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Abstract times as long as others, due to data skew or variations in
node performance. [4] If each stage is micropartitioned

We present Canary, a scheduling architecture that allows ‘nto Peple tasks ":r core becores canoyed tasks
nish periormance analytics workloads - Seale out 10 pe to idle ones. Furthermore, the runtime can interleave
On THOUSANAS OL COTES. Landry 15 MOtvaled by te 0b= amputation and communication, sending the results of
servation that a central scheduler is a bottleneck for high one Do while computing the results of a °econd. [31]
performance codes: a handful of multicore workers can But increasine the number of tasks has a cost Althoush
execute tasks faster than a controller can schedule them. Ivtics i be lelized hed
The key insight in Canary is to reverse the responsi- an analyticsjob is parallelized across many servers (calle

bilities bec controlNa4 workers Ratha than workers), a single server, the controller, is responsible for
dispatch tasks to workers, which then fateh data as nec scheduling tasks for many jobs to a shared cluster of work-

’ i . A mod lyti troll hedule 1,500-
essary, in Canary the controller assigns data partitions to > 200 osera J.hior and
workers Hienher va.and schedule tasksoe tasks increases, the scheduler becomes a bottleneck. [28]e evaluate three benchmark applications in Canar

on up to 64 servers and 1,152 cores on Amazon id Systems such as Sparrow [28], Omega [32], Apollo [0],
Canary achieves up to 9 90x speedup over Spark and and Mercury [19] try to sidestep the scheduler bottle-
up to I speedup ber GraphX «Highvoptiniiasd graph neck by allowing each job to have its own private sched-ler. Th h f hani itori
analytics engine. While current centralized schedulers wet rout 4 variety Ol TECRARISTS (monitoring

worker load, batching, power of two choices, central load
can schedule 2,500 tasks/second, each Canary worker can

databases), these systems allow each scheduler to find and
schedule 136,000 tasks/second per core and experiments :

: : use idle cores in a shared cluster while preventing flash
show this scales out linearly, with 64 workers scheduling mobs or other svnchronized behaviors
over 120 million tasks per second, allowing Canary to y Co. :
support optimized jobs running on thousands of cores. But even a single optimized job can easily saturate a

scheduler. In Section 2, we show a C++ implementation

of a standard analytics benchmark that executes three

1 Introduction tasks per core every 470ms. Tasks take on average 150ms

to complete, so each core can run 6 tasks/second. Modern

Data analytics frameworks such as Spark [36] and Na- Amazon EC2 instances (m4.10xlarge) have 40 cores: a

iad [24] provide high-level programming abstractions that single job running on 8 workers (320 cores) can execute
operate on datasets far too large for a single server’s mem- 2,000 tasks/second, close to the limit of a modern con-

ory. These frameworks parallelize an application (called troller. As CPU-bound analytics workloads increasingly

a job) across tens or hundreds of servers by breaking it ~~ call into GPUs or native C libraries to improve perfor-
into many small fasks. Many data analytics applications mance and the number of cores per processor increases,

are CPU-bound [27]; breaking them into small tasks lets scheduling and controllers are emerging as a bottleneck.

them use more cores, and parallelizing across more cores MPI-based high performance computing applications
reduces completion time. can scale to run on tens of thousands of cores with tasks

Micropartitioning each computational step (a stage) that are as short as tens or hundreds of microseconds by

into multiple tasks per core can reduce completion time having no controller at all. Without a controller, however,

further. Cloud analytics applications have highly variable no node knows the overall network and application state.

task execution times: some tasks can run twice or ten ~~ Accordingly, MPI applications are notoriously difficult
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to load balance, and so use one task per core and are extends and builds on, and Section 7 concludes.

carefully designed so that each stage’s tasks have near-

uniform execution times, in some cases even by running

empty loops. Furthermore, the lack of a central controller TI .
makes MPI applications brittle to faults and failures. 2 Motivation: Scalable Scheduling

This paper proposes a new scheduling architecture,

called Canary, that can support orders of magnitude more This section gives an overview of analytics frameworks
tasks per second than existing approaches. The key insight and their current bottlenecks. It shows how NUMErous
behind Canary is to reverse the responsibilities between optimizations to analytics have a corresponding cost: the
controllers and workers. Rather than have a controller task rate, or number of tasks per second the job executes,
schedule tasks to workers, which are then responsible gocs Up, Increasing load on the scheduler. Optimizing
for fetching data, in Canary the controller only decides analytics codes (e.g., using C rather than functional Scala
how data are distributed on workers. Each worker locally code) can improve performance and increase the task rate
spawns its own tasks based on the current program posi- by a factor of 90. Scaling out a CPU-bound workload to
tion and the data partitions the controller has assigned to OTe Cores causes the task rate to Increase quadrtically
it. The controller remains responsible for load balancing with the number of Cores used. Finally, breaking a job into
and fault tolerance, while workers take on the responsi- smaller tasks reduces job completion time by allowing
bility of scheduling and executing the job in a distributed more flexible load balancing, but also INCTEASes the task
way. rate. Together, these results mean that existing schedulers

Canary is implemented in a C-based data analytics can barely keep up with a handful of well-tuned workers.
framework written from scratch because the performan This motivates the need for a new scheduling architectureperformance :

CL : that can handle orders of magnitude more tasks per second
of existing open-source frameworks falls far behind a fully than current schedulers do
optimized implementation [23]. The inefficiency of these

frameworks prevents understanding realistic workload

characteristics because their tasks run so slowly. In Sec-

tion 2 we show how simple C++ re-implementations of ~~ 2.1 The Cost of Fast Analytics
analytics benchmarks in this framework can speed them

up by factors of 4-90 over Spark [36] and GraphX [14]. The power of MapReduce [9], Pregel [22], Spark [36] and

This paper evaluates Canary’s scalability using three other distributed computation frameworks is in great part
applications, logistic regression, k-means clustering and ~~ due to their ability to scale out to run on many nodes in
PageRank. Our results show that using Canary, a single parallel. For I/O-centric workloads, which MapReduce
core can schedule 136,000 tasks/second, and a 64-node, targets, individual tasks can take tens or hundreds of sec-
1152-core cluster can schedule 120 million tasks per sec- onds [7] and so even when scaled out to large numbers of
ond. This allows Canary to run benchmarks orders of ~~ machines the aggregate number of tasks per second the
magnitude faster as the scheduler is no longer a bottle- ~~ System must schedule is low. Furthermore, because these
neck. This paper makes three research contributions: workloads are I/O bound, rather than compute bound,
e an analysis that shows centralized scheduling cannot the increasing number of cores per CPU does not greatly

scale because scheduler load grows quadratically with increase task rate.
the number of cores, In contrast, modern analytics workloads are CPU-

e a novel scheduling architecture which scales to support bound [27]. Improving their CPUperformance makes
orders of magnitude more tasks per second by decou- their tasks run faster and jobs complete in less time. Ta-

: ble 1 shows the job completion time of a standard Spark
pling data placement management and task execution . : : :

scheduling, and benchmark, logistic regression, running on a single 18-
Co core worker. One iteration of a standard Spark imple-

e optimized implementations of three data analytics ap-  engation, written in its functional language, takes 42
plications that demonstrate the benefits of a highly scal- ~~ (.. nds. A highly optimized Spark implementation that
able scheduler. uses Spark’s lowest level API can run 16 times faster, in
Section 2 gives an overview of the performance bot- 2.6 seconds. Written in C, using the analytics framework

tlenecks of existing analytics frameworks and why their =~ we have described in Section 5.1, each iteration takes

scheduling architecture limits the scale at which their 470 milliseconds, running 90 times faster than the stan-

applications can run. Section 3 presents the Canary sys- dard Spark implementation. In the C implementation, one

tem architecture, Section 4 presents the design of Canary iteration involves 3 tasks per partition. If there is one

workers, and Section 5 evaluates its performance and scal- partition per core, a single 18-core worker executes more

ability. Section 6 describes the related work that Canary ~~ than 120 tasks per second.
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Time (s) Tasks/sec completion time by a factor of 2-10 by keeping cores at
CCCCCC high utilization.
Spark (functional) 42.36 0.4 Suppose each stage in a job is split into P tasks per core.
Spark (imperative) 6.52 2.8 Following the analysis above, this means the number of
Spark (low level API) 2.59 7.0 tasks that must be scheduled grows with @(P-W?).
Canary 0.47 123.4

Table 1: Execution time and task rate of one itera- 2.4 The Need for a New Scheduling Archi-
tion of a logistic regression job that processes 20GB tecture
of training data on a server with 18 physical cores.

Each Spark iteration is 18 tasks (1 per core) while Applying these analyses to the performance numbers pre-
each Canary iteration is 58 tasks (3 tasks per core sented above, a single worker running the logistic re-
plus 4 global tasks). Spark (functional) is the standard gression benchmark in Table | with P = 10 (a common
implementation which uses functional operators like setting), can execute 1,200 tasks per second. If the job
map and zip. Imperative replaces the functional oper- ~~ were parallelized to run on two workers, completion time
ators with loops. Low level API uses mapPartitions would be halved, but there would be twice as many tasks
to manually iterate over data. Canary is a C++ imple- to execute, so the task rate would increase by a factor
mentation. of 4, to 4,800 tasks per second. Scaling out the job to

8 workers would increase the task rate to 16-4,800, or

nearly 80,000, tasks per second.

2.2 The Cost of Scaling Out Modern analytics controllers can schedule 2,000 -
3,000 tasks per second.! If jobs run CPU-optimized code

Scaling out to more workers both increases the number 4,4 try to parallelize to many modern multi-core ma-
of tasks that must be scheduled and decreases how long chines, the scheduler quickly becomes a bottleneck; we
each of those tasks takes. As a result, the number of tasks defer a detailed presentation of our experimental results
per second that must be scheduled increases quadratically ¢o Section 5, but for basic benchmarks written in Spark,
with the number of worker cores. the Spark scheduler is already a bottleneck for 32 18-core

Suppose we have a CPU-bound analytics job which, workers when P = 1, and setting P = 10 limits Spark to 3
if all data are in memory, takes C cycles to compute. If workers.

C is evenly distributed across W worker cores, then a If next generation frameworks are to scale out for high
scheduler will need to schedule one task per stage per performance analytics workloads, they will need a new
core, or W tasks. If the job 1s CPU-bound and scales scheduling architecture. The next section describes such
well, then parallelizing it across W cores will cause it to an architecture, whose scheduler’s load is independent of
run W times faster; the computation will take 5 time. A the number of workers and instead only acts when load is
scheduler’s load is therefore rebalanced across workers.
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tasks per second. As long as C does not change much Canary is a distributed scheduler architecture for cloud
: : : data processing systems. The key insight behind Canary is

with greater parallelism, the task rate a job generates for :
: ’ that a worker can determine which tasks it should execute

a scheduler scales with @(W~). oe
based on what data partitions it has in memory. By placing

the data partitions a task uses onto a worker, the controller

2.3 The Cost of Utilization implicitly assigns that task to that worker. In the extreme
case, if every worker knows the placement of every data

Recent research [26] as well as experiences of core mem- partition and partitions never move, workers can run and
bers of Google’s datacenter software [8] have shown that ~~ complete an entire job without any controller coordination.
micropartitioning a computational stage more finely than This section describes the system architecture, execution
one partition per core has significant benefits. Microparti- ~~ model, and central controller. The next section provides
tioning enables better load balancing and faster comple- details on how workers locally spawn and schedule tasks
tion times. If some tasks take longer than others (e.g., due as well as how they exchange data and migrate partitions.

to data skew), then workers with longer tasks can shed ———
some of their other tasks to less heavily loaded workers. Ousterhout et al. report the Spark scheduler can handle 1,500 tasks

. . CL. . per second. Our measurements in Section 5 show that a recent Spark

Prior work shows that micropartitioning a stage into 10-20 release (1.5.2, November 2015) improves the throughput to 2,600 tasks
tasks/core has significant performance benefits, reducing per second.
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(a) Existing centralized scheduling architecture. (b) Canary scheduling architecture.

Figure 1: The Canary controller distributes task generation, and task dependency analysis to workers. Canary

workers infer what tasks to run based on what data partitions are local, reason about task dependency from a

local driver program copy, and decide what tasks to run and when, all without the controller’s help.

3.1 Architecture 3.2 Execution Model

Canary’s execution model is very similar to other cloud

A Canary controller is responsible for deciding how data computing frameworks. A job is written as a driver, a se-
partitions are distributed across workers, deciding when quential program whose variables are large datasets. Each
partitions should migrate between workers, and coordinat-  y,riable has an associated partitioning function, which
ing partition migrations to maintain program Correctness. defines how many partitions the variable is split into. The
Each Canary worker has a copy of the driver program, program can apply parallel operations on these datasets,
which it uses to locally spawn and schedule tasks. It de- hich perform the computation on the partitions in par-
cides which tasks to spawn based on what data partitions allel. Just as in Spark, if an operator takes multiple vari-
are resident in its local memory, as determined by the con- ples as input, each of those variables must have the same
troller. Controllers today decide task placement and leave partitioning. Otherwise, it is not possible to properly
it to workers to move partitions so they can execute those parallelize the computation. Moving data from one par-
tasks. Canary inverts this model, as its controller decides titioning to another is a shuffle operation, just as in the
partition placement and leaves it to workers to generate MapReduce programming model.
the tasks to compute on their data. Figure 1 shows the Canary’s execution and programming model differs
Canary architecture in comparison to existing scheduler from centralized schedulers in one important way: all
architectures. variables are datasets. Because there is no single, cen-

Canary’s model makes two assumptions about how data ~~ tralized copy of the driver program, there is no notion
partitions behave. First, it assumes that the set of data of a scalar variable such as a loop counter or a parame-
partitions changes slowly. For analytics workloads, which ter passed through a closure (as 1s common with Spark).
typically involve many iterations over in-memory data Since the driver executes on every worker, such a variable
(e.g., graph algorithms, regression, signal processing), Would be replicated across them. Instead, a program can
this assumption is valid. If workers are continually gener- define a dataset that has a single partition; it is then up to
ating many new, short-lived partitions, then this activity the controller to decide where this partition resides.
could lead to significant load at the controller. Second, The execution model allows loops or conditional

it assumes there are far fewer data partition migration branches based on runtime results, with one constraint.

events than tasks executions, that is, a worker will execute Every worker must make the same runtime control flow

many tasks on a partition before possibly migrating it. ~~ decision, i.e., running the same number of iterations and

This assumption is valid for any CPU-bound workload, taking the same conditional branch. As explained in Sec-

as migrating a partition generally takes much more than tion 4.4, this is so that workers have a consistent enough

than computing tasks on it; if there are many migration view of program execution that they can correctly migrate

events, the workload is I/O, rather than compute, bound. partitions and exchange data. Since there are no global
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variables, this implicitly means that any conditional exe- A and B, each of which has two partitions, for a total of 4

cution requires a barrier operation. partitions: Aj,A;, Bi, and B;. If the controller places A;

on one worker and A,, Bj, and B, on the other, then no

3.3 Controller worker can compute S(A1,B1). The controller therefore
uses the driver program to compute a set of constraints on

The Canary controller has four major responsibilities: what partition placements are valid and always updates

e compute and update the partition map, which speci- the partition map in a way that meets these constraints.
fies how partitions are distributed across workers, In the example above, if one worker had all four parti-

e distribute the partition map to workers, tions and was overloaded, the controller would decide to
e coordinate worker execution so they migrate parti- migrate eitherA and Bi or Az and B simultaneously.

tions safely when it changes the partition map, and : Tasks can ~ompute on in-memory data Hueh faster than
e decide when workers should store a snapshot of their it can be written to durable storage ol replicated across. workers. Therefore, rather than relying on replicating

partitions to durable storage for failure recovery. in-memory data partitions, Canary borrows techniques

A data partition is named by a (name,index) tuple. Name from high performance computing for durability and fault
is the variable name in the program, and index is an in- tolerance. This has the added benefit that it reduces mem-
teger in the range of [0,1 — 1], where 7 is the number of ~~ OT US€ and so allows a cluster to process larger datasets.
partitions. The partition map is a table that specifies, for A controller periodically sends workerS a snapshot com-
each partition, which worker has that partition in memory. mand. The command specifies which stage the workers
In-memory partitions are not replicated. If a worker fails, should snapshot at. The selected stage must be a stage
the controller instructs other workers to reload the lost that acts as a barrier, which all workers must complete
partitions from the last snapshot to durable storage, which before continuing. A shuffle stage, for cxample, which
is replicated. If the snapshot is old enough that it is not remaps data from one Partitioning to another, is a barrier
possible to recover the current state of a partition, the because all of the put partitions must be processed Into
controller asks other workers to restore their partitions as output partitions before computation may continue. When
well, rolling the entire computation back to the snapshot. the workers complete execution of this stage, they stop
The controller periodically queries workers for load execution and store their partitions to durable storage.

information, including how much time their CPU is idle

and how much CPU time they have spent computing 3.4 Discussion
tasks on each partition. When a worker is completin CL. : :

stages significantly slower than the average, the contol If a job is executing smoothly and > well balanced, a
chooses another (lightly loaded) worker and moves some controller does little mote than petidically collect perfor-
of the slow worker's partitions to the lightly loaded one. mance information. This idleness is intentional, in order
It does this by updating the partition map, sending those to prevent the controller from becoming a bottleneck. As
updates to every worker, and sending control messages to . result, each worker core has much more responsibiIiLy:
the workers to perform the transfer. Section 4.4 describes it must spawn and schedule tasks, coordinate partition
how the workers independently coordinate when to safely migration, and transfer data with other workers. But be-
perform the transfer among themselves. cause this work is parallelized across every worker core, it

The partition map is a table, so updates involve simple takes up at most a few percent of worker CPU cycles. The
changes to the worker field of the rows for migrating par- next section describes the abstractions and mechanisms
titions. One important property of distributing partition workers use to achieve this behavior.
map updates is that they do not need to be strongly consis-

tent: sequential consistency is sufficient. This is because 4 Workers
migrations, since they rely on explicit commands from the

controller, do not directly use the partition map. Instead, ~~ The key challenge in Canary is enabling workers, in a
the principal role the partition map plays on a workeris ~~ completely distributed way, to
to inform it whom it needs to exchange data with. In e correctly spawn tasks and compute their scheduling

cases where a worker’s partition map is stale or incorrect, dependencies,

the data exchange protocol described in Section 4.2 can e exchange data with other workers,
detect this and update the stale partition map. e maintain a consistent view of execution, and

Workers autonomously generate tasks based on which e migrate partitions.
partitions they have. It is therefore possible to distribute

partitions in a way that will prevent a program from exe- The rest of this section explains how they do so. To

cuting. For example, consider a stage S that has two inputs ground these explanations in a concrete example, we use
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Figure 3: Metadata a worker keeps on the logistic re-

gression application. Each stage has an identifier, and

a worker keeps track of which was the last stage to ac-

Figure 2: A logistic regression application imple-  .. each partition.
mented in Canary. Grey ovals are compute tasks,

white ovals are communication tasks, and boxes are

partitions. LW is the local weight, TD is training data, until the gradient computational stage has completed.
LG is the local gradient, GW is the global weight and Given a driver program, the worker generates a depen-
GG is the global gradient. dency graph of its stages based on the datasets they read

and write.

a standard data analytics benchmark, logistic regression. CL.

Logistic regression iteratively computes a gradient value 4.2 Data Communication
for each data partition, combines the gradient values to Canary provides two communication abstractions. The
derive a global weight value, then uses the global weight first is for data transfer. It is a scatter-gather operation,
value as a parameter for the next iteration. similar to MapReduce, Spark, and other frameworks. The

Figure 2 shows the structure of this application in terms operation takes two functions. The first, the scatter func-
of stages and datasets. To calculate a gradient value for jon, takes one or more datasets and produces one or more
each training data partition, the gradient stage reads datasets as output. The key property of the scatter op-
the training data dataset and local weight dataset eration is that, while all of its input datasets must have
and writes the local gradient dataset. To sumup local the same partitioning and all of its output datasets must
gradient values to the global gradient value, a scatter stage have the same partitioning, the input partitioning does
packs local gradient values as intermediate chunks, anda pot have to be the same as the output partitioning. Fur-
gather stage sums up values in those intermediate chunks thermore, unlike computational tasks, which only access
and writes to global gradient dataset. one partition of a dataset when they execute, a scatter

function accesses any partition (hence “scatter’”). When

4.1 Program Representation and Execu- the scatter completes, the worker uses the partition map
tion to determine where it should send any non-empty scatter

partitions. The gather function takes many partitions (the

Each Canary worker has a full copy of the job’s driver =~ many pieces generated by different scatterers) and merges

program. The worker enumerates the stages in the pro- them into one.

gram and uses these as identifiers to specify program Because a partition map can be stale, it is possible that

position. For each partition, the worker maintains which a worker executing a scatter task will try to deliver inter-

was the last stage that read from or wrote to that partition. = mediate results to the wrong worker. It is also possible

Figure 3 shows the metadata a worker maintains for the for a worker to start receiving data for a partition it does

logistic regression application. not yet know it is responsible for. To handle these incon-

A Canary worker borrows the concept of a “software sistencies, each entry in the partition map has a version

processor’ from the Legion framework [5]. In this ap- number associated with it. When the controller sends a

proach, programs appear to run sequentially, but under- partition map update, it increments the version number

neath the runtime may execute stages out of order to of any changed entries. Whenever a worker sends data

improve parallelism, just as a modern CPU does with to another worker, it includes the version number in its

instructions. The worker is therefore responsible for associated partition map entry. If a worker receives a data

determining stage dependencies, for example, that the transfer for a partition it does not have and the sender has

scatterG communication stage in Figure 3 cannot run a newer version of the partition map entry, it concludes
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thatit will soon own the partitionand so holds the scatter Cc 100ee
data. If the sender has an older version of the partition 2

map entry, the receiver forwards the data to the correct RN 80LI
destination and assumes the sender will be updated soon. 5 60L.F ~ (Bbus, 90%)So
The second communication abstraction is for control. =

It is a reliable broadcast of a replicated boolean variable © 40
called a signal. Signal functions are used for conditions 0 102003040 80 6070
and loops. A signal function takes a dataset as input. This Average task length (us)
dataset must have a single partition (any other partitioning ~~ Figure 4: Canary can schedule 136K tasks/sec per-
is a runtime error). It produces a boolean value as output. ~~ core while consuming less than 10% of available CPU
After the worker which has the input partition executes ~~ time. This allows a worker with 18 cores to schedule
the function, it broadcasts the result to every other worker ~~ 2.4M tasks/sec. In the benchmark, tasks run on av-
in the system. Other workers, when they reach a signal ~~ erage for 6.6(s and take 0.7us to schedule. In com-
function, wait to hear the broadcast. parison, a Spark controller has a peak scheduling

throughput of 2.6K tasks/sec.

4.3 Spawning Local Tasks

The metadata that workers maintain is sufficient for them any new tasks that access that partition. Once there are
to quickly infer and spawn tasks locally. As a worker no tasks that access the partition in the run queue and the
keeps track of the last stage to access each of its local last task to access it completes, the source worker begins
partitions, it can, from its dependency graph, determine the transfer to the destination. It includes, as metadata,
what are the next stages that will access it. For exam- the last stage to write to the partition. This tells the desti-
ple, in Figure 3, the worker knows that the next stage to nation at what stage in the program the source worker 1s
access local_gradient will be the scatterG function. and so what the next tasks to execute on the partition are.
Whenever the worker updates which stage last accessed a

partition, it checks each of the next task(s) to access that § Evaluation

dataset for whether all of their inputs are ready. If so, it

spawns the task and adds it to a local run queue. This section evaluates Canary by measuring its task
The key property of Canary’s execution model that scheduling throughput and how high scheduler through-

makes this possible is its communication primitives. Be- put improves end-to-end application performance. It com-
cause any looping construct goes through a signal func- pares Canary’s performance with GraphX and Spark, two
tion, this acts as a barrier across the workers. Similarly, analytics frameworks used heavily in practice today.
any results which escape a worker and can affect compu-

tations elsewhere must go through a scatter-gather, and .
5.1 Implementation and Methodology

so are a barrier. As a result, all of the workers agree on

which iteration of a loop they are on, and correspondingly ~~ The Canary implementation this section evaluates is a
the position in the sequential program can be defined pre-  from-scratch analytics computing engine written in C++.
cisely enough to ensure that workers remain in sync with The entire framework is 4K semicolons. We have imple-
one another. mented numerous applications in the framework, includ-

ing both the three benchmarks used in the evaluation as

4.4 Partition Migration well as several scientific computing applications that we
do not mention due to space constraints. Figure 1 shows

Section 3.3 described how a controller tells two workers its overall software architecture and data structures.

to migrate one or more data partitions. Because the con- All experiments use Amazon EC2 [1] C4 instances,

troller does not know exactly where the workers are in a server configuration optimized for compute-intensive

their execution, it cannot tightly coordinate this exchange. = workloads. C4 instances use Intel Xeon E5-2666 v3

Canary makes the assumption that a slight delay in mi- (Haswell) processors with hyperthreading and 10GbE

grating the partition is acceptable, since the worst that can networking. Workers run on c4.8xlarge instances, con-

happen is the job will run an additional iteration with a taining 18 cores and 60GB of memory, while the con-

load imbalance. troller runs on a c4. large instance, which has 1 core

When a worker receives a command to migrate a parti- and 3.75GB of memory.

tion, it marks that partition with a flag. When the worker To evaluate application performance using Canary in

considers whether it can spawna task, it always considers comparison to systems that schedule centrally, we use

a flagged partition as not ready, and so will not spawn three standard analytics benchmark applications: logistic
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= Co Because each Canary worker core runs its own scheduler,
= a L20Mp-corer having that scheduler completely utilize the core would

£9 SOME: cco TT prevent any forward progress on the job. We therefore
WO AOMp- rr erm measure scheduling throughput as the task rate that a

[ S 0 core can schedule while using at most 10% of the core’s
+ (18)(144) (588) (S75) (664) (1182) CPU cycles, leaving > 90% of CPU cycles for application

# of workers (# of cores) code.
Figure 4 shows the results. Canary takes 700ns to

Figure 5: Canary scheduling throughput grows al- schedule a task. Therefore, when requiring the scheduler
most linearly with the number of workers, reaching use at most 10% of CPU cycles, Canary can support
127M tasks/sec with 64 workers (1,152 cores). The tasks as short as 6.61s. This allows a single worker core
high throughput allows jobs to be split into as many to schedule 136,000 tasks per second, and one 18-core
tasks as needed without concern for the scheduler worker node to schedule 2.4 million tasks per second. For
overhead. Ims tasks, the Canary scheduler uses only 0.07% of CPU

cycles, leaving 99.93% for application code.

Canary is able to schedule tasks so quickly because all

regression, k-means clustering and PageRank. For logistic of the scheduling logic executes on not only the same
regression and k-means clustering we compare Canary node, but even the same process as application code.
against hand-optimized Spark implementations (the low Therefore, generating, scheduling, and executing tasks
level API row in Table 1). For PageRank, we compare requires neither network I/O nor even inter-process com-
Canary against GraphX, an API built on top of Spark that pypjcation. Scheduling involves traversing the task data
is optimized for graph applications. Both the GraphX and g¢rycture for runnable tasks and inserting them into a
Canary PageRank implementations use the same vertex gueue, while dispatch removes the next task from the
cut partitioning algorithm, which uses a 2D partitioning of gyeye.
the sparse edge adjacency matrix and guarantees that each Figure 5 shows the same micro-benchmark running
vertex has at most 2 X v/numPartitions mirror vertices. across multiple workers. Canary’s scheduling throughput
We tuned each application’s input data size so that scales linearly with the number of workers for up to 64

Spark or GraphX uses about 80% of worker memory workers (1,152 cores). Task scheduling is completely
when running on a cluster with 8 workers. For logistic |ocal and requires no communication with the controller
regression and k-means clustering, this means the training or other workers. With 64 workers, Canary can schedule
data is 1 billion vectors of 20 64-bit floating point numbers 127 million tasks per second while using at most 10% of
(160GB on disk). For PageRank, the graph has 5 million CPU cycles. This 127 million is less than the scheduling
vertices and 635 million edges generated using the same throughput of 64 independent workers, which would be
graph parameters used to evaluate Pregel [22]. 154 million (2.4 million per worker from Figure 4 times

For Canary we report the iteration time as the average ~~ 64 workers). The difference comes from the difference
of all iteration times except the first and last iterations. in task execution time on the workers. When running
For Spark and GraphX we instead use the median of all on multiple nodes, the application sends data over the
iterations to filter out the overhead of the JVM warm up, network for scatter-gather operations to compute whether
just-in-time compilation, and garbage collection. The to execute another iteration.

median therefore more accurately reports the execution

time of only the tasks themselves. Because Spark and LL.

GraphX have a long tail in their iteration times, using the 5.3 Application Performance
average for Canary and the median for Spark and GraphX Running CPU-bound applications on more cores should
means the eported SPeedup5 dle lower than what would 041ce completion time until the task durations shrink
be seen in production. Logistic regression and k-means enough that I/O time becomes significant. To evaluate the
clustering run for 50 iterations, while PageRank runs for performance benefit of scaling jobs out to run on more
20 iterations. cores, we examine the performance of Spark, GraphX

and Canary as a job with a fixed input data size running

5.2 Task Scheduling Throughput on an increasing number of worker nodes. As noted in
Section 5.1, the input sizes are such that they can fit in

We first measure the scheduling throughput of Canary by = RAM on 8 workers.

running a micro-benchmark that runs one billion stages. Figure 6 shows the results for running the jobs on 8, 16,

Each stage consists of tasks that busy loop on their data 32, and 64 workers (144, 288, 576 and 1152 cores). At

partition. The job assigns 10 data partitions to each core. low scale-outs, e.g., with 8 workers, Canary runs logistic
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Figure 6: Iteration execution time while keeping the size of the input fixed as the number of workers increases.

Each core runs one task in a stage. Canary scales out logistic regression and k-means clustering linearly and

accelerates PageRank up to 64 workers. Spark scales out worse due to scheduler load as well as data transfer.
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input data partition per core on 8 18-core workers. 0 1 4 8 16 1 4 8 16The slowest task takes twice as long as the average Spar Canary
task length despite processing the same amount of # of input data partitions per core

data. (a) Iteration execution time. Spark slows down with more
partitions per core due to scheduler load as well as data

transfers. Canary speeds up due to better load balancing,

regression 4.5 x faster, k-means clustering 3.25 x faster, up until 16 partitions/core when data I/O becomes a bottle-

and PageRank 15% faster. As the application scales out neck.
and runs faster, the performance improvements increase:

logistic regression runs 9x faster, k-means cluster runs oo oo

4.8x faster, and PageRankruns 8.5x faster. © 2K| ooo eT 120K
For Spark, this trend is because although Spark’s com- © ce l80K

putation time shrinks similarly to Canary’s, the idle time x OIKp
shrinks much less quickly. Spark’s idle CPU time is © fee 140K

: : =
caused by task scheduling latency. At the start of an it- 0 0

eration, workers wait for the controller to dispatch tasks. 1 “So8 16 1 4-ars ry 16
In the case of 64 workers and 1,152 cores, the controller # of input data partitions per core
takes about 0.5sec to schedule enough tasks to keep all

cores busy, given the controller can only schedule 2.6K (b) Task rates. Spark saturates at 2.6K tasks/sec, bottle-
tasks/sec. necking the job. Canary schedules up to 120K tasks/second,

and bottlenecks at 16 partitions/core on application commu-
The 5-10x speedup of Canary over Spark shows how nication

fast analytics combined with scaling out demands high ] oo

task scheduling throughput. When running on 64 workers, ~~ Yigure 8: Logistic resression on 32 workers as the
Canary executes 36,000 tasks/sec on average for logistic number of partitions per core increases.
regression and 13,000 tasks/sec for k-means clustering.

For PageRank, Canary runs only 15% faster than
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19.82 will reduce completion time as this variance will aver-

10.93 l age out. Figure 8a shows how long it takes to complete

—TE oo BE dle one iteration of logistic regression on 32 workers withrr [1 Busy micropartitioning.
£ Spark slows down with more micropartitions. Fig-

13.30 ure 8b shows the task rates for Spark and Canary in this
SD AAG experiment. At 16 partitions/core, the Spark controller is

C 2.62 a c 85 2.47 at its maximum scheduling capacity of 2,500 tasks/second.
= I 0.86 ogg ] The controller occupies a larger and larger fraction of exe-

0 oy cution time, as cores fall idle. With 16 partitions per core,
1 2 4 6 1 2 4 6 CPUs are idle 67% of the time as they wait to receive

GraphX Canary tasks to execute. In contrast, Canary schedules 120,000
# of edge partitions per core tasks/second and the scheduler is not the bottleneck.

Figure 9: PageRank execution on 32 workers as parti- When there is one task per core (576 tasks), Canary
tions per core increases. GraphX is unable to handle ~~ Uns over six times faster than Spark, and microparti-
additional partitions per core due to scheduling and tioning improves Canary’s performance. Running with
data transfer bottlenecks. Canary speeds up by 32% 16 partitions per core slows down the application as the
due to better load balancing and because smaller par- amount of communication needed for the scatter/gather
titions have better cache behavior. stage begins to dominate, but 4 or 8 partitions per core

cut job completion time by 25%.

Micropartitioning has an additional benefit: smaller

GraphX on 8 workers; GraphX is an optimized sys- partitions can be transferred faster and pipelined with
tem whose task execution speeds are close to C++ code. ~~ execution. For example, P = 8, each partition is approx-
PageRank is a harder application to scale out because as ~~ imately 135MB, takes 80ms to transfer, and a k-means
the number of partitions goes up, the number of graph computation takes 50ms. A slow worker can transfer
vertices that must be communicated increases (the vertex- partitions while it computes on others, overlapping these
cut algorithm creates more mirror vertices) and so I/O operations and reducing idle time.
becomes an increasing portion of execution time. GraphX Finally, micropartitions also improve performance
runs fastest with 16 workers, which have a total task rate ~~ through better cache locality, especially for workloads

of 450 tasks/sec. Canary, in contrast, continues to run that are not simple scans of data, such as PageRank. Fig-
faster as it scales out. With 64 workers, Canary runs 3.9x ure 9 shows how increasing the number of partitions per
faster than GraphX with 16 workers, and 8.5x as fast as ~~ core affects completion time for GraphX and Canary. For
GraphX with 64 workers. At this speed, Canary executes ~~ GraphX, micropartitioning quickly overwhelms the sched-
12,000 tasks/sec. uler and forces it to use inefficient marshalling procedures

for larger amounts of data, such that its completion time

] Co. . goes up nearly linearly. For Canary, PageRank’s perfor-

5.4 Micropartitioning mance is dominated by the step that scans over a list of
The experimental results in Figure 6 shows that Canary edges and fills mirror vertex values into a hash table. Mi-
does not fully utilize its cores. Logistic regression and ~~ “TOPartiioning shrinks this hash table and reduces cache
k-means cores spend 18-44% of their time idle despite ~~ PTeSSUIe cutting completion time by 33% with 4 parti-
having very little network I/O. Task execution time vari- tions per core. At 6 partitions per Core, performance be-
ance causes this CPU idle time. These experiments have gins to degrade as the number of mirror vertices INCTEASes
one partition per core, and so slowest task determines and so requires much more 1/0 and data replication.
execution time. Figure 7 shows the CDF of task execu-

tion time for logistic regression. The fastest core 1s twice 6 Related Work

as fast as the slowest one. This variance is caused by

non-uniform memory access (NUMA). Each worker has Scheduling jobs to share a cluster is a broad research topic,

two sockets, and on-socket memory throughput is twice with prior work examining how to mitigate stragglers [34,

that of off-socket memory. Because Linux’s allocation 30], how to optimize networking use [3, 11, 17], or how

policy maps physical pages across the two sockets, task to isolate performance between tenants [21].

execution time can vary by a factor of 2: the fastest tasks This paper focuses on improving scheduling through-

have all local pages and the slowest have all remote pages. put. Earlier work like YARN [33] and Mesos [15] takes

The variance in task execution time suggests that mi- a centralized approach, and suffers from scalability chal-

cropartitioning a stage and load balancing across cores lenges when serving large-scale clusters. To increase
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scheduling throughput, distributed scheduling systems it scales out very well, but at the cost of poor load bal-

[28, 32, 6, 19] use multiple servers to schedule jobs in ancing and fault tolerance. Unlike MPI, Canary is an

parallel by coordinating how these distributed servers al- example of a MTC (many-task computing) system [29],

locate shared resources. Recent work [10, 12] proposes a ~~ which breaks execution into tasks that do not have to run

hybrid approach, e.g., Hawk [10] schedules long-running in sequential order (as long as they respect data depen-

batch processing jobs centrally to improve scheduling dencies). Charm++ [18] and Legion [5] are other MTC

decisions, but uses distributed scheduling for short jobs systems, designed for supercomputers. Canary represents

to improve scheduling throughput. All of these prior a midpoint in this design space, borrowing its distributed

approaches, however, assume that any single job is sched- control flow from supercomputing but its centralized load

uled by a single controller. In contrast, Canary examines balancing from cloud computing.

the case when even a single job’s scheduling load is too

great for a central controller. 7 Discussion and Conclusion
State-of-art data analytics frameworks are designed

without the awareness that a job ever needs such a high In the past few years, led by systems such as Spark,
task rate as this paper explains, and their system designs GraphX, Galois, and Naiad, cloud computing systems
perform poorly when significantly increasing the task have transitioned from being disk and I/O-centric to be-
rate within a job. Dryad [16, 35] and Spark [36] use a ing CPU-bound computations on in-memory data. High
centralized controller to schedule tasks in a same job, performance computing (HPC) has spent decades explor-
and the controller can become a performance bottleneck. ing how to run massively parallel CPU-bound workloads
GraphX [14] is built on top of Spark and shares the same on in-memory data, but has done so on supercomputers,
problem. Naiad [24] does not have the controller bottle- which have different performance and reliability tradeoffs
neck, but uses a distributed progress tracking mechanism than cloud computing systems. For example, while float-
that decides when a notification can be delivered to a ver- ing point workloads dominate HPC, cloud systems have
tex to trigger its execution. The mechanism is required a mix of floating point and fixed point computations.
to execute the programming model (timely dataflow) cor- Canary is a first attempt to borrow key techniques from
rectly, and incurs significant overhead when the task rate each field. From high performance computing it borrows
is high enough due to more progress updates being ex- distributed scheduling to support fast codes, while it bor-
changed. rows central control for fault tolerance from cloud com-
The idea that the controller places data and then work- ~~ puting. A Canary controller is responsible for deciding

ers generate tasks locally is similar with how graph ana- ~~ how data partitions are distributed across workers. Each
lytics frameworks, e.g. GraphLab [20], PowerGraph [13], = worker core locally spawns and schedules tasks to exe-
and Galois [25], schedule distributed graph computations. cute based what partitions it has. Evaluations show that
These systems place vertices and edges on workers, and Canary can schedule up to 2.4M tasks/sec per worker, and

run a vertex program on each vertex, which performs the task scheduling throughput increases linearly up to
computation, exchanges data between other vertex pro- 64 workers, with 1,152 cores scheduling 120M tasks/sec.
grams, and synchronizes through global data structures. ~~ This scheduling performance allows Canary to run high

Both the execution model and the scheduling design are ~~ performance codes that are up to 90 times faster than
tightly coupled with iterative graph algorithms, and can- standard Spark implementations and 9 times faster than
not extend to general analytics workloads. For example, highly optimized Spark implementations. High perfor-
GraphLab [20] and PowerGraph [13] use distributed lock- ~~ mance scheduling also allows Canary to further reduce
ing to schedule distributed graph computations, and lock job completion time by micropartitioning datasets.

neighboring vertices when the state of a vertex is being Spark showed it was possible to achieve orders of mag-
accessed, so as to avoid conflicting data access. nitude improvements over disk-centric frameworks such

The idea of giving each worker a driver program copy ~~ as Hadoop. Canary shows that further orders of magni-
such that workers understand application workflow is tude improvements are possible, but doing so requires
similar to the SIMD (single instruction, multiple data) ~~ new architectures and further research.
programming paradigm, such as used in MPI (message

passing interface). [2] MPI is widely used in supercomput- References

ing to scale scientific computations to tens of thousands

of cores. In MPI, execution is described as processes run- [1 Amazon Elastic Compute Cloud. http://aws amazon. con/
ning the same driver Program as a continuous workilow. [2] Open MPI: Open Source High Performance Computing. http:
Those processes coordinate execution through exchanging //wwi.open-mpi . org.
messages, and block when waiting for messages. MPI’s [3] AHMAD, F., CHAKRADHAR, S. T., RAGHUNATHAN, A., AND
lack of a central controller or any scheduling at all means VIJAYKUMAR, T. N. ShuffleWatcher: Shuffle-aware Scheduling
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