
Distributed Graphical Simulation in the Cloud

Omid Mashayekhi ~~ Chinmayee Shah Hang Qu Andrew Lim Philip Levis

Stanford University

{fomidm, chshah, quhang, alim16}@stanford.edu pal@cs.stanford.edu

Abstract provide. A graphical simulation uses multiple complex data

Graphical simulations are a cornerstone of modern media models, such as a marker-and-cell grid [15] for the fluid vol-
and films. But existing software packages are designed to run ume, 4 dense particle field for the fluid surface [13], and a
on HPC nodes, and perform poorly in the computing cloud. system of linear equations to ensure fluid does not disap-
These simulations have complex data access patterns over pear. These data structures are geometric mn nature and com-
complex data structures, and mutate data arbitrarily, and so putations on neighboring Teglons have tight dependencies.
are a poor fit for existing cloud computing systems. We de- A simulation involves a loop of many iterations that advance
scribe a software architecture for running graphical simula- time. All simulation state 1s held in memory, as 1/0 is far too
tions in the cloud that decouples control logic, computations Slow. These requirements differ greatly from data tuples as
and data exchanges. This allows a central controller to bal- mn MapReduce [11], Spark [23], and Naiad [20] or graphs as
ance load by redistributing computations, and recover from mn Pregel [19] and PowerGraph [14].
failures. Evaluations show that the architecture can run exist- This paper presents Nimbus, a System for running graph-
ing, state-of-the-art simulations in the presence of stragglers ical simulations mn the computing cloud. To deal with the
and failures, thereby enabling this large class of applications scheduling challenges inherent to cloud systems, Nimbus,
to use the computing cloud for the first time. like other cloud systems, uses a centralized controller node

that is responsible for monitoring the entire state of the sim-

ulation. To enable dynamic load balancing, Nimbus decou-

1. Introduction ples data exchange and the simulation execution plan. The

Graphical simulation is a staple of modern digital entertain- System runtime > ToDonsible for data exchanges between
ment. When we see ariver flow in the movie Brave, an explo- nodes, and invoking 4 simulation function after all its data
sion in Star Wars: Revenge of the Sith, or smoke billowing is ready. This decoupling gives Nimbus the ability to place
from destroyed buildings in Man of Steel, we see the result data and computation based on global knowledge of the sys-
of computationally simulating fluids: water, fire, and smoke. tem. To make bplications tolerant to node failures, the con

Being able to run simulations in the cloud would en- troller continuously monitors progress and dynamically in-
able studios to elastically scale their simulation infrastruc- serts check-points to Save data, as needed.
ture when needed, such as during final production, when The next section provides an OVELVIEW of graphical simu-
each shot has its final render. Graphical simulation software lations, which motivates a set of requirements for a system to
packages are designed to run on a single powerful server or support them n the cloud. Section 3 presents a System design
small, 3-4 node high performance computing clusters with whose abstractions meet these requirements. Section 4 de-

: . tails implementation, and. Section 5 evaluates how the sys-
InfiniBand [2] as their interconnect. The techniques and al-

gorithms these simulations use work poorly in the cloud. tem handles stragglers and node failures. Section 6 and Sec-
They assume that all nodes can communicate equally, all tion 7 conclude with related work and a set of open questions
nodes run at exactly the same speed, and failures are very for future work.
rare (e.g., < 1 in 40,000 in a multi-day simulation). They . . .

evenly partition the simulation across all of the cores used, 2. Graphical Simulations
so the simulation runs as fast as the slowest core. To handle Graphical simulations use different data models and algo-

rare failures, they use expensive and infrequent checkpoint- rithms than what available cloud frameworks provide. This

ing mechanisms. Furthermore, parallel nodes run in lock- section gives an overview of the principal methods and al-

step, such that the high latency of Ethernet (100 microsec- gorithms used in graphical simulations, and explains the

onds, rather than 500 nanoseconds with InfiniBand) causes challenges of distributing these computations over multi-

cores to fall idle during communications. ple nodes. The nature of these simulations and the asso-

Graphical simulations require very different data and ex- ciated challenges motivate a set of system design require-

ecution models than what current cloud computing systems ments ($3).

1

As a concrete example of a graphical simulation, we fo-

cus on PhysBAM [5], an open source physics based software

package for fluid and rigid body simulations. Movie studios NP

such as ILM and Pixar use PhysBAM in production films, Warr NNNand the developers have won two Academy Awards for its

contributions to special effects [4]. PhysBAM can simulate NZa huge range of phenomena, but in the rest of this paper, we Node 1 Node 2
focus on a water simulation. Water simulation is a canonical Shost estis

example, as it is extremely difficult and employs methods Figure 1. A 1D row of water represented in a grid. When
that are required for other fluid simulations such as smoke partitioned across two processes, the two processes must ex-
and fire. change ghost cells of state so they can perform computations

2.1 Fluid Models and Simulation Algorithms locally.
There are two basic ways to computationally represent a

fluid: a grid or particles. A grid divides simulated volume
into cells. Per-cell state describes the state of the simulation,

such as whether it contains fluid, pressure, and velocity. The local ghost ————SF IPTTTJ J |
second approach is to represent the fluid as a set of particles, a. HEEEEEN
each of which has its own (x,y,z) coordinates, velocity, and center 1
size. Grids and particles have different strengths and weak- remote ghost —————> HEEEEE
nesses. For example, a grid smoothes out small ripples but HEEEER
do not model splashes well, while particles have difficulty

representing fixed boundaries such as the edge of a glass.

The particle-levelset method [13], pioneered by Phys- 1D grid cells 2D grid cells

BAM, combines particle and grid representations and is why CC

movie and special effect studios can simulate water, smoke, Figure 2. Ghost cell configurations in simulation grids. The
and fire today. The key insight is that the most important vi- local state on a node consists of 3¢ objects, where d is the
sual feature is the surface of the fluid. The particle level-set dimensionality of the grid, while the combined local and
method use a coarse grid, augmented with dense particles remote state a node must use consists of 5¢ objects. A 3D
only on the surface. Combining these two methods, however grid is not shown for visual simplicity: per-node state is 27
makes simulations much more complex, as the grids and par- objects and the total state is 125 objects.
ticles interact in subtle and interesting ways.
A simulation is a loop: each iteration steps time forward.

When time passes a frame boundary, the simulation outputs lenge is that partitions are not independent. The state of wa-
the visual state of the simulation for later rending. An it- ter at any cell is dependent on its neighboring cells, some of
eration has 22 distinct computational steps, which can be which may be on a different node. Furthermore, solving the
divided into three major categories: updating grid cells, up- linear equations involve global operations.
dating particles, and solving a set of linear equations that Partitions can be distributed while minimizing data shar-
enforce physical laws on the water (e.g., it does not com- ing with ghost cells. Consider a simple 1D simulation of a
press or disappear). Solving the linear equations uses a sub- pipe with water, shown in Figure 1. Each partition is divided
loop within the main loop. In a typical 256° water simula- into five parts per axis: a large, central region that only the
tion, there are on average 20 main loop iterations per frame local computations need, two thin regions of ghost cells that
(24fps means 42ms/frame, the main loop time step is 1.6ms) are sent to neighbors, and two thin regions of ghost cells that
and 100 iterations of the inner solver loop. Table 1 shows are received from neighbors. Figure 2 shows a partition in a
where a time step spends its time. ID and a 2D grid. For a 3D simulation, a partition consists

of 125 separate regions (5°). Each variable is partitioned in
2.2 Current Distributed Simulations this manner, resulting in over 29 thousand data objects for 16

Running a simulation across multiple nodes requires parti- partitions, in a typical simulation with 21 different variables.
tioning the simulation geometry across them. The basic chal- In addition to computing on particles and grid cells, simu-

lations also need to perform global reductions. For example,

I For example, particles that leave the surface become drops in a splash, to compute the time step, or the residual of the linear solve,
and must be correctly merged back with the water mass when they hit the simulation takes the maximum value across all of the
the surface again. Readers interested in a more complete description of the .. } }

complexities can read the seminal book on the topic by Bridson [9]. partitions. Table 1 summarizes the number of computation
>The length of the time step is determined by fluid velocity and grid substeps, global reductions, and ghost value updates in the
resolution, so that fluid does not seem to leap through space. main-loop and its components for water simulation.

2

~~ onesolver particle entire phers and performs data exchanges between nodes (for ghost
iteration levelset main-loop values and reductions) based on this metadata, as required.

EE, To address the second requirement, Nimbus uses a cen-
computation substeps 4 22 422 tralized controller that maintains global information about
global reductions 2 2 202 performance of nodes, to detect stragglers and failures. This
ghost value updates 1520 73.6K 225.6K is similar to other cloud computing systems [10, 11, 23]. The
duration 61ms 6.7s 12.91s controller makes decisions about data and job placement,

Table 1. Number of computation substeps, global reduc- load-balancing the simulation as stragglers appear. It creates
tions, and ghost value updates for a 2563 water simula- periodic checkpoints of the simulation state, and rewinds
tion with 16 partitions. Each main-loop consists of particle- back, when one or more nodes fail.
levelset operations in addition to 100 solver iterations. Nimbus does not make any assumptions about data access

and computation patterns within computation jobs, except

that computation jobs do not perform any data exchanges on

When a computaiional sep (e.g. resecding particles) their own. This allows us to use code from existing simu-
completes, that node needs fo send the updates it made to lation libraries with minimal changes and some additional
local ghost regions and receive updates for remote ghost re- code to specify metadata. This helps us meet the third goal.
gions. PhysBAM does this in lockstep: each worker process This is covered in more detail in § 4.1.
completes its computation, sends its results, then blocks on

receiving results from neighbors. This approach tightly cou- 3.1 Application Abstraction

ples the control flow of the program with its state exchange. Each variable over a simulation domain is decomposed into
Furthermore, the partitions are set up statically at compile disjoint data objects over the ghost and central regions, as
time and cannot move. If one node fails, the entire simula- depicted in Figure 2. Application logic is decomposed into
tion fails. The simulation can run only as fast as the slowest a series of computation units, called jobs. Each job is char-
node in the cluster, so stragglers are a major concern. acterized by four things: (i) Read set of data objects to read,

2.3 Design Requirements (11) Write set of data objects to write, (111) Before set of jobs
that must finish before the job starts executing, and (iv) Com-

Finally, while interacting with the PhysBAM developers and putation code to perform the actual computation. Before sets
other graphical simulation researchers, we learned that there determine the control flow of the application, while read-
1s a strong hesitation in changing available libraries and code Jwrite sets determine the data requirements of a job. Before
bases. Core libraries has been tested for correctness and sets and read/write sets comprise a job’s metadata.
optimized for performance over many years. For example, Jobs mutate data and/or spawn new jobs. An application
PhysBAM library is over 50 developer-years worth of work starts with a special job main, which spawns new jobs. Ap-
and supports tens of applications. plications iterate by spawning jobs that spawn a batch of

In order to run these simulations in the cloud, In presence jobs. When a job running on a node spawns a new job, the
of stragglers and failures, we derived the following three node submits the job to a centralized controller for execu-
system requirements: tion. The controller assigns these spawned jobs to nodes,
1. the system’s abstractions must allow dynamic data place- which execute the corresponding simulation code.

ment and load distribution for graphical simulations, Figure 3 illustrates this with a simplified 1D water simu-
2. the runtime must schedule around stragglers and recover lation example over two partitions. The simulation updates

from failures, and velocity for each cell that contains water, and then moves
3. the system must be able to run existing simulation codes water using the updated velocity. The application comprises

with minimal changes. of four jobs — main spawns Forloop, and ForLoop
Achieving the first two goals will enable simulations to spawns AdvanceVelocity, AdvanceWater and con-

run in the cloud; achieving the third will mean there are ditionally, a new ForLoop job for the next iteration. Fig-
simulations to run and this capability will be an attractive ure 3(a) shows how velocity is decomposed into disjoint
option for developers. central and ghost data objects. Figure 3(b) shows the meta-

. data for each job. Note that data objects over ghost regions

3. System Design appear in read set of multiple jobs, while central data objects
This section presents a system design that addresses the re- are read/written by only one job, in each substep. The job

quirements listed in the previous section. To satisfy the first graph in Figure 3(b) depicts the application flow. Jobs with

requirement, we decouple control flow, computations and a dashed outline spawn new jobs for the next iteration.

data exchange. Specifically, an application is decomposed Exchanging job metadata between controller and nodes

into a series ofjobs with pure computation and no commu- quickly and storing them in optimized data structures for fast

nication. Each job has compact meta data that determine data queries 1s critical to runtime performance. Data objects and

dependencies and job execution order. Nimbus runtime deci- jobs are represented using integer identifiers, data id andjob

3

values between nodes. The controller distributes simulation

state among nodes by instantiating one or more partitions of

Lp | | bh, | Sralation ver act fod, : ’
As new jobs are submitted to controller, it builds the

(2) Simulation data as disjoint data. job graph from their meta data. The controller uses the job
dependencies (before set) and data dependencies (read/write

he ~ cubste Job Name Read Set Write Set Before Set set) to determine what data values to pass to computation
<7 jobs — what updates from previous jobs are visible to a

x main - - - job. Based on the existing distribution of data objects, the
(Fy, For Loop p. - - main controller picks a target node for executing a job. If the

ofc Mace yp op,D,D,D,F target node does not have updated data values (e.g. out-datedVv, D,D,D,D,D, F, ghost values), it inserts copy jobs to exchange data between
SS “avarce Ww. D D.D.D.D. V.V. nodes. A runtime before set comprises of all the computation
elo Boundary ! Lemems mhz Tne and copy jobs that must run before a job starts executing.W, D;D;D, D3D, VV, It ensures that data accesses are race free, and jobs read

(Fy For Loop pgp _ —- W, W, correctly updated data. The controller sends a runtime before
(b) Job araph for one simulation iteration, with each job’s meta-data. set, and data instance identifiers to nodes, when issuing a
Each substep has two jobs that operate over left and right partitions. commmand to execute a job. A node executes a job only
Dashed jobs spawn new jobs. after all the jobs in its runtime before set complete.

EE—— Figure 4 shows one iteration of the simplified water ex-
Figure 3. Discretized 1D water simulation example under ample. A FoorToop job executes on one of the nodes, and
Nimbus abstraction split into two partitions. spawns new jobs for the next iteration. The controller issues

commands to create data objects dy, d> and d; on node 1, and
sends jobs that operate on the left partition to node 1. Simi-

Vv, larly, it issues commands to create data objects d;, d; and dy,
v, Controller and sends jobs that operate on the right partition to node 2.

W, @) After the first set of AdvanceVelocity jobs, ghost val-
om O) @) ues on each node need to be updated from the neighbor. The

x) x) controller inserts copy jobs to exchange these.
52 QD) @) The controller constantly monitors nodes for their health

@ ® and performance, and redistributes data and computations
(F.) Node 1 Node 2 when a node starts straggling or fails. It regularly check-

na) [d,) 45] [3] points a simulation by taking a snapshot of the job graph and
saving simulation state on persistent memory. Upon failure,

it rewinds back to the latest checkpoint and resumes simula-

®) tion using the saved simulation data. The following section
—_— discusses load-balancing and fault-tolerance in more detail.
Figure 4. Centralized controller driving 2 nodes for one it- A design with a centralized controller has two major ben-
eration of discretized 1D water simulation example. Nodes efits. First, global knowledge about cloud resources and their
submit jobs to scontroller in phase 1. Controller instantiates performance helps in detecting stragglers and failures. Sec-
data objects, inserts required data exchanges (X) in between ond, control logic for a simulation does not need to be dis-
compute jobs and assigns jobs to nodes in phase 2. Compu- tributed over multiple nodes — only the centralized controller
tation and data exchange happen at the nodes in phase 3. needs metadata for all jobs. Exchanging job metadata among

all nodes to build the job graph at each node induces a lot of

id. This allows Nimbus to compactly represent metadata as overhead in the cloud, due to large network latencies.
integer sets °, and deploy efficient hash table for queries.

3.2 Centralized Controller .
4. Implementation

Centralized controller monitors resources in the cloud and : oo : :

drives a simulation over available resources by issuing com- This section covers three main implementation details re-
mands to the nodes. These commands instantiate data ob- quired to evaluate Nimbus abstraction success in [nning
: : Lo graphical simulations in presence of stragglers and failures.
jects, assign computation jobs to nodes, and exchange data : : CL : :

First, we explain negligible effort in porting current applica-

3 A serialization implementation based on protocol buffer [6] shows about tions into Nimbus. Next, the details of providing load bal-
90% compression ratio compared to ASCI identifiers. ancing and fault tolerance features are covered. There are a

4

lot of details including controller optimizations that explain- parent jobs to nodes for execution, and all data objects that

ing them is out of the scope of this paper. might be possibly accessed are restored. The restored parent

. oo. jobs will restart the whole simulation from the checkpoint.
4.1 Porting Applications

We have ported water and smoke simulation from PhysBAM 5. Evaluation
library into the introduced abstraction, by wrapping existin

PhishAM function calls with Nimbus Sh os oe This section evaluates how Nimbus performs in presence of
adding two loop jobs that spawns the main-loop and the stragglers and failures. All experiments use a 3D simula-
solver-loop with correct job meta data. There are helper tion of water pouring into a half full glass [1]. We compare

: : — Nimbus performance to that of Physbam’s MPI-based dis-
functions that help specify read/write/before set, and thus , :

: tributed implementation. All experiments are run on Ama-
the required changes are small. All in all, water (smoke) EC: Nimb roll 394] i.
simulation required about 2,000 (1,300) additional lines 40m > NHIDUS COMIOTCT TUMS Of & €5. 2ATarge MBLC
of C++ code to be ported compared to the implemented with 15GB of RAM and 8 hyper-threaded cores, while each
simulation logic in PhysBAM with over 100,000 lines of ~~ COMPute node is a ¢3.large instance with 3.75GB of RAM
Cat code and 2 hyper-threaded cores”. Unless otherwise stated, all ex-

. 3 .

Note that, PhysBAM computations expect to operate over periments run for 3 frames and the simulation is 256° grid
a contiguous data whereas, in our abstraction data is split split into 16 partitions and distributed over 8 computation
to disioin obiects. To Eliminate anv changes in the code nodes. When there are no stragglers or failures, this simula-

JOR ODJEELS. y 8 tion takes under 15 minutes.
base, we implemented a Translator Layer that translates Fi 5 oh how Nimb 4d PhvsBAM perf th
between the disjoint objects and contiguous data back and (beyte T OWS OW Nir i. an " petNA
forth. The translation happens partially for only the updated Foy ers. Ce ml po PhoML HPC » We
objects within the contiguous data. Explaining the details oo Jri >Pee © el i ” com
and intricacies of this layer is out of the scope of this paper. SUIdUDIL LHS 15 Hie WOISL case betallbe IL 15 The chvitolr-

ment PhysBAM was designed for — there are no stragglers

4.2 Load Balancing or failures. Nimbus runs slightly slower in this case. The

Controller tries to distribute computation work uniformly overhead is primarily round-triplimes between workers and
among all nodes by adjusting the simulation region cach the controller during the linear solve. As Table 1 shows, for
node is responsible for and assigning jobs accordingly. It ome comp—— pcriod there are oo than 1
carves out the whole simulation region into contiguous re- ata exchange comman 5 155UCE Tom controller to nodes.
gions and ties each region to a node. The target node for To compare performance in presence of stragglers, we eval-
job execution would be the node with the region that has oe mous and physbam when one of nodes Te strag-
the most overlap with the objects in the job’s read/write set. So minutes ho © So ation. We simu he ” ee
Continuous region assignment eliminates the communica- (san y he 5a], With veni" © . iesame method as . With this straggler and no load redis-

tion between nodes. tribution, the simulation runs 5 to 6 times slower °. It takes
To achieve load balancing, controller reduces the size ’

of the region assigned to a node once it detects the node less than 50 seconds for the controller to detect and adapt
becomes a straggler. The controller detects stragglers by ohe suraggler beforeLoni to ? bajanced load oy>
periodically retrieving performance report from each node. cannot adapt ana so IL goes as SIOWLy as the straggler.
A node is treated as a straggler if the ratio of computation However, Nimbus migrates two partitions at the straggler to
time over total time is over a certain percentage and other other two nodes. heE the simulation onaround 1.5X
nodes are blocking on its ghost cell data transfer. slower, as two nodes a artitions instead of 2.

Last we evaluate Nimbus’ fault tolerance mechanisms. In

4.3 Fault Tolerance this setup, checkpointing happens every 10 minutes, and one

Controller periodically creates checkpoints of the simulation of the nodes fails after 11 minutes into the simulation. Fig-
state to rewind back from in case of failures. Simulation ure 6 depicts the iteration progress for a time window. The
states are made persistent to disk during checkpointing, and controller creates a checkpoint after completion of 43" iter-
are sharded over different nodes and indexed by a distributed ation, and one of the nodes fails in the middle of computing
key value store on top of leveldb|3] 52" iteration. Checkpoint creation overhead is less than 18

The states to be checkpointed includes: a snapshot of the seconds. When the node fails, its in memory state 15 gone,
job graph, all the parent jobs that submit other jobs to the and controller rewinds back to the last checkpoint, and re-
controller (e.g. For Toop jobs in Figure 3), and all data computes the iterations from there. The first iteration after

objects that the parent Jobs or the Jobs heyspawned Mgt compuoptimisedc3 instances use Intel Xeon ES-2650 v2 (Ivy Bridge)access. lhese saved states are enough ror the controller to processors that run at 2.8GHZ.
do a complete rewind back. Upon failure, controller replaces > As measured and reported in [7], 10% of the outliers are 10X slower in the
the current job graph with the saved one, assigns the saved cloud.

5

“ 60 not provide any fault tolerance. Charm++ and adaptive MPI

= EEE Nimbus 51.7 51.7 load-balance by migrating chare objects and virtual MPI
5 50, C1 PhysBAM processes, which do not have any information about geomet-
© : : : : :

= ric locality. Simulation languages such as Liszt [12] target
0 40 portability of code, and use existing mechanisms from the

8 30.1 supercomputing domain to parallelize code. Dandelion [21]
330 uses a data flow-engine, similar to Dryad [17], that is well-

= 50 19.6 suited for parallelism at a coarser granularity.
= Existing cloud computing systems such as Map-reduce [11]
o 12.9
> 10 9:3 and Spark [23] target highly data parallel computations over

8 BB key-value stores. Systems such as Pregel [19] and Power-z 0 graph [14] target computations such as scatter and gather
HPC Setup ~~ Straggler Straggler over graph data structures. These computations over key-

Adaptation Converged values and graphs have very different access patterns com-
Figure 5. Running a 2563 water simulation in HPC set- pared to graphical simulations over grids. Nimbus applica-
ting and cloud setting over 8 nodes. Main iteration duration tion jobs on the other hand can read and write data at arbi-
length is measured in case of PhysBAM MPI implementa- trary locations in their read and write sets. Application Job
tion vs. Nimbus. For the cloud settings the adaptation and graphs mvolve complex inter-job and data dependencies in
converged periods are separated. Nimbus.

7. Conclusion and Future Work

o 140 EE BeforeFailure|| Nimbus is a runtime system for running graphical simulation
S [1 After Failure in the cloud. To utilize cloud resources efficiently, Nimbus

aLH addresses problems such as stragglers and failures by load-
S100 fewinding|| balancing and checkpointing. The key to achieving this is
= decoupling control flow, computations and data exchanges.
= BO"checkpointing With careful design and optimized data structures, the cen-
OQ 60lof tralized controller does not become a bottleneck at common

8 40 frame 2 frame 3 simulation scales. We have ported a PhysBAM water simula-
— JI ire tion, an advanced graphical simulation application, to Nim-
= 200i feNe bus with negligible code changes, and proved that Nimbus
= 0 | | | | | I | | can adapt to cloud performance problems well.

30 35 40 45 50 In future, we plan to explore running more partitions per
Main Loop Iteration Number node to have more flexibility for load balancing, and run

Figure 6. Running a 256° water simulation in presence of even larger simulations. We plan to examine and address
: : : scalability issues when running on a large number of nodes.

failure over 8 nodes. Iteration progress is depicted against CL. : :
: : The final objective is to be able to run large simulations on

time. Each ripple shows a checkpoint creation. At each knee .
: LL hundreds of elastically provisioned nodes, instead of small

one of the nodes has failed and simulation is reverted back d ve hich perf tine clust
by the centralized controller to the last checkpoint. ANE EXPENSIVE MEH PELOTMANCE COMPULNG CIUSIEDS.

oo oo References
rewinding takes around 153 seconds which is due to loading 11 PhvsBAM W Sirula
aroung 2.4GB of state from hard disk of remote nodes. Also, [1] Phys ater Simulation. nttp +//physbam.

stanford.edu/~mlentine/project.html#
iterations take longer after failure because there are less re- ater
sources available (same as in the straggler case).

[2] InfiniBand. http://www.infinibandta.org/.

6. Related Work [3] Leveldb. https: //github.com/google/leveldb.

Previous work on support for distributing physical sim- [4] OscarfeTech Awards. http://www.oscars.org/
ulations, such as Legion [8], Charm++ [18] and adap- SEAT REC
tive MPI [16] have focused on supercomputing and high- [5] PhysBAM. http: //physbam.stanford.edu/.
performance computing environments. Legion provides mech- [6] protocol buffer. https: //github.com/google/

anisms to decouple computations from where they run, but protobuf.

leaves collection and synchronization of runtime informa- [7] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica,
tion, and actual load-balancing to applications, and does Y. Lu, B. Saha, and E. Harris. Reining in the outliers in map-

6

reduce clusters using mantri. In OSDI, volume 10, page 24, [22] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and

2010. I. Stoica. Improving mapreduce performance in heteroge-

[8] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: neous environments. In OSDI, volume 8, page 7, 2008.
Expressing locality and independence with logical regions. [23] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and

In High Performance Computing, Networking, Storage and I. Stoica. Spark: cluster computing with working sets. In

Analysis (SC), 2012 International Conference for, pages 1— Proceedings of the 2nd USENIX conference on Hot topics in

11. IEEE, 2012. cloud computing, pages 10-10, 2010.

[9] R. Bridson. Legion: Expressing locality and independence

with logical regions. In Fluid Simulation for Computer

Graphics, 2008.

[10] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.

Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,

et al. Spanner: Google’s globally distributed database. ACM

Transactions on Computer Systems (TOCS), 31(3):8, 2013.

[11] J. Dean and S. Ghemawat. Mapreduce: simplified data pro-

cessing on large clusters. Communications of the ACM, 51

(1):107-113, 2008.

[12] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina,

M. Barrientos, E. Elsen, F. Ham, A. Aiken, K. Duraisamy,

et al. Liszt: a domain specific language for building portable

mesh-based pde solvers. In Proceedings of2011 International

Conference for High Performance Computing, Networking,

Storage and Analysis, page 9. ACM, 2011.

[13] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid

particle level set method for improved interface capturing.

Journal of Computational Physics, 183(1):83-116, 2002.

[14] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.

Powergraph: Distributed graph-parallel computation on natu-

ral graphs. In OSDI, volume 12, page 2, 2012.

[15] FE. H. Harlow, J. E. Welch, et al. Numerical calculation of

time-dependent viscous incompressible flow of fluid with free

surface. Physics offluids, 8(12):2182, 19635.

[16] C. Huang, O. Lawlor, and L. V. Kale. Adaptive mpi. In Lan-

guages and Compilers for Parallel Computing, pages 306—

322. Springer, 2004.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:

distributed data-parallel programs from sequential building

blocks. In ACM SIGOPS Operating Systems Review, vol-

ume 41, pages 59-72. ACM, 2007.

[18] L. V. Kale and S. Krishnan. CHARM++: a portable concur-

rent object oriented system based on C++, volume 28. ACM,
1993.

[19] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,

N. Leiser, and G. Czajkowski. Pregel: a system for large-scale

graph processing. In Proceedings of the 2010 ACM SIGMOD

International Conference on Management ofdata, pages 135—

146. ACM, 2010.

[20] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,

and M. Abadi. Naiad: a timely dataflow system. In Proceed-

ings ofthe Twenty-Fourth ACM Symposium on Operating Sys-

tems Principles, pages 439-455. ACM, 2013.

[21] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fet-

terly. Dandelion: a compiler and runtime for heterogeneous

systems. In Proceedings of the Twenty-Fourth ACM Sympo-

sium on Operating Systems Principles, pages 49-68. ACM,
2013.

7

