
AppSwitch: Resolving the Application Identity Crisis

Dinesh Subhraveti', Sri Goli!, Serge Hallyn', Ravi Chamarthy', Christos Kozyrakis'->

'Fermat Inc.

?Stanford University

ABSTRACT host to host, are often short-lived and share an underlying

Networked applications traditionally derive their identity from pool of stateless inirastructure hosts with other distributed
the identity of the host on which they run. The default ap- applications and their MICTOServices.
plication identity acquired from the host results in subtle and The practice of associating applications with their hosts is
substantial problems related to application deployment, dis- 50 common and ubiquitous that it is hardly questioned. How-
covery and access, especially for modern distributed appli- ever, something as fundamental as application identity natu-
cations. A number of mechanisms and workarounds, often rally has a bearing on almost every aspect of application con-
quite elaborate, are used to address those problems but they nectivity and networking. In particular, improperly defining
only address them indirectly and incompletely. and identifying applications leads to subtle and substantial

This paper presents APPSWITCH, a novel transport layer problems related to common network functions with which
network element that decouples applications from underly- applications have to directly interface. While lower level net-
ing network at the system call layer and enables them to be work functions such as packet switching do not depend on
identified independently of the network. Without requiring applications, network functions such as application discov-
changes to existing applications or infrastructure, it removes cry segmentation, firewalls, load balancer5 VPN gateways,
the cost and complexity associated with operating distributed implicitly depend on well-defined application identities. A
applications while offering a number of benefits including an number of mechanisms [9, 6, 12, 7] and elaborate devices
efficient implementation of common network functions such have been built over the years to work around the symp-
as application firewall and load balancer. Experiments with toms of application misidentification. The workarounds only
our implementation show that APPSWITCH model also ef- address the issues indirectly and incompletely and typically
fectively removes the performance penalty associated with produce new problems.
unnecessary data path processing that is typical in those ap- We present APPSWITCH, a novel transport layer network
plication environments. element that decouples applications from the network and

forms a clear interface between the two. Like the way a

router provides IP connectivity at the IP layer and the way

1. INTRODUCTION a bridge provides L2 connectivity at the link layer, APP-
The identity of networked applications is traditionally de- SWITCH operates at the transport layer and provides mutual

rived from the identity of the host on which they run. How- discovery and connectivity to applications.
ever, applications and infrastructure hosts are very different APPSWITCH uses the system call interface to decouple ap-
objects that need to be referenced independently by very dif- plications from the network. As a well-defined and stable
ferent entities. A web server, for example, is identified by an interface and the exclusive means for applications to access
IP address even though IP addresses were designed to iden- the network and its properties, it provides a convenient and
tify network hosts rather than application endpoints. powerful layer to decouple and virtualize application’s inter-
The practice 1S not unacceptable as long as a relatively sta- actions with the network. In contrast to low level approaches

ble one-to-one mapping can be maintained between the ap- like overlays [11] that have to process every packet or high
plication and its host. That was the case for early networked level approaches like proxies [7] that have to move data be-
applications which were undistributed, deployed on a dedi- tween connections, virtualization of the network API avoids
cated host and left undisturbed for a long time. Modern ap- data path processing.
plications, which are distributed, mobile, ephemeral and run The decoupled interface enables applications to be iden-
on multi-tenant infrastructure, no longer conform to that sim- tified independently of the network such that typical net-
plistic model. It is especially the case for microservices ap- working issues with modern distributed applications are re-
plications [15] where otherwise monolithic software is built moved. In addition, it provides a number of other advan-
and deployed as a distributed set of sub-applications called tages including reduced operational cost and complexity by
microservices. Individual microservices move about from minimizing unnecessary friction between applications and

operations teams, effective and efficient implementation of all cause the application to become unreachable at its for-

application-level network functions, ability to run applica- mer identity. Any policy specification that references appli-

tions across heterogeneous infrastructure backends includ- cation endpoints through their host identities would become

ing bare metal machines, VMs, containers and cloud, and invalid as application’s identity changes. For example, any

improved performance by selecting most suitable network firewall rules meant to segregate application endpoints es-
medium. APPSWITCH achieves these benefits without re- tablished within the network infrastructure would become

quiring any changes to the applications or the infrastructure. invalid. Routers and switches typically expose proprietary

This paper focuses on the design and implementation of interfaces to update their configuration and it is often a te-

APPSWITCH. Section 2 exposes the problems due to cou- dious and error-prone task to update it.

pling between applications and network. Section 3 enumer- The operational burden is further compounded by the need

ates the properties required of a desirable solution and ana- for simpler policy specifications and route tables based on

lyzes existing approaches and related work in that light. Sec- route summarizations that require IP addresses to be assigned

tions 4 presents APPSWITCH’s high level model. Section 5 according to the physical topology of the datacenter racks.

discusses the details of its architecture and key components. That in turn restricts the applications to specific nodes or

Section 6 provides preliminary results of our experiments. racks. The problem is particularly pronounced in hybrid

and cloud based application environments where allocation

2. COUPLING BETWEEN APPLICATIONS of network resources is regulated by the cloud providers. In
AND THE NETWORK case an application needs to be moved to a different host or a

region, the operations team would have to reassign the IP ad-

Even though traditional network stack [18] is based on dresses and update firewall rules accordingly. In some cases
well-defined layers that separate application and network level such a reassignment may not be possible.
functionality, applications are closely tied to network level

artifacts such as IP addresses. Likewise, network functions 3. EXISTING APPROACHES AND RELATED
depend on application level constructs which they often infer

through techniques such as deep packet inspection. While WORK
the architecture is built for interoperability between layers, Any approach that can effectively decouple applications

it is not intended to support the behavior of modern dis- from the network and provide them distinct identity must

tributed applications which requires a clean separation be- meet three important requirements. First, it must support the

tween applications and underlying network to enable them behavior of modern distributed applications and their oper-

to run across hosts. ating environments. From first principles, application identi-

The unintended coupling between applications and infras- fiers provided by such an approach must be unique and con-

tructure has a significant impact on the cost of operating sistent. That is, an identifier must uniquely identify the ap-

complex distributed applications which are becoming the nec- plication and remain constant during its lifetime.

essary drivers for almost every modern enterprise. These or- Second, the approach should support existing applications

ganizations typically consist of applications and operations and existing network infrastructure. Rewriting or relinking

counterparts each responsible for building and operating the applications to use a new RPC library or a service discovery

applications respectively. The productivity and efficiency of protocol is typically not practical. Reconfiguring applica-

those teams depend on minimizing the interactions between tions to use alternate names or ports is also a nontrivial task.

the two counterparts. While the applications team can inde- The approach also should not place unusual requirements

pendently make decisions about the internals of the applica- or load on the network infrastructure. Legacy networking

tion, they would have to depend on the operations team to environments are rigid and proprietary. Upgrading them to

assign identities to their application endpoints. For exam- support a new facility or increasing their resources (such as

ple, they could independently choose to serialize application TCAM table space), or deploying and maintaining new in-

data structures in JSON format over an HTTP channel be- frastructure components is typically too expensive.

tween the application instances but they cannot choose the Third, the approach must not introduce unacceptable oper-

names or IP addresses of those instances. ational or computational cost. Particularly, the system should

In order to deploy an otherwise self-contained distributed be simple to deploy and operate. Operational cost and com-

application, the applications team would have to acquire a plexity of traditional application environments is one of the

set of IP addresses from a shared pool which is arbitrated key challenges to be addressed and the solution should not

by the operations team. An obvious consequence of the de- introduce new operational burden of its own. The system

fault identity that the applications acquire from their hosts also should not adversely affect application or network per-

1s that any change to the application’s host or its identity formance.

invalidates previously advertised references to the applica- The general practice of using a combination of IP address

tion. A host reboot, expiration of DHCP lease, rescheduling and port number does not meet these requirements. IP ad-

of the application instance to a different host or live migra- dresses are unique in a network but they cannot serve as

tion of the underlying VM to a different subnet etc. could consistent application identifiers because they cannot remain

constant as the application moves from host to host. Port increase the burden on the network and the cost of operating

numbers on the other hand can be consistent because the it. Calico [1] for example treats each application container

same port number may be available on every host. How- as a network host in its own right and assigns it a routable

ever, they cannot independently serve as application identi- IP address. Using NAT to multiplex applications through

fiers given that the scope of their uniqueness is limited to the the same interface would not solve the problem because as-

host and they are always tied to IP addresses. Standardiza- signing the same IP address to multiple applications would

tion of well-known ports [16] further limits their utility as prevent them from being scheduled to different hosts without

identifiers with its implicit assumption that no two instances changing their identity.

of the same application are run on the same host. For exam- Assigning per-application port numbers involves reconfig-

ple, the same host cannot run two web servers if they were uring applications to bind to nonstandard ports. Every client

both to use the default HTTP port. This is a common oc- application also has to reconfigured to find its services at

currence in environments with shared infrastructure and in their custom ports. Keeping track of port numbers used by

modern REST applications where every application acts as a every service in a complex distributed application and ensur-

web server providing its services to other applications over ing their consistent use can be immensely challenging.

HTTP. Network overlays typically require an elaborate deploy-
Several techniques [9, 6, 12, 7] are used to offset the in- ment and maintenance effort. Some of the implementations

herent shortcomings of IP addresses and port numbers to act depend on specific infrastructure capabilities. Dynamic DNS

as application identifiers but none of them is able to pro- approach cannot support applications that directly use IP ad-

vide both uniqueness and consistency required to support dresses and may also impact correctness due to stale records.

distributed applications. Existing systems tend to use a com- Reducing TTL may avoid stale entries but that would impact

bination of techniques to support the requirements of dis- performance. IPtables based address translation suffers from

tributed applications. They involve assigning each applica- scalability constraints due to the large number of rules that

tion either a unique IP address or a unique port and then us- typically need to be installed. Proxy based approaches are

ing a layer of indirection to keep them consistent. As an ex- not application transparent and require additional infrastruc-

ample, Docker [6] assigns each application container a dif- ture and data path processing.

ferent IP address and uses an underlying overlay network to Several recent approaches [1, 2] directly address network-

keep them from changing as the application moves across ing for microservice applications, typically running as con-

hosts. Envoy [7] on the other hand assigns each application tainers. They all require applications to be rewritten or mod-

service a unique port number and factors out the IP address ified in some way. Consul [4] provides a central registry of

component of its identity by having all client applications go services that arbitrates discovery between clients and servers.

through a local proxy running on the loopback address. The Servers are required to advertise themselves by registering

proxy then directs the client requests based on a mapping be- with the registry which clients would query to discover the

tween the unique port number and the set of backend servers location of the servers they want to reach. While the ap-

providing the service. proach is sound, it doesn’t help with existing applications. A

similar mechanism is implemented at the networking layer as

| DistApp | Transparency | Overhead | an extension to DNS [12] that provides new type of records
| Uniq | Const | App | Infra | Comp | Ops | that map names to service endpoints. It also requires applica-

tions to be rewritten to utilize the new facility. FreeFlow [17]
addresses the performance of container networking by choos-
ing the most optimal network medium. However, it doesn’t
support existing applications and relies on container-specific
frameworks.

A APPSWITCH MODEL

APPSWITCH is designed to be a transport layer network

Table 1: Comparison of approaches that address identity element that serves as an interface between applications and
of distributed applications the network. A set of APPSWITCH instances, running one

per host, form an application network that provides seamless

Table 1 loosely compares APPSWITCH (ASW) with the discovery and connectivity to the applications. Applications

capabilities of the techniques typically used to ensure unique- on a host are added to the APPSWITCH instance on the host

ness and consistency of application identifiers. Per-application to join the application network. APPSWITCH transparently

IP addresses (PAIP) and per-application ports (PAP) provide tracks the applications’ execution to detect server applica-

uniqueness and overlays (OVR), dynamic DNS (DNS), net- tions and their service ports as they come up and propagates

work address translation based on IPtables (NAT) and appli- their location information across the cluster over a gossip

cation proxy (PXY) provide consistency. Per-application IP protocol [14]. When a client attempts to reach a server, the

request 1s directed to the appropriate server endpoint. The are assigned to disjoint applications.

details of the mechanisms used to track applications and to If the user does not name the application, it would not

propagate location information are discussed in the next sec- carry any externally referenceable identifier and would not

tion. be able to act as a server application. It can still be a client
Decoupling applications from the network allows them to application that accesses other servers. This is in contrast

be named independently of network constraints. When an to traditional application addressing where both client and

application is brought up, the user optionally assigns it a vir- server applications carry the network identity of the host.

tual IP address, completely independently of underlying net- While client and server network endpoints both need net-

work, simply by specifying it as a parameter to APPSWITCH work level identifiers for the packets to flow between them,

when the application is added. The virtual IP address serves only server applications need to be identifiable and refer-

as a unique and consistent identifier representing the applica- enceable at the application level.

tion. Even though the identifier takes an IP address format, If the user does name an otherwise client application, the

it bears no relation to the IP addresses carried by network specified IP address is conveyed as client’s identity to the

hosts. The choice is only driven by backward compatibility servers the application connects to. If no such IP address

with existing applications that expect an IP address. 1s provided, APPSWITCH internally assigns and uses a link-

The user may also specify application identity as a DNS local address [13] for that purpose. If the same server ap-

name rather than an IP address, in which case APPSWITCH plication exposes multiple services by binding to multiple

assigns it an internal IP address. A built-in DNS server over- ports, they would all be individually referenceable through

rides client application’s DNS lookups to return the internal the application’s IP address and respective port number of
IP address. When the client in turn asks to connect to that the service.

IP address, its request is transparently directed to the server If the user specifies the same IP address to multiple appli-

represented by the name. cations, they would be treated as being a part of the same

In addition to a name, the user may also qualify the appli- distributed application that provides a common port names-

cation’s identity with a set of tags in the form of key-value pace stretching across those applications. A service exposed

pairs which are propagated along with the location informa- by an individual application of a distributed application can

tion. Tags could represent attributes such as security groups be referenced with the name of the distributed application

that the application belongs to. Whena client tries to reach a and the service port number, regardless of the specific ap-

service, respective tags are consulted for a match before the plication that exposes it or the specific host where it is run-

connection is allowed. Connection requests to APPSWITCH- ning. Individual applications could access each other simply

managed applications from unidentified clients are disallowed. through the loopback address as if they are running on the

While a simple grouping may suffice in most cases, a more same host. This allows a distributed microservices applica-

expressive policy could be easily supported. tion to be developed and tested on a single node over loop-

Some of the APPSWITCH instances that have access to back interface and then deployed to production as a scalable

external network are designated as gateways to allow inter- distributed application without further reconfiguration and

nal server applications to be reached from external clients without concern about the identities of its endpoints. APP-

and external server applications to be reached from internal SWITCH removes the added complexity of microservice ap-

clients. When an application is added to APPSWITCH, the plications compared to their monolithic counterparts by pro-

user can optionally indicate that the application is exposed to viding a simple and unified virtual host view.

the external world, in which case, the service is made avail- If multiple applications of a distributed application bind

able through a specific port on one of the gateways. When to the same port, they would be treated as instances of the

an external client connects to the gateway host on the ex- same load balanced service. Requests to connect to that port

ternal interface, APPSWITCH would proxy the connection to would be served from one of the available server instances.

corresponding server within the application network. Typi- Normally, binding to a port which is already in use results

cally only a small fraction of the applications of a distributed in port conflict error. Instead of flagging it as an error, APP-

application require exposure through APPSWITCH proxy. SWITCH uses it as a simple and intuitive interface to pro-

By empowering the user to directly specify application vide a distributed load balancer. Multiple instances of the

identities, APPSWITCH removes the operational friction of same application can be simply brought up to stitch them

acquiring IP addresses and names. While network level iden- into a cohesive load balanced service without added infras-

tifiers referenced by intermediate network infrastructure can tructure cost and complexity associated with traditional load

be machine-generated, the responsibility of assigning a mean- balancers. Because APPSWITCH implements the logic of se-

ingful name to a high-level application service ultimately lecting the server instance on the client-side, it is more scal-

rests with a human user, typically in the role of an applica- able and because there 1s no proxy involved, it is more effi-
tion or a network architect. In that role, the user would have cient.

a global view of the broader distributed application and its APPSWITCH model provides for a simple and intuitive

environment and would be able to ensure that unique names specification of distributed microservice applications. Sev-

Distributed App (IP: 10.1.1.1, Name: thumbnails.dev.box.com)

: grp:1 grp:1,2 grp:1,2 grp:1 grp:2

i port:80 port:10 port:10 port:80 port:20 i EnBm

Gossip|Channel iL @

Figure 1: APPSWITCH Model |

eral application specification formats [10, 3] are being pro- |
posed to represent the makeup of distributed applications and

deploy them in an infrastructure-agnostic fashion. However Ee —
AppSwitch

they tend to be excessively complex due to unclear boundary

between applications and the network. APPSWITCH defines

a distributed application with a consistent identity uniformly Figure 2: APPSWITCH architecture
shared by its applications. Figure 1 shows a sample deploy-

ment of a distributed application on three hosts, H1, H2 and

H3, consisting of two instances of Web, two instances of App Trap mechanism is implemented by two components: trap
and one instance of DB. Services provided by these appli- generator and trap handler. Trap generator intercepts net-
cations are consistently identified by port numbers from a work control plane system calls of the application and for-
global namespace spanning the distributed application. Both wards them to trap handler over a Unix domain socket. Trap
load balanced instances of Web and App are consistently handler services them and returns their result back to trap
represented by their same respective ports even though they generator which in turn conveys it to the application.
belong to the same distributed application. Two groups, 1 When an application is first added to APPSWITCH, a new
and 2, respectively consisting of Web and App, and App and network namespace is created to host the application. An in-
DB are defined by attaching grp tags to the applications such stance of trap generator and trap handler are associated with
that Web applications cannot directly talk to DB. These sim- the namespace such that relevant system calls of the appli-
ple constructs enable complex application environments to cation are intercepted by the trap generator within the ap-
be constructed through a hierarchical composition of cohe- plication’s network namespace and serviced by trap handler
sive distributed application units that can systematically ref- running in the host network namespace. Together, trap gen-
erence services exposed by each other. erator and trap handler extend host’s network connectivity

into application’s network namespace. Given that the net-

5. APPSWITCH ARCHITECTURE work namespace 1S deliberately left empty without any net-
work devices, the trap mechanism forms the only means of

Figure 2 shows the architecture of APPSWITCH. It con- network access for the application. It ensures that every net-
sists of two key components namely trap mechanism and work access is arbitrated by APPSWITCH. Network names-
service router which share a data structure called service ta- pace also provides a convenient abstraction that clearly de-
ble that maintains a mapping between application identifiers fines what constitutes an application endpoint and a bound-
and network level identifiers. Service router efficiently prop- ary at which application’s system calls are intercepted.
agates the contents of service table with other instances of Trap generator and trap handler are connected to each other
APPSWITCH on other hosts over a gossip protocol [14]. The through a Unix domain socket which allows active file de-
rest of this section describes the trap mechanism. scriptors to be passed between them in addition to any static

. data. In particular, trap handler can return active file descrip-

5.1 Trap Mechanism tors created in the host network namespace into the appli-
Trap mechanism provides transparent application instru- cation’s namespace via trap generator. When trap generator

mentation. It is conceptually similar to FUSE [8]. Whereas forwards socket system call made by the application, for

FUSE enables file systems to be implemented in user space example, trap handler would create the socket in the host

by redirecting an application’s file system calls to a user namespace and pass its reference to the application.

space handler, trap mechanism redirects the network primi- In general, trap handler performs appropriate security checks,

tives of an application to a user space handler by interpos- matches relevant tags associated with the application and ne-

ing its network-related system call. In contrast to FUSE, gotiates socket connections with right application endpoints

however, only control plane system calls that carry endpoint on behalf of the application before returning them to the ap-

identities as parameters are intercepted but not system calls plication. When a client application attempts to connect to

such as read and write. a server at the IP address specified by the user during server

creation, trap handler looks up the IP address passed by the 4500.0 ETE werr
application in the service table to find the IP address where 4000.0bo
the server is actually listening. It then establishes a connec-
tion with the server at its real IP address and returns the con- 3300.0rm

nected socket to the application. 230000EIR Bi
Once the connection 1s fully established and returned to 2 1500.0TT ee oe

the application, it would simply use it as a bitpipe without 2

regard to the endpoint identities of the connection. Appli- 520000pg gy
cation would not care about the protocol either as long as a £15000fr SL

file descriptor abstraction is supported for IO. In fact, APP- - 1000.0 kor i... EE.
SWITCH returns a Unix socket rather than a TCP socket in

case client and server happen to be on the same host. With SL BE BEE BE Fae |
additional virtualization, other types of communication me- 0.0

dia [17] or low level 10 acceleration techniques [5S] could be N N 2 S 3

used as well. If the application queries the identities through } > Packél Size ¢ ®
system calls like get sockname or getpeername, con-

sistent responses expected by the application are presented. Figure 3: Network throughput with APPSWITCH
Likewise, trap handler stays out of the data path once the

connected socket is passed to the application. In case of data-

gram protocols like UDP, trap handler also services system :

calls like sendmsg and rcvmsg that carry endpoint identi- APPSWLTCH. Client was also brought up with AP POWLTCH
ties in their parameters. command but without a name or IP address but with a tag that
When a server application attempts to listen on an IP ad- places it in the SAME SIOUp a the server. The name assigned

dress and a port, trap handler binds to any available host in- to the server was directly passed as an argument to iperf
terface and any available port on behalf of the application for it to connect to the SCIVEL. By default Docker created
and adds an entry to the service table that maps the incom- virtual interfaces in its containers and connected them to the

host network through a Linux bridge. But those interfaces
ing IP address and port to the real IP address and port. The)

newly added entry is then advertised among other instances were ignored in the case of APPSWITCH and the data only
of APPSWITCH running on other hosts by the service router. flowed through the channe | setup by APPSWITCH.

The results of the experiment are shown in Figure 3. Through-

put was generally higher at larger packet sizes and as ex-

6. PRELIMINARY RESULTS pected, it was several times higher with APPSWITCH com-

We have implemented APPSWITCH on Linux. Ease of de- pared to Linux bridge in each case. Given that both server
ployment and operation was one of the primary factors that and client were running on the same host, APPSWITCH trans-
drove our implementation. To that extent, APPSWITCH is parently connected them over a Unix socket even though
built as a simple RPM consisting of a kernel module that iperf requested a TCP connection. With Linux bridge,
implements the trap generator and a statically linked user packets had to make two hairpin traversals through the net-
space utility that implements all other components. Deploy- work stack even though both endpoints of the connection
ing APPSWITCH involves installing the RPM and providing were colocated.
only one piece of configuration that points the APPSWITCH

instance to one of the existing instances, if any, to form the
cluster that supports the gossip channel. No other configu-

ration ora1S required tore applications or infrastruc. 7. CONCLUSION
ture. We presented the design of APPSWITCH, a novel trans-
The experiments were conducted on a bare-metal machine port level network element that removes the cost and com-

with Intel Xeon CPU E5-2660 v3 2.60GHz running Centos plexity of operating modern distributed applications by ef-

7. We measured the throughput between the client and server fectively decoupling them from the underlying network at

instances of iperf-2.0.9, each running in a Docker con- the system call layer. We recognize that the default identity

tainer on the same machine. The experiment was conducted of the applications acquired from the hosts on which they run

with the standard Docker network configuration that uses a 1s at the root cause of several subtle and substantial problems

Linux bridge for inter-container connectivity and then re- and that system call layer provides a convenient and efficient

peated with APPSWITCH as the network backend. In case of interposition point to address them. Additionally, we also

APPSWITCH, iperf command was prefixed withAppSwiTcH show that application-level network functions such as end-

command along with its options. Particularly, iperf server point segmentation and load balancing can be implemented

was given an IP address, a name and a tag that places it in more efficiently without incurring the data path processing

a new group by passing those three options as arguments to cost that 1s typical of traditional approaches.

8. ACKNOWLEDGEMENTS

As one of the first customers of AppSwitch, Ashar Rizqi

and his team provided valuable guidance on various applica-

tion scenarios that AppSwitch must support at Box Inc.

9. REFERENCES

[1] Calico. https: //projectcalico.org.

[2] Cilium. https://cilium.io.

[3] Compose file version 3 reference.
https://docs.docker.com/compose/compose—file/.

[4] Consul. https://consul. io.

[5] Data Plane Development Kit (DPDK). http: //dpdk.org.

[6] Docker Container Networking. https:
//docs.docker.com/engine/userguide/networking/.

[7] Envoy. https://lyft.github.io/envoy.

[8] File System in User Space.
http://fuse.sourceforge.net/.

[9] Kubernetes Cluster Networking.
https://kubernetes.io/docs/concepts/

cluster—-administration/networking.

[10] Terraform Syntax. https: //www.terraform.io/docs/
configuration/syntax.html.

[11] VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks

over Layer 3 Networks.
https://tools.ietf.org/html/rfc7348, 2014.

[12] R. Allberry. DNS SRV Resource Records for AFS".
https://tools.ietf.org/html/rfc5864, 2010.

[13] S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of
IPv4 Link-Local Addresses.

https://tools.ietf.org/html/rfc3927, 2005.

[14] A. Das, I. Gupta, and A. Motivala. SWIM: Scalable

Weakly-consistent Infection-style Process Group Membership

Protocol. In Proceedings of the 2002 International Conference on

Dependable Systems and Networks, DSN "02, pages 303-312,

Washington, DC, USA, 2002. IEEE Computer Society.

[15] S. Newman. Building Microservices. O’Reilly Media, Inc., 1st
edition, 2015.

[16] J. Reynolds and J. Postel. Assigned Numbers.
https://tools.ietf.org/html/rfcl1700, 1994.

[17] T. Yu, S. A. Noghabi, S. Raindel, H. Liu, J. Padhye, and V. Sekar.

FreeFlow: High Performance Container Networking. In Proceedings

of the 15th ACM Workshop on Hot Topics in Networks, HotNets ’ 16,

pages 43-49, New York, NY, USA, 2016. ACM.

[18] H. Zimmermann. Innovations in internetworking. chapter The ISO

Model of Architecture for Open Systems Interconnection, pages 2-9.
Artech House, Inc., Norwood, MA, USA, 1988.

