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Figure 1: Screenshots from our system of a world with over 540,000 objects composed of a total of 144 million triangles referencing ~6,000
unique textures and occupying over 24 GB on disk. This high-visibility viewpoint observes more than half the world, including five distant
cities as complex as the one the user is flying over. User-generated models, such as the green piggy bank in the scene on the right, were
randomly placed in the world. The client is able to render this large, complex and diverse scene between 20 and 35 frames per second, while

downloading only 1.4 GB of data from the cloud, a 94% reduction.

Abstract

Rich, large-scale user-generated virtual worlds have been imagined
in the realm of fiction for decades. Such worlds, however, present
significant technical challenges due to the limitations of available
network and graphics resources. Since the world is user-generated,
its content has to be stored in a shared, networked resource such
as the cloud. Further, user-generated content is not optimized for
efficient rendering, so additional processing is needed to display it
efficiently in the presence of limited graphical resources.

This paper presents an approach to efficiently display a complete
view of a user-generated world at scale. The key insight is that such
worlds have a high degree of coherence, which enables us to dedu-
plicate many 3D models. This greatly reduces the amount of data
that needs to be transferred over the network to display the world.
The deduplicated models also lend themselves to a new method
of simplification, called instance-aware simplification, which effi-
ciently simplifies 3D models consisting of many instances of the
same geometry.

1 Introduction

Fictional accounts of richly detailed, large-scale, user-generated
virtual worlds abound in sci-fi literature, such as Snow Crash,
Ready Player One and Neuromancer. The sheer scale of such
worlds mean most content is created primarily by end users: even
games today such as Spore rely on more user-generated content
due to rising production costs. But all of the content created by
hundreds of thousands or millions of users cannot be stored locally
on every disk. The content must be stored in a shared, networked
resource such as the cloud and delivered to clients dynamically. Fi-
nally, since the virtual world content is not owned by a central au-
thority, there is no assurance for object mesh and texture quality.

Serving large amounts of user-generated graphical content from the
cloud presents three principal research problems to storage, net-
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works and GPUs. First, user-generated models are not optimized
for rendering in terms of their triangle count or their textures. Ren-
dering just a few of these models can overburden the GPU. Second,
a large world can have many high visibility locations where hun-
dreds of thousands of objects may be in a client’s field of view.
Downloading the models for these objects can take a long time. Fi-
nally, rendering all these objects as fully-detailed textured meshes
at an interactive frame rate is infeasible, especially since the GPU is
limited by the number of batches the CPU can generate, generally
a few thousand per frame.

Existing virtual worlds, such as Second Life and World of Warcraft,
address these three problems by displaying only a small subset of
objects within a small, fixed distance from the viewer. While this
simplifies their system design and yields good frame rates, viewers
cannot see distant, large objects such as mountains or skyscrap-
ers. Substantial prior work has addressed lifting this limitation
to render large models or scenes when all data is available lo-
cally [Funkhouser et al. 1992; Erikson et al. 2001; Crassin et al.
2009; Rusinkiewicz and Levoy 2000] and when streaming indi-
vidual meshes over the network [Hoppe 1996; Rusinkiewicz and
Levoy 2001]. However, streaming of large scenes has thus far relied
mostly on culling and level of detail for each object [Schmalstieg
and Gervautz 1996; Teler and Lischinski 2001], which still limits
the display to only a few thousand objects at a time. More recent
work [Cheslack-Postava et al. 2012] has proposed an approach for
generating aggregates (impostors representing groups of objects)
and selecting a small subset of objects and aggregates that yield a
complete view of the world.

This paper, in contrast to this prior work, focuses on how how to
generate and simplify aggregates in the cloud in order to overcome
the limitations of client network bandwidth, GPU RAM, and GPU
batch count. The approach relies on two main ideas: scene co-
herence and instancing. Scene coherence means that in a logically
consistent world, there will often be similar or duplicate meshes
clustered in close proximity. Instancing is the technique of repre-
senting many copies of the same geometry by storing one copy and
applying transformations to create more copies.

The approach exploits scene coherence to maximize instancing



within aggregates, enabling efficient simplification and smaller net-
work transfer cost. It groups graphically similar objects into ag-
gregates, and deduplicates highly similar objects within each ag-
gregate to reduce its size and increase the prevalence of instancing.
It generates instanced meshes for these aggregates and simplifies
them using a novel instance-aware simplification algorithm, which
unlike existing approaches, works directly on the instanced mesh
instead of the equivalent indexed triangle mesh. Texture atlasing
ensures that each aggregate can be rendered with a single draw call
to the GPU.

This paper makes four research contributions. First, it presents
an algorithm to efficiently construct a bounding volume hierarchy
(BVH) which greatly reduces the download and rendering cost of
aggregates while maintaining good querying performance. Second,
it presents a technique to deduplicate highly similar models within
each aggregate in order to further reduce download and rendering
costs. Third, it proposes a new instance-aware simplification algo-
rithm whose resulting mesh files are up to 99.6% smaller compared
to the quadric simplification algorithm. Finally, it describes an ap-
proach to reconfigure the textures referenced by aggregate meshes
in order to enable a complex world to be rendered within the GPU’s
texture RAM and draw call budget. Combined, these techniques al-
lows a client to stream a large, complex, user-generated scene con-
sisting of over 500,000 objects and 144 million triangles over the
network as well as display it at interactive frame rates.

We overview related work in the next section. Section 3 provides
some background and states the problem in more detail. Section 4
presents a BVH construction approach which considers both prox-
imity and mesh similarity. Algorithms to generate instanced 3D
models for these aggregates and simplify the instanced models fol-
low in sections 5 and 6. Section 7 details our texture management
strategy and an evaluation of the system follows in Section 8.

2 Related Work

There is a large body of work in the area of rendering large vir-
tual environments. However, most of this work assumes that all of
the graphical data can fit locally on disk. Further, many existing
techniques also assume static, pre-defined objects and little churn
in terms of objects entering and leaving the system.

In contrast, our approach is designed for worlds that are too large
to be stored locally and hence have to be stored in the cloud. Since
the network is a low-bandwidth channel compared to local disk, it
is crucial to have an approach that minimizes the amount of data
sent over the network. Moreover, since the world is user-generated,
we assume no pre-existing knowledge of objects and our approach
is robust to churn in the world.

Mesh Simplification.  Quadric Simplification [Ronfard and
Rossignac 1996; Garland and Heckbert 1997], the most common
mesh simplification algorithm, is an incremental approach that aims
to minimize an error metric at every step. For every edge, it finds
the optimal point at which the edge collapse would introduce the
least error. Follow-up techniques extend this approach to consider
other attributes, such as texture coordinates and normals [Garland
and Heckbert 1998; Hoppe 1999].

Billboard clouds [Décoret et al. 2003] are an alternative technique
for extreme simplification that projects a 3D model onto a set of
planes with textures and transparency maps. This allows a complex
model to be represented with something as simple as a textured
cube. However, this only yields a good approximation when the
object being viewed is distant. Furthermore, the additional textures
can increase memory cost and computing the billboards is time-
consuming.
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Figure 2: The structure of an instanced mesh file.

View-dependent simplification [Luebke and Erikson 1997] and per-
ceptually modulated level-of-detail (LOD) [Williams et al. 2003]
exploit the camera’s current viewpoint to achieve higher quality
rendering, but can only be run on the client side for this reason.
It is important to note, however, that a client of our system could
use these methods to efficiently render the aggregates and individ-
ual objects returned by our system.

A number of metrics exist to measure visual error on simplified
meshes. One of the more well-established metrics is MetroMn
[Cignoni et al. 1998], which has been shown in studies to correlate
strongly with human perceptions of quality [Watson et al. 2001].

Instanced Meshes. These existing simplification algorithms as-
sume that a model is an indexed triangle mesh, consisting of a set
of vertices, a set of faces composed of those vertices, and other
properties associated with the vertices, such as normals and texture
coordinates. However, many real-world model formats, including
the COLLADA standard [Arnaud and Barnes 2006], describe a 3D
model as an instanced model (or equivalently, a scene graph) con-
sisting of a set of submeshes which are instanced using different
transformation matrices (Figure 2). Instances can be organized hi-
erarchically such that their transformation is the product of all trans-
formations from the root to the instance at the leaf.

To apply existing simplification algorithms to instanced meshes, the
instanced mesh must be expanded into an indexed triangle mesh.
Expanding the mesh simply means generating the overall mesh by
iterating over every instance of the mesh and applying the instance’s
transformation matrix to its submesh. This results in geometry be-
ing duplicated for instances that reference the same submesh mul-
tiple times. In many cases, data may be duplicated tens of times as
duplicate objects are grouped into aggregates (e.g., trees in a for-
est), or even hundreds of times in an input mesh (e.g., leaves on a
tree).

Furthermore, expansion and subsequent simplification is a one-way
transformation: once edges in one copy of a submesh are collapsed,
that copy cannot be easily factored back into a single submesh along
with all of the other copies. As a result, the simplified mesh may ac-
tually be larger in size than the original, albeit with lower graphical
complexity. The download cost for a client increases correspond-
ingly, sometimes by an order of magnitude.

In addition, simplifying a highly instanced mesh using existing ap-
proaches takes longer because simplification time grows with the
number of edges and expanding the mesh duplicates submesh edges
multiple times.

Navigating Large 3D environments. Specialized approaches ex-
ist for rendering large crowds of humans and buildings through im-
postors [Dobbyn et al. 2005; Cignoni et al. 2007]. In contrast, our
approach is designed for arbitrary meshes.

Hierarchical LODs [Erikson et al. 2001] is perhaps the most closely
related approach to our work. It groups objects into a hierarchy, ap-
plying lower LOD closer to the root to achieve high frame rates
for very complex models. However, it assumes that all meshes are



available locally on disk, does not consider the multitude of tex-
tures that diverse user-generated objects may reference, and does
not ensure that highly instanced meshes have small file sizes after
simplification.

Chunk-based methods for massive triangle meshes such as Quick-
VDR [Yoon et al. 2005] and Tetrapuzzles [Cignoni et al. 2004] pre-
compute a spatial hierarchy over the mesh so that appropriate por-
tions of the mesh can be efficiently loaded on to the GPU and ren-
dered. While they assume knowledge of the mesh beforehand, they
could be applicable on the client side to a relatively static world.

Voxel based methods, such as Far Voxels [Gobbetti and Marton
2005] and GigaVoxels [Crassin et al. 2009], sample triangle mod-
els into voxels and introduce efficient techniques for rendering these
voxels on the GPU. Despite the fact that, on a single machine, high-
bandwidth channels exist to transfer these voxels to the GPU, these
approaches are forced to apply novel compression techniques to
load the voxel data on to the GPU and render it at interactive frame
rates. Over wide area network links which can be orders of magni-
tude slower, it is unclear if these approaches can be equally effec-
tive.

Building on the hierarchical image caching technique [Shade et al.
1996] designed for standalone clients, a more recent approach
[Chaudhuri et al. 2008] pre-computes hierarchical depth images on
a cluster and sends clients a combination of nearby geometry and
distant depth images to render. Since this technique displays every-
thing beyond some distance as a depth image, users cannot interact
or communicate with distant objects, irrespective of their size or
importance. This is acceptable if the goal is only to display the
scene, but for a system where a user may interact with objects, it is
very limiting. Further, as display resolution increases, larger depth
images are required to maintain the same quality, which quickly
increases the network bandwidth required to display the scene.

Demand-driven geometry transmission [Schmalstieg and Gervautz
1996] uses distance queries and level of detail on each object. Only
low LOD is used initially and each object is refined over time, re-
sulting in a high-quality scene. However, since no aggregation is
performed, the number of objects that can be displayed is limited
by the number of draw calls the GPU can process.

The Paradise project uses object aggregation to reduce network traf-
fic [Singhal and Cheriton 1996]. It creates a statistical aggregation
of objects (e.g., the mean and standard deviation of tanks in a battle-
field), enabling clients to generate their own approximate represen-
tation. This approach only works when all objects and their meshes
are pre-defined.

Sirikata [Cheslack-Postava et al. 2012], an open-source virtual
world system, returns objects that occupy a minimum solid angle
in the client’s field of view. Using a BVH, the Sirikata server effi-
ciently answers solid angle queries by computing a cut across the
BVH that includes the set of objects satisfying a query. Leaves be-
longing to the cut are returned as individual objects, while internal
nodes are returned as "aggregates”". The server generates special
aggregate meshes for them by piecing together the meshes of their
children, simplifying them and uploading them to the cloud (Fig-
ure 3). Since the cut extends across the entire width of the BVH,
a client can display a complete view of the world by rendering the
limited number of nodes belonging to the cut.

Compression using symmetry. Recent work [Mitra et al. 2006;
Pauly et al. 2008] has focused on finding symmetrical substructures
within 3D models. Instancing these substructures enable the 3D
model to be greatly compressed. These approaches are not directly
applicable to our on-line system, since they often require many sec-
onds or even minutes to discover these symmetries. However, they
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Figure 3: Sirikata’s BVH

could be incorporated into the cloud storage system to compress
uploaded user models.

3 Problem Statement and Overview

Displaying a large virtual world from the cloud requires tackling
two major performance bottlenecks: the network and the GPU.
User-generated worlds are often composed of large numbers of in-
efficient models. Without optimizations and algorithmic improve-
ments, even a small number of objects can be too big to down-
load and for GPUs to render. Using the open-source Sirikata sys-
tem [Cheslack-Postava et al. 2012] as a starting point, this paper
greatly improves download and rendering speed through three al-
gorithmic improvements.

(A) Grouping objects into aggregates such that their meshes
have low download and rendering cost. Existing approaches
group together objects in a BVH to optimize query performance
and ignore the resulting mesh complexity or size. Many scenes
have collections of very similar objects: trees grouped into a forest,
bricks forming a wall, streets and curbsides forming a road network,
and similar houses grouped into a suburb. As Figure 4 shows, con-
sidering the graphical similarity of objects could lead to meshes
that replace highly similar objects with one representative object
instanced multiple times. The resulting aggregate meshes can sig-
nificantly reduce file size and rendering complexity. Sections 4 and
5 describe algorithms for constructing similarity-aware BVHs and
similar mesh deduplication.

(B) Simplifying instanced meshes efficiently into small output
mesh files. User-generated virtual worlds require an open 3D for-
mat, such as COLLADA. Most such formats describe the 3D model
as an instanced mesh, where a model consists of a set of submeshes
which are instantiated one or more times to create the overall mesh.
This reduces the download and memory cost for clients compared
to an expanded version of the same mesh. It also enourages mod-
ification and reuse of meshes by users because they are easier to
edit: changes to a submesh, such as a window on a house, are made
across all instances. Aggregates can also increase instancing, be-
cause aggregates group similar objects together and represent them
as instances of the same object.

However, because quadric simplification requires all instances in
the mesh to be expanded out into a single instance, it can drastically
increase the file size of the resulting mesh. Results in Section 8, for
example, show that on instanced meshes, using quadric simplifica-
tion to reduce the number of triangles by 80% can double the file
size. Section 6 presents an instance-aware simplification algorithm
that strictly reduces file size as it simplifies a mesh.

(C) Reconfiguring aggregate meshes to better manage GPU tex-
ture resources. Combining many meshes into aggregates can result
in each aggregate having large numbers of seperate textures, which
becomes a GPU bottleneck since each texture requires a separate
draw call. Section 7 describes an approach towards texture man-
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Figure 4: Comparing BVHs optimized for querying versus aggre-
gate mesh size.

agement that ensures each aggregate mesh has only a single draw
call for all of its textures.

4 Similarity-based BVH Construction

BVHs are generally optimized for querying performance so that
renderers can quickly cull large parts of the scene. To this end,
the BVH is constructed so that it minimizes the surface areas of
the children of each BVH node. In a networked virtual world sys-
tem, however, the actual bottleneck lies in the latency for a client
to download models and render them at a reasonable frame rate.
Therefore, the BVH should be optimized for download latency and
rendering cost of its aggregates, instead of solely querying perfor-
mance.

The BVH can optimize both download latency and rendering per-
formance for clients by grouping together similar and duplicated
objects within the BVH. Objects that are duplicated or very similar
can be deduplicated and represented by multiple instances of a sin-
gle unique object. This greatly compresses their representation and
allows them to be displayed efficiently by the GPU.

4.1 Similarity Measurement

We quantify object similarity using Zernike shape descriptors
[Novotni and Klein 2004] to compare geometry and the Color
Structure Descriptor (CSD) [Manjunath et al. 2001] to compare tex-
tures. Zernike descriptors are invariant to rotation, translation and
scale, while CSDs allow us to efficiently compare textures that have
the same color content, but different color layout.

For every model uploaded, our content delivery network (CDN)
computes and stores its Zernike descriptor by first voxelizing the
model to a 1283 grid [Min ; Nooruddin and Turk 2003], and then
generating a 20-th order Zernike descriptor of length 121. This is a
direct application of existing techniques.

The Color Structure Descriptor algorithm, however, is only de-
signed to describe a single, complete image. A descriptor for com-
paring textures in a mesh must differ in three ways. First, it must
describe all textures and colors in the mesh, and it is not clear how
to merge descriptors together. Second, it must ignore parts of the
texture that are not referenced by the mesh. Third, it must handle
texture wrapping (i.e., use texture coordinates beyond the dimen-
sions of the texture that must be wrapped), which causes multiple
copies of the texture to be used in the model. This is important be-
cause a texture repeated many times has a very different appearance
than the same texture applied only once.

To overcome these problems, the CDN computes a 32-bin CSD us-
ing charted versions of each object’s textures [Terrace et al. 2012].

These charted textures combine all colors and textures used in a
model into a single image, eliminate unused parts of the texture
space, and re-map the texture coordinates to within the texture di-
mensions. The CDN then computes the CSD for a model using its
charted textures.

4.2 Incremental Construction

When a new object is added to the world, the system inserts it into
the BVH. There is a tradeoff when selecting where to insert the ob-
ject. Inserting it near objects with similar bounding volumes would
optimize query performance, but inserting it near objects with sim-
ilar meshes would increase instancing and optimize mesh size and
download cost. Ignoring one of these goals leads to bad behav-
ior. For example, considering only object similarity can lead to
extremely unbalanced trees with bad querying performance.

Instead, the system must balance mesh similarity and querying per-
formance. To quantify similarity of a new object to other objects
in a bounding volume, each bounding volume maintains the cen-
troid of the shape and texture descriptors of its children. Then the
difference between these centroids and a new object’s descriptors
measure the object’s similarity to other objects in the bounding vol-
ume. To consider querying performance, we heuristically assume
that the best place to add a new object is in the bounding volume
whose volume is least increased by the addition.

To insert a new object, the BVH starts at the root and chooses the
child, which minimizes the metric,
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where S and T are the new object’s shape and texture descriptors,
Cs and C; are the centroid shape and texture descriptors of the child,
Ve is the bounding volume of the child with the new object added,
V14 18 its original bounding volume and Vjuqy is a normalizing term
equal to max ¢ cpjdren Ve. 4 and o are parameters between 0 and 1
which control the relative weight of appearance and texture similar-
ity respectively.

Children are chosen in this manner recursively until a leaf node is
reached. If the chosen node is already full, it is split to accomodate
the new object. The splitting algorithm proceeds as follows: first,
it finds a pair of children as "seeds" by finding the pair that, when
merged, results in the most wasteful bounding volume, i.e., the one
with the most empty space. The algorithm takes similarity into ac-
count by choosing a pair that has the largest difference in shape
descriptors while remaining within 20% of the maximum bound-
ing volume waste. Once these seeds are chosen as the split nodes,
the remaining children are grouped with one split node or the other,
depending on which one minimizes the metric in expression 1.

Evaluations on a set of workloads help to find suitable values for
u and o that can lead to a good balance of querying performance
and grouping similar objects within the BVH. The first workload
is composed of six unique objects instantiated into a larger 10,000-
object village scene. The second workload consists of 236 unique
objects arranged into a 2362-object island scene. The third work-
load is a city scene generated using CityEngine with 60,000 unique
objects with ~3% objects replaced with random objects from our
CDN. Many of these objects are very similar (e.g., roads and pave-
ments) but are nevertheless distinct. For each workload, the gener-
ated aggregates remain unsimplified so that their visual quality does
not change.

Varying u and ®, we compute the average cost of querying the
BVH. For each u and ®, we also compute the average amount of
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Figure 5: Effect of u and ® on BVH querying performance.

data a client has to download on joining the world from ten random
locations.

Figure 5 shows that the average cost of querying the BVH does not
increase significantly with y and ®, except when u approaches 1.
On the other hand, figure 6 shows that for two of the workloads, the
average download size reduces by up to 25% with increasing values
of u. Each of these workloads yields a minimum download size at
1 =0.8 and ® = 0.2. However, different values of ® generally do
not have a substantial effect on download size. This suggests that
using object geometry to construct the BVH provides most of the
improvements in download size and rendering performance, while
object textures have a smaller role to play in this regard. We use
u= 0.8 and ® = 0.2 as the values of these parameters in the BVH.

Note that download size does not decrease significantly in the
CityEngine workload. Increasing u allows for more deduplication
of similar meshes (as described in section 5.1) but almost all of
the deduplicated meshes are very small and simple. As a result,
deduplicating them enables them to be rendered more efficiently as
instances of a single mesh but does not greatly reduce download
size.

4.3 Bulk Construction

Every few hours, the system reconstructs the BVH to ensure it does
not stray too far from the optimal condition. A top-down bulk con-
struction algorithm considers a set of axis-aligned candidate split
planes at each level of the tree. It computes the mutual similarity,
defined as the average distance of the shape descriptors from their
centroid, of the groups of objects on either side of each plane. This
computation takes O(n) time, where n is the number of objects in
the system. The partition plane is then chosen as the plane that
yields the maximum similarity among objects in the two partitions.
Thus, the whole tree can be reconstructed in O(nlog(n)) time.

5 Aggregate Generation

The server generates aggregates for each BVH node by working
bottom-up, merging the meshes of each node’s children. The aggre-
gate generation module downloads, triangulates, centers and caches
the model for each child. It deduplicates similar models within each
aggregate, replacing them with multiple instances of a single model.
The deduplication approach is described in Section 5.1

Next, it creates a new aggregate model with the submeshes and
instances from this set of deduplicated models. However, the trans-
formation matrix for each instance is modified so that the children’s
meshes are positioned and oriented to match the corresponding ob-
jects in the scene. Finally, the aggregate model is simplified using
a novel instance-aware simplification algorithm (Section 6) and re-
configured so that the whole scene can be rendered with a limited
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Figure 6: Effect of u and ® on average download size for a client.

number of GPU draw calls (Section 7).

5.1 Mesh Deduplication

As described in Section 4, the BVH attempts to group together simi-
lar and proximate objects. This allows near-duplicate objects within
the aggregate to be replaced by a single, instanced object.

While deduplicating meshes, it is critical to ensure that only objects
that appear very similar are deduplicated. This requires finding suit-
able thresholds for differences in shape and texture descriptors, be-
low which a pair of models can be considered nearly identical.

We discover these thresholds by doing an offline analysis of a
dataset of 748 models in our CDN uploaded by users over the
course of one summer. We render each model as images from three
mutually orthogonal directions and also store smaller versions of
these images that are downsampled by powers of two. We compute
the Zernike and texture descriptors for each model as described in
Section 4.1. For each pair of models, the difference in their Zernike
descriptors, zg4;¢¢, is defined as the L.2-distance between them, and
the difference in texture descriptors, #;7 as the L1-distance. For
each pair of models, at each image size, we use a perceptual differ-
ence metric [Yee and Newman 2004] to determine if their images
are indistinguishable from all three directions.

Table 1 shows, for each image size, the minimum values of z4;¢¢
and 74;r below which every pair of models is indistinguishable.
This information allows us to efficiently identify candidates for



Image size (pixels) Solid Angle  zuirr  taif
<48 < 0.00002 0.5 500

<192 < 0.00007 0.01 350

<768 < 0.0003 0.003 50
<3072 <0.001 0.001 10

< 12288 <0.004 0.001 10

< 49152 <0.018 0 10

< 196608 <0.073 0 0

Table 1: Deduplication thresholds for objects of various sizes. The
solid angle is computed assuming a 1920x1080 pixel, 34 inch dis-
play viewed from 24 inches away [Deering 1998]. Every pixel is
assumed to subtend the same solid angle at the viewer.

deduplication. Under the assumption that the maximum solid angle
a client is allowed to query for is Q = 1.0, this implies that a client
will only receive aggregates that subtend a solid angle of at least
1.0. This allows us to compute the minimum distance d at which a
given aggregate can be returned to a client, using:

d=——r ®)

(1-(-£p)

where R is the radius of the aggregate. The solid angle S subtended
by a child of the aggregate having radius r can then be computed
as:

2
S=2mn(l- I—E) 3)
Then, for a pair of individual objects A and B within an aggre-
gate, the system replaces A with B if, based on the solid angle S
computed for A, z4irr and 14;rr between A and B lie within the
thresholds given in table 1.

One final detail is that once we choose to replace a model with a
similar one, we align the two models by using a transformation to
line up their major and minor axes.

6 Instance-aware Simplification

This section presents an instance-aware variant of quadric simplifi-
cation that simplifies an instanced mesh without expanding it into
its equivalent triangle soup or indexed triangle mesh, either in-
memory or on disk. First we provide an overview of the quadric
simplification algorithm and then describe how we extend it to op-
erate on instanced meshes without expanding the submeshes or al-
lowing them to diverge during simplification.

6.1 Basic Quadric Simplification

Quadric mesh simplification [Garland and Heckbert 1997] executes
in two phases. During the initialization phase, the algorithm as-
signs an error quadric, Q, to each vertex, v. Q is computed on
the basis of the planes (triangles) neighboring v, and is given by
Q = ¥ peplanes(v) Q. Where Qp is the quadric for plane p and is
computed as:

& ab ac ad
ab b be bd
Qp = area(p). ac bc & cod @
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Here a,b,c and d are the normalized coefficients of the equation
ax+by+cz+d =0, which defines the plane p, while area(p) is the
area of the triangle corresponding to plane p. With this formulation,

given a vertex w, w! Qw is a measure of the distance of vertex w
from the set of planes in planes(v).

For every edge (v1,v2), assuming that quadrics Q; and Q, are as-
sociated with v; and v,, it then computes an optimal contraction
target Vv for which the cost is given by

cost(V) =" (Q1+Qo) ¥. )
Assuming K = (Q;+Q5), ¥ is computed using the formula:
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In the edge collapse phase, edges are collapsed iteratively in in-
creasing order of these error values, with the cost of vertices neigh-
boring v; and v, updated after each collapse.

6.2 Instance-Aware Simplification (IAS)

As described in section 2, an instanced mesh takes a set of sub-
meshes and creates an overall mesh by instantiating and transform-
ing each submesh one or more times. Instead of operating on the
hierarchical representation of an instanced mesh M, we convert it
into a flat representation where M consists of a list of instances,
and the transform associated with each instance is the product of all
transforms from the root of the hierarchy down to the instance it-
self. Each instance indexes into a list of a submeshes, which contain
geometry information in indexed triangle mesh format.

Formally, M = {1}, 15,1, ...,I» }, where n is the number of instances
constituting the mesh. Each instance I; =< T},S; >, where T; is
the transformation matrix associated with I; and Sy is the submesh
referenced by /;. The submesh S, is chosen from a list of submeshes
{51,52,-..,Sm}, such that 1 < k < m and m < n. Each submesh S
consists of a set of vertices and a set of triangles referencing those
vertices.

A naive approach to simplify such an instanced mesh would be
to run quadric simplification on each submesh independently and
maintain all the intermediate levels of detail for each submesh.
Then to simplify the overall mesh to a target triangle count, choose
an appropriate level of detail for each sub- mesh. However, this
leaves open the question of how to choose these levels of detail,
which would be especially complicated if the submesh is instanced
using wildly varying transformations.

To solve this problem, instance-aware simplification applies
quadric simplification to the underlying submeshes but accounts for
the fact that each submesh may be instantiated multiple times and
transformed in different ways to create the overall mesh.

One way to do this intuitively is to iterate through the list of mesh
instances, compute the cost of each edge in the overall mesh, and
add it back to the total cost of the underlying submesh edge. Then,
order each submesh edge by its total cost and collapse edges in
increasing order of their total cost. However, this approach does
not help us find an optimal contraction target for a given submesh
edge.

Instead, we use the observation that the error quadric Q associ-
ated with a vertex v is derived from the set of planes neighbor-
ing v. In an instanced mesh, therefore, Q for a submesh vertex v
can be computed by accounting for all the neighboring planes that
exist in all instances of the submesh. Suppose M is the transfor-
mation matrix for a given instance of a submesh, and v is a sub-
mesh vertex which maps to x in that instance. Since x=Mv, we



can write the distance of x from its set of neighboring planes as
XTQx=(Mv)TQ(Mv)=vTMTQMv, where Q is computed from the
neighboring planes in that instance.

Then, (M” QM) is the error quadric giving the distance of the sub-
mesh vertices from the neighboring planes in the instance. Sum-
ming it up over all instances, the quadric for a submesh vertex is
given by Yicinstances(submesh) M? Q;M;, where M; is the transform
associated with instance i and Q; is the quadric computed for the
instantiated vertex.

Using this new quadric, we can find the optimal contraction target
for a submesh edge similarly as basic quadric simplification. The
final algorithm, then works as follows:

1. For each instance i applying transform M; to submesh S;:
(a) For each triangle ¢ in submesh S;:
i. Transform ¢ by applying M; to each of its vertices.

ii. Compute Qp, the error quadric for the transformed
triangle, using Equation 4.

iii. Compute the error quadric for the untransformed

triangle ¢ as Ml'TQpMj and add it to the error
quadrics for each of #’s untransformed vertices.

2. In each submesh S;, compute the optimal contraction target
v and its cost for each submesh edge (v,v2) using Equations
6 and 5, where Qp and Q; are the submesh error quadrics
associated with vy and v; respectively.

3. Collapse submesh edges in increasing order of their cost.
Compute how many triangles become degenerate after each
collapse and decrement the number of triangles in the model
by that times the number of instances of the submesh. At each
step, since only a submesh edge is collapsed, the cost has to
be updated only for neighboring vertices in that submesh.

6.3 Preserving boundaries

A boundary edge is an edge that exists in only one triangle. TAS
considers an edge to be a boundary edge as long as it is a bound-
ary edge within its submesh. IAS uses the same basic approach
as quadric simplification for boundary edges. For each edge in the
overall mesh, if it is a boundary edge, IAS generates a perpendic-
ular constraint plane running through the edge. It then computes
the quadric for this constraint plane, weights it by the length of the
edge and adds it to the quadrics for the endpoints of the edge. In
our experience, this results in much better results than simply mark-
ing such edges as incollapsible since it still allows small boundary
edges to be collapsed, instead of forcing other longer edges to be
collapsed.

6.4 Discussion

Since the edge collapse step of IAS operates only on submesh
edges, highly instanced meshes can be simplified faster than
quadric simplification. Not only are there fewer submesh edges
than edges in the overall mesh, but collapsing a single submesh
edge effectively collapses multiple edges in the overall mesh, al-
lowing simplification to proceed faster towards the target triangle
count.

On the other hand, IAS does not compute quadrics across sub-
meshes, so it has less information about the overall mesh than
quadric simplification. This can, in theory, result in lower quality

outputs. However, our evaluations in section 8 show that, in prac-
tice, IAS often results in even higher quality meshes, or introduces
very little additional error otherwise.

It is useful to note that expansion of an instanced mesh is not a con-
cern for instanced meshes that only instance each submesh once,
since there is no submesh duplication. Also, if every instance of
a submesh scales or modifies the submesh in the same way, then
existing simplification approaches can still be trivially applied: just
multiply the edge collapse cost from one instance by the number
of instances. However, the problem becomes much more compli-
cated when multiple instances of the same submesh transform it in
completely different ways.

The current implementation of IAS does not optimize other prop-
erties associated with vertices, such as texture coordinates and nor-
mals. Similar to the approach followed in [Garland and Heckbert
1998], extending the quadric to include the values of these proper-
ties may be a possible solution.

7 Texture Management

GPUs are also constrained by the number and size of textures
needed to render each frame. Current GPUs cannot render more
than one to ten thousand unique textures per frame at interactive
frame rates. The total size occupied by textures is also limited
by GPU texture RAM, with current cards generally restricted to
at most a gigabyte.

To deal with these constraints, the system generates aggregates that
can each be rendered with a single draw call, i.e., reference only one
texture. Further, it limits each texture to a maximum size of 128KB.
Clients specify a solid angle query whose response contains less
than four thousand objects. The client can then render these in less
than three thousand draw calls using at most 512 MB of texture
RAM.

We use a simple approach, texture atlasing, to ensure that an aggre-
gate references only a single texture. If a scene uses many unique
textures, the system combines the textures of each child of an ag-
gregate into a single atlas, and remaps the texture coordinates in the
aggregate mesh to point to the appropriate coordinates in the atlas.

Atlasing involves some complicated details, however. Some mod-
els use wrapping texture coordinates which can result in the same
texture being used repeatedly. Others reference only a small part of
the actual texture image. As described in section 4.1, the CDN ad-
dresses these issues by asynchronously computing a charted, com-
bined version of each model’s textures. Given these modified tex-
tures as input, atlasing becomes a relatively simple process.

Some large scenes do not use many unique textures. This is often
true for procedurally generated scenes, where textures from a small
set are used repeatedly to create the scene. To handle such scenes
without the overhead of atlasing, we only atlas textures in aggregate
meshes if the scene has more than 100 textures or the textures take
up more than 64 MB.

This approach leaves open the question of texture space waste

caused when a frequently used texture is repeated many times as
a part of different atlases. We leave this question to future work.

8 Evaluation

This section evaluates our results from using these techniques on
individual models and on a large multi-server virtual world.



Time Time Time Size Size Size Error Error Error

Model (Quadric) (IAS) Reduction (Quadric) (IAS) Reduction (Quadric) (IAS) Reduction
Maple Tree 13s 5s 58% 28MB  110KB 99.6% 0.158 0.103 34.8%
Village 30s 17 s 44% 31 MB 6 MB 79.6% 5.601 5.504 1.8%
Patio Chair 40 ms 43 ms -8% 34 KB 31 KB 8.8% 0.251 0.055 78.0%
Stonehenge 140 ms 608 ms -334% 379 KB  373KB 1.6% 0.516 0.520 -0.8%
Bunny 390ms 1890 ms -384% 235KB  235KB 0% 0.200 0.200 0%

Table 3: Performance comparison of IAS and Quadric simplification, demonstrating that instance-aware simplification consistently outper-
forms quadric simplification in simplified mesh file size while introducing comparable error. Each model is simplified to 20% of its original
triangle count. Error is the Hausdorff distance between the original and simplified mesh computed using the Metro tool.

(a) Quadric (20% triangles, 31 MB) (b) Original, 16 MB (c) IAS (20% triangles, 6 MB)

Figure 7: Village mesh from Table 3 simplified to 20% of the original triangle count. The visual quality of the two simplified versions of the
mesh is not very different, but the output file size is almost 80% smaller using IAS.

(a) Quadric (20% triangles, 28 MB) (b) Original, 546 KB (c) IAS (20% triangles, 110 KB)

Figure 8: Maple tree with highly instanced leaves from Table 3 simplified to 20% of the original triangle count. IAS results in better quality
than quadric simplification, while also achieving much smaller file size.

F— A A
(a) Quadric (20% triangles, 34 KB) (b) Original, 92 KB (c) IAS (20% triangles, 31 KB)

Figure 9: Patio chair with highly instanced slats from Table 3 simplified to 20% of the original triangle count. IAS results in surprisingly
better quality than the reference implementation of quadric simplification.



Model Submeshes  Instances Instances Triangles
per submesh

Maple Tree 18 9324 518 1818074

Village 79 13523 171.18 1254696

Patio Chair 6 68 11.33 2240

Stonehenge 59 80 1.36 10061

Bunny 1 1 1 20000

Table 2: Properties of models used to evaluate IAS.

8.1 Instance-aware Simplification

Table 3 shows the benefits and trade-offs of instance-aware simpli-
fication (IAS) on a set of models described in Table 2. The village
and dense maple tree meshes (figures 7 and 8) are highly instanced
with over a million triangles each. The houses in the middle of the
village scene are instantiated from a set of six unique house sub-
meshes. The surrounding trees are instances of a single unique sub-
mesh. The leaves on the maple tree mesh are instantiated from two
distinct leaf submeshes. Using IAS, simplification of these heavily
instanced models proceeds faster than quadric simplification, re-
sults in a small output mesh and approximately the same or even
less error as simple quadric simplification.

On the other hand, the Patio chair (figure 9) and Stonehenge meshes
have a number of submeshes but they are not instanced many times.
IAS is slower on these lightly instanced meshes but the output
meshes are almost 10% smaller in size and have approximately the
same or even less simplification error. The larger simplification
time is expected since IAS has to do additional matrix multiplica-
tions to compute the transformed submeshes and their quadrics.

The bunny mesh has only a single submesh instanced exactly once.
It takes significantly longer to simplify it using IAS, but the visual
error remains almost the same. For such non-instanced meshes,
it is more efficient to simply use quadric simplification for LOD
generation.

8.2 Evaluating a Large Scene

Finally, we demonstrate the benefits of our approach on a large-
scale virtual world running on multiple Amazon EC2 servers. The
world runs on nine cl.xlarge EC2 servers, with each server running
a tiled copy of a 60,000 object city scene, created using CityEngine
[ESRI ]. To diversity the world with user-generated models and tex-
tures, we replace 3% of the models in the world with randomly cho-
sen models from the CDN. This results in the world having a total
of 540,000 objects composed of over 144 million triangles refer-
encing more than 6000 distinct textures. In total, the models and
textures in the scene occupy over 24 GB on disk.

Figure 1 shows this world rendered by our client at a resolution
of 1920x1080. The client runs on a machine with an AMD FX-
8150 eight-core CPU, 16 GB of RAM and an NVIDIA GeForce
GTX 650Ti graphics card. The techniques outlined in this paper
allow this complex scene to be rendered at frame rates hovering
between 20 and 35 FPS. Without these approaches, the client is
overwhelmed by the sheer size and number of models and textures
to be downloaded and displayed, rendering the scene at less than 1
FPS. Using the optimizations described in this paper, a client con-
necting to the world for the first time downloads approximately 1.4
GB of data from the CDN, a 94% reduction. This allows it to load
a high quality view of the complete world in 6 minutes. Using un-
optimized aggregates, the client downloads 2.2 GB from the CDN
before the GPU is unable to render the scene due to texture load.

9 Conclusion

Displaying large, user-generated virtual worlds is challenging due
to the limitations of the network and GPU. This paper presented
an approach to tackle this problem by exploiting the similarity of
proximate objects in a coherent scene, using instancing to reduce
the file size of models a client has to download. Our approach
constructs a BVH out of objects in the world trading off query-
ing performance for higher object similarity within a bounding vol-
ume (or “aggregate”). We then deduplicate highly similar meshes
within each aggregate, replacing them with many instances of a
single unique mesh. This increases the amount of instancing in
the aggregates, potentially reducing their file size. An instance-
aware simplification algorithm simplifies the aggregate meshes, re-
sulting in a smaller file size for the aggregate mesh than existing
approaches. Finally, texture atlasing enables efficient rendering of
aggregate meshes. Evaluations show that this approach allows large
user-generated virtual worlds to load quickly, require less download
bandwidth and render at interactive frame rates.
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