Learning Structural Semantics for the Web

Maxine Lim!, Ranjitha Kumar!, Arvind Satyanarayan', Cesar Torres!, Jerry O. Talton?, Scott R. Klemmer"
IStanford University  2Intel Corporation

{maxinel, ranju, asatya, ctorres7}@stanford.edu

jerry.o.talton@intel.com

srk@cs.stanford.edu

Training Data
LoGo — block label featured featureN e feTond
| page block label feature® ... feature m
NAV_BAR 2723 4 3 0.44343 ... 0.15697 Y -
THUMBNAIL 1233 54 6 0.42711 ... 0 C|a55|ﬁer ri]overs\ock.com‘
4267 2 36  0.01021 ... 0 AV BAR
IMAGE_GALLERY — 5356 45 22 0.12350 ... 0| SyYppORT Clhssiy o —
g [ 4353324 1 0.59606 ... 0 \/--10n L_AREEinEr
5785 12 12 0.34907 ... 0
PAGINATION > 1 1246 67 14 0.29683 ... o| MACHINE >
2 © 7347 45 12 0.92084 ... 0 L 5
- OO 2345 2 1 0.2839% ... 0 -
o .1 o ¢ 2737 41 45 0.23467 ... 0 TCHIL.J;:;E:LL —> =
. . . 2234 23 12 0.2839

8 90

CROWDSOURCE LABELS

LEARN CLASSIFIERS

PREDICT PAGE ELEMENTS

Figure 1. The pipeline for learning structural semantic classifiers for the Web. First, a large set of labeled page elements are collected from online
workers. Next, these labels are used to train a set of regularized support vector classification SVMs. These classifiers are then used to identify

semantic elements in new pages.

ABSTRACT

Researchers have long envisioned a Semantic Web, where un-
structured Web content is replaced by documents with rich
semantic annotations. Unfortunately, this vision has been
hampered by the difficulty of acquiring semantic metadata
for Web pages. This paper introduces a method for automati-
cally "semantifying" structural page elements: using machine
learning to train classifiers that can be applied in a post-hoc
fashion. We focus on one popular class of semantic iden-
tifiers: those concerned with the structure—or information
architecture—of a page. To determine the set of structural se-
mantics to learn and to collect training data for the learning,
we gather a large corpus of labeled page elements from a set
of online workers. We discuss the results from this collection
and demonstrate that our classifiers learn structural semantics
in a general way.
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INTRODUCTION

The Web is home to a massive, diverse repository of knowl-
edge that is continuously expanding. With billions of extant
pages, information abounds, but finding, aggregating, and
synthesizing information relevant to a particular task remains
a difficult and time-consuming problem. One reason for this
difficulty is that Web content is largely unstructured [11]. Al-
though Web formats provide rich presentation semantics for
displaying Web data, they typically offer little support for
other kinds of automated processing. This desire for flexi-
ble reuse of Web information has engendered a vision of a
Semantic Web, where documents are annotated in a way that
allows machines to “understand” Web content and respond to
complex human requests based on their meaning [2].

While information extraction has traditionally targeted tex-
tual information, some recent attempts to semantify the Web
have focused on page structure rather than content. In HTML
5, the World Wide Web Consortium added semantic tags (e.g.
<ARTICLE>, <NAV>, <FIGURE>, <SUMMARY>, etc.)
to help developers describe the information architecture of
pages [16, 9]. These structural semantics are a small step on
the road to a semantic “web of data” [17], aiding applications
like search [7], retargeting [13], remixing [4], and user inter-
face enhancement [19].

Relying on Web designers to annotate pages with seman-
tic markup, however, is problematic. Developers, many of
whom are primarily concerned with how their Web content
is displayed rather than how easily it can be reused, lack
strong incentives to invest time and effort augmenting pages
with tags that do not produce presentational benefits. As se-
mantic specifications evolve, pages must be continually re-



engineered even if their content remains unchanged. Further-
more, there is no universal consensus about the appropriate
range and specificity of semantic terms to use. An alternative
strategy is to allow end-users to add personal semantics to
page data on a case-by-case basis [11, 10], but these manual
techniques are difficult to scale to the whole Web.

This paper explores a different tactic for adding structural se-
mantics to Web pages: learning classifiers for page elements
from data. With accurate semantic classifiers, pages could
be semantified automatically, in a post-hoc fashion, decou-
pled from the design and authoring process [21]. To this end,
we present a classification method based on support vector
machines [6], trained on a large collection of human-labeled
page elements and employing a feature space comprised of
visual, structural, and render-time page properties (Figure 1).

Although some approaches to adding post hoc semantics are
domain-specific and/or make assumptions about the layout of
Web documents, we aim to use a general set of semantic terms
to describe structural elements across a wide range of pages,
and our classifiers make no assumptions about page structure.
As a result they can be applied to any HTML page that can
be loaded and displayed in a browser.

To identify the set of structural semantics to learn, we take
a crowdsourced approach. While the W3C, when selecting
semantic tags to add to HTML 5, focused on how content
producers view the information architecture of pages [14], we
turn our attention to content consumers and they way they de-
scribe structural semantics. We recruited 400 participants on
Amazon’s Mechanical Turk [1], collecting more than 21,000
semantic labels over a corpus of over 1400 Web pages. We
use these labels to determine the set of classifiers and provide
training data for the learning.

The paper describes the online label collection study and its
results and demonstrates that SVM-based classifiers can pro-
duce prediction accuracies as high as 94.7

CROWDSOURCED LABEL COLLECTION

To drive the development of semantic classifiers, we collected
a set of labeled page elements in an online study. We re-
cruited 400 US-based workers from Amazon’s Mechanical
Turk to apply more than 21,000 labels across nearly 1500
Web pages. Every participant applied semantic labels to at
least ten elements on each of five pages. The pages used in
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Figure 2. The interface used in the label collection study. Page el-
ements are highlighted in blue upon mouseover (left). After clicking
on the highlighted element, users enter semantic labels into a textbox
(right).

the study were drawn from the Webzeitgeist design reposi-
tory [12], which provides visual segmentations and page fea-
tures for more than 100,000 Web pages.

The label collection process comprised two phases: a focused
phase, and a broad phase. In the focused phase, we hand-
selected fifty pages from ten popular site genres that were
adapted from [8]: e-commerce, news, community, informa-
tional, corporate, small company, blog, personal, Web ser-
vice, and Web resource. A hundred participants each labeled
ten of these pages, producing 6351 labels and ensuring that
many page elements were labeled by more than one person.
In the broad phase, 300 users each labeled five pages chosen
randomly from the corpus, producing 15,644 labels.

Procedure

First the Mechanical Turk interface presented to participants
redirected them to a tutorial on the labeling interface. The
instructions directed users to apply semantic labels to the five
most important and the five most interesting elements on the
page. Participants were also instructed to avoid labeling many
elements of the same type, to encourage diversity in the data
set.

Given our focus on structural semantics, workers were told to
choose labels that described the element’s role in the informa-
tion architecture of the the page rather than its content. For in-
stance, a picture of a silverware set on a shopping page should
be labeled PRODUCT_IMAGE instead of SILVERWARE. Work-
ers were also instructed to chose the most specific applicable
label, eschewing generalities such as TEXT. To proceed to the
labeling task, users were shown a few basic examples of ap-
propriate labels, and required to correctly apply one label to
a sample element.

The labeling interface presents workers with a screenshot of
a Web page (Figure 2). When a participant hovers the mouse
over part of the page, the corresponding element in the page’s
visual segmentation is highlighted. Clicking on an element
allows the user to enter a text label for it, which can be
edited later by clicking on the element again. When typing
a label, users are prompted with a drop-down list of auto-
completed suggestions—sourced from a small pilot labeling
study—which they may use or ignore. Workers apply at least
ten elements to each page before moving on to the next; after
five pages have been labeled, the interface provides an iden-
tifier to the worker to verify the task’s completion.

Results

Participants produced 21,995 labels across 16,753 distinct el-
ements in 1490 Web pages. There were 2657 distinct labels
in total, 716 of which occurred more than once, and 629 of
which were applied by more than one user. Each participant
used 23.6 distinct labels on average (min = 3, max = 76,
o = 9.7). Excluding labels from the autocomplete list, par-
ticipants generated an average of nine original label names
(min = 0, max = 60, ¢ = 10).

In addition to general characteristics of the resulting dataset,
the following sections provide two statistical analyses for bet-
ter understanding the labels that participants produced. First,



we examined label co-occurrence, to determine which labels
different workers commonly assign to the same page ele-
ments. Second, we examined the spatial distribution of labels
to determine where certain kinds of page elements commonly
appear on a page.

Characteristics of Dataset

The collected labels cover a wide range of concepts, with
tags as general as IMAGE and as specific as COPYRIGHT.
Workers tagged some elements common to most Web pages,
such as NAVIGATION, and others that are highly domain
specific, such as PRODUCT_IMAGE. The ten most common
labels were NAVIGATION_ELEMENT, NAVIGATION_BAR,
LOGO, SEARCH, SOCIAL_MEDIA, ADVERTISEMENT,
ARTICLE_TITLE, MAIN_CONTENT, BLOG_POST, and AND
CONTACT_LINK, with frequencies ranging from 1772 to 436.
The mean label frequency was 8.3 (min = 1, max = 1772,
o = 65.8).

Figure 3 shows the labels’ relative frequencies in a tag
cloud. Labels which have direct analogues to any one of
the 106 tags in HTML 5 are highlighted in red. The 17
HTML tags to which these labels correspond include <A>,
<ADDRESS>, <ARTICLE>, <BLOCKQUOTE>, <BODY>>,
<CAPTION>, <FIGCAPTION>, <FOOTER>, <FORMZ>,
<HI1-H6>, <HEADER>, <HGROUP>, <IMG>, <INPUT>,
<NAV>, <TIME>, and <VIDEO>>. At a high level, the rel-
atively small overlap between our crowdsourced labels and
the set of available HTML tags illustrates the difficulties of
developing a semantic ontology that is sufficiently expressive
and complete.

Label Co-occurrence

Since information architecture is far from an exact science,
not all people will assign the same semantic label to a given
page element. In addition, some workers may use different
descriptors to label the same concept.

To more thoroughly understand how labels relate to one an-
other, we created a co-occurrence matrix for the 85 most-
frequent labels, each of which was used twenty or more times.
We form an 85 x 85 symmetric matrix, where the value at
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Figure 3. A tag cloud of the 110 most common semantic labels, sized
to show relative frequency. The tags highlighted in red have direct
analogues in HTML 5.

(i,7) is the number of times that tag ¢ and tag j were used
to label the same page element, normalized by the total num-
ber of uses of ¢ and j. Then, the matrix is reordered using
Anti-Robinson seriation to form clusters of co-occurring la-
bels along the diagonal [3].

Figure 4 shows the resulting matrix, with portions of the diag-
onal magnified to show co-occurring labels. The cell opaci-
ties represent the degree of co-occurrence between the corre-
sponding labels: darker cells indicate more co-occurrences
while lighter cells indicate fewer. A number of clusters
with labels like RATING and REVIEW (panel E) simply point
out elements that are closely related. Some show work-
ers using different words to describe the same concept, like
COMPANY_LOGO and LOGO (panel A). Other groupings re-
flect a lack of a clear consensus on the role of elements such
as FEATURED_ITEM and PRODUCT_IMAGE (panel I). Labels
like SITE_TITLE and HEADER (panel C) describe the same
general structure with varying levels of specificity.

Overall the distinct clusters illustrate where users agreed upon
and were consistent with their their semantic vocabulary. The
heavy concentration of high-opacity cells along the diagonal
indicates strong clusters of co-occurrence.

Spatial Distributions

Another useful way to gain insight about the labels partici-
pants produced is to examine the spatial distributions of their
corresponding page elements. For a given label, we iden-
tify the set of page elements to which the label was assigned,
and obtain the bounding rectangle for each one from the
page’s DOM tree. We rescale these rectangles to the range
[0,1] x [0,1] to make the coordinates comparable between
pages, and rasterize them into a floating-point accumulation
buffer. Normalizing the resultant image so that its pixel val-
ues sum to one approximates the two-dimensional spatial
probability distribution of the tag. The value of any given
point in the image is the probability of the label appearing in
that position on a page.

Figure 5 shows spatial distributions for 28 popular labels.
While some distributions useful but unsurprising (HEADER
tags appear almost universally at the top of pages), others
give more insight into the structure of Web pages. Note, for
instance the strong concentration of LOGIN and SEARCH el-
ements in the upper right corner of pages, the bimodal dis-
tribution of ADVERTISEMENT elements between sidebar and
header, and the high frequency of EXTERNAL_LINKS along
and increasing toward the middle of the right sidebar. Taken
together, the strong spatial correlations that many of the col-
lected tags exhibit provide a visual justification for learning
classifiers for structural semantics.

LEARNING STRUCTURAL SEMANTIC CLASSIFIERS

To evaluate the feasibility of learning structural semantics
from data, we trained binary SVM classifiers for the study’s
40 most frequent labels. To determine the prediction accuracy
of the classifiers, we ran a hold-out test on labeled pages. Fi-
nally, we used the learned classifiers to identify and rank se-
mantic elements in a large dataset of pages.
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Training

For each distinct label, we constructed a training set and a test
set of page elements. The training set consisted of 80% of the
page elements to which the label had been applied (the pos-
itive examples), and twice that number of randomly selected
page elements to which other labels were applied (the nega-
tive elements). The test set consisted of the remaining 20%
of positively labeled page elements, and twice that number
again of randomly selected negative elements.

To drive the learning, each page element was associated with
a 1,679-dimensional feature vector provided by the Webzeit-
geist repository. These features were drawn from three cate-
gories: render-time HTML and CSS properties computed by
the DOM (N = 691), GIST descriptors computed on ele-
ments’ rendered images (four scales and five orientations per
scale on a 4 x 4 grid; N = 960) [15], and simple struc-
tural and computer vision properties provided by Webzeit-
geist (N = 28).

We trained three regularized support vector classification
SVMs for each label: one with DOM features, one with GIST
features, and a third using all the features together. We used
LIBSVM to perform the training [5], with radial basis kernels
and v = ﬁ. Once a classifier is trained, it can be applied
to a page element in under 1us.

Prediction Accuracy Results

The prediction training and test accuracies for each clas-
sifier and data model are shown in the inset table, where
the first column represents the number of positive exam-
ples in the training set for the corresponding label. Test
accuracies ranged from 54.9% for COMMENT to 94.7% for
ENTIRE_PAGE. This variation can be attribute to a number of
reasons. First, some elements are structurally more consistent
and/or prominent than others, for example FOOTER elements
generally occupy a significant space at the bottom of a page,
while DATE can be a variable-width text node that occurs any-
where on the page. While elements such as LOGO are clearly
defined, others such as FEATURED_ITEM may exhibit more
variation in the types of elements they refer to. Number of
examples and structural dependencies may also affect predic-
tion accuracy.

The average test accuracy for the DOM, GIST, and ALL mod-
els were 74.6%, 71.7%, and 76.6% respectively. The com-
bined model equaled or outperformed the DOM- and GIST-
alone models for all but seven of the forty labels; examining
the training accuracy for those nine shows that this discrep-
ancy is mostly attributable to overfitting. While these results
are far from perfect, all of the classifiers do better than ran-
dom, and most substantially so.

Identifying Structural Elements

To show the learned classifiers in action, we applied twelve of
them across a database of 500k page elements spanning 3000
pages. We proceeded to rank the results in order of decreasing
probabilities, which were obtained via the method described
in [22]. A few representative results for each classifier are
shown in Figure 6; page elements that appeared to be mis-
classified are marked with a red border.

DOM GIST ALL
Label # Train  Test Train Test Train Test
ENTIRE_PAGE 74 91.9 94.7 869 754 94.6 94.7
SEARCH 551 88.7 882 828 845 918 915
FOOTER 186 83.0 780 746 759 90.0 894
IMAGE 169 84.0 81.0 797 794 864 88.9
SIDEBAR 133 86.0 84.8 827 848 86.7 879
COPYRIGHT 206 86.1 82.1 757 763 884 87.8
NAVIGATION_BAR 901 80.7 834 74.6 727 86.5 874
LOGO 770 80,7 84.0 779 776 81.0 873

ARTICLE_TITLE 373 84.2 828 80.3 824 86.7 87.1
MAIN_CONTENT 350 82.8 82.8 78.9  80.1 83.0 83.1
PRODUCT_IMAGE 65 79.5 79.2 774 750 85.1 813

THUMBNAIL 83 84.7 76.2 79.5 73.0 86.7 81.0
HEADING 134 794 873 749 67.6 779 804
ARTICLE 237 752 729 814 79.7 859 80.2
LOGIN 222 80.8 739 778 745 845 78.8
ADVERTISEMENT 487 79.2 762 752 724 85.6 719
NAV_ELEMENT 1138 759 754 726 73.5 78.6 77.8
VIDEO 107 748 716 819 7238 819 778
BLOG_POST 259 755 723 73.6 738 819 774
HEADER 265 785 773 692 672 80.8 773
CONTACT_LINK 278 76.7 752 748 71.0 80.7 176.2
SOCIAL_MEDIA 514 75.0 727 76.5 70.1 822 75.0
SITE_TITLE 272 759 740 76.1  70.6 81.3 75.0
DATE 91 79.1 696 78.0 739 795 739

IMAGE_GALLERY 94 76.6 76.8 752 710 823 739
RECOMM_LINKS 137 69.8 66.7 689 66.7 764 735
CONTACT_INFO 183 712 674 69.9 68.1 79.6 73.2

LANG_SELECT 70 77.1 68.6 752 70.6 833 725
PROD_DESC 232 712 718 747 684 71.0 724
SLOGAN 79 69.6 633 705 700 764 70.0
AUTHOR 94 727 623 674 68.1 70.6  69.6

SUBSCRIBE_LINK 158 68.1 675 69.6 675 71.3 684
FEATURED_ITEM 107 713 71.6 735 580 76.9 66.7
COMMENTS_LINK 93 80.6 71.0 67.7 66.7 703  66.7
AFFILIATE_LINK 78 66.7 66.7 66.7 66.7 66.7 66.7
EXTERNAL_LINKS 270 67.2 66.2 68.9 66.2 73.8  66.2

SIGN_UP 134 749 657 692 667 739 65.7
NEWS_ITEM 121 689 656 71.1 644 72.2  65.6
DOWNLOAD_LINK 77 73.6 632 66.7 66.7 745 649
COMMENT 70 7716 765 757 569 78.6 549

These examples offer some insight into the performance of
the classifiers. Most of the highly-ranked elements are clas-
sified correctly, despite their diverse contexts and composi-
tions. Given that these classifiers are trained only on visual
and structural data, their expressive power provides support
for the notion that structural semantics can be learned with-
out requiring more complex content-based semantics (see,
for instance, SLOGAN). Many of the errant classifications
are subtle, and might plausibly confuse a human worker:
see for instance ARTICLE_TITLE, which classifies several ti-
tles that are not, strictly speaking, associated with articles;
and NAVIGATION_BAR, which identifies page elements filled
with links directing users to other sites.

DISCUSSION AND FUTURE WORK

This paper introduced a technique for adding post-hoc struc-
tural semantics to the Web, demonstrating that a relatively
simple machine learning technique can identify semantic el-
ements in pages when trained on a corpus of human anno-
tations. There remain, however, several avenues for future
work.
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First, it is important to note that our classifiers cannot real-
istically be used to enable one-click annotation of pages in
their current form. Pages in our training set averaged 1380
DOM nodes per page; with this many elements, even a 99.9%
per-classifier accuracy rate from a classifiers trained on a per-
fectly labeled set of nodes would yield several misclassified
nodes on every page. These results would be acceptable for
some real-world applications that can tolerate false positives,
such as Web search; however the success rate might be inad-
equate for those requiring near-perfect accuracy (Figure 7).

Several possibilities for improving the learning come to mind.
Using our classifiers to bootstrap an online learning process
is one obvious approach, likely to significantly reduce over-
fitting and greatly simplify the acquisition of additional train-
ing data. Adding more sophisticated structural and com-
puter vision features is another: estimates of foreground area,
for instance, might prove useful in recognizing logos, while
structural features like “number of links to external domains”
could improve the classification of navigation bars.

Another promising approach is to turn to machine learning
methods that make better use of page structure. Currently, the
classification algorithm assumes that labels are independent
between elements, a faulty assumption because the presence
of certain labels provides useful clues for others. Structured
SVMs could be used to predict labels to the entire page as
a whole [20]. Deep learning techniques, like those based on
recursive neural networks—might allow the development of
a more structurally-sensitive feature space. These methods
would enable easier classification of elements whose seman-
tic function is highly dependent on its relation to other ele-
ments in the page hierarchy [18].
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