
Using logistic regression to predict developer

responses to Coverity Scan bug reports

Philip J. Guo (pg@cs.stanford.edu)
Advisor: Dawson Engler

Stanford University

Draft: July 6, 2008

1 Objective

This report presents the state of my ongoing work to create statistical models

that can be used to make predictions about how developers will respond to

bug reports issued by the Coverity tool in the Open Source Scan project. 1

present models that can predict the following probabilities for a given report

based on properties of the report itself and especially on the development

history of the file/module where the report indicates a possible bug:

1. Probability that a report is inspected (triaged)

2. Probability that an inspected report is actually resolved (bugfix patch
submitted)

My purpose for creating these models is two-fold:

e Descriptive - Their parameters indicate possible factors that are cor-

related with developer responses to bug reports, which can lead to

insights about the open source software development process

e Predictive - They can be directly used to rank or prioritize future bug

reports when presenting to developers

1

2 Summary of results (for the impatient)

This report ended up being much longer than I had originally intended, so 1

will summarize the salient findings up-front:

e The type of Coverity checker (e.g., OVERRUN_STATIC) that flags a report
is by far the largest factor in determining the probability that it will

be inspected or resolved (§4.2.1)

e Reports affecting younger files (especially those less than 2 years old)
are more likely than those affecting older files to be inspected (§4.2.3)

eo Reports affecting smaller files and directories are more likely to be

inspected (§4.2.4)

eo Reports affecting files with previous reports that were found to be true

bugs are more likely to be inspected (§4.2.6)

eo Reports affecting files with previous reports that were found to be false

positives are less likely to be inspected (84.2.6)

e Files that have never been patched are sometimes more likely to have

their reports inspected (§4.2.5)

eo The longer it takes for somebody to inspect a report, the less likely it

is that it will be marked as a true bug or eventually resolved (§5.2)

e The number of patches, modified lines, and developers for a file are less

important than its age for predicting whether a report affecting that

file will be inspected (§4.3)

e The top-level directory name (e.g., drivers/, kernel/) of the file af-
fected by a report influences its probability of being inspected (§4.2.2)

3 Methodology

I used the method of logistic regression (§3.1) to create models that predict
the probability of response variables (§3.3) being true based on a variety
of explanatory variables (§3.4) in a dataset consisting of Coverity Scan bug
reports for Linux (§3.2).

2

3.1 (Informal) introduction to logistic regression

Informally, a logistic regression model is an equation that relates the condi-

tional probability of an event Y occurring to a weighted combination of values

for variables xq, xs, x3, ...,zN. Y is called the response variable while the

various x's are called explanatory variables. The regression equation has

the following form:

Pr(Y|z1, ze, 23, ..., tn) ~ Bo + 171 + aa + B3x3 +... + Onvay

The exact form of the equation is a bit more complicated (to ensure that
the probability lies between 0 and 1), but this simplified form is sufficient to
convey the general intuition. The coefficient (3) in front of each explanatory
variable determines the strength and direction of correlation between it and

the response variable Y. (0, is called the intercept term and is not associated
with any variable.)

For example, let’s say that the following model predicts the probability

that a person will enjoy watching the cartoon Bugs Bunny:

Pr(ENJOYBUGS CARTOON|AGE,IS_ AMERICAN,IS MALE) ~
—0.014+ (-23 x AGE) + (1.3 x ISSAMERICAN) + (02 x IS.MALF)

AGE is a continuous variable while IS _AMERICAN and IS_MALE are

(boolean) categorical variables that map to either 0 or 1. Logistic regressions
are extremely flexible because the explanatory variables can be continuous

(e.g., weight), ordinal (e.g., preference level), or categorical (e.g., blood type).
Here the negative coefficient (—2.3) preceding AGE implies that older

people are less likely to enjoy watching Bugs Bunny. The positive coefhi-

cients in front of IS_AMERICAN and IS_MALFE imply that Americans

and boys, respectively, are more likely to enjoy Bugs Bunny. However, no-

tice that the IS.MALE coefficient (0.2) is significantly smaller than the
ISAMERICAN coefficient (1.3), which implies that gender is less strongly
correlated with probability of enjoying Bugs Bunny than nationality is (i.e.,
boys are only slightly more likely than girls to enjoy it, but Americans are

much more likely than non-Americans to).

3

3.1.1 Interpretation of logistic regression model coefficients

The first question that many people might ask is how to interpret the numer-

ical values of the coefficients: What does (1.3 x IS_AMERICAN) mean?
Does it mean that Americans are 1.8 times more likely to like Bugs Bunny

than non-Americans? Unfortunately, the answer isn’t that straightforward.

Unlike linear regressions (whose coefficients lend themselves to a direct mul-
tiplicative interpretation), for logistic regressions, it is more difficult (but
still possible) to directly interpret the magnitude of a coefficient. Thus, I
will often simply interpret the sign as indicating a positive or negative effect

and try to indicate magnitude using other means like building contingency
tables from the raw data.

3.1.2 Fitting a model to a dataset

To create a logistic regression model, we must choose four components:

1. Response variable — Y (must be binary)

2. Explanatory variables — x1, zo, 23, ..., TN

3. Interaction terms (optional) — consist of the product of two or more
explanatory variables and is given its own coefficient (e.g., Bi3x123).
When the level of one explanatory variable alters the effects of other

explanatory variables on the response variable, there is an interaction

between them; standard practice suggests adding a product term to
account for such effects.

4. Model coeflicients — Gy, 51, 02, 03, ..., On

The first three must be picked by a human (using a combination of
domain-specific intuition, trial-and-error, and sometimes computer assistance),
but the last one can (and often should) be determined by a computer statis-
tical package that learns from a training dataset (e.g., for my Bugs Bunny
example, the data could come from a survey of 100 randomly-chosen people).
Fach entry in the dataset contains values for the explanatory and response

variables, and the computer selects coefficients resulting in a model that pro-

vides the best fit (minimizes some error metric similar to linear regression)
of explanatory variables to the response variable.

4

3.1.3 Assessing model quality

Once we have created a model, how do we assess how ‘good’ it is (both
in absolute terms and when compared with competing models)? There are
several classes of quality metrics:

1. Reduction in deviance — The residual deviance is a measure of how

‘far off’ a particular model is from the ideal model that pertectly fits

the training dataset (0 deviance is ideal). The null deviance is the
amount of deviance in a model containing only the intercept term (3,

and is a measure of the worst-possible model for predicting a given re-

sponse variable (independent of choices of explanatory variables) since
it doesn’t take any explanatory variables into account.

The difference between the residual and null deviances indicates how

much the explanatory variables helped to improve the model’s fit. The

larger the reduction in deviance, the better the model fits the training

dataset. To determine whether a particular reduction is statistically

significant, a p-value can be obtained from an analysis of deviance

chi-square test.

2. Parsimony — A model with fewer explanatory variables and inter-

action terms is usually better, given that it has comparable residual

deviance to a more complex model. Simpler models yield more intu-

itive justifications and are less likely to overfit the training dataset.

A commonly-used quality metric called AIC (Akaike’s Information
Criterion) augments the residual deviance measure with the number
of explanatory variables and assigns a lower (better) score to simpler
models.

3. Classification accuracy — A good model must accurately classify

members of the dataset it was trained on. In my Bugs Bunny example,

the model provides the probability that each person in the training

dataset will like watching Bugs based on his/her age, gender, and na-
tionality. We can set a threshold probability, only above which a person

is classified as liking Bugs. For example, with a threshold of 0.5, we

will classify a person with a model-calculated probability of 0.7 as lik-

ing Bugs (but with a threshold of 0.8, we will classify that same person
as not liking Bugs).

5

So what threshold is optimal? There is no clear-cut answer; it depends

on the relative costs of getting false positives (e.g., mistakenly predict-
ing that a person likes Bugs when he/she actually does not) versus false
negatives (e.g., mistakenly predicting that a person does not like Bugs
when he/she actually does).

A common way to visualize the trade-offs of different thresholds is by

using an ROC curve, a plot of the true positive rate (# true positives
/ total # positives) versus the false positive rate (# false positives /
total # negatives) for all possible choices of thresholds. For example,
a high threshold will yield a low false positive rate (since only samples
with very high probabilities will be classified as positive) but also a low
true positive rate.

A model with good classification accuracy should have significantly

more true positives than false positives at all thresholds. The area

under the ROC curve quantifies model classification accuracy; the

higher the area, the greater the disparity between true and false posi-

tives, and the stronger the model in classifying members of the training

dataset. An area of 0.5 corresponds to a model that performs no better

than random classification, and an area of 1 is ideal (any area above
0.9 is extremely impressive, though).

4. Prediction accuracy — One primary function of a model is to make

predictions about new, unknown data. Classification accuracy on the

training dataset alone cannot validate a model's goodness; using com-

puterized exhaustive search techniques, it can be easy to create complex

models that provide extremely high classification accuracy (e.g., with
ROC curve areas above 0.9) but overfit the training dataset.

The true test of model quality is how well it does when presented with

new data that it was not trained on. Unfortunately, it is often not feasi-

ble to collect new data, so a method called cross-validation is widely

employed to approximate prediction accuracy. In cross-validation, a

certain percentage of the dataset (e.g., 20%) is hidden and the rest is
used to train the model. Then the model is run to make predictions

about the hidden portion of the dataset (which was not involved in
training), and the error rate is recorded. This process can be repeated
numerous times and the error rates can be averaged to provide scores

for prediction accuracy.

6

In summary, a ‘good’ model should have relatively few explanatory vari-

ables (parsimony reduces the chances of overfitting), fit the training set data
points well (have low deviance), and have strong predictive powers (high
ROC curve area and low cross-validation error rates).

3.2 Dataset

For this study, I used 2,090 Coverity Scan bug reports obtained from scanning

the Linux source code base between Feb. 2006 and Dec. 2007. All bug reports

were released to Linux developers on the Scan website, where they could

triage and deal with them individually. Each report contains the following
information:

eo The file where the bug occurred

e The checker that flagged the bug (e.g., USE_AFTER_FREE, NULL_RETURNS)

e The date the report was issued

eo A timestamped sequence of status changes for the report, as marked by

Linux developers who logged into the Scan website. Each report starts

as UNINSPECTED, and developers change its status to other labels when

deemed appropriate:

— UNINSPECTED — no developer has ever investigated this report

— PENDING — someone has investigated this report but cannot deter-

mine whether it is a true bug or a false positive

— FALSE — someone has marked this report as a false positive

— BUG — someone has marked this report as a true bug but has not

yet taken steps towards resolving it

— IGNORE — someone has marked this report as a true bug but will
not fix it for whatever reason

— RESOLVED — someone has marked this report as a true bug and

also committed a patch that supposedly fixes it

e The number of days since the report was issued until somebody first

inspects it carefully enough to change its status (null if never inspected)

e The number of days since the report was issued until somebody resolves

it (null if never resolved)

7

3.3 Response variables

I will use logistic regression to predict probabilities for the following response

variables, which are derived from the final status field of each bug report:

eo INSPECTED — final status is not UNINSPECTED, which means that some-

body has triaged the report

e RESOLVED — final status is RESOLVED, which means that somebody has

checked in a patch that supposedly fixes the bug described by the report

Recall from §1 that my goal is to create models to predict the following

probabilities:

1. Pr(INSPECTED |z1, x2, 23, ..., TN)

2. Pr(RESOLVED | INSPECTED , 21, To, T3, ..., Tn)

The explanatory variables xq, Ts, 3, ..., zy are drawn from the set de-

scribed in §3.4.

3.4 Explanatory variables

I have augmented each report in my dataset with a multitude of variables

related to the properties and development history of the file and directory

where it flagged a potential bug. I have manually chosen these variables based

upon reading related work, discussions with others, and my own hypotheses

about what factors might influence the response variables of §3.3. Of course,

not all of these variables will end up going into my models (unless I'm either
very lucky or totally overfit the dataset); this is just the candidate pool that
serves as a starting point for model building. I now present the explanatory

variables grouped into categories:

3.4.1 Static file properties

e file num_lines — the number of lines in the file at the time the report
occurred

e file num lines.log— natural logarithm offilenum lines (log trans-
forms are standard practice for making strongly-skewed distributions

more symmetric, which helps in making model residuals more symmet-

ric and thus reducing deviances)

8

e file has gt500_lines — TRUE iff filenum lines > 500 (if FALSE,
then this is a ‘small’ file)

e file has gt 2000 lines — TRUE iff filenum lines > 2000 (if TRUE,
then this is a ‘large’ file)

It is common practice to derive categorical (binary) variables from contin-
uous variables (e.g., file has gt_2000_lines) to provide greater opportuni-
ties for model building. The boundary values are usually chosen through a

combination of intuition and manually finding interesting points in the data

distribution (e.g., splitting at the ‘knee’ of a long tail curve).

3.4.2 Static module properties

Most directories in the Linux code base contain source files that together

implement one piece of functionality (usually along with a Makefile). Thus,
I will use directories as an approximation to modules:

e dir numfiles — the number of source files (*. [chS]) in the directory
where the report occurred at the time it occurred

e dir has gt 5files — TRUE iff dir numfiles > 5 (if FALSE, then this
is a ‘small’ module)

e dir has gt 50files — TRUE iff dir numfiles > 50 (if TRUE, then
this is a ‘large’ module)

e dir numlines (and dir num_lines.log) — total number of lines in all
source files in directory at the time the report occurred (and its natural
log)

eo toplevel_dirname — the top-level directory name of the file where the

report occurred (16 categories, e.g., drivers/, fs/, kernel/)

3.4.3 File development history properties

I have only been able to obtain the source control version history of Linux

starting in Feb. 2002, which is ~ 5 years before when the Coverity scans oc-

curred. Thus, files created before Feb. 2002 have incomplete (censored) date
information. I used a sentinel value of 3,000 days (~ 8 years) for file_age

9

for files created before Feb. 2002. Similarly, I set 3,000 for file days_since_

last_patch and file_days_since_last_monofile_patch if there are no patches
to a file after Feb. 2002.

e file age — the number of the days the file has existed at the time the
report occurred

e file age inyears — same as file age, except in years, rounding

down to the nearest integer and converted into a categorical variable

(with categories 0, 1, 2, etc.)

eo filedays_since_last_patch — at the time the report occurred, how

many days has it been since the most recent patch was committed for
this file?

e file days_since_last monofile_ patch — at the time the report oc-

curred, how many days has it been since the most recent patch that

only affected this file (‘monofile patch’) was committed? I hypothesize
that patches affecting only one file are usually more significant for that

file than patches affecting multiple files.

e filenum patches (and file_num_patches.log) — number of patches
to this file between Feb. 2002 and the time the report occurred (and
natural log, adding 1 to prevent NaN’s resulting from 0 values)

e file has gt_20_patches — TRUE iff file numpatches > 20

e file has gt_100_patches — TRUE iff file numpatches > 100

e file numpatches_1month prior — # patches to this file in the 1

month prior to the report date, an indication of its level of recent

development activity.

e file numpatches_6_months_prior — # patches to this file in the 6

months prior to the report date

e file num monofile patches — # patches that only affected this file

(‘monofile patch’) between Feb. 2002 and the report date

e file nummonofile_patches_1month prior — # monofile patches in

the 1 month prior to the report date

10

e file num monofile_ patches_6_months_prior — # monofile patches in

the 6 months prior to the report date

e file num modlines (and file num modlines.log) — total number
of lines modified (inserted + deleted) in this file in all patches from
Feb. 2002 to the report date (and natural log, adding 1 to prevent NaN
resulting from 0 values)

e file num mod_lines_1 month_prior — # modified lines in the 1 month

prior to the report date

e filenum mod lines 6 months prior — # modified lines in the 6 months

prior to the report date

3.4.4 Developer properties

e filenum authors (and file numauthors. log) — the number of unique
developers who have written patches for this file from Feb. 2002 to the

report date (and natural log, adding 1 to prevent NaN resulting from 0
values)

e file has gt 1authors — TRUE iff file numauthors > 1 (this is a
key boundary since many files only have 1 developer)

e file has gt_b_authors — TRUE iff file numauthors > 5

e file has gt 15authors — TRUE iff file numauthors > 15

e file num_authors_1month prior — # unique developers who have

written patches for this file in the 1 month prior to report date

e file num authors 6 months prior — # unique developers who have

written patches for this file in the 6 months prior to report date

3.4.5 Code churn metrics

eo file percentage _churn —

file_num mod_lines / file_num_lines

eo file has gt_100_percentage_churn —

TRUE iff file percentage _churn > 1

11

eo filepercentage_churn_1 month prior —

file num mod _lines_1 month prior / filenum lines

eo filepercentage_churn 6 months prior —

file_num mod_lines_6 month prior / file num_ lines

3.4.6 Module development history properties

I have derived the following variables for modules (directories) by summing
up the respective values for all source files (x. [chS]) in each directory (the
variable names should be self-explanatory). These might sometimes provide
over-approximations (e.g., patches are often over-counted because a single
patch might affect multiple files in the same directory), but I am not too
concerned with this inaccuracy for now.

e dir nummod_lines

e dir nummod_lines_1month prior

e dir num mod_lines_6_months_prior

e dir numpatches

e dir numpatches_lmonth prior

eo dir numpatches_6_months_prior

e dir nummonofile_patches

eo dir nummonofile_patches_1month prior

e dir num monofile patches 6 months prior

3.4.7 Coverity report properties

The following are properties about the Coverity reports themselves and de-

veloper responses to them:

e checker — the type of checker that flagged the bug (12 categories, e.g.,
DEADCODE, OVERRUN_DYNAMIC, USE_AFTER_FREE)

12

eo days before inspection — the number of days between the report

date and the first time somebody inspects and marks it with some

status other than UNINSPECTED (null if never inspected)

e num_prev_inspected_reports_in_file — at the time that this report

was issued, how many other reports in the same file had already been

inspected”?

e num_prev_inspected_reports_indir — at the time that this report

was issued, how many other reports in the same directory had already

been inspected?

e numprev_inspected_reports_infile FACTOR —

num_prev_inspected_reports_in_file converted into a categorical vari-

able (with categories 0, 1, 2, etc.) to try to find non-linear relations

e num_prev_inspected_reports_indir FACTOR —

num_prev_inspected_reports_in_dir converted into a categorical vari-
able

eo file hasprev_inspected_reports —

TRUE iff num_prev_inspected_reports_infile > 0

e dir has_prev_inspected_reports —

TRUE iff num_prev_inspected_reports_indir > 0

I have also added two sets of variables that are analogous to those just

presented in this section. These variables have names like:

e file has _prev_inspected BUGGY_reports

e file hasprev_inspectedFALSE reports

The *_BUGGY_reports_* variables only count previous reports that have

been inspected and found to be true bugs, while the *_FALSE_reports_* vari-

ables only count previous reports that have been inspected and found to be

false positives.

13

4 Predicting whether a report will be inspected

This section describes my attempts to create logistic regression models to

predict whether a given Coverity Scan report will be inspected by developers.

The process of creating these models compelled me to analyze the effects

of certain explanatory variables in greater detail, so I will also present the

findings of these investigations.

4.1 Single regression models

The simplest type of logistic regression model involves only one explana-

tory variable; as a starting point, I first created separate models using each

explanatory variable in §3.4 to predict INSPECTED. Table 1 shows a subset

of those variables that provided reasonably good fits (with low p-values in
an analysis of deviance chi-square test). Each row shows one explanatory
variable, its regression equation coefficient, and two metrics of model qual-

ity from 83.1.3: chi-square p-value indicating the significance of reduction in

deviance (lower is better) and ROC area indicating classification accuracy
(higher is better). Note that non-binary categorical variables (e.g., checker,
file age inyears, and toplevel dirname) do not have one coefficient but
rather have as many coeflicients as there are categories, so they are not listed

in Table 1 for brevity.

Although all of these single regression models have low p-values, their

ROC areas aren’t at all impressive. Recall that a model that randomly clas-

sifies the response variable will have an average ROC area of 0.5; most of

these models don’t improve upon that baseline by much (0.65 for checker
is respectable, though). In other words, most explanatory variables have a
statistically significant correlation with inspection probability, but their cor-

relations are fairly weak. A common warning about employing statistical

techniques is that, given a large enough sample size (there are 2,090 reports
in my dataset), even tiny effects will likely be deemed statistically signifi-
cant; statistical significance alone does not mean that an effect has practical

significance.

Full results are shown in Tables 13 and 14 in the Appendix. Note that

just because a particular explanatory variable alone does not result in a

strong model does not mean that it will not be useful when combined with

other variables. As a commonly-accepted heuristic, any explanatory variable

whose p-value in single regression is less than 0.3 could be a viable candidate

14

checker N/A | 3.2e-32 0.65
filenum_ authors. log —0.35 | 1.8e-12 0.09

file has _gt_1_authors —1.06 | 1.9e-11 0.00

file num patches. log —0.24 | 2.6e-11 0.08

file_age_in_years N/A | 2.1e-10 0.59
file age —0.00024 | 4.4e-10 0.59

file has gt _15_ authors —0.59 2e-09 0.06
file num mod_lines.log —0.13 | 2.2e-09 0.06

file has gt _20_patches —0.53 7e-09 0.56
file num_authors —0.02 | 9.1e-08 0.09

file has_gt_5_ authors —0.51 | 1.6e-07 0.55
file days_since_last_monofile patch 0.00022 | 3.1e-07 0.53
file days_since_last_patch 0.00043 | 7.7e-07 0.54

file has_gt_2000_lines —0.45 | 1.7e-06 0.00

toplevel dirname N/A | 2.7e-06 0.57
file num lines.log —0.18 | 9.8e-05 0.56

dir num patches 6 months prior —0.00059 | 0.00017 0.54

dir_num_patches —8.6e-05 | 0.0002 0.57

dir num patches_1 month prior —0.0021 | 0.00042 0.54

file num authors_1 month prior —0.11 | 0.00045 0.54

file has_gt_100_percentage_churn —0.31 | 0.00057 0.54
dir num mod lines —1.58e-06 | 0.00097 0.56

file num _authors_6_months_prior —0.039 | 0.0011 0.54
file num patches _6_months_ prior —0.0094 0.005 0.54
dirnum lines.log —0.098 0.006 0.93

Table 1: Selected explanatory variables that provided good fits for a single

logistic regression model to predict INSPECTED.

15

checker Percent (and number) of reports

il hi on
DEADCODE 82% (205) | 18% (45)
FORWARD _NULL 50% (250) | 50% (250)
NEGATIVE RETURNS | 38% (16) | 62% (26)
NULL_RETURNS 51% (76) | 49% (72)
OVERRUN_DYNAMIC || 100% (6) | 0% (0)
OVERRUN_STATIC 78% (222) | 22% (62)
RESOURCE_LEAK 53% (161) | 47% (141)
REVERSE_INULL 57% (144) | 43% (108)
REVERSE_NEGATIVE | 69% (9) | 31% (4)
SIZECHECK 20% (1) | 80% (4)
UNINIT 84% (53) | 16% (10)
USE_AFTER_FREE 48% (109) | 52% (116)

Total | 60% (125) [40% (53)

Table 2: Percent and number of inspected reports for different checker types,

which are significantly different across checkers at p << 0.01 according to a

chi-square test. Entries above the overall percentage of 60% are in bold.

for including in a multiple regression model (a topic further explored in §4.5).

4.2 Impactful explanatory variables

The following types of variables lead to well-fitting single regression models

according to Table 1 and can be used as a starting point for generating

multiple regression models: checker type, top-level directory name, file age,

and file/module size.

4.2.1 Checker type

Table 1 shows that checker results in the strongest single regression model

by far, with the lowest p-value and highest ROC area of 0.65.

To explore the effects of checker type in more detail, I have created a

contingency table to compare inspection rates across checkers. The resulting

Table 2 shows the percentage and number of reports that were inspected and

uninspected for each of the dozen checker types.

16

The inspection percentages differ significantly across checkers, as con-

firmed by a chi-square test. If developers inspected bug reports without

regard to the checker type, then the inspection percentages for each checker

would likely be nearly identical and fail the chi-square test.

Reports from certain checker types are more likely than others to be in-

spected, perhaps because developers deem them more critical to fix or simply

have an easier time distinguishing between true bugs and false positives (re-
call that to ‘inspect’ a bug report means more than to merely glance at it;

one must be confident enough to triage it as a true bug, false positive, or,

at worse, mark it as unsure to defer to another developer). The DEADCODE,
OVERRUN_DYNAMIC, OVERRUN_STATIC, REVERSE_NEGATIVE, and UNINIT check-

ers have above-average inspection rates.

4.2.2 Top-level directory

Table 1 shows that the top-level directory (toplevel dirname) also provides
a fairly strong single regression model. The corresponding contingency table

(Table 3) shows inspection rates differing across top-level directories.
Note that most of these directories contain relatively few files and thus few

reports, so their percentage deviations from the average aren’t too significant.

For the four directories with large numbers of reports, drivers, fs, and

sound have inspection rates around the global average of 60%, but net has
a much lower rate of 47%.

The general insight here is that developers prioritize different parts of the

codebase unequally; some parts might be deemed more security-critical or

are simply under more active development. Of course, the exact details here

are only relevant to Linux, but the idea of using top-level directory names

as explanatory variables for model-building can be useful for studying other

software projects as well.

17

toplevel dirname || Percent (and number) of reports

Nb hehing
arch/ 77% (23) | 23% (7)
block/ 80% (4) | 20% (1)
crypto/ 67% (2) | 33% (1)
drivers/ 63% (748) | 37% (432)
fs/ 58% (180) | 42% (128)
include/ 71% (5) | 29% (2)
init/ 100% (1) | 0% (0)
ipc/ 78% (7) | 22% (2)
kernel/ 50% (18) | 50% (18)
lib/ 25% (2) | 75% (6)
mm/ 62% (10) | 38% (6)
net/ 47% (159) | 53% (181)
scripts/ 100% (8) | 0% (0)
security/ 83% (5) | 17% (1)
sound/ 60% (79) | 40% (53)
usr/ 100% (1) | 0% (0)

Tol | 60% (122) [40% (535)

Table 3: Percent and number of inspected reports according to top-level

directory, which are significantly different across directories at p << 0.01

according to a chi-square test.

18

and % file_age_in_years Total

EEEeeI |
inspected 71% 70% 53% 57% 52% 52% 54% 60%

fspected | (391) (115) (85) (191) (107) (17) (346)
uninspected | 29% 30% 47% 43% 48% 48% 46% 40%

pected | (159) (50) (76) (142) (98) (16) (297)
Table 4: Inspection rates for reports in files of various ages, which are sig-

nificantly different across years at p << 0.01 according to a chi-square test.

Entries above the overall percentage of 60% are in bold.

4.2.3 File age

One intuition about software development is that younger files (files created
more recently) are under more active development than older files, so devel-
opers might be more responsive to bug reports affecting younger files.

Table 1 shows that the age of the file where a report occurs can be a

good predictor for whether it will be inspected (via the continuous variable
file age and its derived categorical variable file age inyears). The neg-
ative coefficient (—0.00024) for file_age suggests that developers are more
likely to inspect reports affecting younger files. Note that its small magni-

tude might be due to the fact that file_age is measured in units of days

(rather than larger units like months or years).
The contingency table for file age inyears (Table 4) clearly shows

that files less than 2 years old have a much higher inspection rate than their

older counterparts.

In addition to simply dividing up by years using file_age_in_years, I

thought it would be informative to also divide up files into ‘young’ and ‘old’

based on an arbitrary threshold of how many days each has been alive (using
file_age). Let’s say that the threshold is 100 days. Then I can create the
following 2x2 contingency table where each entry contains the number of

reports satisfying its respective criteria:

 [¥ileage< 100 (young) | File age >= 100 (old)
Gwpected | a [bh
Fwinspected |cd

The inspection rate is a/(a + ¢) for young files and b/(b + d) for old files.

19

INSPECTED vs. file_age

©

a ©
LL oOo _
— py I

i E———
a © -—
9p) Oo
2 HHHHHH HHH HHH HH HH HH HHH HHH
S «
to
3
ao

()

o
()

1 181 391 601 811 1051 1321 1591 1861 2131 2401 2671 2941

Threshold for file_age

cov_dat , significant at p < 0.01

Figure 1: Inspection rates for various thresholds of file_age. For significant

differences with chi-square p < 0.01, files older than threshold marked in red

+, and files younger than threshold marked in blue —.

A chi-square test can be used to determine whether there is a statistically

significant difference in inspection rates between young and old files for this

given choice of threshold.

But which threshold should I choose? Well, why stop at just one thresh-

old? Figure 1 shows the inspection rates for old vs. young files plotted for a

wide range of thresholds of file_age. The high-order bit of this figure is that

the red + marks (inspection rates for old files) are consistently below the blue
— marks (inspection rates for young files), which means that for (almost) all
possible choices of thresholds, younger files are more likely to be inspected

than older files. These results corroborate Table 4, but that shouldn’t be

surprising since file age _in_years is derived directly from file_ age.

It might now seem like there is strong evidence to suggest that developers

are more likely to inspect reports in younger files than in older files, but there

is a bit more to this story. It turns out that my dataset actually contains

two different kinds of Coverity Scan reports:

20

—Tcooficient_pvalueROC aren
Initial scan —2.52e-05 0.69 0.52

Subsequent scan | —0.00043 1.2e-16 0.65

Jcocffcient_pvalie ROCarea
Initial scan N/A 0.055 0.56
Subsequent scan N/A 2.8e-14 0.64
All N/A 2.1e-10 0.59

Table 5: Single logistic regression models for file age versus INSPECTED for

initial and subsequent scan reports.

e Initial scan reports — 970 reports released together to developers on

2006-02-24, resulting from scanning the entire Linux codebase for the

first time in the Coverity Scan project

e Subsequent scan reports — 1120 reports released in small batches

between 2006-02-24 and 2007-12-01, which only include new bugs found

in existing files and bugs found in newly added files

Figure 2 visualizes the distribution of reports across time. Almost half

of all reports were released as a batch on 2006-02-24 at the start of the

Coverity Scan project, and the rest of the reports were released periodically

to the Scan website every few weeks or so as the entire Linux codebase was
re-scanned.

To produce Figure 3, I split up my dataset into two separate groups and

calculated inspection rates vs. file_age thresholds separately for initial and

subsequent scan reports.

For initial scan reports, there was no statistically significant difference in

inspection rates, as indicated by all data points being muted-colored dots.

Even though the rates weren't identical, they weren’t ‘different enough’ ac-

cording to a chi-square test with the significance threshold set to p = 0.01.

This fact suggests that when the initial batch of reports were released, de-

velopers did not really bias their inspections based on how old the files were
at that time.

21

Dates of Coverity Scan reports for Linux (Feb. 2006 —- Dec. 2007)

-

A

-
»
QV]

-

3
Initial scan reports (970)

-
oo»
Lo

-

— <r
«© ~
Q
(®)}

So o
oO 0)
Cc (00)
o

S gh
E00)
0 .,

5 —

g 5 (1 ®y
r &— | * coe Subsequent scan reports (1120)

o L
oo 0 ®
A I PE

- Lo
3 I.
2

2

: |
=
»

-

S Jun 2006 Jan 2007 Jun 2007 oo

0 100 200 300 400 500 600

Report date (days after 2006-02-24)

2090 total reports

Figure 2: Distribution of all Coverity Scan reports across time.

22

INSPECTED vs. file_age

A ©
Tm ()
—
O
LL

al

w <t

Z o
Cc

I

S
o «
A Oo

()

S

15 195 405 615 825 1065 1335 1605 1875 2145 2415 2685 2955

Threshold for file_age

cov_dat_initial_reports , significant at p < 0.01

INSPECTED vs. file_age

©

a ©
LL () —_—
= —
oO ——
Lu Te
on © -
9p) Oo
<

S BieS =
o ()
Q

2
o QV

S

()

S

1 181 391 601 811 1051 1321 1591 1861 2131 2401 2671 2941

Threshold for file_age

cov_dat_subsequent_reporis , significant at p < 0.01

Figure 3: Inspection rates for various thresholds of file_age for initial scan

reports (top) and subsequent scan reports (bottom). For significant differ-
ences with chi-square p < 0.01, files older than threshold marked in red +,

and files younger than threshold marked in blue —. Muted-colored dots are

for chi-square p > 0.01. 99

In contrast, for subsequent scan reports, there is a striking difference in

inspection rates between old and young files. This fact suggests that when

batches of new reports arrived incrementally, developers were more likely to

inspect reports in younger files.

The contrast between initial and subsequent reports suggests that it might

be useful to create separate models for each dataset. The models I generated

for Table 5 corroborates Figure 3: Note the far smaller p-values and larger

ROC areas in models for the subsequent scan reports, which demonstrate that

file age variables generate much better models for subsequent scan reports

than for initial scan reports.

4.2.4 File/module size

Does the size of the file/module where a report occurs affect its probability
of inspection? Size (e.g., # lines) is usually correlated with code complexity,
so it might be easier to triage bug reports in smaller (simpler) files/modules.

Once again dichotomizing the data using thresholds, I generated Figure 4,

which shows that for initial scan reports, smaller files are more likely to be

inspected than larger files, but for subsequent scan reports, there isn’t a

statistically significant difference in inspection rates (most data points are
muted-colored dots).

These results suggest that when developers were initially presented with

a large batch of 970 reports on 2006-02-24, they favored inspecting reports in

smaller files, perhaps because they were easier to triage, but when presented

with new reports in the subsequent months, file size was overshadowed by

other factors (most notably file age).
For instance, out of all initial scan reports, 70% of reports in files with

fewer than 2000 lines were inspected while only 50% of reports in files greater

than 2000 lines were inspected.
The models I created for Table 6 corroborate that variables related to

file/module size create far better models for initial scan reports than for
subsequent scan reports (with smaller p-values and larger ROC area). File
size seems to be a better predictor for inspection rates than directory size,

perhaps because it more directly measures the complexity of the portion of

code where the report affects. file_num_lines fares the best in terms of ROC

area, while the other two variables have much weaker predictive powers, even

though they still have strong (small) p-values.

24

INSPECTED vs. file_hum_lines

©

a ©
LL Oo
—

O —
LL -_—
a ©
9p) Oo
<
ja

Ss «

ro) ()
Q

2
al Al

S

()

S

88 988 2188 3688 5188 6688 8188 9688 11188 12688 14188

Threshold for file_num_lines

cov_dat_initial_reports , significant at p < 0.01

INSPECTED vs. file_hum_lines

™
()

© _
()

a

=
oO ()

S-
> oS
Cc ap)
S 3
3S,
Q A

© o
al

S

()

S

78 1578 3078 4578 6078 7578 9078 10878 12678 14478 16278 18078

Threshold for file_num_lines

cov_dat_subsequent_reporis , significant at p < 0.01

Figure 4: Inspection rates for various thresholds of file _num_lines for initial

scan reports (top) and subsequent scan reports (bottom). For significant
differences with chi-square p < 0.01, files larger than threshold marked in

red +, and files smaller than threshold marked in blue —. Muted-colored

dots are for chi-square p > 0.01. or

—[coofficient_pvalueROC aren
Initial —0.00015 4.2e-07 0.6

Subsequent —2e-05 0.39 0.53

Jcocffident_pvalue ROC area”
Initial —2.27e-06 0.0034 0.54

Subsequent | —8.25e-07 0.31 0.54

coefficient_pvalue ROCaren
Initial —0.0015 0.032 0.54

Subsequent | —0.00028 0.67 0.52

Table 6: Single logistic regression models for file/module size versus
INSPECTED for initial and subsequent scan reports.

26

[0paiches > 0 paiches.
inspected 67% (4) 62% (601)

3% (2) ow ood)

 [Opaiches> 0 pices.
inspected 85% (69) 56% (578)

to (12) 56 (0)

Table 7: Inspection rates for reports in files with zero versus non-zero patches.

4.2.5 Number of days since most recent patch

Figure 5 shows that the number of days since the most recent patch to a file

has no significant bearing on the inspection rate for initial scan reports but

is positively correlated with the inspection rate for subsequent scan reports.

This finding is a bit strange because it implies that, for subsequent scan

reports at least, reports for files that were patched less recently were more

likely to be inspected.

Upon some manual investigation, I realized that this effect might be an ar-

tifact of me using a sentinel value of 3,000 days for file _days_since_last_patch

for files that were never patched (i.e., files that were never patched always
seem to be above all thresholds). After splitting up the data into files with 0
patches and > 0 patches (Table 7), it becomes apparent that subsequent scan
reports in files with 0 patches have a much higher inspection rate — 85%

vs. b6% — passing a chi-square test with flying colors. In contrast, because

there are extremely few files with 0 patches amongst initial scan reports,

even though their proportions are slightly different, it fails the chi-square

test (p = 0.84).
Interpreted in this new light, the results in Figure 5 simply indicate that

reports in files that have never been patched (with a really, really ‘large’ #
days since last patch) have a greater probability of being inspected. Perhaps
developers are more attuned to bug reports in ‘green’ files that have been re-

cently added to the repository and never patched, but I have not investigated
in more detail.

27

INSPECTED vs. file_dayssince _last_patch

0
()

a
LLI

oc ©
LL o
al

nN
pd

=
8 ©

3S,
Q

o

3

()

S

0 200 400 600 800 1050 1300 1550 1800 2050 2300 2550 2800

Threshold for file_days_since_last_patch

cov_dat_initial_reports , significant at p < 0.01

INSPECTED vs. file_dayssince _last_patch

HAHEICACERINSS
a 4H

N +

Lu
= a
al

nN

<
<

Ss ©
5
&
3

()

S

0 200 400 600 800 1050 1300 1550 1800 2050 2300 2550 2800

Threshold for file_days_since_last_patch

cov_dat_subsequent_reporis , significant at p < 0.01

Figure 5: Inspection rates for various thresholds of

filedays_since_last_patch for initial scan reports (top) and subse-
quent scan reports (bottom). Files with # days significantly larger than
threshold marked in red +, smaller than threshold marked in blue —.

28

file has prev_inspected reports —0.21 0.12 0.52

file has prev_inspected BUGGY reports 0.20 0.23 0.51

file _has_prev_inspected FALSE reports —0.098 0.57 0.51

dir has prev_inspected_ reports —0.50 0.00023 0.99

dir_has_prev_inspected BUGGY reports —0.25 0.039 0.93

dir_has_prev_inspected FALSE reports —0.45 0.00025 0.99

num _prev_inspected _reports_in dir —0.016 0.028 0.55

num_prev_inspected BUGGY_reports_in_dir —0.008 0.59 0.52

num_prev_inspected FALSE reports_in_dir —0.061 0.00036 0.57

Table 8: Single logistic regression models for number of previous inspected

reports versus INSPECTED, only for subsequent scan reports.

4.2.6 Previous inspected reports (subsequent scan only)

For subsequent scan reports, it would be reasonable to assume that previous

inspections are indicative of future inspections. If at the time that some

report arrives, there are previous reports in the same file/module that have
already been inspected, it might influence the probability of that report being

inspected. For this particular dataset, it turns out that this effect is present

but fairly weak.

Table 8 shows single logistic regression models built from binary variables

indicating whether the file/module that a report affects has any previous in-
spected reports. The negative coefficients for file_has_prev_inspected_reports

and dir_has_prev_inspected_reports seem counter-intuitive. Is it really

true that when a file/module has previous inspected reports, the probability
of inspection for future reports actually decreases? My intuition suggests that

having previous inspected reports should actually increase the probability of

inspection.

One hypothesis is that many reports are inspected and then marked as

false positives, so developers would be less likely to pay attention to future

reports in those same files/modules. To test this hypothesis, I looked at
whether a file/module had previous inspected reports that were marked as
true bugs or false positives using the *_BUGGY_* and *_FALSE_* variables.

The regression equation coefficient turns out to be positive (0.20) for
file_has_prev_inspected BUGGY_reports and negative for file _has_prev_

29

inspectedFALSE reports (—0.098), which means that files with previous
reports that were inspected and marked as true bugs were more likely to

have their future reports inspected, while files with previous reports that

were marked as false positives were less likely to have their future reports

inspected, corroborating my hunch. However, the p-values and ROC areas

for both are fairly weak, so this effect isn’t at all substantial.

On the module (directory) level, both coefficients are negative, but the
one for inspected buggy reports (—0.25) is less negative than the one for
inspected false positive reports (—0.45).

Finally, the number of previous inspected reports actually matters: The

p-value for num_prev_inspectedFALSE reports_in dir is 0.00036 (with the
highest ROC area of the bunch, 0.57), while the p-value for num_prev_
inspectedBUGGY _reports_in dir is 0.59, which is nowhere near statisti-

cally significant. This means that the more false positives found in previous

reports in the same module, the less likely that future reports will be inspected,

while there is no significantly noticeable effect for reports found to be true

bugs.

4.3 Redundant explanatory variables

There are many more variables in Table 1 that I have not yet examined

in detail, most notably those dealing with numbers of patches, modified

lines, and developers. I surmised that these variables might be dependent

on file age, so it would be redundant to also include them in a model. For

instance, younger files are likely to have fewer patches, modified lines, and

developers. One way to test for redundancy is to create a multiple logistic

regression model and to separately assess the significance of the effect of each

explanatory variable.

4.3.1 Number of patches

file age and file num patches are decently well-correlated, with a (linear)
Pearson’s r of 0.4 and (nonlinear) Spearman’s rho of 0.64 (1 is perfect positive
correlation), which means that there is a good chance that it is only necessary
to include one of them in a model rather than both.

Table 9 shows that when file_age and file num_patches are both used

together to create a multiple regression model, file age greatly reduces the

deviance from 2814.8 to 2775.9 (earning it a tiny p-value of 4.4e-10), but

30

INSPECTED ~ file_age + filenum patches

coefficient deviance p-value
NULL 2814.8

file age —0.00024 2775.9 4.4e-10

filenum patches | —0.00028 2775.8 0.71

Table 9: Multiple regression model showing that file numpatches is un-

necessary once file_age is already in the model.

INSPECTED ~ file_age + file nummod_lines

coefficient deviance p-value
NULL 2814.8

file age —0.00024 2775.9 4.4e-10
file num mod_lines 4.6e-06 2775.7 0.67

Table 10: Multiple regression model showing that file num_mod_lines is

unnecessary once file_age is already in the model.

file numpatches does almost nothing to the deviance (earning it a huge
p-value of 0.71). In other words, once file_age is in the model, adding
file numpatches doesn’t provide any more substantial gains, so it is re-
dundant.

4.3.2 Number of modified lines

file age and file num modlines are also decently well-correlated, with a

(linear) Pearson’s r of 0.3 and (nonlinear) Spearman’s rho of 0.55, although
the correlation is not as strong as with file_num_patches.

Still, Table 10 shows that using file_num_mod_lines doesn’t fare much

better than using file_num_patches once file_age is in the model, so it too
is redundant.

4.3.3 Number of developers

file_age and filenum authors are strongly correlated, with a (linear)
Pearson’s r of 0.57 and (nonlinear) Spearman’s rho of 0.72.

31

NULL 2814.8

file age —0.00024 2775.9 4.4e-10

Table 11: Multiple regression model showing that file_num_authors might

actually be able to work together with file_age to create a stronger model.

NULL 1284.7

file _age 9.7e-7 1284.5 0.69

NULL 1525.5

file_age —0.0004 1457.0 1.2e-16
file num_authors —0.003 1456.7 0.61

Table 12: Multiple regression models for initial scan (top) and subsequent
scan (bottom) reports showing that, in fact, file_num_authors is redundant.

Strangely, though, Table 11 actually shows that file_num_authors seems

to not be redundant with file_age because it can further decrease the de-

viance of the model by a statistically significant amount, earning it a re-

spectable p-value of 0.03.

However, before concluding that file_num_authors has a significant ef-

fect on inspection rates independent of file _age, let’s look again at its con-

trasting effects for initial vs. subsequent scan reports, as shown in Figure 6.

Table 12 shows what happens when multiple regression models are created

separately for initial and subsequent scan reports. As expected, for the initial

scan reports, neither file _age nor filenum_authors has any significant

effect on inspection rates (p-values of 0.69 and 0.45, respectively). However,
for the subsequent scan reports, file_num_authors is, in fact, redundant,

32

with a p-value of 0.61. Sadly, the apparent benefit of filenum_authors in

Table 11 now disappears.

4.4 Useless explanatory variables

Empirical studies often only report what trials worked well, but it can be

useful to also report what didn’t work so well. The following types of ex-

planatory variables made for poor models for predicting INSPECTED:

e¢ Number of monofile patches — simply using the number of patches
worked better

e Code churn, especially short-term metrics like percentage churn in

the past 1 or 6 months — a related study with FindBugs at Google

(Ruthruff, Penix, et. al. ICSE 2008) also found that code churn was a
noisy factor that made for poor models

e Number of modified lines, especially short-term metrics like # mod.

lines in the past 1 or 6 months — file age and number of patches worked
better

33

INSPECTED vs. file hum_authors

S!

oO ©
LL Oo
—
O

LL ne
a ©
n Oo

Z
ja

oe <<

to
Q

o
aw

()

()

S

0 4 8 12 17 22 27 32 37 42 47 52 57 62 67 72 77 82 87

Threshold for file_num_authors

cov_dat_initial_reports , significant at p < 0.01

INSPECTED vs. file hum_authors

© —
o —

a _
: ~~

al

nN

Z
<

Ss ©
5
&
3

()

S

0 5 11 18 25 32 39 46 53 60 67 74 81 88 95 103 112 121

Threshold for file_num_authors

cov_dat_subsequent_reporis , significant at p < 0.01

Figure 6: Inspection rates for various thresholds of file_num_authors for

initial scan reports (top) and subsequent scan reports (bottom). For sig-
nificant differences with chi-square p < 0.01, files with more authors than

threshold marked in red +, files with fewer authors than threshold marked

in blue —. Muted-colored dots are forfhi-square p > 0.01.

4.5 Multiple regression models

Leveraging the insights developed in §4.2, 84.3, and 4.4, I've built multiple

regression models that are stronger than the single regression models of 94.1.

There is often no single ‘best’ model in practice, so I will present a few that

fit my dataset relatively well and have some chances of generalizing.

My strategy was to start with a set of explanatory variables that worked

reasonably well by themselves and then add more variables and see whether

they each decrease the residual deviance by a statistically significant amount.

[favored parsimonious models (with fewer variables) because they are more
likely to generalize to new datasets.

4.5.1 Basic model

It I take the four most impactful variables as determined in $4.2 and jam

them together into a model, they end up working quite well together:

INSPECTED ~

NULL 2814.8

checker N/A 2637.2 3.2e-32
toplevel dirname N/A 2600.3 0.0013
file _age —0.00013 2583.2 3.6e-5

filenum lines.log —0.27 2558.4 6.3e-7

ROC area: 0.70

Each variable helps to decrease the deviance of the model by a statistically

significant amount (with p << 0.01), so they don’t ‘step on each other’s
toes’. A four-variable model is fairly parsimonious, and each seems to exert

an independent effect on the inspection probability. The ROC area is 0.70,

which is slightly better than the 0.65 achieved by a model that simply uses

checker alone. This means that the other 3 variables actually add relatively

little to classification power, although they do reduce model deviance by

significant amounts (i.e., they create a ‘tighter’ fit but don’t allow the model
to classify members of the training dataset with much higher accuracy).

Figure 7 shows the ROC curve for this model, which is color-coded ac-

cording to the threshold. A particular choice of threshold marks a point on

35

ROC curve for basic model to predict INSPECTED

= he

> oS
© o

oO

=

4
a

S = S
SEE S

oy ®
oOo oOo

= =
S S

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Figure 7: ROC curve for basic model (area = 0.70).

36

the curve, which uniquely maps to true and false positive rates. Blue (low
threshold) points appear in the upper-right corner while red (high threshold)
points appear in the lower-left corner. Recall that the threshold is the proba-

bility at which the classifier predicts a report to be INSPECTED. For instance,

with a low threshold of, say 0.1, almost all reports are classified as INSPECTED

(as long as the model predicts an inspection probability of > 0.1); this results
in a near-perfect true positive rate (almost all inspected reports are prop-
erly classified) but also in a high false positive rate (almost all reports that
weren't inspected are falsely classified as inspected). In contrast, with an
unbelievably high threshold of, say 1, no reports are classified as INSPECTED;

this results in a zero false positive rate (which might seem promising), but
unfortunately also results in a zero true positive rate (because nothing is
classified as inspected).

A strong model should strive to attain the highest possible true positive

rate while keeping the false positive rate relatively low; a model that does

so will have a high arch and thus a high ROC area. The higher the arch of

the curve, the greater the area, which means greater classification accuracy

on the training dataset. A model making random predictions results in an

area of ~ 0.5. This model has an area of 0.7, which is respectable but not

amazing (models with areas approaching 0.9 are exceptional).

4.5.2 Enhanced model (found by computer search program)

There are many more possible explanatory variables that I could add to

the basic model with the hopes of improving its reduction in deviance and

ROC area. I first tried adding variables manually and assessing their effects,

but then I decided to automate the process by writing a program to search

through the space of possible models. This is a fairly straightforward search

algorithm that incrementally adds new variables and interaction terms and

assesses whether each one reduces the deviance of its predecessor model by

a statistically significant amount according to the analysis of deviance chi-

square test.

Because the search space is exponential (an exhaustive search would con-
sider all possible subsets of explanatory variables and their interactions), my
intent was never to wait for my algorithm to terminate, but rather to run it

for long enough (overnight to a few days) so that I could inspect at least a
few dozen generated models. Thus, I used an iterative deepening strategy,

which favors generating simpler models (shallower solutions in the search

37

tree) before more complicated ones but doesn’t have the immense memory
requirements of breadth-first search. In contrast, when I initially tried us-

ing depth-first search, it always generated overly-complex models because its

directive is to return the deepest solutions first.

A significant danger in using computer programs to search for models is

that they often find overly-complex models that overfit the dataset (i.e., by
trying enough possibilities, some are bound to fit well just by pure luck).
Thus, it’s always important to have a human ‘in the loop’ to manually assess

whether variables in computer-generated models make intuitive sense.

Here is a reasonable enhanced model that my program found:

INSPECTED ~

checker + toplevel dirname + file _age +

NULL 2814.8

checker N/A 2637.2 3.2e-32
toplevel dirname N/A 2600.3 0.0013
file age —7.3e-04 2583.2 3.6e-5

file _age_in_ years N/A 2564.2 0.0043
filenum lines.log —0.39 2543.0 4e-6

dir_num_mod_lines —1.3e-06 2039.1 0.05

file age in years:file num _lines.log N/A 2023.0 0.01
ROC area: 0.71

This model contains two extra variables and a pair of variables that are

bound together in an interaction term (recall its definition from §3.1.2):
(fileage in years * file numlines.log). My search program found
that the effects of these two variables complemented one another, so it added

their cross-product as a derived variable. In this case, the effects of number

of lines in a file vary for files of different ages, so adding these interaction

effects to the model made it stronger.

However, this more complicated model only improved upon the ROC area

of the basic model by 0.01 (0.71 vs. 0.70), but the deviance has been de-
creased from 2558.4 to 2523.0, which is decent. I still don’t have a good

intuition about whether the incremental improvements of this computer-

generated model outweigh its added complexity.

38

4.5.3 Models for initial scan reports

Fitting the same variables in the basic model to the subset of data containing

only initial scan reports results in the following model:

INSPECTED ~

NULL 1284.7

checker N/A 1227.9 1.4e-8
toplevel dirname N/A 1203.2 0.04
file age 3.8e-5 1203.1 0.79

filenum lines.log —0.38 1180.4 1.9e-6

ROC area: 0.68

Notice that the p-value for file_age is huge (0.79), which means it’s
practically useless. Recall from 84.2.3 that file age didn’t matter at all for

inspection rates in initial scan reports. We can thus eliminate it and form a

simpler model:

INSPECTED ~

NULL 1284.7

checker N/A 1227.9 1.4e-8

toplevel dirname N/A 1203.2 0.04
filenum lines.log —0.38 1180.4 1.9e-6

ROC area: 0.68

This simplified model has one fewer explanatory variable but still retains

the same final deviance and ROC area. I used this model as the starting point

for my computer search program and let it run overnight. The end result was

a large family of overly-complicated models that fit the dataset significantly

better, but I think that they might suffer from overfitting problems due to

39

their sheer complexity. Here is one such representative computer-generated

model (for brevity, I omit the individual coefficients, deviances, and p-values):

INSPECTED ~

checker + toplevel dirname + file has gt2000_lines +

(dir has gt50_files * filenum lines.log) +

(dir numpatches_1month prior * file age inyears) +

(dir_num monofile_ patches _6 months prior * dir numpatches) +

dir nummonofile_patches_1month prior

ROC area: 0.76

The ROC area of 0.76 is a noticeable improvement over the 0.68 of my

hand-made model, and the deviance has decreased significantly as well. How-

ever, I am hard-pressed to provide an intuitive justification for why this com-

plicated model (with 10 variables and 3 pairs of interaction terms) should
generalize beyond the dataset that it was trained upon.

Even though I am wary of computer-generated models, one use for them

is to serve as inspirations tor creating new hand-made models. In this case, I

noticed that file has_gt_2000_lines and dir numpatches_1month prior

seemed to have noticeable effects, so I added them to my basic model:

INSPECTED ~

checker + toplevel_ dirname + filenum_lines.log +

filehas_gt_2000_lines + dir_num_patches_1month prior

NULL 1284.7

checker N/A 1227.9 1.4e-8
toplevel dirname N/A 1203.2 0.04
filenum lines.log 0.04 1180.7 2.1e-6

file has _gt_2000_lines —0.96 1163.2 3e-0

dir num_patches_1 month prior —0.0038 1158.2 0.02

ROC area: 0.70

40

Adding these two variables boosted the ROC area of the basic model from

0.68 to 0.70 and decreased the deviance by a bit without increasing the com-

plexity of the model by too much, so it seems to be an overall improvement.

4.5.4 Models for subsequent scan reports

Fitting the same variables in the basic model to the subset of data containing

only subsequent scan reports results in the following model:

INSPECTED ~

NULL 1525.5

checker N/A 1347.0 4.8e-33
toplevel_dirname N/A 1317.0 0.0047
file age —0.00013 1283.5 7.1e-9

filenum lines.log —0.27 1277.0 0.01

ROC area: 0.77

The ROC area of classifying subsequent scan reports is 0.77, which is

much higher than the 0.70 for all reports and 0.68 for initial scan reports.

This suggests that the subsequent scan data has less noise than the initial
scan data.

Again I decided to let the computer generate lots of models that improved

upon this basic one. The following model was one of the cleaner ones that

came out of the overnight run (individual coefficients omitted for brevity):

INSPECTED ~

checker + toplevel dirname + filedays_since_last_patch +

(file_age * numprev_inspectedreports_in dir FACTOR) +

num_prev_inspectedFALSE reports_in dir +

(dir nummod_lines_6months prior *

num_prev_inspectedFALSE reports_in dir FACTOR)

ROC area: 0.85

41

The ROC area is an impressive 0.85! This model is actually not too

complicated, only containing 8 variables and 2 pairs of interaction terms.

Moreover, the new variables include those indicating the number of previous

inspected reports, which according to 34.2.6 have a definite effect on inspec-

tion rates. I'm more confident about this computer-generated model than

the one generated for initial scan reports.

The final model I want to present in this section was created by manu-

ally augmenting the basic model with relevant variables for days since most

recent patch and presence of previous inspected reports according to my

investigations in 94.2.5 and 84.2.6, respectively:

INSPECTED ~

checker + toplevel dirname + file age + file numlines.log +

filedays_since_last_patch + file has prev_inspected BUGGY_reports

NULL 1525.5

checker N/A 1347.0 4.8e-33
toplevel_dirname N/A 1317.0 0.0047
file age —0.0003 1283.5 7.1e-9

file num lines.log —0.21 1277.0 0.01

file days_since_last_patch 0.00027 1272.2 0.03

file has prev_inspected BUGGY reports 0.59 1262.8 0.002

ROC area: 0.774

Although the newly-added variables are definitely relevant, sadly the over-

all improvement in ROC area and deviance was barely noticeable.

The general take-home lesson from this section is that trying to tune

models to squeeze out the last ounce of residual deviance or ROC area im-

provement is often futile. Similar to other optimization problems in practice,

small tweaks don’t help much after you've located the variables that have

the largest effects and added those to your model. The incremental gains

of manually adding new variables are often small, and non-judicious use of

computer search programs can lead to overly-complex overfit models.

42

5 Predicting whether an inspected report will
be resolved

To create models for other response variables, such as whether a report will

be resolved, I could go through the same detailed steps as in §4. However,

due to lack of time (and space in this document), I have opted for a simpler
approach: simply letting the computer generate models for me and then

picking the simplest one that looks reasonable.

In this section, I want to only use the subset of reports that have been

INSPECTED and create a model to predict which of these reports will be
RESOLVED.

5.1 Single regression models

Tables 15 and 16 in the Appendix show the results of creating single logistic

regression models for each individual explanatory variable to assess their
individual effects.

Interestingly, toplevel_dirname and file_age, which had significant ef-

fects on inspection probability, seem to have little effect here, with p-values

of 0.53 and 0.84, respectively. I haven’t investigated in detail, but perhaps

once a bug has already been successtully triaged, the chances of it being fixed

doesn’t much depend on where the file is located or how old it is. One possi-

bility is that once a report is put on a queue of bugs to fix, then developers

will fix bugs without bias for file location or age, but what reports to triage

in the first place is definitely biased by file location and age.

The other impactful variables are quite similar to the ones for INSPECTED

presented in 84.2, but there is one particular new variable of interest: the

number of days after a report has been issued before it is inspected.

5.2 Impactful variable: Days before inspection

The longer that developers wait to inspect a report, the less likely it is that

it will eventually be resolved. Figure 8 shows the differences in inspection

rates. Reports inspected within around the first 100 or so days are 2 to 3

times more likely to be resolved than those that developers waited longer

to inspect (perhaps due to apathy or uncertainty about whether the report
indicated a true bug). This variable should definitely go into a multiple

43

RESOLVED vs. days before inspection

0
S

a
LLI

~ ©
O —
@» © —_—
LL

oC

ja

I

g 8
oO ©

I< _

S
()

0 30 70 110 160 210 260 310 360 410 460 510 560

Threshold for days_before inspection

cov_dat_inspected , significant at p < 0.05

Figure 8: Resolution rates for various thresholds of days_before_inspection

only for reports that were inspected. For significant differences with chi-

square p < 0.05, reports with days before inspection greater than threshold

marked in red +, less than threshold marked in blue —. Muted-colored dots

are for chi-square p > 0.05.

44

regression model for predicting RESOLVED.

Figure 9 shows similar graphs for the proportions of reports that were

marked as true bugs (top) and whose veracity could not be confirmed (bot-
tom) split by thresholds for days_before_inspection. (A report is marked
as a TRUE_BUG if its final status is either BUG, IGNORE, or RESOLVED, and

marked as UNSURE if its final status is PENDING.)
Sure enough, as developers wait longer to inspect a report, the less likely

it will be for that report to actually be a true bug and the more likely it will

be that they cannot determine its true nature (the third alternative, which
is to mark it as a false positive, showed no dramatic effects, so I have not

plotted it). The disparities between the ‘inspected quickly’ and ‘inspected
after long delay’ groups actually grow larger as the threshold increases.

These numbers suggest that if developers aren’t able to successfully triage

a report quickly, then the odds are against them ever figuring out what to
do with it.

45

TRUE_BUG vs. days before inspection

©
()

0 | +
co © ---
- + _
m

w' © +
i)

To b
5 I SITE EEE
5 Fa HT
Qa o

> Tr
=n — Ht +H

SJ +
()

S

0 30 70 110 160 210 260 310 360 410 460 510 560

Threshold for days_before inspection

cov_dat_inspected , significant at p < 0.05

UNSURE vs. days_before_inspection

+
0

Lu o HH yHH +
2 +

2 © Ma
5 oS +

2 + he
S 3 th4
S +E
al +t

oN — +t
- + —m—m————————————_—_——

()

S

0 30 70 110 160 210 260 310 360 410 460 510 560

Threshold for days_before inspection

cov_dat_inspected , significant at p < 0.05

Figure 9: Proportion of reports marked as true bugs (top) and whose veracity
could not be confirmed (bottom), out of all inspected reports, based on a
threshold of days_before_inspection (greater than threshold marked with
red +, less than threshold marked with blue —). Chi-square significance test
set at p = 0.05.

P 46

5.3 Multiple logistic regression model

I will now present an example of a strong yet semi-parsimonious model that

my search program found. Note that I did not start this search with any

initial model as a seed; the computer started from the null model and added

new variables as fit, generating numerous models and ranking them based on

AIC (which is a combined measure of reduction in deviance and parsimony).
I picked one particular model whose variables seemed to make sense to me:

RESOLVED ~

checker +

(dir_has_prev_inspected_reports * dir nummod_lines_1month prior) +

(file_days_since_last_patch * filehas_gt_5_authors) +

days_before_inspection

NULL 726.2

checker N/A 660.3 7.4e-10
dir_has_prev_inspected_reports —1.4 649.8 0.0012

dir num mod_lines_1 month prior —4.7e-4 648.1 0.19

file days_since_last_patch —4.7e-4 639.7 0.0037

file has gt _5_ authors 1.0 0636.03 0.06
days_before_inspection —0.0024 631.0 0.02

dir_has_prev_inspected_reports: N/A 624.1 0.01
dir nummod_lines_1month prior

file_days_since_last_patch: N/A 607.9 5.7e-5
file has_gt_b_authors

The ROC area of 0.78 is fairly respectable, and it only contains 6 vari-

ables and 2 pairs of interaction terms, which isn’t too complicated. Un-

fortunately, due to the interaction terms, it is difficult to ascertain the na-

ture of each variable’s contributions to predicting the resolution probabil

ity by looking at its coefficient. For instance, file_has_gt_5_authors has
a positive coefficient, but perhaps its correlation with resolution probabil-

ity is still negative due to coefficients (not shown) of the interaction term
(file_days_since_last_patch * filehas_gt_5_authors).

47

Reassuringly, though, days_before_inspection has a negative coeffi-

cient, which corroborates the hypothesis that the longer developers wait

before inspecting a report, the less likely it will be resolved.

Also, file_days_since_last_patch has a negative coefficient, which in-
dicates that files that have been patched less recently have a lower probability

of their bug reports being resolved. This even takes into account files that

have never been patched (with file_days_since_last_patch taking a sen-
tinel value of 3,000 days). Perhaps developers are more reluctant to patch files
that they haven’t patched recently. (Recall that for predicting INSPECTED,
there was actually a positive coefficient; see §4.2.5).

6 Future work

This work is currently ongoing, so there are many possible directions for

future work, including:

e Performing cross-validation to determine model prediction accuracy

e Testing these models (which were built from a limited Linux dataset)
on other open source projects to see how well they generalize

eo Correlating Coverity Scan bug reports with developer-reported bugs

e Showing results to the Linux developer community to get their feedback

and anecdotal opinions, which could lend greater veracity to quantita-

tive research findings

e If it’s possible to obtain additional Coverity Scan reports for other

projects, it would be interesting to try to find bug and bugfix patterns

that generalized throughout open source development

Appendix: Full data tables

48

(lower is better) (higher is better)

checker 3.2e-32 2661 0.69

filenum authors. log 1.8e-12 2769 0.09

file has _gt_1_authors 1.9e-11 2773 0.99

file num patches. log 2.6e-11 2774 0.58
file age _in years 2.1e-10 2772 0.59

file age 4.4e-10 2779 0.59

file has gt_15 authors 2e-09 2782 0.56

filenum mod_lines.log 2.2e-09 2783 0.56

file has_gt_20_patches 7e-09 2785 0.56
file num authors 9.1e-08 2790 0.59

file has_gt_5_authors 1.6e-07 2791 0.55

filedays_since_last_monofilepatch | 3.1e-07 2792 0.53

file days_since_last_patch 7.7e-07 2794 0.54

file has gt 2000_lines 1.7e-06 2795 0.55

toplevel dirname 2.7e-06 2792 0.57
file_num_ lines.log 9.8e-05 2803 0.06

dir num patches 6 months prior 0.00017 2804 0.54
file num lines 0.00017 2804 0.56

dir_num_patches 0.0002 2804 0.57

dir num patches_1 month prior 0.00042 2806 0.54

file_num_authors_1_ month prior 0.00045 2806 0.54
file has_gt_100_percentage_churn 0.00057 2806 0.54
dir num mod lines 0.00097 2807 0.56

file num _authors_6_months_prior 0.0011 2808 0.54
file num patches 6 months prior 0.000 2810 0.54

file num patches 0.0061 2810 0.08

dir num_lines.log 0.006 2811 0.93
dir num lines 0.0080 2811 0.93

Table 13: Single logistic regressions to predict INSPECTED, sorted by analysis

of deviance test chi-square p-values (Part 1 of 2)

49

(lower is better) (higher is better)

dir num monofile patches 0.013 2812 0.99

file num _patches_1 month prior 0.015 2812 0.93

file has gt 500_lines 0.017 2813 0.92

dir_has_gt 5 files 0.021 2813 0.01

dir _num monofilepatches_6 months prior 0.026 2813 0.952

dir nummonofilepatches_1month prior 0.031 2814 0.01

file num monofile_patches_1 month prior 0.061 2815 0.01

dir_has gt 50 files 0.074 2815 0.52

file _percentage_churn 0.083 2815 0.99

dir num mod_lines_6_months_prior 0.092 2815 0.952
dir num files 0.1 2816 0.952

file num mod_lines 0.13 2816 0.06

dir num mod _lines_1 month prior 0.21 2817 0.93

file num mod lines 6 months prior 0.37 2818 0.52

file num mod_lines_1 month prior 0.42 2818 0.952

file num monofile patches 6 months prior 0.44 2818 0.01

file has _gt_100_patches 0.60 2818 0.5

file percentage_churn 6 months prior 0.66 281% 0.01

file num monofile_ patches 0.71 2818 0.96

file percentage_churn_ 1 month prior 0.87 2818 0.92

Table 14: Single logistic regressions to predict INSPECTED, sorted by analysis

of deviance test chi-square p-values (Part 2 of 2)

50

(lower is better) (higher is better)

checker 7.4e-10 684 0.69

dir_has_prev_inspected_reports 0.00024 716 0.958

file has_gt_1_ authors 0.00066 718 0.00
num prev_inspected_reports_in dir 0.0025 721 0.98

dir num mod_lines_1_month_ prior 0.0027 721 0.6
file days_since_last_patch 0.0042 722 0.92

dir num _patches_1_ month prior 0.0059 722 0.99
file has gt 2000_lines 0.021 724 0.00
dir num lines 0.028 725 0.99

file num lines 0.032 725 0.96

filenum authors. log 0.039 725 0.54

dir num mod_lines_6_months_prior 0.041 726 0.952
dirnum lines.log 0.043 726 0.00

file has_gt_5_ authors 0.046 726 0.00
dir num monofile_patches_1 month prior 0.048 726 0.57

file num mod lines 6 months prior 0.058 726 0.5

dir num mod_lines 0.0601 726 0.93
file has _gt_100_patches 0.065 726 0.93

dir num monofile patches 6 months prior 0.075 727 0.51

file _age_in_years 0.076 728 0.59

file percentage _churn_1 month prior 0.083 727 0.52

dir num monofile patches 0.084 727 0.51

file num_authors_6_months_prior 0.084 727 0.58
file num mod _lines_1 month prior 0.093 727 0.952

file num lines.log 0.094 727 0.56

Table 15: Single logistic regressions to predict RESOLVED for reports that

were already INSPECTED, sorted by analysis of deviance test chi-square p-

values (Part 1 of 2)

H1

(lower is better) (higher is better)

file num patches. log 0.11 727 0.52
dir num patches _6_ months prior 0.12 727 0.01
days_before_inspection 0.14 728 0.46

dir num patches 0.16 728 0.01

file has gt_100_percentage_churn 0.17 728 0.93

num prev_inspected _reports_in dir FACTOR 0.2 757 0.62
dir num files 0.22 728 0.54

file num mod _lines.log 0.26 728 0.5

file has prev_inspected_ reports 0.32 729 0.952
file num mod_lines 0.34 729 0.5

dir has gt 50 files 0.35 729 0.02

file days_since_last_monofile_patch 0.35 729 0.93
file percentage _churn_ 6 months prior 0.35 729 0.48

num _prev_inspected_reports_in file FACTOR 0.36 736 0.53

dir_has_gt 5 files 0.38 729 0.01

num prev_inspected reports_in file 0.46 729 0.02

file num patches_1 month prior 0.5 729 0.02

file percentage _churn 0.01 729 0.54
file num authors 0.02 729 0.54

toplevel dirname 0.53 744 0.57
file num authors_1 month prior 0.6 729 0.49

file num monofile patches_1 month prior 0.68 730 0.5

file has_gt_20_patches 0.74 730 0.51

file num patches 0.75 730 0.52

file has_gt_500_lines 0.75 730 0.51

file has_gt_15_ authors 0.76 730 0.51
file age 0.84 730 0.54

file_num monofile_patches_6_ months prior 0.86 730 0.47
file num monofile_ patches 0.94 730 0.53
file num patches 6 months prior 0.97 730 0.55

Table 16: Single logistic regressions to predict RESOLVED for reports that

were already INSPECTED, sorted by analysis of deviance test chi-square p-

values (Part 2 of 2)

H2

