Canary: A Scheduling Architecture for High Performance Cloud
Computing

Hang Qu, Omid Mashayekhi, David Terei, Philip Levis
Stanford University
{quhang, omidm} @stanford.edu, {dterei, pal} @ cs.stanford.edu

Abstract

We present Canary, a scheduling architecture that allows
high performance analytics workloads to scale out to run
on thousands of cores. Canary is motivated by the ob-
servation that a central scheduler is a bottleneck for high
performance codes: a handful of multicore workers can
execute tasks faster than a controller can schedule them.
The key insight in Canary is to reverse the responsi-
bilities between controllers and workers. Rather than
dispatch tasks to workers, which then fetch data as nec-
essary, in Canary the controller assigns data partitions to
workers, which then spawn and schedule tasks locally.
We evaluate three benchmark applications in Canary
on up to 64 servers and 1,152 cores on Amazon EC2.
Canary achieves up to 9 —90x speedup over Spark and
up to 4 x speedup over GraphX, a highly optimized graph
analytics engine. While current centralized schedulers
can schedule 2,500 tasks/second, each Canary worker can
schedule 136,000 tasks/second per core and experiments
show this scales out linearly, with 64 workers scheduling
over 120 million tasks per second, allowing Canary to
support optimized jobs running on thousands of cores.

1 Introduction

Data analytics frameworks such as Spark [36] and Na-
iad [24] provide high-level programming abstractions that
operate on datasets far too large for a single server’s mem-
ory. These frameworks parallelize an application (called
a job) across tens or hundreds of servers by breaking it
into many small tasks. Many data analytics applications
are CPU-bound [27]; breaking them into small tasks lets
them use more cores, and parallelizing across more cores
reduces completion time.

Micropartitioning each computational step (a stage)
into multiple tasks per core can reduce completion time
further. Cloud analytics applications have highly variable
task execution times: some tasks can run twice or ten

times as long as others, due to data skew or variations in
node performance. [4] If each stage is micropartitioned
into multiple tasks per core, busy cores can shed tasks
to idle ones. Furthermore, the runtime can interleave
computation and communication, sending the results of
one task while computing the results of a second. [31]

But increasing the number of tasks has a cost. Although
an analytics job is parallelized across many servers (called
workers), a single server, the controller, is responsible for
scheduling tasks for many jobs to a shared cluster of work-
ers. A modern analytics controller can schedule 1,500-
2,500 tasks per second. As the number of workers and
tasks increases, the scheduler becomes a bottleneck. [28]

Systems such as Sparrow [28], Omega [32], Apollo [6],
and Mercury [19] try to sidestep the scheduler bottle-
neck by allowing each job to have its own private sched-
uler. Through a variety of mechanisms (monitoring
worker load, batching, power of two choices, central load
databases), these systems allow each scheduler to find and
use idle cores in a shared cluster while preventing flash
mobs or other synchronized behaviors.

But even a single optimized job can easily saturate a
scheduler. In Section 2, we show a C++ implementation
of a standard analytics benchmark that executes three
tasks per core every 470ms. Tasks take on average 150ms
to complete, so each core can run 6 tasks/second. Modern
Amazon EC2 instances (m4.10xlarge) have 40 cores: a
single job running on 8 workers (320 cores) can execute
2,000 tasks/second, close to the limit of a modern con-
troller. As CPU-bound analytics workloads increasingly
call into GPUs or native C libraries to improve perfor-
mance and the number of cores per processor increases,
scheduling and controllers are emerging as a bottleneck.

MPI-based high performance computing applications
can scale to run on tens of thousands of cores with tasks
that are as short as tens or hundreds of microseconds by
having no controller at all. Without a controller, however,
no node knows the overall network and application state.
Accordingly, MPI applications are notoriously difficult

to load balance, and so use one task per core and are
carefully designed so that each stage’s tasks have near-
uniform execution times, in some cases even by running
empty loops. Furthermore, the lack of a central controller
makes MPI applications brittle to faults and failures.

This paper proposes a new scheduling architecture,
called Canary, that can support orders of magnitude more
tasks per second than existing approaches. The key insight
behind Canary is to reverse the responsibilities between
controllers and workers. Rather than have a controller
schedule tasks to workers, which are then responsible
for fetching data, in Canary the controller only decides
how data are distributed on workers. Each worker locally
spawns its own tasks based on the current program posi-
tion and the data partitions the controller has assigned to
it. The controller remains responsible for load balancing
and fault tolerance, while workers take on the responsi-
bility of scheduling and executing the job in a distributed
way.

Canary is implemented in a C-based data analytics
framework written from scratch because the performance
of existing open-source frameworks falls far behind a fully
optimized implementation [23]. The inefficiency of these
frameworks prevents understanding realistic workload
characteristics because their tasks run so slowly. In Sec-
tion 2 we show how simple C++ re-implementations of
analytics benchmarks in this framework can speed them
up by factors of 4-90 over Spark [36] and GraphX [14].

This paper evaluates Canary’s scalability using three
applications, logistic regression, k-means clustering and
PageRank. Our results show that using Canary, a single
core can schedule 136,000 tasks/second, and a 64-node,
1152-core cluster can schedule 120 million tasks per sec-
ond. This allows Canary to run benchmarks orders of
magnitude faster as the scheduler is no longer a bottle-
neck. This paper makes three research contributions:

e an analysis that shows centralized scheduling cannot
scale because scheduler load grows quadratically with
the number of cores,

e anovel scheduling architecture which scales to support
orders of magnitude more tasks per second by decou-
pling data placement management and task execution
scheduling, and

e optimized implementations of three data analytics ap-
plications that demonstrate the benefits of a highly scal-
able scheduler.

Section 2 gives an overview of the performance bot-
tlenecks of existing analytics frameworks and why their
scheduling architecture limits the scale at which their
applications can run. Section 3 presents the Canary sys-
tem architecture, Section 4 presents the design of Canary
workers, and Section 5 evaluates its performance and scal-
ability. Section 6 describes the related work that Canary

extends and builds on, and Section 7 concludes.

2 Motivation: Scalable Scheduling

This section gives an overview of analytics frameworks
and their current bottlenecks. It shows how numerous
optimizations to analytics have a corresponding cost: the
task rate, or number of tasks per second the job executes,
goes up, increasing load on the scheduler. Optimizing
analytics codes (e.g., using C rather than functional Scala
code) can improve performance and increase the task rate
by a factor of 90. Scaling out a CPU-bound workload to
more cores causes the task rate to increase quadratically
with the number of cores used. Finally, breaking a job into
smaller tasks reduces job completion time by allowing
more flexible load balancing, but also increases the task
rate. Together, these results mean that existing schedulers
can barely keep up with a handful of well-tuned workers.
This motivates the need for a new scheduling architecture
that can handle orders of magnitude more tasks per second
than current schedulers do.

2.1 The Cost of Fast Analytics

The power of MapReduce [9], Pregel [22], Spark [36] and
other distributed computation frameworks is in great part
due to their ability to scale out to run on many nodes in
parallel. For I/O-centric workloads, which MapReduce
targets, individual tasks can take tens or hundreds of sec-
onds [7] and so even when scaled out to large numbers of
machines the aggregate number of tasks per second the
system must schedule is low. Furthermore, because these
workloads are I/O bound, rather than compute bound,
the increasing number of cores per CPU does not greatly
increase task rate.

In contrast, modern analytics workloads are CPU-
bound [27]. Improving their CPU performance makes
their tasks run faster and jobs complete in less time. Ta-
ble 1 shows the job completion time of a standard Spark
benchmark, logistic regression, running on a single 18-
core worker. One iteration of a standard Spark imple-
mentation, written in its functional language, takes 42
seconds. A highly optimized Spark implementation that
uses Spark’s lowest level API can run 16 times faster, in
2.6 seconds. Written in C, using the analytics framework
we have described in Section 5.1, each iteration takes
470 milliseconds, running 90 times faster than the stan-
dard Spark implementation. In the C implementation, one
iteration involves 3 tasks per partition. If there is one
partition per core, a single 18-core worker executes more
than 120 tasks per second.

Time (s) Tasks/sec
Spark (functional) 42.36 04
Spark (imperative) 6.52 2.8
Spark (low level API) 2.59 7.0
Canary 0.47 123.4

Table 1: Execution time and task rate of one itera-
tion of a logistic regression job that processes 20GB
of training data on a server with 18 physical cores.
Each Spark iteration is 18 tasks (1 per core) while
each Canary iteration is 58 tasks (3 tasks per core
plus 4 global tasks). Spark (functional) is the standard
implementation which uses functional operators like
map and zip. Imperative replaces the functional oper-
ators with loops. Low level API uses mapPartitions
to manually iterate over data. Canary is a C++ imple-
mentation.

2.2 The Cost of Scaling Out

Scaling out to more workers both increases the number
of tasks that must be scheduled and decreases how long
each of those tasks takes. As a result, the number of tasks
per second that must be scheduled increases quadratically
with the number of worker cores.

Suppose we have a CPU-bound analytics job which,
if all data are in memory, takes C cycles to compute. If
C is evenly distributed across W worker cores, then a
scheduler will need to schedule one task per stage per
core, or W tasks. If the job is CPU-bound and scales
well, then parallelizing it across W cores will cause it to
run W times faster; the computation will take % time. A
scheduler’s load is therefore

(Fe®) o

tasks per second. As long as C does not change much
with greater parallelism, the task rate a job generates for
a scheduler scales with @(W?).

2.3 The Cost of Utilization

Recent research [26] as well as experiences of core mem-
bers of Google’s datacenter software [8] have shown that
micropartitioning a computational stage more finely than
one partition per core has significant benefits. Microparti-
tioning enables better load balancing and faster comple-
tion times. If some tasks take longer than others (e.g., due
to data skew), then workers with longer tasks can shed
some of their other tasks to less heavily loaded workers.
Prior work shows that micropartitioning a stage into 10-20
tasks/core has significant performance benefits, reducing

completion time by a factor of 2-10 by keeping cores at
high utilization.

Suppose each stage in a job is split into P tasks per core.
Following the analysis above, this means the number of
tasks that must be scheduled grows with @(P - W?).

2.4 The Need for a New Scheduling Archi-
tecture

Applying these analyses to the performance numbers pre-
sented above, a single worker running the logistic re-
gression benchmark in Table 1 with P = 10 (a common
setting), can execute 1,200 tasks per second. If the job
were parallelized to run on two workers, completion time
would be halved, but there would be twice as many tasks
to execute, so the task rate would increase by a factor
of 4, to 4,800 tasks per second. Scaling out the job to
8 workers would increase the task rate to 16-4,800, or
nearly 80,000, tasks per second.

Modern analytics controllers can schedule 2,000 -
3,000 tasks per second.! If jobs run CPU-optimized code
and try to parallelize to many modern multi-core ma-
chines, the scheduler quickly becomes a bottleneck; we
defer a detailed presentation of our experimental results
to Section 5, but for basic benchmarks written in Spark,
the Spark scheduler is already a bottleneck for 32 18-core
workers when P = 1, and setting P = 10 limits Spark to 3
workers.

If next generation frameworks are to scale out for high
performance analytics workloads, they will need a new
scheduling architecture. The next section describes such
an architecture, whose scheduler’s load is independent of
the number of workers and instead only acts when load is
rebalanced across workers.

3 System Overview

Canary is a distributed scheduler architecture for cloud
data processing systems. The key insight behind Canary is
that a worker can determine which tasks it should execute
based on what data partitions it has in memory. By placing
the data partitions a task uses onto a worker, the controller
implicitly assigns that task to that worker. In the extreme
case, if every worker knows the placement of every data
partition and partitions never move, workers can run and
complete an entire job without any controller coordination.
This section describes the system architecture, execution
model, and central controller. The next section provides
details on how workers locally spawn and schedule tasks
as well as how they exchange data and migrate partitions.

Ousterhout et al. report the Spark scheduler can handle 1,500 tasks
per second. Our measurements in Section 5 show that a recent Spark
release (1.5.2, November 2015) improves the throughput to 2,600 tasks
per second.

Spark Controller

Canary Controller

Driver Program "
g Scheduler Partition Manager Scheduler
Decide data
Task Graph placement
: Broadcast dat Specify a stage to
/\ placement snapshot at
Partition Partition
S rt
Iocaa\llisa:i':i?)ns Manager Manager
Replica W2 W1 W2 Replica W2 Wil w2

W2 wi
Partition
Manager

Partition
Manager

Spark Worker 1

Spark Worker 2

(a) Existing centralized scheduling architecture.

Scheduler ~ Driver program

Task

@ Task
graph @ queue T2

Canary Worker 1 Canary Worker 2

(b) Canary scheduling architecture.

Figure 1: The Canary controller distributes task generation, and task dependency analysis to workers. Canary
workers infer what tasks to run based on what data partitions are local, reason about task dependency from a
local driver program copy, and decide what tasks to run and when, all without the controller’s help.

3.1 Architecture

A Canary controller is responsible for deciding how data
partitions are distributed across workers, deciding when
partitions should migrate between workers, and coordinat-
ing partition migrations to maintain program correctness.
Each Canary worker has a copy of the driver program,
which it uses to locally spawn and schedule tasks. It de-
cides which tasks to spawn based on what data partitions
are resident in its local memory, as determined by the con-
troller. Controllers today decide task placement and leave
it to workers to move partitions so they can execute those
tasks. Canary inverts this model, as its controller decides
partition placement and leaves it to workers to generate
the tasks to compute on their data. Figure 1 shows the
Canary architecture in comparison to existing scheduler
architectures.

Canary’s model makes two assumptions about how data
partitions behave. First, it assumes that the set of data
partitions changes slowly. For analytics workloads, which
typically involve many iterations over in-memory data
(e.g., graph algorithms, regression, signal processing),
this assumption is valid. If workers are continually gener-
ating many new, short-lived partitions, then this activity
could lead to significant load at the controller. Second,
it assumes there are far fewer data partition migration
events than tasks executions, that is, a worker will execute
many tasks on a partition before possibly migrating it.
This assumption is valid for any CPU-bound workload,
as migrating a partition generally takes much more than
than computing tasks on it; if there are many migration
events, the workload is I/O, rather than compute, bound.

3.2 Execution Model

Canary’s execution model is very similar to other cloud
computing frameworks. A job is written as a driver, a se-
quential program whose variables are large datasets. Each
variable has an associated partitioning function, which
defines how many partitions the variable is split into. The
program can apply parallel operations on these datasets,
which perform the computation on the partitions in par-
allel. Just as in Spark, if an operator takes multiple vari-
ables as input, each of those variables must have the same
partitioning. Otherwise, it is not possible to properly
parallelize the computation. Moving data from one par-
titioning to another is a shuffle operation, just as in the
MapReduce programming model.

Canary’s execution and programming model differs
from centralized schedulers in one important way: all
variables are datasets. Because there is no single, cen-
tralized copy of the driver program, there is no notion
of a scalar variable such as a loop counter or a parame-
ter passed through a closure (as is common with Spark).
Since the driver executes on every worker, such a variable
would be replicated across them. Instead, a program can
define a dataset that has a single partition; it is then up to
the controller to decide where this partition resides.

The execution model allows loops or conditional
branches based on runtime results, with one constraint.
Every worker must make the same runtime control flow
decision, i.e., running the same number of iterations and
taking the same conditional branch. As explained in Sec-
tion 4.4, this is so that workers have a consistent enough
view of program execution that they can correctly migrate
partitions and exchange data. Since there are no global

variables, this implicitly means that any conditional exe-
cution requires a barrier operation.

3.3 Controller

The Canary controller has four major responsibilities:

e compute and update the partition map, which speci-
fies how partitions are distributed across workers,

e distribute the partition map to workers,

e coordinate worker execution so they migrate parti-
tions safely when it changes the partition map, and

e decide when workers should store a snapshot of their
partitions to durable storage for failure recovery.

A data partition is named by a (name,index) tuple. Name
is the variable name in the program, and index is an in-
teger in the range of [0,n — 1], where n is the number of
partitions. The partition map is a table that specifies, for
each partition, which worker has that partition in memory.
In-memory partitions are not replicated. If a worker fails,
the controller instructs other workers to reload the lost
partitions from the last snapshot to durable storage, which
is replicated. If the snapshot is old enough that it is not
possible to recover the current state of a partition, the
controller asks other workers to restore their partitions as
well, rolling the entire computation back to the snapshot.

The controller periodically queries workers for load
information, including how much time their CPU is idle
and how much CPU time they have spent computing
tasks on each partition. When a worker is completing
stages significantly slower than the average, the controller
chooses another (lightly loaded) worker and moves some
of the slow worker’s partitions to the lightly loaded one.
It does this by updating the partition map, sending those
updates to every worker, and sending control messages to
the workers to perform the transfer. Section 4.4 describes
how the workers independently coordinate when to safely
perform the transfer among themselves.

The partition map is a table, so updates involve simple
changes to the worker field of the rows for migrating par-
titions. One important property of distributing partition
map updates is that they do not need to be strongly consis-
tent: sequential consistency is sufficient. This is because
migrations, since they rely on explicit commands from the
controller, do not directly use the partition map. Instead,
the principal role the partition map plays on a worker is
to inform it whom it needs to exchange data with. In
cases where a worker’s partition map is stale or incorrect,
the data exchange protocol described in Section 4.2 can
detect this and update the stale partition map.

Workers autonomously generate tasks based on which
partitions they have. It is therefore possible to distribute
partitions in a way that will prevent a program from exe-
cuting. For example, consider a stage S that has two inputs

A and B, each of which has two partitions, for a total of 4
partitions: Aj,A», By, and B;. If the controller places A
on one worker and A;,B;, and B, on the other, then no
worker can compute S(A;,B;). The controller therefore
uses the driver program to compute a set of constraints on
what partition placements are valid and always updates
the partition map in a way that meets these constraints.
In the example above, if one worker had all four parti-
tions and was overloaded, the controller would decide to
migrate either A| and B; or A; and B; simultaneously.
Tasks can compute on in-memory data much faster than
it can be written to durable storage or replicated across
workers. Therefore, rather than relying on replicating
in-memory data partitions, Canary borrows techniques
from high performance computing for durability and fault
tolerance. This has the added benefit that it reduces mem-
ory use and so allows a cluster to process larger datasets.
A controller periodically sends workers a snapshot com-
mand. The command specifies which stage the workers
should snapshot at. The selected stage must be a stage
that acts as a barrier, which all workers must complete
before continuing. A shuffle stage, for example, which
remaps data from one partitioning to another, is a barrier
because all of the input partitions must be processed into
output partitions before computation may continue. When
the workers complete execution of this stage, they stop
execution and store their partitions to durable storage.

3.4 Discussion

If a job is executing smoothly and is well balanced, a
controller does little more than periodically collect perfor-
mance information. This idleness is intentional, in order
to prevent the controller from becoming a bottleneck. As
a result, each worker core has much more responsibility:
it must spawn and schedule tasks, coordinate partition
migration, and transfer data with other workers. But be-
cause this work is parallelized across every worker core, it
takes up at most a few percent of worker CPU cycles. The
next section describes the abstractions and mechanisms
workers use to achieve this behavior.

4 Workers

The key challenge in Canary is enabling workers, in a
completely distributed way, to
e correctly spawn tasks and compute their scheduling
dependencies,
e exchange data with other workers,
e maintain a consistent view of execution, and
e migrate partitions.

The rest of this section explains how they do so. To
ground these explanations in a concrete example, we use

O~]w y
Oo—[l read
oS

Figure 2: A logistic regression application imple-
mented in Canary. Grey ovals are compute tasks,
white ovals are communication tasks, and boxes are
partitions. LW is the local weight, TD is training data,
LG is the local gradient, GW is the global weight and
GG is the global gradient.

a standard data analytics benchmark, logistic regression.
Logistic regression iteratively computes a gradient value
for each data partition, combines the gradient values to
derive a global weight value, then uses the global weight
value as a parameter for the next iteration.

Figure 2 shows the structure of this application in terms
of stages and datasets. To calculate a gradient value for
each training data partition, the gradient stage reads
the training data dataset and local_weight dataset
and writes the local_gradient dataset. To sum up local
gradient values to the global gradient value, a scatter stage
packs local gradient values as intermediate chunks, and a
gather stage sums up values in those intermediate chunks
and writes to global_gradient dataset.

4.1 Program Representation and Execu-
tion

Each Canary worker has a full copy of the job’s driver
program. The worker enumerates the stages in the pro-
gram and uses these as identifiers to specify program
position. For each partition, the worker maintains which
was the last stage that read from or wrote to that partition.
Figure 3 shows the metadata a worker maintains for the
logistic regression application.

A Canary worker borrows the concept of a “software
processor” from the Legion framework [5]. In this ap-
proach, programs appear to run sequentially, but under-
neath the runtime may execute stages out of order to
improve parallelism, just as a modern CPU does with
instructions. The worker is therefore responsible for
determining stage dependencies, for example, that the
scatterG communication stage in Figure 3 cannot run

Stage Id

Stage

Partition : Metadata

Program
position @
e 4)

©000®0

Figure 3: Metadata a worker keeps on the logistic re-
gression application. Each stage has an identifier, and
a worker keeps track of which was the last stage to ac-
cess each partition.

until the gradient computational stage has completed.
Given a driver program, the worker generates a depen-
dency graph of its stages based on the datasets they read
and write.

4.2 Data Communication

Canary provides two communication abstractions. The
first is for data transfer. It is a scatter-gather operation,
similar to MapReduce, Spark, and other frameworks. The
operation takes two functions. The first, the scatter func-
tion, takes one or more datasets and produces one or more
datasets as output. The key property of the scatter op-
eration is that, while all of its input datasets must have
the same partitioning and all of its output datasets must
have the same partitioning, the input partitioning does
not have to be the same as the output partitioning. Fur-
thermore, unlike computational tasks, which only access
one partition of a dataset when they execute, a scatter
function accesses any partition (hence “scatter””). When
the scatter completes, the worker uses the partition map
to determine where it should send any non-empty scatter
partitions. The gather function takes many partitions (the
many pieces generated by different scatterers) and merges
them into one.

Because a partition map can be stale, it is possible that
a worker executing a scatter task will try to deliver inter-
mediate results to the wrong worker. It is also possible
for a worker to start receiving data for a partition it does
not yet know it is responsible for. To handle these incon-
sistencies, each entry in the partition map has a version
number associated with it. When the controller sends a
partition map update, it increments the version number
of any changed entries. Whenever a worker sends data
to another worker, it includes the version number in its
associated partition map entry. If a worker receives a data
transfer for a partition it does not have and the sender has
a newer version of the partition map entry, it concludes

that it will soon own the partition and so holds the scatter
data. If the sender has an older version of the partition
map entry, the receiver forwards the data to the correct
destination and assumes the sender will be updated soon.

The second communication abstraction is for control.
It is a reliable broadcast of a replicated boolean variable
called a signal. Signal functions are used for conditions
and loops. A signal function takes a dataset as input. This
dataset must have a single partition (any other partitioning
is a runtime error). It produces a boolean value as output.
After the worker which has the input partition executes
the function, it broadcasts the result to every other worker
in the system. Other workers, when they reach a signal
function, wait to hear the broadcast.

4.3 Spawning Local Tasks

The metadata that workers maintain is sufficient for them
to quickly infer and spawn tasks locally. As a worker
keeps track of the last stage to access each of its local
partitions, it can, from its dependency graph, determine
what are the next stages that will access it. For exam-
ple, in Figure 3, the worker knows that the next stage to
access local_gradient will be the scatterG function.
Whenever the worker updates which stage last accessed a
partition, it checks each of the next task(s) to access that
dataset for whether all of their inputs are ready. If so, it
spawns the task and adds it to a local run queue.

The key property of Canary’s execution model that
makes this possible is its communication primitives. Be-
cause any looping construct goes through a signal func-
tion, this acts as a barrier across the workers. Similarly,
any results which escape a worker and can affect compu-
tations elsewhere must go through a scatter-gather, and
so are a barrier. As a result, all of the workers agree on
which iteration of a loop they are on, and correspondingly
the position in the sequential program can be defined pre-
cisely enough to ensure that workers remain in sync with
one another.

4.4 Partition Migration

Section 3.3 described how a controller tells two workers
to migrate one or more data partitions. Because the con-
troller does not know exactly where the workers are in
their execution, it cannot tightly coordinate this exchange.
Canary makes the assumption that a slight delay in mi-
grating the partition is acceptable, since the worst that can
happen is the job will run an additional iteration with a
load imbalance.

When a worker receives a command to migrate a parti-
tion, it marks that partition with a flag. When the worker
considers whether it can spawn a task, it always considers
a flagged partition as not ready, and so will not spawn

e
.2
*a
N
e (6.6, 90%)
3 BO T
o
© 40
0 10 20 30 40 50 60 70

Average task length (us)

Figure 4: Canary can schedule 136K tasks/sec per-
core while consuming less than 10% of available CPU
time. This allows a worker with 18 cores to schedule
2.4M tasks/sec. In the benchmark, tasks run on av-
erage for 6.6us and take 0.7us to schedule. In com-
parison, a Spark controller has a peak scheduling
throughput of 2.6K tasks/sec.

any new tasks that access that partition. Once there are
no tasks that access the partition in the run queue and the
last task to access it completes, the source worker begins
the transfer to the destination. It includes, as metadata,
the last stage to write to the partition. This tells the desti-
nation at what stage in the program the source worker is
and so what the next tasks to execute on the partition are.

5 Evaluation

This section evaluates Canary by measuring its task
scheduling throughput and how high scheduler through-
put improves end-to-end application performance. It com-
pares Canary’s performance with GraphX and Spark, two
analytics frameworks used heavily in practice today.

5.1 Implementation and Methodology

The Canary implementation this section evaluates is a
from-scratch analytics computing engine written in C++.
The entire framework is 4K semicolons. We have imple-
mented numerous applications in the framework, includ-
ing both the three benchmarks used in the evaluation as
well as several scientific computing applications that we
do not mention due to space constraints. Figure 1 shows
its overall software architecture and data structures.

All experiments use Amazon EC2 [1] C4 instances,
a server configuration optimized for compute-intensive
workloads. C4 instances use Intel Xeon E5-2666 v3
(Haswell) processors with hyperthreading and 10GbE
networking. Workers run on c4.8xlarge instances, con-
taining 18 cores and 60GB of memory, while the con-
troller runs on a c4.large instance, which has 1 core
and 3.75GB of memory.

To evaluate application performance using Canary in
comparison to systems that schedule centrally, we use
three standard analytics benchmark applications: logistic

throughput

Task scheduling

1 8 16 64
(1152)

32 48
(18)(144)(288) (576) (864)
of workers (# of cores)

Figure 5: Canary scheduling throughput grows al-
most linearly with the number of workers, reaching
127M tasks/sec with 64 workers (1,152 cores). The
high throughput allows jobs to be split into as many
tasks as needed without concern for the scheduler
overhead.

regression, k-means clustering and PageRank. For logistic
regression and k-means clustering we compare Canary
against hand-optimized Spark implementations (the low
level API row in Table 1). For PageRank, we compare
Canary against GraphX, an API built on top of Spark that
is optimized for graph applications. Both the GraphX and
Canary PageRank implementations use the same vertex
cut partitioning algorithm, which uses a 2D partitioning of
the sparse edge adjacency matrix and guarantees that each
vertex has at most 2 X v/numPartitions mirror vertices.

We tuned each application’s input data size so that
Spark or GraphX uses about 80% of worker memory
when running on a cluster with 8 workers. For logistic
regression and k-means clustering, this means the training
data is 1 billion vectors of 20 64-bit floating point numbers
(160GB on disk). For PageRank, the graph has 5 million
vertices and 635 million edges generated using the same
graph parameters used to evaluate Pregel [22].

For Canary we report the iteration time as the average
of all iteration times except the first and last iterations.
For Spark and GraphX we instead use the median of all
iterations to filter out the overhead of the JVM warm up,
just-in-time compilation, and garbage collection. The
median therefore more accurately reports the execution
time of only the tasks themselves. Because Spark and
GraphX have a long tail in their iteration times, using the
average for Canary and the median for Spark and GraphX
means the reported speedups are lower than what would
be seen in production. Logistic regression and k-means
clustering run for 50 iterations, while PageRank runs for
20 iterations.

5.2 Task Scheduling Throughput

We first measure the scheduling throughput of Canary by

running a micro-benchmark that runs one billion stages.

Each stage consists of tasks that busy loop on their data

partition. The job assigns 10 data partitions to each core.

Because each Canary worker core runs its own scheduler,
having that scheduler completely utilize the core would
prevent any forward progress on the job. We therefore
measure scheduling throughput as the task rate that a
core can schedule while using at most 10% of the core’s
CPU cycles, leaving > 90% of CPU cycles for application
code.

Figure 4 shows the results. Canary takes 700ns to
schedule a task. Therefore, when requiring the scheduler
use at most 10% of CPU cycles, Canary can support
tasks as short as 6.6uts. This allows a single worker core
to schedule 136,000 tasks per second, and one 18-core
worker node to schedule 2.4 million tasks per second. For
Ims tasks, the Canary scheduler uses only 0.07% of CPU
cycles, leaving 99.93% for application code.

Canary is able to schedule tasks so quickly because all
of the scheduling logic executes on not only the same
node, but even the same process as application code.
Therefore, generating, scheduling, and executing tasks
requires neither network I/O nor even inter-process com-
munication. Scheduling involves traversing the task data
structure for runnable tasks and inserting them into a
queue, while dispatch removes the next task from the
queue.

Figure 5 shows the same micro-benchmark running
across multiple workers. Canary’s scheduling throughput
scales linearly with the number of workers for up to 64
workers (1,152 cores). Task scheduling is completely
local and requires no communication with the controller
or other workers. With 64 workers, Canary can schedule
127 million tasks per second while using at most 10% of
CPU cycles. This 127 million is less than the scheduling
throughput of 64 independent workers, which would be
154 million (2.4 million per worker from Figure 4 times
64 workers). The difference comes from the difference
in task execution time on the workers. When running
on multiple nodes, the application sends data over the
network for scatter-gather operations to compute whether
to execute another iteration.

5.3 Application Performance

Running CPU-bound applications on more cores should
reduce completion time until the task durations shrink
enough that I/O time becomes significant. To evaluate the
performance benefit of scaling jobs out to run on more
cores, we examine the performance of Spark, GraphX
and Canary as a job with a fixed input data size running
on an increasing number of worker nodes. As noted in
Section 5.1, the input sizes are such that they can fit in
RAM on 8 workers.

Figure 6 shows the results for running the jobs on 8, 16,
32, and 64 workers (144, 288, 576 and 1152 cores). At
low scale-outs, e.g., with 8 workers, Canary runs logistic

6 o [Idle
-] [Busy -
o) o
g% £ £
= B Ay =
= =4 548 =
[c | [
<] o <]
=] . S B.51— =]
e 1 C o] |20 1ea e
2] 1.29 2
= = p-8 0.99 =
1.44% 1.7 051027
0 &% Brw022

8 163264 8 163264
Spark Canary

of workers(18 cores)

Spark

(a) Logistic regression.

8 163264 8 163264

of workers(18 cores)

(b) K-means clustering.

8 16 32 64
GraphX

of workers(18 cores)

8 16 32 64

Canary Canary

(c) PageRank.

Figure 6: Iteration execution time while keeping the size of the input fixed as the number of workers increases.
Each core runs one task in a stage. Canary scales out logistic regression and k-means clustering linearly and
accelerates PageRank up to 64 workers. Spark scales out worse due to scheduler load as well as data transfer.

Task execution time(ms)

Figure 7: Execution time distribution for calculation
tasks when Canary runs logistic regression using one
input data partition per core on 8 18-core workers.
The slowest task takes twice as long as the average
task length despite processing the same amount of
data.

regression 4.5 % faster, k-means clustering 3.25x faster,
and PageRank 15% faster. As the application scales out
and runs faster, the performance improvements increase:
logistic regression runs 9x faster, k-means cluster runs
4.8 faster, and PageRank runs 8.5 faster.

For Spark, this trend is because although Spark’s com-
putation time shrinks similarly to Canary’s, the idle time
shrinks much less quickly. Spark’s idle CPU time is
caused by task scheduling latency. At the start of an it-
eration, workers wait for the controller to dispatch tasks.
In the case of 64 workers and 1,152 cores, the controller
takes about 0.5sec to schedule enough tasks to keep all
cores busy, given the controller can only schedule 2.6K
tasks/sec.

The 5-10x speedup of Canary over Spark shows how
fast analytics combined with scaling out demands high
task scheduling throughput. When running on 64 workers,
Canary executes 36,000 tasks/sec on average for logistic
regression and 13,000 tasks/sec for k-means clustering.

For PageRank, Canary runs only 15% faster than

3.76
v [Idle
D 3-oeerviieennnee... N I:I--Busy
£ 2.46
-
2.00

C 2.l e
5 2
]
© qoro2l T
g 1.22(| 1.26

0 0.62|0.71 0.16 0.12 0.12 0.22

‘Slparé e 1 éana?y 16

of input data partitions per core

(a) Iteration execution time. Spark slows down with more
partitions per core due to scheduler load as well as data
transfers. Canary speeds up due to better load balancing,
up until 16 partitions/core when data I/0 becomes a bottle-
neck.

0 2K e 120K
s | e 80K
x 1K
w TN A 40K
d 0

14 8 16 1 4 8 18

Spark Canary
of input data partitions per core

(b) Task rates. Spark saturates at 2.6K tasks/sec, bottle-
necking the job. Canary schedules up to 120K tasks/second,
and bottlenecks at 16 partitions/core on application commu-
nication.

Figure 8: Logistic regression on 32 workers as the
number of partitions per core increases.

19.82
10.93
o 10 S £ Idle
< 1 Busy
£
B 13.30
c
o 5........ . Y0 O
=
©
E 2.62 5.85 2.47
351|247 086 0.60 0.58 |73
0 [Svx:valasmssh
1 2 4 6 1 2 4 6
GraphX Canary

of edge partitions per core

Figure 9: PageRank execution on 32 workers as parti-
tions per core increases. GraphX is unable to handle
additional partitions per core due to scheduling and
data transfer bottlenecks. Canary speeds up by 32%
due to better load balancing and because smaller par-
titions have better cache behavior.

GraphX on 8 workers; GraphX is an optimized sys-
tem whose task execution speeds are close to C++ code.
PageRank is a harder application to scale out because as
the number of partitions goes up, the number of graph
vertices that must be communicated increases (the vertex-
cut algorithm creates more mirror vertices) and so /O
becomes an increasing portion of execution time. GraphX
runs fastest with 16 workers, which have a total task rate
of 450 tasks/sec. Canary, in contrast, continues to run
faster as it scales out. With 64 workers, Canary runs 3.9 x
faster than GraphX with 16 workers, and 8.5 as fast as
GraphX with 64 workers. At this speed, Canary executes
12,000 tasks/sec.

5.4 Micropartitioning

The experimental results in Figure 6 shows that Canary
does not fully utilize its cores. Logistic regression and
k-means cores spend 18-44% of their time idle despite
having very little network I/O. Task execution time vari-
ance causes this CPU idle time. These experiments have
one partition per core, and so slowest task determines
execution time. Figure 7 shows the CDF of task execu-
tion time for logistic regression. The fastest core is twice
as fast as the slowest one. This variance is caused by
non-uniform memory access (NUMA). Each worker has
two sockets, and on-socket memory throughput is twice
that of off-socket memory. Because Linux’s allocation
policy maps physical pages across the two sockets, task
execution time can vary by a factor of 2: the fastest tasks
have all local pages and the slowest have all remote pages.

The variance in task execution time suggests that mi-
cropartitioning a stage and load balancing across cores

10

will reduce completion time as this variance will aver-
age out. Figure 8a shows how long it takes to complete
one iteration of logistic regression on 32 workers with
micropartitioning.

Spark slows down with more micropartitions. Fig-
ure 8b shows the task rates for Spark and Canary in this
experiment. At 16 partitions/core, the Spark controller is
at its maximum scheduling capacity of 2,500 tasks/second.
The controller occupies a larger and larger fraction of exe-
cution time, as cores fall idle. With 16 partitions per core,
CPUs are idle 67% of the time as they wait to receive
tasks to execute. In contrast, Canary schedules 120,000
tasks/second and the scheduler is not the bottleneck.

When there is one task per core (576 tasks), Canary
runs over six times faster than Spark, and microparti-
tioning improves Canary’s performance. Running with
16 partitions per core slows down the application as the
amount of communication needed for the scatter/gather
stage begins to dominate, but 4 or 8 partitions per core
cut job completion time by 25%.

Micropartitioning has an additional benefit: smaller
partitions can be transferred faster and pipelined with
execution. For example, P = 8, each partition is approx-
imately 135MB, takes 80ms to transfer, and a k-means
computation takes 50ms. A slow worker can transfer
partitions while it computes on others, overlapping these
operations and reducing idle time.

Finally, micropartitions also improve performance
through better cache locality, especially for workloads
that are not simple scans of data, such as PageRank. Fig-
ure 9 shows how increasing the number of partitions per
core affects completion time for GraphX and Canary. For
GraphX, micropartitioning quickly overwhelms the sched-
uler and forces it to use inefficient marshalling procedures
for larger amounts of data, such that its completion time
goes up nearly linearly. For Canary, PageRank’s perfor-
mance is dominated by the step that scans over a list of
edges and fills mirror vertex values into a hash table. Mi-
cropartitioning shrinks this hash table and reduces cache
pressure, cutting completion time by 33% with 4 parti-
tions per core. At 6 partitions per core, performance be-
gins to degrade as the number of mirror vertices increases
and so requires much more I/O and data replication.

6 Related Work

Scheduling jobs to share a cluster is a broad research topic,
with prior work examining how to mitigate stragglers [34,
30], how to optimize networking use [3, 11, 17], or how
to isolate performance between tenants [21].

This paper focuses on improving scheduling through-
put. Earlier work like YARN [33] and Mesos [15] takes
a centralized approach, and suffers from scalability chal-
lenges when serving large-scale clusters. To increase

scheduling throughput, distributed scheduling systems
[28, 32, 6, 19] use multiple servers to schedule jobs in
parallel by coordinating how these distributed servers al-
locate shared resources. Recent work [10, 12] proposes a
hybrid approach, e.g., Hawk [10] schedules long-running
batch processing jobs centrally to improve scheduling
decisions, but uses distributed scheduling for short jobs
to improve scheduling throughput. All of these prior
approaches, however, assume that any single job is sched-
uled by a single controller. In contrast, Canary examines
the case when even a single job’s scheduling load is too
great for a central controller.

State-of-art data analytics frameworks are designed
without the awareness that a job ever needs such a high
task rate as this paper explains, and their system designs
perform poorly when significantly increasing the task
rate within a job. Dryad [16, 35] and Spark [36] use a
centralized controller to schedule tasks in a same job,
and the controller can become a performance bottleneck.
GraphX [14] is built on top of Spark and shares the same
problem. Naiad [24] does not have the controller bottle-
neck, but uses a distributed progress tracking mechanism
that decides when a notification can be delivered to a ver-
tex to trigger its execution. The mechanism is required
to execute the programming model (timely dataflow) cor-
rectly, and incurs significant overhead when the task rate
is high enough due to more progress updates being ex-
changed.

The idea that the controller places data and then work-
ers generate tasks locally is similar with how graph ana-
Iytics frameworks, e.g. GraphLab [20], PowerGraph [13],
and Galois [25], schedule distributed graph computations.
These systems place vertices and edges on workers, and
run a vertex program on each vertex, which performs
computation, exchanges data between other vertex pro-
grams, and synchronizes through global data structures.
Both the execution model and the scheduling design are
tightly coupled with iterative graph algorithms, and can-
not extend to general analytics workloads. For example,
GraphLab [20] and PowerGraph [13] use distributed lock-
ing to schedule distributed graph computations, and lock
neighboring vertices when the state of a vertex is being
accessed, so as to avoid conflicting data access.

The idea of giving each worker a driver program copy
such that workers understand application workflow is
similar to the SIMD (single instruction, multiple data)
programming paradigm, such as used in MPI (message
passing interface). [2] MPI is widely used in supercomput-
ing to scale scientific computations to tens of thousands
of cores. In MPI, execution is described as processes run-
ning the same driver program as a continuous workflow.
Those processes coordinate execution through exchanging
messages, and block when waiting for messages. MPI’s
lack of a central controller or any scheduling at all means

11

it scales out very well, but at the cost of poor load bal-
ancing and fault tolerance. Unlike MPI, Canary is an
example of a MTC (many-task computing) system [29],
which breaks execution into tasks that do not have to run
in sequential order (as long as they respect data depen-
dencies). Charm++ [18] and Legion [5] are other MTC
systems, designed for supercomputers. Canary represents
a midpoint in this design space, borrowing its distributed
control flow from supercomputing but its centralized load
balancing from cloud computing.

7 Discussion and Conclusion

In the past few years, led by systems such as Spark,
GraphX, Galois, and Naiad, cloud computing systems
have transitioned from being disk and I/O-centric to be-
ing CPU-bound computations on in-memory data. High
performance computing (HPC) has spent decades explor-
ing how to run massively parallel CPU-bound workloads
on in-memory data, but has done so on supercomputers,
which have different performance and reliability tradeoffs
than cloud computing systems. For example, while float-
ing point workloads dominate HPC, cloud systems have
a mix of floating point and fixed point computations.

Canary is a first attempt to borrow key techniques from
each field. From high performance computing it borrows
distributed scheduling to support fast codes, while it bor-
rows central control for fault tolerance from cloud com-
puting. A Canary controller is responsible for deciding
how data partitions are distributed across workers. Each
worker core locally spawns and schedules tasks to exe-
cute based what partitions it has. Evaluations show that
Canary can schedule up to 2.4M tasks/sec per worker, and
the task scheduling throughput increases linearly up to
64 workers, with 1,152 cores scheduling 120M tasks/sec.
This scheduling performance allows Canary to run high
performance codes that are up to 90 times faster than
standard Spark implementations and 9 times faster than
highly optimized Spark implementations. High perfor-
mance scheduling also allows Canary to further reduce
job completion time by micropartitioning datasets.

Spark showed it was possible to achieve orders of mag-
nitude improvements over disk-centric frameworks such
as Hadoop. Canary shows that further orders of magni-
tude improvements are possible, but doing so requires
new architectures and further research.

References

[11 Amazon Elastic Compute Cloud. http://aws.amazon.com/
ec2.

[2] Open MPI: Open Source High Performance Computing. http:
//www.open-mpi.org.

[3] AHMAD, F., CHAKRADHAR, S. T., RAGHUNATHAN, A., AND
VUAYKUMAR, T. N. ShuffleWatcher: Shuffle-aware Scheduling

[4

=

[5]

[6

—_

[7

—

8

[t

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

in Multi-tenant MapReduce Clusters. In Proceedings of the 2014
USENIX Conference on USENIX Annual Technical Conference
(2014), USENIX ATC’ 14, USENIX Association, pp. 1-12.

ANANTHANARAYANAN, G., KANDULA, S., GREENBERG, A.,
STOICA, 1., LU, Y., SAHA, B., AND HARRIS, E. Reining in the
Outliers in Map-reduce Clusters Using Mantri. In Proceedings
of the 9th USENIX Conference on Operating Systems Design and
Implementation (2010), OSDI’ 10, USENIX Association, pp. 1-16.

BAUER, M., TREICHLER, S., SLAUGHTER, E., AND AIKEN,
A. Legion: Expressing Locality and Independence with Logi-
cal Regions. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis
(2012), SC *12, IEEE Computer Society Press, pp. 66:1-66:11.

BOUTIN, E., EKANAYAKE, J., LIN, W., SHI, B., ZHoU, J.,
QIAN, Z., WU, M., AND ZHOU, L. Apollo: Scalable and Coordi-
nated Scheduling for Cloud-scale Computing. In Proceedings of
the 11th USENIX Conference on Operating Systems Design and
Implementation (2014), OSDI’ 14, USENIX Association, pp. 285—
300.

CHEN, Y., ALSPAUGH, S., AND KATZ, R. Interactive Analyti-
cal Processing in Big Data Systems: A Cross-industry Study of
MapReduce Workloads. Proc. VLDB Endow. 5, 12 (Aug. 2012),
1802-1813.

DEAN, J. Building Software Systems at Google and Lessons
Learned, Slide 99. http://research.google.com/people/
jeff/Stanford-DL-Nov-2010.pdf.

DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In Proceedings of the 6th Conference
on Symposium on Opearting Systems Design & Implementation -
Volume 6 (2004), OSDI’04, USENIX Association, pp. 10-10.

DELGADO, P., DINU, F., KERMARREC, A.-M., AND
ZWAENEPOEL, W. Hawk: Hybrid Datacenter Scheduling. In
Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference (2015), USENIX ATC ’15, USENIX Asso-
ciation, pp. 499-510.

GANDHI, R., HU, Y. C., KOH, C.-K., Liu, H., AND ZHANG,
M. Rubik: Unlocking the Power of Locality and End-point Flex-
ibility in Cloud Scale Load Balancing. In Proceedings of the
2015 USENIX Conference on Usenix Annual Technical Conference
(2015), USENIX ATC °15, USENIX Association, pp. 473-484.

GODER, A., SPIRIDONOV, A., AND WANG, Y. Bistro: Schedul-
ing Data-parallel Jobs Against Live Production Systems. In Pro-
ceedings of the 2015 USENIX Conference on Usenix Annual Tech-
nical Conference (2015), USENIX ATC ’15, USENIX Associa-
tion, pp. 459-471.

GoNzALEZ, J. E., Low, Y., Gu, H., BICKSON, D., AND
GUESTRIN, C. PowerGraph: Distributed Graph-parallel Com-
putation on Natural Graphs. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation
(2012), OSDI’12, USENIX Association, pp. 17-30.

GONZALEZ, J. E., XIN, R. S., DAVE, A., CRANKSHAW, D.,
FRANKLIN, M. J., AND STOICA, I. GraphX: Graph Processing
in a Distributed Dataflow Framework. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implemen-
tation (2014), OSDI’ 14, USENIX Association, pp. 599-613.

HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A.,
JosepH, A. D., KATZ, R., SHENKER, S., AND STOICA, L.
Mesos: A Platform for Fine-grained Resource Sharing in the
Data Center. In Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation (2011), NSDI'11,
USENIX Association, pp. 295-308.

ISArRD, M., Bupiu, M., YU, Y., BIRRELL, A., AND FETTERLY,
D. Dryad: Distributed Data-parallel Programs from Sequential

12

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Building Blocks. In Proceedings of the 2Nd ACM SIGOPS/Eu-
roSys European Conference on Computer Systems 2007 (2007),
EuroSys "07, ACM, pp. 59-72.

JALAPARTI, V., BODIK, P., MENACHE, I., Rao, S.,
MAKARYCHEYV, K., AND CAESAR, M. Network-Aware Schedul-
ing for Data-Parallel Jobs: Plan When You Can. In Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication (2015), SIGCOMM 15, ACM, pp. 407-420.

KALE, L. V., AND KRISHNAN, S. CHARM++: A Portable
Concurrent Object Oriented System Based on C++, vol. 28. ACM,
1993.

KARANASOS, K., RAO, S., CURINO, C., DOUGLAS, C., CHALI-
PARAMBIL, K., FUMAROLA, G. M., HEDDAYA, S., RAMAKR-
ISHNAN, R., AND SAKALANAGA, S. Mercury: Hybrid Cen-
tralized and Distributed Scheduling in Large Shared Clusters. In
Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference (2015), USENIX ATC *15, USENIX Asso-
ciation, pp. 485-497.

Low, Y., BICKSON, D., GONZALEZ, J., GUESTRIN, C., KY-
ROLA, A., AND HELLERSTEIN, J. M. Distributed GraphLab: A
Framework for Machine Learning and Data Mining in the Cloud.
Proc. VLDB Endow. 5, 8 (Apr. 2012), 716-727.

MACE, J., BODIK, P., FONSECA, R., AND MUSUVATHI, M.
Retro: Targeted Resource Management in Multi-tenant Distributed
Systems. In Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation (2015), NSDI'15,
USENIX Association, pp. 589-603.

MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT, J. C.,
HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel: A System
for Large-scale Graph Processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data
(2010), SIGMOD 10, ACM, pp. 135-146.

MCSHERRY, F., ISARD, M., AND MURRAY, D. G. Scalability!
But at What Cost? In Proceedings of the 15th USENIX Conference
on Hot Topics in Operating Systems (2015), HOTOS’ 15, USENIX
Association, pp. 14-14.

MURRAY, D. G., MCSHERRY, F., IsAAcS, R., ISARD, M.,
BARHAM, P., AND ABADI, M. Naiad: A Timely Dataflow Sys-
tem. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (2013), SOSP *13, ACM, pp. 439-
455.

NGUYEN, D., LENHARTH, A., AND PINGALI, K. A Lightweight
Infrastructure for Graph Analytics. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (2013),
SOSP *13, ACM, pp. 456-471.

OUSTERHOUT, K., PANDA, A., ROSEN, J., VENKATARAMAN,
S., XIN, R., RATNASAMY, S., SHENKER, S., AND STOICA, I.
The Case for Tiny Tasks in Compute Clusters. In Proceedings of
the 14th USENIX Conference on Hot Topics in Operating Systems
(2013), HotOS’ 13, USENIX Association, pp. 14-14.

OUSTERHOUT, K., RASTI, R., RATNASAMY, S., SHENKER,
S., AND CHUN, B.-G. Making Sense of Performance in Data
Analytics Frameworks. In Proceedings of the 12th USENIX Con-
ference on Networked Systems Design and Implementation (2015),
NSDI'15, USENIX Association, pp. 293-307.

OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND STOICA,
I. Sparrow: Distributed, Low Latency Scheduling. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (2013), SOSP *13, ACM, pp. 69-84.

RAICuU, I., FOSTER, I., AND ZHAO, Y. Many-task Computing
for Grids and Supercomputers. In Many-Task Computing on Grids
and Supercomputers, 2008. MTAGS 2008. Workshop on (Nov
2008), pp. 1-11.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

REN, X., ANANTHANARAYANAN, G., WIERMAN, A., AND YU,
M. Hopper: Decentralized Speculation-aware Cluster Scheduling
at Scale. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (2015), SIGCOMM ’15,
ACM, pp. 379-392.

SANCHO, J., BARKER, K., KERBYSON, D., AND DAvIs, K.
Quantifying the Potential Benefit of Overlapping Communication
and Computation in Large-Scale Scientific Applications. In SC
2006 Conference, Proceedings of the ACM/IEEE (Nov 2006),
pp. 17-17.

SCHWARZKOPF, M., KONWINSKI, A., ABD-EL-MALEK, M.,
AND WILKES, J. Omega: Flexible, Scalable Schedulers for Large
Compute Clusters. In Proceedings of the 8th ACM European
Conference on Computer Systems (2013), EuroSys *13, ACM,
pp. 351-364.

VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., AGAR-
WAL, S., KONAR, M., EvANS, R., GRAVES, T., LOWE, J.,
SHAH, H., SETH, S., SAHA, B., CURINO, C., O’MALLEY, O.,
RADIA, S., REED, B., AND BALDESCHWIELER, E. Apache
Hadoop YARN: Yet Another Resource Negotiator. In Proceedings
of the 4th Annual Symposium on Cloud Computing (2013), SOCC
’13, ACM, pp. 5:1-5:16.

XU, Y., MUSGRAVE, Z., NOBLE, B., AND BAILEY, M. Bobtail:
Avoiding Long Tails in the Cloud. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Imple-
mentation (2013), nsdi’ 13, USENIX Association, pp. 329-342.

YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., ERLINGSSON,
U., GUNDA, P. K., AND CURRREY, J. DryadLINQ: A System
for General-purpose Distributed Data-parallel Computing Using
a High-level Language. In Proceedings of the 8th USENIX Con-
Jerence on Operating Systems Design and Implementation (2008),
OSDI’'08, USENIX Association, pp. 1-14.

ZAHARIA, M., CHOWDHURY, M., DaAs, T., DAVE, A., MA,
J., MCCAULEY, M., FRANKLIN, M. J., SHENKER, S., AND
STOICA, I. Resilient Distributed Datasets: A Fault-tolerant Ab-
straction for In-memory Cluster Computing. In Proceedings of
the 9th USENIX Conference on Networked Systems Design and
Implementation (2012), NSDI’12, USENIX Association, pp. 2-2.

13

