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Abstract analytics frameworks are CPU-bound, but most of these
cycles are wasted.

Large scale cloud data analytics applications are often One straw man solution to improve performance is to

_— bound. ost of these cycles » wasted: penetr have a framework call into C++ implementations of com-
works suchasNaiadand Spark. Hower.calling faster arp geen 2troueh the fava Native Interface
implementations from those frameworks only sees mod- est speedups (5x rather than 50x): worker nodes spend
erate (3-5x) speedups because their control planes cannot 9g, of their cycles idle. The central Spark controller,
schedule work fast enough. which is responsible for telling to workers to execute

.his paper presents Sxoeution templates : control tasks, cannot schedule tasks quickly enough. The frame-plane abstraction lor bound cloud applucalions, — york’s control plane becomes a bottleneck and workers

such as machine learning. Execution templates leverage fall idle. In BO. 5 we show that Naiad [28], another
highly repetitive control flow to cache scheduling deci- framework, has similar control plane bottlenecks.
sions as templates. Rather than reschedule hundreds of Current frameworks do not scale to run optimized
thousands of tasks on every loop execution, nodes in- tasks on many nodes. They can either run on many nodes
stantiate these templates. A controller’s template spec- a.

ifies the execution across all worker nodes, which it par- or run optimized tasks, but not both, because the control
titions into per-worker templates. To ensure that tem- bne ene! schedule tasks a, oven Seascheduling systems such as Sparrow , Omega :

;fates mee comectly controllers conamiealy pdich Apollo [12], Mercury [25], Hawk [16] and Tarcil [17] all

computing framework. Running in Nimbus, analytics which together overwhelm a smgle controller. Schedul-
benchmarks can run 16-43 times faster than in Naiad and ing a job requires centralized state, and so for all these
Spark. Nimbus’s control plane can scale out to run these systems, tasks from a single job still go through a single
faster benchmarks on up to 100 nodes (800 cores). scheduler. Optimized tasks, however, mean that a single

job can saturate a controller.

Section 3 presents execution templates a control plane

1 Introduction abstraction which scales to schedule optimized tasks on
many nodes. The key insight behind execution templates

The CPU has become the new bottleneck for analytics is that long-running CPU-bound computations are repet-
benchmarks and applications. One recent study found itive: they run the same computation (e.g., a loop body)
that the big data benchmark (BDBench), TCP decision many times. Rather than reschedule each repetition from
support benchmark (TCP-DS), and production work- scratch, a runtime caches scheduling decisions as an ex-
loads from Databricks were all CPU-bound. Improving  ecution template of tasks. A program invokes a tem-
network I/O would reduce their median completion time Plate, potentially creating thousands of tasks, with a sin-
by at most 2% and improving disk I/O would reduce their gle message. We call this abstraction a template because
median completion time by at most 19% [30]. it can cache some decisions (e.g., dependencies) but fully

At the same time, systems such as DMLL [13] and instantiating it requires parameters (e.g., task identifiers).
DimmWitted [26] have shown it is possible to achieve Section 4 describes an implementation of execution

orders-of-magnitude improvements in CPU performance templates in Nimbus, a C++ analytics framework that in-

over frameworks such as Spark [38]. Comparing the corporates execution templates. Compared to Spark and

performance of C++ and Spark implementations of two Naiad, benchmarks in Nimbus run 16-43 times faster.

standard machine learning benchmarks, we find that the Rewriting benchmarks in Spark and Naiad to use opti-

C++ implementations run up to 5/ times faster. Modern mized tasks reduces their completion time by a factor of



3.7-5. However, Section 2.2 shows results that neither @ VM J data duplication boxing/un-boxing
can scale out past 20 worker nodes because the control 5% 8% 85%

plane becomes a bottleneck: running on more than 20 EE EE — EE ——
nodes increases completion time. Using execution tem-

plates, implementations of these benchmarks in Nimbus

scale out to 100 nodes (800 cores), seeing nearly linear v v
speedups. C++ (4.1 ms) Scala (206 ms)

Execution templates allow a centralized controller to

handle tasks shorter than 1ms, or 100 times shorter than ~~ Figure 1: Logistic regression execution time imple-
what prior systems support [31]. This makes whole mented in Scala and C++. C++ 1s 51 times faster than

new applications possible. We have ported PhysBAM, Scala. These results are averaged over 30 iterations and
a graphical simulation library [18] used in many feature discard the first iteration to allow Java Virtual Machine

films' to Nimbus. PhysBAM has tasks as short as 100s, (JVM) to warm up and just-in-time compile.
yet execution templates can execute extremely large sim-

ulations within 15 % of the speed of PhysBAM’s hand- Code Nodes Task Length Completion Time
tuned MPI libraries. -—

This paper makes five contributions: Scala 100 nodes 206ms 2.86s
C++ 100 nodes 4ms 1.00s

I. A detailed analysis of how Spark spends CPU cycles, C++ 20 nodes 20ms 0.53s

finding that C++ implementations run 51 times faster —=——

and most of Spark’s cycles are wasted due to runtime Table 1: Effect of running optimized logistic regression
and programming language overheads (Section 2.1). tasks in Spark. Although C++ tasks can run 51 times

2. Results showing Spark and Naiad’s control planes faster, a job using C++ tasks on 100 nodes only runs 2.8x
are a bottleneck when running optimized (C++) tasks faster. It run 5x faster when run on 20 nodes. Both are
and so they can only provide modest speedups (Sec- much slower than the expected speedups and 20 nodes is
tion 2.2). faster than 100 due to the control plane being unable to

schedule tasks fast enough.
3. Execution templates, a novel control plane abstraction

that allows optimized tasks to run at scale (Section 3).

4. The design of Nimbus, an analytics framework that parallelization means that many applications can keep
incorporates execution templates and a data model their entire working set in RAM and completion time is
based on mutable data objects which permit in-place limited by CPU performance.
modifications (Section 4). This section motivates the need for a new control plane

in cloud data analytics frameworks. It starts by exam-
5. An evaluation of execution templates, finding they Co :

. : ining where Spark’s CPU cycles go: 98% of them are
allow Nimbus to run optimized tasks with almost :

wasted. Re-implementations in C++ run up to 51 times
no overhead, scaling out to 100 nodes (800 cores) : :

) faster. However, if a Spark job uses these faster re-
while running 30-43 times faster than Spark and 16- : :

: : implementations, it only sees modest (5x) speedups be-
23 times faster than Naiad. Execution templates also :

C cause the control plane (messages to schedule and dis-
allow Nimbus to support large, complex applications h tasks) b he boil Kk Th :

ith tasks as short as 1004s (Section 5) patch tasks) become the bottleneck. ¢ section con-wit H cludes by observing an important property of CPU-

Section 4 provides details on the Nimbus implementa- bound applications, that their control flow and execution
: : : : exhibits very regular patterns, which can be calculated,
tion of execution templates, including the dynamic pro-

: : cached and reused.
gram analysis that ensures they execute properly despite

variations in control and data flow. Section 6 presents

related work and Section 7 concludes. 2.1 Where the Cycles Go

. . Frameworks such as Spark [38] and Naiad [28] focus
2 Motivation on applications whose data sets can fit in memory when

oo spread across many nodes. At the same time, a push for
A recent study found that Spark analytics applications greater programmer productivity has led them to support
are CPU-bound [30]. Increasing server RAM and easy pjsher-level languages: 70% of Spark applications are

'PhysBAM is a cornerstone of special effects at Industrial Light and written in Scala [37].
Magic and is also used Pixar. These two trends (in-memory datasets and higher-
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level languages) conflict: for applications that operate measured Spark’s controller to be able to issue ~8,000

on in-memory data, higher-level language overheads be- tasks per second.

come significant. Figure 1 shows the execution time This control plane bottleneck is not unique to Spark.
of logistic regression, a common analytics benchmark, Naiad [28] 1s the best available distributed cloud frame-

implemented in Spark using Scala and implemented in work. In Naiad, worker nodes directly coordinate with

C++. The C++ implementation runs 5/ times faster than one another rather than acting through a central con-
the Spark one. troller. While Naiad code is in C# rather than Scala and

This poor performance has three major causes.” First, so sees overall better performance than Spark, its all-to-
since Scala’s generic methods cannot use primitive types all synchronization also becomes a bottleneck above 20
(e.g., they must use the Double class rather than a nodes. We defer detailed experimental results on Naiad
double), every generic method call allocates a new ob- to Section 5.1.
ject for the value, boxes the value in it, un-boxes for Scheduling techniques such as Sparrow [31],

the operation, and deallocates the object. In addition to Omega [33], Apollo [12], Mercury [25], Hawk [16] and

cost of amalloc and free, this results in millions of Tarcil [17], address the scheduling bottleneck that occurs

tiny objects for the garbage collector to process. 85% when there are many concurrent jobs. In aggregate,

of logistic regression’s CPU cycles are spent boxing/un- many jobs can execute more tasks per second than a

boxing. single controller can schedule. But since these jobs

Second, Spark’s resilient distributed datasets (RDDs) share underlying computing resources, they need to be
forces methods to allocate new arrays, write into them, scheduled cooperatively to prevent overloading workers
and discard the source array. For example, amap method ~~ or contention. Each of these systems propose ways for
that increments a field in a dataset cannot perform the ~~ many separate, per-job controllers to coordinate their
increment in-place and must instead create a whole new ~~ resource allocation and scheduling decisions. These
dataset. This data duplication adds an additional factor ~~ systems all solve the problem of when the aggregate
of ~ 2x slowdown. task rate of many jobs is greater than what one controller

Third, using the Java Virtual Machine has an addi- can handle. Optimized tasks, however, mean that single
tional factor of =~ 3x slowdown over C++. This result Job can saturate a controller. None of these systems can

1s in line with prior studies, which have reported 1.9x- distribute a single job’s scheduling.
3.7x for computationally dense codes [22, 21]. In total,

this results in Spark code running 51 times slower than 2.3 Observation: Repetition
C++.

Cloud computing applications are increasingly advanced

oo oo data analytics including machine learning, graph pro-
2.2 Implications of Optimized Tasks cessing, natural language processing, speech/image

recognition, and deep learning. These applications are
To determine how much tasks running at C++ speeds SH b s bb

: UF usually implemented on top of frameworks such as
could improve performance, we replaced the logistic re- : oo

: Spark [38] or Naiad [28], for seamless parallelization and
gression benchmark’s Spark Scala code with loops that : 1

) : elastic scalability. A recent survey [6] of Spark users,
take as long as the C++ implementations. This repre- :

CL for example, shows 59% of them use the Spark machine
sents the best-case performance of Spark calling into a LT

) learning library [5]. Efforts such as Apache Mahout [4]
native method (there is no overhead). : :

and Oryx [9] provide machine learning libraries on top

Table 1 shows the results. While the computational of Spark. Cloud providers, in response to this need, now

tasks run 5 | times faster, on po nodes the overall com- offer special services for machine learning models [8, 1].
Pnao oo J rune ®Y times er Worker nodes SPone One important property of analytics jobs is their com-
most 0 ”oe ! X peause! seen park controller putations have repetitive patterns: they execute a loop
ahy edule tas | astho N - oe ee (or set of nested loops) until a convergence condition.
Nv 5 pet secon teach 1a0 me) > dll © The Ernest system [35], for example, leveraged this ob-( cores) can execute ’ tasks per second. We servation for predicting the performance and managing
To resources. Logistic regression, for example, often exe-

To determine the cause of this slowdown, we configured the JVM h d and I
to output the JIT assembly and inspected it. We inserted performance cutes unti parameters have converge an are no onger
counters in the Scala code re-inspected the assembly to verify they cap- changing or a large fixed number of iterations (whichever
tured the correct operations. To separate the cost of Scala from JVM happens first).

bytecode interpretation, we decompiled the IVM bytecodes Scala gen- For example, Figure 2 shows the execution graph of
erated into Java, rewrote this code to remove its overheads, recompiled . .

it, and verified that the bytecodes for the computational operations re- the hold-out cross validation method, a common ma-
mained unchanged. chine learning method used for training regression algo-
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Training Estimation

Dats , bata ; while (error > threshold_e) {
t= o while (gradient > threshold_g) {

3 _ 1) // Start 1
E 5 gradient = Gradient (tdata, coeff, param)
S S coeff += gradient

// End 1

Iterative Optimizer Error Estimation J) start 2
Iterative Model Selection error = Estimate (edata, coeff, param)

param = update_model (param, error)

Figure 2: Execution graph of training a regression al- // End 2
gorithm. It is iterative with an outer loop for updating

model parameters based on the estimation error, and an

inner loop for optimizing the feature coefficients. Figure 4: Driver program pseudocode for the iterative
application in Figure 2. There are two basic blocks.

"Worker Gradient and Est imate are both parallel operations
that execute many tasks on partitions of data.

Tasks )
Driver ] Tasks Controller J————>( Worker] Execution template JIT compiler

Worker Template Function
Task (Driver—Controller)  Bytecode instruction

Task (Controller—Worker) Native instruction

Data object Register

Figure 3: Architecture of a canonical cloud framework: maple 2: Execution templates are analogous to a just-in-
4 driver program specifies the application logic for a cen- time compiler for a data analytics control plane.
tralized controller, which drives the worker nodes to ex-

ecute tasks.

troller; rather than resend all of the tasks to the workers,

rithms [20]. It has two stages, training and estimation, it can ll each worker 10 “execute hose tasks again.
which form a nested loop. The training stage uses an The execution and control structure of cloud frame-

iterative algorithm, such as gradient descent, to tune co- works Pfaces een on nov colates Operate.
efficients. The estimation stage calculates the error of the eure 3 . on ¢ architecture ol a clou Loi
coefficients and feeds this back into the next iteration of aMewWorx. river progtdm generates tas S, which 1t
the training phase sends to a centralized controller. The driver and con-

Each iteration generates the same tasks and schedules troller may or may not reside on the same node. The
them to the same nodes (those that have the data resident controller processes these tasks and dispatches them to a
in memory). Re-scheduling each iteration repeats this cluster of workers. The controller balances load across
work. This suggests that a control plane cached these workers and recovers execution when one fails.
decisions and reused would schedule tasks much faster Templates optimize repeated control decisions. In this
and scale to support fast tasks running on more nodes. way, they are similar to a just-in-time (JIT) compiler for
The next section describes execution templates, a control the control plane. A IIT compiler transforms blocks of
plane abstraction that achieves this goal bytecodes into native instructions; execution templates

transform blocks of tasks into dependency graphs and

other runtime scheduling structures. Table 2 shows the

3 Execution Templates correspondences in this an analogy: an execution tem-
plate is a function (the granularity JIT compilers typi-

We describe execution templates, a control plane abstrac- cally operate on), a task from the driver to the controller

tion for cloud computing. Execution templates make it ~~ is a bytecode instruction, and a task executing on the

possible for workers to inexpensively generate and exe- worker is a native instruction.

cute large batches of tasks. If a program has a loop in The rest of this section describes six requirements for
it, rather than resend all of the tasks for that loop to the how templates operate. While the analogy to JIT compi-p p p gy p

controller on every iteration, it should instead send them lation fits well and many of these requirements follow

once. For subsequent iterations, it can tell the controller from it, the driver-controller-worker execution model

“execute those tasks again.” The same is true for the con- adds an additional requirement, the need to validate and
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patch templates before executing them. where data is located. However, a driver can insert new

1. Templates must be dynamically generated. Con- tasks at any time, which might violate these precondi-
trollers and workers do not have the driver program. tions. For example, it might insert instructions that Hm
They receive a stream of tasks, which they dynamically crement a variable and store itn a different register
schedule and execute. They therefore need to generate When a controller instantiates a template, it must vali-

date whether a template’s preconditions hold, and if not,

templates in response to this dynamic stream of informa- insert tasks to patch it. In the above example, the con-
tion. Furthermore, because a controller can dynamically troller needs fo detect the variable is now in o Hew reo.
shift how it schedules tasks to workers (e.g., in response : : : y I°8
to load imbalance or changing resources), it needs to ister and issue a Tove mstruction to put it back in the
be able to correspondingly dynamically create new tem- register the function call expects.
plates. Put another way, templates cannot be statically ~~ 6. Templates must be fast. Finally, as the overall goal
compiled: they must instead be created just-in-time. of templates is to allow the control plane to support opti-

2. Templates must be parameterizable. Similarly to mized tasks at scale, the performance gains of instantiat-
how a program must be able to pass parameters to just-in- ing them must be greater than their cost to generate and
time compiled functions, a driver must be able to pass pa- mstantiate.
rameters to execution templates. Analytics jobs involve Execution templates are tightly entwined with a
many repetitions of the same loop or computation, but iramework s data model and execution. The next Sees
the repetitions are not identical. The cross-validation job tion describes a concrete mplementation of them in the
in Figure 2, for example, updates parameters, which context of an analytics framework designed to execute
are then passed to the optimizer block. Each instantiation optimized tasks at scale.
of the optimizer block must fill in parameters to the

find_gradient tasks. In addition to data parameters, .

templates also require control parameters, such as which 4 Implementation
task identifiers to use, to ensure that two workers do not This section describes the design and implementation of
use the same globally unique identifier. execution templates in a C++ analytics framework we
3. Workers must locally resolve dependencies. Large have implemented, called Nimbus. We chose to imple-
blocks of tasks often have data dependencies between ment execution templates in a new framework in order to
them. For example, the line coeff += gradient explore their tradeoffs when not limited by prior design
in Figure 4 cannot run until the previous line comput- decisions that might conflict with their goals. There is
ing gradient completes. For a worker to be able to also discussion on how execution templates can be intro-
execute the tasks for both lines of code locally, without ~~ duced into existing frameworks.
coordinating with the controller, it must know this de-

pendency and correctly determine when that line of code 4.1 Nimbus
can run. This is similar to how a CPU uses data flow to

know when it can execute an instruction that depends on Because execution templates are tightly entwined with a

the output of other instructions. framework’s data and execution model, we first explain

4. Workers must directly exchange data. Optimized the relevant details of Nimbus. The core Nimbus imple-
tasks read and write in-memory data objects on workers. mentation is 15,000 semicolons of C++ code.
Often, within a single template, the output of a task on

one worker is needed as the input for a task on another. ~~ 4.1.1 Data Model

As part of executing the template, the two workers need Nimbus has a data flow model similar to
to directly exchange this data. This 1s similar to how DryadLINQ [36], Naiad [28], and Spark [38]. A
two cores accessing the same memory need to be able ob is decomposed into siaees. Each stage is a computa
to to update each other’s caches rather than always write 105 15 POSES 5es. . p

tion over a set of input data and produces a set of output

through to main memory. data. Each data set is partitioned into many data objects
S. Controllers must be able to quickly validate and so that stages can be parallelized. Each stage typically

patch templates. The driver-controller-worker execu- executes as many tasks, one per object, that operate in

tion model adds additional complexities that JIT com- parallel. In addition to the identifiers specifying the data

pilers do not need to handle. Just as function calls as- objects it accesses, each task can be passed parameters,

sume that arguments are in certain registers or stack po- such as a time-step value or constants.

sitions, when a controller generates execution templates Unlike Spark’s RDDs, and to avoid the cost of data

for workers, it must assume certain preconditions on copying noted in Section 2.1, Nimbus allows tasks to mu-
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Parameter: A Parameter: B Worker 1 Worker 2
Data 1 2 3 Data 1 2 3

Access: 8B | Access: (] 8

) read U_ U =
|read & write [Parameter: C C oo

no-access Data 1 2 3 800: 0 eTAccess: 800] 80) |] ==7==1" Data Copy
(a) Simple task graph example with three tasks and three (b) Mapping of the task graph in Figure 5(a) over two work-

data objects. The data flow among tasks forms a DAG. For ers. Each task graph embeds per worker task dependencies

example, task C reads the updated data objects 2, and 3 after and data copy among workers. Task graph dependencies al-

execution of task A, and B. low workers to proceed without controller’s middling.

Figure 5: Simple task graph example (a) and how it maps into per worker task graph in Nimbus (b).

tate data in place. Mutable data has the additional benefit ~~ dency in C. These explicit dependencies allow workers

that multiple iterations of a loop can access the same ob- to know when a task is ready to run without involving

jects and reuse their identifiers. This makes templates the controller.

more efficient to parameterize, as the object identifiers

can be cached rather than recomputed on each iteration. 4.2 Dynamic Template Generation
There can be multiple copies of a data object. However,

since objects are mutable they are not always consistent. Nimbus generates execution templates on the granularity

If one worker writes to its copy of an object, other work- of basic blocks. A basic block is a code sequence in the

ers who later read it will need to receive the latest update. driver program with only one entry point and no branches

Data flow between tasks forms a directed acyclic except at the exit. For example, in Figure 4, there are

graph (DAG), called task graph, whose vertices are tasks two basic blocks, the optimizer and the estimator. Each

and edges are data dependencies. Figure 5(a) shows a iteration of the algorithm executes the optimizer block

simple task graph with three tasks that operate over three (inner loop) multiple times and the estimator block (outer

data objects. The rest of this section uses this example loop) once.

task graph to explain how templates are generated and There are two types of execution templates. Con-

instantiated. troller templates are installed on a controller by the driver

program; they encode the task graph of a basic block

4.1.2 Dependencies and Data Exchange across all of the workers. Controller templates reduce
the control overhead between the driver and the con-

The goal of execution templates is to allow workers to troller. Worker templates are installed on workers by the
generate and correctly schedule large batches of tasks. controller; they encode the task graph of a basic block
Not all of these tasks are immediately runnable. For ex- for that worker. Once a template is installed, it can be
ample, when a worker instantiates the template in Fig- invoked with a single message. When the driver pro-
ure 5(a), it cannot run task C until both A and B have gram invokes a controller template, the controller typi-
completed. The ability to locally determine when it is cally invokes the corresponding worker template on each
safe to run a task is critical for reducing load on a con- worker.

troller; otherwise, the controller would need to publish The two types of templates are decoupled to enable dy-
when every task has completed. Workers need to be able namic scheduling decisions. If a worker fails or the con-
to know this both when the dependent tasks are local as troller re-balances load across worker, two invocations of

well as when they run on another node. the same controller template can result in two different
To enforce the correct execution order, each task in- partitioning of tasks among workers. For every partition-

cludes a set of dependencies. These dependencies are ing strategy a separate worker template is installed on the
identifiers for tasks that must complete before the worker workers.

schedules the task. As shown in Figure 5(b), these depen-

dencies can also be across workers: task B on worker 2 4.2.1 Controller Templates
must complete before task C can run on worker 1. Nim-

bus represents this dependency by introducing a pair of ~~ Controller template stores control dependencies between
control tasks, a send task on worker 2 and a receive task tasks as well as which data tasks access. To create a con-

on worker 1, and inserting the receive task as a depen- troller template, the driver program sends a start message
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Task IDs: (tJ) (t)B Task IDs: ©) ©)
Parameters: 2 Parameters: (rp) 2

Parameter: t, v Parameter: t, 4 Vs
bata 12 3 bata 1 2 3 Worker | Worker II

Access: Bl Access: (] 8B t, t,

read

=read & write [Parameter P| ts t, o _rdD 1 2 3 =

noTacesss Acces: B00] ~=+==1~" "Data Copy
(a) A controller template represents the common structure of (b) Each worker template stores the common structure of a

a task graph metadata. It stores task dependencies and data task graph for execution including the data copies among

access patterns. It is invoked by filling in task identifiers and workers. It is invoked by passing the task identifiers, and

parameters to each task. parameters to each task.

Figure 6: Controller template (a) and worker templates (b) for the task graph in Figure 5(a).

to the controller, which instructs to start building a tem- example, in Figure 5(b), the template on worker 2 as-

plate. As the controller receives each subsequent task, it sumes that data objects 1 and 3 contain the latest up-

both schedules it normally and adds it to the template. date. Since templates are installed dynamically, the run-

At the end of the basic block, the driver sends a finish time does not know the complete control structure of the

message to the controller. At this point the controller ~~ program. It can be that there are code paths which do

processes the template it has built and generates worker not leave the latest update in every object. Put in other

templates from it. For the successive instance of the same words, the driver may have issued tasks which invalidate

basic block, driver only invokes the installed template by the template’s assumptions. At the same time, the driver

passing the task identifiers and parameters to each task. program does not know where data objects are placed or

Figure 6(a) shows how the controller templates for the tasks execute, so cannot correct for these cases.

graph in Figure 5(a) are installed and invoked. Because this problem is subtle, we provide an analogy

based on JIT compilers. JIT generated blocks of native

4.2.2 Worker Templates instructions assume that variables are in particular reg-
isters. If the registers do not hold the correct variables

A worker template has two halves. The first half exists ~~ when the block of native instructions is invoked, then

at the controller and represents the entire computation move, store, and load instructions must be added so the

across all of the workers. This centralized half allows registers do hold the correct variables.’
the controller to cache how the template’s tasks are dis- Whenever a template is invoked, the controller needs
tributed across workers and which data objects the tasks to first validate whether the corresponding worker tem-
access. The second half is distributed among the workers plates will operate on the latest updates. If validation
and caches the per-worker local task graph with depen- fails, the controller patches the template by inserting con-
dencies and data exchange directives. trol tasks that copy the latest updates to the objects. For
As with controller templates, to generate a worker example, if immediately after the template in Figure 6(b)

template the controller sends all tasks to workers ex- the same template is invoked, then controller needs to
plicitly. Workers execute these tasks and simultaneously transfer the latest update of first object (updated by task
build a template. The next time the driver program in-  ¢3) to worker 2 to satisfy the preconditions. Only after
vokes the controller template, the controller invokes the patching it is safe to invoke the template again.
templates at each worker by passing new task ids, and Validating and patching must be fast, specially when
parameters. Figure 6(b) shows how the controller tem- there are many workers, data objects, and nodes. For
plates for the scheduling strategy in Figure 5(b) are in- example, the complex graphics application in Section 5.5
stalled and invoked. has almost one million data objects. Nimbus uses two

optimizations to make validation and patching fast.

4.3 Patching Worker Templates First, for the common case of a template executing
3This is one reason why JITs often operate on function boundaries,

Templates, when generated, assume that the latest up- since function calling conventions specify how variables must be laid
dates to data objects are distributed in a certain way. For out in registers.
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twice back to back, the controller ensures that the in- We are have not yet considered adding templates to

put objects to a template hold the latest updates when Naiad since it is no longer actively supported (the last

the template completes. This is especially important for ~~ code commit was Nov 9, 2014).

when there are small, tight loops: the controller can by-

pass both validation and patching. Second, for basic .
blocks that can be entered from multiple places in the S Evaluation
program (e.g., the block after an if/else clause), the con-

troller generates a separate template for each possible This section evaluates how execution templates can sup-
control flow. port fast, optimized data analytics jobs at scale. It com-

pares the performance of k-means and logistic regres-

sion benchmarks implemented in Nimbus with imple-

4.4 Load Balancing and Fault Tolerance mentations in Spark and Naiad. It measures the costs of
computing and installing templates as well as the perfor-

Nimbus balances load across workers by periodically mance effect of needing to recompute worker templates
collecting performance statistics at the controller. When due to load re-balancing. Finally, it evaluates how far
the controller detects that certain workers are busier than execution templates can scale by measuring their effect
others, it redistributes tasks across the workers, regener- on a distributed graphics workload whose median task
ating templates for any workers whose load has changed. length is 13ms and 10th percentile task length is 3ms.
To recover from worker failures, the Nimbus con- In summary, our findings show:

troller periodically checkpoints system state. To create a

checkpoint, the controller inserts tasks that commit data * Execution templates support orders of magnitude more
objects to durable storage as well as metadata on where tasks per second than existing centralized (Spark) and
in program execution this checkpoint is. If a worker fails decentralized (Naiad) designs. Task throughput scales
and the system loses the latest update to an object, the almost linearly with the number of workers.
controller halts all tasks on the workers. It restores the « Using execution templates, Nimbus is able to run lo-
lost objects to their last checkpoint as well as any other gistic regression and k-means benchmarks 16-43 times
objects which have been modified since that checkpoint. faster than Spark and Naiad implementations.

It then restarts execution, regeneratin& any worker tem- e Half of this performance benefit is from optimized
plates as needed. If the controller fails, it can restart and

tasks, the other half is from execution templates
restore the entire system from the checkpoint. : .

scheduling optimized tasks at scale. If Spark and Na-

1ad use optimized tasks, they cannot scale out past 20

4.5 Templates in Other Frameworks nodes; execution templates allow Nimbus to scale out
to at least 100 nodes and cut completion times by a

Templates are a general abstraction that can be applied factor of 4-8.

to many frameworks. However, the requirements In Sec-  o Using execution templates, Nimbus is able to run a
tion 3 can be simpler to Incorporate in some Systems complex graphical simulation with tasks as short as
than others. For example, incorporating execution tem- 1004s within 15% of the performance of a hand-tuned
plates into Spark would require three significant changes MPI implementation. Without templates, completion
to its data model and execution model, particularly its time increases by 520% as the controller cannot sched-
lazy evaluation and scheduling. First, it would need to ule tasks quickly enough.
support mutable data objects. When data is immutable,

each execution of a template is on new data object iden- All experiments use Amazon EC2 compute-optimized

tifiers. Second, the Spark controller needs to be able to instances since they are the most cost effective

proactively push updates to each worker’s block man- for compute-bound workloads. = Worker nodes are

ager. Otherwise, every access of a new data object re- c3.2xlarge instances, which have 8 virtual cores and

quires a lookup at the controller. Third, in Spark the con- 15GB of RAM. Because we wish to evaluate how the

troller is completely responsible for ensuring tasks run controller can become a bottleneck, we run it on a more

in the correct order, and so tasks sent to workers do not ~~ powerful instance than the workers, a ¢3.4x1large in-

contain any dependency information. Adding execution stances, with 16 cores and 30GB of RAM. This shows

templates would require adding this metadata to tasks as the performance of the controller even when it has more

well as worker control logic. While these changes are all resources than the workers. We measure completion time

quite tractable, together they involve a significant change of different jobs on 20-100 worker nodes. Nodes are al-

to Spark’s core execution model and so we are beginning located within a placement group and so have full bisec-

to discuss this with its developers. tion bandwidth.
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Figure 7: Iteration time of logistic regression and k-means for a data set of size 100GB. Spark, Naiad and Nimbus, run

Scala, C# and C++ respectively. Spark-opt and Naiad-opt show the performance when the computations are replaced

with spin-wait as fast as tasks in C++. Execution templates helps Nimbus scale out almost linearly.

Iteration time is averaged over 30 iterations and ex- 5 200 —|
cludes the first iteration due to its overhead of data load- kd S ab Nimbus T+
. oq . . oo 1500 OO Naiad ]

ing and JIT compilation. We observed negligible vari- £0 V-V Spark "
ance in iteration times. For Nimbus, the first iteration oa 100 -
includes the cost of template installation. We therefore he u

quantify this cost separately from overall performance. ; & 507Oo

E 7 ¢ 9—OQ—Q—0—0—0 po
5.1 Data Analytics Benchmarks {020 30 20 50 60 70 80 90 100

Number of Workers

Figure 7 shows the completion time for logistic regres-

sion and k-means when run in Spark, Naiad and Nimbus. Figure 8: Task throughput of cloud frameworks as the
In addition to a Scala implementation in Spark and a C# number of workers increases. Spark and Naiad saturate

implementation in Naiad, we also measure performance at about 8,000 tasks per second, while Nimbus grows al-
if these frameworks could execute tasks as quickly as most linearly as the number of workers increases.
Nimbus. We consider the best case performance of no

overhead for invoking native code by having them run a

busy loop. K-means shows similar results to logistic regression:
For logistic regression, Naiad’s C# runs 6 times faster ~~ Nimbus runs almost 30 times faster than Spark with

than Spark’s Scala. The fastest Spark configuration is Scala and 23 times faster than Naiad with C#. It runs
100 nodes, while for Naiad it is 50 nodes. This is be- 5 times faster than Spark or Naiad even when they use
cause Naiad’s faster task execution means its control ~~ Optimized tasks.

plane overhead overwhelms the benefits of running on

more workers. Naiad’s control overhead grows quickly 5.2 Task Throughput
because it requires O(n?) communication among Naiad
nodes, where n is the number of nodes. The results in Figure 7 show that neither Naiad nor Spark

C++ tasks run 51 times faster than Scala and 9 times can scale out to handle optimized tasks at scale. Since

faster than C#. When Spark and Naiad’s tasks are re- progress bottlenecks at the controller, workers spend a

placed by tasks running as quickly as C++ code, neither ~~ larger fraction of time idle. Figure 8 shows the task

scale out past 20 nodes. We ran them on fewer than 20 throughput (the number of tasks per second that work-

nodes: 20 is the fastest configuration. For example, run- ers execute) each system sustains for logistic regres-

ning on 100 nodes, Naiad-opt runs almost 3 times slower sion. Both Spark and Naiad saturate at about 8,000

than on 50 nodes, as its n? coordination overhead grows. tasks per second. Using execution templates, Nimbus is
Nimbus runs 43 times faster than Spark and almost 16 able to scale almost linearly, supporting almost 200,000

times faster than Naiad. Its control overhead is almost tasks/second for 100 nodes.

negligible, even when scaled out to 100 nodes. This al- Execution templates scale slightly sub-linearly be-

lows it to come very close to the expected performance cause the scheduling cost at the controller increases lin-

benefits of C++. Even if Spark and Naiad were to run early with the number of workers. If these benchmarks

optimized tasks, execution templates lead Nimbus to run were run on 800 workers with 1 core each (rather than

4-8 times faster. 100 workers with 8 cores each), each worker template
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2 | installing preconditions on controller for running on 100 workers
= installing worker templates on workers
= resource manager evicts half of the workers from the cluster

S i installing preconditions on controller for running on 50 workers
= I installing worker templates on workers
[3 | resource manager brings all the workers back
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Iteration Index

Figure 9: Adaptive behavior of execution templates as resources change. If the number of available workers changes,

a controller can recompute new templates or fall back to templates it has already computed.

Per-task cost Iter. overhead Processing each task at the controller takes 40us. A con-
————————— troller is therefore limited to processing at most 25,000
Controller Template 25048 20% CL lire :tasks/second on the first iteration: this is approximately
Worker Template @cntrl 15us 12%

3 times what available controllers can handle.
Worker Template @work us 7%
ee ———— Table 4 shows how controller and worker templates

reduce control plane costs. Both controller and worker

Table 3: Costs of installing templates on the first iter- templates cut the overhead significantly as they trans-
ation of logistic regression running on 100 nodes. The form thousands of tasks into a single message. Their ben-
cost is predominantly at the controller. Nonetheless, the efits are roughly equal. A controller template transforms
one-time cost of installing templates on the first iteration tens of thousands of messages from the driver to the con-
causes the iteration to run 39% slower. troller to a single message. Worker templates transform
—— tens of thousands of messages from the controller to the

Completion time workers to one message per worker. Together, they re-

No templates 107s duce control plane overhead from 93% to negligible.
Controller template only 0.49s
Worker & controller template 0.07s .

Table 4: Execution time of logistic regression iterations If a controller decides to re-balance a job across workers,
(100 nodes) with and without templates. remove workers, or add workers, it must recompute new

worker task graphs and install the corresponding tem-

plates on workers whose responsibilities have changed.
would be 1/8th the size and the controller would have to Fi Co : :oo igure 9 shows the time it takes for each iteration of lo-
process 8 times as many template instantiation messages. Co

) gistic regression as a cluster manager adjusts the avail-
If T' is the number of tasks to execute in a block and W 1s

able workers. The run begins with templates disabled: it-
the number of workers, Spark’s controller cost is O(T'), : ke 1.075. On ; on 10 I d
Naiad’s is O(W2) and execution templates are O(W) erations take 1.0/s. Un iteration 10, templates are turnep on. This iteration takes 1.2s due to controller template

installation (20% overhead). On iteration 11, the con-

5.3 Template Overhead and Gains troller s half of worker templates is installed. On iter-
ation 12, the worker’s half of the worker templates is

To filter out the startup cost of the JVM and CLR loading installed. We intentionally separated each phase of the

object files and just-in-time compilation, the results in template installation on progressive iterations to show

Figure 7 do not include the first iteration of either compu- the cost and gain from each. However, all phases could

tation. This also excludes out the cost of generating and overlap on a single iteration (39% overhead). Once all

installing templates. Table 3 shows the costs of installing templates are installed, the iteration time drops to 0.07s.

templates in logistic regression with 100 workers. On the 20th iteration, the controller receives a com-

Installing templates increases the execution time of the mand from a cluster manager to stop using half of its

first iteration by 39%. This cost is predominantly at the workers. This does not change the controller template,

controller, as it must generate both the controller tem- but forces the controller to recompute worker templates.

plate as well as the controller half of the worker template. It then executes at half speed (0.14s/iteration), until iter-
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1. Awards. We ported PhysBAM to Nimbus, wrapping
0.8 PhysBAM functions inside tasks and interfacing Phys-

y. 0.6 BAM data objects into Nimbus so they can be copied
©0.4 and transferred.

0.2 We wrote a driver program for a canonical fluid simu-

0,0 = 03 To 100 lation benchmark, water being poured into a vessel (e.g.,
Task length (seconds) Figure 11). This simulation uses the particle-levelset

method [19], maintaining the simulation as a volume of

Figure 10: CDF of task durations in a PhysBAM simu- fixed grid cells but using particles along the surface of
lation. The median task is 13ms, the 10th percentile is the water to simulate it in much higher detail. The sim-
3ms, and some tasks are as short as 100s. ulation 1s the same core simulation used in films such

’ as The Perfect Storm and Brave and has a triply-nested

loop with 26 different computational stages that access

. ym over 40 different variables.

] We ran a 10243 cell simulation (512GB-1TB of RAM): J on 64 workers, comparing the performance of Nimbus
with PhysBAM’s hand-tuned MPI implementation. The

i MPI implementation cannot re-balance load, and in prac-
wo er tice developers rarely use it due to its brittle behavior and

| lack of fault tolerance.
: i! Figure 10 shows the CDF of task duration in Phys-
— = BAM. While the main computational tasks are 60-70ms

Ni ee some tasks run for only 100us. These tasks computing
= minimum and maximum values over small sets. Fig-

ure 12 shows PhysBAM’s performance using Nimbus

Figure 11: Still of a PhysBAM simulation of water being and MPL Without templates, the simulation generates
poured into a glass. tasks 8 times faster than a controller can handle: Nim-

bus takes 520% longer than MPI, because controller be-

comes a bottleneck. With templates, it runs within 15%

ation 30. At iteration 30, the 50 workers are restored to of the MPI implementation.

the controller. It is then able to go back to using its first

set of templates, which are still cached.
6 Related Work

5.5 Complex Applications This paper builds on a long history of related work from
This final set of experiments examines how templates several disparate fields: cloud computing, high perfor-
scale to support complex applications. PhysBAM is mance computing, and programming languages.

an Open-source library for simulating many phenom- Fast data analytics: Within the database and paral-
ena in computer graphics [18]. It is the result of over : a. :

50 developer-years of work and has won two Academy lel computing communities, prior work has explored
the computational inefficiency of Spark code, propos-

ing new programming models and frameworks to replace

Iteration Time (s) it [26, 13]. Facebook’s Al research group has open-

--____________________ sourced GPU modules for the Torch machine learning
196.8 framework. [7]. There is also ongoing research on a

common intermediate language for Spark that provides

a glossary of data-parallel optimizations (including vec-

Be 36.5 Nimbus /wo templates torization, branch flattening and, prediction), suggesting
@ Nimbus performance in some cases even faster than, hand-written

Be 31.7 om VP! C [32, 37]. The trend shows that the next generation of
cloud computing frameworks will execute tasks which

Figure 12: Iteration time of a PhysBAM water simula- run orders of magnitude faster than today.
tion in Nimbus with and without templates as well as its Cloud programming frameworks: MapReduce [15] is
standard MPI implementation. a widely used programming model for processing large
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data sets. Open source MapReduce frameworks such as the distributed implementation could benefit from execu-

Hadoop and Hive [2, 3] are I/O bound: they fetch sta- tion templates to support jobs with orders of magnitude

ble input data from disks, and save intermediate and fi- higher task rate.

nal results to disks. Spark [38] uses resilient distributed High performance computing (HPC): MPI [34] pro-
datasets (RDDs) to perform computations on in-memory vides an interface to exchange messages between par-
data, while providing the reliability that data on disk pro- allel computations, and is the most commonly used
vides. For optimized data analytics with short task, how- framework to write distributed computations in the
EVer, Spark’s centralized runtime system becomes a bot- HPC domain. MPI does not include any support for
tleneck. While Nimbus also uses a centralized controller, | 4 o1ancing or fault recovery. Frameworks such as
execution templates enable Nimbus to handle orders of Charm++ [24] and Legion [11] provide abstractions to
magnitude higher task rate. decouple control flow, computation and communication,

Naiad [28] 1s another iramework for in-memory com- similar to cloud data flow frameworks. Their fundamen-

;Laon. ene ihe cistributed event-based mntime tal difference, however, is that they provide mechanismselps scalability without creating a centralized bottle- Sr

Wy the cost of synchronization dominates as the num- anpu litle policy:aacredoe
ber of workers grows. Logical to physical graph transla- run. The scale and cost of the machines they are designed
tion on Naiad nodes resembles the worker templates on (supercomputers) is such that they demand more pro-
Nimbus, however the lack of centralized controller to re- grammer effort in order to achieve more fine-tuned and
solves the inter-worker dependencies leaves the burden optimized use of hardware resources.
of synchronization on the runtime system.

Dataflow frameworks such as Dryad [23], Just-in-time (JIT) compilation: Finally, the idea of
DryadLINQ [36], CIEL [29] and FlumeJava [14] memoizing control flow and dynamic decisions in an
focus on abstractions for parallel computations that execution path closely resembles the approach taken in
enable optimizations and high performance. This paper ~~ Just-in-time (JIT) compilers [10] as well as the Synthesis
examines a different but complementary question: how kernel [27]. Both of these approaches note that particular
the runtime scales out to support very fast computations. ~~ decisions, while dynamic in the general case, might lead
In fact, our framework implementation that incorporates to deterministic results in any particular case. Therefore,
execution templates, Nimbus, resembles the data flow optimizing that deterministic result can remove all of the
model in DryadLINQ [36]. surrounding overhead. While a JIT compiler and the
Distributed scheduling systems: There is a huge body Synthesis keel seneraie optimized native code for par

or ng. They deploy var. ticular functions, execution templates generate optimized
Rr A deci. structures for scheduling distributed computations.
sions with high throughput. For example, Sparrow [31]

uses a stateless scheduling model based on batch sam- 7 Conclusion And Future Work
pling and late binding. Omega [33], on the other hand,

leverages a shared global state through atomic transac- This paper presents execution templates, a novel abstrac-

tions to improve the allocation decisions. Apollo [12] tion for cloud computing runtime systems that allows

benefits from a similar model, and adds task completion them to support extremely high task rates. The need for

time estimations to optimize the scheduling decisions. high task rates is driven by the observation that many

Tarcil [17] 1s a hybrid model based on both sampling and modern workloads are CPU-bound, and rewriting them

performance estimation. Hawk [16], and Mercury [25] in high performance code can easily lead to task rates

suggest a hybrid distribute/centralized solution to realize that overwhelm modern schedulers. Long-running appli-

better efficiency in the cluster. cations with high task rates, however, usually consist of

At a very high level, all these systems solve the same many executions of a loop. Rather than reschedule each

problem as execution templates do: providing higher iteration of the loop from scratch, execution templates

task throughput at the runtime system. However there allow a controller to cache its scheduling decisions and

1s a very important and subtle difference: these systems invoke large, complex sets of tasks on worker nodes with

distribute the scheduling across the job boundaries. For a single message. Using execution templates, the paper

a single job with high task rate the scheduling still goes shows that some benchmark applications reimplemented

through a single node. The distributed solution only in C++ can run up to 40 times faster; without templates,

solves the problem of multiple jobs producing high ag- their speedup is limited only a factor of 5. Finally, execu-

gregate task rate in the cluster by directing the scheduling tion templates enable whole new classes of applications

of each job to a different node. In a way, execution tem- to run in the cloud, such as high performance simulations

plates are orthogonal to theses systems. Every node in used in computer graphics.
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