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Abstract ping administrative domains. Improving the efficiency of
: : oo such a computing system requires detailed data of both en-

PowerNet is a hybrid sensor network for monitoring the motion and ener Aste
power and utilization of computing systems in a large aca- SE ot makes fourSe First, we extrapo-
demic building. PowerNet comprises approximately 140 late a hob“building breakdown of eneray CONSUMpLion by
single-plug wired and wireless hardware power meters and 23 combining PowerNet data with surveys, observations, and IT
Safforare Sensors thal moniior POS, Laptop>, network switches, database records. We estimate that at least 56% of the build-
has been operational For 14 months andthe wireless meters ing’s $40,000 monthly electricity bill goes to its computing
for three orths systems infrastructure. Desktops and laptops consume 16%,

This dense long term monitoring allows us to extrapolate 20% goes to Cnes, 7% goes to monitors, and 3% of energy‘ ) oes to networking.

the energy consumption breakdown of the whole building. e Second. we quantify power variation between device
Using our measurements together with device inventory we classes, within device classes, and for individual devices.
find that apptaely 56% of the total pulling ent) < This analysis identifies simple optimizations, such as changes
i©oo°Ls Sys ems. Bt opat activity and in display settings, that lead to significant energy savings.
network traffic reveal that a large fraction of this power is hes powerh et s ability to correlate powerohet
wasted and shows where there are savings opportunities. with utilization allows us lo dillerentiale energy used we

In addition to these sensor data results, we present our ex from Ndae This 1s an important difference from pre-’ } , . We pi int t

periences designing, deploying, and maintaining PowerNet. aed by |!er povisionme,JRNEdbuilding net.
We elude a longterm characterization of CTF, the standard work. We also identify policies that prevent energy conser-TinyOS collection protoco vation, such as a nightly backup policy that requires desk-

The paper concludes with a discussion of possible alterna- tops to be kept on overnight even though backups only take
tives to computing system design that can save energy while 1, hour Finally, we turn the power and utilization data into
satisfying user workloads. insights for future computing infrastructure decisions: pur-

chasing high-end vs thin-client desktops and the benefits of
. intelligent power management.

1 Introduction Moreover, the nature, scale, and duration of the PowerNet
This paper describes the design and deployment of Power- deployment yields insights for future indoor sensor deploy-

Net, the first sensor network that monitors both power draw ments. We present the first long-term study of CTP [7], the
and utilization of computing devices in an office building. standard TinyOS data collection protocol. We find daily and
PowerNet provides fine-grained data on approximately 140 weekly cycles in CTP’s behavior, caused by human activity,
devices, including many different desktops, monitors, net- and present a crippling bug whose fix has since been included
work switches, and servers. Two types of power meters, in the standard TinyOS release. Our experiences deploying
wired and wireless, collect measurements once a second, PowerNet will inform future efforts to understand and reduce

while software sensors gather statistics on computer and net- energy consumption in office-style buildings.
work utilization. PowerNet has been active for 14 months,

with the most recent deployment phase completed in January. 5 0 .
To date, “green computing” has focused primarily on the verview

data center, as it represents a large cost that lends well to cen- The PowerNet deployment collects power and utilization
tralized control and optimization. This paper takes a differ- data for the computing infrastructure of an office building.

onts SXElining 2 CONIputng Teavy Dice piling Figure 1 shows the overall design. The deployment currently
dously diverse set of devices that exhibit huge variations in Cooling and heating are through chilled water and steam, so are
workload and configuration and exist under several overlap- not part of this total.



Device Type Count Utilization Count wireless meters

Desktop 44 CPU 15 CPU mC] WeMonitor 40 BE
Lapto 16 CPU 1 = | hes

Network Switch 11 traffic 7 database iy B—™Printer 10 = 1 pC
Server 9

Fridge 3

Access Point 2 wired meters
External Hard Drive 2 web portal _.

Fax Machine 1 [traffic]  —TieTotal: 138 23 :

. . Ea connections: li EH]
Table 1. PowerNet covers a variety of devices whose —— AC power &
power measurements we use to characterize the energy —————— = Wired 5 —
consumption of the whole building. We also monitor CPU Wireless ~~—=SEw
utilization and network traffic. Figure 1. The deployment measures power usage and uti-

lization of individual devices. The data is transmitted over

the network and stored on a central server.

includes 138 single-outlet, high-sampling-rate power meters,
both wired and wireless. Each meter connects to exactly one - To .
computing device, such as a PC, display, or network switch; ’ ’
the full list is shown in Table 1. In addition, building oc- a "
cupants and system administrators have volunteered to in- - g
stall software to monitor CPU utilization and network traf- in : ,
fic. All data is logged continuously to a central MySQL ¢ sf J sf ‘oe
database, from once a second to once a minute, depending ° | o « °
on the source. The system currently logs approximately 1 *% o|® °
GB per day from 161 data sources. AL

Wired Meters. The 55-node wired deployment is sparse, |
covering spread-apart wiring closets, student offices, and a . HR s : :
basement server room. Commercially-available Watts Up ’, o| 9, fom 8 3
NET meters [10] transmit measurements over Ethernet, up 20 ; °° of i . y
to once a second, over the existing building network. Each . .

meter posts data via HTTP to a server process on the Power- Figure 2. The wireless power meter deployment spans one
Net logoine machine. These meters wer ful first step in wing on one floor of an office building. The black squaregging machine. These meterswere a useful first step . .

gathering power data, though the practical issues of size and represents the sink and every dot is a power meter. Most
proprietary software (described later in Section 5.1) hindered meters are located under desks, near the floor.
further deployment.

Wireless Meters. In contrast, the 85-node wireless de-  peqwork side, an SNMP script polls seven network switches
ployment is dense, covering a large fraction of the power out- once a minute and records the average traffic in Mbps. On
lets in one wing on one floor, shown in Figure 2. Custom- the PC side, we collect CPU utilization and the list of active
made low-power wireless meters transmit data from an ad-  ocegses. Seven student PCs run a script that reads the /proc
hoc multihop network. Each meter is a modified version virtual file system to give average CPU load every second.
of the open-source ACme meter [14]. Each ACme includes Nine staff machines run a Windows script that reports the list
power measurement circuitry and an Epic core with micro- of running processes (similar to the task manager) and total
processor and radio chip [11]. More hardware details can be CPU load. The combined data helps correlate power with
found in Section 5.2. observed workload.

The meter software, built on TinyOS, includes sampling, Data Storage The wired and wireless meters and CPU
routing and dissemination capabilities. The top-level applica- ~~ monitors send the data to a central server with two 1.8 Ghz

tion reads power draw every second and sends a data packet cores and 2 GB of RAM. With over 160 sensors reporting
after buffering ten samples. The motes use CTP [7] as the as often as once a second, data piles up quickly. Section 5.3
underlying routing layer. The code includes Deluge [13] for describes the backend scalability challenges.
remote image upgrades. In addition to power data, the motes Data Access and Analysis The data stream provides
gather CTP statistics. Section 6 describes in detail the gath- near-real-time feedback to building residents, equipment pur-
ered data and the resulting observations. To our knowledge, chasers, and system administrators through the PowerNet
this deployment is the largest, longest-term, and highest- website. A display in the building lobby provides informa-
density one using CTP, and one of the first to be done indoors. tion about the project, along with graphs showing real-time

Utilization Monitoring. PowerNet also monitors utiliza- power consumption of categories of devices, such as moni-
tion, in addition to power, for 23 computing devices. On the tors, servers, and network equipment.
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Figure 4. Aggregate power draw for the entire PowerNet building shows diurnal and weekday/weekend patterns. Com-
puting systems account for 56% of the total 445 kW. The given week of data is representative of the building, except
Monday which was a university holiday (Feb 15).

loCo dibiebaet are responsible for 50% of the building’s diurnal power draw— 40 LCD Displays variations. There are significant activity and power profile
2 variations within a device class, such that dense sampling is
g ° necessary for accuracy: for example, sampling only 5 random
g desktops has a 5th percentile error of underestimating by 31%
Ic and a 95th percentile error of overestimating by 40%.
S 9 Servers

4:

g 3.1 The Big Picture
? Figure 3 shows the power draw of PowerNet’s 140 devices

over a 24-hour period. The 9 to 11kW draw is 2.5% of the
12am 4am 8am 12pm 4pm 8pm 12am building total. Each layer represents a different device cate-

Figure 3. PowerNet’s measurements account for 2.5% of gory. The largest contributors are labeled. Consumption of
the building’s power consumption. most devices is fairly steady, with the exception of displays.

Although the measured displays are responsible for a 14%
increase in the measured power draw, effective power man-

However, power feedback for building residents is not the ~~ agement reduces their total energy contribution to only 7%.
focus of this paper. Our goal is to answer building-level ques- Weekends see power profiles similar to Figure 3, although
tions about where energy is going and how we change man- variations are smaller because fewer displays are turned on.
agement processes and purchasing decisions to reduce en- Overall, displays are almost completely responsible for the
ergy consumption. At the heart of this paper are the insights variation we see in computing power.
revealed by over 150 gigabytes of collected and correlated Even though PowerNet only measures 2.5% of the build-
power and utilization data. What follows are our findings — Ing power, by combining these samples with other informa-
expected in some cases, and surprising in others. tion about the distribution of computing devices, we can ex-

trapolate to the whole building, as in Figure 4. Specifically,
. . from network administrator databases of active nodes, email

3 Computing Energy Consumption surveys, and manual inspections of networking closets and
This section analyzes the power data that PowerNet has server rooms, we can generate a reasonable inventory of de-

collected. It examines three classes of devices in detail: dis- vices in the building. We can use PowerNet’s measurements

plays, computers, and networking switches. Before Power- to couple this inventory to power draw.
Net, the building manager’s only view into energy consump- Using PowerNet as a motivation, we convinced campus
tion was a monthly electricity bill of approximately $40,000. services to provide Excel spreadsheets of the building’s aver-
Using PowerNet’s measurements, network activity logs, a age draw over 15-minute intervals. The top curve in Figure 4
survey of building occupants, and cross-correlating with IT shows one week of this data. Finer-resolution data makes
databases, we find that computing systems draw on average it easy to spot expected trends such as day/night and week-
252kW: 56% of the building’s 445kW. We find that displays day/weekend patterns: daytime sees a 30% increase in power



Device Type Measured Total Extrapolated via Total Draw Uptime  % of Building

Desktops/Laptops 44 742 whois, MAC address registrations 70 kW 24 hrs/day 15%

Servers 9 500 manual inspection 137kW 24 hrs/day 30%

LCD Displays 40 750 occupant survey 61 kW 12 hrs/day 7%

Switches 11 62 network admin records I5kW 24 hrs/day 3%

Table 2. We cross-correlate PowerNet measurements with IT databases to extrapolate energy consumption of computing
systems in the whole building.

Type # Count Power Draw 500 - || [| L 1 [A |
(watts) HP 54122zl, 12-slot, 96 active ports

HP 540621 (6-slot) 20 325 400 -

HP 541221 (12-slot) 8 500 ry
HP 2724 2 100 = a A
Cisco Cat 6509 ) 400 2 300 - HP 5406zl, 6-slot, 72 active ports
Cisco Cat 4000 2 600 hl

Cisco Cat 3750G 2 160 S 200 -
Linksys 2 50 [e)

NEC (misc) 5 100 a |
Cisco (misc) 5 100 100 - NEC,48activepots 00000000
Quanta (4-slot) 5 50

Others 9 50 0- |
Total: 62 12am 4am 8am 12pm 4pm 8pm 12am

Table 3. Summary of groups of switches with individ- Time
ual and estimated total power consumption. This inven- Figure 5. Switch power consumption is constant, barring
tory includes all major network switches in the PowerNet transient ups or downs likely due to fans. Thus, the net-
building. working infrastructure does not require long-term power

monitoring.

draw over nighttime. Figure 4 also shows our estimate of
computing’s contribution to this power draw for the same grained long-term samples, since the data rarely changes. We
period. Computing systems are responsible for 56% of the use measurements from the core and edge switches and cross-
building’s total energy consumption. Furthermore, displays correlated that to data-sheet-reported values to estimate the
are responsible for a 46kW increase in daytime power draw total energy consumption. On average, the switches in the
or 50% of the total increase. building consume 15 kilowatts. This comes to a total of

The rest of this section examines displays, desktops, and ~~ 12000 kWh per month, 3% of the building’s total consump-
switches in greater detail and explains how we perform this tion.
extrapolation. Table 2 shows our extrapolation methodology

and results at a glance. 3.3 Computer Displays
. . With the recent shift from CRTs to large LCDs, displays

3.2 Networking Equipment have become a significant contributor to electricity bills. This
We compute the energy consumption of the building’s net- section examines PowerNet’s display power measurements

working infrastructure (its Ethernet switches and WiFi access ~~ and explains how we extrapolate to the energy consumed by
points). In the PowerNet building, network access is pro- all displays in the building.
vided by 2 core switches located in the basement and 26 edge Over 600 people use the PowerNet building as office
switches spread across the five floors. In addition, there are a space. PowerNet’s power meters and utilization sensors cover
number of smaller switches, deployed in ad-hoc ways by in- a broad and diverse range of residents, including students,
dividuals or research groups. Table 3 presents an inventory of ~~ professors, visitors, servers, and administrators. While this
networking equipment. While we can account for all major diversity allows us to see a breadth of usage patterns, it consti-
switches, finding all of the small ones (e.g., 4-hub Linksys tutes a highly biased sample. In practice, most of PowerNet’s
switches) was not possible due the scale of the building and offices are occupied by graduate students. Therefore, simply
permissions required. Since the infrastructure is planned by a using a multiplicative factor on PowerNet’s measurements
small number of administrators and centrally purchased, the could be highly inaccurate. For example, administrators tend
equipment used is comparatively uniform: over half of the to have lightweight desktops and smaller LCDs, while many
switches are a single model, the HP5406z1. students have powerful desktops and larger LCD displays.

Figure 5 show the power consumption of three switches. PowerNet’s measurements allow us to quantify the aver-
Power draw variation is negligible and the small peaks are age power draw of a class of display; extrapolating to whole-
likely due to CPU spikes. Networking infrastructure power building power draw requires knowing the distribution of dis-
easy to characterize; future deployments need not collect fine- play classes. To obtain a reasonably accurate estimate of



Size Count Avg. Power 160 max brightness

<17 91 14s W
17” to 19” 331 35W 120 (max-2) brightness dark colors
20” to 22” 40 50 W RB Ww
23” to 25” sa HE 66W 2 ~110 W
26" 0277 151 120 W 2

29” to 30” 42 1H 135 W 5 80
> 30 2 | g

Table 4. A survey shows that majority of building occu- 40

pants use mid-sized LCD displays. Equipment upgrades sleep
cause the number of large (30°’) monitors to increase. /~TW

0 2 4 6 8 10 12 14

Time (minutes)

this distribution, we distributed an online survey asking oc- Figure 6. The power consumption of a computer moni-
cupants for the number, size, and manufacturer of the com- tor varies widely depending on its settings. Minor adjust-
puter screens they use. Table 4 presents data from the 169 ments of brightness level can result in 20% savings for
responses reporting 225 monitors and indicating the distri- large monitors.
bution of sizes. The majority of people use 23- to 25-inch
monitors. 30” screens are the second largest population.

Table 4 also shows the power consumption the specifica- 3-4 Personal Computers
tion sheets of different displays report. PowerNet’s measure- Personal computers — dekstops and laptops — and servers
ments reveal that thereis a great variation in active POWEr pe the largest contributor to the computing infrastructure en-
draw even between devices of the same size and make. We roy consumption. According to the department’s database of
conducted a controlled test to see how different display Sel- registered devices there are ~1250 machines active on the
tings affect monitor power draw. We chose a 30” Dell moni- building’s network. This number includes student, staff, and
tor, partially to highlight the differences in monitor states, but professor machines as well as server machines located in two
also because these displays form an increasing portion of the ceiver rooms. We manually inventoried the server rooms to
display population. distinguish what portion of the 1250 are desktops or laptops

Figure 6 shows an hour-long data trace during which we and what portion are servers. Of this total, S00 machines are
adjusted the monitor brightness and desktop color scheme. servers, while the rest are laptops or desktops. We refer to
Depending on the monitor brightness settings and the colors desktops and laptops as personal computers (PCs), as many
in the image displayed, the power draw varies by up to 35W laptops are used with docks.

(25%). Lowering the brightness by two settings (pressing PowerNet measurements of 44 PCs show that desktops
the ’-” button twice) reduced the average power draw from vary greately in power draw — anywhere from 40 to 350 watts.
145 to 117 watts, a 19% reduction in consumption. Addi- Figure 7 shows the power consumption of three different PCs
tionally, LCD power draw is affected by the colors displayed. over 24 hours. Desktop ‘a’ 1s a Dell Inspiron 530 desktop
More energy aligns more liquid crystals in each pixel, permit- with a powerful graphics card; desktop ‘b’ custom-built ma-
ting more light to shine through and enabling them to display chine and desktop c’ 1S a lightweight Dell Optiplex 745.
brighter colors. Thus, a 30-inch monitor has maximum power Power consumption varies widely, not only between desk-
draw, measured at 145 watts, when the majority of the screen tops, but also for the same desktop in time.
displays white elements. Switching to a dark background and Figure 7 shows that dense, fine-grained, long-term instru-
color scheme or viewing darker web pages reduces the draw mentation is the key to accurately characterizing the power
to 127 watts. Displaying dark colors with the lower bright- consumption of a building’s computers. To explore this fur-
ness setting reduces power draw to 110W. ther, we run statistical analyses on the average desktop con-

With a good understanding of individual power, we can sumption. The average power draw of the 44 measured desk-
characterize the effect at scale. In order to account for all ~~ tops is 107 watts. What error could we expect if only 5, 10,

monitors in the building, we extrapolated from the survey or 20 of the desktops were monitored? To estimate the er-
data and typical power draw. From building inventory and ror with only 5 desktops, we generated 1,000,000 random 5-
network reports of what computers are active, we were able tuples drawing from the lists of 44 desktops. Next, we cal-
to estimate that the PowerNet building has approximately 750 culated the mean for each set of 5 machines and plotted a
displays. We assume that these 750 displays follow the same histogram of the results. The experiment was repeated for
size distribution as gathered in the survey and that they follow ~~ 10- and 20-tuples of computers.
the same use distribution as the metered monitors, as there is Figure 8 shows the three resulting histograms with the 44-
no significant difference in monitor activity between classes node mean indicated by a vertical line. As expected, larger
of residents. These calculations indicate that on average, a sample sizes yield a narrower spread, with averages that are
monitor draws just over 80W, with 750 monitors drawing 61 closer to the mean. We calculate the expected error by av-
kW. Since most displays are powered on about 12 hours a day, eraging over the probabilities of all possible mean values as
this translates to 7% of the building total energy. given by the histogram. With 20 desktops , the expected error



Laptops Low-end PCs High-end PCs Total 350 -

observed 47 43 366 456 300 -

estimated 29 27 230 286 a S
Total 76 70 596 742 = 250 - S

£ + 233.5 a
Table 5. Personal computers are binned in three cate- 3 200 a
gories, and university databases and active network node T 150 - S
counts allow us to extrapolate to the whole building. = b ©

a 100 - 108.5 >
<C

in calculating the mean is almost 7% and as much as 17.2% >0 , [—for a sample size of 5 machines. With 5 measurements, the 0: : : : . 5.5
5th percentile is 31% lower than the 44-node mean, and the 12am 4am 8am 12pm 4pm 8pm 12am
95th percentile is 40% higher. Time

Such analysis is important when choosing what and how Figure 7. Desktop computers consume a steady amount of
many devices to monitor. For example, in the Green Soda energy, but there is great variation between PCs. For ex-
deployment [14] only 10 desktops were measured: Figure 8 ample, some staff machines consume only about a quarter
shows that such small samples can limit accuracy. Given the of what a graphics student’s machine does.
diversity of desktops, even denser sampling within this de-

ployment class is our next deployment priority. 50000 SS
To extrapolate to the whole building we bin PCs in three

classes — laptops, low-end desktops, and high-end desktops. 40000 © a: 5 desktops, exp. error: 17.2%
Low-end desktops are those with average power of about 80 b: 10 desktops, exp error: 11.5%

watts or less and include machines such a Mac Minis, Shuttle 30000 c: 20 desktops, exp error: 6.8%
PCs, Dell Optiplex. Full-size desktops like the Dell Precision = b

are considered high-end machines. S 50000 4N
A snapshot of MAC addresses recently seen on the build- a

ing network returned 1242 active nodes, 500 of which are At
servers. We took the remaining 742 addresses and cross- 10000
referenced them with the university’s whois database. This No
database includes the node description provided upon net- °, 50 100 150 500 250
work registration. Of the 742 nodes, 456 had description Mean Power Consumption (W)

that allowed us to classify them as laptops, low- or high-end Figure 8. Desktop energy consumption varies over time
desktops. The remaining 286 nodes had blank entries in the and device make. Using only 5 desktops to extrapolate
whois database, Table 5 shows the number of machines in to 44 yields an expected error of 17.2%., indicating that
each PC class; nodes with available description are labeled as dense power monitoring is necessary.
‘observed’ and breakdown of the other 286 assumes that the

observed distribution is representative of the building.

We use the 44 desktops and 16 laptops measured by Pow- 3.5 Summary
erNet to extrapolate power to the whole building. The median
power draw for laptops is 25 watts, for low-end machines — PowerNet’s dense sensing deployment allows us to extrap-
52 watts, and for high-end machines — 108 watts. This data olate from 140 meters to aggregate building energy consump-
together with the numbers of devices in each bin, given in tion. Overall, we find that 54% of the building’s energy goes
Table 5 yield an aggregate power draw of 70 kW for the 742 to computing equipment. 30% goes to servers, 16% to PCs,
personal computers in the building, or 16% of total energy 7% to displays, and 3% to networking infrastructure. Going
consumption. beyond how energy is consumed, how much is used for com-

PowerNet server sampling is sparser than with PCs for putation and work, and how much is wasted on idle systems?
two reasons. First, servers are densely deployed in machine ~~ Answering this question requires more than power measure-
rooms, which makes it harder to install meters. Second, it ~~ ments. It requires a system that measures utilization. The
is much harder to convince people to allow a meter on crit- ~~ Next section describes this second sensing modality.
ical servers or compute clusters: a meter failure or accident

could harm critical data or knock out a large number of de- 4 Computing Systems’ Utilization
vices. A manual inspection of servers and their configura-
tions, however, finds that they have much less variation in Section 3 characterized the power consumption of an of-
power draw. We therefore assume a power draw of 275 watts fice building. A breakdown of an electric bill is useful be-
per server, typical for the rackmount 1U servers in the Power- cause it pinpoints the components that draw the most power,
Net building. With 500 servers, the aggregate draw is 137kW. highlighting opportunities for savings. At the same time, it is
Together, PCs and servers account for 207 kW, or 46% of the difficult to say what improvements can be made to the com-
total building power draw. puting infrastructure, if we do not understand the underlying
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Figure 9. A week-long trace of power consumption and CPU utilization shows idle periods during which the power-
hungry desktop could have been turned off.

usage patterns that require computing in the first place. This Percentile CPU
section digs deeper into the meaning of energy efficiency by _Machineype~~ 7 S07" 97
correlating power consumption with device utilization. high-end custom-built 0% 1% 57%

In an ideal world, all systems would be power propor- Dell Optiplex 743 1% 9% 38%
tional, drawing power when work is done, and consuming Dell Precision T3400 0% 4% 29%

. Co. Co. Dell Precision T3400 0% 1% 13%

nothing when the system is idle or unused. Reality is not so Dell Inspiron 530 % 1% 8%
kind. We examine the utilization of computers and network HP Pavilion Elite mO250f ~~ 0% 0% 25%
switches. The key insight is that current systems, computing Dell Precision T3400 0% 1% 7%
or networking, are heavily underutilized. This fact, combined

with large baseline power consumption, means that energy ~~ Taple 6. CPU utilization for 7 student machines collected
efficiency is extremely low. A large portion of the time, elec-  gyer 11 months reveals high under-utilization.
tricity bills pay for unused or under-utilized devices.

4.1 CPU Utilization The measured computers rarely use even 50% of their avail-
able CPU.

The aggregate power graphs at the beginning of Section 3 This observation raises the question of whether powerful
suggest that most computers are rarely turned off. Figure 9 desktops are the best way to provide computing power to
shows power consumption and CPU utilization for one spe-  qers. The trends we see are towards upgrading to more pow-
cific computer over 1 week. Usage patterns are immediately orfy] machines, yet typical workloads hardly tax the avail-
obvious: there are long idle periods at night and on weekends. jple CPU resources. Section 7 goes further into alternative
While machine utilization varies greatly over the span of a providing computing systems that meet user needs in a more
week, from 0% to 60%, this desktop’s draw never drops be- energy-efficient manner.
low 220 watts. Measurements from multiple desktops show
an additional cost of roughly one watt for every 1% increase
in CPU utilization beyond idle. 4.2 Network Traffic

If these computers are mostly idle, then why are they not In Section 3 we found that the networking infrastructure
being put to sleep? Going back to Figure 7, only one of the consumes much less energy than desktops. We also noted that
three machines was put to sleep during non-business hours, switches consume a constant amount of power. This prompts
while the other two remained on. We do not see strong diur- the questions of how much traffic is flowing through the 60 or
nal variation in building power consumption largely because so switches in the building, and whether that traffic changes
residents are not taking advantage of the sleep and hibernate with time.

states provided by modern OSes, especially during nighttime Figure 10 shows the traffic coming into one of the four
hours. switches on the second floor of our building. This is an HP

The reasons for this behavior vary but most often people Procurve switch with 96 1-gigabit active ports, consuming
cite unwillingness to wait for machine startup in the morning, 500 watts. Over one week in March, bandwidth demand
ability to access the machine remotely, and nightly backups. never exceeded 200 Mbps — an amount that could be handled
On several accounts, staff members in our department shared by one gigabit port instead of 96
that they would love to put their computers to sleep at the end To verify that this is not aberrant behavior, Figure 11
of the workday but are not allowed to do so. Backups are shows the cumulative distribution of traffic for 7 building
scheduled to begin at 8:45 pm. Backups are one example of ~~ switches. Note that the x-axis has a log scale. Table 7 ac-
a workload that requires a machine to be powered on. companies the figure with a list of switch types we measure

The energy waste from always-on computers is only half and the length of each data trace.
the story. Further examination of CPU data shows that even Similar to computers, switches are highly underutilized.
when actively used, most computers are rarely pushed to their For the equipment we measure, total network demand is
processing limits. Table 6 shows the the 5, 50", and 95" lower than 1000 Mbps 100% of the time. Of course, net-
percentiles of CPU utilization for seven student machines. work over provisioning is not a new concept or observation;
The data was collected every 1 second for the past 11 months. it provides benefits, including higher throughput, lower loss,
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Figure 10. Typical traffic patterns for one edge switches in the building. Network utilization remain low. Power con-
sumption for this switch remain constant, at approximately 500 watts.

1.00 —— 5.1 Wired Deployment

075 - vd ‘ The initial requirement for the power meters was the abil-
e ity to sense individual outlets at high sampling rates. This dif-

n c/d fers from many residential solutions that track whole-house
go 0.50 - energy consumption and report data every 10 or more min-

utes. Commercially-available Watts Up .NET meters were

0.25 - afl the first power sensors in the deployment, since they were

| 9 easy to obtain [10]. These meters transmit measurements over
0.00 « A JA Ethernet, up to once a second. Meters were placed in wiring
10? 10° 10° Lot 102 103 closets, the basement server room, and spread-apart offices.

Traffic (Mbps) While these meters were a useful first step in gathering power
Figure 11. CDF of traffic for seven switches over 6 months data, deploying and maintaining them proved to be difficult;
shows that switches are operating well under capacity. problems surfaced even before the deployment began.

The first practical issue was the lack of in-field upgradable
firmware. When a bug was discovered in the TCP stack, our

Label ~~ Switch Type Active Ports ~~ Datatrace only option was to pack up four large boxes of power meters
(gigabiteach) ~~ (# days) and send them back, so that company staff could fix the pro-

a HP 541221 120 150 prietary code. After several weeks, the meters were back in
b HP 540621 96 40 our possession and the deployment could begin.

¢ HP 541221 120 40 It quickly became clear that few offices had an open Eth-
d HP 5406z1 72 150 ernet port for each power meter. Many offices required addi-
e NEC IP8800 24 420 : :

) HP 54124] 04 420 tional small Ethernet switches and extra cables. The volunteer
0 NEC TPS3800 43 420 participants were unhappy with the clutter under their desks,

due to the size of the meters. Each one weighs 2.5 lbs, with a

Table 7. Summary of groups of switches with individual thick, six-foot-long cord leading to a 7 x 4” x 2” base. De-
and estimated total power consumption. Gates building. spite the physically clunky deployment experience, we were

able to install 80 meters.

In the PowerNet building, each device must have a MAC
.. EU address registration to obtain an IP address. Each group

and lower jitter. When the average utilization 1s under one within the building has a unique VLAN, and each meter was
hundredth of one percent, several questions beg dnl answer. statically registered to a group. The registrations could not be
Is the amount of over-provisioning unnecessarily large? How done all at once, since neighboring offices may correspond
can we take better advantage of the large amount of band- to different groups, and we could not know in advance how
width that today’s networks are 1cady to support? We discuss many meters would be needed for a given office. The network
possible answers to these questions in Section 7. admins were burdened by the power meter registrations, and

with this much manual configuration, mistakes happened.
We received an email from a network admin stating that

5 Deployment Experiences “more than half of all DNS lookups emanating from [the three
Engineering buildings] to the campus servers” were coming

Prior sections presented the data that PowerNet has col- from the power meters. The solution for the lack of DNS
lected. The next two sections present our experiences deploy- caching was to go back to each meter, plug it into a laptop via
ing PowerNet. This section describes in detail our monitoring USB, and hard-code the IP address of the PowerNet server.
infrastructure for collecting power and utilization data. Pow- In addition to DNS lookups, the meters were also mak-
erNet uses two types of power meters to collect data; the first ing ARP requests once per second and overwhelming the net-
are commercial off-the-shelf, while the second are custom- work security monitoring infrastructure. We received another
made. We also share experiences and lessons learned over ~~ email from the IT staff, pointing out that ”[t]he 70 current
the lifetime of the deployment. meters now account for 20% of total daily recorded flows”



by the security system. To work around this problem, the AFA Tra frpasareerg 21
logging server was moved to a special VLAN that was not Eaidaiid dit2 nbd de Rt eds Tomonitored by the network admins. That resulted in an IP ad- : ! 3
dress change, which meant yet another trip to the individual Figure 13. Logical topology of the wireless network. The
meters to update the hard coded IP address of the server. root of the tree is on top, and the number of nodes at each

Once the deployment was in place, we observed a num- level is shown.
ber of meter software errors. From the 90 power meters, 8
completely stopped working; they did not power up or did

not send or display any data. Another set of 5 to 7 meters be- of utilization sensors and 300 more wireless power meters.
gan reporting incorrect data at some point of the deployment; ~~ When the logging server was originally purchased we did not
from the reported numbers we guess it was an integer over- expect to have scalability issues. One of the challenges we
flow issue but the closed firmware did not allow us to verify ran into was that the server had two main roles — collecting
this. The erroneous data was purged from the analyzed data data and providing data. The later refers to the fact that we
sets. There were also some meters that would stop reporting share all data with users via a website and a display in the
data over the network until they were rebooted. That again building lobby.
was likely a software problem where the meters were revert- A few months into the deployment, the amount of gath-
ing to logging data locally instead of pushing it out via HTTP. ered data became large enough that displaying a week-long
Of the original 90, only 55 are still in operation; a number of eine for a single device would take prohibitively long;
residents simply unplugged their meters. generating a summary graph for all devices on the fly was

To their credit, the wired meters generally reported ac-  u¢ of the question. Thus, PowerNet periodically runs a set of
curate data and work well for a dispersed deployment such 441) summary calculations. For example, every 5 minutes the
as the wiring closets. However, three key issues made the orver establishes what meters are reporting, takes the fine-
wired meters unsuitable for large-scale deployment: the lack orained data, averages it, adds it up, and produces a graph
of code accessibility and remote firmware upgrade, the over- like Figure 3.
head of installing the meters within the building network, and A le of 6 b d that the server load
user dissatisfaction with clutter and frequent maintenance. , 4x COUPIC OF LINES WE HOSELVEE Thal LIE SEIVEL 10adt Was 50
These experiences suggest that zero-configuration networks high due to nightly scheduled backup> and both MySQL and

pet s5Cot 1 & : rsync experiences issues. The scalability and performance is-
that automatically form distinct subnets (e.g., as is proposed h b d so far h ted us to consider
in RPL [6]) would improve ease of deployment. SUES WE lave ODSCIVEQ SO 1d Mave PIOIMPLEE Us 20 CONSICE

a number of back-end improvements. These include partial
. database backups via the binary log option in MySQL and

5.2 Wireless Deployment incremental ore calculations to summarize data. In the fu-
Open-source low-power wireless meters were the main ture, we plan to extend the system by one or more additional

candidates for expanding the PowerNet deployment - in par- servers and distribute the load and backup responsibilities.
ticular, the wireless ACme meters used in the Green Soda

project [14]. The PowerNet wireless meters are based on the
ACme design, with two small modifications. The first was .
a switch from a solid-state relay to a mechanical one. This 6 Wireless Meter Network
change enableda sealed case, by removing the need to ma- The prior section examined our experiences with the over-
chine side slits to dissipate heat from the solid-state relay. all PowerNet deployment. This section dives into the per-
The second change was to add an expansion port with a range formance of the wireless network, specifically the Collection
of serial interfaces, to support new sensors and added storage. Tree Protocol. We chose CTP because it is the standard pro-
The COSL per meter was about 5120, as compared to $189 for tocol in TinyOS 2.x and extensive testbed experiments over
the wired meters, both in quantities of 100. the scope of hours indicate that it is robust and efficient [7].

The deployment of 85 wireless meters took several after- This section examines whether CTP exhibits similar perfor-
noons, compared to two weeks for the wired meters. The ben- mance and behavior in an operational sensor network over
efits of the wireless deployment were noticed immediately, a three month period, a timescale two orders of magnitude
and some users even requested that we replace their wired larger than the prior study. Figure 2 shows the physical map
meters with wireless ones. The IT staff was not burdened by of the wireless deployment, while Figure 13 presents a snap-
meter registrations, and the open nature of the software and shot of the logical topology as constructed by CTP.
hardware made modifications easy. The main meter limita- :

tion is transmission distance. Since the PowerNet wireless Because the wireless network does not have a wired back
deplovment focuses on a sinele wine of a building. the rance channel, we add instrumentation to CTP to report statisticsploy g g g; g al al :

was sufficient for CTP to form a mesh without a need for re- such as data transmissions, retransmissions, and receptions,
peaters. beacon transmissions, and parent changes every 5 minutes.

PowerNet uses 802.15.4 channel 19, which overlaps with
oye heavily used WiFi channel 6. We chose this so we would

5.3 Backend and Scalability Challenges not interfere with research using quieter channels (e.g., 25
The PowerNet infrastructure currently gathers 1GB of data and 26) and so that we could measure CTP in a less forgiving

every day and this number will grow with the next round environment.
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Figure 12. Number of nodes from which packets were received at the basestation during the deployment.

Label Date Duration Description Nodes 35

A Jan 19 9hrs Building power outage Path Length 1.84

MySQL recovery Cost 1.91
B Jan 21 10 hrs ~~ Backend maintenance/backup Cost/PL 1.04
C Jan 30 1 hr  Basestation maintenance Churn/node-hr 5.04

D Feb 4 9hrs  Basestation software failure Avg. Delivery 0.969

E Feb 8 I hr ~~ Backend maintenance Sth % Delivery 0.789

F Feb 28 0.5hr Backend maintenance Loss Retransmit

Mas Sri beckon dh remeement Table 9. High-level CTP results, following the metrics in
I Mar 14 9hrs  Basestation buffering the CTP paper [7]
J Mar 18 7hrs ~~ Basestation buffering

K Mar 22 4 hrs ~~ Backend RAIDI1 rebuild

Table 8. System Outages 6.2 System Uptime
Figure 12 shows a 90-day trace of the number of connected

wireless meters reported for each 15-minute period. Over the
90 days, the network experienced 11 network-wide outages

6.1 Summary of Results in data logging, labeled (A-K). Table 8 describes each out-
age, including whole-building power loss, backend downtime

Overall, the backend collected 85.9% of the expected data. maintenance, disk failures, and gateway PC software failure.
Of the 14.1% of missing data, 8.2% is due to backend failures, Overall, the backend was down for days, giving PowerNet an
such as whole-building power outages or server disk failures. uptime of 91%.
This type of failures also affected data from the wireless me- Small dips in the number of reporting nodes (e.g., the
ters and utilization sensors. Of the remaining 5.9%, we ap- two dips at 15 days) represent logging delay due to MySQL
proximate that 2.8% is due to users taking meters offline by buffering. These delays do not denote data loss.
unplugging them: the remaining 3.1% of data losses are due While the high point of the plot remains stable (e.g., be-
to CTP.” tween points D and F), it does vary. For example, a week

Sifting through CTP’s periodic reports, we find weekly around K (days 77-84) shows 8 nodes stopped reporting. This
and daily cycles of topology adaptation that correspond to hu- 18 not a network failure: the eight nodes were all in the same
man activity in the building. These periods of adaptation seea room (the labeled room in Figure 2). The 8-node outage oc-
significant increase in control traffic as well as increased path ~~ curred when the room was repainted and all computing equip-
costs. In the middle of the night, the average cost (transmis- ~~ ment was unplugged and moved. Other, smaller dips repre-
sions/delivery) of the network is just under 2, while during sent users unplugging meters. Generally speaking, no data
the day it can climb as high as 6. We find that CTP’s datap- delivery outage observed was due to a failure in CTP or the
ath validation leads to a tiny fraction (1 in 20,000) of packets ~~ Wireless meter network. This deployment data validates prior
taking 10-100 times as many hops as normal, as they bounce testbed results on CTP’s robustness [7].
through the topology repairing loops. Finally, we present a
bug we discovered in CTP’s link estimator where nodes are ~~ 6.3 CTP Performance

unwilling to route through 4 rebooted node for a very long To isolate CTP’s performance from network and node
ime, which can be disastrous if a base station reboots. We downtime, all of these following results are from a 20-day
present a fix to the bug, which the CTP maintainers have in- period in February (days 39-59 in Figure 12.) CTP’s behav-
corporated into the recent TinyOS 2.1.1 release. ior in this particular 20-day period is representative of the rest

of PowerNet’s lifetime after deployment.

Table 9 shows high-level results following the methodol-

>We assume the CTP delivery for the days 39-59 to be represen- ~~ 0gy used in the CTP publication [7]. The PowerNet network
tative for the full deployment period. behaves differently than any of the studied testbeds. On one



8 Hops 1 2 3 4 5 6-20 20-190

5 7 Fraction 39% 42% 16% 2.6% 057% 0.039%  0.0051%
3 6 Table 10. Distribution of CTP packet path lengths.
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Figure 14. Average packet delivery cost over 20 days.

Weeknights and weekends show lower cost due to the . 2/18/2010-2/25/2010 . .
availability of more efficient and stable paths. Cost of 1 ~~ Figure 16. Churn for one node over a six day period.
is optimal. Weekday afternoons and evenings show higher churn

than weeknights and weekends.

8

5 7 send a beacon every 15 minutes or less, 15% of the nodes
T 6 Control (10.8%) send over ten times this many. As these high-traffic nodes are
= typically also forwarding many data packets, CTP’s uneven
8 5 control load can impose an even higher energy burden in low-

8 4 power networks and harm network lifetime.
< 3 Data (89.2%)
= , 6.4 Daily and Weekly Cycles of Churn@)

“ . Table 9 shows that CTP observes significant parent churn
Mid 4AM 8AM Noon 4PM SPM Mid even during a stable, long-term deployment. This churn could

2/9/2010 be because CTP topologies are inherently unstable even in a

Figure 15. CTP’s packet delivery cost over one day; a Stable environment, or because the underlying environment
value of 1 is optimal. itself 1s unstable. Figure 16 shows a 14-day time series of

one node’s parent change rate with clear daily and weekly
trend. During working hours, the node experiences much

hand, its cost per path length of 1.04 indicates that intermedi- higher churn, up to 90 parent changes/minute. Furthermore,
ate link are rarely used. (on average out of 104 packets only he peaks on the weekend are shorter and smaller than week-
4 were retransmission), making it similar to testbeds such as days. In the absence of human activity, churn is fairly con-
Mirage. On the other hand, its high average churn rate of 5.04 Stan, at approximately 6 parent changes per hour.
per hour makes it similar to harsher testbeds such as Mote-
lab. This indicates that while PowerNet has many high qual- «3 4s

ity links, those links come and go with reasonable frequency, 6.5 Datapath Validation
CTP’s average delivery ratio was 96.9% and only five out CTP data packets contain a Time Has Lived (THL) field,

of the 85 nodes reported delivery ratio below 90%. Two of ~~ which increments on each hop. Measuring THL at the gate-
these nodes were near many other wireless nodes, while an- way allows us to measure how many hops packet traverse in
other two were in the corner, possibly using longer links. The the network. Table 10 shows a distribution of path lengths.
principal cause of packet loss is retransmission failure: CTP ~~ Most packets fall in the range of 1-5 hops, one in 2,600 pack-
drops a packet after 30 attempts to transmit it on a single link. ets takes 6-20 hops, one in 20,000 packets takes 20-190 hops,

Figure 14 shows CTP’s average cost (transmissions/deliv- and with one packet out of over 15,400,000 taking 190 hops.

ery) over a 20 day period divided into data transmissions and The small percent of high THL packets stem from CTP’s
control beacons. While the average cost is below 2, the mid- datapath validation algorithm. CTP uses data packets to vali-
dle of workdays can see the cost climb as high as 4.5, as the date and repair its topology. When a node detects the cost gra-
network adapts to topology changes. Figure 15 shows the dient is not decreasing, it sends beacons to repair the topol-
same plot for a single work day. On this day, the costrises as ogy but forwards packets normally. This algorithm allows
high as 6, and control beacons constitute 10.8% of the packets CTP to quickly detect potential loops in the network, but
sent. The peak in Figure 15 is higher than those in Figure 14 does not necessarily repair them quickly. Correspondingly,
due to longer averaging intervals. some packets take a very large number of hops to repair. The

CTP’s control traffic rate is bimodal. While 85% of nodes longest loop was 190 hops and was repaired in 7.7 seconds.



A —— of even somewhat common node reboots. The CTP authors
I ssaannnnnnnnnnnnnaaiif have incorporated our fix into the standard implementation.

Reboot Beacon Inferred Losses 7 Di .
Figure 17. Visual depiction of CTP link estimation bug. 15cussion
On reboot, the link estimator infers a sequence number PowerNet’s extensive power and utilization measurements
0 packet as a long string of failures, raising the link cost reveal how different parts of a computing infrastructure con-
high enough that CTP will not use it. tribute to total power cost. This section discusses several ap-

proaches which can help reduce power consumption.

6.6 Duplicate Suppression 71 Interventions

We find that overall 1.7% of the packets received at the While energy-efficiency improvements have the great-
basestation were duplicates. Packets from eight nodes had a est potential to reduce power consumption, educating users
duplication rate above 3.7%. During our 90-day deployment, should not be under-estimated. Section 3 showed that small
due to misconfiguration, we deployed two nodes with ID 185 changes in how we use LCD screens can lead to 20% sav-
in two different areas of the network. The two nodes continue ings. We have found that informing users about the power
to report readings to the basestation but there are twice as draw of their monitors and giving suggestions on how they
many packets logged at the server. These packets elude CTP can conserve energy has affected behavior positively.
duplicate suppression due to two reasons. First, these two In the future we anticipate expanding these efforts in sev-
nodes often do not share a path. Second, the packet signature eral ways. One is to have an interactive display that allows
used for duplicate detection includes node ID, sequence num- building occupants to dig through the data, exploring it in a
ber, and number of hops but the latter two are rarely the same way that interests them. Such engagement with real-world
between packets of the two nodes. data brings attention to energy consumption. In addition, we

. . . plan to make individual data available to users who volunteer
6.7 Link Estimation Bug to participate in the PowerNet monitoring. Power data will al-
We encountered one bug while deploying CTP that existed ways be tied back to utilization to remind people of situations

in CTP’s four bit link estimator (4B) [12]. We observed the ~~ 1n Which energy is wasted.
bug during test deployments in December of 2009 and it did

not affect the real 90 day deployment presented here. 7.2 Policy Changes

the bug bo rob when a mote reboots and other mo es do In addition to educating individual occupants, our work
ay cose t . ytd as Coext ow Of anya has provided insights to the administrative and IT staff in the
n the i“ when Le pe re oo Is causes : en- building. Simply providing detailed data of power usage has
hs> ogy to collapse and encounter the count-to-infinity prompted the staff to think about possibilities for savings.

Th b ; h he Tink esti handles b For example, Section 3 briefly mentioned that staff ma-
© bug stems Irom how the fink estimator handles bea- chines are required to be powered on at night so data backups

con packets. When CTP sends a beacon, the link estimator can complete. These backups can also be observed in Fig-
adds 4 header and a variable A.ber of footer Stes, The ure 10 by noticing the daily traffic spikes, for example the
~ er contains de The NE no oe mer oe ones shortly after midnight. We learned that different groups
y sequence number gaps. The arthmelc, ROWEVEr, 1s suc of machines had different start backup times but no machine

that if a node reboots and sends sequence number zero, nodes had to be on for more than one hour. We pointed out that
assume that all packets between the last one heard and 0 were : :

lost. as shown ne Fioure 17. Such a lone strine of losses powering staff machines 24-7 was wasteful since they were
’ ) sure 17. g g never needed for more than approximately 12 hours a day.

causes the link cost to climb far above the cutoff threshold The suggestion we heard back was that backups could occur
po. will on The uly thing ha can bring the ne Cost during the lunch hour. Instead, we plan to propose that Wake-
OWI 15 a TONg SCHES O1 TECClVEE DEACONS.  HOWEVEL, > on-LAN is used in conjunction with the backup system. The

adaptive beaconing means that it can take hours to days for a scripts that currently run can be modified to wake a machine
tongNIgh sequence. | h des th b before the backup and put it back to sleep one hour later. Thehis bug 1s not particular to the root. No es that reboot current backup policy is causes at least 30 machines to waste
will not be chosen as parents. If a network is dense enough, 32 kWh every day, costing $130 a month
the removal of one parent does not greatly harm the topol-
ogy, as nodes can route around it. It is worth noting that the . .
CTP publication evaluated the effect of node failures on per- 7.3 Technical Alternatives
formance, but not reboots. By far, the most effective way to reduce energy consump-
We fixed this bug by capping the number of losses a se- tion of computing systems is to shut them down when they

quence number gap can infer to 10. Doing so caps how far in are not needed. Section 3 showed that personal computers
history CTP considers sequence numbers, causing it to lend constitute 16% of the building’s energy consumption, while
more weight to the recent reception than the prior losses. In- Section 4 showed they are rarely used for more than 12 hours
corporating this fix allows CTP to operate properly in the face a day. The energy consumption data suggests that turning idle



100 - Equipment Purpose Power

a 26 SunRay Clients 1, 1G, 2FS client 26x30 W

3 80 - 2 SunFire X4200 Server server  2x550W
5 under 5.0% CPU B 1 SunFile V420 file system 1 x320W

© 60 - ANA 2 Sun StorEdge T3 storage 2x 450 W
0 A -—> CTR — Total: 3100 W
> 40 -

> c |Under1.0% Table 12. Terminal-style clients with Sun servers are
20 - an alternative approach to desktop-centered computing.

© ——( Preliminary analysis shows that such a setup is as or more
0: efficient than individual desktops.
0 10 20 30 40 50 60

Duration of Idle Period (mins)

Figure 18. Different interpretations of ‘idle’ lead to vary- cards have high baseline power draw. So is there another
ing energy savings. Even conservative estimates such as ~~ Way to get close to the low consumption that proportional-
25 minutes at CPU of 1% or lower can lead to over 50% ity achieves? Since desktops are highly over-provisioned in
reduction on energy use. many cases a less-powerful and less power-hungry machine

could match user workload better. Table 11 present calcu-

Energy Consumption High-end machine  Low-end machine lation that apply the first desktop’s utilization trace on a ma-
A Y—-N¥S—Ys chine that draws only about half of the power but has the same

current 38.6 kWh 16.8 kWh processing resources.
dlesleep 14.6kWh 0-7kWh The conclusion is that in many cases there are simpler
power proportional 2.0 kWh 1.2 kWh .

EE  ——— —————— = changes that can lead to great savings. For example, by
choosing a lower-power machine and putting it to sleep, one

Table 11. The same user workload can result in differ- can reduce consumption by 6 times without the complexity
ent energy consumption based on the type of machine and of designing an energy proportional machine. As Section 4
sleep policies being used. A less over provisioned, low-end showed, desktops are rarely fully utilized so CPU needs will
dekstop with idle sleep mode can reduce consumption by ~~ De met even by a lower-power machine.
6 times over a more powerful machine that never sleeps. The low utilization of desktops leads to yet another com-

puting alternative. Currently, most users work on dedicated
machines, physically present in the office. In addition to

machines off could reduce the building’s energy consumption those, many people also connect to server machines via SSH.
by 8% — $3,600 a month. A different academic department at a European univer-

To illustrate this point we analyze a week-long trace of ~~ Sity does things in a less distributed way. They have set up
power and CPU for a student desktop. This is the same data ~~ @ Sun client-server system where clients have minimal pro-
trace presented earlier in Figure 9. How would the desktop’s ~~ cessing and storage and instead act as dumb terminals. Ta-
energy consumption change if the machine was in sleep state, ble 12 shows the equipment used to support the computing of
drawing 5 watts, when it was idle? We define idle as ‘using ~~ 26 people — 1 professor, 3 post-docs, 4 admins, and 18 PhD
W% CPU or less for X minutes and longer’. Figure 18 shows Students. The power draw for the Sun server setup is approx-
the calculated saving for different values of X and W. imately 120 watts per person and is believe to also be under

For example, if the machine is put to sleep after 10 minutes utilized. among other benefits a thin-client approach will also
of CPU utilization under 1% (Point A in the Figure), the en- take advantage of high network bandwidth availability.
ergy consumption over a week will be 60% less if the machine

stayed awake. Defining ‘idle’ as CPU of 5% or lower results 8 Related Work
in 70% saving for even the longest timeout values (point B.)

For this specific machine, the difference between staying un- Historically, the phrase “energy metering” has referred to
der 0.5% and 1% CPU is significant — with a threshold of 1% the coarse-grained measurements provided by spinning ana-
CPU usage we can still save almost 50% of energy consump- log dials outside a structure, read once a month. New meters
tion for idle periods of 30 minutes of fewer. monitor consumption at the individual device, power strip,

Taking the analysis one step further, we compare a smart or whole-house levels [1, 5, 10], and some log data through
idle approach to an energy proportional system. The results wired Ethernet, low-power wireless, or even the power lines
in Table 11 are from the same data trace as the previous ex- they measure. PowerNet uses a modified version of the ACme
periment. This desktop consumed 38.6 kWh in one week; if ~~ meter design [14], which provides wireless connectivity and
it were put to sleep after 5 minutes of CPU of 1% or less, it open access to both software and hardware.

would have consumed only 14.6 kWh. With an energy pro- Power monitoring deployments differ by the scale at which
portional system consumption is only 2kW. data is measured. The Green Soda project [14] takes a fine-

Energy proportionality in desktops is hard to achieve be- grained approach. It monitors about 30 individual devices and
cause components such as processors, disks, and graphics several power strips, along with light sensors, which the infer



power consumption of overhead lighting. The Green Soda power data, one can construct a reasonably accurate quan-
project demonstrated the feasibility of an indoor wireless titative breakdown. Precise extrapolation requires knowledge
monitoring infrastructure. The similar PowerNet project [15] of how individual devices within a class compare. For ex-
presents initial insight into the power and utilization of com- ample, desktop power shows high variation, up to 10x, and
puting systems, with mostly wired meters. thus dense instrumentation is needed. On the other hand, net-

PowerNet builds upon the Green Soda and PowerNet work power draw is constant over time so only a few sensor
projects in several ways. The system measures more de- readings suffice.
vices and a greater variety of computing devices, over a much We find that desktops and servers account for 46% of the
longer time period. The addition of utilization meters enables building’s electricity consumption, monitors account for 7%,
correlated power and utilization measurement, which enables and networks for 3%. While these numbers might differ for
us to draw conclusions about efficiency, not just the break- other office buildings, our methodology and high-level in-
down of energy usage. The wireless deployment is unusally sights will remain valuable. They guide our understanding
dense, and our experiences with its performance and oper- of how to have meaningful impact on reducing energy con-
ation can provide guidance for future power monitoring ef- sumption.
forts, as well as indoor sensor deployments. Therefore, the final challenge is turning quantitative anal-

Other green computing projects have looked into the chal- ysis into qualitative comparisons, recommendations for com-
lenges of visualizing power data and presenting it to build- puter system design — and even purchasing guidelines. On
ing residents. Energy dashboards [3, 4] and websites [2, 9] this front, we claim no complete answers, only initial insights.
summarize and compare power usage data in order to encour- The energy breakdown shows where to focus efforts, while
age savings. Many universities have taken advantage of dash- the correlated power and utilization measurements highlight
board software to educate students living in dorms, gener- areas of inefficiency. Specifically, we show that determin-
ally with measurements at the granularity of one floor or the ing idle state and transitioning PCs to a low-power mode can
whole building. The Energy Dashboard Project at UCSD [8] have a dramatic impact. Another example is monitors; the
covers academic buildings with one to four aggregate me- data showed a harmless way to save energy. The fact that a
ters in each building. Such data is useful when comparing few offices have actually our suggstions, resulting in energy
power consumption between buildings and looking for high- savings encourages us to continue building out the deploy-
level trends in the data. However, aggregate power goes not ~~ ment and mining the data.
identify the parts of the building or the types of devices that
are wasting energy. While not the focus of this paper, Power-
Net has also joined in the effort, with a website and display in
the lobby. Unlike other dashboards, ours includes utilization
data to highlight wasted energy. 10 References
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