
An Empirical Investigation of Opportunistic Programming:
Interleaving Web Foraging, Learning, and Writing Code

Joel Brandt!2, Philip J. Guo!, Joel Lewenstein', Mira DontchevaZ?, Scott R. Klemmer*
1Stanford University HCI Group Adobe Systems

Computer Science, Stanford, CA 94025 601 Townsend, San Francisco, CA 94103
{jbrandt, pg, jlewenstein, srk} @cs.stanford.edu mirad @adobe.com

ABSTRACT creating a piece of functional software. This type of pro-

This paper investigates the role of online resources in prob- gramming is widespread, performed by novices and experts
lem solving. We look specifically at how programmers—an alike: it happens when designers build functional prototypes
exemplar form of knowledge workers—opportunistically in- to explore ideas, when scientists write code to control their
terleave Web foraging, learning, and writing code. We de- laboratory experiments, when entrepreneurs assemble com-
scribe two studies of how programmers use online resources. plex spreadsheets to better understand how their business is
The first study, conducted in the lab, found that program- operating, and when professionals adapt Agile development
mers leverage the Web with three distinct intentions: They methods to build applications quickly [4, 6, 28, 24].

engage injust-in-time learning of new skills and approaches, Opportunistic programming is often (though not exclu-
they extend their skills, and they strategically delegate their sively) undertaken by non-professional programmers, many
memory to online resources. The results also suggest that of whom are called “end-user” programmers [19, 20, 25, 8].
queries for different purposes have different styles and du- These users frequently tailor and “mash-up” existing Sys
rations. Do query styles robustly vary with Intent, or 1s this tems to create applications that better meet their needs [22,
result an artifact of the particular lab setting? To address this 31]. Scaffidi, Shaw, and Myers estimate that in 2012 there
question, we analyzed a month-long set of Web queries to will be 13 million people in the USA that describe them-
a commercial programming framework’s online information selves as “programmers”, while the Bureau of Labor Statis-
sources. In this dataset, query style also corresponded to In- tics estimates that there will only be 3 million “professional
tent. These results contribute to a theory of online resource programmers” [28]. Programming by modification has long
usage In programming, and suggest opportunities for tools been part of the end-user programming world view [20]. Itis
to facilitate opportunistic programming. well known that programmers create new systems by mod-

ifying existing ones, and recent papers provide indications

Author Keywords that programmers are using the Web to find components [30,
opportunistic programming, prototyping, copy-and-paste 13]. This paper contributes the first strong empirical evi-

dence of how programmers use Web resources in practice.

AON Classification Keywordsd Presentation: User This paper presents the results of two studies that empiri-
I . frces Co] J desi cally investigate how users leverage online resources while
ntertaces—prololyping; user-centered design programming. The first study was conducted in the lab; we

asked 20 programmers to rapidly prototype a Web applica-

INTRODUCTION tion. The second study presents a quantitative analysis of
“Good grief, I don’t even remember the syntax for forms!” a month-long sample of Web query data; we estimate that
Less than a minute later, this participant in our Web pro- 25,000 unique programmers produced the 101,289 queries
gramming lab study had found an example of an HTML form in the sample. We employed this mixed-methods approach
online, successfully integrated it into her own code, adapted to gather data that is both contextually rich and representa-
it for her needs, and moved onto a new task. As she con- tive of authentic behavior [10, 5]. The results of these stud-
tinued to work, she frequently interleaved foraging for in- ies demonstrate that online resources provide value for both
formation on the Web, learning from that information, and the learning and executing aspects of programming, and that
authoring code. Over the course of two hours, she leveraged users approach these goals differently.
the Web 27 times, accounting for 28% of the total time she oo
spent building her application. This participant’s behavior We begin this paper by describing its relationship to prior
is indicative of programmers’ increasing use of the Web as work. Next, we cover the method and results of the two stud-
a problem-solving tool. How and why do people leverage 1€s. We subsequently discuss the insights arising from these
online resources while programming? studies and their implications for tool design. We conclude

by suggesting opportunities for future research.
Web use is an integral part of a broader, opportunistic
approach to programming, where programmers emphasize
speed and ease of development over code robustness and RELATED WORK
maintainability [4, 11, 6]. Programmers do this to prototype, Ko, Myers, and Aung performed an empirical study of learn-
ideate, and discover—to address questions best answered by ing barriers in end-user programming by observing 40 indi-

1

viduals new to programming as they learned to use Visual Chatroom Features

Basic NET over the course of a semester [17]. They drtive 1. Users should be able to set their username on the chat room page
at six classes of barriers—design, selection, coordination, (application does not need to support account management). [Username]
use, understanding, and information—and suggest ways that + Users should be aisle to hast; . ;] : post messages. [Post]

tools could lower these barriers. This work is largely compli-

mentary to ours—while they provide insight into the prob- 3. The message list should update automatically without a complete
eq. . . page reload. [asax update]

lems that programmers face, there is little discussion of how

programmers currently go about overcoming these barriers. 4. bachmL Should be shown with the username of the poster and
We feel that Ko er al.’s findings could combine with ours to © FIESTAP. (Timestamp
help guide tool development for opportunistic programming. > J C8 CEU 0TRECHEE en the ehat room updates, ony
The software engineering community has a long history of the last 10 messages should be seen. [History]
looking at code cloning within software projects, both via

automated techniques [3, 9] and via an ethnographic ac- Figure L List of chatroom features that lab study participants were
count of this practice amongst professional software devel- asked to implement. The first four features are fairly typical; the fifth,

. . retaining a limited chat history, is more unique.
opers [16]. In general, this body of work is largely concerned
with reducing code copying to reduce maintenance costs in
large software systems [15], a concern that is far less rel- STUDY 1: OPPORTUNISTIC PROGRAMMING IN THE LAB

evant to opportunistic programming. Nonetheless, many of To understand how programmers leverage online resources,
Kim et al.’s insights—most notably that it would be valuable especially for rapid prototyping, we conducted an ex-
for tools to explicitly record and visualize dependencies cre- ploratory laboratory study.
ated when copying and pasting code—could prove valuable

when designing tools for opportunistic programming. Method
There has been recent interest in building improved Web We recruited 20 students (5 Ph.D., 4 Masters, 11 under-
search for programmers, offering an indication that the Web graduate; 3 female, 17 male) from our university who were
1s an important resource used in this practice [30, 27, 13, proficient programmers. Each session lasted 2.5 hours; we
2]. To inform the design of one of these tools, Stylos and spent the first 15 minutes presenting the task to the par-
Myers offer a description of how programmers may learn ticipant. We asked participants to prototype an AJAX-style
APIs, based on observations of what they describe as three Web chatroom application using HTML, PHP, and JavaScript.
“small programming projects” [30]. Specifically, they sug- Participants were given a list of five features that the chat-
gest that programmers begin with initial design ideas, gain room should have (listed in Figure 1). The first four features
a high-level understanding of potential APIs to use, and then are fairly typical; the fifth, retaining a limited chat history,
move on to concretize their design by finding and integrat- 1s more unique. This feature was introduced so that par-
ing examples, which may cause them to return to earlier ticipants would need to do some amount of programming
steps. The authors state that programmers use the Web in even if they implemented other features by downloading and
several of these steps: gaining high-level understanding of installing an existing open-source chatroom application (3
APIs, finding methods and examples, and integrating these participants did this). To encourage participants to work
examples—and further state that the Web is used in very dif- opportunistically, they were instructed to think of this as a
ferent ways for each step. This paper’s results largely sup- hobby project, not as a school or work assignment where
port their intuitions, but in addition, we found that program- they would be evaluated on programming style.

mers leverage the Web in all of these steps, using tutorials We provided the participants with a working execution envi-
and examples to inspire and guide design. ronment within Windows XP (Apache, MySQL, and a PHP
As part of designing a Web search tool for programmers, interpreter) with a “Hello World” PHP application already
Hoffmann ef al. manually classified 339 Web search ses- running. They were also provided with several standard code
sions about Java programming into 11 search goals (e.g. be- authoring environments (Emacs, VIM, and Aptana, a full-
ginner tutorials, APIs, and language syntax) [13]. We ex- featured IDE that provides syntax highlighting and code as-
tend these findings to provide a clearer picture of how pro- sistance for PHP, JavaScript and HTML.) Participants were
grammers go about performing these searches, and how they notified ahead of time that they could bring any printed re-
leverage foraged Web content. sources they typically used while programming, and were

Several other systems use completely automated techniques told at the beginning of the study that they were allowed to
to locate or synthesize example code. XSnippet uses the cur- use any resources they wanted while prototyping, including
rent programming context of Java code (e.g. types of meth- any code on the Internet and any code they had written in the
ods and variables in scope) to automatically locate exam- past that they could access.
ple code for instantiating objects [27]. Somewhat similarly, Participants reported an average of 8.3 years of program-
Mandelin et al. show how to automatically synthesize a se- ming experience; all except three had at least 4 years expe-
ries of method calls in Java that will transform an object of rience. However, participants had little professional expe-
one type into an object of another type, which is useful for rience, with only one participant having spent more than 1
navigating large, complex APIs [23]. These techniques could year as a professional software developer.
be leveraged to create semi-automated tools that keep the
user in the loop to support opportunistic programming.

2

o | take a very long time to solve. Indeed, we found that un-
2 derstanding a programmer’s intention was paramount when

0 analyzing how they used the Web.
S 3
yg ©

: Three intentions behind Web use
2 3 Why do programmers go to the Web? It was immediately
sg 7 apparent that every time a participant accessed the Web, he
8 had a clear goal. However, participants’ behavior varied dra-
S & matically between sessions. As we analyzed our results, we
g found that understanding a programmer’s intention was key

o to explaining his behavior. Based on our observations, we

0 50 120 180 040 300 360 propose a taxonomy of Web use intention, presented in Ta-
ble 1. This taxonomy breaks Web use into three categories:

session (sorted by length) learning new concepts, clarifying existing knowledge, and
reminding about specific implementation details.

vertical bar represents the cutoff separating the 10% longest sessions, intentions in turn. For each, we state typical behaviors ob-
and the right bar the cutoff for 50% of sessions. Dotted line represents served, present anecdotes from the study that support these
a hypothetical uniform distribution of session lengths. claims, and offer theoretical explanations for these actions.

When recruiting, we specified that participants should have Scaffolds for learning-by-doing
basic knowledge of PHP, JavaScript, and the AJAX paradigm. Opportunistic programming often involves learning unfamil-
However, almost all participants rated themselves as novices 1ar technologies or paradigms [4]; in our study, participants
in at least one of the technologies involved. Participants routinely leveraged the Web when doing so. Web sessions
were compensated with their choice of class research credit typically started with searches used to locate tutorial Web
(where applicable) or a $99 Amazon.com gift certificate. sites. These tutorials served as scaffolds for the programmer
Three researchers observed each participant. During each to learn by doing.
session, one researcher asked open-ended questions such as Searching for tutorials: Participants’ queries usually con-
“why did you choose to visit that Web site?” or “how are tained an English description of a problem they were facing,
you going to go about tracking down the source of that er- often augmented with several keywords indicating the tech-
ror?” that encouraged think-aloud-style reflection at relevant nology they hoped to use to solve the problem (e.g. php
points in the programming process (in particular, whenever or javascript). For example, study participants unfamiliar
participants used the Web as a resource). All researchers with the AJAX paradigm would often perform a query like
took notes during these sessions. These notes were com- update web page without reloading php. Query refinements
pared after each session and at the end of the study to arrive were common in this type of Web use, often before the user
at our qualitative conclusions. Audio and video screen cap- clicked on any results. These refinements were usually driven
ture was recorded for all participants; we subsequently hand- by familiar terms seen on the query result page.
coded these videos to obtain data on the amount of time par- . .
ticipants used the Web, Selecting a tutorial: Participants typically clicked several

query result links, opening each in new Web browser tabs,
before evaluating the quality of any of them. After several

Results pages were opened, participants would judge the quality of
All participants made extensive use of the Web while pro- each by rapidly skimming the page. In particular, several
gramming: on average, each participant used the Web 18 participants reported using superficial features—e.g. preva-
times (mar = 40, min = 7, oc = 9.1), for a total of lence of advertising on the Web page or whether code on
25.5 minutes, or 19% of the 135 minutes spent programming the page was syntax-highlighted—to evaluate the quality of
(max = 68.8 minutes, 51%; min = 7.2 minutes, 5.3%; potential Web sites. When asked about what types of Web
o = 15.1 minutes). pages she found to be trustworthy, subject 3 stated that “I

Figure 3 presents an overview of participants’ Web usage don’t want [the Web page] lo say free SCcTipst’, “get your
patterns throughout the study. This graph shows that par- chat room now: , or stuf like that. I don’t want that be-
ticipants used the Web a great deal, and used it throughout cause I think i's gonna be bad, and most developrn don’t
their programming process. Figure 2 shows that the distri- write like that; they don’t use that kind of language. Th15
bution of lengths of Web use sessions is highly non-uniform, assessing behavior is consistent with Information Foraging
with the shortest half of Web use sessions (those less than Theory [26]—suriace level Web page features are used as
4’] seconds) comprising only 14% of the total time spent on information scent” when evaluating multiple options.
the Web, and the longest 10% comprising 41% of the total Using the tutorial: Once programmers find a tutorial that
time. This indicates that individuals are leveraging the Web they believe will be useful, they often immediately begin ex-
to help solve several different kinds of problems. The major- perimenting with code it contains (even before reading the
ity of these problems can be solved very quickly, but some prose). We believe this is because tutorials typically contain

3

&

¢ 0 O
§ &

F&e

I _ I I Bh ni In | 92 | 21 6

Hi | I q 95] 10 6

= Il | I |. 10.2 7 9
@ mm _ [I NINE a Ea. I 142 | 18 | 11
Q nl H I11In I Hl iE 142 | 13 2
2 Il I NII 11m Im | l 159 | 18 | 17
< (ll | | n mn | 1 HEE | 16.2 | 13 5
S (ImEmn [[A 18.1 8| 4

2D I. DB mm nl EF (243 13] 21
< (II 0 ITI Hil 11 | Hi 1 HE mn 254 | 22 | 24

I Hin ill I HENNE BE [Iu mn | | 26.8 | 35 9

a Ia ram | | Il IN] Ell 302 | 17 | 24
® 1 BR 1 Mm HH HH Nu Il I I Wl [30.3 | 13 | 10
3 | IIEE mm | Inn 1] 348 | 11 9
SQ 1 Wm ml I Wm NEE Wm mann mm 36.3 | 27 | 29
o 0 umn mn | IN mr | EI TH am | 37.8 | 27 | 25

I 1 II HEE EEE miu ni NINN il I | IIR Wm 38.8 | 40 | 30

| EEE BE EE IIE B= H i I 428 | 14 1

| BIN (IN| (NON I DDE (UNEVEN DEN PEE MEE Eom 68.8 | 25| 33

0 15 30 45 60 75 90 105 120 135

minutes

Figure 3. Overview of when participants referenced the Web during the laboratory study. Subjects are sorted by total amount of Web usage. Web
use sessions are shown in blue, and instances of Web search are shown in orange.

a great deal of prose and programmers have trouble deciding that when participants experiment with code, it 1s precisely
what 1s most worth reading. Said Subject 10: “I think it’s to learn these action/state mappings.

less expensive for me 1o just take the first [code I find] and Anecdotally, we observed that approximately 1/3 of the code
See how helpful it is at oA Very high level as opposed to in participants’ projects was physically copied and pasted
Just read all these descriptions and text. from the Web. This trend ofprogramming by example modi-
Additionally participants would often begin adapting this fication has been observed elsewhere. In one study, Yeh and
code before completely understanding how it worked. Sub- colleagues analyzed code written by students learning to use
ject 15 described this, saying “there’s some stuff in [this a Java library that was bundled with example code. Among
code] that I don’t really know what it’s doing, but I'll just 17 students’ projects, they located 159 occurrences of mod-
try it and see what happens.” He then copied four lines into ified examples [32].
his project, immediately removed two of the four, changed
variable names and values, and tested 1.5 minutes later by ce _

reloading his chatroom application Web page. This learning- Clarificaiion of existing knovieag©
by-doing approach had one of two outcomes: it either re- During our study, participants often faced problems where
sulted in deeper understanding, mitigating the need to read they knew how to implement something at a high level (76
the tutorial’s prose, or it isolated challenging areas of the 1pseudo-code) » but did not have enough knowledge to mm
code, guiding a more focused reading of the tutorial’s prose. plement it in the current programming languages. They did

not know, for instance, the names of relevant library func-
Previous research has examined learning-by-doing through tions or the appropriate syntax to use—some piece of clar-
the lens of ACT-R. Cox and Young developed two ACT-R ifying information is needed to enable them to use their ex-
models to simulate a human learning the interface for a cen- isting knowledge. The example given in the introduction is
tral heating unit [7]. The first model was given “*how-to-do- representative of how programmers use the Web for clari-
the-task’ instructions” and was able to carry out only those fication: the participant completely understood how HTML
specific tasks from start to finish. The second model was forms worked, but could not write one from scratch.
ven ‘“‘how-the-device-works’ instructions,” (essentially a Co

better mapping of desired states of the vies to actions Uses of the Web for clarifying differ irom Uses for learning
performed) and afterwards could thus complete a task from In two important ways. First, users are searching for an m-
any starting point. Placing example code into one’s project plementation, not a guide that tells them how to implement
amounts to picking up a task “in the middle”. We suggest something. They know exactly how code works when they

find it, and have no trouble adapting it to their needs. Sec-

4

_WEB SESSION INTENTION: | LEARNING CLARIFICATION ~~ REMINDER ~~

Reason for using Web Just-in-time learning of Connect high-level knowledge Substitute for memorization (e.g., language

unfamiliar concepts to implementation details syntax or function usage lookup)

Web session length Tens of minutes ~ 1 minute < 1 minute

Starts with web search? Almost always Often Sometimes

Search terms English words related Mix of English and code, Mostly code (e.g., function

to high-level task cross-language analogies names, language keywords)

Example search ajax tutorial javascript timer mysgl_fetch_array

Num. result clicks Usually several Fewer Usually zero or one

Num. query refinements Usually several Fewer Usually zero

Types of webpages visited Tutorials, API documentation, API documentation,
how-to articles blog posts, articles result snippets on search page

Amount. of code copied Dozens of lines Several lines None or one-liners

from Web (e.g., from tutorial snippets)

Immediately test copied code? Yes Not usually, often trust snippets Yes

Table 1. Summary of characteristics of the three intentions we identified for Web usage during opportunistic programming.

ond, these uses occur much more rapidly. While learning to in recently written code, making such bugs more difficult to
program using the AJAX paradigm can take tens of minutes, track down.

clarifying one’s understanding of HTML form syntax takes Using the Web to debug: The Web is also often used for
less than 60 seconds. clarification during debugging. Often, when a programmer
Searching the Web to clarify: Clarification uses are typi- encountered a cryptic error message, he would immediately
cally driven by Web search because programmers are often search for that exact error on the Web. For example, Sub-
unsure of the exact name of what they are searching for. We ject 11 received an error that read, “XML Filtering Predicate
observed that Web search works well for this task because Operator Called on Incompatible Functions.” He mumbled,
“synonyms” of the correct programming terms often appear “What does that mean?” then followed the error alert to a
in online forums and tutorials. Subject 18, for example, used line number which contained functions previously copied
a third-party JavaScript library named PROTOTYPE, which from the Web. The code did not help him understand the
he had used in the past but “not very often,” to implement meaning of the error, so he entered the full text of the error
the AJAX portion of the task. He knew that AJAX worked into Google. The first site he visited was a message board
by making requests to other pages, but he forgot the exact with a line saying “This is what you have:”, followed by the
mechanism through which PROTOTYPE allowed this to hap- code in question and another line saying “This is what you
pen. He searched Google for prototype request. When the should have:”, followed by a corrected line of code. With
experimenters asked, “Is ‘request’ the thing that you know this information, the subject returned to his code and suc-
you're looking for, the actual method call?” he replied, “No. cessfully fixed the bug.
I just know that it’s probably similar to that.”

When compared with queries issued for learning uses, Reminders about forgotten details
clarification queries contain more programming-language- Even familiar functionality is not always known completely.
specific terms. Often, however, these terms are not from the Participants often did not remember low-level syntactic de-
correct programming language! We found that programmers tails, like whether a method name contained underscores or
often make language analogies, saying things like “Perl has in written in camelCase, or the correct order of clauses in a
this functionality, so PHP must as well”. For instance, we complicated SQL statement. For example, Subject 10 was in
saw several subjects search for JavaScript thread. While the middle of writing one such SQL statement. Immediately
JavaScript does not explicitly contain threads, it supports after typing ORDER BY respTime, he switched to Google
similar functionality through interval timers and callbacks. and searched for mysql order by. He said that he “want[ed]
All participants who performed this search quickly arrived to see the syntax of the ‘order by’ [clause].” He clicked on
at an online forum or blog posting pointing them to the cor- the second link, scrolled halfway down the page, and read a
rect function for setting periodic timers: setInterval. few lines. Within ten seconds he had switched back to his

Testing copied code (or not): When code is copied from code and added LIMIT 10 to the end of his query. In short,
the Web during clarification uses, it is often not immediately when programmers use the Web for reminding about details,
tested. Participants typically trusted code found on the Web, they know exactly what information they are looking for, and
and indeed, it was typically correct. However, they would often know exactly what page they intend to find it on (e.g.
often make minor mistakes when adapting the code to their official API documentation).
needs (e.g. forgetting to change all instances of a local vari- Searching (or not) for reminders: With learning and clari-
able name). They would then work on other functionality fication uses, subjects almost always begin by performing a
before testing, so when they finally tested and encountered Web search—this is not always the case with reminder uses.
bugs, they would often erroneously assume that the error was Participants often kept select Web sites (such as official lan-

5

guage documentation) open in browser tabs to use for re- We combined these events into sessions by grouping all
minders when necessary, This is why many of the brief Web events by IP address, sorting by time, and then partitioning
use sessions in Figure 3 do not begin with a Web search. the events for each IP address. A session is defined as the

Web search, however, is occasionally instrumental in making longest sequence of consecutive query and result click events
a reminder use efficient. For example, a programmer may Such that no adjacent events had a lime gap greater than six
forget a word in a function name. A Web search will quickly minutes (similar to the technique used in pfevious quety log
confirm the exact name of the function simply by browsing analyses, €.8 [29]). Pre-processing resulted in 65,955 total
the snippets in the results page. This is why many brief Web seatch sessions. When hand-coding a subset of the data (de-
sessions in Figure 3 only contain a Web search. scribed below), we verified that this method of computing

sessions worked well: only 7% of sessions appeared to have
The Web as an external memory aid: Several partici- multiple unrelated queries. This also confirmed that log pol-
pants reported using the Web as an alternative to memoriz- lution from HTTP proxies was not a problem. (Users access-
ing routinely-used snippets of code. One subject browsed ing the Web through an HTTP proxy all appear to have the
to a page within PHP’s official documentation that contained same IP address, which creates problems if two users using
six lines of code necessary to connect and disconnect from the same proxy perform queries at the same time.)
a MySQL database. After he copied this code, a researcher

asked him if he had copied it before. He responded, “[yes,] Hand-coding sessions
hundreds of umes, and went on lo say that he never both- After pre-processing, one researcher hand-coded 300 ses-
ered to learn it bceause he knew it would always b© there. sions using the intention taxonomy developed in our lab
We believe that in this Way, Programmers can effectively dis- study. Initially, we had hoped to classify the intention of
tribute their cognition [14], allowing them to devote more each session into one of three categories: learning, clari-
mental energy to the higher-level tasks of programming. fication, or reminder (identical to those summarized in Ta-

ble 1). However, due to the lack of contextual information,

STUDY 2: WEB SEARCH LOG ANALYSIS it was very difficult to differentiate between clarification and

Do query styles in the real world robustly vary with intent, or reminder sessions.

Is this result an artifact of the particular lab setting? To inves- We took two additional steps to improve coding accuracy:
tigate this, we analyzed Web query and result click logs from First, we randomly selected active users of the search portal
approximately 25,000 programmers making 101,289 queries (users with between 10 and 40 sessions during the month),
about the Adobe Flex Web application development frame- and coded all sessions for each of the selected users. By in-
work during the month of July 2008. These queries caine specting all of a user’s sessions, we were able to estimate his
from the Community Search portal on Adobe’s Developer overall proficiency with the Flex framework, thus giving us
Network Web site, which indexes official Adobe documen- a clearer picture of the intention behind his individual ses-
tation and 3rd-party articles, blogs, forums, and other Web sions. Second, we chose to place each session into one of
pages that have been vetted by technical writers at Adobe [1]. four categories: learning, reminder/clarification, unsure (re-

searcher could not accurately determine intention), and mul-
Method tiple unrelated queries (when it was clear that two distinct

We began our log analysis by generating a set of hypotheses sessions about different topics were incorrectly grouped be-
about programmer search behavior based on our observa- cause their events were less than six minutes apart).

tions from our lab study. (These hypotheses are stated in the We were able to confidently determine intention for 84% of
Results section below.) Evaluating several of these hypothe- sessions; among these, we found 22% were learning ses-
ses required data about search intention, which was clearly sions and 78% were reminder/clarification sessions. We were
not present in the raw logs. To address this, we used an unsure of intention for 9% of the sessions, and 7% appeared
approach common in query log analysis (e.g. [18]): We be- to have multiple unrelated queries.
gan by hand-coding 300 search sessions according to user

intention. When evaluating a hypothesis, we then used the Analvsi
hand-coded data to understand what sessions relevant to the naysis :
hypothesis looked like structurally (e.g., lexical structure of To evaluate out hypotheses, we found It useful to computeYPO : J : _- several properties about the search sessions. These proper-
queries, session length, and types of Web sites visited) and : : Lo CL
leveraged this information to examine the entire log corpus. ties are listed below; the Appendix gives a description of

how we computed each property.

In the remainder of this section, we detail the machinery 1. Types of queries performed — did search terms contain
used to analyze the logs.

only code (terms specific to the Flex framework, such as
class and function names), only words, or a mix of both?

Pre-processing :
We pre-processed the logs to group queries into search ses- 2. Ways that queries were refined — between consecutive
sions. The raw logs contain only query and result click queries, were search terms generalized, specialized, oth-
events. All events consist of a timestamp and an anonymized erwise reformulated, or changed completely?
version of the user’s IP address. Each query event is suc-
ceeded by zero or more result click events which contain the
URLs that users clicked on after performing the query.

6

Type of _Sessiontype All H2: Learning sessions often begin with queries contain-
first query learning reminder/clarification | hand-coded ino onl rds (i.e. not code)code-only 0.21 0.56 0.48 Ing only words (i.e. :

words+code | 0.29 0.10 0.14 Hand-coded learning sessions begin with significantly more
words-only | 0.50 0.34 0.38 words-only and words+code queries than code-only queries.
Total 1.00 1.00 1.00 .

See Table 2 for specific values.

Table 2. For hand-coded sessions of each type, proportion of first H3: Refinements of learning queries often occur with-
queries (252 total) of each type (significant majorities across each row out prior result clicks (suggesting that people learn from
in bold, * entry means only significant atp < 0.05). snippets on the search results page) and transition from

Resull click NI words-only to queries with a mix of words and code.

Web page type | learning reminder/clarification | hand-coded We found no statistical support in the hand-coded sessions
000 oe 0 os 0 for this hypothesis. However, out of all sessions, those with
tutorials/articles | 0.31 0.10 0.17 words-only first queries (a characteristic of learning queries)
forums 0.06 0.04 0.05 were most likely to have no result clicks in first query (39%
other 0.18 0.13 0.15 of sessions versus 30% for words+code, 26% for code-only).
Total 1.00 1.00 1.00

H4: Programmers are more likely to visit official Adobe

Table 3. For queries in hand-coded sessions of each type, proportion of API documentation in reminder and clarification sessions
result clicks (401 total) to Web sites of each type (significant majorities than in learning sessions.
across each row in bold). Lo. } . i

Programmers are significantly more likely to visit official
API documentation during reminder/clarification sessions

3. Types of Web pages visited — we sorted all 19,155 result than during learning sessions (Table 3).

click URLS by number of vist and classified cach mto 0 More interestingly, among reminder/clarification session,
©i. e5¢ orlegories starting 207 oe reEa y-VISHE 42% of the result clicks are to official Adobe tutorials. Theresites) until we accounted for 80% of all visits: are two possible explanations: First, the search results page

e Adobe APIs: official Adobe API documentation may not contain enough information or poe”amersto de-. . . termine that a page 1s a tutorial, and thus they might mistak-
e Adobe tutorials: tutorials on Adobe Web site, many . pag y mig :

containing example code Snippets enly visit a tutorial page. Second, programmers may realize
& p pp that the page is a tutorial, but assume that it contains exactly

e tutorials/articles: reputable, high-traffic tutorials and the code they are looking for. From the query logs alone, 1t
how-to articles that are not on Adobe’s Web site is impossible to determine which is the case. We did not ob-

e forums: forums, mailing lists, and bulletin boards serve either behavior during the lab study, but perhaps it was
because the official PHP documentation (used extensively

(A final category, other, contains the 8246 least frequently- jj the lab study) contains lots of example code, whereas
visited pages, collectively accounting for 20% of visits.) Adobe’s API documentation contains far less, thus forcing

programmers to turn to tutorials to find common snippets of
Results code.

We begin this section by listing our hypotheses and detailing HS: Reminder sessions typically start with code-only
our findings. Based on these results, we found it interesting . .

queries and are rarely refined. These sessions also con-
to take a broader look at how programmers make and refine . .: : tain the fewest number of result clicks.
Web search queries, and what types of Web sites they choose
to visit; we report on this at the end of this section. We found it difficult to test this hypothesis given our dataset,

: . : as we could not easily differentiate between reminder and
We used the Mann-Whitney U test for determining statis- : : cast :

: . ; clarification sessions. However, among all sessions, those
tical significance of differences in means and the chi-square beoinn; : : Co. : :) eginning with code-only queries are refined significantly
test for determining differences in frequencies (proportions). : _ : :

: . oe fewer times (1 = 0.34) than those starting with words+code
Unless otherwise noted, all differences we present as ““signif- _ _ Cs
an” tatistically sienificant at » < 0.001 (uv = 0.60) and words-only (ux = 0.51); in other words,
1ecant are statistically signiticant at p I when programmers perform code-only queries, they know
H1: Learning sessions have more query refinements and exactly what they are looking for, and typically find it on the
more total result clicks than other types of sessions. first search.

Hand-coded learning sessions have significantly more re- Interestingly, when manually looking through sessions, we
finements (un = 0.64) than reminder/clarification sessions observed several occurrences of programmers refining what
(u = 0.30). Similarly, learning sessions have significantly appeared to be reminder queries. Typically, these refine-
more result clicks (ux = 1.52) than reminder/clarification ments added contextual details, such as the language they
sessions (u = 1.0). These findings correlate well with two were programming in or the version of the framework they
behaviors we observed during the lab study: When partic- were using. Better tool support could have mitigated the
ipants went to the Web to learn, they first clicked on some need for these refinements by automatically augmenting
results to determine how to refine their query. Then once queries with contextual information from the development
their query was sufficiently refined, they clicked on several environment.
pages and selected the best candidate from that refined set.

7

SS 8 Web page type code-only words+code words-only | clicks
£8 Wm code only £3 Adobe APIs 0.38 0.16 0.10 0.23
g BE words and code g Adobe tutorials 0.31 0.33 0.39 0.34

p= J forums 0.03 0.07 0.06 0.05
8 8 o other 0.13 0.22 0.27 0.20
ss ; Total 100c 1 s i Table 5S. For queries of each type, proportion of result clicks (107,3433 o He——— S total) leading programmer to Web pages of each type (significant ma-

2 3 45 6 7 8 12 3 456 7 8 jorities and near-ties across each row in bold).
query number within session query number within session

Figure 4. How query types change as queries are refined. Each bar deem them unsatisfactory, and specialize their queries to add
sums all ith queries over all sessions containing an ith query. more detail. Programmers may also see little risk in “losing”

a good result when specializing — if it was a good result for

Refinement type the initial query, it ought to be a good result for the more
generalize new reformulate specialize spelling All specialized one. This hypothesis is reinforced by the rela-

0.44 0.61 0.51 0.39 0.14 | 048 tively high click rate before performing a completely new
query (presumably on the same topic) — good results may

Table 4. For each refinement type, proportion of refinements of that be lost by completely changing the query, so programmers
type (31,334 total) where programmers clicked on on any links prior to i . : .
the refinement. click any potentially valuable links first. Finally, almost no

one clicks before making a spelling refinement, which makes
sense because people mostly catch typos right away.

Programmers rarely refine queries, but are good at it Across all sessions and refinement types, 66% of queries
While evaluating the above hypotheses, we became inter- after refinements have result clicks, which is significantly
ested in how programmers refined their queries, so we looked higher than the percentage of queries before refinements
at both how query types changed as queries were refined, as (48%) that have clicks. This contrast suggests that refin-
well as the ways in which queries were refined. ing queries generally produces better results; in other words,

Figure 4 gives an overview of how query type changes as when Programmers need to refine their queries, they are
queries are refined. The graph on the left is a histogram good at it.
showing query types for the ith query in a session. That

1s, the 2th bar shows the total number of each type of query Query type predicts types ofpages visited
when summing over all ith queries in all sessions that have While evaluating the above hypotheses, it became clear that
an ith query (e.g., the first bar is the highest since all 69,955 query type was indicative of intention. As such, we won-
sessions have a 1st query). The graph on the right presents dered if it would also be indicative of types of pages visited.
the same data, but with each bar’s height normalized to 100,

. : : : Table 5 shows how query type influences the types of pages
so that it is easier to see the change in proportions as query . : : i:
refinements occur programmers Visit. This data provides some quantitative

support for the intuition that query type is somewhat indica-
There are two main conclusions we can draw from these tive of query intent. Namely, code-only searches, which one
graphs. First, as one might expect, the distribution of re- would expect to be largely reminder queries, are most likely
finements per session appears to roughly match a power law to bring programmers to official Adobe API pages (38% vs.
distribution. Interestingly, sessions have, on average, 1.45 23% overall) and least likely to bring programmers to all
queries per session. This is significantly lower than for the other types of pages. In contrast, word-only queries, which
general population of searches — the lowest reported mean one would expect to be largely learning queries, are most
we were able to find is 2.02 [29]. This indicates that pro- likely to bring programmers to official Adobe tutorials (39%
grammers are relatively good at constructing precise queries. vs. 34% overall).

Second, initial queries are most likely to contain only code
or only words, and the proportion of queries containing only DISCUSSION

words stays roughly constant as refinements happen. One In this section, we first list the five key insights that come out
possible explanation is that programmers search with words of our studies, and suggest how each of these insights could
only when they don’t know how to perform the search with be used to create more effective tool support for opportunis-
code. This explanation is reinforced by the fact that words- tic programming.
only queries are most likely to stay words-only when re-

fined (65%), as opposed to 59% of words+code refining to Five Key Insights and Implications for Tools
words+code, and 48% code-only to code-only. Programmers use Web tutorials for just-in-time learn-
Table 4 shows whether programmers clicked on results prior ing, gaining high-level conceptual knowledge when they
to making refinements of each type. Relatively few people need it. They often use a learn-by-doing approach when
click on results before making a specialize refinement, likely leveraging tutorials, copying code and experimenting before
because they look at the search result snippets, immediately reading the tutorial’s prose. A tighter coupling of tutorials

8

and code authoring tools may better facilitate this code ex- First, it would be interesting to better understand how a pro-
perimentation process—one system that offers insight into grammer’s own code is reused between projects. In other
what this might look like is d.mix [12]. In this system, a fieldwork (not discussed in this paper), programmers reported
Web site’s interface elements can be “sampled” to yield the a desire to reuse code, but stated that it was difficult to do so
API calls necessary to create them. This code can then be because of lack of organization and changes in libraries and
modified inside a hosted sandbox. execution environments.

Web search often serves as a “translator” when program- Second, we know very little about what motivates individ-
mers don’t know the exact terminology or syntax. Using the uals to contribute information, such as tutorials and code
Web, programmers can adapt existing knowledge by making snippets, to the Web. How might we lower the threshold
analogies with programming languages, libraries and frame- to contribution? Is it possible to “crowdsource” finding and
works that they know well. The Web further allows pro- fixing bugs in code found online? Can we improve the ex-
grammers to make sense of cryptic errors and debugging perience of reading a tutorial by knowing how the previous
messages. Future tools could proactively search the Web for 1,000 readers used that tutorial? These are just some of the
the errors that occur during execution, compare code from many open questions in this space.

search results to the user's own code, and automatically lo- Finally, how does the increasing prevalence and accessibil-
cate possible sources of the error. ity of Web resources change the way we teach people to
Programmers deliberately choose not to remember com- program? The skill set required of programmers is chang-
plicated syntax. Instead, they use the Web as external mem- ing rapidly — they may no longer need any training in the
ory that can be accessed as needed. This suggests that Web language, framework, or library du jour, but instead may
search should be integrated into the code editor in much the need ever-increasing skill in formulating and breaking apart
same way as identifier completion (e.g., Microsoft’s Intel- complex problems. Programming is becoming less and less
liSense and Eclipse’s Code Assist). Another possible ap- about knowing how to do something and more and more
proach is to build upon ideas like keyword programming [21] about knowing how to ask the right questions.
to create authoring environments that allow the programmer
to type “sloppy” commands which are automatically trans- ACKNOWLEDGEMENTS

formed into syntactically correct code using Web search. We thank Rob Liebscher and Diana Joseph at Adobe for their

Code copied from the Web is often not immediately tested, help in acquiring the Web query logs; Beyang Liu for his
especially when copying routine functionality (i.e., in clari- help in coding video data from our lab study; Intelfor do-
fication or reminder sessions). As a result, bugs introduced nating PCs for this research; and all of the study participants
when adapting copied code are often difficult to find. To for sharing their insights. This research was supported in
help prevent the introduction of bugs, tools could assist in part by NSF Grant #0745320.
the code adaptation process by, for example, highlighting all
variable names and literals in the pasted code to make sure APPENDIX: SEARCH LOG ANALYSIS METHOD DETAILS
that they are changed thoroughly and consistently. To help Determining Query Type
in locating and fixing bugs that still get through, tools could We first break the query search term into individual tokens
clearly demarcate regions of code that are copied from the (splitting on whitespace). Then we run each token through
Web and provide links back to the original source of the code a series of classifiers to determine if it is code (i.e., Flex-
for later reference. specific keywords and class/function names). The first clas-
Programmers are good at refining their queries, but need sifier checks if the token is a (case-insensitive) match for any
to do it rarely. Query refinement is most necessary when classes in the Flex framework. The second classifier checks
trying to adapt their existing knowledge to new program- if the token contains camelCase (capital letter in the middle
ming languages, frameworks, or situations. This underscores of the word), which is valuable because all member func-
the value of keeping users in the loop when building tools tions and variables in the Flex framework use camelCase.
that search the Web automatically or semi-automatically. In Third, we check if the token contains a dot, colon, or ends
many cases, however, query refinements could be avoided with an open and closed parenthesis, all indicative of code.
by building tools that automatically and in parallel augment If none of these classifiers match, we determine that the to-
programmers’ queries with contextual information, such as ken is a (non-code) word.
the programming language and frameworks in use and the
types of variables in scope. Determining Query Refinement Type

We classified refinements into five types, roughly follow-
CONCLUSIONS AND FUTURE WORK ing the taxonomy of Lau and Horvitz [18]: generalize re-
We have presented empirical data on how programmers lever- finements indicate that the new search modified the origi-
age and learn from the Web while programming. We believe nal search by being its substring, by deleted words, or by
that Web resources will continue to play an increasingly im- splitting a single word into multiple words; specialize re-
portant role in how programming gets done, and hope to see finements indicate that the new search was a superstring of
increased work in the area of tool support. We have sug- the original, added words, or combined several words to-
gested several directions for tools research in prior sections; gether into one; reformulate refinements indicate that the
here we focus on several directions for further empirical in- new search contains some words in common with the orig-
vestigation of opportunistic programming. inal but is neither a generalize nor a specialize refinement;

9

new queries indicate that a completely lexically new query is 13. R. Hoffmann, J. Fogarty, and D. S. Weld. Assieme: Finding and

formed with no words in common to the original; spelling re- Leveraging Implicit References in a Web Search Interface for
finements indicate that spelling errors are corrected, as indi- Programmers. In Proceedings of UIST 2007: ACM Symposium on

dbvL htein d; b di h User Interface Software and Technology, pages 13-22, Newport,cate y Levenshtein distance between adjacent search terms Rhode Island, 2007.
being less than 3. 14. J. Hollan, E. Hutchins, and D. Kirsh. Distributed Cognition: Toward a

New Foundation for Human-Computer Interaction Research. ACM

Determining Web Page Type Transactions on Computer-Human Interaction, 7(2):174-196, 2000.
We build regular expressions that match URLs of particular 15. A. Hunt and D. Thomas. The Pragmatic Programmer: From
types (e. g., official API docs, official tutorials, etc). A few Journeyman to Master. Addison-Wesley Professional, October 1999.
Web sites, such as the official Adobe Flex documentation, 16. M. Kim, L. Bergman, T. Lau, and D. Notkin. An Ethnographic Study
contain the majority of all visits (and can be described us- of Copy and Paste Programming Practices in OOPL. In Proceedings
. . f i . d all 19.155 ofISESE 2004: IEEE International Symposium on Empirical Softwareing just a few regular expressions), so we sorted all 19,1 Engineering, pages 83-92, Redondo Beach, California, 2004.
result click URLS by number of visits and started classifying 17. A.J. Ko. B. A. Myers, and H. H. Aung. Six Learning Barriers in
most frequently-visited URLS first. With only 38 regular ex- End-User Programming Systems. In Proceedings of VL/HCC 2004:
pressions, we were able to classify highest-traffic pages that IEEE Symposium on Visual Languages and Human-Centric
accounted for 80% of all visits. We did not hand-classify the Computing, pages 199-206, Rome, Italy, 2004.
rest of the pages because the cost of additional manual effort 18. T. Lau and E. Horvitz. Patterns of Search: Analyzing and Modeling

outweighed the potential marginal benefits. Web Query Refinement. In Proceedings of UM 1999: International
Conference on User Modeling, pages 119-128, Banff, Alberta,
Canada, 1999.

REFERENCES 19. H. Lieberman. Your Wish Is My Command: Programming by
1. Adobe Flex Developer Center, 2008. Example. Morgan Kaufmann, 1st edition, February 2001.

http://www.adobe.com/devnet/flex/.
20. H. Lieberman, F. Paterno, and V. Wulf. End User Development.

2. S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and Springer, October 2006.
C. Lopes. Sourcerer: a Search Engine for Open Source Code]]]]

Supporting Structure-Based Search. In Companion to OOPSLA 2006: 21. G. Little and R. C. Miller. Translating Keyword Commands into
ACM Symposium on Object-oriented Programming Systems, Executable Code. In Proceedings of UIST 2006: ACM Symposium on
Languages, and Applications, pages 681-682, Portland, Oregon, User Interface Software and Technology, pages 135-144, Montreux,
2006. Switzerland, 2006.

3. I. D. Baxter, A. Yahin, L. Moura, M. Sant’ Anna, and L. Bier. Clone 22. A. MacLean, K. Carter, L. Lovsirand, and T. Moran. User-Tailorable
: Systems: Pressing the Issues with Buttons. In Proceedings of CHI

Detection Using Abstract Syntax Trees. In Proceedings ofICSM : :
: : 1990: ACM Conference on Human Factors in Computing Systems,

1998: IEEE International Conference on Software Maintenance, page 175-182. Seattle. Washineton. 1990. ACM
368, Washington, D.C., USA, 1998. pages : > yvashington, 1554.

. | Co 23. D. Mandelin, L. Xu, R. Bodik, and D. Kimelman. Jungloid Mining:
4. J. Brandt, P. I. Guo, J. Lewenstein, and S. R. K emmer Opportunistic Helping to Navigate the API jungle. In Proceedings ofPLDI 2005:

Programming: How Sapid Ideation and Prototyping pay nh ACM Conference on Programming Language Design andPractice. In WEUSE ; International Workshop on End-User Implementation, pages 48-61, Chicago, Illinois, 2005.
Software Engineering, pages 1-5, Leipzig, Germany, 2008.

oo 24. R. C. Martin. Agile Software Development, Principles, Patterns, and
5. S. Carter, J. Mankoff, S. R. Klemmer, and T. Matthews. Exiting the Practices. Prentice Hall, 1st edition, 2002.

Cleanroom: On Ecological Validity and Ubiquitous Computing.

Human-Computer Interaction, 23(1):47-99, 2008. 25. B.A. Myers. Visual Programming, Programming by Example, and
Program Visualization: A Taxonomy. In Proceeding of CHI 1986:

6. S. Clarke. What is an End-User Software Engineer? In End-User ACM Conference on Human Factors in Computing Systems, pages
Software Engineering Dagstuhl Seminar, Dagstuhl, Germany, 2007. 59-66, Boston, Massachusetts, 1986.

7. A. L. Cox and R. M. Young. Device-Oriented and Task-Oriented 26. P. L.T. Pirolli. Information Foraging Theory. Oxford University
Exploratory Learning of Interactive Devices. Proceedings of ICCM Press, Oxford, England, 2007.

Zo Irternational Conference on Cogriitive Modeling, pages 70-77, 27. N. Sahavechaphan and K. Claypool. XSnippet: Mining for Sample
Code. ACM SIGPLAN Notices, 41(10):413-430, 2006.

8. A. Cypher. Watch What I Do: Programming by Demonstration. The 28. C. Scaffidi, M. Shaw, and B. A. Myers. Estimating the Numbers of
MIT Press, 1993. End Users and End User Programmers. pages 207-214, Dallas, Texas,

9. S. Ducasse, M. Rieger, and S. Demeyer. A Language Independent 2005.
Approach for Detecting Duplicated Code. In Proceedings of ICSM 29. C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis of a
1999: IEEE International Conference on Software Maintenance, page Very Large Web Search Engine Query Log. ACM SIGIR Forum,
109, Oxford, England, 1999. 33(1):6-12, 1999.

10. C. Grimes, D. Tang, and D. M. Russell. Query Logs Alone are Not 30. J. Stylos and B. A. Myers. Mica: A Web-Search Tool for Finding API
Enough. In Workshop on Query Log Analysis at WWW 2007: Components and Examples. In Proceedings of VL/HCC 2006: IEEE
International World Wide Web Conference, Banff, Alberta, Canada, Symposium on Visual Languages and Human-Centric Computing,
2007. pages 195-202, Brighton, United Kingdom, 2006.

11. B. Hartmann, S. Doorley, and S. R. Klemmer. Hacking, Mashing, 31. J. Wong and J. I. Hong. Marmite: Towards End-User Programming
Gluing: Understanding Opportunistic Design. IEEE Pervasive for the Web. In Proceedings of VL/HCC 2007: IEEE Symposium on
Computing, September 2008. Visual Languages and Human-Centric Computing, pages 270-271,

2007.

12. B. Hartmann, L. Wu, K. Collins, and S. R. Klemmer. Programming by
a Sample: Rapidly Creating Web Applications with d.mix. In 32. R. B. Yeh, A. Paepcke, and S. R. Klemmer. Iterative Design and
Proceedings of UIST 2007: ACM Symposium on User Interface Evaluation of an Event Architecture for Pen-and-Paper Interfaces. In
Software and Technology, pages 241-250, Newport, Rhode Island, Proceedings of UIST 2008: ACM Symposium on User Interface
2007. Software and Technology, Monterey, California, 2008.

10

