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Figure 1: (Left) Starting from a single view scan ofa 3D environment obtained using a fast range scanner, we perform scene understanding

by recognizing repeated objects, while factoring out their modes of variability (middle, right). The repeating objects have been learned

beforehand as low complexity models, along with their variability modes. We extract these objects despite a poor quality input scan with
large missing parts and many outliers. For reference, we also show a scene photograph, which is not available to the algorithm.

Abstract At the same time, inexpensive range cameras (e.g., the Microsoft
Kinect) are easy-to-use, fast, and quickly becoming ubiquitous.

oo This opens new possibilities for large-scale indoor acquisition.
Large-scale acquisition of exterior urban environmentsis by now High frame-rate and increased portability, however, come at the
a well-established technology, supporting many applications in cost of resolution and data quality: the scans are at best of modest
search, navigation, and commerce. The same 1s not true for indoor resolution, often very noisy, invariably contain outliers, and suffer
environments, however: access 1s often restricted and the spaces from missing parts due to occlusion. Thus, although we can very
may be cluttered. In addition, such environments typically contain quickly acquire large volumes of data, there exists no general al-
a high density of repeated objects (e.g., tables, chairs, monitors, gorithm to extract high-level scene understanding. Further, unlike
etc.) in regular or non-regular arrangements with significant pose building exteriors whose facades are largely flat and have ample
variations and articulations. In this paper, we exploit the special clearance for scanning, indoor objects are usually geometrically
structure of indoor environments to accelerate their 3D acquisition complex, contain significant articulations, and are found in cramped
and recognition with a low-end handheld scanner. Our approach surroundings. Thus, a traditional acquisition pipeline is ill-suited:
runs in two phases: (i) a learning phase, where we acquire3D in a typical setting, one has to scan the scene multiple times from
models of frequently occurring objects and capture their variability various viewpoints, semi-automatically align the scans, and finally
modes from only a few scans, and (ii) a recognition phase, where construct a 3D model. The process is further complicated when the
from a single scan of new areas, we identify previously seen ob- model deforms during acquisition.
jects, but in varying poses and locations. This greatly accelerates

the capture process (average recognition time of 200ms/model). We We exploit three observations to make the difficult problem of in-
demonstrate our framework with the acquisition of typical areas of door 3D acquisition much more tractable:
a university building including cubicle or desk areas, auditoriums, Co
etc., using a Microsoft Kinect sensor. (1) Most office or public building indoor environments are com-

prised of basic elements, such as walls, doors, windows, furni-
ture (chairs, tables, desks, lamps, computers, cabinets, etc.), which

1 Introduction come from a small number of prototypes and repeat many times.

(11) Such building components are generally formed of rigid parts

Significant advances have been made towards mapping the exteriors whose geometry is often locally simple, ie, they consist of surfaces
of urban environments through large-scale city capture efforts of that are well approximated by Planar, cylindrical, conical, SPherical
Google, Nokia, Microsoft, etc. Acquiring 3D indoor environments PTOFICS. Further, although variability and articulation are dominant
in private and public office buildings, however, remains challeng- (a chair Moves or Hs base Totes, a door SWIngs, a lamp 1s folded),
ing. While sensor-instrumented vehicles can drive down streets to such variability 15 limited and low-dimensional (c.g, translational
capture exterior spaces, mimicking similar setups for interior acqui- motion, hinge joint, telescopic joint, etc.).
sition requires customization, manual intervention, and 1s cumber- (iii) Mutual relationships among the basic objects satisfy strong pri-
some due to unreliable GPS signals, odometry errors, etc. Further ors (e.g., a chair stands on the floor, a monitor rests on the table).
challenges arise due to extensive variability commonly encountered
in building interiors: doors and windows open and close, chairs get In this paper, we present a simple yet effective pipeline to acquire
moved around, cubicles get re-arranged, etc. models of indoor objects such as furniture, together with their vari-

ability modes, and discover object repetitions and exploit them to

RE speed up large-scale indoor acquisition towards high-level scene
“e-mail: ymkim@stanford.edu understanding.
"e-mail:n.mitra@cs.ucl.ac.uk

*e-mail:yan @kaust.edu.sa Our algorithm works in two stages. First a learning phase where,
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primitive-based 3D models while explicitly recovering respective Learning Recognition

joint attributes and modes of variation. We formulate the problem = 8

of object acquisition as deciding on the types of primitives required 2 3 NS 2 —> 2 wscs EN wlfor describing the object model and their mutual connections from a 7 ‘) > oo |
finite set of possible options, as well as recovering the small number h h h - M, Tn 4
of necessary variability parameters defining the object pose. This i 3 — Eo = |
pre-processing phase of the approach is relatively expensive, but yo A Lo —  § i
applies only to a small fraction of the geometry present. Second a | = ; wo b — F]fast recognition phase (about 200ms/model) where, starting from a h h b a M, i 3

single-view scan, we perform segmentation and classification into 5 : i |plausible objects and then recognize the objects involved and ex- Pre-processing
tract the pose parameters for the low complexity models gener- CL

ated in the learning phase. Intuitively, we use priors for primitive gd is a ry BF
types and their connections, thus greatly reducing the number of fan ls 8 Or§ gms f a g-2 5 dwswy
unknowns to enable model fitting even from very sparse and low :wad SE a ag : wf Fudd 4
resolution datasets, while solving for part association via a novel fh Ed |
Markov Random Field (MRF) formulation. Further, we demon- S SiS,
strate that simple inter-object relations and their relative placements
greatly simplify segmentation and classification tasks necessar . : : : : :

for high-level scene understanding. Effectively, we rogressively Figure 2: Our algorithm ConSIsIs oftwo main stages. (i) a learning
model the surrounding environment and its modes of variability. phase, and (ii) a fast recognition phase, which takes average of
As new data appears, we either explain it with our current scene 200 ms/model.

hrby creatingen ones Thus we Teves the re,pn guiding the user where to scan next. In other related efforts, re-
ity of common indoor environments and populate the models with Sohers have used template models to learn the space of human: ) bodies [Allen et al. 2003], morphed database models to fill in re-
instances of already acquired objects. gions of missing parts [Pauly et al. 2005], used non-rigid align-
We demonstrate our method on a range of challenging real-world ment to better align (warped) multiple scans [Li et al. 2009], or
scenarios. We present, for the first time, basic scene reconstruc- exploited non-local repetitions to consolidate point clouds for urban
tion for massive indoor scenes (e.g., office desk spaces, building facades [Zheng ct al. 2010]. The methods, however, are not suitable
auditoriums) from unreliable sparse data by exploiting the low- for extracting a high-level scene understanding along with 4PPropri-
complexity variability of common furniture objects and their rep- ate deformation models from sparse and unorganized inputs.
etitions. Interestingly we can now meaningfully detect changes in . BP

an environment. For example. we can hope to Jetoct a new obiect Tine fndower ofde objects populating indoorsomonts of
Dr he previa amt i chair onion simple primitives. Schnabel et al. [2007] introduce an algorithm to
famps). Thus, we can separate (and ignore) nuisance modes of Guero unorganised point clouds, Subsequently. the GlobFit [1
at car fe nce in  henteoe .arity, Where the et al. 2011] framework extracts a set of mutually consistent rela-; ’ ’ tions (e.g., coplanar, coaxial, equal length, etc.) and conform to the
new object may be a threat). recovered relations for reverse engineering. Alternately, temporal
Contributions. In summary, we (i) introduce a pipeline to acquire information across multiple frames can be used to additionally track
proxy models of common office furniture consisting of rigid parts, jot information in order to recover a deformation model ([Chang
as well as of their low-dimensional variability modes, (i1) detect and Zwicker 2011] and references therein).
and recognize occurrences of such models from single low quality In the context of image understanding, Lee et al. [2010] construct
Scans, and (111) quickly Populate large indoor environments with a box-based reconstruction of indoor scenes using volumetric con-
variability and repetition enabling novel recognition possibilities. siderations, while Gupta et al. [2010] apply geometric constraints
1.1 Related Works. Surface reconstruction from unorganized and mechanical considerations to obtain a block-based 3D scene
point samples has been extensively studied in computer graphics, model. In the context of 3D scans, there has been little efforts to-
computational geometry and computer vision (see [Dey 2007] and wards scene understanding of large datasets. Notable exceptions
references therein). Our main goal, however, 1s different. We focus include: Triebel et al. [2010] Present an unsupervised algorithm for
on acquiring and understanding large 3D indoor environments. segmentation and object detection in indoor scenes. They apply

a graph-based clustering on pre-segmented input data and assign

Scanning technology. Powered by recent developments in real- part labels using a Conditional Random Field (CRF). The method,
time range scanning, everyday users can easily acquire 3D data however, does not consider object variability and cannot be applied
at high frame-rates. The individual frames, however, are poor in to unorganized pointsets, as is our goal. Boyko et al. [2011] extracts
quality. Hence, researchers have proposed algorithms to accumu- high level information of road in noisy outdoor point sets. We also
late multiple scans for better quality acquisition [Henry et al. 2010; extract high level information in the context of indoor environments
Izadi et al. 2011]. Unfortunately, such methods lead to ghosting for quick and effective scene understanding.
artifacts if the camera or the scene moves abruptly in course of
scanning. Furthermore, the raw scans do not provide any high-level .
understanding of the scene. 2 Overview

Scan processing. Rusinkiewicz et al. [2002] first demonstrated the Our framework works in two main stages: learning and recognition.
possibility of real-time lightweight 3D scanning. In their frame-
work, the user rotates a handheld object while the system con- In the learning stage, we scan each object of interest a few times
tinuously updates the model to provide real-time visual feedback (typically 5-10 scans over different poses). Our goal is to con-



p! p? p? pt ps 3 Learning Phase

(a) Points 3 w Ff £ A 1 wn The input to the learning phase is a set of registered point clouds- ad | TE CF P!,..., P" derived from the same object in different configurations.
“ = | > di = Our goal is to build a model M comprising of parts that are linked(b) Patches pY — n_& Ig ww by joints. Note that although this stage can be unstable for very

few scans, but once we have sufficient data to construct model M,

(c) Primitives 7 the subsequent recognition stage becomes simple, robust, and in-(Section 3.1) Pi AY ~ | 'Q teractive. During the learning phase, we segment each point set P'
into a collection of primitives p’;. We then establish correspondence

(d) Initial matching J / / / / among the parts across the scans, and from the matched parts build
and alignment X model M. Note that we also store transformations 7] between in-
(Section 3.2) O = dividual parts of the extracted model and the corresponding parts

\ in the measurement, i.e., 7; (7) ~ m;. We refine the primitives
(e) Model found ~~ ==" — — — “2 by jointly fitting the matched parts across different measurements

(Section 3.3) PY PY using the transformation 7; (see Figure 3).
® ® In this work, we restrict the choice of primitives to cylinders and

Figure 3: Learning stage with lamp data set. Given the set of reg- boxes, and joint types to rigid, telescopic, and rotational. The final
istered point clouds (a), in the learning stage we find a coherent model M contains information of the individual part primitives and
model to explain the data jointly. Starting from individual primi- possible deformation across them (cf., [Chang and Zwicker 2011]).
tives patches (b, c), the stable and consistentprimitives are detected In addition, we can also keep necessary features for robust match-
in the first iteration (d). Using such primitives to define a reference ing. For example, the distribution of height from the ground plane
frame, we establish correspondence across the otherprimitives, and can be a strong prior for tables, or objects can have preferred Iep-
extract the (joint) deformation parameters. The remaining parts etition direction, ¢.g., monitors or auditorium chairs are typically
are then replaced by the best configuration among the sets (e). The repeated sidewise. These learned attributes and relationships act as
process repeats until convergence. reliable regularizers in the recognition phase, when data can be very

sparse and noisy.

sistently segment the scans into parts as well as identify the junc- 3.1 Individual primitive fitting. Primitive fitting can alternately be
tion between part-pairs to recover the respective junction attributes. th ht of afi bl Gi C of measurement
This is an ambitious goal, given the quality of the inputs. We use OUEHL OT 4 SCSMENTALON PIODICIL. LIVEN @ SCL OT MEASUTCINENLS,
two scene characteristics: (1) the objects are well approximated by we have to partition the data 50 that cachpartition 1s well NLlained

: : a by a primitive. Instead of fitting primitives directly to points, we
a collection of simple primitives (e.g., planes, boxes, cylinders) and tition th ts int ¢ of surf tches ( ), and(11) the types of junctions between such primitives are limited (e.g., PArttion he points Into a SLO! SUMMAce Patenes xy, 12, ..., Xu), d
hinge, translational) and of low-complexity. We first recover a set of fit primitives to such Patches. We obtain initial surface patches by
Lo Ce : : iteratively sampling seed points and growing the patches to local

primitives for each individual scan. For each object, we collectively
: Cl planar patches [Cohen-Steiner et al. 2004]. Such patches suffi-

process its scans to extract a primitive-based proxy representation entl roximate the surface. and also reduce the complexity of
along with the necessary inter-part junctions. Thus we obtain a CIEL approximate ’ PICAILY
collection of models M; Mo. .. .. the problem. After convergence, we perform PCA for each patch x;

Pe and keep the eigenvalues oy (x;) > 0>(x;) > o3(x;) and correspond-
ing eigenvectors e;(x;), e>(x;), e3(x;), respectively.

We then perform fitting using RANSAC directly on the patches.

In the recognition stage, we start from a single scan S of the scene. Starting with larger patches as seeds, we make a guess for the prim-
We first extract the dominant planes in the scene — typically they de- itive parameters, and progressively add neighboring patches. We
note the ground, walls, desks, etc. We identify the ground plane by iterate between finding candidates and finding the parameters, and
using the (approximate) up-vector from the acquisition device and retain those with sufficient witness, i.e., inlier patches thus effec-
noting that the points lie to one side of the ground. Planes parallel tively grouping the initial patches to bigger ones. The initialization
to the ground are tagged as tabletops if they are at heights as ob- from patches differ for each primitive type as follows:
served in the training phase (typically 1-3’) — here we exploit that _
working surfaces have similar heights across rooms. We remove the Algorithm 1 Incrementally complete a coherent model M

points associated with the ground plane and the candidate tabletops, while |7,| > 0, Vi do
and perform connected component analysis on the remaining points for pi e Pi do
(on a neighbor graph) to extract pointsets Si, 5», .... find a connected part pi c Pi,

if such p! exists then
count number of points in all measurements explained by

l 1 l

For each pointset S;, we test if it can be satisfactorily explained by eetho partnen the maximum count
one of the object models M;. This step, however, is challenging end if
since the data is unreliable and can have large geometric variations end for
due to pose changes. We handle such difficulties using a novel add the best candidate p'; to M and the corresponding transfor-
MRF formulation and incorporating simple scene priors: (i) we : ; ; /
use placement relations (e.g., monitors are placed on desks, chairs mation 7 to T°. Lo.
rest on the ground, etc.), (ii) each model has allowable repetition add rotation or scaling !f any of the measurements cannot be
modes (e.g., monitors are usually horizontally repeated, chairs are explained by the part without deformation.
repeated on the ground). We assume such priors are available as TEMoOVe parts in Fy, that are covered by the new part.
domain knowledge (see also [Fisher et al. 2011]). _endwhile = 0000000



Box. We parameterize a box with three mutually orthogonal di- _—
rections di, d,, ds; € R?, offset values py, ps, p3 € R, and lengths Ha
li,1>, 13 € R along the respective directions. We initialize a box if x

(i) a patch that has small normal variation 03 (x;) < § (§ = 0.01), or pS. | «(ii) a pair of patches are nearly orthogonal, i.e., e;(x;)ei (x;) ~ 0. . I ta :
In case (i), we initialize a direction d; and an offset pj. When Nh fs &
a neighboring patch with a right angle is detected (also for the La La y
initialization case (i1)), then we replace the two directions d;, d; %
and corresponding offsets py, p> by the actual values from the new (a) (b) (c) (d)
patches. The remaining direction is given by dz = d; x d;. Oth-

erwise, the directions and lengths are approximated by principal Figure 4: The chair model starts from fitting primitives and de-
components attributes, i.e., €(x;) and ex(x;). tecting the dominant elements, i.e., the back and the seat (b), then

Cylinder. We fit a cylinder when a patch is not necessarily planar, evolves as the algorithm discovers and Jointly optimizes the shape
ie, o3(x;) > 6 and elongated, i.e., 0s(x;)/o1(x;) < p (p = 0.5). Jor mirror symmetry between the elements, i.e., arms (c), and rota-
The cylinder axis is initialized using e; (x;) and the size of the patch, tional symmetryfor the legs (d).
while the remaining directions provide a starting radius. Any neigh-

boring patches that are close to the axis direction are also added. Sy

3.2 Matching. After the individual measurements P' are fitted with 3 P » /
primitives {p’}, we find relatively large, consistent set of primi- Hoang 2
tives among the measurements as a starting point for the model. foo
We compare adjacent pairs of primitives and calculate how well

they overlap, and pick the one with the most overlap. Thus, we (a) (b) (c) (d) (e) (f)
give preference to larger parts, since smaller primitives arise from

unstable fits and are unreliable at this stage. Figure 5: In the recognition phase, we use a MRFformulation to
We observe that a pair of primitives with their relative positions match the learned chair model (a) to the input scan (b). While
form a local reference frame. We add the pair to current model M simply maiching height (c) or relative size (d) results in wrong
and align the measurements by adjusting the parameters by jointly matches, we correctly identify the chair back and Sear (e) using
fitting the aligned primitives. We then replace the matched primi- both the terms. The most likely assignment adding binary term
tives by the model primitives with the transformation 7; € T'. Note is shown in (f). Note in areas of very sparse data, there can still

; : : : be mismatches, requiring further refinements, especially for small
that measurement P' can have multiple transformations since each : : :

: parts, e.g., we fail to extract symmetry between the chair arms in
part can deform relative to each other (see Figure 3d).

this example.

3.3 Completing a coherent model. Primitives in measurement
p’; € P' are either mapped to the current model Pj; or are tagged as We fix the axis location but allow scale or rotational deformation
unexplained Pi,. After the previous matching step discovers a pair along the axis direction (see Figure 4d).
of parts, we start from |P},| = 2. The matched parts serve as anchors

for further matches among the remaining candidates, which are pro- 4 Recognition Phase
gressively attached to already matched parts (see Algorithm 1).

Man-made structures are often hierarchical. Hence, in the inner Having learned a set of models (along with their deformation be-

loop of testing each part ph we benefit from relative information havior) M := {M,,...,M;} for a particular environment, in the
between parent node and its connected children to find a regular recognition phase we can quickly collect and understand the en-
structure. We consider mirror and rotational symmetries in our vironment. The scene S containing the learned models is col-
framework (see Figure 3¢). We now describe how to consider such lected using the code by [Engelhard et al. 2011] in a few seconds
regularity in the testing stage. of time. As pre-processing, we extract large flat surfaces using

. RANSAC, which effectively are the ground plane, desk tops, and
Mirror symmetry. We test for mirror symmetry when the parent walls. We retain the plane equation of the most dominant plane
node is a box, which has 3 possible reflective symmetry planes. If (ground plane) and the (significant) ones parallel to the dominant
the connected child parts can be separated by one of the symmetry plane (desks). The remaining points are partitioned into groups by
planes for all n measurements, we flag a candidate mirror symime- connecting neighboring points (using a neighborhood graph with
try. Once the symmetry plane and the candidate parts are flagged, distance threshold of 1cm). The resulting clusters S = {S,...,S,}
we similarly test each configuration with respect to measurement. If are the input for our recognition pipeline (see Figure 2).
there were n measurements of the object, there are 2n sections that
can be fitted by the same set of primitives under mirror symme- For each clustered single view point cloud S;, we try to match each

try. The symmetric parts can also undergo possible deformations. of learned models M;. The recognition pipeline returns how well
We use the best configuration to replace all the detected symmetric S; 1s matched to the given model M; in addition to the relative
instances (see Figure 4c). transformation and deformation. If successful, we build a quick

} and lightweight 3D model of the environment by simply replacing
Rotational symmetry. In case of rotational symmetry, instead of the corresponding pointcloud by the matched model with correct
looking for the plane of reflection, we search for the axis of rota- transformation and deformation parameters (see Figure 5). For the
tion. For any pair of patches that are neighboring and not parallel to rest of the section, we simply denote scan and model as § and M,
each other, we find the approximate point, or possible axis position. respectively.
Then we run mean-shift clustering to detect candidate axis positions
among all pairs of neighboring patches. If there is a coherent axis 4.1 Initial match. Recall the model M is composed of a set of prim-
position for all the measurements, then there is possible rotational itives and the connectivity between them. Similar to the learning
symmetry. Hence, after testing, we jointly fit a rotational structure. step, we create patches for the input cluster S and generate initial
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Figure 6: Recognition results on synthetic scan ofa virtual 3D scene.

segments and candidate joints between neighboring segments. We individual terms used (see Figure 5). We find the initial transforma-
jointly consider the deformation parameters and compare each pair tion between S and M by using the matched joints with the smallest
of neighboring parts with joints in models via a Markov Random binary term 7’. If there is no joint discovered, we use the part with
Field (MRF) formulation. Say there are segments s,s, € S and smallest unary term 9 and relative ground direction.
parts my, mp € M. Then we find the most likely matches between Lo . .

them by minimizing the following energy function. 4.2 Finding transformation and deformation parameters. After
the initial match and transformation is extracted, we incrementally

E = > D(s; = m;) +1 > V(s; =m, sj =m;) (1) grow the match to find the local minimum for the remaining un-
i ij knowns. Starting from the initial transformation, we find the best

omar term DE  — deformation parameter, and establish correspondence between §
y binary term and M. We find the best transformation given the correspondence,

We can use the distance d(f;, fin) € |0, 1] between features of s € S and then iterate until convergence. We replace the points by the
and m € M for the energy function. For example, the unary term best matching model, if at least 80% of points are explained after
can be written as sum of all possible feature distances: convergence.

D(s =m) := > od/n, where (2) Nv TE 3 To,

(Jensle (f, : fin) — |f _ fn /T, 3) \ Semin 5 a q A

A"(fos fn) = 1 =D min (f(i), fin(D)) - Ja

Among many possible sets of features, we use relative length and i oo

height distribution. Height distribution is given as a histogram over Figure 7J Chang et al. [2011] can find meaningful rigid parts in
the distance from the ground plane and the distance is obtained as the learmng stage feorgood scans, and such a model can be used
a histogram intersection distance [Swain and Ballard 1991]. Note directly in the recognition stage. In ourscenario, however, we found
that it is easy to integrate alternate shape features, colors, or any a proxy-based method to be more forgiving to poor data.
other useful information to strengthen the recognition power. In all

our tests, however, we only consider geometry and ignore texture 5 Results
information.

In our framework, we can robustly handle moderate and low quality In this section, we present the results of our system on various
scans reliably because of the binary term. We define this term by synthetic and real-world scenes. For real-world datasets, we used
comparing features distances for neighboring patch pairs withjoints Microsoft Kinect with an open source scanning library [Engelhard
in a model, et al. 2011] for both the learning and the recognition phases. Note

Sb/n if edge exists in model that a more accurate scanner can be used in the learning phase for
Visi =m, 50 =m) := w if no edge exists. better quality models. For example, in Figure 7, we show the results

(4) of Chang et al. [2011] on higher density scans of multiple chair
Due to the limitation of single-view data, not all of the joints are poses. Although their current methodis limited to hinge and ball
likely to be observed. The term yw > 1 (we used 5) is a penalty for joints, and hence miss the telescopic joints in the chair example, we
assigning non-existing joints, which captures the probability that a believe their method can be generalized to be used in the learning
joint may not have been observed, or be wrongly assigned. The fea- stage. However, for sparse input scans, like in our setting, wefound
tures b' we consider for the binary term include relative location of our primitive based learning method to be more robust. Intuitively,

contact, angle between the parts, length (the largest dimension from omits no. of no. of no, of
the contact point), width (the smallest dimension from the contact

: : per scan scans prim. joints
point). Since we know the possible deformation space of model hair A174 = g 1
joints from the model M, we adaptively compare only features that :

: : : : office monitor 20011 5 3 2are invariantto the deformation. For example, we ignore angles for EEE
eseIN, or ignore length of corresponding directions for

chair 28445 7 10 4
Since the energy function is non-metric and non-convex, we used

a message passing algorithm [Kolmogorov 2006] to solve for the monitor 60933 7 3 2
minimum. The minimization is quick because the possible discrete
assignment space 1s quite small. The result certainly depends on the Table 1: Models obtainedfrom the learning stage (see Figure 9).
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Figure 8: Recognition results on various office and auditorium scenes. Since the input single view scans are too poor to understand the scene

complexity, we include scene images just for visualization (they are not available to the algorithm). Note thatfor the auditorium examples,

we even detect the tables on the chairs — this is possible since we have extract this mode ofvariation for chairs in the learning phase.

we restrict the complexity of the model by our choice of primitives Comparison. We struggled to compare our method with existing
and joint types, and thus regularize the problem. techniques as we are not aware of any competing method that can

handle the quality of our target data and at this scale. Even state-



recognized parts for comparison. Note that we show the colored
present detected™ points just for reference, while our algorithm only has access to the

geometry but not any color or texture attributes.
office 1 2570 1129 3930 | S5¢2m It 5c 2m It

office 2 4952 1996 11090 | 4c 6m 2t 4c Sm It

office 3 2450 1355 5234 | 85m Ot  6¢ 3m Ot After the preprocessing (learning) phase, our recognition stage is
aud. 1 19033 11377 29260 | 26 chairs 26 chairs lightweight and fast taking on an average 205ms to compare a point
aud. 2 9381 2832 13317 | 21 chairs 19 chairs cluster to a model on a 2.4Hz CPU with 6GB RAM. We summarize

the results in Figure 8 for (cluttered) office setups and auditori-

*c: chair, m: monitor, t: trash bin, s: stool ums. We detect the chairs, monitors, and trash bins across different
rooms, and rows of auditorium chairs in different configurations.

Table 2: Statistics for the recognition stage. For each scene, we Surprisingly, we could also detect the small tables in the two audi-
also indicate the corresponding scene in Figure 8 in parenthesis, torium scenes (1 in auditorium #1, and 3 in auditorium #2). Also

when applicable. notice the detected pose changes in the auditorium seats. Even un-
der such demanding data quality, we can recognize the models and

of-the-art methods like [Chang and Zwicker 2011] assume input recover poses from data sets an order of magnitude sparser than
quality well beyond the ones we process (see Table 2). A direct those required in the learning phase. Specifically, we need around
surface reconstruction on the input single view point sets is clearly 1000-2000 points per model for recognition. This is possible since
unrealistic — even we as humans find it hard to visually understand the learning stage extracts only the important degrees of variation,
the scene from input scans as shown in Figures 1 and 8. Further, thus providing a very compact, yet powerful, model (and deforma-
scan consolidation [Zheng et al. 2010] did not help since we failed tion) abstraction.
to detect the repetitions in the original scans due to the presence of
model variabilities and non-regular arrangements. In fact, we failed
to reliably consolidate the models even after the recognition stage Overall the recognition results are satisfactory in most cases (see
because of ambiguity of point-part association near segment bound- Table 2) except when an individual model gets split into multi-
aries, especially in noisy and incomplete regions. In our experience, ple parts by occlusion, or objects are very distant (note that the
the low complexity deformation models extracted in the learning data quality deteriorates nonlinearly with distance) and the result-
stage are critical: for example, using simple rigid models (by freez- ing point clouds are severely distorted. In the office scenes, we
ing the joints in the respective models) leads to significantly worse fail to detect the white boards as they are confused with the walls.
recognition results in the office scenes where the objects are all in We also successfully detect the trash cans in office #1 and office
different configurations (e.g., no two chairs have the same height). #2 — note the size of the objects relative to the scan quality (and

resolution). In office #3, we miss a couple of the chairs, which

Synthetic scenes. We evaluated our framework on a synthetic scene are mostly occluded and beyond what our framework can handle.
obtained from Google warehouse (see Figure 6). Note that we In the auditorium scenes, although we detect all the chairs (along
detected all the 5 monitors, the 5 chairs, and the 3 stools in the with the open tables), we fail to extract the slight arc of the chair

scene, along with their poses, the associated ground plane, and the arrangements. Such an error can only be corrected with more global
desk area. The stools were particularly challenging given their thin reasoning. We decided against considering such specialized priors
stems, but we recovered their positions since (i) they stand on the as they are very domain dependent. It is, however, possible to inte-
ground, and (ii) their top and bottom parts provide enough support grate a coupled global optimization to refine our recognition results
for the MRF to recover their poses. Our experience with other scans in the auditorium case (see grid-based refinement in [Pauly et al.
of the scenes was similar, and we only show one variation here. In 2008]).
scenes where the top part of the stools were not visible, we failed
to detect them.

As an interesting possibility, we can also use our pipeline to effi-

| ciently detect change — by change, we mean introduction of a new\ 5 > object, previously not seen in the learning phase while factoring
= : 4 | out variations due to different spatial arrangements or variation of| | individual model poses. For example, in the auditorium #2, a previ-oR | —i ously unobserved chair is successfully detected (flagged in yellow).

| | This can be particularly useful for surveillance and automated in-
vestigation of indoor environments or for disaster planning (where

Figure 9: Various models (chairs, stool, monitor, trash bin) learned it is unsafe for a human observer to go in).
and used in our setups (see Table 2).

Real-world scenes. We tested our pipeline on a range of real-world Limitations. Clearly we cannot capture features that are below the
examples each consisting of multiple objects arranged over large sensor capabilities, especially small/thin protruding structures (e.g.,
spaces. These are challenging especially due to the amount of vari- wheels of chairs) or reflective objects. For example, we fail to cor-
ability in the individual model poses. Table 1 summarizes all the rectly detect the pose for chairs with very thin legs, though we can
models learned for these scenes ranging from 3-10 primitives with estimate their heights based on their relation to the ground. Moni-
0-4 joints, learned from only a few scans (see Figure 9). tors in tilted angles also cannot be detected because the sensor could

not provide reliable measurements due to the material properties.
The recognition results are satisfactory, e.g., in Figure 1 we detect We are also limited in the learning phase. Given our part-based
all the 5 chairs and the 4 monitors, although parts of the desktops segmentation, we fail to correctly recognize parts of models when
go missing. Note that the sofa, which was not among the learned the segmentation of parts is ambiguous in certain configurations,
models, is not detected. The complexity of our problem setting e.g., a cabinet with closed doors. Finally, at present we cannot han-
can be appreciated by looking at the input scan, which is hard even dle complex joint types (e.g., folding chairs) again primarily due to
for us to visually parse. We overlay the unresolved points on the segmentation limits.



6 Conclusion IzADI, S., KiM, D., HILLIGES, O., MOLYNEAUX, D., NEW-
COMBE, R., KOHLI, P., SHOTTON, J., HODGES, S., FREE-

We presented a simple system for recognizing models in cluttered MAN, D., DAVISON, A., AND FITZGIBBON, A. 2011. Kinect-
3D indoor environments, while factoring out deformation and spa- fusion: real-time 3D reconstruction and interaction using a mov-
tial placement, at a scale previously not demonstrated (to the best of ing depth camera. In Proc. UIST, 559-568.
our knowledge). Our pipeline is scalable and general with extension KOLMOGOROV, V. 2006. Convergent tree-reweighted message
to more complex environments primarily requiring reliable acquisi- passing for energy minimization. IEEE PAMI 28, 10, 1568-
tion of additional object models (with their variability modes) and 1583.
good priors for the inter-object relationships.

LEE, D. C., GUPTA, A., HEBERT, M., AND KANADE, T. 2010.

Several future possibilities remain: (1) With increasing number of Estimating spatial layout of rooms using volumetric reasoning
object prototypes, we will need more sophisticated search data about objects and surfaces. NIPS 24.
structures. We hope to benefit from the existing literature in shape

search and related areas. Scalability at the level of big building Li, H., ADAMS, B., GuiBas, L. 1, AND PAULY, M. 2009. Robust
interiors is probably best tested in a company environment (with single-view geometry and motion reconstruction. ACM TOG
human resources), although we believe that given the simplicity of (SIGGRAPH) 28, 175:1-175:10.
the setup a lot can be done at a smaller scale. (ii) In this work, L1, Y., WU, X., CHRYSATHOU, Y., SHARF, A., COHEN-OR, D.,
we focused on a severely restricted form of sensor input, namely AND MITRA, N. J. 2011. GlobFit: consistently fitting primitives
poor and sparse geometry. We intentionally left out color and tex- by discovering global relations. In ACM TOG (SIGGRAPH),
ture, which can be very useful in future considerations, especially 52:1-52:12.
if appearance variations can be accounted for. (iii) Finally, we have

to aware of the ultimate use of the acquired models — whether PAULY, M., MITRA, N. J., GIESEN, J., GROSS, M., AND
the goal is the production of interior CAD models for visualiza- GUIBAS, L. J. 2005. Example-based 3D scan completion. In
tion, or more schematic representations that may be sufficient for Symp. on Geometry Proc.

navigation, or simply of scene understanding for threat detection, PAULY, M., MITRA, N. J., WALLNER, J., POTTMANN, H., AND
location of missing objects, etc. In all these settings the ultimate GUIBAS, L. 2008. Discovering structural regularity in 3D ge-
representation of the learned objects can vary, but the basic pipeline ometry. ACM TOG (SIGGRAPH) 27, 3, #43, 1-11.
of coupled object learning, recognition, and environment modeling
remains the same. RUSINKIEWICZ, S., HALL-HOLT, O., AND LEVOY, M. 2002.

Real-time 3D model acquisition. ACM TOG (SIGGRAPH) 21
(July).
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