
TOKENSREGEX: Defining cascaded regular expressions over tokens

Angel X. Chang, Christopher D. Manning

Computer Science Department, Stanford University, Stanford, CA, 94305

{angelx, manning}@cs.stanford.edu

We describe TOKENSREGEX, a framework for defin- to manipulate and modify than traditional regular ex-

ing cascaded regular expressions over token se- ~~ pressions over strings.

quences. TOKENSREGEX is available as part of the Regular expressions over tokens also allow match-
Stanford CoreNLP software package and can be used ing on additional token-level features, such as part-of-
for various tasks winch require reasoning over ok- speech annotations and named entity tags. This allows
enized text. It has been used to build SUTIME, A for concise rules at a higher level than just matching
state-of-the-art temporal tagger, and can be helptul in against the individual tokens.
a variety of scenarios such as named entity recognition

(NER) and information extraction from tokens. In addition, with TOKENSREGEX, we can easily com-
bine the robustness of statistical methods with the con-

1. Introduction trol of a rule based system. Typically the best per-

forming part-of-speech annotations and named entity

TOKENSREGEX 1s a framework for defining cascaded tags come from statistical taggers. However, statistical
patterns over token sequences. It extends the tradi- systems depend on appropriate training data, which is
tional regular expression language defined over strings unfortunately not always available. Furthermore, even
to allow working with tokens. In other words, it gen- (pap training data 1s available, it is hard to finely con-
eralizes from matching over sequences of characters the output of a statistical system. TOKENSREGEX
(strings) to matching over sequences of tokens. Fur- complements supervised learning methods by provid-
thermore, it uses a multi-stage extraction pipeline that ing a rule-based system for handling cases with lim-
can match multiple regular expressions—a practically +. training data.
more useful scenario than single pattern matching.

The multi-stage extraction pipeline also allows for ~~ We have used TOKENSREGEX to implement SU-
building up patterns in stages, similar to a cascaded, [ME (Chang and Manning, 2012), a rule-based tem-
finite-state automaton. As demonstrated by systems Poral tagger. We also demonstrate how we can aug-
such as FASTUS (Hobbs et al., 1997), this approach ment statistical methods with rules and information
can be very effective in extracting information from extraction systems with patterns. We first describe the
text. Finite-state cascades based parsers are also both ~~ Main components of the system in the following sec-
fast and robust, and is a feasible alternative to stochas- tions.
tic context-free parsers (Abney, 1996).

We provide an implementation of TOKENSREGEX as 2. 'TokensRegex Patterns
a Java library and demonstrate its use for matching Traditional I : i] h
over tokens. We also provide two annotators in the TR a

SN proven to be powerful and useful, with libraries avail-
Stanford CoreNLP pipeline". : :

able in most programming languages. However, these

Why is a system like TOKENSREGEX needed and why ~~ implementations are typically limited in that they can
is it useful to be able to define regular expressions only handle regular expressions over strings (i.e. se-
over tokens? In NLP applications, text is usually first ~~ quences of characters). In TOKENSREGEX, we pro-
tokenized and annotated with additional information vide a regular expression implementation that general-
such as part-of-speech tags. Therefore, it is natural jzes to sequences of tokens and can also be extended to
and convenient to specify regular expressions over the handle other types as well. These patterns can then be
tokens. Such token-based regular expressions can be stacked to form finite-state cascades. Our implemen-
more concise and comprehensible, as well as easier tation supports many of the features found in modern

regular expression libraries while allowing for more

Inlp.stanford.edu/software/corenlp. shtml expressive power.

We provide our implementation as a Java library with Syntax Description
a similar interface to the Java regular expression li- XY X followed by Y
brary (java.util.regex). X|Y XorY

: X&Y XandY
We define a syntax for regular expressions over tokens

that 1s similar to the traditional syntax used for regular :
Co. hl Grouping

expressions over strings. The main difference lies in :
Ce. (X) X as a capturing group

the syntax for matching individual tokens. : :
(Pname X) | X as capturing group with name name

(7: XD X as a non capturing group
2.1. Token Syntax

In NLP applications, text is typically tokenized into oon Quantifiers (greedy/reluctant)
units of characters (tokens). Each token 1s then an- x2, re X, once or not at all
notated with various attributes, such as part-of-speech X*, > X, zero or more times
(POS), or named entity type (NER). X+, X+ X, one or more times

For example, given the sentence: “Reykjavik is the Table 1: TOKENSREGEX Regular expression syntax
capital of Iceland.”, we have the following tokens:

word | Reykjavik is the capital of Iceland Below, we give some examples of TOKENSREGEX
pos NNP VBZ DT NN IN NNP . I :er LOC oO 0 0 0 LOC regular expressions.

In our token syntax we indicate each token by Sequences: in a token sequence, individual tokens
[<expression>] where <expression> speci- &€ bracketed by L] , which can be omitted when pat-

fies token attributes which should be matched as fol- ~~ ™ matching against the text field. Quantification 15
lows. We use the symbol [] to indicate any token. marked using the standard symbols *, +, 7.

Basic Expressions: describe how a token attribute es DERSONT+.VB] Jan?)should be matched. POS:
oo /artist|painter/

Example Descriptton Match: five thousand kilometers
abc token text is abc ([ner:NUMBER]+) /km|kilometers?/

/abc/ token text matches regular expres-
sion abc Groups: parentheses () are used for grouping. By

pos: "NNP" | token POS is abc deanEroups are captured ane uocessed using Sn
pos:/NN.*/ | token POS matches regular ex- where the group number nv 15-0 tained by counting

pression NN. the number of opening parentheses (from left to right).
word>30 text is number and greater than 30. Group 01s the entire matched expression. Non captur-

(>=, <,<=,==,1 — supported) ing groups (7...) do not count toward the overall
. CL number of groups. For convenience, groups can also

Compound Expressions: formed by combining basic
be named (?name ...).

expressions with boolean operators. Match: 50 kilometers
Example Description (?:quant [ner:NUMER]+) /km|kilometers?/

! (pos: /NN.*/) POS is not noun The 50 corresponds to group 1 and can be referred to

pos:/NN.*/ | pos:/VB.*/ | POS noun or verb by using $quant or $1.

word>=1 & word<=10 text numeric and ppaergs: to improve regular expression readability,
between 1 and 10 TOKENSREGEX supports definition of macros that

can be used in later regular expressions.

2.2. Regular Expression Syntax $UNIT = /km/kilometers?/

Tokens are combined using similar syntax as regu- [ner:NUMBER]+) SUNIT
1 1 trings. TOKENSREGEX > . . .
ar EXPICSSIONS Over Sings > Sup 3. Matching multiple regular expressions
ports most features found in regular expression li-

braries including both greedy and reluctant quanti- Often it 1s useful to match not just one, but many reg-

fiers, grouping, capturing, and back references. In ular expressions. TOKENSREGEX provides an extrac-

addition, TOKENSREGEX also supports features such tion pipeline for matching against multiple regular ex-

as named groups, macros, and conjunctions. Table 1 ~~ pressions in stages. The pipeline is similar to a cas-

shows a summary of the syntax used. cade of finite automata. During each stage, a series

Syntax Description

$n Matched tokens for capture group n Token/text level rules
$n[i] ith token for capture group n \
$n[i].key | Attribute key (for above token) Extract ¢ Somposiiaailes
$$n.value | Value for capture group n 3

Filtering rules

$$n. text Text for capture group n +
Table 2: Syntax for accessing capture groups

Figure 1: TOKENSREGEX extraction pipeline.

of extraction rules are applied, and expressions are

matched based on the specified pattern of each rule. 2. Tokens: applied on tokens, match against regular
If multiple rules can be matched, a rule is selected expressions over tokens
based on the priority of the rule, then the length of ..

the sequence matched, and finally the order in which 3 Compositional applied on previously matched
: : expressions (text, tokens, or previous compos-

the rule is specified. : :
ite rules), and repeatedly applied until no new

When an expression is matched, additional attributes matches
can be added to the matched tokens. The matched

expression can also be treated as an aggregate token 4. Filtering: applied on previously matched expres-
(with its own attributes) over which the extraction sions, matches are filtered out and not returned
rules can be reapplied, giving a finite-state cascade.

We use a domain specific language (DSL) for defining It rained last Tuesday afternoon
the extraction rules and how the expressions should be ov n vo Token rules

matched, as described below. LAST RE Pai

3.1. Extraction Rule Syntax \ TIME CompositeXXXX-WXX-2TAF les

Extraction rules are specified with a JSON-like syntax. —

t ruleType: “tokens, AST RAR TAT
pattern: (([ner:PERSON]) /was/ /born/

/on/ ([ner:DATE])),

result: "DATE_OF_BIRTH" } Figure 2: Parsing of a temporal expression using the

TOKENSREGEX pipeline.
Associated with each rule 1s the ruleType and the

pattern to match against. The ruleType specifies pyraction rules are grouped into stages. Figure 1
how the pattern should be used and is described pws how the rules are applied for each stage. Figure
in the next section. Optionally, the rule can have a 5 hows an example of how TOKENSREGEX extrac-
priority and a stage. If these are not specified, (jon rules are used to parse temporal expressions in
then all rules have the same priority and are grouped qUTIME.
into one stage. The result and action fields de- Co

scribe what should happen when the rule is matched. Initially, rules over text and tokens are matched. For
With each matched expression, we can optionally as- instance, in Figure 2, token rules are used to match
sociate a value. The value can be used to create new 1#esday to DATE XXXX-WXX-2 and afternoon to TIME

annotation for the matched expression. The result TAF.
field indicates how this value should be derived. The Next, composite rules are applied. Tokens from

DSL allows for referring back to the captured groups matched expressions are combined to form an aggre-

(see Table 2). gate token, and composite rules are applied recur-

sively until no more changes to the matched expres-

3.2. Extraction Rule Types sions are detected. Only expressions with an associ-
ated value, indicated by result, are kept. By adding

TOKENSREGEX has four types of extraction rules: the result to the aggregate token as an annotation,
it can be matched against. An example of a compos-

I. Text: applied on raw text, match against regular je. rye specification for SUTIME is given below. For
expressions over strings (the tokenization is ig- SUTIME, the result values are temporal objects that
nored) can be composed and operated on.

{ ruleType: "composite", filling task (Ji et al., 2010). Some sample rules for
pattern: (([temporal::IS_TIMEX_DATE]) : Fl : : :

Jat/? (L temporal: TS TIMEX TIME 1) J, identifying potential relations between the entity and
result: TemporalCompose (INTERSECT, a slot value are given below.

$0[0]. temporal,

$0[-1].temporal) } { result: "per:children",
pattern: ($SLOT_VALUE /,/ /son|daughter|child/

At the end of each stage, there 1s a filtering phase in /of/ $ENTITY) }
. . . lid { result: "per:cause_of_death”,which the filter rules are applied and invalid expres- pattern: (SENTITY /died/ /of|from/ $SLOT_VALUE) }

sions are filtered out. For instance, in SUTIME filter-

ing rules are used to filter out ambiguous words such ~~ Beyond these specific applications, TOKENSREGEX

as fall. If a potential temporal expression is a single can be used to help the development of other NLP

ambiguous word and the part of speech tag is not a systems. One important benefit of TOKENSREGEX is

noun, then it 1s not resolved to a temporal object. that it 1s easily extensible. Although we have only dis-

{ ruleType: "filter", cussed regular expressions over tokens, the TOKENS-
pattern: ([word:/fall|spring|second|march|may/ REGEX API allows extensions to matching over other

& 1(tag:/NN.7/01 J) 3 types as well
This process 1s repeated for each stage of rules.

Co 5S. Conclusion
4. Applications
oo We have presented TOKENSREGEX, a framework that

We have seen in Figure 2 how TORENSREGEX Wd brings the power of cascaded regular expressions to
used in the temporal tagging scenario to implement 10:76 text. TOKENSREGEX fills an important gap
SUTime. The multi-stage extraction pipeline allowed by providing a system for handling patterns over to-
for temporal expressions to be built up from mappings 1... Wwe hope that it will be a useful tool for the
of simple tokens (e.g. Tuesday to XXXX-WXX-2), to community and that it will help future research deal-
more complex patterns involving already recognized o with tokenized text
time expressions. SUTIME followed the multi-stage

strategy of: (1) building up patterns over individual
: Lo Cy References

words to find numerical expressions; then (11) using

patterns over words and numerical expressions to find S. Abney. 1996. Partial parsing via finite-state cascades.

simple temporal expressions; and finally (iii) forming Natural Language Engineerng; 2(4):337-344.
composite patterns over the discovered temporal ex- A. X. Chang and C. D. Manning. 2012. SUTIME: A Ii-
eSSIONS brary for recognizing and normalizing time expressions.

p In 8th International Conference on Language Resources
TOKENSREGEX can also be used to augment the out- and Evaluation (LREC 2012), May.

put of statistical systems which require specialized J. R.Hobbs, D.E. Appelt, J. Bear, D. Israel, M. Kameyama,

training data. For instance, to augment the named en- M. Stickel, and M. Tyson. 1997. Fastus: A cascaded
tity types recognized by a NER system, it is easier to finite-state transducer for extracting information from

: ” : : natural-language text. pages 383-406.
make a list of entities to be marked (e.g. University of) :
X_Tist of shoe brands) than t 1 ther th H. Ji, R. Grishman, H. T. Dang, K. Griffitt, and J. Ellis.
’ SLO > oc rands) an to manua y sd or © re 2010. Overview of the tac 2010 knowledge base pop-

quired training data. This can be easily achieved using ulation track. In Third Text Analysis Conference (TAC
the TokensRegexNERAnnotator. Specification of a 2010).
gazetteer for shoe brands, or more complex regular ex-

pressions for recognizing URLs and email addresses 1s

straight-forward:

Nike SHOE_BRAND

Reebok SHOE_BRAND

http://.* URL

<P\w+@[A-Z0-9.-1+\.[A-Z]{2,4}>? EMAIL

([ner:CITY]+ /High/ /School/) HIGH_SCHOOL

Another application for TOKENSREGEX is in specify-

Ing patterns for relation extraction. Patterns have been

show to be effective for relation extraction so many

current systems use a combination of patterns and ma-

chine learning approaches. We have used TOKENS-

REGEX to recognize relations for the TAC KBP slot

