An Empirical Investigation of Opportunistic Programming:
Interleaving Web Foraging, Learning, and Writing Code

Joel Brandt!-2, Philip J. Guo', Joel Lewenstein', Mira Dontcheva?, Scott R. Klemmer!

!Stanford University HCI Group
Computer Science, Stanford, CA 94025
{jbrandt, pg, jlewenstein, srk} @cs.stanford.edu

ABSTRACT

This paper investigates the role of online resources in prob-
lem solving. We look specifically at how programmers—an
exemplar form of knowledge workers—opportunistically in-
terleave Web foraging, learning, and writing code. We de-
scribe two studies of how programmers use online resources.
The first study, conducted in the lab, found that program-
mers leverage the Web with three distinct intentions: They
engage in just-in-time learning of new skills and approaches,
they extend their skills, and they strategically delegate their
memory to online resources. The results also suggest that
queries for different purposes have different styles and du-
rations. Do query styles robustly vary with intent, or is this
result an artifact of the particular lab setting? To address this
question, we analyzed a month-long set of Web queries to
a commercial programming framework’s online information
sources. In this dataset, query style also corresponded to in-
tent. These results contribute to a theory of online resource
usage in programming, and suggest opportunities for tools
to facilitate opportunistic programming.

Author Keywords
opportunistic programming, prototyping, copy-and-paste

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User
Interfaces—prototyping; user-centered design

INTRODUCTION

“Good grief, I don’t even remember the syntax for forms!”
Less than a minute later, this participant in our Web pro-
gramming lab study had found an example of an HTML form
online, successfully integrated it into her own code, adapted
it for her needs, and moved onto a new task. As she con-
tinued to work, she frequently interleaved foraging for in-
formation on the Web, learning from that information, and
authoring code. Over the course of two hours, she leveraged
the Web 27 times, accounting for 28% of the total time she
spent building her application. This participant’s behavior
is indicative of programmers’ increasing use of the Web as
a problem-solving tool. How and why do people leverage
online resources while programming?

Web use is an integral part of a broader, opportunistic
approach to programming, where programmers emphasize
speed and ease of development over code robustness and
maintainability [4, 11, 6]. Programmers do this to prototype,
ideate, and discover—to address questions best answered by

2Adobe Systems
601 Townsend, San Francisco, CA 94103
mirad @adobe.com

creating a piece of functional software. This type of pro-
gramming is widespread, performed by novices and experts
alike: it happens when designers build functional prototypes
to explore ideas, when scientists write code to control their
laboratory experiments, when entrepreneurs assemble com-
plex spreadsheets to better understand how their business is
operating, and when professionals adapt Agile development
methods to build applications quickly [4, 6, 28, 24].

Opportunistic programming is often (though not exclu-
sively) undertaken by non-professional programmers, many
of whom are called “end-user” programmers [19, 20, 25, 8].
These users frequently tailor and “mash-up” existing sys-
tems to create applications that better meet their needs [22,
31]. Scaffidi, Shaw, and Myers estimate that in 2012 there
will be 13 million people in the USA that describe them-
selves as “programmers”, while the Bureau of Labor Statis-
tics estimates that there will only be 3 million “professional
programmers” [28]. Programming by modification has long
been part of the end-user programming world view [20]. It is
well known that programmers create new systems by mod-
ifying existing ones, and recent papers provide indications
that programmers are using the Web to find components [30,
13]. This paper contributes the first strong empirical evi-
dence of how programmers use Web resources in practice.

This paper presents the results of two studies that empiri-
cally investigate how users leverage online resources while
programming. The first study was conducted in the lab; we
asked 20 programmers to rapidly prototype a Web applica-
tion. The second study presents a quantitative analysis of
a month-long sample of Web query data; we estimate that
25,000 unique programmers produced the 101,289 queries
in the sample. We employed this mixed-methods approach
to gather data that is both contextually rich and representa-
tive of authentic behavior [10, 5]. The results of these stud-
ies demonstrate that online resources provide value for both
the learning and executing aspects of programming, and that
users approach these goals differently.

We begin this paper by describing its relationship to prior
work. Next, we cover the method and results of the two stud-
ies. We subsequently discuss the insights arising from these
studies and their implications for tool design. We conclude
by suggesting opportunities for future research.

RELATED WORK
Ko, Myers, and Aung performed an empirical study of learn-
ing barriers in end-user programming by observing 40 indi-

viduals new to programming as they learned to use Visual
Basic .NET over the course of a semester [17]. They arrive
at six classes of barriers—design, selection, coordination,
use, understanding, and information—and suggest ways that
tools could lower these barriers. This work is largely compli-
mentary to ours—while they provide insight into the prob-
lems that programmers face, there is little discussion of how
programmers currently go about overcoming these barriers.
We feel that Ko et al.’s findings could combine with ours to
help guide tool development for opportunistic programming.

The software engineering community has a long history of
looking at code cloning within software projects, both via
automated techniques [3, 9] and via an ethnographic ac-
count of this practice amongst professional software devel-
opers [16]. In general, this body of work is largely concerned
with reducing code copying to reduce maintenance costs in
large software systems [15], a concern that is far less rel-
evant to opportunistic programming. Nonetheless, many of
Kim et al.’s insights—most notably that it would be valuable
for tools to explicitly record and visualize dependencies cre-
ated when copying and pasting code—could prove valuable
when designing tools for opportunistic programming.

There has been recent interest in building improved Web
search for programmers, offering an indication that the Web
is an important resource used in this practice [30, 27, 13,
2]. To inform the design of one of these tools, Stylos and
Myers offer a description of how programmers may learn
APIs, based on observations of what they describe as three
“small programming projects” [30]. Specifically, they sug-
gest that programmers begin with initial design ideas, gain
a high-level understanding of potential APIs to use, and then
move on to concretize their design by finding and integrat-
ing examples, which may cause them to return to earlier
steps. The authors state that programmers use the Web in
several of these steps: gaining high-level understanding of
APIs, finding methods and examples, and integrating these
examples—and further state that the Web is used in very dif-
ferent ways for each step. This paper’s results largely sup-
port their intuitions, but in addition, we found that program-
mers leverage the Web in all of these steps, using tutorials
and examples to inspire and guide design.

As part of designing a Web search tool for programmers,
Hoffmann et al. manually classified 339 Web search ses-
sions about Java programming into 11 search goals (e.g. be-
ginner tutorials, APIs, and language syntax) [13]. We ex-
tend these findings to provide a clearer picture of how pro-
grammers go about performing these searches, and how they
leverage foraged Web content.

Several other systems use completely automated techniques
to locate or synthesize example code. XSnippet uses the cur-
rent programming context of Java code (e.g. types of meth-
ods and variables in scope) to automatically locate exam-
ple code for instantiating objects [27]. Somewhat similarly,
Mandelin et al. show how to automatically synthesize a se-
ries of method calls in Java that will transform an object of
one type into an object of another type, which is useful for
navigating large, complex APIs [23]. These techniques could
be leveraged to create semi-automated tools that keep the
user in the loop to support opportunistic programming.

Chatroom Features

1. Users should be able to set their username on the chat room page
(application does not need to support account management). [Username]

2. Users should be able to post messages. [Post]

3. The message list should update automatically without a complete
page reload. [asax update]

4. Each message should be shown with the username of the poster and
a timestamp. [Timestamp]

5. When the user first opens a page, they should see the last 10 mes-
sages sent in the chat room, and when the chat room updates, only
the last 10 messages should be seen. [History]

Figure 1. List of chatroom features that lab study participants were
asked to implement. The first four features are fairly typical; the fifth,
retaining a limited chat history, is more unique.

STUDY 1: OPPORTUNISTIC PROGRAMMING IN THE LAB
To understand how programmers leverage online resources,
especially for rapid prototyping, we conducted an ex-
ploratory laboratory study.

Method

We recruited 20 students (5 Ph.D., 4 Masters, 11 under-
graduate; 3 female, 17 male) from our university who were
proficient programmers. Each session lasted 2.5 hours; we
spent the first 15 minutes presenting the task to the par-
ticipant. We asked participants to prototype an AJAX-style
Web chatroom application using HTML, PHP, and JavaScript.
Participants were given a list of five features that the chat-
room should have (listed in Figure 1). The first four features
are fairly typical; the fifth, retaining a limited chat history,
is more unique. This feature was introduced so that par-
ticipants would need to do some amount of programming
even if they implemented other features by downloading and
installing an existing open-source chatroom application (3
participants did this). To encourage participants to work
opportunistically, they were instructed to think of this as a
hobby project, not as a school or work assignment where
they would be evaluated on programming style.

We provided the participants with a working execution envi-
ronment within Windows XP (Apache, MySQL, and a PHP
interpreter) with a “Hello World” PHP application already
running. They were also provided with several standard code
authoring environments (Emacs, VIM, and Aptana, a full-
featured IDE that provides syntax highlighting and code as-
sistance for PHP, JavaScript and HTML.) Participants were
notified ahead of time that they could bring any printed re-
sources they typically used while programming, and were
told at the beginning of the study that they were allowed to
use any resources they wanted while prototyping, including
any code on the Internet and any code they had written in the
past that they could access.

Participants reported an average of 8.3 years of program-
ming experience; all except three had at least 4 years expe-
rience. However, participants had little professional expe-
rience, with only one participant having spent more than 1
year as a professional software developer.

800
|

600
|

session length (num. seconds)
200 400
| |

°© T T T T T 1

0 60 120 180 240 300 360

session (sorted by length)

Figure 2. All 360 Web use sessions amongst the 20 participants in our
lab study, sorted and plotted by decreasing length (in seconds). The left
vertical bar represents the cutoff separating the 10% longest sessions,
and the right bar the cutoff for 50% of sessions. Dotted line represents
a hypothetical uniform distribution of session lengths.

When recruiting, we specified that participants should have
basic knowledge of PHP, JavaScript, and the AJAX paradigm.
However, almost all participants rated themselves as novices
in at least one of the technologies involved. Participants
were compensated with their choice of class research credit
(where applicable) or a $99 Amazon.com gift certificate.
Three researchers observed each participant. During each
session, one researcher asked open-ended questions such as
“why did you choose to visit that Web site?” or “how are
you going to go about tracking down the source of that er-
ror?” that encouraged think-aloud-style reflection at relevant
points in the programming process (in particular, whenever
participants used the Web as a resource). All researchers
took notes during these sessions. These notes were com-
pared after each session and at the end of the study to arrive
at our qualitative conclusions. Audio and video screen cap-
ture was recorded for all participants; we subsequently hand-
coded these videos to obtain data on the amount of time par-
ticipants used the Web.

Results

All participants made extensive use of the Web while pro-
gramming: on average, each participant used the Web 18
times (max = 40, min = 7, o = 9.1), for a total of
25.5 minutes, or 19% of the 135 minutes spent programming
(max = 68.8 minutes, 51%; min = 7.2 minutes, 5.3%;
o = 15.1 minutes).

Figure 3 presents an overview of participants’ Web usage
patterns throughout the study. This graph shows that par-
ticipants used the Web a great deal, and used it throughout
their programming process. Figure 2 shows that the distri-
bution of lengths of Web use sessions is highly non-uniform,
with the shortest half of Web use sessions (those less than
47 seconds) comprising only 14% of the total time spent on
the Web, and the longest 10% comprising 41% of the total
time. This indicates that individuals are leveraging the Web
to help solve several different kinds of problems. The major-
ity of these problems can be solved very quickly, but some

take a very long time to solve. Indeed, we found that un-
derstanding a programmer’s intention was paramount when
analyzing how they used the Web.

Three intentions behind Web use

Why do programmers go to the Web? It was immediately
apparent that every time a participant accessed the Web, he
had a clear goal. However, participants’ behavior varied dra-
matically between sessions. As we analyzed our results, we
found that understanding a programmer’s intention was key
to explaining his behavior. Based on our observations, we
propose a taxonomy of Web use intention, presented in Ta-
ble 1. This taxonomy breaks Web use into three categories:
learning new concepts, clarifying existing knowledge, and
reminding about specific implementation details.

In the remainder of this section, we examine each of these
intentions in turn. For each, we state typical behaviors ob-
served, present anecdotes from the study that support these
claims, and offer theoretical explanations for these actions.

Scaffolds for learning-by-doing

Opportunistic programming often involves learning unfamil-
iar technologies or paradigms [4]; in our study, participants
routinely leveraged the Web when doing so. Web sessions
typically started with searches used to locate tutorial Web
sites. These tutorials served as scaffolds for the programmer
to learn by doing.

Searching for tutorials: Participants’ queries usually con-
tained an English description of a problem they were facing,
often augmented with several keywords indicating the tech-
nology they hoped to use to solve the problem (e.g. php
or javascript). For example, study participants unfamiliar
with the AJAX paradigm would often perform a query like
update web page without reloading php. Query refinements
were common in this type of Web use, often before the user
clicked on any results. These refinements were usually driven
by familiar terms seen on the query result page.

Selecting a tutorial: Participants typically clicked several
query result links, opening each in new Web browser tabs,
before evaluating the quality of any of them. After several
pages were opened, participants would judge the quality of
each by rapidly skimming the page. In particular, several
participants reported using superficial features—e.g. preva-
lence of advertising on the Web page or whether code on
the page was syntax-highlighted—to evaluate the quality of
potential Web sites. When asked about what types of Web
pages she found to be trustworthy, subject 3 stated that “I
don’t want [the Web page] to say ‘free scripts!’, ‘get your
chat room now!’, or stuff like that. I don’t want that be-
cause I think it’s gonna be bad, and most developers don’t
write like that; they don’t use that kind of language.” This
assessing behavior is consistent with Information Foraging
Theory [26]—surface level Web page features are used as
“information scent” when evaluating multiple options.

Using the tutorial: Once programmers find a tutorial that
they believe will be useful, they often immediately begin ex-
perimenting with code it contains (even before reading the
prose). We believe this is because tutorials typically contain

o &
o &
\@ g &
s
[non Im] 72| 8| 6
[| R I mn I | (I | 92| 21| 6
[} | [[N I 95| 10| 6
% n [[| [| 102| 7| 9
o (] | (" [N ST O T N | | 142 | 18| 11
a | H 0l 1m (N [N (1 142 13| 2
2 Il I (T Iim || I 159 | 18| 17
= m| [| [1 | 162| 13| 5
S |/mmmmn m | 181| 8| 4
> | 'm0 mon m o om Bl W1 |243| 13| 21
e I T [T | Hl 1 mEl man 254 | 22| 24
2 [] nmm [RN | HEEE E R0 mn | | 268| 35| 9
& 11 N . [I m Wi 1 nm 302 | 17| 24
@ | mm e || [I T | n I I mm (303 13| 10
8 I | Wim I 1 || n 348| 11| 9
S Wl W o I W NWEEW W W on m m 36.3| 27| 29
CHE B AR | . [| mia n [EI N I 378| 27| 25
I 11 e e mn n tireem o m I | WIE mm 38.8| 40| 30
| NS E EE IIE = [. | 428 | 14| A
| (W I R NI O W 0 e f N e 68.8| 25| 33
0 15 30 45 60 75 90 105 120 135
minutes

Figure 3. Overview of when participants referenced the Web during the laboratory study. Subjects are sorted by total amount of Web usage. Web
use sessions are shown in blue, and instances of Web search are shown in orange.

a great deal of prose and programmers have trouble deciding
what is most worth reading. Said Subject 10: “I think it’s
less expensive for me to just take the first [code I find] and
see how helpful it is at ... a very high level ... as opposed to
just read all these descriptions and text.”

Additionally participants would often begin adapting this
code before completely understanding how it worked. Sub-
ject 15 described this, saying “there’s some stuff in [this
code] that I don’t really know what it’s doing, but I'll just
try it and see what happens.” He then copied four lines into
his project, immediately removed two of the four, changed
variable names and values, and tested 1.5 minutes later by
reloading his chatroom application Web page. This learning-
by-doing approach had one of two outcomes: it either re-
sulted in deeper understanding, mitigating the need to read
the tutorial’s prose, or it isolated challenging areas of the
code, guiding a more focused reading of the tutorial’s prose.

Previous research has examined learning-by-doing through
the lens of ACT-R. Cox and Young developed two ACT-R
models to simulate a human learning the interface for a cen-
tral heating unit [7]. The first model was given “‘how-to-do-
the-task’ instructions” and was able to carry out only those
specific tasks from start to finish. The second model was
given “‘how-the-device-works’ instructions,” (essentially a
better mapping of desired states of the device to actions
performed) and afterwards could thus complete a task from
any starting point. Placing example code into one’s project
amounts to picking up a task “in the middle”. We suggest

that when participants experiment with code, it is precisely
to learn these action/state mappings.

Anecdotally, we observed that approximately 1/3 of the code
in participants’ projects was physically copied and pasted
from the Web. This trend of programming by example modi-
fication has been observed elsewhere. In one study, Yeh and
colleagues analyzed code written by students learning to use
a Java library that was bundled with example code. Among
17 students’ projects, they located 159 occurrences of mod-
ified examples [32].

Clarification of existing knowledge

During our study, participants often faced problems where
they knew how to implement something at a high level (i.e.
in pseudo-code), but did not have enough knowledge to im-
plement it in the current programming languages. They did
not know, for instance, the names of relevant library func-
tions or the appropriate syntax to use—some piece of clar-
ifving information is needed to enable them to use their ex-
isting knowledge. The example given in the introduction is
representative of how programmers use the Web for clari-
fication: the participant completely understood how HTML
forms worked, but could not write one from scratch.

Uses of the Web for clarifying differ from uses for learning
in two important ways. First, users are searching for an im-
plementation, not a guide that tells them Zow to implement
something. They know exactly how code works when they
find it, and have no trouble adapting it to their needs. Sec-

‘WEB SESSION INTENTION:

LEARNING

CLARIFICATION

REMINDER

Reason for using Web

Just-in-time learning of
unfamiliar concepts

Connect high-level knowledge

to implementation details

Substitute for memorization (e.g., language
syntax or function usage lookup)

Web session length Tens of minutes ~ 1 minute < 1 minute
Starts with web search? Almost always Often Sometimes
Search terms English words related Mix of English and code, Mostly code (e.g., function

Example search

to high-level task
ajax tutorial

cross-language analogies
javascript timer

names, language keywords)
mysgl_fetch.array

Num. result clicks
Num. query refinements

Types of webpages visited

Usually several
Usually several

Tutorials,
how-to articles

Fewer
Fewer

API documentation,
blog posts, articles

Usually zero or one
Usually zero

API documentation,
result snippets on search page

Dozens of lines

Several lines

None or one-liners

Amount. of code copied

from Web (e.g., from tutorial snippets)

Immediately test copied code? Yes

Not usually, often trust snippets Yes

Table 1. Summary of characteristics of the three intentions we identified for Web usage during opportunistic programming.

ond, these uses occur much more rapidly. While learning to
program using the AJAX paradigm can take tens of minutes,
clarifying one’s understanding of HTML form syntax takes
less than 60 seconds.

Searching the Web to clarify: Clarification uses are typi-
cally driven by Web search because programmers are often
unsure of the exact name of what they are searching for. We
observed that Web search works well for this task because
“synonyms” of the correct programming terms often appear
in online forums and tutorials. Subject 18, for example, used
a third-party JavaScript library named PROTOTYPE, which
he had used in the past but “not very often,” to implement
the AJAX portion of the task. He knew that AJAX worked
by making requests to other pages, but he forgot the exact
mechanism through which PROTOTYPE allowed this to hap-
pen. He searched Google for prototype request. When the
experimenters asked, “Is ‘request’ the thing that you know
you’re looking for, the actual method call?” he replied, “No.
I just know that it’s probably similar to that.”

When compared with queries issued for learning uses,
clarification queries contain more programming-language-
specific terms. Often, however, these terms are not from the
correct programming language! We found that programmers
often make language analogies, saying things like “Perl has
this functionality, so PHP must as well”. For instance, we
saw several subjects search for JavaScript thread. While
JavaScript does not explicitly contain threads, it supports
similar functionality through interval timers and callbacks.
All participants who performed this search quickly arrived
at an online forum or blog posting pointing them to the cor-
rect function for setting periodic timers: setInterval.

Testing copied code (or not): When code is copied from
the Web during clarification uses, it is often not immediately
tested. Participants typically trusted code found on the Web,
and indeed, it was typically correct. However, they would
often make minor mistakes when adapting the code to their
needs (e.g. forgetting to change all instances of a local vari-
able name). They would then work on other functionality
before testing, so when they finally tested and encountered
bugs, they would often erroneously assume that the error was

in recently written code, making such bugs more difficult to
track down.

Using the Web to debug: The Web is also often used for
clarification during debugging. Often, when a programmer
encountered a cryptic error message, he would immediately
search for that exact error on the Web. For example, Sub-
ject 11 received an error that read, “XML Filtering Predicate
Operator Called on Incompatible Functions.” He mumbled,
“What does that mean?” then followed the error alert to a
line number which contained functions previously copied
from the Web. The code did not help him understand the
meaning of the error, so he entered the full text of the error
into Google. The first site he visited was a message board
with a line saying “This is what you have:”, followed by the
code in question and another line saying “This is what you
should have:”, followed by a corrected line of code. With
this information, the subject returned to his code and suc-
cessfully fixed the bug.

Reminders about forgotten details

Even familiar functionality is not always known completely.
Participants often did not remember low-level syntactic de-
tails, like whether a method name contained underscores or
in written in camelCase, or the correct order of clauses in a
complicated SQL statement. For example, Subject 10 was in
the middle of writing one such SQL statement. Immediately
after typing ORDER BY respTime, he switched to Google
and searched for mysqgl order by. He said that he “want[ed]
to see the syntax of the ‘order by’ [clause].” He clicked on
the second link, scrolled halfway down the page, and read a
few lines. Within ten seconds he had switched back to his
code and added LIMIT 10 to the end of his query. In short,
when programmers use the Web for reminding about details,
they know exactly what information they are looking for, and
often know exactly what page they intend to find it on (e.g.
official API documentation).

Searching (or not) for reminders: With learning and clari-
fication uses, subjects almost always begin by performing a
Web search—this is not always the case with reminder uses.
Participants often kept select Web sites (such as official lan-

guage documentation) open in browser tabs to use for re-
minders when necessary, This is why many of the brief Web
use sessions in Figure 3 do not begin with a Web search.

Web search, however, is occasionally instrumental in making
a reminder use efficient. For example, a programmer may
forget a word in a function name. A Web search will quickly
confirm the exact name of the function simply by browsing
the snippets in the results page. This is why many brief Web
sessions in Figure 3 only contain a Web search.

The Web as an external memory aid: Several partici-
pants reported using the Web as an alternative to memoriz-
ing routinely-used snippets of code. One subject browsed
to a page within PHP’s official documentation that contained
six lines of code necessary to connect and disconnect from
a MySQL database. After he copied this code, a researcher
asked him if he had copied it before. He responded, “[yes,]
hundreds of times”, and went on to say that he never both-
ered to learn it because he knew it would always be there.
We believe that in this way, programmers can effectively dis-
tribute their cognition [14], allowing them to devote more
mental energy to the higher-level tasks of programming.

STUDY 2: WEB SEARCH LOG ANALYSIS

Do query styles in the real world robustly vary with intent, or
is this result an artifact of the particular lab setting? To inves-
tigate this, we analyzed Web query and result click logs from
approximately 25,000 programmers making 101,289 queries
about the Adobe Flex Web application development frame-
work during the month of July 2008. These queries came
from the Community Search portal on Adobe’s Developer
Network Web site, which indexes official Adobe documen-
tation and 3rd-party articles, blogs, forums, and other Web
pages that have been vetted by technical writers at Adobe [1].

Method

We began our log analysis by generating a set of hypotheses
about programmer search behavior based on our observa-
tions from our lab study. (These hypotheses are stated in the
Results section below.) Evaluating several of these hypothe-
ses required data about search intention, which was clearly
not present in the raw logs. To address this, we used an
approach common in query log analysis (e.g. [18]): We be-
gan by hand-coding 300 search sessions according to user
intention. When evaluating a hypothesis, we then used the
hand-coded data to understand what sessions relevant to the
hypothesis looked like structurally (e.g., lexical structure of
queries, session length, and types of Web sites visited) and
leveraged this information to examine the entire log corpus.

In the remainder of this section, we detail the machinery
used to analyze the logs.

Pre-processing

We pre-processed the logs to group queries into search ses-
sions. The raw logs contain only query and result click
events. All events consist of a timestamp and an anonymized
version of the user’s IP address. Each query event is suc-
ceeded by zero or more result click events which contain the
URLSs that users clicked on after performing the query.

We combined these events into sessions by grouping all
events by IP address, sorting by time, and then partitioning
the events for each IP address. A session is defined as the
longest sequence of consecutive query and result click events
such that no adjacent events had a time gap greater than six
minutes (similar to the technique used in previous query log
analyses, e.g. [29]). Pre-processing resulted in 69,955 total
search sessions. When hand-coding a subset of the data (de-
scribed below), we verified that this method of computing
sessions worked well: only 7% of sessions appeared to have
multiple unrelated queries. This also confirmed that log pol-
lution from HTTP proxies was not a problem. (Users access-
ing the Web through an HTTP proxy all appear to have the
same IP address, which creates problems if two users using
the same proxy perform queries at the same time.)

Hand-coding sessions

After pre-processing, one researcher hand-coded 300 ses-
sions using the intention taxonomy developed in our lab
study. Initially, we had hoped to classify the intention of
each session into one of three categories: learning, clari-
fication, or reminder (identical to those summarized in Ta-
ble 1). However, due to the lack of contextual information,
it was very difficult to differentiate between clarification and
reminder sessions.

We took two additional steps to improve coding accuracy:
First, we randomly selected active users of the search portal
(users with between 10 and 40 sessions during the month),
and coded all sessions for each of the selected users. By in-
specting all of a user’s sessions, we were able to estimate his
overall proficiency with the Flex framework, thus giving us
a clearer picture of the intention behind his individual ses-
sions. Second, we chose to place each session into one of
four categories: learning, reminder/clarification, unsure (re-
searcher could not accurately determine intention), and mul-
tiple unrelated queries (when it was clear that two distinct
sessions about different topics were incorrectly grouped be-
cause their events were less than six minutes apart).

We were able to confidently determine intention for 84% of
sessions; among these, we found 22% were learning ses-
sions and 78% were reminder/clarification sessions. We were
unsure of intention for 9% of the sessions, and 7% appeared
to have multiple unrelated queries.

Analysis

To evaluate our hypotheses, we found it useful to compute
several properties about the search sessions. These proper-
ties are listed below; the Appendix gives a description of
how we computed each property.

1. Types of queries performed — did search terms contain
only code (terms specific to the Flex framework, such as
class and function names), only words, or a mix of both?

2. Ways that queries were refined — between consecutive
queries, were search terms generalized, specialized, oth-
erwise reformulated, or changed completely?

Type of Session type All
first query learning reminder/clarification | hand-coded
code-only 0.21 0.56 0.48
words+code 0.29 0.10 0.14
words-only 0.50* 0.34 0.38
Total 1.00 1.00 1.00

Table 2. For hand-coded sessions of each type, proportion of first
queries (252 total) of each type (significant majorities across each row
in bold, * entry means only significant at p < 0.05).

Result click Session type All
‘Web page type learning reminder/clarification | hand-coded
Adobe APIs 0.10 0.31 0.23
Adobe tutorials 0.35 0.42 0.40
tutorials/articles 0.31 0.10 0.17
forums 0.06 0.04 0.05
other 0.18 0.13 0.15
Total 1.00 1.00 1.00

Table 3. For queries in hand-coded sessions of each type, proportion of
result clicks (401 total) to Web sites of each type (significant majorities
across each row in bold).

3. Types of Web pages visited — we sorted all 19,155 result
click URLs by number of visits and classified each into one
of these categories (starting with most frequently-visited
sites) until we accounted for 80% of all visits:

e Adobe APIs: official Adobe API documentation

e Adobe tutorials: tutorials on Adobe Web site, many
containing example code snippets

o tutorials/articles: reputable, high-traffic tutorials and
how-to articles that are not on Adobe’s Web site

e forums: forums, mailing lists, and bulletin boards

(A final category, other, contains the 8246 least frequently-
visited pages, collectively accounting for 20% of visits.)

Results

We begin this section by listing our hypotheses and detailing
our findings. Based on these results, we found it interesting
to take a broader look at how programmers make and refine
Web search queries, and what types of Web sites they choose
to visit; we report on this at the end of this section.

We used the Mann-Whitney U test for determining statis-
tical significance of differences in means and the chi-square
test for determining differences in frequencies (proportions).
Unless otherwise noted, all differences we present as “signif-
icant” are statistically significant at p < 0.001.

H1: Learning sessions have more query refinements and
more total result clicks than other types of sessions.

Hand-coded learning sessions have significantly more re-
finements (¢ = 0.64) than reminder/clarification sessions
(u = 0.30). Similarly, learning sessions have significantly
more result clicks (4 = 1.52) than reminder/clarification
sessions (4 = 1.0). These findings correlate well with two
behaviors we observed during the lab study: When partic-
ipants went to the Web to learn, they first clicked on some
results to determine how to refine their query. Then once
their query was sufficiently refined, they clicked on several
pages and selected the best candidate from that refined set.

H2: Learning sessions often begin with queries contain-
ing only words (i.e. not code).

Hand-coded learning sessions begin with significantly more
words-only and words+code queries than code-only queries.
See Table 2 for specific values.

H3: Refinements of learning queries often occur with-
out prior result clicks (suggesting that people learn from
snippets on the search results page) and transition from
words-only to queries with a mix of words and code.

We found no statistical support in the hand-coded sessions
for this hypothesis. However, out of all sessions, those with
words-only first queries (a characteristic of learning queries)
were most likely to have no result clicks in first query (39%
of sessions versus 30% for words+code, 26% for code-only).

H4: Programmers are more likely to visit official Adobe
API documentation in reminder and clarification sessions
than in learning sessions.

Programmers are significantly more likely to visit official
API documentation during reminder/clarification sessions
than during learning sessions (Table 3).

More interestingly, among reminder/clarification session,
42% of the result clicks are to official Adobe tutorials. There
are two possible explanations: First, the search results page
may not contain enough information for programmers to de-
termine that a page is a tutorial, and thus they might mistak-
enly visit a tutorial page. Second, programmers may realize
that the page is a tutorial, but assume that it contains exactly
the code they are looking for. From the query logs alone, it
is impossible to determine which is the case. We did not ob-
serve either behavior during the lab study, but perhaps it was
because the official PHP documentation (used extensively
in the lab study) contains lots of example code, whereas
Adobe’s API documentation contains far less, thus forcing
programmers to turn to tutorials to find common snippets of
code.

HS: Reminder sessions typically start with code-only
queries and are rarely refined. These sessions also con-
tain the fewest number of result clicks.

We found it difficult to test this hypothesis given our dataset,
as we could not easily differentiate between reminder and
clarification sessions. However, among all sessions, those
beginning with code-only queries are refined significantly
fewer times (1 = 0.34) than those starting with words+code
(u = 0.60) and words-only (4 = 0.51); in other words,
when programmers perform code-only queries, they know
exactly what they are looking for, and typically find it on the
first search.

Interestingly, when manually looking through sessions, we
observed several occurrences of programmers refining what
appeared to be reminder queries. Typically, these refine-
ments added contextual details, such as the language they
were programming in or the version of the framework they
were using. Better tool support could have mitigated the
need for these refinements by automatically augmenting
queries with contextual information from the development
environment.

100

60000
I
80
1

40000
|
60
|

20000
1
40
1

% queries of each search term type
20
1

W code only
T [words and code
[words only
HE e —— o 4

2 3 4 5 6 7 8 2 3 4 5 6 7 8
query number within session query number within session

num. queries of each search term type

0
L

Figure 4. How query types change as queries are refined. Each bar
sums all ith queries over all sessions containing an ith query.

Refinement type
generalize new reformulate specialize spelling | All
0.44 0.61 0.51 0.39 0.14 0.48

Table 4. For each refinement type, proportion of refinements of that
type (31,334 total) where programmers clicked on on any links prior to
the refinement.

Programmers rarely refine queries, but are good at it

While evaluating the above hypotheses, we became inter-
ested in how programmers refined their queries, so we looked
at both how query types changed as queries were refined, as
well as the ways in which queries were refined.

Figure 4 gives an overview of how query type changes as
queries are refined. The graph on the left is a histogram
showing query types for the ith query in a session. That
is, the ith bar shows the total number of each type of query
when summing over all ith queries in all sessions that have
an ith query (e.g., the first bar is the highest since all 69,955
sessions have a 1st query). The graph on the right presents
the same data, but with each bar’s height normalized to 100,
so that it is easier to see the change in proportions as query
refinements occur.

There are two main conclusions we can draw from these
graphs. First, as one might expect, the distribution of re-
finements per session appears to roughly match a power law
distribution. Interestingly, sessions have, on average, 1.45
queries per session. This is significantly lower than for the
general population of searches — the lowest reported mean
we were able to find is 2.02 [29]. This indicates that pro-
grammers are relatively good at constructing precise queries.

Second, initial queries are most likely to contain only code
or only words, and the proportion of queries containing only
words stays roughly constant as refinements happen. One
possible explanation is that programmers search with words
only when they don’t know how to perform the search with
code. This explanation is reinforced by the fact that words-
only queries are most likely to stay words-only when re-
fined (65%), as opposed to 59% of words+code refining to
words+code, and 48% code-only to code-only.

Table 4 shows whether programmers clicked on results prior
to making refinements of each type. Relatively few people
click on results before making a specialize refinement, likely
because they look at the search result snippets, immediately

Result click query type All
Web page type code-only words+code words-only | clicks
Adobe APIs 0.38 0.16 0.10 0.23
Adobe tutorials 0.31 0.33 0.39 0.34
tutorials/articles 0.15 0.22 0.19 0.18
forums 0.03 0.07 0.06 0.05
other 0.13 0.22 0.27 0.20
Total 1.00 1.00 1.00 1.00

Table 5. For queries of each type, proportion of result clicks (107,343
total) leading programmer to Web pages of each type (significant ma-
jorities and near-ties across each row in bold).

deem them unsatisfactory, and specialize their queries to add
more detail. Programmers may also see little risk in “losing”
a good result when specializing — if it was a good result for
the initial query, it ought to be a good result for the more
specialized one. This hypothesis is reinforced by the rela-
tively high click rate before performing a completely new
query (presumably on the same topic) — good results may
be lost by completely changing the query, so programmers
click any potentially valuable links first. Finally, almost no
one clicks before making a spelling refinement, which makes
sense because people mostly catch typos right away.

Across all sessions and refinement types, 66% of queries
after refinements have result clicks, which is significantly
higher than the percentage of queries before refinements
(48%) that have clicks. This contrast suggests that refin-
ing queries generally produces better results; in other words,
when programmers need to refine their queries, they are
good at it.

Query type predicts types of pages visited

While evaluating the above hypotheses, it became clear that
query type was indicative of intention. As such, we won-
dered if it would also be indicative of types of pages visited.

Table 5 shows how query type influences the types of pages
programmers visit. This data provides some quantitative
support for the intuition that query type is somewhat indica-
tive of query intent. Namely, code-only searches, which one
would expect to be largely reminder queries, are most likely
to bring programmers to official Adobe API pages (38% vs.
23% overall) and least likely to bring programmers to all
other types of pages. In contrast, word-only queries, which
one would expect to be largely learning queries, are most
likely to bring programmers to official Adobe tutorials (39%
vs. 34% overall).

DISCUSSION

In this section, we first list the five key insights that come out
of our studies, and suggest how each of these insights could
be used to create more effective tool support for opportunis-
tic programming.

Five Key Insights and Implications for Tools

Programmers use Web tutorials for just-in-time learn-
ing, gaining high-level conceptual knowledge when they
need it. They often use a learn-by-doing approach when
leveraging tutorials, copying code and experimenting before
reading the tutorial’s prose. A tighter coupling of tutorials

and code authoring tools may better facilitate this code ex-
perimentation process—one system that offers insight into
what this might look like is d.mix [12]. In this system, a
Web site’s interface elements can be “sampled” to yield the
API calls necessary to create them. This code can then be
modified inside a hosted sandbox.

Web search often serves as a “translator” when program-
mers don’t know the exact terminology or syntax. Using the
Web, programmers can adapt existing knowledge by making
analogies with programming languages, libraries and frame-
works that they know well. The Web further allows pro-
grammers to make sense of cryptic errors and debugging
messages. Future tools could proactively search the Web for
the errors that occur during execution, compare code from
search results to the user’s own code, and automatically lo-
cate possible sources of the error.

Programmers deliberately choose not to remember com-
plicated syntax. Instead, they use the Web as external mem-
ory that can be accessed as needed. This suggests that Web
search should be integrated into the code editor in much the
same way as identifier completion (e.g., Microsoft’s Intel-
liSense and Eclipse’s Code Assist). Another possible ap-
proach is to build upon ideas like keyword programming [21]
to create authoring environments that allow the programmer
to type “sloppy” commands which are automatically trans-
formed into syntactically correct code using Web search.

Code copied from the Web is often not immediately tested,
especially when copying routine functionality (i.e., in clari-
fication or reminder sessions). As a result, bugs introduced
when adapting copied code are often difficult to find. To
help prevent the introduction of bugs, tools could assist in
the code adaptation process by, for example, highlighting all
variable names and literals in the pasted code to make sure
that they are changed thoroughly and consistently. To help
in locating and fixing bugs that still get through, tools could
clearly demarcate regions of code that are copied from the
Web and provide links back to the original source of the code
for later reference.

Programmers are good at refining their queries, but need
to do it rarely. Query refinement is most necessary when
trying to adapt their existing knowledge to new program-
ming languages, frameworks, or situations. This underscores
the value of keeping users in the loop when building tools
that search the Web automatically or semi-automatically. In
many cases, however, query refinements could be avoided
by building tools that automatically and in parallel augment
programmers’ queries with contextual information, such as
the programming language and frameworks in use and the
types of variables in scope.

CONCLUSIONS AND FUTURE WORK

We have presented empirical data on how programmers lever-
age and learn from the Web while programming. We believe
that Web resources will continue to play an increasingly im-
portant role in how programming gets done, and hope to see
increased work in the area of tool support. We have sug-
gested several directions for tools research in prior sections;
here we focus on several directions for further empirical in-
vestigation of opportunistic programming.

First, it would be interesting to better understand how a pro-

grammer’s own code is reused between projects. In other

fieldwork (not discussed in this paper), programmers reported
a desire to reuse code, but stated that it was difficult to do so

because of lack of organization and changes in libraries and

execution environments.

Second, we know very little about what motivates individ-
vals to contribute information, such as tutorials and code
snippets, to the Web. How might we lower the threshold
to contribution? Is it possible to “crowdsource” finding and
fixing bugs in code found online? Can we improve the ex-
perience of reading a tutorial by knowing how the previous
1,000 readers used that tutorial? These are just some of the
many open questions in this space.

Finally, how does the increasing prevalence and accessibil-
ity of Web resources change the way we teach people to
program? The skill set required of programmers is chang-
ing rapidly — they may no longer need any training in the
language, framework, or library du jour, but instead may
need ever-increasing skill in formulating and breaking apart
complex problems. Programming is becoming less and less
about knowing how to do something and more and more
about knowing how to ask the right questions.

ACKNOWLEDGEMENTS

We thank Rob Liebscher and Diana Joseph at Adobe for their
help in acquiring the Web query logs; Beyang Liu for his
help in coding video data from our lab study; Intel for do-
nating PCs for this research; and all of the study participants
for sharing their insights. This research was supported in
part by NSF Grant #0745320.

APPENDIX: SEARCH LOG ANALYSIS METHOD DETAILS

Determining Query Type

We first break the query search term into individual tokens
(splitting on whitespace). Then we run each token through
a series of classifiers to determine if it is code (i.e., Flex-
specific keywords and class/function names). The first clas-
sifier checks if the token is a (case-insensitive) match for any
classes in the Flex framework. The second classifier checks
if the token contains camelCase (capital letter in the middle
of the word), which is valuable because all member func-
tions and variables in the Flex framework use camelCase.
Third, we check if the token contains a dot, colon, or ends
with an open and closed parenthesis, all indicative of code.
If none of these classifiers match, we determine that the to-
ken is a (non-code) word.

Determining Query Refinement Type

We classified refinements into five types, roughly follow-
ing the taxonomy of Lau and Horvitz [18]: generalize re-
finements indicate that the new search modified the origi-
nal search by being its substring, by deleted words, or by
splitting a single word into multiple words; specialize re-
finements indicate that the new search was a superstring of
the original, added words, or combined several words to-
gether into one; reformulate refinements indicate that the
new search contains some words in common with the orig-
inal but is neither a generalize nor a specialize refinement;

new queries indicate that a completely lexically new query is
formed with no words in common to the original; spelling re-
finements indicate that spelling errors are corrected, as indi-
cated by Levenshtein distance between adjacent search terms
being less than 3.

Determining Web Page Type

We build regular expressions that match URLs of particular
types (e.g., official API docs, official tutorials, efc.). A few
Web sites, such as the official Adobe Flex documentation,
contain the majority of all visits (and can be described us-
ing just a few regular expressions), so we sorted all 19,155
result click URLs by number of visits and started classifying
most frequently-visited URLs first. With only 38 regular ex-
pressions, we were able to classify highest-traffic pages that
accounted for 80% of all visits. We did not hand-classify the
rest of the pages because the cost of additional manual effort
outweighed the potential marginal benefits.

REFERENCES
1. Adobe Flex Developer Center, 2008.
http://www.adobe.com/devnet/flex/.

2. S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes. Sourcerer: a Search Engine for Open Source Code
Supporting Structure-Based Search. In Companion to OOPSLA 2006:
ACM Symposium on Object-oriented Programming Systems,
Languages, and Applications, pages 681-682, Portland, Oregon,
2006.

3. 1. D. Baxter, A. Yahin, L. Moura, M. Sant’ Anna, and L. Bier. Clone
Detection Using Abstract Syntax Trees. In Proceedings of ICSM
1998: IEEE International Conference on Software Maintenance, page
368, Washington, D.C., USA, 1998.

4. J. Brandt, P. J. Guo, J. Lewenstein, and S. R. Klemmer. Opportunistic
Programming: How Rapid Ideation and Prototyping Occur in
Practice. In WEUSE 2008: International Workshop on End-User
Software Engineering, pages 1-5, Leipzig, Germany, 2008.

5. S. Carter, J. Mankoff, S. R. Klemmer, and T. Matthews. Exiting the
Cleanroom: On Ecological Validity and Ubiquitous Computing.
Human-Computer Interaction, 23(1):47-99, 2008.

6. S. Clarke. What is an End-User Software Engineer? In End-User
Software Engineering Dagstuhl Seminar, Dagstuhl, Germany, 2007.

7. A.L. Cox and R. M. Young. Device-Oriented and Task-Oriented
Exploratory Learning of Interactive Devices. Proceedings of ICCM
2000: International Conference on Cognitive Modeling, pages 70-77,
2000.

8. A. Cypher. Watch What I Do: Programming by Demonstration. The
MIT Press, 1993.

9. S. Ducasse, M. Rieger, and S. Demeyer. A Language Independent
Approach for Detecting Duplicated Code. In Proceedings of ICSM
1999: IEEE International Conference on Software Maintenance, page
109, Oxford, England, 1999.

10. C. Grimes, D. Tang, and D. M. Russell. Query Logs Alone are Not
Enough. In Workshop on Query Log Analysis at WWW 2007 :
International World Wide Web Conference, Banff, Alberta, Canada,
2007.

11. B. Hartmann, S. Doorley, and S. R. Klemmer. Hacking, Mashing,
Gluing: Understanding Opportunistic Design. /[EEE Pervasive
Computing, September 2008.

12. B. Hartmann, L. Wu, K. Collins, and S. R. Klemmer. Programming by
a Sample: Rapidly Creating Web Applications with d.mix. In
Proceedings of UIST 2007: ACM Symposium on User Interface
Software and Technology, pages 241-250, Newport, Rhode Island,
2007.

10

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

R. Hoffmann, J. Fogarty, and D. S. Weld. Assieme: Finding and
Leveraging Implicit References in a Web Search Interface for
Programmers. In Proceedings of UIST 2007: ACM Symposium on
User Interface Software and Technology, pages 13-22, Newport,
Rhode Island, 2007.

J. Hollan, E. Hutchins, and D. Kirsh. Distributed Cognition: Toward a
New Foundation for Human-Computer Interaction Research. ACM
Transactions on Computer-Human Interaction, 7(2):174-196, 2000.

A. Hunt and D. Thomas. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley Professional, October 1999.

M. Kim, L. Bergman, T. Lau, and D. Notkin. An Ethnographic Study
of Copy and Paste Programming Practices in OOPL. In Proceedings
of ISESE 2004: IEEE International Symposium on Empirical Software
Engineering, pages 83-92, Redondo Beach, California, 2004.

A.J. Ko, B. A. Myers, and H. H. Aung. Six Learning Barriers in
End-User Programming Systems. In Proceedings of VL/HCC 2004:
1EEE Symposium on Visual Languages and Human-Centric
Computing, pages 199-206, Rome, Italy, 2004.

T. Lau and E. Horvitz. Patterns of Search: Analyzing and Modeling
Web Query Refinement. In Proceedings of UM 1999: International
Conference on User Modeling, pages 119-128, Banff, Alberta,
Canada, 1999.

H. Lieberman. Your Wish Is My Command: Programming by
Example. Morgan Kaufmann, 1st edition, February 2001.

H. Lieberman, F. Paterno, and V. Wulf. End User Development.
Springer, October 2006.

G. Little and R. C. Miller. Translating Keyword Commands into
Executable Code. In Proceedings of UIST 2006: ACM Symposium on
User Interface Software and Technology, pages 135-144, Montreux,
Switzerland, 2006.

A. MacLean, K. Carter, L. Lovstrand, and T. Moran. User-Tailorable
Systems: Pressing the Issues with Buttons. In Proceedings of CHI
1990: ACM Conference on Human Factors in Computing Systems,
pages 175-182, Seattle, Washington, 1990. ACM.

D. Mandelin, L. Xu, R. Bodik, and D. Kimelman. Jungloid Mining:
Helping to Navigate the API jungle. In Proceedings of PLDI 2005:
ACM Conference on Programming Language Design and
Implementation, pages 48—61, Chicago, Illinois, 2005.

R. C. Martin. Agile Software Development, Principles, Patterns, and
Practices. Prentice Hall, 1st edition, 2002.

B. A. Myers. Visual Programming, Programming by Example, and
Program Visualization: A Taxonomy. In Proceeding of CHI 1986:
ACM Conference on Human Factors in Computing Systems, pages
59-66, Boston, Massachusetts, 1986.

P. L. T. Pirolli. Information Foraging Theory. Oxford University
Press, Oxford, England, 2007.

N. Sahavechaphan and K. Claypool. XSnippet: Mining for Sample
Code. ACM SIGPLAN Notices, 41(10):413-430, 2006.

C. Scaffidi, M. Shaw, and B. A. Myers. Estimating the Numbers of
End Users and End User Programmers. pages 207-214, Dallas, Texas,
2005.

C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis of a
Very Large Web Search Engine Query Log. ACM SIGIR Forum,
33(1):6-12, 1999.

J. Stylos and B. A. Myers. Mica: A Web-Search Tool for Finding API
Components and Examples. In Proceedings of VL/HCC 2006: IEEE
Symposium on Visual Languages and Human-Centric Computing,
pages 195-202, Brighton, United Kingdom, 2006.

J. Wong and J. I. Hong. Marmite: Towards End-User Programming
for the Web. In Proceedings of VL/HCC 2007: IEEE Symposium on
Visual Languages and Human-Centric Computing, pages 270-271,
2007.

R. B. Yeh, A. Paepcke, and S. R. Klemmer. Iterative Design and
Evaluation of an Event Architecture for Pen-and-Paper Interfaces. In
Proceedings of UIST 2008: ACM Symposium on User Interface
Software and Technology, Monterey, California, 2008.

