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Figure 1: Screenshotsfrom our system ofa world with over 540,000 objects composed ofa total of 144 million triangles referencing ~6,000

unique textures and occupying over 24 GB on disk. This high-visibility viewpoint observes more than half the world, including five distant
cities as complex as the one the user is flying over. User-generated models, such as the green piggy bank in the scene on the right, were

randomly placed in the world. The client is able to render this large, complex and diverse scene between 20 and 35frames per second, while

downloading only 1.4 GB ofdatafrom the cloud, a 94% reduction.

Abstract works and GPUs. First, user-generated models are not optimized
for rendering in terms of their triangle count or their textures. Ren-

Rich, large-scale user-generated virtual worlds have been imagined dering just a few of these models can overburden the GPU. Second,
in the realm of fiction for decades. Such worlds, however, present a large world can have many high visibility locations where hun-
significant technical challenges due to the limitations of available dreds of thousands of objects may be in a client’s field of view.
network and graphics resources. Since the world is user-generated, Downloading the models for these objects can take a long time. Fi-
its content has to be stored in a shared, networked resource such nally, rendering all these objects as fully-detailed textured meshes
as the cloud. Further, user-generated content is not optimized for at an interactive frame rate is infeasible, especially since the GPU is
efficient rendering, so additional processing is needed to display it limited by the number of batches the CPU can generate, generally
efficiently in the presence of limited graphical resources. a few thousand per frame.

This paper presents an approach to efficiently display a complete Existing virtual worlds, such as Second Life and World of Warcraft,
view of a user-generated world at scale. The key insight 1s that such address these three problems by displaying only a small subset of
worlds have a high degree of coherence, which enables us to dedu- objects within a small, fixed distance from the viewer. While this
plicate many 3D models. This greatly reduces the amount of data simplifies their system design and yields good frame rates, viewers
that needs to be transferred over the network to display the world. cannot see distant, large objects such as mountains or skyscrap-
The deduplicated models also lend themselves to a new method ers. Substantial prior work has addressed lifting this limitation
of simplification, called instance-aware simplification, which effi- to render large models or scenes when all data is available lo-
ciently simplifies 3D models consisting of many instances of the cally [Funkhouser et al. 1992; Erikson et al. 2001; Crassin et al.
same geometry. 2009; Rusinkiewicz and Levoy 2000] and when streaming indi-

vidual meshes over the network [Hoppe 1996; Rusinkiewicz and

1 Introduction Levoy 2001]. However, streaming of large scenes has thus far relied
mostly on culling and level of detail for each object [Schmalstieg

Fictional accounts of richly detailed, large-scale, user-generated and Gervautz 1996; Teler and Lischinski 2001], which still limits
virtual worlds abound in sci-fi literature, such as Snow Crash, the display to only a few thousand objects at a time. More recent
Ready Player One and Neuromancer. The sheer scale of such work [Cheslack-Postava et al. 2012] has proposed an approach for
worlds mean most content is created primarily by end users: even generating aggregates (impostors representing groups of objects)
games today such as Spore rely on more user-generated content and selecting a small subset of objects and aggregates that yield a
due to rising production costs. But all of the content created by complete view of the world.
hundreds of thousands or millions of users cannot be stored locally : : LL
on every disk. The content must be stored in a shared, networked This paper, In contrast fo this pHot work, focuses on how how to
resource such as the cloud and delivered to clients dynamically. Fi- generate and Sumpify aggregates in the yloud in order to overcome
nally, since the virtual world content is not owned by a central au- the limitations of client network bandwidth, GPU RAM, and GPU
thority, there is no assurance for object mesh and texture quality. batch count. The Pproach relies on two main ideas: Seent co”

herence and instancing. Scene coherence means that in a logically

Serving large amounts of user-generated graphical content from the consistent world, there will often be similar or duplicate meshes
cloud presents three principal research problems to storage, net- clustered in close proximity. Instancing is the technique of repre-
—_— senting many copies of the same geometry by storing one copy and

“email:tazim@cs.stanford.edu applying transformations to create more copies.
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temail:pal @cs.stanford.edu The approach exploits scene coherence to maximize instancing



within aggregates, enabling efficient simplification and smaller net-

work transfer cost. It groups graphically similar objects into ag- Vertices, Normals, TexCoords, Te py Ei
gregates, and deduplicates highly similar objects within each ag- tenes arson 2
gregate to reduce its size and increase the prevalence of instancing. | Submesh3 || as sen ersIt generates instanced meshes for these aggregates and simplifies rcs, me ToC Torr” pare Tondo
instead of the equivalent indexed triangle mesh. Texture atlasing

ensures that each aggregate can be rendered with a single draw call .
to the GPU. Figure 2: The structure ofan instanced mesh file.

This paper makes four research contributions. First, it presents Co
an algorithm to efficiently construct a bounding volume hierarchy View-dependent simplification [Lucbke and Erikson 1997] and per-
(BVH) which greatly reduces the download and rendering cost of ceptually modulated level-of-detail (LOD) [Williams ct al. 2003]
aggregates while maintaining good querying performance. Second, exploit the camera’s current viewpoint to achieve higher quality
it presents a technique to deduplicate highly similar models within rendering, but can only be run on the client side for this reason.
each aggregate in order to further reduce download and rendering It is important to note, however, that a client of our system could
costs. Third, it proposes a new instance-aware simplification algo- use these methods to efficiently render the aggregates and individ-
rithm whose resulting mesh files are up to 99.6% smaller compared ual objects returned by our system.
to the quadric simplification algorithm. Finally, it describes an ap- A number of metrics exist to measure visual error on simplified
proach to reconfigure the textures referenced by aggregate meshes meshes. One of the more well-established metrics is MetroMn
in order to enable a complex world to be rendered within the GPU’s [Cignoni et al. 1998], which has been shown in studies to correlate

NNRAM and dr:-roo Har enero noo on. strongly with human perceptions of quality [Watson et al. 2001].
sisting of over 500,000 objects and 144 million triangles over the Instanced Meshes. These existing simplification algorithms as-
network as well as display it at interactive frame rates. sume that a model is an indexed triangle mesh, consisting of a set

of vertices, a set of faces composed of those vertices, and other
We overview related work in the next section. Section 3 provides properties associated with the vertices, such as normals and texture
some background and states the problem in more detail. Section 4 coordinates. However, many real-world model formats, including
presents a BVH construction approach which considers both prox- the COLLADA standard [Arnaud and Barnes 2006], describe a 3D
imity and mesh similarity. Algorithms to generate instanced 3D model as an instanced model (or equivalently, a scene graph) con-
models for these aggregates and simplify the instanced models fol- sisting of a set of submeshes which are instanced using different
low in sections 5 and 6. Section 7 details our texture management transformation matrices (Figure 2). Instances can be organized hi-
strategy and an evaluation of the system follows in Section 8. erarchically such that their transformation is the product of all trans-

formations from the root to the instance at the leaf.

2 Related Work To apply existing simplification algorithms to instanced meshes, the
instanced mesh must be expanded into an indexed triangle mesh.

There 154 large body of work in the dred of rendering large vir- Expanding the mesh simply means generating the overall mesh by
tual environments. However, most of this work assumes that all of iterating over every instance of the mesh and applying the instance’s
the graphical data can fit locally on disk. Further, many existing transformation matrix to its submesh. This results in geometry be-
techniques also assume static, pre-defined objects and little churn ing duplicated for instances that reference the same submesh mul-
in terms of objects entering and leaving the system. tiple times. In many cases, data may be duplicated tens of times as
In contrast, our approach is designed for worlds that are too large duplicate objects are grouped into aggregates (e.g., trees in a for-
to be stored locally and hence have to be stored in the cloud. Since est), or even hundreds of times in an input mesh (e.g., leaves on a
the network is a low-bandwidth channel compared to local disk, it tree).

is crucial to have an approach that MINIMIZes the amount of data Furthermore, expansion and subsequent simplification is a one-way
sent over the network. Moreover, since the world 1s user-generated, transformation: once edges in one copy of a submesh are collapsed,
We assume no pre-existing knowledge of objects and our approach that copy cannot be easily factored back into a single submesh along
is robust to churn in the world. with all of the other copies. As a result, the simplified mesh may ac-
Mesh Simplification.  Quadric Simplification [Ronfard and tually be larger in size than the original, albeit with lower graphical
Rossignac 1996; Garland and Heckbert 1997], the most common complexity. ‘The download cost for a client increases correspond-
mesh simplification algorithm, is an incremental approach that aims ingly, sometimes by an order of magnitude.
to minimize an error metric at every step. For every edge, it finds ”» co ce

the optimal point at which the edge collapse would introduce the In addition, sorHiying 4 highly instanced meshaRS+.
least error. Follow-up techniques extend this approach to consider proaches takes longer because simpllication time grows wi ©: : number of edges and expanding the mesh duplicates submesh edges
other attributes, such as texture coordinates and normals [Garland multiple times.
and Heckbert 1998; Hoppe 1999].

Navigating Large 3D environments. Specialized approaches ex-
Billboard clouds [Décoret et al. 2003] are an alternative technique ist for rendering large crowds of humans and buildings through im-
for extreme simplification that projects a 3D model onto a set of postors [Dobbyn et al. 2005; Cignoni et al. 2007]. In contrast, our
planes with textures and transparency maps. This allows a complex approach is designed for arbitrary meshes.
model to be represented with something as simple as a textured
cube. However, this only yields a good approximation when the Hierarchical LODs [Erikson et al. 2001] is perhaps the most closely
object being viewed is distant. Furthermore, the additional textures related approach to our work. It groups objects into a hierarchy, ap-
can increase memory cost and computing the billboards is time- plying lower LOD closer to the root to achieve high frame rates
consuming. for very complex models. However, it assumes that all meshes are



available locally on disk, does not consider the multitude of tex- eI ) heNEtures that diverse user-generated objects may reference, and does Vda (A) Rh TINi
not ensure that highly instanced meshes have small file sizes after / () NN Aggregates / } \simplification. ! J \ —

Chunk-based methods for massive triangle meshes such as Quick- \ SN | NN. gEVDR [Yoon et al. 2005] and Tetrapuzzles [Cignoni et al. 2004] pre- 5 | (®) No faa - a

compute a spatial hierarchy over the mesh so that appropriate por- Se © 4 Objects : 4 © = || "tions of the mesh can be efficiently loaded on to the GPU and ren- Ra Y A »
dered. While they assume knowledge of the mesh beforehand, they

could be applicable on the client side to a relatively static world. Figure 3: Sirikata’s BVH

Voxel based methods, such as Far Voxels [Gobbetti and Marton

2005] and GigaVoxels [Crassin et al. 2009], sample triangle mod- could be incorporated into the cloud storage system to compress
els into voxels and introduce efficient techniques for rendering these uploaded user models.
voxels on the GPU. Despite the fact that, on a single machine, high-
bandwidth channels exist to transfer these voxels to the GPU, these .

approaches are forced to apply novel compression techniques to 3 Problem Statement and Overview
load the voxel data on to the GPU and render it at interactive frame
rates. Over wide area network links which can be orders of magni- Displaying a large virtual world from the cloud requires tackling
tude slower, it is unclear if these approaches can be equally effec- two major performance bottlenecks: the network and the GPU.
tive. User-generated worlds are often composed of large numbers of in-

efficient models. Without optimizations and algorithmic improve-
Building on the hierarchical image caching technique [Shade et al. ments, even a small number of objects can be too big to down-
1996] designed for standalone clients, a more recent approach load and for GPUs to render. Using the open-source Sirikata sys-
[Chaudhuri et al. 2008] pre-computes hierarchical depth images on tem [Cheslack-Postava et al. 2012] as a starting point, this paper
a cluster and sends clients a combination of nearby geometry and greatly improves download and rendering speed through three al-
distant depth images to render. Since this technique displays every- gorithmic improvements.
thing beyond some distance as a depth image, users cannot interact . . . .
or communicate with distant objects, irrespective of their size or (A) Grouping objects into aggregates such that their meshes
importance. This is acceptable if the goal is only to display the have low download and rendering cost. Existing approaches
scene, but for a system where a user may interact with objects, it is group together ob; ects in a BVH to optimize query performance
very limiting. Further, as display resolution increases, larger depth and ignore the resulting mesh complexity or size. Many scenes
images are required to maintain the same quality, which quickly have collections of very similar objects: trees grouped into a forest,
increases the network bandwidth required to display the scene. bricks forming a wall, streets and curbsides forming a road network,

and similar houses grouped into a suburb. As Figure 4 shows, con-
Demand-driven geometry transmission [Schmalstieg and Gervautz sidering the graphical similarity of objects could lead to meshes
1996] uses distance queries and level of detail on each object. Only that replace highly similar objects with one representative object
low LOD is used initially and each object is refined over time, re- instanced multiple times. The resulting aggregate meshes can sig-
sulting in a high-quality scene. However, since no aggregation is nificantly reduce file size and rendering complexity. Sections 4 and
performed, the number of objects that can be displayed is limited 5 describe algorithms for constructing similarity-aware BVHs and
by the number of draw calls the GPU can process. similar mesh deduplication.

The Paradise project uses object aggregation to reduce network traf- (B) Simplifying instanced meshes efficiently into small output

fic [Singhal and Cheriton 1996]. It creates a statistical aggregation mesh files. User-generated virtual worlds require an open 3D for-
of objects (e.g., the mean and standard deviation of tanks in a battle- mat, such as COLLADA. Most such formats describe the 3D model
field), enabling clients to generate their own approximate represen- as an instanced mesh, where a model consists of a set of submeshes
tation. This approach only works when all objects and their meshes which are instantiated one or more times to create the overall mesh.
are pre-defined. This reduces the download and memory cost for clients compared

to an expanded version of the same mesh. It also enourages mod-
Sirikata [Cheslack-Postava et al. 2012], an open-source virtual ification and reuse of meshes by users because they are easier to
world system, returns objects that occupy a minimum solid angle edit: changes to a submesh, such as a window on a house, are made
in the client's field of view. Using a BVH, the Sirikata server effi- across all instances. Aggregates can also increase instancing, be-
ciently answers solid angle queries by computing a cut across the cause aggregates group similar objects together and represent them
BVH that includes the set of objects satisfying a query. Leaves be- as instances of the same object.
longing to the cut are returned as individual objects, while internal

nodes are returned as "aggregates". The server generates special However, because quadric simplification requires all instances in
aggregate meshes for them by piecing together the meshes of their the mesh to be expanded out into a single instance, it can drastically
children, simplifying them and uploading them to the cloud (Fig- increase the file size of the resulting mesh. Results in Section 8, for
ure 3). Since the cut extends across the entire width of the BVH, example, show that on instanced meshes, using quadric simplifica-
a client can display a complete view of the world by rendering the tion to reduce the number of triangles by 80% can double the file
limited number of nodes belonging to the cut. size. Section 6 presents an instance-aware simplification algorithm

that strictly reduces file size as it simplifies a mesh.
Compression using symmetry. Recent work [Mitra et al. 2006;

Pauly et al. 2008] has focused on finding symmetrical substructures (C) Reconfiguring aggregate meshes to better manage GPU tex-
within 3D models. Instancing these substructures enable the 3D ture resources. Combining many meshes into aggregates can result
model to be greatly compressed. These approaches are not directly in each aggregate having large numbers of seperate textures, which
applicable to our on-line system, since they often require many sec- becomes a GPU bottleneck since each texture requires a separate
onds or even minutes to discover these symmetries. However, they draw call. Section 7 describes an approach towards texture man-



These charted textures combine all colors and textures used in a

model into a single image, eliminate unused parts of the texture
(or TTT space, and re-map the texture coordinates to within the texture di-

‘a =‘mn a mensions. The CDN then computes the CSD for a model using its
| A A i A A | - re = charted textures.
IN aN 7] Ek 4 bh 4
renner Te 4.2 Incremental Construction

When a new object is added to the world, the system inserts it into
(a) Optimized for querying using (b) Optimized for small aggregate the BVH. There is a tradeoff when selecting where to insert the ob-
the surface area heuristic. meshes using mesh similarity. ject. Inserting it near objects with similar bounding volumes would

optimize query performance, but inserting it near objects with sim-

Figure 4: Comparing BVHs optimizedfor querying versus aggre- ilar meshes would increase instancing and optimize mesh size and
gate mesh size. download cost. Ignoring one of these goals leads to bad behav-

ior. For example, considering only object similarity can lead to
extremely unbalanced trees with bad querying performance.

agement that ensures each aggregate mesh has only a single draw
call for all of its textures. Instead, the system must balance mesh similarity and querying per-

formance. To quantify similarity of a new object to other objects
TT . in a bounding volume, each bounding volume maintains the cen-

4 Similarity-based BVH Construction troid of the shape and texture descriptors of its children. Then the
Co difference between these centroids and a new object’s descriptors

BVHs are generally optimized for querying performance so that measure the object’s similarity to other objects in the bounding vol-
renderers can quickly cull large parts ofthe scene. To this end, ume. To consider querying performance, we heuristically assume
the BVH is constructed so that it minimizes the surface areas of that the best place to add a new object is in the bounding volume
the children of each BVH node. In a networked virtual world Sys- whose volume is least increased by the addition.
tem, however, the actual bottleneck lies in the latency for a client

to download models and render them at a reasonable frame rate. To insert a new object, the BVH starts at the root and chooses the
Therefore, the BVH should be optimized for download latency and child, which minimizes the metric,
rendering cost of its aggregates, instead of solely querying perfor-

mance. pl(1—w)(S—Cs) + o(T — Cr) 0
The BVH can optimize both download latency and rendering per- +=)(Ve = Vora) [Vina
formance for clients by grouping together similar and duplicated where § and T are the new object’s shape and texture descriptors,
objects within the BVH. Objects that are duplicated or very similar h 1 sh d texture descrint f the child
can be deduplicated and represented by multiple instances of a sin- Cs and Cr aret ¢ centroid shape and (exture descriptors of the child,

: : : : Ve 1s the bounding volume of the child with the new object added,
gle unique object. This greatly compresses their representation and . : vinal bound; : dV; lizine t
allows them to be displayed efficiently by the GPU. V,14 18 its original bounding volume and V;,4x 1s a normalizing term

equal to max, ccpitdren Ve- Hand @ are parameters between 0 and 1
Co which control the relative weight of appearance and texture similar-

4.1 Similarity Measurement ity respectively.

We quantify object similarity using Zernike shape descriptors Children are chosen in this manner recursively until a leaf node is
[Novotni and Klein 2004] to compare geometry and the Color reached. If the chosen node is already full, it 1s split to accomodate
Structure Descriptor (CSD) [Manjunath et al. 2001] to compare tex- the new object. The splitting algorithm proceeds as follows: first,
tures. Zernike descriptors are invariant to rotation, translation and it finds a pair of children as "seeds" by finding the pair that, when
scale, while CSDs allow us to efficiently compare textures that have merged, results in the most wasteful bounding volume, i.e., the one
the same color content, but different color layout. with the most empty space. The algorithm takes similarity into ac-

count by choosing a pair that has the largest difference in shape
For every model uploaded, our content delivery network (CDN) descriptors while remaining within 20% of the maximum bound-
computes and stores its Zernike descriptor by first voxelizing the ing volume waste. Once these seeds are chosen as the split nodes,
model to a 128° grid [Min ; Nooruddin and Turk 2003], and then the remaining children are grouped with one split node or the other,
generating a 20-th order Zernike descriptor of length 121. This is a depending on which one minimizes the metric in expression 1.
direct application of existing techniques.

Evaluations on a set of workloads help to find suitable values for
The Color Structure Descriptor algorithm, however, is only de- u and o that can lead to a good balance of querying performance
signed to describe a single, complete image. A descriptor for com- and grouping similar objects within the BVH. The first workload
paring textures in a mesh must differ in three ways. First, it must is composed of six unique objects instantiated into a larger 10,000-
describe all textures and colors in the mesh, and it is not clear how object village scene. The second workload consists of 236 unique
to merge descriptors together. Second, it must ignore parts of the objects arranged into a 2362-object island scene. The third work-

texture that are not referenced by the mesh. Third, it must handle load is a city scene generated using CityEngine with 60,000 unique
texture wrapping (i.e., use texture coordinates beyond the dimen- objects with ~3% objects replaced with random objects from our
sions of the texture that must be wrapped), which causes multiple CDN. Many of these objects are very similar (e.g., roads and pave-
copies of the texture to be used in the model. This is important be- ments) but are nevertheless distinct. For each workload, the gener-
cause a texture repeated many times has a very different appearance ated aggregates remain unsimplified so that their visual quality does
than the same texture applied only once. not change.

To overcome these problems, the CDN computes a 32-bin CSD us- Varying u and ®, we compute the average cost of querying the
ing charted versions of each object’s textures [Terrace et al. 2012]. BVH. For each u and ®, we also compute the average amount of
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size. Figure 6: Effect ofu and ® on average download sizefor a client.

4.3 Bulk Construction

number of GPU draw calls (Section 7).

Every few hours, the system reconstructs the BVH to ensure it does

not stray too far from the optimal condition. A top-down bulk con- 5.1 Mesh Deduplication
struction algorithm considers a set of axis-aligned candidate split

planes at each level of the tree. It computes the mutual similarity, As described in Section 4, the BVH attempts to group together simi-
defined as the average distance of the shape descriptors from their lar and proximate objects. This allows near-duplicate objects within
centroid, of the groups of objects on either side of each plane. This the aggregate to be replaced by a single, instanced object.
computation takes O(n) time, where n is the number of objects in
the system. The partition plane is then chosen as the plane that While deduplicating meshes, it is critical to ensure that only objects
yields the maximum similarity among objects in the two partitions. that appear very similar are deduplicated. This requires finding suit-
Thus, the whole tree can be reconstructed in O(nlog(n)) time. able thresholds for differences in shape and texture descriptors, be-

low which a pair of models can be considered nearly identical.

5 Aggregate Generation We discover these thresholds by doing an offline analysis of a
dataset of 748 models in our CDN uploaded by users over the

The server generates aggregates for each BVH node by working course of one summer. We render each model as images from three
bottom-up, merging the meshes of each node’s children. The aggre- mutually orthogonal directions and also store smaller versions of
gate generation module downloads, triangulates, centers and caches these images that are downsampled by powers of two. We compute
the model for each child. It deduplicates similar models within each the Zernike and texture descriptors for each model as described in
aggregate, replacing them with multiple instances of a single model. Section 4.1. For each pair of models, the difference in their Zernike

The deduplication approach is described in Section 5.1 descriptors, z4;7, 1s defined as the L2-distance between them, and
the difference in texture descriptors, #4; as the L1-distance. For

Next, it creates a new aggregate model with the submeshes and each pair of models, at each image size, we use a perceptual differ-
instances from this set of deduplicated models. However, the trans- ence metric [Yee and Newman 2004] to determine if their images
formation matrix for each instance is modified so that the children’s are indistinguishable from all three directions.
meshes are positioned and oriented to match the corresponding ob-

jects in the scene. Finally, the aggregate model is simplified using Table 1 shows, for each image size, the minimum values of z,4;¢¢
a novel instance-aware simplification algorithm (Section 6) and re- and 14;r¢ below which every pair of models is indistinguishable.
configured so that the whole scene can be rendered with a limited This information allows us to efficiently identify candidates for



Image size (pixels) Solid Angle  zaifr  taiff given a vertex w, w! Qw 1s a measure of the distance of vertex w
<48 < 0.00002 0.5 500 from the set of planes in planes(v).
< 192 < 0.00007 0.01 350 } }

< 768 <00003 0003 50 For every edge (v{,v3), assuming that quadrics Q; and Q, are as-
< 3072 <0.001 0.001 10 sociated with v{ and v,, it then computes an optimal contraction
< 12288 <0.004 0.001 10 target v for which the cost is given by
< 49152 < 0.018 0 10

< 196608 <0.073 0 0 cost(V) =v (Q1+Qy) ¥. (5)

Table 1: Deduplication thresholds for objects ofvarious sizes. The Assuming K = (Q+Q3), V is computed using the formula:

solid angle is computed assuming a 1920x1080 pixel, 34 inch dis- 4
play viewed from 24 inches away [Deering 1998]. Every pixel is kin kip kiz kia 0
assumed to subtend the same solid angle at the viewer. | ki ko ko koa 0

v= (6)| kis ko k3z ki | | 0 |Co Oo 0 0 1 1
deduplication. Under the assumption that the maximum solid angle

a client 1s allowed to query for is £ = 1.0, this implies that a client In the edge collapse phase, edges are collapsed iteratively in in-
will only receive aggregates that subtend a solid angle of at least creasing order of these error values, with the cost of vertices neigh-
1.0. This allows us to compute the minimum distance d at which a boring v; and v, updated after each collapse.
given aggregate can be returned to a client, using:

R 0 6.2 Instance-Aware Simplification (IAS)
v/ (I= (1— 32)2) As described in section 2, an instanced mesh takes a set of sub-

meshes and creates an overall mesh by instantiating and transform-

where R is the radius of the aggregate. The solid angle S subtended ing each submesh one or more times. Instead of operating on the
by a child of the aggregate having radius r can then be computed hierarchical representation of an instanced mesh M, we convert it
as’ into a flat representation where M consists of a list of instances,

2 and the transform associated with each instance is the product of all

S=2n(l—4/1- 7) (3) transforms from the root of the hierarchy down to the instance it-
self. Each instance indexes into a list of a submeshes, which contain

Then, for a pair of individual objects A and B within an aggre- geometry information in indexed triangle mesh format.
gate, the system replaces A with B if, based on the solid angle S

computed for A, z4;¢r and tr; between A and B lie within the Formally, M={1,h,1s, cos In}, where n is the number of instances
thresholds given in table 1. constituting the mesh. Each instance Ii =<Tj,8 >, where Tj; is

the transformation matrix associated with 7; and Sj is the submesh
One final detail is that once we choose to replace a model with a referenced by I;. The submesh Sy is chosen from a list of submeshes
similar one, we align the two models by using a transformation to {81,82,...,8m}, such that 1 <k <m and m < n. Each submesh Sj,
line up their major and minor axes. consists of a set of vertices and a set of triangles referencing those

vertices.

6 Instance-aware Simplification A naive approach to simplify such an instanced mesh would be
to run quadric simplification on each submesh independently and

This section presents an instance-aware variant of quadric simplifi- maintain all the intermediate levels of detail for each submesh.

cation that simplifies an instanced mesh without expanding it into Then to simplify the overall mesh to a target triangle count, choose
1ts equivalent triangle soup or indexed triangle mesh, either in- an appropriate level of detail for each sub- mesh. However, this
memory or on disk. First we provide an overview of the quadric leaves open the question of how to choose these levels of detail,
simplification algorithm and then describe how we extend it to op- which would be especially complicated if the submesh is instanced
erate on instanced meshes without expanding the submeshes or al- using wildly varying transformations.
lowing them to diverge during simplification.

To solve this problem, instance-aware simplification applies
. as cer quadric simplification to the underlying submeshes but accounts for

6.1 Basic Quadric Simplification the fact that each submesh may be instantiated multiple times and
Quadric mesh simplification [Garland and Heckbert 1997] executes transformed in different ways to create the overall mesh.
in two phases. During the initialization phase, the algorithm as- One way to do this intuitively is to iterate through the list of mesh
signs an error quadric, Q, to each vertex, v. Q is computed on instances, compute the cost of each edge in the overall mesh, and
the basis of the planes (triangles) neighboring v, and is given by add it back to the total cost of the underlying submesh edge. Then,

Q =X peplanes(v) Qp, Where Qp is the quadric for plane p and is order each submesh edge by its total cost and collapse edges in
computed as: increasing order of their total cost. However, this approach does

not help us find an optimal contraction target for a given submesh
a> ab ac ad edge.

Qp = area(p). | ab b’ be bd | 4) Instead, we use the observation that the error quadric Q associ-ac bc c¢ cd ated with a vertex v is derived from the set of planes neighbor-
ad bd cd d* ing v. In an instanced mesh, therefore, Q for a submesh vertex v

can be computed by accounting for all the neighboring planes that
Here a,b,c and d are the normalized coefficients of the equation exist in all instances of the submesh. Suppose M is the transfor-

ax + by + cz+d = 0, which defines the plane p, while area(p) is the mation matrix for a given instance of a submesh, and v is a sub-
area of the triangle corresponding to plane p. With this formulation, mesh vertex which maps to x in that instance. Since x=Myv, we



can write the distance of x from its set of neighboring planes as outputs. However, our evaluations in section 8 show that, in prac-

x! Qx=(Mv)! Q(Mv)=v! M! QMv, where Q is computed from the tice, IAS often results in even higher quality meshes, or introduces
neighboring planes in that instance. very little additional error otherwise.

Then, MM! QM) is the error quadric giving the distance of the sub- It is useful to note that expansion of an instanced mesh is not a con-
mesh vertices from the neighboring planes in the instance. Sum- cern for instanced meshes that only instance each submesh once,
ming it up over all instances, the quadric for a submesh vertex is since there is no submesh duplication. Also, if every instance of

given by Yicinsrances(submesh) M7 QM, where M; is the transform a submesh scales or modifies the submesh in the same way, then
associated with instance i and Q; is the quadric computed for the existing simplification approaches can still be trivially applied: just
‘nstantiated vertex. multiply the edge collapse cost from one instance by the number

of instances. However, the problem becomes much more compli-

Using this new quadric, we can find the optimal contraction target cated when multiple instances of the same submesh transform it in
for a submesh edge similarly as basic quadric simplification. The completely different ways.
final algorithm, then works as follows:

The current implementation of IAS does not optimize other prop-
1. For each instance i applying transform M; to submesh S;: erties associated with vertices, such as texture coordinates and nor-

mals. Similar to the approach followed in [Garland and Heckbert
(a) For each triangle 7 in submesh S;: 1998], extending the quadric to include the values of these proper-

1. Transform ¢ by applying M; to each of its vertices. ies may be a possible solution,

11. Compute Qp. the error quadric for the transformed 7 Texture Management
triangle, using Equation 4.

i1i. Compute the error quadric for the untransformed GPUs are also constrained by the number and size of textures

triangle r as M! QpM; and add it to the error needed to render each frame. Current GPUs cannot render more
quadrics for each of #’s untransformed vertices. than one to ten thousand unique textures per frame at interactive

frame rates. The total size occupied by textures is also limited
2. In each submesh §;, compute the optimal contraction target by GPU texture RAM, with current cards generally restricted to

v and its cost for each submesh edge (v{,v,) using Equations at most a gigabyte.
6 and 5, where Q and Q, are the submesh error quadrics

associated with vq and v; respectively. To deal with these constraints, the system generates aggregates that
oo can each be rendered with a single draw call, i.e., reference only one

3. Collapse submesh edges in increasing order of their cost. texture. Further, it limits each texture to a maximum size of 128KB.
Compute how many triangles become degenerate after each Clients specify a solid angle query whose response contains less
collapse and decrement the number of triangles in the model than four thousand objects. The client can then render these in less
by that times the number of instances of the submesh. At each than three thousand draw calls using at most 512 MB of texture
step, since only a submesh edge is collapsed, the cost has to RAM.
be updated only for neighboring vertices in that submesh.

We use a simple approach, texture atlasing, to ensure that an aggre-

6.3 Preserving boundaries gate references only a single texture. If a scene uses many unique
textures, the system combines the textures of each child of an ag-

A boundary edge is an edge that exists in only one triangle. TAS gregate into a single atlas, and remaps the texture coordinates in the
considers an edge to be a boundary edge as long as it is a bound- aggregate mesh to point to the appropriate coordinates in the atlas.

any edge within is submesh. IAS ‘uses the same basic approach Atlasing involves some complicated details, however. Some mod-as quadric simplification for boundary edges. For each edge in the : ) ) :
overall mesh, if it is a boundary edge, IAS generates a perpendic- els use wrapping texture coordinates which can result in the same
ular constraint plane running through the edge. It then computes texture being used repeatedly. Others reference only a small part of
the quadric for this constraint plane, weights it by the length of the the actual texture image. As described in section 4.1, the CDN ad-
edge and adds it to the quadrics for the endpoints of the edge. In dresses these issues by asynchronously computing a charted, com-
our experience, this results in much better results than simply mark- bined version of Cach models textures. Given these modified tex-
ing such edges as incollapsible since it still allows small boundary tures as input, atlasing becomes a relatively simple process.
edges to be collapsed, instead of forcing other longer edges to be Some large scenes do not use many unique textures. This is often
collapsed. true for procedurally generated scenes, where textures from a small

set are used repeatedly to create the scene. To handle such scenes
6.4 Discussion without the overhead of atlasing, we only atlas textures in aggregate

meshes if the scene has more than 100 textures or the textures take

Since the edge collapse step of IAS operates only on submesh up more than 64 MB.
edges, highly instanced meshes can be simplified faster than
quadric simplification. Not only are there fewer submesh edges This approach leaves open the question of texture space waste
than edges in the overall mesh, but collapsing a single submesh caused when a frequently used texture is repeated many times as
edge effectively collapses multiple edges in the overall mesh, al- a part of different atlases. We leave this question to future work.
lowing simplification to proceed faster towards the target triangle

count. 8 Evaluation

On the other hand, IAS does not compute quadrics across sub-
meshes, so it has less information about the overall mesh than This section evaluates our results from using these techniques on
quadric simplification. This can, in theory, result in lower quality individual models and on a large multi-server virtual world.



_____________________________________________________________________________________________________________________________________________________|]

Model Time Time Time Size Size Size Error Error Error
(Quadric) (IAS) Reduction (Quadric) (IAS) Reduction (Quadric) (IAS) Reduction

Maple Tree 13s 5s 58% 28 MB 110 KB 99.6% 0.158 0.103 34.8%

Village 30s 17s 44% 31 MB 6 MB 79.6% 5.601 5.504 1.8%
Patio Chair 40 ms 43 ms -8% 34 KB 31 KB 8.8% 0.251 0.055 78.0%

Stonehenge 140 ms 608 ms -334% 379 KB 373 KB 1.6% 0.516 0.520 -0.8%

Bunny 390 ms 1890 ms -384% 235 KB 235 KB 0% 0.200 0.200 0%
_____________________________________________________________________________________________________________________________________________________|]

Table 3: Performance comparison ofIAS and Quadric simplification, demonstrating that instance-aware simplification consistently outper-

forms quadric simplification in simplified mesh file size while introducing comparable error. Each model is simplified to 20% of its original
triangle count. Error is the Hausdorffdistance between the original and simplified mesh computed using the Metro tool.
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(a) Quadric (20% triangles, 31 MB) (b) Original, 16 MB (¢c) IAS (20% triangles, 6 MB)

Figure 7: Village meshfrom Table 3 simplified to 20% of the original triangle count. The visual quality of the two simplified versions of the
mesh is not very different, but the outputfile size is almost 80% smaller using IAS.
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(a) Quadric (20% triangles, 28 MB) (b) Original, 546 KB (¢c) IAS (20% triangles, 110 KB)

Figure 8: Maple tree with highly instanced leaves from Table 3 simplified to 20% of the original triangle count. IAS results in better quality
than quadric simplification, while also achieving much smallerfile size.
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(a) Quadric (20% triangles, 34 KB) (b) Original, 92 KB (c) IAS (20% triangles, 31 KB)

Figure 9: Patio chair with highly instanced slats from Table 3 simplified to 20% of the original triangle count. IAS results in surprisingly

better quality than the reference implementation ofquadric simplification.



Model Submeshes Instances Instances Triangles 9 Conclusion
per submesh

Maple Tree 18 9324 518 1818074 Displaying large, user-generated virtual worlds is challenging due
Village 79 13523 171.18 1254696 to the limitations of the network and GPU. This paper presented
Patio Chair 6 68 11.33 2240 an approach to tackle this problem by exploiting the similarity of

onchange >; ol 1.3° 00s proximate objects in a coherent scene, using instancing to reduce
i tt the file size of models a client has to download. Our approach

constructs a BVH out of objects in the world trading off query-
Table 2: Properties ofmodels used to evaluate IAS. ing performance for higher object similarity within a bounding vol-

ume (or “aggregate). We then deduplicate highly similar meshes
] CL within each aggregate, replacing them with many instances of a

8.1 Instance-aware Simplification single unique mesh. This increases the amount of instancing in
the aggregates, potentially reducing their file size. An instance-

Table 3 shows the benefits and trade-offs of instance-aware simpli- aware simplification algorithm simplifies the aggregate meshes, re-
fication (IAS) on a set of models described in Table 2. The village sulting in a smaller file size for the aggregate mesh than existing
and dense maple tree meshes (figures 7 and 8) are highly instanced approaches. Finally, texture atlasing enables efficient rendering of
with over a million triangles each. The houses in the middle of the aggregate meshes. Evaluations show that this approach allows large
village scene are instantiated from a set of six unique house sub- user-generated virtual worlds to load quickly, require less download
meshes. The surrounding trees are instances of a single unique sub- bandwidth and render at interactive frame rates.
mesh. The leaves on the maple tree mesh are instantiated from two
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