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Abstract

PowerNet is a hybrid sensor network for monitoring the
power and utilization of computing systems in a large aca-
demic building. PowerNet comprises approximately 140
single-plug wired and wireless hardware power meters and 23
software sensors that monitor PCs, laptops, network switches,
servers, LCD screens, and other office equipment. PowerNet
has been operational for 14 months, and the wireless meters
for three months.

This dense, long-term monitoring allows us to extrapolate
the energy consumption breakdown of the whole building.
Using our measurements together with device inventory we
find that approximately 56% of the total building energy bud-
get goes toward computing systems, at a cost of ~ $22,000
per month. PowerNet’s measurements of CPU activity and
network traffic reveal that a large fraction of this power is
wasted and shows where there are savings opportunities.

In addition to these sensor data results, we present our ex-
periences designing, deploying, and maintaining PowerNet.
We include a longterm characterization of CTP, the standard
TinyOS collection protocol.

The paper concludes with a discussion of possible alterna-
tives to computing system design that can save energy while
satisfying user workloads.

1 Introduction

This paper describes the design and deployment of Power-
Net, the first sensor network that monitors both power draw
and utilization of computing devices in an office building.
PowerNet provides fine-grained data on approximately 140
devices, including many different desktops, monitors, net-
work switches, and servers. Two types of power meters,
wired and wireless, collect measurements once a second,
while software sensors gather statistics on computer and net-
work utilization. PowerNet has been active for 14 months,
with the most recent deployment phase completed in January.

To date, “green computing” has focused primarily on the
data center, as it represents a large cost that lends well to cen-
tralized control and optimization. This paper takes a differ-
ent approach, examining a computing-heavy office building.
Compared to a data center, this environment has a tremen-
dously diverse set of devices that exhibit huge variations in
workload and configuration and exist under several overlap-

ping administrative domains. Improving the efficiency of
such a computing system requires detailed data of both en-
ergy consumption and energy waste.

This paper makes four contributions. First, we extrapo-
late a whole-building breakdown of energy consumption by
combining PowerNet data with surveys, observations, and IT
database records. We estimate that at least 56% of the build-
ing’s $40,000 monthly electricity bill goes to its computing
systems infrastructure.! Desktops and laptops consume 16%,
30% goes to servers, 7% goes to monitors, and 3% of energy
goes to networking.

Second, we quantify power variation between device
classes, within device classes, and for individual devices.
This analysis identifies simple optimizations, such as changes
in display settings, that lead to significant energy savings.

Third, PowerNet’s ability to correlate power consumption
with utilization allows us to differentiate energy used well
from energy waste. This is an important difference from pre-
vious work [8, 14]. We pinpoint examples of energy waste
caused by over provisioning, such as the wired building net-
work. We also identify policies that prevent energy conser-
vation, such as a nightly backup policy that requires desk-
tops to be kept on overnight even though backups only take
an hour. Finally, we turn the power and utilization data into
insights for future computing infrastructure decisions: pur-
chasing high-end vs thin-client desktops and the benefits of
intelligent power management.

Moreover, the nature, scale, and duration of the PowerNet
deployment yields insights for future indoor sensor deploy-
ments. We present the first long-term study of CTP [7], the
standard TinyOS data collection protocol. We find daily and
weekly cycles in CTP’s behavior, caused by human activity,
and present a crippling bug whose fix has since been included
in the standard TinyOS release. Our experiences deploying
PowerNet will inform future efforts to understand and reduce
energy consumption in office-style buildings.

2  Overview

The PowerNet deployment collects power and utilization
data for the computing infrastructure of an office building.
Figure 1 shows the overall design. The deployment currently

ICooling and heating are through chilled water and steam, so are
not part of this total.



Device Type Count  Utilization  Count
Desktop 44 CPU 15
Monitor 40
Laptop 16 CPU 1
Network Switch 11 traffic 7
Printer 10
Server 9
Fridge 3
Access Point 2
External Hard Drive 2
Fax Machine 1
Total: 138 23

Table 1. PowerNet covers a variety of devices whose
power measurements we use to characterize the energy
consumption of the whole building. We also monitor CPU
utilization and network traffic.

includes 138 single-outlet, high-sampling-rate power meters,
both wired and wireless. Each meter connects to exactly one
computing device, such as a PC, display, or network switch;
the full list is shown in Table 1. In addition, building oc-
cupants and system administrators have volunteered to in-
stall software to monitor CPU utilization and network traf-
fic. All data is logged continuously to a central MySQL
database, from once a second to once a minute, depending
on the source. The system currently logs approximately 1
GB per day from 161 data sources.

Wired Meters. The 55-node wired deployment is sparse,
covering spread-apart wiring closets, student offices, and a
basement server room. Commercially-available Watts Up
NET meters [10] transmit measurements over Ethernet, up
to once a second, over the existing building network. Each
meter posts data via HTTP to a server process on the Power-
Net logging machine. These meters were a useful first step in
gathering power data, though the practical issues of size and
proprietary software (described later in Section 5.1) hindered
further deployment.

Wireless Meters. In contrast, the 85-node wireless de-
ployment is dense, covering a large fraction of the power out-
lets in one wing on one floor, shown in Figure 2. Custom-
made low-power wireless meters transmit data from an ad-
hoc multihop network. Each meter is a modified version
of the open-source ACme meter [14]. Each ACme includes
power measurement circuitry and an Epic core with micro-
processor and radio chip [11]. More hardware details can be
found in Section 5.2.

The meter software, built on TinyOS, includes sampling,
routing and dissemination capabilities. The top-level applica-
tion reads power draw every second and sends a data packet
after buffering ten samples. The motes use CTP [7] as the
underlying routing layer. The code includes Deluge [13] for
remote image upgrades. In addition to power data, the motes
gather CTP statistics. Section 6 describes in detail the gath-
ered data and the resulting observations. To our knowledge,
this deployment is the largest, longest-term, and highest-
density one using CTP, and one of the first to be done indoors.

Utilization Monitoring. PowerNet also monitors utiliza-
tion, in addition to power, for 23 computing devices. On the
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Figure 1. The deployment measures power usage and uti-
lization of individual devices. The data is transmitted over
the network and stored on a central server.
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Figure 2. The wireless power meter deployment spans one
wing on one floor of an office building. The black square
represents the sink and every dot is a power meter. Most
meters are located under desks, near the floor.

network side, an SNMP script polls seven network switches
once a minute and records the average traffic in Mbps. On
the PC side, we collect CPU utilization and the list of active
processes. Seven student PCs run a script that reads the /proc
virtual file system to give average CPU load every second.
Nine staff machines run a Windows script that reports the list
of running processes (similar to the task manager) and total
CPU load. The combined data helps correlate power with
observed workload.

Data Storage The wired and wireless meters and CPU
monitors send the data to a central server with two 1.8 Ghz
cores and 2 GB of RAM. With over 160 sensors reporting
as often as once a second, data piles up quickly. Section 5.3
describes the backend scalability challenges.

Data Access and Analysis The data stream provides
near-real-time feedback to building residents, equipment pur-
chasers, and system administrators through the PowerNet
website. A display in the building lobby provides informa-
tion about the project, along with graphs showing real-time
power consumption of categories of devices, such as moni-
tors, servers, and network equipment.
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Figure 3. PowerNet’s measurements account for 2.5% of

the building’s power consumption.

However, power feedback for building residents is not the
focus of this paper. Our goal is to answer building-level ques-
tions about where energy is going and how we change man-
agement processes and purchasing decisions to reduce en-
ergy consumption. At the heart of this paper are the insights
revealed by over 150 gigabytes of collected and correlated
power and utilization data. What follows are our findings —
expected in some cases, and surprising in others.

3 Computing Energy Consumption

This section analyzes the power data that PowerNet has
collected. It examines three classes of devices in detail: dis-
plays, computers, and networking switches. Before Power-
Net, the building manager’s only view into energy consump-
tion was a monthly electricity bill of approximately $40,000.
Using PowerNet’s measurements, network activity logs, a
survey of building occupants, and cross-correlating with IT
databases, we find that computing systems draw on average
252kW: 56% of the building’s 445kW. We find that displays

are responsible for 50% of the building’s diurnal power draw
variations. There are significant activity and power profile
variations within a device class, such that dense sampling is
necessary for accuracy: for example, sampling only 5 random
desktops has a 5th percentile error of underestimating by 31%
and a 95th percentile error of overestimating by 40%.

3.1 The Big Picture

Figure 3 shows the power draw of PowerNet’s 140 devices
over a 24-hour period. The 9 to 11kW draw is 2.5% of the
building total. Each layer represents a different device cate-
gory. The largest contributors are labeled. Consumption of
most devices is fairly steady, with the exception of displays.
Although the measured displays are responsible for a 14%
increase in the measured power draw, effective power man-
agement reduces their total energy contribution to only 7%.
Weekends see power profiles similar to Figure 3, although
variations are smaller because fewer displays are turned on.
Overall, displays are almost completely responsible for the
variation we see in computing power.

Even though PowerNet only measures 2.5% of the build-
ing power, by combining these samples with other informa-
tion about the distribution of computing devices, we can ex-
trapolate to the whole building, as in Figure 4. Specifically,
from network administrator databases of active nodes, email
surveys, and manual inspections of networking closets and
server rooms, we can generate a reasonable inventory of de-
vices in the building. We can use PowerNet’s measurements
to couple this inventory to power draw.

Using PowerNet as a motivation, we convinced campus
services to provide Excel spreadsheets of the building’s aver-
age draw over 15-minute intervals. The top curve in Figure 4
shows one week of this data. Finer-resolution data makes
it easy to spot expected trends such as day/night and week-
day/weekend patterns: daytime sees a 30% increase in power



Device Type Measured  Total Extrapolated via  Total Draw Uptime % of Building
Desktops/Laptops 44 742 whois, MAC address registrations 70kW 24 hrs/day 15%
Servers 9 500 manual inspection 137kW 24 hrs/day 30%
LCD Displays 40 750 occupant survey 61 kW 12 hrs/day 7%
Switches 11 62 network admin records I5kW 24 hrs/day 3%

Table 2. We cross-correlate PowerNet measurements with IT databases to extrapolate energy consumption of computing

systems in the whole building.

Type #Count  Power Draw

(watts)
HP 5406z1 (6-slot) 20 325
HP 541221 (12-slot) 8 500
HP 2724 2 100
Cisco Cat 6509 2 400
Cisco Cat 4000 2 600
Cisco Cat 3750G 2 160
Linksys 2 50
NEC (misc) 5 100
Cisco (misc) 5 100
Quanta (4-slot) 5 50
Others 9 50

Total: 62

Table 3. Summary of groups of switches with individ-
ual and estimated total power consumption. This inven-
tory includes all major network switches in the PowerNet
building.

draw over nighttime. Figure 4 also shows our estimate of
computing’s contribution to this power draw for the same
period. Computing systems are responsible for 56% of the
building’s total energy consumption. Furthermore, displays
are responsible for a 46kW increase in daytime power draw
or 50% of the total increase.

The rest of this section examines displays, desktops, and
switches in greater detail and explains how we perform this
extrapolation. Table 2 shows our extrapolation methodology
and results at a glance.

3.2 Networking Equipment

We compute the energy consumption of the building’s net-
working infrastructure (its Ethernet switches and WiFi access
points). In the PowerNet building, network access is pro-
vided by 2 core switches located in the basement and 26 edge
switches spread across the five floors. In addition, there are a
number of smaller switches, deployed in ad-hoc ways by in-
dividuals or research groups. Table 3 presents an inventory of
networking equipment. While we can account for all major
switches, finding all of the small ones (e.g., 4-hub Linksys
switches) was not possible due the scale of the building and
permissions required. Since the infrastructure is planned by a
small number of administrators and centrally purchased, the
equipment used is comparatively uniform: over half of the
switches are a single model, the HP5406zl.

Figure 5 show the power consumption of three switches.
Power draw variation is negligible and the small peaks are
likely due to CPU spikes. Networking infrastructure power
easy to characterize; future deployments need not collect fine-
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grained long-term samples, since the data rarely changes. We
use measurements from the core and edge switches and cross-
correlated that to data-sheet-reported values to estimate the
total energy consumption. On average, the switches in the
building consume 15 kilowatts. This comes to a total of
12000 kWh per month, 3% of the building’s total consump-
tion.

3.3 Computer Displays

With the recent shift from CRTs to large LCDs, displays
have become a significant contributor to electricity bills. This
section examines PowerNet’s display power measurements
and explains how we extrapolate to the energy consumed by
all displays in the building.

Over 600 people use the PowerNet building as office
space. PowerNet’s power meters and utilization sensors cover
a broad and diverse range of residents, including students,
professors, visitors, servers, and administrators. While this
diversity allows us to see a breadth of usage patterns, it consti-
tutes a highly biased sample. In practice, most of PowerNet’s
offices are occupied by graduate students. Therefore, simply
using a multiplicative factor on PowerNet’s measurements
could be highly inaccurate. For example, administrators tend
to have lightweight desktops and smaller LCDs, while many
students have powerful desktops and larger LCD displays.

PowerNet’s measurements allow us to quantify the aver-
age power draw of a class of display; extrapolating to whole-
building power draw requires knowing the distribution of dis-
play classes. To obtain a reasonably accurate estimate of



Size Count  Avg. Power
<17 91

177 to 197 330 35W
20” to 227 40 I 50 W
23" to 257 84 I 66 W
26" to 277 151 120 W
29” to 30” 42 1 135W
> 30 21

Table 4. A survey shows that majority of building occu-
pants use mid-sized LCD displays. Equipment upgrades
cause the number of large (30”’) monitors to increase.

this distribution, we distributed an online survey asking oc-
cupants for the number, size, and manufacturer of the com-
puter screens they use. Table 4 presents data from the 169
responses reporting 225 monitors and indicating the distri-
bution of sizes. The majority of people use 23- to 25-inch
monitors. 30 screens are the second largest population.

Table 4 also shows the power consumption the specifica-
tion sheets of different displays report. PowerNet’s measure-
ments reveal that there is a great variation in active power
draw even between devices of the same size and make. We
conducted a controlled test to see how different display set-
tings affect monitor power draw. We chose a 30” Dell moni-
tor, partially to highlight the differences in monitor states, but
also because these displays form an increasing portion of the
display population.

Figure 6 shows an hour-long data trace during which we
adjusted the monitor brightness and desktop color scheme.
Depending on the monitor brightness settings and the colors
in the image displayed, the power draw varies by up to 35W
(25%). Lowering the brightness by two settings (pressing
the ’-” button twice) reduced the average power draw from
145 to 117 watts, a 19% reduction in consumption. Addi-
tionally, LCD power draw is affected by the colors displayed.
More energy aligns more liquid crystals in each pixel, permit-
ting more light to shine through and enabling them to display
brighter colors. Thus, a 30-inch monitor has maximum power
draw, measured at 145 watts, when the majority of the screen
displays white elements. Switching to a dark background and
color scheme or viewing darker web pages reduces the draw
to 127 watts. Displaying dark colors with the lower bright-
ness setting reduces power draw to 110W.

With a good understanding of individual power, we can
characterize the effect at scale. In order to account for all
monitors in the building, we extrapolated from the survey
data and typical power draw. From building inventory and
network reports of what computers are active, we were able
to estimate that the PowerNet building has approximately 750
displays. We assume that these 750 displays follow the same
size distribution as gathered in the survey and that they follow
the same use distribution as the metered monitors, as there is
no significant difference in monitor activity between classes
of residents. These calculations indicate that on average, a
monitor draws just over 80W, with 750 monitors drawing 61
kW. Since most displays are powered on about 12 hours a day,
this translates to 7% of the building total energy.
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Figure 6. The power consumption of a computer moni-
tor varies widely depending on its settings. Minor adjust-
ments of brightness level can result in 20% savings for
large monitors.

3.4 Personal Computers

Personal computers — dekstops and laptops — and servers
are the largest contributor to the computing infrastructure en-
ergy consumption. According to the department’s database of
registered devices there are ~1250 machines active on the
building’s network. This number includes student, staff, and
professor machines as well as server machines located in two
server rooms. We manually inventoried the server rooms to
distinguish what portion of the 1250 are desktops or laptops
and what portion are servers. Of this total, 500 machines are
servers, while the rest are laptops or desktops. We refer to
desktops and laptops as personal computers (PCs), as many
laptops are used with docks.

PowerNet measurements of 44 PCs show that desktops
vary greately in power draw — anywhere from 40 to 350 watts.
Figure 7 shows the power consumption of three different PCs
over 24 hours. Desktop ‘a’ is a Dell Inspiron 530 desktop
with a powerful graphics card; desktop ‘b’ custom-built ma-
chine and desktop ’c’ is a lightweight Dell Optiplex 745.
Power consumption varies widely, not only between desk-
tops, but also for the same desktop in time.

Figure 7 shows that dense, fine-grained, long-term instru-
mentation is the key to accurately characterizing the power
consumption of a building’s computers. To explore this fur-
ther, we run statistical analyses on the average desktop con-
sumption. The average power draw of the 44 measured desk-
tops is 107 watts. What error could we expect if only 5, 10,
or 20 of the desktops were monitored? To estimate the er-
ror with only 5 desktops, we generated 1,000,000 random 5-
tuples drawing from the lists of 44 desktops. Next, we cal-
culated the mean for each set of 5 machines and plotted a
histogram of the results. The experiment was repeated for
10- and 20-tuples of computers.

Figure 8 shows the three resulting histograms with the 44-
node mean indicated by a vertical line. As expected, larger
sample sizes yield a narrower spread, with averages that are
closer to the mean. We calculate the expected error by av-
eraging over the probabilities of all possible mean values as
given by the histogram. With 20 desktops , the expected error



Laptops  Low-end PCs  High-end PCs  Total
observed 47 43 366 456
estimated 29 27 230 286
Total 76 70 596 742

Table 5. Personal computers are binned in three cate-
gories, and university databases and active network node
counts allow us to extrapolate to the whole building.

in calculating the mean is almost 7% and as much as 17.2%
for a sample size of 5 machines. With 5 measurements, the
5th percentile is 31% lower than the 44-node mean, and the
95th percentile is 40% higher.

Such analysis is important when choosing what and how
many devices to monitor. For example, in the Green Soda
deployment [14] only 10 desktops were measured: Figure 8
shows that such small samples can limit accuracy. Given the
diversity of desktops, even denser sampling within this de-
ployment class is our next deployment priority.

To extrapolate to the whole building we bin PCs in three
classes — laptops, low-end desktops, and high-end desktops.
Low-end desktops are those with average power of about 80
watts or less and include machines such a Mac Minis, Shuttle
PCs, Dell Optiplex. Full-size desktops like the Dell Precision
are considered high-end machines.

A snapshot of MAC addresses recently seen on the build-
ing network returned 1242 active nodes, 500 of which are
servers. We took the remaining 742 addresses and cross-
referenced them with the university’s whois database. This
database includes the node description provided upon net-
work registration. Of the 742 nodes, 456 had description
that allowed us to classify them as laptops, low- or high-end
desktops. The remaining 286 nodes had blank entries in the
whois database. Table 5 shows the number of machines in
each PC class; nodes with available description are labeled as
‘observed’ and breakdown of the other 286 assumes that the
observed distribution is representative of the building.

We use the 44 desktops and 16 laptops measured by Pow-
erNet to extrapolate power to the whole building. The median
power draw for laptops is 25 watts, for low-end machines —
52 watts, and for high-end machines — 108 watts. This data
together with the numbers of devices in each bin, given in
Table 5 yield an aggregate power draw of 70 kW for the 742
personal computers in the building, or 16% of total energy
consumption.

PowerNet server sampling is sparser than with PCs for
two reasons. First, servers are densely deployed in machine
rooms, which makes it harder to install meters. Second, it
is much harder to convince people to allow a meter on crit-
ical servers or compute clusters: a meter failure or accident
could harm critical data or knock out a large number of de-
vices. A manual inspection of servers and their configura-
tions, however, finds that they have much less variation in
power draw. We therefore assume a power draw of 275 watts
per server, typical for the rackmount 1U servers in the Power-
Net building. With 500 servers, the aggregate draw is 137kW.
Together, PCs and servers account for 207 kW, or 46% of the
total building power draw.
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Figure 7. Desktop computers consume a steady amount of
energy, but there is great variation between PCs. For ex-
ample, some staff machines consume only about a quarter
of what a graphics student’s machine does.
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Figure 8. Desktop energy consumption varies over time
and device make. Using only 5 desktops to extrapolate
to 44 yields an expected error of 17.2%., indicating that
dense power monitoring is necessary.

3.5 Summary

PowerNet’s dense sensing deployment allows us to extrap-
olate from 140 meters to aggregate building energy consump-
tion. Overall, we find that 54% of the building’s energy goes
to computing equipment. 30% goes to servers, 16% to PCs,
7% to displays, and 3% to networking infrastructure. Going
beyond how energy is consumed, how much is used for com-
putation and work, and how much is wasted on idle systems?
Answering this question requires more than power measure-
ments. It requires a system that measures utilization. The
next section describes this second sensing modality.

4 Computing Systems’ Utilization

Section 3 characterized the power consumption of an of-
fice building. A breakdown of an electric bill is useful be-
cause it pinpoints the components that draw the most power,
highlighting opportunities for savings. At the same time, it is
difficult to say what improvements can be made to the com-
puting infrastructure, if we do not understand the underlying
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Figure 9. A week-long trace of power consumption and CPU utilization shows idle periods during which the power-

hungry desktop could have been turned off.

usage patterns that require computing in the first place. This
section digs deeper into the meaning of energy efficiency by
correlating power consumption with device utilization.

In an ideal world, all systems would be power propor-
tional, drawing power when work is done, and consuming
nothing when the system is idle or unused. Reality is not so
kind. We examine the utilization of computers and network
switches. The key insight is that current systems, computing
or networking, are heavily underutilized. This fact, combined
with large baseline power consumption, means that energy
efficiency is extremely low. A large portion of the time, elec-
tricity bills pay for unused or under-utilized devices.

4.1 CPU Utilization

The aggregate power graphs at the beginning of Section 3
suggest that most computers are rarely turned off. Figure 9
shows power consumption and CPU utilization for one spe-
cific computer over 1 week. Usage patterns are immediately
obvious: there are long idle periods at night and on weekends.
While machine utilization varies greatly over the span of a
week, from 0% to 60%, this desktop’s draw never drops be-
low 220 watts. Measurements from multiple desktops show
an additional cost of roughly one watt for every 1% increase
in CPU utilization beyond idle.

If these computers are mostly idle, then why are they not
being put to sleep? Going back to Figure 7, only one of the
three machines was put to sleep during non-business hours,
while the other two remained on. We do not see strong diur-
nal variation in building power consumption largely because
residents are not taking advantage of the sleep and hibernate
states provided by modern OSes, especially during nighttime
hours.

The reasons for this behavior vary but most often people
cite unwillingness to wait for machine startup in the morning,
ability to access the machine remotely, and nightly backups.
On several accounts, staff members in our department shared
that they would love to put their computers to sleep at the end
of the workday but are not allowed to do so. Backups are
scheduled to begin at 8:45 pm. Backups are one example of
a workload that requires a machine to be powered on.

The energy waste from always-on computers is only half
the story. Further examination of CPU data shows that even
when actively used, most computers are rarely pushed to their
processing limits. Table 6 shows the the 5, 50/, and 95"
percentiles of CPU utilization for seven student machines.
The data was collected every 1 second for the past 11 months.

Percentile CPU
Machine Type st st 95t
high-end custom-built 0% 1%  57%
Dell Optiplex 745 1% 9%  58%
Dell Precision T3400 0% 4%  29%
Dell Precision T3400 0% 1% 13%
Dell Inspiron 530 1% 1% 8%
HP Pavilion Elite m9250f 0% 0%  25%
Dell Precision T3400 0% 1% 7%

Table 6. CPU utilization for 7 student machines collected
over 11 months reveals high under-utilization.

The measured computers rarely use even 50% of their avail-
able CPU.

This observation raises the question of whether powerful
desktops are the best way to provide computing power to
users. The trends we see are towards upgrading to more pow-
erful machines, yet typical workloads hardly tax the avail-
able CPU resources. Section 7 goes further into alternative
providing computing systems that meet user needs in a more
energy-efficient manner.

4.2 Network Traffic

In Section 3 we found that the networking infrastructure
consumes much less energy than desktops. We also noted that
switches consume a constant amount of power. This prompts
the questions of how much traffic is flowing through the 60 or
so switches in the building, and whether that traffic changes
with time.

Figure 10 shows the traffic coming into one of the four
switches on the second floor of our building. This is an HP
Procurve switch with 96 1-gigabit active ports, consuming
500 watts. Over one week in March, bandwidth demand
never exceeded 200 Mbps — an amount that could be handled
by one gigabit port instead of 96

To verify that this is not aberrant behavior, Figure 11
shows the cumulative distribution of traffic for 7 building
switches. Note that the x-axis has a log scale. Table 7 ac-
companies the figure with a list of switch types we measure
and the length of each data trace.

Similar to computers, switches are highly underutilized.
For the equipment we measure, total network demand is
lower than 1000 Mbps 100% of the time. Of course, net-
work over provisioning is not a new concept or observation;
it provides benefits, including higher throughput, lower loss,
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Figure 11. CDF of traffic for seven switches over 6 months
shows that switches are operating well under capacity.

Label  Switch Type Active Ports  Datatrace

(gigabit each) (# days)
a HP 541221 120 150
b HP 540621 96 40
c HP 5412z1 120 40
d HP 5406z1 72 150
e NEC IP8800 24 420
f HP 541221 24 420
g NEC IP8800 48 420

Table 7. Summary of groups of switches with individual
and estimated total power consumption. Gates building.

and lower jitter. When the average utilization is under one
hundredth of one percent, several questions beg an answer.
Is the amount of over-provisioning unnecessarily large? How
can we take better advantage of the large amount of band-
width that today’s networks are ready to support? We discuss
possible answers to these questions in Section 7.

5 Deployment Experiences

Prior sections presented the data that PowerNet has col-
lected. The next two sections present our experiences deploy-
ing PowerNet. This section describes in detail our monitoring
infrastructure for collecting power and utilization data. Pow-
erNet uses two types of power meters to collect data; the first
are commercial off-the-shelf, while the second are custom-
made. We also share experiences and lessons learned over
the lifetime of the deployment.

5.1 Wired Deployment

The initial requirement for the power meters was the abil-
ity to sense individual outlets at high sampling rates. This dif-
fers from many residential solutions that track whole-house
energy consumption and report data every 10 or more min-
utes. Commercially-available Watts Up .NET meters were
the first power sensors in the deployment, since they were
easy to obtain [10]. These meters transmit measurements over
Ethernet, up to once a second. Meters were placed in wiring
closets, the basement server room, and spread-apart offices.
While these meters were a useful first step in gathering power
data, deploying and maintaining them proved to be difficult;
problems surfaced even before the deployment began.

The first practical issue was the lack of in-field upgradable
firmware. When a bug was discovered in the TCP stack, our
only option was to pack up four large boxes of power meters
and send them back, so that company staff could fix the pro-
prietary code. After several weeks, the meters were back in
our possession and the deployment could begin.

It quickly became clear that few offices had an open Eth-
ernet port for each power meter. Many offices required addi-
tional small Ethernet switches and extra cables. The volunteer
participants were unhappy with the clutter under their desks,
due to the size of the meters. Each one weighs 2.5 1bs, with a
thick, six-foot-long cord leading to a 7” x 4” x 2” base. De-
spite the physically clunky deployment experience, we were
able to install 80 meters.

In the PowerNet building, each device must have a MAC
address registration to obtain an IP address. Each group
within the building has a unique VLAN, and each meter was
statically registered to a group. The registrations could not be
done all at once, since neighboring offices may correspond
to different groups, and we could not know in advance how
many meters would be needed for a given office. The network
admins were burdened by the power meter registrations, and
with this much manual configuration, mistakes happened.

We received an email from a network admin stating that
“more than half of all DNS lookups emanating from [the three
Engineering buildings] to the campus servers” were coming
from the power meters. The solution for the lack of DNS
caching was to go back to each meter, plug it into a laptop via
USB, and hard-code the IP address of the PowerNet server.

In addition to DNS lookups, the meters were also mak-
ing ARP requests once per second and overwhelming the net-
work security monitoring infrastructure. We received another
email from the IT staff, pointing out that ”[t]he 70 current
meters now account for 20% of total daily recorded flows”



by the security system. To work around this problem, the
logging server was moved to a special VLAN that was not
monitored by the network admins. That resulted in an IP ad-
dress change, which meant yet another trip to the individual
meters to update the hard coded IP address of the server.

Once the deployment was in place, we observed a num-
ber of meter software errors. From the 90 power meters, 8
completely stopped working; they did not power up or did
not send or display any data. Another set of 5 to 7 meters be-
gan reporting incorrect data at some point of the deployment;
from the reported numbers we guess it was an integer over-
flow issue but the closed firmware did not allow us to verify
this. The erroneous data was purged from the analyzed data
sets. There were also some meters that would stop reporting
data over the network until they were rebooted. That again
was likely a software problem where the meters were revert-
ing to logging data locally instead of pushing it out via HTTP.
Of the original 90, only 55 are still in operation; a number of
residents simply unplugged their meters.

To their credit, the wired meters generally reported ac-
curate data and work well for a dispersed deployment such
as the wiring closets. However, three key issues made the
wired meters unsuitable for large-scale deployment: the lack
of code accessibility and remote firmware upgrade, the over-
head of installing the meters within the building network, and
user dissatisfaction with clutter and frequent maintenance.
These experiences suggest that zero-configuration networks
that automatically form distinct subnets (e.g., as is proposed
in RPL [6]) would improve ease of deployment.

5.2 Wireless Deployment

Open-source low-power wireless meters were the main
candidates for expanding the PowerNet deployment - in par-
ticular, the wireless ACme meters used in the Green Soda
project [14]. The PowerNet wireless meters are based on the
ACme design, with two small modifications. The first was
a switch from a solid-state relay to a mechanical one. This
change enabled a sealed case, by removing the need to ma-
chine side slits to dissipate heat from the solid-state relay.
The second change was to add an expansion port with a range
of serial interfaces, to support new sensors and added storage.
The cost per meter was about $120, as compared to $189 for
the wired meters, both in quantities of 100.

The deployment of 85 wireless meters took several after-
noons, compared to two weeks for the wired meters. The ben-
efits of the wireless deployment were noticed immediately,
and some users even requested that we replace their wired
meters with wireless ones. The IT staff was not burdened by
meter registrations, and the open nature of the software and
hardware made modifications easy. The main meter limita-
tion is transmission distance. Since the PowerNet wireless
deployment focuses on a single wing of a building, the range
was sufficient for CTP to form a mesh without a need for re-
peaters.

5.3 Backend and Scalability Challenges

The PowerNet infrastructure currently gathers 1GB of data
every day and this number will grow with the next round

Figure 13. Logical topology of the wireless network. The
root of the tree is on top, and the number of nodes at each
level is shown.

of utilization sensors and 300 more wireless power meters.
When the logging server was originally purchased we did not
expect to have scalability issues. One of the challenges we
ran into was that the server had two main roles — collecting
data and providing data. The later refers to the fact that we
share all data with users via a website and a display in the
building lobby.

A few months into the deployment, the amount of gath-
ered data became large enough that displaying a week-long
timeline for a single device would take prohibitively long;
generating a summary graph for all devices on the fly was
out of the question. Thus, PowerNet periodically runs a set of
data summary calculations. For example, every 5 minutes the
server establishes what meters are reporting, takes the fine-
grained data, averages it, adds it up, and produces a graph
like Figure 3.

A couple of times we observed that the server load was so
high due to nightly scheduled backups and both MySQL and
rsync experiences issues. The scalability and performance is-
sues we have observed so far have prompted us to consider
a number of back-end improvements. These include partial
database backups via the binary log option in MySQL and
incremental pre-calculations to summarize data. In the fu-
ture, we plan to extend the system by one or more additional
servers and distribute the load and backup responsibilities.

6 Wireless Meter Network

The prior section examined our experiences with the over-
all PowerNet deployment. This section dives into the per-
formance of the wireless network, specifically the Collection
Tree Protocol. We chose CTP because it is the standard pro-
tocol in TinyOS 2.x and extensive testbed experiments over
the scope of hours indicate that it is robust and efficient [7].
This section examines whether CTP exhibits similar perfor-
mance and behavior in an operational sensor network over
a three month period, a timescale two orders of magnitude
larger than the prior study. Figure 2 shows the physical map
of the wireless deployment, while Figure 13 presents a snap-
shot of the logical topology as constructed by CTP.

Because the wireless network does not have a wired back
channel, we add instrumentation to CTP to report statistics
such as data transmissions, retransmissions, and receptions,
beacon transmissions, and parent changes every 5 minutes.
PowerNet uses 802.15.4 channel 19, which overlaps with
heavily used WiFi channel 6. We chose this so we would
not interfere with research using quieter channels (e.g., 25
and 26) and so that we could measure CTP in a less forgiving
environment.
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Figure 12. Number of nodes from which packets were received at the basestation during the deployment.

Label Date  Duration  Description

A Jan 19 9hrs  Building power outage
MySQL recovery

B Jan 21 10hrs  Backend maintenance/backup

C Jan 30 1hr  Basestation maintenance

D Feb 4 9hrs  Basestation software failure

E Feb 8 1hr  Backend maintenance

F Feb 28 0.5hr  Backend maintenance

G Mar 8 34hrs  Backend disk failure

H Mar 9 83 hrs  Backend disk replacement

1 Mar 14 9hrs  Basestation buffering

J Mar 18 7hrs  Basestation buffering

K Mar 22 4hrs  Backend RAIDI1 rebuild

Table 8. System Qutages

6.1 Summary of Results

Overall, the backend collected 85.9% of the expected data.
Of the 14.1% of missing data, 8.2% is due to backend failures,
such as whole-building power outages or server disk failures.
This type of failures also affected data from the wireless me-
ters and utilization sensors. Of the remaining 5.9%, we ap-
proximate that 2.8% is due to users taking meters offline by
unplugging them: the remaining 3.1% of data losses are due
to CTP.?

Sifting through CTP’s periodic reports, we find weekly
and daily cycles of topology adaptation that correspond to hu-
man activity in the building. These periods of adaptation see a
significant increase in control traffic as well as increased path
costs. In the middle of the night, the average cost (transmis-
sions/delivery) of the network is just under 2, while during
the day it can climb as high as 6. We find that CTP’s datap-
ath validation leads to a tiny fraction (1 in 20,000) of packets
taking 10-100 times as many hops as normal, as they bounce
through the topology repairing loops. Finally, we present a
bug we discovered in CTP’s link estimator where nodes are
unwilling to route through a rebooted node for a very long
time, which can be disastrous if a base station reboots. We
present a fix to the bug, which the CTP maintainers have in-
corporated into the recent TinyOS 2.1.1 release.

2We assume the CTP delivery for the days 39-59 to be represen-
tative for the full deployment period.

Nodes 85
Path Length 1.84
Cost 1.91
Cost/PL 1.04
Churn/node-hr 5.04
Avg. Delivery 0.969
5th % Delivery 0.789
Loss Retransmit

Table 9. High-level CTP results, following the metrics in
the CTP paper [7]

6.2 System Uptime

Figure 12 shows a 90-day trace of the number of connected
wireless meters reported for each 15-minute period. Over the
90 days, the network experienced 11 network-wide outages
in data logging, labeled (A-K). Table 8 describes each out-
age, including whole-building power loss, backend downtime
maintenance, disk failures, and gateway PC software failure.
Overall, the backend was down for days, giving PowerNet an
uptime of 91%.

Small dips in the number of reporting nodes (e.g., the
two dips at 15 days) represent logging delay due to MySQL
buffering. These delays do not denote data loss.

While the high point of the plot remains stable (e.g., be-
tween points D and F), it does vary. For example, a week
around K (days 77-84) shows 8 nodes stopped reporting. This
is not a network failure: the eight nodes were all in the same
room (the labeled room in Figure 2). The 8-node outage oc-
curred when the room was repainted and all computing equip-
ment was unplugged and moved. Other, smaller dips repre-
sent users unplugging meters. Generally speaking, no data
delivery outage observed was due to a failure in CTP or the
wireless meter network. This deployment data validates prior
testbed results on CTP’s robustness [7].

6.3 CTP Performance

To isolate CTP’s performance from network and node
downtime, all of these following results are from a 20-day
period in February (days 39-59 in Figure 12.) CTP’s behav-
ior in this particular 20-day period is representative of the rest
of PowerNet’s lifetime after deployment.

Table 9 shows high-level results following the methodol-
ogy used in the CTP publication [7]. The PowerNet network
behaves differently than any of the studied testbeds. On one
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Figure 15. CTP’s packet delivery cost over one day; a
value of 1 is optimal.

hand, its cost per path length of 1.04 indicates that intermedi-
ate link are rarely used. (on average out of 104 packets only
4 were retransmission), making it similar to testbeds such as
Mirage. On the other hand, its high average churn rate of 5.04
per hour makes it similar to harsher testbeds such as Mote-
lab. This indicates that while PowerNet has many high qual-
ity links, those links come and go with reasonable frequency.

CTP’s average delivery ratio was 96.9% and only five out
of the 85 nodes reported delivery ratio below 90%. Two of
these nodes were near many other wireless nodes, while an-
other two were in the corner, possibly using longer links. The
principal cause of packet loss is retransmission failure: CTP
drops a packet after 30 attempts to transmit it on a single link.

Figure 14 shows CTP’s average cost (transmissions/deliv-
ery) over a 20 day period divided into data transmissions and
control beacons. While the average cost is below 2, the mid-
dle of workdays can see the cost climb as high as 4.5, as the
network adapts to topology changes. Figure 15 shows the
same plot for a single work day. On this day, the cost rises as
high as 6, and control beacons constitute 10.8% of the packets
sent. The peak in Figure 15 is higher than those in Figure 14
due to longer averaging intervals.

CTP’s control traffic rate is bimodal. While 85% of nodes

Hops 1 2 3 4 5 6-20 20-190

Fraction 39%  42% 16%  2.6%

Table 10. Distribution of CTP packet path lengths.
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Figure 16. Churn for one node over a six day period.
Weekday afternoons and evenings show higher churn
than weeknights and weekends.

Churn/hr

send a beacon every 15 minutes or less, 15% of the nodes
send over ten times this many. As these high-traffic nodes are
typically also forwarding many data packets, CTP’s uneven
control load can impose an even higher energy burden in low-
power networks and harm network lifetime.

6.4 Daily and Weekly Cycles of Churn

Table 9 shows that CTP observes significant parent churn
even during a stable, long-term deployment. This churn could
be because CTP topologies are inherently unstable even in a
stable environment, or because the underlying environment
itself is unstable. Figure 16 shows a 14-day time series of
one node’s parent change rate with clear daily and weekly
trend. During working hours, the node experiences much
higher churn, up to 90 parent changes/minute. Furthermore,
the peaks on the weekend are shorter and smaller than week-
days. In the absence of human activity, churn is fairly con-
stant, at approximately 6 parent changes per hour.

6.5 Datapath Validation

CTP data packets contain a Time Has Lived (THL) field,
which increments on each hop. Measuring THL at the gate-
way allows us to measure how many hops packet traverse in
the network. Table 10 shows a distribution of path lengths.
Most packets fall in the range of 1-5 hops, one in 2,600 pack-
ets takes 6-20 hops, one in 20,000 packets takes 20-190 hops,
and with one packet out of over 15,400,000 taking 190 hops.

The small percent of high THL packets stem from CTP’s
datapath validation algorithm. CTP uses data packets to vali-
date and repair its topology. When a node detects the cost gra-
dient is not decreasing, it sends beacons to repair the topol-
ogy but forwards packets normally. This algorithm allows
CTP to quickly detect potential loops in the network, but
does not necessarily repair them quickly. Correspondingly,
some packets take a very large number of hops to repair. The
longest loop was 190 hops and was repaired in 7.7 seconds.
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Figure 17. Visual depiction of CTP link estimation bug.
On reboot, the link estimator infers a sequence number
0 packet as a long string of failures, raising the link cost
high enough that CTP will not use it.

6.6 Duplicate Suppression

We find that overall 1.7% of the packets received at the
basestation were duplicates. Packets from eight nodes had a
duplication rate above 3.7%. During our 90-day deployment,
due to misconfiguration, we deployed two nodes with ID 185
in two different areas of the network. The two nodes continue
to report readings to the basestation but there are twice as
many packets logged at the server. These packets elude CTP
duplicate suppression due to two reasons. First, these two
nodes often do not share a path. Second, the packet signature
used for duplicate detection includes node ID, sequence num-
ber, and number of hops but the latter two are rarely the same
between packets of the two nodes.

6.7 Link Estimation Bug

We encountered one bug while deploying CTP that existed
in CTP’s four bit link estimator (4B) [12]. We observed the
bug during test deployments in December of 2009 and it did
not affect the real 90 day deployment presented here.

The bug occurs when a mote reboots and other motes do
not choose the rebooted mote as a next hop for many hours.
In the case when the CTP root reboots, this causes the en-
tire topology to collapse and encounter the count-to-infinity
problem.

The bug stems from how the link estimator handles bea-
con packets. When CTP sends a beacon, the link estimator
adds a header and a variable number of footer entries. The
header contains a sequence number, so nodes can infer losses
by sequence number gaps. The arithmetic, however, is such
that if a node reboots and sends sequence number zero, nodes
assume that all packets between the last one heard and 0 were
lost, as shown in Figure 17. Such a long string of losses
causes the link cost to climb far above the cutoff threshold
CTP will use. The only thing that can bring the link cost
down is a long series of received beacons. However, CTP’s
adaptive beaconing means that it can take hours to days for a
long enough sequence.

This bug is not particular to the root. Nodes that reboot
will not be chosen as parents. If a network is dense enough,
the removal of one parent does not greatly harm the topol-
ogy, as nodes can route around it. It is worth noting that the
CTP publication evaluated the effect of node failures on per-
formance, but not reboots.

We fixed this bug by capping the number of losses a se-
quence number gap can infer to 10. Doing so caps how far in
history CTP considers sequence numbers, causing it to lend
more weight to the recent reception than the prior losses. In-
corporating this fix allows CTP to operate properly in the face

of even somewhat common node reboots. The CTP authors
have incorporated our fix into the standard implementation.

7 Discussion

PowerNet’s extensive power and utilization measurements
reveal how different parts of a computing infrastructure con-
tribute to total power cost. This section discusses several ap-
proaches which can help reduce power consumption.

7.1 Interventions

While energy-efficiency improvements have the great-
est potential to reduce power consumption, educating users
should not be under-estimated. Section 3 showed that small
changes in how we use LCD screens can lead to 20% sav-
ings. We have found that informing users about the power
draw of their monitors and giving suggestions on how they
can conserve energy has affected behavior positively.

In the future we anticipate expanding these efforts in sev-
eral ways. One is to have an interactive display that allows
building occupants to dig through the data, exploring it in a
way that interests them. Such engagement with real-world
data brings attention to energy consumption. In addition, we
plan to make individual data available to users who volunteer
to participate in the PowerNet monitoring. Power data will al-
ways be tied back to utilization to remind people of situations
in which energy is wasted.

7.2 Policy Changes

In addition to educating individual occupants, our work
has provided insights to the administrative and IT staff in the
building. Simply providing detailed data of power usage has
prompted the staff to think about possibilities for savings.

For example, Section 3 briefly mentioned that staff ma-
chines are required to be powered on at night so data backups
can complete. These backups can also be observed in Fig-
ure 10 by noticing the daily traffic spikes, for example the
ones shortly after midnight. We learned that different groups
of machines had different start backup times but no machine
had to be on for more than one hour. We pointed out that
powering staff machines 24-7 was wasteful since they were
never needed for more than approximately 12 hours a day.
The suggestion we heard back was that backups could occur
during the lunch hour. Instead, we plan to propose that Wake-
on-LAN is used in conjunction with the backup system. The
scripts that currently run can be modified to wake a machine
before the backup and put it back to sleep one hour later. The
current backup policy is causes at least 30 machines to waste
32 kWh every day, costing $130 a month.

7.3 Technical Alternatives

By far, the most effective way to reduce energy consump-
tion of computing systems is to shut them down when they
are not needed. Section 3 showed that personal computers
constitute 16% of the building’s energy consumption, while
Section 4 showed they are rarely used for more than 12 hours
aday. The energy consumption data suggests that turning idle
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Low-end machine

Energy Consumption  High-end machine

current 38.6 kWh 16.8 kWh
idle sleep 14.6 kWh 6.7 kWh
power proportional 2.0kWh 1.2kWh

Table 11. The same user workload can result in differ-
ent energy consumption based on the type of machine and
sleep policies being used. A less over provisioned, low-end
dekstop with idle sleep mode can reduce consumption by
6 times over a more powerful machine that never sleeps.

machines off could reduce the building’s energy consumption
by 8% — $3,600 a month.

To illustrate this point we analyze a week-long trace of
power and CPU for a student desktop. This is the same data
trace presented earlier in Figure 9. How would the desktop’s
energy consumption change if the machine was in sleep state,
drawing 5 watts, when it was idle? We define idle as ‘using
W% CPU or less for X minutes and longer’. Figure 18 shows
the calculated saving for different values of X and W.

For example, if the machine is put to sleep after 10 minutes
of CPU utilization under 1% (Point A in the Figure), the en-
ergy consumption over a week will be 60% less if the machine
stayed awake. Defining ‘idle’ as CPU of 5% or lower results
in 70% saving for even the longest timeout values (point B.)
For this specific machine, the difference between staying un-
der 0.5% and 1% CPU is significant — with a threshold of 1%
CPU usage we can still save almost 50% of energy consump-
tion for idle periods of 30 minutes of fewer.

Taking the analysis one step further, we compare a smart
idle approach to an energy proportional system. The results
in Table 11 are from the same data trace as the previous ex-
periment. This desktop consumed 38.6 kWh in one week; if
it were put to sleep after 5 minutes of CPU of 1% or less, it
would have consumed only 14.6 kWh. With an energy pro-
portional system consumption is only 2kW.

Energy proportionality in desktops is hard to achieve be-
cause components such as processors, disks, and graphics

Equipment Purpose Power
26 SunRay Clients 1, 1G, 2FS client 26x30 W
2 SunFire X4200 Server server  2x550 W
1 SunFile V420 file system  1x320W
2 Sun StorEdge T3 storage  2x450 W

Total: 3100 W

Table 12. Terminal-style clients with Sun servers are
an alternative approach to desktop-centered computing.
Preliminary analysis shows that such a setup is as or more
efficient than individual desktops.

cards have high baseline power draw. So is there another
way to get close to the low consumption that proportional-
ity achieves? Since desktops are highly over-provisioned in
many cases a less-powerful and less power-hungry machine
could match user workload better. Table 11 present calcu-
lation that apply the first desktop’s utilization trace on a ma-
chine that draws only about half of the power but has the same
processing resources.

The conclusion is that in many cases there are simpler
changes that can lead to great savings. For example, by
choosing a lower-power machine and putting it to sleep, one
can reduce consumption by 6 times without the complexity
of designing an energy proportional machine. As Section 4
showed, desktops are rarely fully utilized so CPU needs will
be met even by a lower-power machine.

The low utilization of desktops leads to yet another com-
puting alternative. Currently, most users work on dedicated
machines, physically present in the office. In addition to
those, many people also connect to server machines via SSH.

A different academic department at a European univer-
sity does things in a less distributed way. They have set up
a Sun client-server system where clients have minimal pro-
cessing and storage and instead act as dumb terminals. Ta-
ble 12 shows the equipment used to support the computing of
26 people — 1 professor, 3 post-docs, 4 admins, and 18 PhD
students. The power draw for the Sun server setup is approx-
imately 120 watts per person and is believe to also be under
utilized. among other benefits a thin-client approach will also
take advantage of high network bandwidth availability.

8 Related Work

Historically, the phrase “energy metering” has referred to
the coarse-grained measurements provided by spinning ana-
log dials outside a structure, read once a month. New meters
monitor consumption at the individual device, power strip,
or whole-house levels [1, 5, 10], and some log data through
wired Ethernet, low-power wireless, or even the power lines
they measure. PowerNet uses a modified version of the ACme
meter design [14], which provides wireless connectivity and
open access to both software and hardware.

Power monitoring deployments differ by the scale at which
data is measured. The Green Soda project [14] takes a fine-
grained approach. It monitors about 30 individual devices and
several power strips, along with light sensors, which the infer



power consumption of overhead lighting. The Green Soda
project demonstrated the feasibility of an indoor wireless
monitoring infrastructure. The similar PowerNet project [15]
presents initial insight into the power and utilization of com-
puting systems, with mostly wired meters.

PowerNet builds upon the Green Soda and PowerNet
projects in several ways. The system measures more de-
vices and a greater variety of computing devices, over a much
longer time period. The addition of utilization meters enables
correlated power and utilization measurement, which enables
us to draw conclusions about efficiency, not just the break-
down of energy usage. The wireless deployment is unusally
dense, and our experiences with its performance and oper-
ation can provide guidance for future power monitoring ef-
forts, as well as indoor sensor deployments.

Other green computing projects have looked into the chal-
lenges of visualizing power data and presenting it to build-
ing residents. Energy dashboards [3, 4] and websites [2, 9]
summarize and compare power usage data in order to encour-
age savings. Many universities have taken advantage of dash-
board software to educate students living in dorms, gener-
ally with measurements at the granularity of one floor or the
whole building. The Energy Dashboard Project at UCSD [8]
covers academic buildings with one to four aggregate me-
ters in each building. Such data is useful when comparing
power consumption between buildings and looking for high-
level trends in the data. However, aggregate power goes not
identify the parts of the building or the types of devices that
are wasting energy. While not the focus of this paper, Power-
Net has also joined in the effort, with a website and display in
the lobby. Unlike other dashboards, ours includes utilization
data to highlight wasted energy.

9 Conclusion and Future Work

One over-arching question drove the PowerNet deploy-
ment: how can fine-grained power and utilization data create
a high-level, building-scale, actionable understanding of the
usage and efficiency of the our computing infrastructure?

The first challenge was that of collecting data — how many
and what type of sensors are needed, and where they should
go? Throughout the deployment we learned that wired sen-
sors have their place for sparse measurements, but that a
dense network of open-source wireless sensors avoids the un-
expected practical issues of installation and debugging. We
found that CTP performance degrades during business hours,
but provides reasonably high transmission rates and robust-
ness for a large deployment in a previously-untested indoor
setting. The current system has collected over 150 gigabytes
of data, but is still far from perfect. Future priorities are in-
clude adding 300 wireless meters to cover more servers and
other equipment, and installing more utilization sensors.

Once fine-grained data is in, the next challenge is to de-
rive an accurate breakdown suitable for making high-level
observations about classes of devices. The aggregate mea-
surements of 138 power meters amount to only 2.5% of the
building total. However, by learning device totals and distri-
butions from other sources, including surveys, observations,
and IT database records, then cross-correlating these with

power data, one can construct a reasonably accurate quan-
titative breakdown. Precise extrapolation requires knowledge
of how individual devices within a class compare. For ex-
ample, desktop power shows high variation, up to 10x, and
thus dense instrumentation is needed. On the other hand, net-
work power draw is constant over time so only a few sensor
readings suffice.

We find that desktops and servers account for 46% of the
building’s electricity consumption, monitors account for 7%,
and networks for 3%. While these numbers might differ for
other office buildings, our methodology and high-level in-
sights will remain valuable. They guide our understanding
of how to have meaningful impact on reducing energy con-
sumption.

Therefore, the final challenge is turning quantitative anal-
ysis into qualitative comparisons, recommendations for com-
puter system design — and even purchasing guidelines. On
this front, we claim no complete answers, only initial insights.
The energy breakdown shows where to focus efforts, while
the correlated power and utilization measurements highlight
areas of inefficiency. Specifically, we show that determin-
ing idle state and transitioning PCs to a low-power mode can
have a dramatic impact. Another example is monitors; the
data showed a harmless way to save energy. The fact that a
few offices have actually our suggstions, resulting in energy
savings encourages us to continue building out the deploy-
ment and mining the data.
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