Rehearse: Helping Programmers Adapt Examples
by Visualizing Execution and Highlighting Related Code

Joel Brandtl’z, Vignan Pattamattal, William Choi', Ben Hsiehl, Scott R. Klemmer'

'Stanford University HCI Group
Computer Science Department
Stanford, CA 94305

*Advanced Technology Labs
Adobe Systems
San Francisco, CA 94103

{jbrandt, vignan, wchoi, srk}@cs.stanford.edu, bhsich@stanford.edu

ABSTRACT

Instructive example code is a central part of programming.
Web search enables programmers to quickly locate relevant
examples. However, existing code editors offer little sup-
port for helping users interactively explore examples. This
paper proposes that effective use of examples hinges on the
programmer's ability to quickly identify a small number of
relevant lines interleaved among a larger body of boiler-
plate code. This insight is manifest in Rehearse, a code edit-
ing environment with two unique features: First, Rehearse
links program execution to source code by highlighting
each line of code as it is executed. This enables program-
mers to quickly determine which lines of code are involved
in producing a particular interaction. Second, after a pro-
grammer has found a single line applicable to her task, Re-
hearse automatically identifies other lines that are also
likely to be relevant. In a controlled experiment, partici-
pants using visualization and highlighting adapted example
code significantly faster than those using an identical editor
without these features.

Author Keywords
Example-centric programming

ACM Classification Keywords
H5.2. Information interfaces and presentation: User Inter-
faces—prototyping.

INTRODUCTION

“I didn’t know I needed that line!” exclaimed one partici-
pant in our need-finding study, as she re-examining a block
of example code. She wasn’t alone—all participants had
difficulty adapting examples because they made mistakes in
determining precisely which lines were relevant to their
task. Instructive examples have long played a central role in
programming practice [2, 13], and Web search tools help
programmers to /ocate high-quality examples [1]. Despite
examples’ pervasiveness, current mainstream editing envi-
ronments offer little specialized support for understanding
and adapting examples. What interactions might assist pro-
grammers in using examples more effectively?

Previous research suggests that programmers prefer exam-
ples that are complete, executable applications [2, 13]. Ex-
amples in this form show relevant code in context, provid-

- 16
000 BEH
MouseFunctions d
T
ECE R ()
L (roser > bx-bs B& o < bx+bs 88
o' > by-bs 88 ool < bysbs) {
.
© (1ocked) {
S 744 (288!
il 1{asa);
7
}aim
(153);
(3); ©
bover = H
(A) :
(e, by, bs, be);
¥
noussPressed() {
(bover) {
o, 255, 255

locked =

Figure 1. The Rehearse development environment, visualizing
the execution of an example application. The user interacts
with the running application (A). Lines that have recently
executed are highlighted in dark green (B). As execution
progresses, lines executed less recently fade to light green (C).

ing information about how it should be used. The downside
of complete examples is that they necessarily contain a
large amount of irrelevant “boilerplate” code with relevant
lines interleaved throughout. The main insight presented in
this paper is that effective use of examples hinges on the
programmer's ability to quickly identify a small number of
relevant lines interleaved among a larger body of boiler-
plate code.

To explore this insight, we built Rehearse, which is an ex-
tension of the open source Processing development envi-
ronment [3]. Processing uses a variant of the Java pro-
gramming language and is completely interoperable with
standard Java libraries. Rehearse enables two interactions
not available in Processing. First, Rehearse links program
execution to source code by highlighting each line of code
as it is executed (see Figure 1). This enables programmers
to quickly determine which lines of code are involved in
producing a particular interaction. Second, after a pro-
grammer has found a single line applicable to her task, Re-
hearse automatically identifies other lines that are also
likely to be related (see Figure 2).

We compared Rehearse to the unmodified Processing envi-
ronment in the lab with 12 participants. We found that by



using these interactions participants were able to adapt ex-
ample code significantly faster.

RELATED WORK

Rehearse builds on a large body of work on code authoring
and debugging tools. Many programming-by-demonstration
(PBD) tools provide a visual link between source code and
execution at runtime. For example, Koala [10] and Vegemite
[9], two PBD tools for the Web, highlight lines of script be-
fore they execute and highlight the effect on the output as
they execute. Similar visualizations are often provided in
visual languages like d.tools [6] and Looking Glass (the suc-
cessor to Storytelling Alice) [5]. In all of these systems, only
a few “lines” of the user’s code need to execute per second
for the user’s application to be performant. In contrast, with
general-purpose languages like Java, the user’s code often
must execute at thousands of statements per second. One
contribution of Reherase is extending this visualization tech-
nique to code that must execute much more rapidly.

An alternative to Reherase’s realtime visualization is to
record an execution history that can be browsed and filtered
after execution completes. FireCrystal, for example, uses
this technique to aid programmers in understanding and
debugging JavaScript [12]. There are benefits and tradeoffs
associated with both approaches. Offline browsing of exe-
cution history affords the programmer more time to explore
an issue in-depth, but it necessarily requires an extra step of
locating the portion of the execution trace that is relevant.
The Whyline system offers an effective approach for
browsing and filtering these execution traces [8]. Whyline
allows users to ask “why” and “why not” questions about
program output, which are used to automatically filter the
execution trace for relevant data. We suggest that Re-
herase’s realtime visualization allows users to ask similar
questions implicitly. Simply by interacting with their run-
ning application, they are implicitly asking “what lines of
code are responsible for creating this interaction?”

Rehearse also provides support for identifying lines of code
that a related to a particular line of interest. This interaction
was inspired by CodeTrail’s insight that linking source code
and documentation is beneficial [4]. CodeTrail links the
Eclipse development environment and the Firefox Web
browser to give users faster access to documentation and other
resources. Rehearse builds on this to optimize one specific
interaction with documentation: finding related API functions.
Rehearse gives up the relatively general-purpose nature of
CodeTrail in order to make one task highly efficient.

NEED-FINDING: OBSERVING EXAMPLE ADAPTATION

To inform the design of Rehearse, we observed five indi-
viduals in the lab as they searched for, evaluated, and adapted
example code. Five university students participated in an
hour-long unpaid lab study. All the participants had previous
experience with Java; only one was familiar with Processing.

We first asked participants to follow a standard tutorial on
Processing’s Web site. Participants were then asked to per-

form two tasks: The first was to create an analog clock with
numbers. We provided participants with two example ap-
plications: an analog clock without numbers and an applica-
tion that drew text on a canvas. The second task was more
open-ended. Participants were asked to create a custom
paintbrush tool of their choice. We seeded them with ideas,
such as “spray paintbrush” and “soft hair paintbrush.” Par-
ticipants were provided with a broad example database,
including a few with functionality that was directly relevant
to the task (such as mouse press and mouse drag).

In addition to the provided examples, participants were free
to use any online resources. We encouraged participants to
think aloud by asking open-ended questions as they worked.

Observations

Participants routinely executed examples before inspecting
the source code. For example, one participant opened an
example and immediately stated, “I’m going to run this and
figure out what it does.” We believe that this initial execu-
tion allowed participants to form a mental model of how the
source code should be structured, which guided their subse-
quent inspection of the code itself.

We found that when participants read source code, they
were very good at identifying a single “seed” line relevant
to their task. For example, they could rapidly identify the
line of code that actually drew text to the canvas because it
contained a string literal. However, it took them much
longer to identify related lines, such as those that loaded
and selected a font or set the drawing position. Often, they
would fail to indentify some relevant lines, which would
lead to confusing bugs. In the provided example on drawing
text, the line that set the font was in a setup function far
away from the line that actually drew text. As a result, sev-
eral participants did not see this line, and mistakenly as-
sumed that there was a default font.

After participants found a potential “seed” line, they would
frequently make small modification to that line and then re-
execute the application. This modification was largely epis-
temic [7]: It wasn’t in support of the eventual adaptation they
needed to make to achieve their goal. Instead, it served as a
way to confirm that they were on the right path. We hypothe-
sized that by providing a more efficient way to confirm that
particular lines of code were linked to desired output behav-
ior, we could increase the utility of this epistemic action.

REHEARSE

Rehearse extends the Processing development environment
[3] with two interactions designed to support understanding
and adapting example code.

Execution Highlighting

During execution of the user’s program, Rehearse high-
lights each line of code as it is executed (Figure 1). The line
currently executing is highlighted in dark green. As execu-
tion progresses, the highlighting slowly fades to light green,
which gives the programmer an overview of which lines



have executed most recently. Execution highlighting can be
enabled or disabled using a toggle button in the toolbar.

Execution highlighting directly links what is happening in
the program’s output to the code responsible for that output.
This link allows the programmer to use the running applica-
tion as a query mechanism: to find code relevant to a par-
ticular interaction, the programmer simply performs that
interaction. Because the visualization is produced in real-
time, this makes it easy to answer questions such as “is the
MouseDrag handler called only at the start of a mouse drag
event, or continuously throughout the drag?”

Execution highlighting can help programmers find some of
the lines of code that are relevant to their task. For example,
it can help a programmer locate the line of code that draws
text to the screen. It may not, however, help them find re-
lated, but infrequently executed lines of code such as those
required for setup. When using execution highlighting
alone, a programmer could easily miss an important line of
code that, for example, loads a font.

Related Lines

Using Rehearse, the programmer can press a hotkey to
identify lines of code that are likely related to the one she is
currently editing (Figure 2). Related lines are demarcated
by an orange highlight in the left margin of the editor. To
determine which lines are related to the current line, the
system examines all invocations of APl methods on that
line. The system then highlights any line that invokes a re-
lated method, as determined by a pre-computed mapping.

Implementation

The execution highlighting feature of Rehearse was imple-
mented by adding a custom Java interpreter to Processing.
Our interpreter is based heavily on BeanShell [11], which
was modified to support the Processing language, and to

M NO Letters | Processing 0167

000 BRBOMmE

Letters -+

(208, 200);
()3
0

fonth = ("CourierNew3s.viu");
(CENTER);

B - E
g
— S
@ (fonta, 32); v

Figure 2. Rehearse indicating lines related to the line currently
being edited. The user’s cursor is circled in green; related lines
are identified by orange highlights in the left margin. Display of
related lines is triggered by a hotkey.

provide tracing of execution. When execution highlighting
is enabled, the user’s code is executed in the interpreter.
Calls to external methods (for example, those in the Proc-
essing API) are still executed as compiled bytecode inside
Java’s Virtual Machine, and the link between the inter-
preted and compiled code is handled through Java’s reflec-
tion mechanism. This hybrid execution approach is crucial
to achieving acceptable performance for most applications.
It allows, for example, resource intensive API method calls
to execute as fast as possible.

Determination of related lines is handled through a pre-
computed mapping that specifies what APl methods are
related to each other. This mapping is taken directly from
the Processing documentation; Java’s APl documentation
provides a similar “related methods” paradigm.

EVALUATION: REHEARSE IN THE LAB

We hypothesized that Rehearse would help users under-
stand and adapt example code more quickly because it
would reduce the cost of identifying which lines are rele-
vant to their task. To test this hypothesis, we ran a compara-
tive lab study.

Method

We recruited 12 university affiliates for a 45-minute, un-
paid study. We required all participants to have proficiency
in Java (at least equivalent to what is taught in the first year
of a typical undergraduate CS curriculum). No participants
in our study had familiarity with Processing.

Participants were randomly assigned to a control or treat-
ment condition. Control users were provided with the cur-
rent Processing IDE and treatment users were provided with
Rehearse. All participants completed a tutorial on Process-
ing adapted from Processing’s Web site, and treatment par-
ticipants were introduced to Rehearse’s features through
this tutorial. We then provided participants with written
instructions asking them to complete two tasks. For each
task, we measured task completion time and recorded quali-
tative observations.

In the first task, participants started with an application that
drew a rectangle on the screen each time the user pressed a
key. The height of the rectangle varied by letter case:
lower-case letters created rectangles half as tall as upper-
case letters. Participants were asked to modify the height of
rectangles created by lower-case letters. Completing this
task required modifying one or two lines in an 89-line pro-
gram, so participants were expected to spend the majority
of their time identifying those lines.

In the second task was identical to the task used in our
need-finding exercise: Participants were asked to add num-
bers to a provided analog clock application. Completing
this task required integrating two existing applications,
which necessitated writing or modifying approximately 10
lines of code in a 100-line application.



Results

In task 1, Rehearse uses completed the task significantly
faster than the control group (p < 0.03, 1-sided t-test). Con-
trol participants completed the task in 18.3 minutes on av-
erage; Rehearse uses spent 12.6 minutes on average, a 31%
speed-up (see Table 1). One participant in the treatment
group chose not to complete the task, and is not included in
these statistics.

In task 2, Rehearse users completed the task faster than the
control group—17.4 vs. 22.2 minutes, a 22% speed-up—
but this difference was not statistically significant (p =
0.15). One participant in the treatment group chose not to
complete the task, and is not included in these statistics.

Discussion

The execution highlighting feature appeared to have the
biggest impact on participants’ performance. This was most
evident in Task 1, where the bulk of the task consisted of
understanding where in the code to make a very simple
change. One participant said, “First, I tried to hack around
the example code to get it to work. When that did not work,
I used execution highlighting to actually understand the
code.”

The related lines feature appeared useful for those partici-
pants who actually used it. Only 3 of the 6 participants in
the treatment group did so, and these participants only used
it on the second task. While it is not appropriate to draw
conclusions from such a small sample, it is interesting to
note that three of the four fastest participants on Task 2
were those who used the related lines feature. Additionally,
the second fastest control participant on Task 2 used the
“related methods” portion of the Processing documentation,
which provides the same information in a less efficient
manner.

The fact that the related lines feature was used infrequently
suggests that it was not discoverable. We also believe that,
as it is currently implemented, making use of this feature
requires some skill at identifying when it might be useful.
That is, the programmer has to have the foresight to predict
that there may be related lines that she is not aware of. Im-
proving this feature remains important future work.

CONCLUSION

Rehearse allows programmers to use examples more effi-
ciently. The interactions supported by Rehearse stem from
the insight that effective use of examples hinges on the pro-
grammer's ability to quickly identify a small number of
relevant lines interleaved among a larger body of boiler-
plate code. Execution highlighting and automatic identifica-
tion of related lines make it easier for programmers to focus
their attention, leading to faster code understanding.

Task 1 Task 2

T C T Cc
1 14 22 18 18
2 15 23 21 16
3 — 20 16 23
4 7 14 17 16
5 13 21 15 4
6 14 10 — 19

Average 12.6 18.3 174 22.2

Table 1. Task completion times for treatment (T) and control (C)
participants. Participants using Rehearse completed the first task
significantly faster than those in the control condition (p < 0.03).

REFERENCES
1 Brandt, J., M. Dontcheva, M. Weskamp, and S. R. Klemmer.
Example-Centric Programming: Integrating Web Search into the
Development Environment. In Proceedings of CHI: ACM
Conference on Human Factors in Computing Systems. 2010.

2 Brandt, J., P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R.
Klemmer. Two Studies of Opportunistic Programming:
Interleaving Web Foraging, Learning, and Writing Code. In
Proceedings of CHI: ACM Conference on Human Factors in
Computing Systems. pp. 1589-98, 2009.

3 Fry, B. and C. Reas, Processing. http://processing.org

4 Goldman, M. and R. C. Miller. Codetrail: Connecting Source
Code and Web Resources. In Proceedings of VL/HCC: IEEE
Symposium on Visual Languages and Human-Centric
Computing. pp. 65-72, 2008.

5 Gross, P. A., M. S. Herstand, J. W. Hodges, and C. L.
Kelleher. A Code Reuse Interface for Non-Programmer
Middle School Students. In Proceedings of IUI: International
Conference on Intelligent User Interfaces. pp. 219-28, 2010.

6 Hartmann, B., S. R. Klemmer, ez al. Reflective Physical
Prototyping through Integrated Design, Test, and Analysis. In
Proceedings of UIST: ACM Symposium on User Interface
Software and Technology. pp. 299-308, 2006.

7 Kirsh, D. and P. Maglio. On Distinguishing Epistemic from
Pragmatic Action. Cognitive Science 18(4). pp. 513-49, 1994.

8 Ko, A. J. and B. A. Myers. Finding Causes of Program
Output with the Java Whyline. In Proceedings of CHI: ACM
Conference on Human Factors in Computing Systems. pp.
1569-78, 2009.

9 Lin, J., J. Wong, J. Nichols, A. Cypher, and T. A. Lau. End-
User Programming of Mashups with Vegemite. In
Proceedings of 1UI: International Conference on Intelligent
User Interfaces. pp. 97-106, 2009.

10 Little, G., T. A. Lau, A. Cypher, J. Lin, E. M. Haber, and E.
Kandogan. Koala: Capture, Share, Automate, Personalize
Business Processes on the Web. In Proceedings of CHI:
ACM Conference on Human Factors in Computing Systems.
pp. 943-46, 2007.

11 Niemeyer, P., BeanShell. http://www.beanshell.org

12 Oney, S. and B. Myers. FireCrystal: Understanding Interactive
Behaviors in Dynamic Web Pages. In Proceedings of VL/HCC:
IEEE Symposium on Visual Languages and Human-Centric
Computing. pp. 105-08, 2009.

13 Rosson, M. B. and J. M. Carroll. The Reuse of Uses in

Smalltalk Programming. TOCHI: ACM Transactions on
Human-Compter Interaction 3(3). pp. 219-53, 1996.



