) with n replaced by 2:

2 2 *

€ (ag(B,,)) = Max ¢ (dg(UB, ,U )) (1<i1<Jj<n) .
Ue U,

We now find from Theorem 6.83 that

*

(7.5) Byy+ 834Byy € 9D, (1<1i< j<mnm)

holds for some 13 € 6(By 4) Expressed in terms of elements, the
condition (7.5) states that

(7.6) buy + CigP5q = Pyy * C1404 = 0 (1<i<J<n) .

Since 18,1 = 1 the last equation implies byl = LIVE
We can obtain some information about the complex Lagrange multipliers

hy, in (7.4) as follows. From (7.3) and (7.4) we obtain

A, (db, -b,.)2 +n, |b, -b..|¢=013V 711 33 1) 1% Jd
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80, unless b,y = by (in which case the value of hy, in (7.4) does

not matter at all) or hy = 0, we have

2 2

2 2

hy, [by = bys

or

h b - Db

1) ii n= +

hygb = ibgy = by,

Straightforward computations using (7.4) show that

, 1 2 1 2 2

(1.7) tr(B})) - 5 (tx(B))° = (5 - 2[ny,FN (vy, - by,)°

If (7.7) does not vanish we see from (3.9) that Lys in (7.5) must have
the value

by -b
(7.8) §;y = 8 ALJ)ly 13 T -3

ii JJ

vhere

1 2

8yy = sen(3 - 2|by,| )

and where for a € R sgn(a) denotes the sign of a:

+1 if a> 0

sgn(a) = .
-1 if a <0
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Using (7.4) and (7.8) we obtain

byy + Gyybyy = hy (2-8 00g, by)

by + SPY = hy (sy, - 1)(vy, - bys)

whence (7.6) holds if and only if either hij = 0 or s,y= 1. Clearly

| 8yy = 1 holds if and only if (1/2) - 2|n,, 1° > 0, i.e.,

1

The other possibility is that h,3 = 0 in which case (7.9) still holds.
In the ambiguous case of (3.9) where (7.7) vanishes we obtain

.10 b+ b.. = b _ -0Db - (o,. -5..)

. = -h - - - »(7.11) bs + 3504 5 hy, (0), by) SRO b,,)]

If we disregard the uninteresting case bey = Py, then obviously (7.7)

vanishes if and only if LN = (1/2). Thus, from (7.10) and (7.11),
(7.6) holds if and only if

b - Db

Vos, -5%
ii JJ

We now summarize the above results ln the following

7.12 Theorem. Let B = (by 4) € P77, satisfy the condition (7.1).
For each pair of indices (1,)) satisfying 1 <i < J <n the following

statements are true.
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(7.13) AONERYby) = bye(dy, - by) .

(7.14) LYE SI

There exists a complex number ( = complex Lagrange mltiplier) hy,
such that |

LITER P11 hys(Pyg=Dyy)

31 Pa "hy 5(05-Dy4) ®53

) ¢ 4 by, * bys taen by = LIT =0, If by # bys then

1

More precisely, if

then |

1

(7.18) hy, <5

and,  § 4

oo 1 2
«© {7.29} tr) - 3 (tx(8,,))% = 0

«onl b,, $ LIT then



= 1
(7.20) hy =35

It by, #0 and by # by, then

h b,, - Db |
(7.21) i, Ai J)

Pig = Igy = By,

Furthermore, if b,, £ 0b31° there is a uniquely determined complex

number { , satisfying 1841 = 1 such that

(7.22) bys WE PLITILILIIR FPP -=0

If (7.17) holds Cy € ¢(By,) where the set £(8,,) is defined by
(3.9). If (7.19) holds then

b, =D
(7.23) Cys =ll

P11 = Py;

Specializing Theorem 7.12 to the case n =2 we can improve Theorems

6.83 and 6.86 ag follows.

7.24 Theorem. Let A = (8 4) € 77, satisfy (6.84). If 8); = 855

then A =a),,I and (6.85) holds for all ¢ € C(A). If a, # a,, and
and if tr(A°) - (1/2) (tr(A))° = 0 then (6.85) holds only for

a - Q

(7.25) {= A=
11° "22
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7.26 Theorem. Let A € 7, » let U_ solve the Maximum Problem 5.11
%*

for A, and let B = (by) =UAU. If b, =b,, then B=15,,1 and
(6.87) holds for all { € {(A). If by, £b,, and if

tr(A%) - (1/2)(tx(A))° = 0 then (6.87) holds only for

b,, = Db

(1.27) {=22
b11 ~ P22

T.28__Theorem. Let A €M,., let U solve the Maximum Problem 5.11

for A, and let B = (byy) = U_AU. Then all the conclusions of

Proof. If v, eolves the Maximum Problem 5.1) for A then, by

an argument similar to trat used in the proof of Theorem 6.86, B

satisfies (7.1).
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CHAPTER 8

COUNTEREXAMPLES TO MIRSKY'S CONJECTURE

In the present chapter we shall present some selected examples which

shed some light on the distance problem of finding d (A) and which also

show that Mirsky's Conjecture 1.35 is incorrect in a number of instances.

Consider first the following class of matrices of order n. Ve

define A = (a, ,) € A as iollows: 8p" 0 (1 <k, £< n) with the
following exceptions

ie,

vhere the 6, are arbitrary real numbers. Now define No = (b,4) € 77
by

= iP -
(8.2) b, =e y b., =48 , othervise

vhere ¢@ 1s any real number. Clearly the rows and columns of N? form

orthonormal sets so that No is unitary (for all 015 «+ 50 1,9 € R)

and therefore normel. (Actually Ne is the product of a diagonal unitary
matrix with a permutation matrix.)

For all 6,, ... , 6 _, we have Q(A) = 0 rez (A) =n -1 80

8 2 2 |(8.3) €(A) - €(a(A))=n-1 .

An elementary calculation shows that f(c) = (a - oN), where ¢ is
real, assumes its absolute minimum if and only if ¢ = (n - 1)/n.
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Furthermore, by (8.3)

2, n=l oy _n=l 1,2, 2
(8.4) (A - TER) = = 5 (e7(a) - (aa)

holds for all 6, coe 9.1’ ® € R. This proves (cf. Theorem 2.16).

8.5 Theorem. Mirsky's Conjecture 1.35 is false for v = € and n > 3.

There exist matrices A in ”, such that

1

(8.6) Pe(A) <3 (n> 3)

vhere p_ (4) is defined (for v = ¢) by (2.14).b 4

Note. An example of order 3 similar to the pair A, (n - 1)/n No
in the case n = 3 is due to Eberlein [6]. She also obtains counter-

exsmples to Mirsky's conjecture for n > 4 by bordering her 3 by 3

example with zeros.

Consider next the class of 2 by 2 matrices of the form

Am

(8.7) As | vhere A, m € C , m#f{O0 .
0 O

let N De any €-minimal matrix for A, that is,any one of the matrices

1 2A n
(6.8) 1 (§ € ta)

tm O

vhere ((A) 1s defined by (3.9) (cf. Theorem 6.24). One finds easily

* *

AA = Qisg(2 + In}2,0) y (A-M)A-=-1) = i disg( nu), In?)
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whence, by Definition 1.10, the singular values of A are

1/ 2 2AT + |u| » ©

and the singular values of A - N are

1 1

5 lm| , 5 Im]

Using the defining formulas (1.13) - (1.15) for the unitarily invariant

norms vo ve find that the following hold for all p (1 <p < =):

1/p

vw) = WYRE + PP = VE + ml

v (a(A)) = Ix ’
P

1/p .

(a = 8) = [2(ABLPyT Lge py
BO

2 2 2

(A) = e(aa)) = [mf®

2a - 1) = 22/2 po?
or

| 2 _ ,2/p-2, 2 2
vo(A N) =2 (V, (A) vo(8(A, ) .

Now 2/p-2 < (1/2) 4if and only if 22/p < 2 and this happens if and
only if 2/p <1, i.e., p> 2. Thus the pair A, ¥ provides a
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counterexample to Mirsky's conjecture for n =2 and for all p > 2.

By bordering the matrices A, N with zeros and by carrying out the

relevant computaticns with (1.13) - (1.15) for higher values of n, we

then obtain counterexamples to the conjecture for all n > 3. We have

proved |

8.9 Theorem. Mirsky's Conjecture 1.35 is false for v = vy (2 <p <=»)

end n>2 vhere vis given by (1.15).
Remark. Since Vv_=g¢ we have again proved the second statement

of Theorem 2.19.



CHAPTER 9

THE FIELD OF VALUES AND EIGENVALUES OF €¢-MINIMAL MATRICES

The field of values (or numerical range) of & matrix A € 77 is |

defined to be the following set of complex numbers.

(9.1) F(A) = ((Ax,x); (x,x) =1 and x is a complex column
vector} .

The following are known facts concerning F(A):

9.2 Theorem. (Toeplitz [23] and Hausdorff (12]) For any A € lA
F(A) ic a closed, bounded, connected, convex subset of C.

9.3 Theorem. (Toeplitz (23]) Let A € 77 - All eigenvalues of A

are in F(A). If A € RR. then F(A) coincides with the convex hull
C(A) of the eigenvalues of A.

9.4 Theorem. (Hausdorff [12]) The field of values is invariant under

a unitary similarity transformation:

*

(9.5) F(A) = F(UAU') where A€ 7%, U ¢ TL .

A simple consequence of Theorems 9.2 and 9.3 is the following

9.6 Theorem. Let A€ 77 Then the convex hull C(A) of the |

eigenvalues of A 1s contained in F(A):

(9.7) c(a) c F(a) .

An elementary computation using Theorem 9.4 and results of Toeplitz

[23] and Donoghue [5] yields the following result whose proof is omitted.
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9.8 Theorem. Let A € 77, and let

(9.5) VAY" = ) (Ve,© A

be a Schur triangular form for A. If A is not normal, i.e., if

m#0, and if A, # A,» then F(A) is the interior and boundary of an

ellipse whose foci are A, and \,, whose minor axis has length |m],

and whose ma jor exis has length (In| + A - My 2y1/2 EE A
then F(A) is the interior and boundary of a circle with center at Ay
and diameter |m|. If A 1s normal, i.e., if m = 0, and if A # Mss

then F(A) is the straight line segment connnecting A, and A; Af

M = My, then F(A) reduces to a single point, namely A

| Our first objective in the present chapter is to prove

9.10 Theorem. Let A € 2s» A ¢ 27, and let (9.9) be a Schur form

) for A. If A # A, then the eigenvalues of the (unique) €-minimal
matrix for A are the end points of the major axis of the ellipse which

is the boundary of F(A). If A =), and if No(A) (see the note
following Definition 3.8) is one of the €-minimal matrices for A, then

the eigenvalues of Ky(A) are | |

(9.11) M23 jule!®2

given any diameter of the circle which is the boundary of F(A), there

is a 6 € R such that the eigenvalues of Ng(A) are the endpoints of

that diaxeter. |
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Proof. In view of Theorem 9.4, (6.27), and (6.28) we need only

prove the result for some unitary transform of A. We shall use the

form (9.9) for this purpose. Consider first the case \, = \,. Then

by putting a; =), 8, =m in (6.29) and (6.40) we see that

1

. M 5 m
Ng(VAV') = ;

l- 16

5m e A

furthermore, by Theorem 5.13, the eigenvalues of Ng are the diagonal

elements of (6.40), namely

(9.12) Ae +5 pm1-2 WM"

2 2

where, by (6.35), (ug) = |n[? exp(16) or

18/2(9.13) uw, m = + |mje / . |
16 |

Whatever sign is chosen in (9.13) we see from (9.12) that the eigenvalues

of N, are given by (9.11). By Theorem 9.8 the boundary of F(A) is a

circle with center A, and radius (1/2) |m!. As 8 increases from 0

to 2n it is clear from (9.11) that the eigenvalues of N, are the

endpoints of a diameter of that circle which rotates through ea angle

of x. That is, every diameter of the circle which is the boundary of

F(A) 1s included as one of those which can occur as the line segment

connecting the eigenvalues of some €-minimal matrix for A.

We nov consider the case A, # \,. Straightforward computations
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based on Definition 3.8 show that

1

ST-R A = Mh,
(9.14) N(VAV ) = , where { = ———

ZEA Moh

and, according to Theorems 6.24 and 6.79, this is the only €-minimal

matrix for (9.9). The eigenvalues ys By Of N(VAV') are the roots

of the quadratic equation ue - (A + Au +A), - (1/k) [alt = 0.
Using the quadratic formula and the expression for § in (9.14) we find

(9.15)

1 1

m=z (+a) -3 VE Vin? + Ay - Wi :

Row

A o= A (hn = A)P
4 = a2 =1 2= = 2

SRE I CRY

whence

(9.16) arg(V tL) = arg(, - ry) .

According to Theorem 9.8 the boundary of F(A) 1s an ellipse with foci

Mo Ay) center (1/2)(2 + Aa) and major axis of length

(Inf? + [ny - a [2012 From (9.15) and (9.16) we find

(9.17) arg(h, - 2A, + 4) = arg(r, - A.) = evalu, - 5 (A, +1) ,
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(9.18) aren, - 20 +A) = argl-(A; - A,)] = arg(u, - 5 (hy +25)

Relations (9.17) and (9.18) show that Ms Ms yy 8nd py, &l11 lle on

the same straight line through the center (2/2)(0 + Ay) of the ellipse.
Since A, and 1, lie on the major axis, since 18] = 1, and since

the length of the major axis is (|m]® + IA - A, Pye ve see from
(9.15) that W, and u, are the endpoints of the major exis. This

completes the proof of Theorem 9.10.

G.19 Corollary. Let A € 7%,, A¢ 7{,. If F(A) is a circular

disk, then given any diameter of that disk there is a 6 € R such that

F(N (A) coincides with that diameter. If F(A) is the interior and

boundary of an ellipse (not a circle) then F(N(A)) coincides with the

major axie of that ellipse.

Proof. This follows immediately from Theorems 9.8 and 9.10, since

every matrix in M(A) is normal.

9.2C Corollary. Let A € 77,, A ¢ 77, ard let N, be e-minimal

for A. Then the eigenvalues Hq» Hy of N, are extreme points of

F(A). Furthermore by - Hy | = diam(F(A)) = sup|z - vw].
z,w € F(A)

9.21 Theorem. Let A € IA end let N_ be €-minimal for A. Then

every eigenvalue of N_ bel ngs to F(A) and

(9.22) F(N_) C F(A) .

Proof. Let N =UDU where U €2Z/ and De A . Accord-
—— 0 6c CoO o) n 0 n

ing to Theorem 5.13 the eigenvalues of N, are the diagonal elements

of the matrix U_AU,.. 1f u, 1s the k-th column of ul then the k-th
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5%

diagonal element of UAU, is given by (Au ,u ) and, by (9.1), this
is in F(A). :Bince P(A) is convex and since F(X) ie the convex

hull of the eigenvalues of N_, we obtain immediately (9.22).
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CHAPTER. 10

A GENERALIZATION OF THE JACOBI AND GOLDSTINE-HORWITZ METHODS

Long ago Jacobi [14] devised a method for diagonalizing a real

symmetric matrix. The method utilized coordinate-plane rotations and

was essentially dependent only on an elementary technique for dlagonalizing

a real symmetric matrix of order 2 using an orthogonal similarity trans-

formation. Since 1950 Jacobl's method has Leen extensively studied and |

generalized (see e.g., [3], [4]). In the present chapter we shall describe

still another generalization of Jacobi's wethod which amounte to a

computational technique for solving the Maximum Problem 5.11. This new

technique 2180 generalizes and simplifies a method devised by Goldstine

and Horwitz [10].

Consider the following computational elgorithm. Let A € 777 and

pet Ay = A. One calculates a sequence of matrices A, Ay» coe

As (a{X)y, «e. which are unitarily similar to A by the recurrence
relation

(10.1) A = UAL (k = 0,1,2, ...) .

The U, = (uk) are special unitary matrices of order n. For every
value of k there is specified a pair «x, = (1,,3,) = (1,)) of indices
(we omit the subscript k in the sequel for notational simplicity)

satisfying 1 <1 <j <n such that the 2 by 2 matrix
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(k)  (k)
“110 M4

(10.2 Vv. = ,

fom
Ji JJ

which is a principal submatrix of U,, 1s unitary. All other elements

of Uy satisfy

NOY EA |
Ire Ic 0 , x # e

The matrices Uy are completely determined by the peirs x and the

2 by 2 unitary matrices Ve. We shall always take Vi to be a

matrix of the form (6.12).

| Any set ¢f rules for choosing the sequence (v,} vill be called a
pethod of Jacobi type. The following example which is defined only for

A € , and which is e straightforward extension of Jacobi's original
method to hermitisn matrices will be referred to as the classical Jacobi

| method (cf. [4]}). Here one chooses = such that .

k k

(10.3) ed - Max [ol¥)]rfc

and chooses V, to be a matrix of the form (6.12) such that

(k+1) _

The new generalization of Jacobi's method which was announced in

the first paragraph of this chapter is a method of Jacobi type with the
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following set of rules for determining the VU, of (10.1). Let

(KB) (Kk)
(x) rr rc |

(10.5) AL = (<r <ec<n)
(¥) (Kk)

a a
cr ce

and define

e k) * 2

(10.6) a f(r,c) = Max ¢ (ex(ual®ly )) - € (ag(al®))) .
ve UU,

Choose L, 80 that

(10.7) (3,9) = = Max (r,c)
“x l1<r<c<n “x

and choose V, to be a matrix of the form (€.12) which solvea the Maximum

Problem 5.11 for Nei We show in the next paragraph how to calculate
easily a (r;c) end V..

By Theorems S.13 and 6.24 a unitary matrix U, solves the Maximum

Problem 5.11 for A € 7%, if and only if U_N(AU is diagonal and,
*.

by (3.10), that happens if and only if u (A + LA YJo 1s diagonal where

£ € (A). Therefore all we need to do in order to solve the Maximum

Problem 5.11 for any of the submatrices alk) is to find a uk) € C
such that

LK)ya(k) (k) yo * (Kk)(10.8) W(upe Mage) + & ASW (ups!) € 8,

where { 4s any number in (alk), Thus from (10.6) we have
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2 k kK). *, (k 2 k

(10.9) Arse) = (aguaN (LE)y)) = B(aglalt)y)

and we set

v= walk)
(10.10) y= Wig )

We nov show that if A € A. the set of rules (10.7) end (10.10)

coincide respectively with (10.3) and (10.4). This will show that our

new method 1s a generallzation of the classical Jacobi method, If

A € 7 then, from (10.1), A, € A, (x = 0,1,2, ...) which implies

Ae Zo for 1 <r<c<n and for all k. 8ince NY is
hermitian it can be diagonalized by e unitary transformation and the

value Of the maximum 3a (10.6) is given by E(al®)y, Thus we find that

a frie) =2jalk)| (1<r<c<n)

vhence the rule (10.7) reduces to (10.3). Purthermore, by Corollary

6.78, M(alX)) = (ak) whence the V, given by (10.10) diagonalizes
at) 1.e., (10.4) holds.

Since the clasaical Jacobi method diagonalizes any A ¢€ 7 we
have proved that the method of Jacobi type (10.7), (10.10) will diagonslize

any hermitian matrix. By a similar argument we could show that the

method will also disgonalize any skew-hermitian matrix.

In {10] Goldstine and Horwitz devised a method of Jacobi type which

wiS applicable to any normal matrix A € 77, At each stage they sought,

by 8 very complicated procedure, to determine a V, of the form (6.12)
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such that |

Aagih . C(orrag(v,als9)

wes minimized. It 1s easy to see that this is the same as deteraining |

V, so that (ag(v, at) is maximized i.e., solving the Maximum
Problem 5.11 for as). Thus our technique providee a simple solution
to the problem studied by Goldstine and Horwitz and at the same time

makes its application to arbitrary A € 7, meaningful in the context

of solving the Maximum Problem 5.11 for A. |

Of course the main question here is whether or not the method of

Jacobi type (10.7), (10.10) will actually solve the Maximum Problem

S.11 for any A € 27, i.e., whether or not ¢(ag(a,)) converges
to the maximum (5.12). A related question is whether or not the infinite

product °° UU, «vo UU, of unitary matrices converges to a unitary

matrix which solves the Maximum Problem 5.11 (cf. [i]). If the answers

to these questions were affirmative then we would have a constructive

method of computing €-minimal matrices for any A € 7, If the answer
to the first question were affirmative then, by Theorem 5.4, we would

have a constructive method of computing d (4). These convergence

questions appear to be rather difficult and we content ourselves here by

proving only the following

10.11 Lemma. Let A € 7 and let the matrices U, of (10.1) be
determined for each k by the rules (10.7) and (10.10). Then

(10.12) 6, (1,3) —+0 ask = » .
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Proof. Let a, = ¢“(ag(a)) for k =0,1,2, ... . Since each A, |
is unitarily similar to A, we have

(10.13) 0, < © (A) (k = 0,1,2, seo) . |

The only disgonzl elements of A effected by the transformation (10.1)

are the ones In the i-th and j-th rows. Moreover, since the trans-

formation alk) =V alkd* increases the function “(aga )) by |iJ ki 'k 1)

the amount a (1,3), we have

(10.14) Op =O t & (1,3) > 0) for k = 0,1,2, «oo

The relations (10.13) and (10.14) show that (0,) 1s a monotonically .

increasing sequence of positive numbers which is bounded from above.

Consequently 0, <0 < «2(a) 88 k «+» and from (10.14) we obtain the
desired conclusion (iC.12). |
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