
Rehearse: Helping Programmers Adapt Examples
by Visualizing Execution and Highlighting Related Code

Joel Brandt"? Vignan Pattamatta’', William Choi’, Ben Hsieh’, Scott R. Klemmer'
‘Stanford University HCI Group *Advanced Technology Labs
Computer Science Department Adobe Systems

Stanford, CA 94305 San Francisco, CA 94103

{jbrandt, vignan, wcholi, srk}@cs.stanford.edu, bhsiech@stanford.edu

ABSTRACT phe

Instructive example code is a central part of programming.

Web search enables programmers to quickly locate relevant Hm
examples. However, existing code editors offer little sup- mm at he ine oe
port for helping users interactively explore examples. This wre 2ST
paper proposes that effective use of examples hinges on the as

programmer's ability to quickly identify a small number of )! oh
relevant lines interleaved among a larger body of boiler- ror ©
plate code. This insight is manifest in Rehearse, a code edit- (A foi
ing environment with two unique features: First, Rehearse HE ,
links program execution to source code by highlighting i A

each line of code as it is executed. This enables program- To :
mers to quickly determine which lines of code are involved

in producing a particular interaction. Second, after a pro-

eohas found 2 >nsleine oPlicaple to her task, he Figure 1. The Rehearse development environment, visualizing
carse automatically identifies other lines ! at are 159 the execution of an example application. The user interacts
likely to be relevant. In a controlled experiment, partici- with the running application (A). Lines that have recently
pants using visualization and highlighting adapted example executed are highlighted in dark green (B). As execution
code significantly faster than those using an identical editor progresses, lines executed less recently fade to light green (C).
without these features.

Author Keywords ing information about how it should be used. The downside
Example-centric programming of complete examples is that they necessarily contain a

large amount of irrelevant “boilerplate” code with relevant

ACM Classification Keywords lines interleaved throughout. The main insight presented in
H5.2. Information interfaces and presentation: User Inter- this paper is that effective use of examples hinges on the
faces—prototyping. programmer's ability to quickly identify a small number of

relevant lines interleaved among a larger body of boiler-

INTRODUCTION plate code.
“I didn’t know I needed that line!” exclaimed one partici-

pant in our need-finding study, as she re-examining a block To explore this insight, we built Rehearse, which is an ex-
of example code. She wasn’t alone—all participants had tension of the open source Processing development envi-
difficulty adapting examples because they made mistakes in ~~ ronment [3]. Processing uses a variant of the Java pro-
determining precisely which lines were relevant to their gramming language and is completely interoperable with
task. Instructive examples have long played a central role in standard Java libraries. Rehearse enables two interactions
programming practice [2, 13], and Web search tools help not available in Processing. First, Rehearse links program
programmers to locate high-quality examples [1]. Despite execution to source code by highlighting each line of code
examples’ pervasiveness, current mainstream editing envi- as it is executed (see Figure 1). This enables programmers
ronments offer little specialized support for understanding to quickly determine which lines of code are involved in
and adapting examples. What interactions might assist pro- producing a particular interaction. Second, after a pro-
grammers in using examples more effectively? grammer has found a single line applicable to her task, Re-

hearse automatically identifies other lines that are also

Previous research suggests that programmers prefer exam- likely to be related (see Figure 2).
ples that are complete, executable applications [2, 13]. Ex-

amples in this form show relevant code in context, provid- We compared Rehearse to the unmodified Processing envi-
ronment in the lab with 12 participants. We found that by

1



using these interactions participants were able to adapt ex- form two tasks: The first was to create an analog clock with

ample code significantly faster. numbers. We provided participants with two example ap-

plications: an analog clock without numbers and an applica-
RELATED WORK tion that drew text on a canvas. The second task was more

Rehearse builds on a large body of work on code authoring open-ended. Participants were asked to create a custom
and debugging tools. Many programming-by-demonstration paintbrush tool of their choice. We seeded them with ideas,
(PBD) tools provide a visual link between source code and such as “spray paintbrush” and “soft hair paintbrush.” Par-
execution at runtime. For example, Koala [10] and Vegemite ticipants were provided with a broad example database,
[9], two PBD tools for the Web, highlight lines of script be- including a few with functionality that was directly relevant
fore they execute and highlight the effect on the output as to the task (such as mouse press and mouse drag).
they execute. Similar visualizations are often provided in . :

visual languages like d.tools [6] and Looking Glass (the suc- In addition to the provided examples, participants Were free
cessor to Storytelling Alice) [5]. In all of these systems, only to use any online JeSOUrees. We encouraged participants to
a few “lines” of the user’s code need to execute per second hink aloud by asking open-ended questions as they worked.
for the user’s application to be performant. In contrast, with Observations
general-purpose languages like Java, the user’s code often . : : :

must execute at thousands of statements per second. One Participants routinely executed examples before inspecting
contribution of Reherase is extending this visualization tech- the source code. For example, one participant Opend an
nique to code that must execute much more rapidly. example and immediately stated, I'm SOs to run this and

figure out what it does.” We believe that this initial execu-

An alternative to Reherase’s realtime visualization is to tion allowed participants to form a mental model of how the

record an execution history that can be browsed and filtered source code should be structured, which guided their subse-

after execution completes. FireCrystal, for example, uses quent inspection of the code itself.

this technique to aid programmers in understanding and CL.

debugging JavaScript [12]. There are benefits and tradeoffs We found that when Pas read Jcode. they
associated with both approaches. Offline browsing of exe- i anehe Po agdl Hofy the
cution history affords the programmer more time to explore line of code that actually drew text to the Canvas because it
an issue in-depth, but it necessarily requires an extra step of : : LY :
locating the portion of the execution trace that is relevant. contained a string literal However, it took them much
The Whyline system offers an effective approach for longer to identify related lines, such as those that loaded
browsing and filtering these execution traces [8]. Whyline and selected 4 font or set the drawing position. Often, they
allows users to ask “why” and “why not” questions about would fail to indentify some relevant lines, which would
program output, which are used to automatically filter the lead to confusing bugs. In the provided example on drawing
execution trace for relevant data. We suggest that Re- text, the line that set the font was in a setup function far
herase’s realtime visualization allows users to ask similar away from the line that actually drew text. As a result, Sev”
questions implicitly. Simply by interacting with their run- eral participants did not see this line, and mistakenly as-
ning application, they are implicitly asking “what lines of sumed that there was a default font.
code are responsible for creating this interaction?” After participants found a potential “seed” line, they would

Rehearse also provides support for identifying lines of code frequently make small modification to that line and then res
that a related to a particular line of interest. This interaction execute the application. This modification was largely “PIS”
was inspired by CodeTrail’s insight that linking source code temic [7]: It wasn’t in >pport of the eventual adaptation they
and documentation is beneficial [4]. CodeTrail links the needed to make to achieve their goal. Instead, it served as a
Eclipse development environment and the Firefox Web way to confirm that they were on the right path. We hypothe-
browser to give users faster access to documentation and other sized that by providing a mote efficient way to confirm that
resources. Rehearse builds on this to optimize one specific particular lines of code were linked to desired output behav-
interaction with documentation: finding related API functions. ior, we could increase the utility of this epistemic action.
Rehearse gives up the relatively general-purpose nature of REHEARSE
CodeTrail in order to make one task highly efficient. Rehearse extends the Processing development environment
NEED-FINDING: OBSERVING EXAMPLE ADAPTATION [3] with two interactions designed to support understanding
To inform the design of Rehearse, we observed five indi- and adapting example code.
viduals in the lab as they searched for, evaluated, and adapted Execution Highlighting
example code. Five university students participated in an During execution of the user's program, Rehearse high-
hour-long unpaid lab study. All the participants had previous light h Tine of cod ii ted (Fi re 1). The lineexperience with Java; only one was familiar with Processing. [SHES cath INE OF Code as 1 15 EXECU sure 1). he

’ currently executing is highlighted in dark green. As execu-

We first asked participants to follow a standard tutorial on tion progresses, the highlighting slowly fades to light green,
Processing’s Web site. Participants were then asked to per- which gives the programmer an overview of which lines

2



have executed most recently. Execution highlighting can be provide tracing of execution. When execution highlighting

enabled or disabled using a toggle button in the toolbar. is enabled, the user’s code is executed in the interpreter.

Execution highlighting directly links what is happening in Calls to external methods (for example, those in the Proc-
the program’s output to the code responsible for that output. eSSINE API) on oil executed compiled bytecode inside
This link allows the programmer to use the running applica- Java's Virtua Mae me, nd! ¢ link between u ¢ Inter-
tion as a query mechanism: to find code relevant to a par- preted and compl ed code N andled through lava > reflec-
ticular interaction, the programmer simply performs that tion mechanism. This hybrid execution approach © crucial
interaction. Because the visualization is produced in real- to achieving acceptable performance for most applications.
time, this makes it easy to answer questions such as “is the It allows, for example, resource intensive API method calls

’ to execute as fast as possible.
MouseDrag handler called only at the start of a mouse drag

event, or continuously throughout the drag?” Determination of related lines is handled through a pre-

Execution highlighting can help programmers find some of computed Sry that specifies what ar methods are
the lines of code that are relevant to their task. For example, + ara 10 cacti thet. This MaPpINS 15 asen GIrectiy om
it can help a programmer locate the line of code that draws the Processing documentation; lava > API documentation
text to the screen. It may not, however, help them find re- provides a similar “related methods” paradigm.
lated, but infrequently executed lines of code such as those EVALUATION: REHEARSE IN THE LAB
required for setup. When using execution highlighting We hypothesized that Rehearse would help users under-
alone, a programmer could easily miss an important line of : :

stand and adapt example code more quickly because it

code that, for example, loads a font. would reduce the cost of identifying which lines are rele-
vant to their task. To test this hypothesis, we ran a compara-

Related Lines tive lab study. a ’
Using Rehearse, the programmer can press a hotkey to

identify lines of code that are likely related to the one she is Method
currently editing (Figure 2). Related lines are demarcated We recruited 12 university affiliates for a 45-minute, un-
by an orange highlight in the left margin of the editor. To : : . J
determine which lines are related to the current line, the paid study. We required all participants to have proficiency
system examines all invocations of API methods on that in Java (at east edulvalent to what > ught In the first year
line. The system then highlights any line that invokes a re- > ur aaudy hol foniliarityith brocesin, No participants
lated method, as determined by a pre-computed mapping.

Participants were randomly assigned to a control or treat-

Implementation ment condition. Control users were provided with the cur-

The execution highlighting feature of Rehearse was imple- rent Processing IDE and treatment users were provided with
mented by adding a custom Java interpreter to Processing. Rehearse. All participants completed a tutorial on Process-

Our interpreter is based heavily on BeanShell [11], which ing adapted from Processing’s Web site, and treatment par-

was modified to support the Processing language, and to ticipants were introduced to Rehearse’s features through

_.. CE this tutorial. We then provided participants with written
, instructions asking them to complete two tasks. For each

©0660 Bd J task, we measured task completion time and recorded quali-
Letters + tative observations.

| In the first task, participants started with an application that

Font; I drew a rectangle on the screen each time the user pressed a
v 0 key. The height of the rectangle varied by letter case:
C cize(z0m, 200); lower-case letters created rectangles half as tall as upper-

Os en case letters. Participants were asked to modify the height of
rectangles created by lower-case letters. Completing this

Sn tio nbnani task required modifying one or two lines in an 89-line pro-
fEEnTean gram, so participants were expected to spend the majority

os 2 of their time identifying those lines.
n In the second task was identical to the task used in our

need-finding exercise: Participants were asked to add num-

bers to a provided analog clock application. Completing

Figure 2. Rehearse indicating lines related to the line currently ths ask redulred Integrating me existing applicationsbeing edited. The user’s cursor is circled in green; related lines Whe necessitate writhg of moc ifying approximately 10
are identified by orange highlights in the left margin. Display of lines of code in a 100-line application.
related lines is triggered by a hotkey.

3



Results Task 1 Task 2

In task 1, Rehearse uses completed the task significantly T C T C

faster than the control group (p < 0.03, 1-sided t-test). Con- 1 14 22 18 18

trol participants completed the task in 18.3 minutes on av- ) 15 23 21 16

erage; Rehearse uses spent 12.6 minutes on average, a 31% 3 _ 20 16 23

speed-up (see Table 1). One participant in the treatment 4 7 14 17 16

group chose not to complete the task, and is not included in 5 13 21 15 41
these statistics. 8 14 10 _ 19

In task 2, Rehearse users completed the task faster than the Average 12.6 18.3 17.4 e2.2
control group—17.4 vs. 22.2 minutes, a 22% speed-up— Table 1. Task completion times for treatment (T) and control (C)
but this difference was not statistically significant (p = participants. Participants using Rehearse completed the first task
0.15). One participant in the treatment group chose not to significantly faster than those in the control condition (p < 0.03).
complete the task, and is not included in these statistics.

REFERENCES

Discussion 1 Brandt, J., M. Dontcheva, M. Weskamp, and S. R. Klemmer.

The execution highlighting feature appeared to have the Example-Centric Programming. Integrating Web Search into the
biggest impact on participants’ performance. This was most Development Fnvironment, In Proceedings gE ACH
evident in Task 1, where the bulk of the task consisted of onference on Human Factors in op IE SYA.

: : : 2 Brandt, J., P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R.
understanding where in the code to make a very simple : CL —

. C1 corms Klemmer. Two Studies of Opportunistic Programming:

change. One participant said, First, I tried to hack around Interleaving Web Foraging, Learning, and Writing Code. In
the example code to get it to work. When that did not work, Proceedings of CHI: ACM Conference on Human Factors in
I used execution highlighting to actually understand the Computing Systems. pp. 1589-98, 2009.
code.” 3 Fry, B. and C. Reas, Processing. http://processing.org
The related lines feature appeared useful for those partici- 4 Goldman, M. and R. C. Miller. Codetrail: Connecting Source

pants who actually used it. Only 3 of the 6 participants mn Code and Web Resources. In Proceedings of VL/HCC: IEEE
the treatment group did so, and these participants only used Symposium on Visual Languages and Human-Centric
it on the second task. While it is not appropriate to draw Computing. pp. 63-72, 2008.
conclusions from such a small sample, it is interesting to 5 Gross, P. A., M. S. Herstand, J. W. Hodges, and C. L.
note that three of the four fastest participants on Task 2 Kelleher. A Code Reuse Interface for Non-Programmer
were those who used the related lines feature. Additionally, Middle School Students. In Proceedings of 1UI: International
the second fastest control participant on Task 2 used the Conference on Intelligent User Interfaces. pp. 219-28, 2010.
“related methods” portion of the Processing documentation, 6 Hartmann, B., S. R. Klemmer, et al. Reflective Physical
which provides the same information in a less efficient Prototyping through Integrated Design. Lest, and Analysis. InProceedings of UIST: ACMSymposium on User Interface

manner. Software and Technology. pp. 299-308, 2006.
The fact that the related lines feature was used infrequently 7 Kirsh, D. and P. Maglio. On Distinguishing Epistemic from

suggests that it was not discoverable. We also believe that, Pragmatic Action. Cognitive Science 18(4). pp. 513-49, 1994.

as it is currently implemented, making use of this feature 8 Ko, A. J. and B. A. Myers. Finding Causes of Program
requires some skill at identifying when it might be useful. Output with the Java Whyline. In Proceedings ofCHI: ACM
That is, the programmer has to have the foresight to predict Conference on Human Factors in Computing Systems. pp.
that there may be related lines that she is not aware of. Im- 1569-78, 2009.
proving this feature remains important future work. 9 Lin, J., J. Wong, J. Nichols, A. Cypher, and T. A. Lau. End-

User Programming of Mashups with Vegemite. In

CONCLUSION Proceedings of 1UI: International Conference on Intelligent

Rehearse allows programmers to use examples more effi- User Interfaces. pp. 97-106, 2009.
ciently. The interactions supported by Rehearse stem from 10 Little, G., T. A. Lau, A. Cypher, J. Lin, E. M. Haber, and E.
the insight that effective use of examples hinges on the pro- Kandogan. Koala: Capture, Share, Automate, Personalize
grammer’s ability to quickly identify a small number of Business Processes on the Web. In Proceedings ofCHI:
relevant lines interleaved among a larger body of boiler- ACM Conference on Human Factors in Computing Systems.

,avEs EE ERA pp. 943-46, 2007.
plate code. Execution highlighting and automatic identifica-

tion of related lines make it easier for programmers to focus I1 Niemeyer, P.. BeanShell. http://www.beanshell.org
their attention, leading to faster code understanding. 12 Oney, S. and B. Myers. FireCrystal: Understanding Interactive

Behaviors in Dynamic Web Pages. In Proceedings ofVIL/HCC:

IEEE Symposium on Visual Languages and Human-Centric

Computing. pp. 105-08, 2009.

13 Rosson, M. B. and J. M. Carroll. The Reuse of Uses in

Smalltalk Programming. TOCHI: ACM Transactions on

Human-Compter Interaction 3(3). pp. 219-53, 1996.

4


