KLEE: Unassisted and Automatic Generation of High-Coverage

Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler *
Stanford University

Abstract

We present a new symbolic execution tool, KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We applied KLEE
to all 90 programs in the GNU COREUTILS utility suite,
which form the core user-level environment installed on
almost all Unix systems and, as such, represent some
of the most heavily used and tested open-source pro-
grams in existence. For 84% of these utilities, KLEE’s
automatically generated tests covered 80-100% of exe-
cutable statements and, in aggregate, significantly beat
the coverage of the developers’ own hand-written test
suites. KLEE also found nine serious bugs (including
three that had been missed for over 15 years!) and pro-
duced concrete inputs that triggered the errors when run
on the uninstrumented code. When applied to MINIX’s
versions of a small selection of the same applications,
KLEE achieved similar coverage (along with two bugs).
In addition, we also used KLEE to automatically find nu-
merous incorrect differences between several MINIX and
COREUTILS tools. Finally, we checked the kernel of the
HISTAR operating system, generating tests that achieved
76.4% (without paging enabled) and 67.1% coverage
(with paging) and found one important security bug.

1 Introduction

The importance of testing and the poor performance of
random and manual approaches has led to much recent
work in using symbolic execution to automatically gener-
ate high-coverage test inputs [9, 19, 10, 28, 18, 20, 6, 15,
14, 8, 16]. At a high-level, these tools use variations on
the following idea: Instead of running code on manually
or randomly constructed input, they run it on symbolic
input initially allowed to be “anything.” They substitute

* Author names are in alphabetical order. Daniel Dunbar is the main
author of the KLEE system.

program inputs with symbolic values and replace cor-
responding concrete program operations with ones that
manipulate symbolic values. When program execution
branches based on a symbolic value, the system (con-
ceptually) follows both branches at once, maintaining on
each path a set of constraints called the path condition
which must hold on execution of that path. When a path
terminates or hits a bug, a test case can be generated by
solving the current path condition to find concrete val-
ues. Assuming deterministic code, feeding this concrete
input to an raw version of the checked code will cause it
to follow the same path and hit the same bug.

Results from these tools and others are promising.
However, while researchers have shown such tools can
get high coverage and find bugs on a small number of
programs, it has been an open question, especially to
outsiders, whether the approach has any hope of consis-
tently achieving these goals on real applications. Two
common concerns are the exponential number of paths
through code and the difficulty of handling the environ-
ment (“the environment problem”). Neither concern has
been much helped by the fact that most past work, includ-
ing ours, has usually reported results on a limited set of
hand-picked benchmarks and typically has not included
any coverage numbers.

This paper makes two contributions: First, we present
a new symbolic execution tool, KLEE, which we de-
signed from scratch to be robust and to deeply check a
broad range of applications. We leveraged several years
of lessons from our previous tool, EXE [10]. KLEE uses
novel constraint solving optimizations that improve per-
formance by over an order of magnitude and let it han-
dle many programs that are completely intractable other-
wise. Its space-efficient representation of a checked path
means it can have tens to hundreds of thousands of such
paths active simultaneously. Its search heuristics effec-
tively select from these large sets of paths to get high
code coverage. Its simple, straightforward approach to
handling the environment let it check a broad range of

system-intensive programs.

Second, we show that KLEE’s automatically generated
tests get high coverage on a diverse set of real, com-
plicated, and environmentally-intensive programs. Our
main evaluation applies KLEE to all 90 programs in the
latest stable version of GNU COREUTILS (version 6.10).
In total, COREUTILS consists of about 78,000 lines of li-
brary code and 65,000 lines in the actual utilities. The
utilities themselves interact aggressively with their en-
vironment to provide a variety of functions, including
managing the file system (e.g., 1 s, dd, chmod), display-
ing and configuring system properties (e.g., Logname,
printenv, hostname), controlling command invo-
cation (e.g., nohup, nice, env), processing text files
(e.g., sort, od, patch), and so on. They form the core
user-level environment installed on almost all Unix sys-
tems. They are used daily by millions of people, bug
fixes are handled promptly, and new releases are pushed
regularly. The breadth of functions they perform means
that our system cannot be a “one trick pony” special-
cased to one application class. Moreover, the heavy use
of the environment stress tests our system where sym-
bolic execution has historically been weakest.

Further, the robustness of COREUTILS programs make
them very tough tests in terms of bug-finding. They
arguably are the single most well-tested suite of open-
source applications (e.g., is there a program the reader
has used more often than “1s”?). The “fuzz” study
found that GNU utilities had 2.5 to 7 times less fail-
ures than the utilities on seven commercial Unix sys-
tems [27]. This difference was in 1995, and there have
been over 12 more years of testing since then. The last
COREUTILS vulnerability reported on the SecurityFo-
cus or the US National Vulnerability Database was three
years ago [2, 4].

Our experiments (§ 5) show the following:

1 KLEE works well on a broad set of complex pro-
grams. When applied to the entire 90-program
COREUTILS suite it automatically generated tests
covering 80—100% of the statements on 84% of the
utilities, in aggregate covering 81.9% of the total
code. Sixteen tools have 100% coverage and 38
over 90%. These results held true when applied to
14 comparable versions of MINIX utilities, where it
achieved over 90% statement coverage (and found
two bugs). To the best of our knowledge, CORE-
UTILS contains an order of magnitude more pro-
grams than prior symbolic test generation work has
attempted to test.

2 KLEE can get significantly more code coverage than
a concentrated, sustained manual effort. The 90-
hour run used to generate its COREUTILS coverage
beat the developer’s own test suite built incremen-
tally over fifteen years by over 14%!

3 With one exception, KLEE got these high-coverage
results by checking the applications “out of the box”
without requiring any special-case source modifica-
tions. (We did a one-line modification to sort to
shrink a large buffer that caused problems for the
constraint solver.)

4 KLEE finds important errors in heavily tested code.
KLEE found nine fatal errors in the latest version
COREUTILS (including three that had escaped detec-
tion for 15 years!), which account for more crash-
ing bugs than found in 2006, 2007 and 2008 com-
bined. In addition, KLEE produces concrete inputs
that can be run independently to demonstrate the er-
ror, greatly simplifying debugging. All outstanding
bugs were confirmed and fixed each within two days
of our report and versions of the tests KLEE generated
were included in the standard regression suite.

5 KLEE also handles operating system code well. We
applied it to the core part of the HISTAR kernel,
achieving an average statement coverage of 76.4%
(with disk) and 67.1% (without disk) and finding a
serious security bug.

6 KLEE is not limited to finding low-level program-
ming errors such as memory overflows, but has also
been applied to checking functional correctness by
finding inconsistencies between several purportedly
identical MINIX and COREUTILS tools.

We give an overview of our approach in the next sec-
tion. Section 3 describes KLEE, focusing on the most
important optimizations we do. We then discuss how we
model the environment (§ 4) and then our experiments
(§ 5). Finally we describe related work (§ 6) and then
conclude (§ 7).

2 Overview

This section explains how KLEE works by walking
through the testing of MINIX’s tr tool. Although this
version of tr is very small — only 169 lines, 83 of which
are executable — it illustrates several issues common to
the programs we check:

1 Complexity. The code’s intent is to translate and
delete characters from its input. It hides this in-
tent well beneath non-obvious input parsing code,
tricky boundary conditions, and hard-to-follow con-
trol flow. For example, Figure 1 shows one of the
complicated string parsing procedures contained in
the utility.

2 Environmental Dependencies. Most of the code is
controlled by environmental input. Command line
arguments determine what procedures execute, input
values determine which way if-statements trigger,
and the program depends on the ability to read from
the file system. These inputs often come from un-

1 : void expand(char *arg, unsigned char *buffer) {
2 int i, ac;

3 while (*arg) {

4 if (farg == "\\") {

5: arg++;

6 : i=ac=0;

7: if (farg >= "0’ && *arg <= "7") {
8: do {

9: ac = (ac << 3) + *arg++ — '07;
10: i++;

11: } while (i < 4 && *arg >= "0’ && *arg <= '7");
12: *buffer++ = ac;

13: } else if (*farg != "\0’)

14: *buffer++ = *arg++;

15: } else if (*farg == " [") {

16: arg++;

17: i = "arg++;

18: if (farg++ = 7-7) {

19: *buffer++ = 7 [/

20: arg —= 2;

21: continue;

22: }

23: ac = *arg++;

24: while (i <= ac) *buffer++ = i++;

25: arg++; /% Skip] ¥/

26: } else

27: *buffer++ = *arg++;

28: }

29: }

30:

31: int main(int argc, char* argv[]) {

32: int index = 1;

33: if (arge > 1 && argv[index][0] == "-") {
34:

35 }

37: expand(argv[index++], ...);

Figure 1: A representative example of the kind of non-
obvious code, taken from MINIX’s t r which is difficult
to verify by inspection or random testing.

constrained external sources (ranging from the user
to network packets) and the code must handle arbi-
trarily invalid or malevolent values gracefully.

The code illustrates two additional common features.
First, it has bugs, which KLEE finds and generates test
cases for. Second, KLEE quickly achieves good code
coverage, generating 40 test cases which cover all exe-
cutable lines and all branches in the program in under
two minutes.

The goal of KLEE is (1) to hit every line of executable
code in the program by running it in all possible ways and
(2) to check each line against all possible input values to
find if some input could trigger errors.

KLEE’s basic strategy is to replace a programs inputs
with symbolic variables whose values are initially uncon-
strained. Program values are represented by formulae
instead of actual bits and as the program executes the

values for all register and memory locations are tracked
with complete precision. This allows KLEE to check at
each dangerous operation (assertions, memory accesses)
if any value exists that could cause an error and to at-
tempt to drive the program down all feasible paths.

2.1 Testing Process

Through careful design, KLEE makes it easy to start
checking many real programs in seconds. It requires no
source modifications, specifications, or any manual work
on the part of the user other than giving command line
values indicating the number and size of files, command
line strings, or other inputs to test the code on. The user
just needs to compile their code using 11vm—gcc com-
piler which behaves exactly as gcc, except that it emits
LLVM bytecode object files. For example, the t r tool is
compiled using:

llvm-gcc ——emit-1llvm tr.c -o tr.bc

KLEE runs directly on the emitted result and dynamically
links in LLVM versions of libc and our environmental
model, described later (§ 4). The following command
was used to test tr:

klee —--max-time 2 --sym-args 10 10
——sym—-files 1 2000 --max-fail 1 tr.bc

The ——max—-time option indicates that KLEE should
be run for two minutes, while the ——sym—-args option
specifies that the program should be run on up to two
command line arguments, each up to 10 characters long.
The ——sym-files option directs the environment to
make standard input and one additional file symbolic,
each of which contain 2000 bytes of data. Finally, the
--max-fail option indicates that system calls should
be allowed to fail at most one time along each program
path (e.g. read () returning EIO).

During testing, KLEE generates concrete test cases for
all program errors and for any path through the program
which covers a new instruction or branch. After testing is
complete, these test cases can be rerun independently of
KLEE through a separate replay driver. This driver uses
the test case data to construct appropriate inputs to the
program (arguments, files, pipes, etc.) and then runs the
program natively. Separating test case evaluation from
generation in this fashion ensures that test cases have the
correct behavior when run using the native compiler, and
allows the use of standard tools (e.g., gdb, gcov) for
debugging and evaluating the test results.

2.2 Symbolic Execution

When KLEE runs the program, it tries to explore ev-
ery possible path. This is done by executing the pro-
gram symbolically, i.e. tracking all constraints on inputs

marked symbolic as each instruction is run. When a con-
ditional that depends on a symbolic input is encountered,
a constraint solver is used to determine which direction
the path will follow. In some cases execution is not con-
strained to follow a single path — the condition can be
true or false depending on the input — and the execution
conceptually forks. When this happens, KLEE clones the
current process and follows both paths, adding the appro-
priate constraint to the path conditions of each process.
To clarify this process, we explain how KLEE finds one
of the bugs in expand ().

The actual error is on lines 16-18 in Figure 1. The
code assumes that an argument containing ’ [’ will be
followed by at least two more characters. However, if
the argument ends with ’ [, then the increments to arg
skip the terminating * \ 0’ character of the string and the
dereference on line 18 is out of bounds.

Recall that we test tr using between 0 and 2 argu-
ments each of up to 10 characters. KLEE executes tr
with an initial path constraint that 1 < argc < 3 (one
extra argument is reserved for the program name) and
without constraints on the arguments. In Figure 1 when
KLEE reaches line 33 in this procedure it needs to deter-
mine which direction the process should take through the
branch. To do so, the constraint solver is queried to see
if the path condition, i.e. 1 < arge < 3, implies argc > 1
or its negation. In this case, the branch condition can be
true (arge € {2, 3}) and false (argc = 1) and execution
will fork. The path condition will be updated to argc = 1
in the process following the false path and 2 < argc < 3
in the process following the true path.

Once there are multiple concurrent processes at each
instruction step, KLEE must choose which process to ex-
ecute. Details of the scheduling algorithm are given in
Section 3, for now we assume that KLEE follows the path
that will reach the bug. As execution continues along this
path, KLEE will update the variables index and arg as
appropriate and will fork four more times, again at line
33 in main and at lines 3, 4, 15, and 18 in expand.
Figure 2 shows the branch tree at the point when KLEE
detects a buffer overflow. The expressions along interior
nodes indicate the places where execution forked and cir-
cles represent active processes.

When KLEE encounters a bug or a process exits, the
path condition records the entire set of constraints on the
input that are necessary to drive the program down that
path. The constraint solver is used to determine a con-
crete set of input values which satisfy all of these con-
straints which are written out as a test case. For the path
that exposed the buffer overflow bug on line 18, KLEE
generates the input argc=2 and argv([1] = ‘[
(the contents of symbolic files are irrelevant here), which
can be rerun on a raw version of tr to verify the bug
independently of KLEE.

Figure 2: A path to the bug in MINIX’s t r. Circles rep-
resent active processes and the expressions in diamonds
indicate places where execution forked.

3 The KLEE Architecture

The KLEE architecture for symbolic execution is a com-
plete redesign of EXE, our previous system [10]. KLEE
has been implemented with a focus on precision and scal-
ability. Conceptually, KLEE keeps an explicit model of
every possible state that can result from executing the
input program symbolicly, including accurate bit-level
modeling of the majority of legal C operations'

KLEE is implemented as a virtual machine for the Low
Level Virtual Machine [25] (LLVM) assembly language.
LLVM uses a RISC-like instruction set with an infinite
number of registers. Although the instruction set is pri-
marily intended for use as part of the compiler infras-
tructure, we have found the representation adequate for
interpreting directly. Additionally, KLEE provides spe-
cial intrinisic functions which the program can call to
create symbolic variables and to communicate with the
underlying operating system.

At a high level, KLEE functions as an interesting hy-
brid between an operating system and an interpreter. Pro-
cesses are explicitly modeled by their stack, heap, pro-
gram counter, and path condition. The core of KLEE is a
interpreter loop which evaluates instructions until execu-
tion is complete. However, unlike a typical interpreter, at
each instruction step KLEE selects a process to interpret
using a number of search strategies, described in greater
detail below. Once a process has been selected, KLEE
executes a single instruction in the context of that pro-
cess:

1 The implementation of most instructions is straight-
forward. For example, for an add instruction the con-

IThe current implementation has the following limitations: sym-
bolic floating point and 1ongjmp are unsupported and the size of dy-
namically allocated objects cannot be symbolic.

tents of the argument registers are loaded. If both
operands are concrete then the add is performed na-
tively, otherwise an Add expression is created from
the arguments. In either case the result is written
back to the result register.

2 The implementation of most instructions is straight-
forward. For example, adding two symbolic
operands generates the constraint that the result is
equal to the sum of the two operands.

3 At a branch instruction, a constraint solver is used
to determine if the branch condition must be true or
must be false given the current path constraints. If
so then execution follows the appropriate path. Oth-
erwise the process is cloned and both paths are fol-
lowed, with the each child’s path condition updated
appropriately.

4 At process termination — a return from main or
an exit system call — KLEE queries the constraint
solver to determine a set of concrete values that sat-
isfy the process path constraints. These values are
used to generate a test case which can be replayed
and will follow the same execution path. To avoid
generating a large number of uninteresting test cases,
by default KLEE only generates test cases for paths
which covered new code, either an unexecuted in-
struction or an untaken branch.

5 At any instruction where an error can occur, for
example a memory error or divide by zero, KLEE
checks to see if the error is possible along the cur-
rent path. If so then KLEE creates a test case which
will exhibit the error and continues interpreting the
current process with the additional constraint that the
error does not occur.

6 At a load or store instruction, KLEE determines the
set of objects which the target address could point
to. If the address could point to multiple objects the
process is cloned once for each possible target and
each new process adds the constraint that the address
is in-bounds of that object. Although this operation
is potentially expensive, in practice it does not occur
frequently and this implementation greatly simplifies
the representation of a memory read or write expres-
sion.

3.1 Scalability

The number of possible execution states is exponential
in the size of the symbolic input and in practice grows
quite quickly. It is not uncommon for KLEE to be simu-
lating tens or even hundreds of thousands of concurrent
processes during the first few minutes of interpretation,
even for small programs.

To deal with these problems, instead of a flat page-
based memory model KLEE uses a memory model where

Utility | Max. Processes |

echo 91,912
pathchk 51,494
sort 29,335
1s 15,799

Table 1: Maximum number of KLEEprocesses that fit in
1GB of memory for four of the COREUTILS utilities we
tested.

the application can only access memory that is inside an
allocated object (i.e. a global variable, stack object, or
object obtained via malloc). With this representation,
KLEE can implement copy-on-write at the level of indi-
vidual objects which is very effective at minimizing the
amount of memory we require per-process. Furthermore,
by implementing this structure as a persistent map the
heap can be cloned in constant time and portions of the
map which are shared among multiple processes do not
require additional memory.

Table 1 gives examples for the maximum number of
concurrent process which fit in 1GB for a number of the
COREUTILS applications we tested.

3.2 Process Scheduling

KLEE uses a number of search heuristics to select the pro-
cess to run at each instruction step. Our basic approach is
to interleave two different strategies, each emphasizing a
different goal:

1 Random path selection maintains a binary tree

recording the program path followed for all active
processes, i.e. the leaves of the tree are the current
processes and the internal nodes are places where ex-
ecution forked. Processes are selected by traversing
this tree from the root and randomly selecting the
path to follow at branch points. Therefore when a
branch point is reached the set of processes in each
subtree will have equal probability of being selected,
regardless of their size.
This strategy has two important properties. First, it
favors processes which are high in the branch tree
and therefore are relatively unconstrained. It is valu-
able to select these processes more frequently be-
cause they have greater freedom to reach uncovered
code. Second, and most importantly, this strategy
avoids starvation when some part of the program is
rapidly creating new states, i.e. “fork bombing”.

2 A strategy which attempts to select states that are
likely to cover new code in the immediate future.
Heuristics are used to compute a weight for each pro-
cess and a random process is selected according to
these weights. Currently these heuristics use a com-
bination of the minimum distance to an uncovered
instruction, taking into account the call stack of the

process, and whether the process has recently cov-
ered new code.

These strategies are composed by selecting from each
in a round robin fashion. Although this interleaving
may increase the time for a particularly effective strategy
to achieve high coverage, it protects the system against
cases where one individual strategy would become stuck.
Furthermore, because the strategies are always selecting
processes from the same pool, using interleaving allows
the strategies to interact cooperatively.

Finally, once selected each process is run for a “time
slice” defined by both a maximum number of instruc-
tions and a maximum amount of time. The time to ex-
ecute an individual instruction can vary widely between
simple instructions, like addition, and instructions which
may use the constraint solver or fork, like branches or
memory accesses. Time-slicing processes helps ensure
that a process which is frequently executing expensive
instructions will not dominate execution time.

3.3 Query Optimization

Checking with KLEE is almost always dominated by the
time it takes to solve the queries made to the underlying
constraint solver. Therefore, almost all of our efforts to
improve system performance have focused on eliminat-
ing or simplifying queries. In particular, KLEE uses two
important optimizations which have proven highly effec-
tive at reducing query time: constraint independence and
counterexample caching.

The first optimization, constraint independence, takes
advantage of the natural decomposition of programs into
modular components. This optimization was first imple-
mented for EXE, our previous symbolic execution sys-
tem [10]. Briefly, constraints can be divided into dis-
joint independent subsets based on the symbolic vari-
ables which they reference. By explicitly tracking these
subsets, KLEE can frequently eliminate irrelevant con-
straints in a query prior to passing it to the underlying
constraint solver.

Furthermore, due to the nature of symbolic execu-
tion, queries have a considerable amount of redundancy.
Although a straightforward caching mechanism which
memoizes queries is effective at eliminating a large num-
ber of queries, it does not take advantage of the additional
logical structure of a query. We have developed an alter-
nate mechanism, the counterexample cache, to take full
advantage of previous query results.

The counterexample cache functions by caching a map
of sets of constraints to counterexamples (i.e. variable
assignments), with a special sentinel used when a set of
constraints has no solution. This mapping is stored in
a custom data structure which allows efficiently search-
ing for cache entries for both subsets and supersets of

300

— Base

-- Independence
- Cex Cache
~~~~~~ All

250 b
20 F

150 -

Average Time (s)

100 -

50

0 0.2 0.4 0.6 0.8

Normalized Num. Instructions

Figure 3: Performance comparison of KLEE’s solver op-
timizations on COREUTILS. Each tool is run for the same
number of instructions and results are then normalized
and average across all applications.

a constraint set. By storing the cache in this fashion,
the counterexample cache gains three additional ways to
eliminate queries:

1 When a subset of a constraint set has no solution,
then neither does the original constraint set. Adding
constraints to an unsatisfiable constraint set cannot
make it satisfiable.

2 When a superset of a constraint set has a solution,
then this is also a solution for the original constraint
set. Dropping constraints from a constraint set does
not invalidate a solution to that set.

3 When a subset of a constraint set has a solution, it
is likely that this is also a solution for the original
set. This is because the extra constraints often do not
invalidate the solution to the subset. Since checking
a potential solution is cheap, KLEE tries substituting
in all solutions for subsets of the constraint set and
returns a satisfying solution, if found.

As an example of the effectiveness of these optimiza-
tions, we performed an experiment where all 90 CORE-
UTILS applications were first run for 5 minutes with both
of these optimizations turned off. We then reran with
constraint independence and the counterexample cache
enabled separately and together for the same number of
instructions. The results in Figure 3 show an order of
magnitude improvement in execution time and indicate
that the optimizations scale very well, with each becom-
ing more effective as more instructions are executed.

4 Environment Modeling

Systems code interacts with the environment (e.g. the
operating system, the user) in many ways: by read-
ing command-line arguments or environment variables,
reading and writing files, checking file metadata such as



file permissions and size, sending and receiving pack-
ets over the network, and so on. To effectively test such
code, we want to explore all legal values that could come
from the environment, rather than just a single set of con-
crete values. For example, checking the permissions of
a file should be able to return all possible legal permis-
sions the file could have. Roughly speaking, in KLEE
we accomplish this by interposing at each place the user
can read environmental data and instead return symbolic
data, constrained to obey any required invariants. For ex-
ample, the bytes of a command-line argument (on Unix:
a C string) are entirely unconstrained, except for the last
null terminating byte. The code that does this interposi-
tion is traditionally called a “model.” A key feature of
KLEE’s models is that they are written in normal C code.
As a result, the user can readily customize, extend, or
even replace them without having to understand the in-
ternals of KLEE. The current models are around 2,500
lines of code. We now describe how KLEE makes the file
system symbolic.

4.1 A symbolic file system

Applications read a significant amount of information
from the file system: file data itself, metadata informa-
tion such as file sizes and permissions, directory names,
etc. When they attempt to read such information from
concrete files and directories, we want things to “just
work” as they would when the code is running natively.
When they read this information from places that could
contain arbitrary data (such as a file provided on the com-
mand line), we want the returned values to be symbolic,
but constrained to respect any necessary invariants. In
this way, we can explore all potential actions, and still
have no false positives.

KLEE meets these requirements by providing a simple
symbolic file system implementation, and checking on
each operation, whether the action is for a concrete file
or a symbolic one. In the former case, it calls the cor-
responding system call in the running operating system,
while in the latter case it returns symbolic data, being
careful to return the same values for multiple observa-
tions of the same object.

Figure 4 gives a rough sketch of the implementation
we use for read () calls, eliding details needed to make
linking work, to handle calls on standard input, and to
deal with failures. The code maintains a set of file de-
scriptors, created at file open (), and records for each
whether the associated file is symbolic or concrete. If
the file descriptor £d is concrete, our implementation of
read () accesses the actual disk file by calling the un-
derlying operating system using pread () (lines 7-11).
We use pread because, unlike read, it does not af-
fect the position of the file descriptor it is given: Since

1 : ssize_t read(int fd, void *buf, size_t count) {

2 @ if (is-invalid(fd)) {

3: errno = EBADF;

4 return —1;

5:

6 : struct klee_fd *f = &fds[fd];

7 : if (is_concrete_file(f)) {

8 : int r = pread(f—>real_fd, buf, count, f—>off);
9: if (r = —1)

10: f—>off += r;

11: return r;

12: } else {

13: /% sym files are fixed size: don’t read beyond the end. */
14: if (f—>off >= f—>size)

15: return O;

16: count = min(count, f—>size — f—>off);

17: memcpy(buf, f—>file_data + f—>off, count);
18: f—>off += count;

19: return count;

20:

21: }

Figure 4: Sketch of KLEE’s model for read ().

KLEE’s internal processes execute within a single Unix
process (the one used to run KLEE), then unless we du-
plicated file descriptors for each of them (which seemed
expensive), a read by one would affect all the others.

If the file descriptor is symbolic, read () just copies
out the symbolic file data into the supplied buffer (lines
13-19). Any subsequent constraints on this data will be
preserved in the case that read () is called again on the
same file descriptor and range with no intervening write.

We provide similar symbolic models for the most
common system calls, including open, close, read,
write, lseek and stat.

Unsurprisingly, the choice of what interface to model
has a big impact on model complexity. Rather than hav-
ing our models at the system call level, we could have in-
stead built them at the C standard library level (fopen,
fread, etc.). Doing so has the potential performance
advantage that, for concrete code, we could run these op-
erations natively. The major downside, however, is that
the standard library contains a huge number of functions,
which would make modeling tedious and error-prone. By
only modeling the much simpler, low-level system call
API, we can get the richer functionality by just compil-
ing one of the many implementations of the C standard
library (we use uClibc [3]) and let it worry about cor-
rectness. As a side-effect, we simultaneously check the
library for errors as well.

The actual symbolic file system itself is fairly crude,
containing only a single directory with N symbolic files
in it. KLEE users specify both N and the maximum file
size. This symbolic file system coexists with the real file
system, so that applications can open both symbolic and
concrete files.

The current rule for deciding which open calls bind
to a symbolic file is that if the program calls open with a



concrete name, we (attempt to) open the actual file, while
if it calls it with a symbolic name, we treat the file as
symbolic. Thus, the call:

int fd = fopen ("/etc/fstab", O_RDNLY);

will set £d to point to the actual configuration file
/etc/fstab, while doing the same call with a sym-
bolic command-line argument argv [1]:

int fd = fopen(argv[l], O_RDNLY);

will set £d to point to a symbolic file and argv [1] con-
strained to equal this symbolic file’s name.

In the case of symbolic files, a call to open with an
unconstrained symbolic name will match each of the N
symbolic files in turn, and will also fail once. Thus, we
can regard a call to open () as a branch point with N +1
possible outcomes, NV of which return a file descriptor to
one of the symbolic files, and one which fails. For exam-
ple, given N = 1, the second call to open () shown in
the code above will generate two paths: one in which £d
points to the single symbolic file in the environment, and
one in which £d is set to —1 indicating error.

4.2 Failing system calls

In addition to the kind of failures expected during the
normal execution of an application (e.g., file not found,
end of file), there are certain failures which are rarely ex-
pected (e.g.,write () fails because the disk is full). We
extended the KLEE environment with a failing mode in
which the system simulates such failures. The motivation
for including such failures is twofold: First, not handling
such failing situations can lead to unexpected and hard
to diagnose bugs. Second, even when applications do in-
clude code for dealing with failures, this code is almost
never exercised by the regression suite. We made this
mode optional since whether such failures are interesting
is application-specific — a simple application may not
care about disk crashes, while a mail server expends a lot
of code to handle such cases. As Section 5 shows, failing
system calls does not give large aggregate coverage im-
provements, but is required to reach the last (tricky) bit
of code in many applications with already high coverage.

4.3 Rerunning test cases

A core principle of KLEE is that the test cases it gen-
erates can be run on the raw application, independently
of KLEE. This completely eliminates any potential prob-
lems with the system, makes it easy to confirm and report
bugs, and to generate test suites.

Thus, when an application interacts with the sym-
bolic environment, a test case generated by KLEE in-
cludes a concrete instantiation of the symbolic environ-
ment for the path explored. That is, it contains concrete

60

53

50 F

40 F

30

20

10 F

Executable Lines of Code

Figure 5: Histogram showing the number of COREUTILS
tools that have a given number of executable lines of code
(ELOC), including library code. Most tools (53) have
between 3K and 4K ELOC.

command-line arguments, and the set of all the files and
their associated data and metadata that were accessed on
the path explored by KLEE.

Running a test case then simply means creating these
files on the running file system. Since our symbolic file
system consist of N symbolic files in the current direc-
tory, the test case will consist of the description of N
files (names, data, metadata) that we can easily create in
the current directory. We can then run the application on
the generated command-line arguments. The only chal-
lenge in this case is running a test case where certain
system calls fail. In order to run these test cases outside
of KLEE, we constructed a simple utility that ptraces the
given application in the manner of a debugger, and skips
the system calls that were supposed to fail, returning in-
stead an error to the ptraced application.

5 Evaluation

This section gives our coverage results and bugs found
for COREUTILS (§ 5.1), MINIX (§ 5.1.5), and HiStar
(85.3). We also give preliminary measurements of the
effectiveness of KLEE at finding deep correctness errors

(§5.2).

5.1 GNU Coreutils

This section reports the results of using KLEE to check
all 90 tools that are part of the GNU COREUTILS suite
of utilities. Previous work, ours included, has evaluated
constraint-based execution on a small number of hand-
selected benchmarks. To the best of our knowledge,



COREUTILS contains an order of magnitude more pro-
grams than prior work has attempted to test.

Figure 5 breaks down the tools by executable lines of
code (ELOC), including library code the tool calls. For
COREUTILS, ELOC are usually a factor of 3 smaller than
actual lines of code. It’s clear that the tools are not toys
— the smallest have over 2K ELOC, over half (53) have
more than 3K, and ten have over 6K.

5.1.1 Methodology

With a single exception, we ran all of GNU COREUTILS

with no modifications. The exception was sort, which

required a one-line change to shrink an overlay large

buffer that made process size unmanageable.

Almost all tools were tested using the same command:
./run <tool-name> --sym-args 10 2 2

——sym-files 2 8
[-—max—fail 1]
——-max-time=60

which tells KLEE to run the given tool with up to three
arguments, the first one (if present) being of length at
most 10, and the next two (if present) of length at most
2. The option ——sym—£files specifies a symbolic envi-
ronment with two symbolic files, one of whichis stdin,
each containing 8 bytes. The ——max—-fail option spec-
ifies that the system should fail at most one system call
on each path; we show this option inside brackets be-
cause we run both with and without this option. Finally,
the ——max—t ime option specifies that each tool should
be run for at most 60 minutes.

For eight tools where the coverage results were unsat-
isfactory, we consulted the man page and increased the
number and size of files and argument strings.

After KLEE produced test cases, we conservatively
measured how comprehensive they were by recording
statement coverage. We chose statement coverage be-
cause it is widely-understood and uncontroversial. Note,
however, that it dramatically underestimates KLEE’s ca-
pability of exploring each statement on many different
paths (potentially all of them) with all possible values.

We do a hard end-to-end check of coverage by run-
ning the generated test cases on a stand-alone version of
the tool that has been compiled using for instrumenta-
tion with gcov. Doing this measurement independently
of our system completely eliminates the effect of bugs
in KLEE and verifies that the produced test case does, in
fact, run the code it claims.

Similarly, concrete test cases also allow bug confirma-
tion independently of KLEE, by running the program on
the test case for a given error. As a result, a version of the
test cases for all previously unknown bugs we reported
have now been included in the official GNU COREUTILS
test suite.

Coverage Number Avg. # ELOC
(w/o lib code) | of tools | (w/ called lib code)
100% 16 3307
90-100% 38 3958
80-90 % 22 5013
70-80% 8 4199
60-70% 6 5217

Table 2: Number of COREUTILS tools which achieve
statement coverage in the given ranges. Note, as we
discuss (§ 5.1.2), to avoid double-counting our cover-
age, numbers here and in the other figures exclude li-
brary code (which gets shared by many applications). No
tool gets less than 60% coverage. The rightmost column
shows the average ELOC for tools within each range, in-
cluding called library code (again, see text).

We made sure to report results for the entire CORE-
UTILS suite, the worst along with the best. We made the
decision from the beginning to do so, preventing us from
(even unintentionally) cheating through the use of frag-
ile optimizations that would blow up on some (or even
many) applications.

5.1.2 Coverage Results

Table 2 gives aggregate statement coverage results:
KLEE gets 100% statement coverage on 16 tools, over
90% on 54 tools, and over 80% statement coverage on
76 tools (84.4% of all tools). The minimum coverage
achieved on any tool is 62.0%, and the average coverage
across all tools is 81.9%.

We see such high coverage on a broad swath of appli-
cations “out of the box” as a convincing demonstration
in the power of the approach, especially since it is across
the entire tool suite rather than from just cherry-picking
(say) the best 54 performers.

Note that we do not count coverage of library code in
our measurements since it makes them harder to inter-
pret:

1 Including library code in the coverage percentages
we report would double-count many lines, since of-
ten the same library function is called by many appli-
cations.

2 Doing so would also unfairly under-count coverage.
For a given application, often much of a library func-
tion is dead code for the reason that library code
is general but the call sites are not. For exam-
ple, printf is exceptionally complex, but the call
printf (*‘hello’’) can only hita small a frac-
tion (missing the code to print integers, floating point,
formatting, etc.).

However, in terms of the raw size of the application, the



100% __
Bl Base + Fail ; .I--||‘q I I

- — Base____“I_I__.I...---ll I
" q

il
60% M

40%

Coverage (ELOC %)

20%

0%

1 25 50 75 90

Figure 6: Statement coverage for each application with
and without failures.

total executable lines of code (including called library
code) is interesting: KLEE must be able to handle this
library code (and gets no credit for doing so in terms of
coverage) in order to exercise the code in the tool itself.

Figure 6 further shows the coverage achieved on each
of the 90 COREUTILS tools, with and without trigger-
ing failing system calls (§4.2). Exploring the failure path
of system calls is mostly useful for hitting the last few
lines of high-coverage tools, rather than significantly im-
proving the results overall (which it only improves from
79.4% to 81.9%). The one exception is pwd which re-
quires system call failures to improve from 21.2% to
70.8%. The next largest coverage improvement for a sin-
gle tool is a more modest (but still notable) 12.5% extra
coverage.

5.1.3 Comparison against developer test suites

Each utility in COREUTILS comes with an extensive
manually-written test suite, extended each time a new
bug fix or extra feature is added. An obvious experiment
is to see how well KLEE does in comparison. Overall, the
developers get 67.5%, while KLEE gets 81.9%. Thus, a
90 hour run of KLEE (1 hour per application) exceeds the
coverage of test suites built over a period of fifteen years
by over 14%!

Figure 7 gives a relative view of KLEE versus devel-
oper tests by subtracting the lines hit by manual testing
from those hit by KLEE and dividing this by the total pos-
sible. A bar above zero indicates that KLEE beat the man-
ual test (and by how much). A bar below measures the
opposite. KLEE beats manual testing (sometimes signifi-
cantly) on the vast majority of the applications.

5.1.4 Bugs found

We found nine bugs in the latest version of COREUTILS
(version 6.10), in md5sum, mkdir, mkfifo, mknod,
paste, pr, ptx, seq and tac. All of these were

100%

50%

o%JJ_Lw.

—50% 1

KLEE vs. Manual (ELOC %)

—100%

1 13 25 50 5 90

Figure 7: Relative coverage difference between KLEE
and the COREUTILS manual test suite, computed by sub-
tracting the executable lines of code covered by manual
tests (Lyan) from KLEE tests (Ly;ee) and dividing by the
total possible: (Liice — Liman)/Ltotai- Higher bars are
better for KLEE, which beats manual testing on all but 13
applications, often significantly.

paste —-d\\ abcdefghijklmnopgrstuvwxyz
pr —e t2.txt

tac -r t3.txt t3.txt

mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

md5sum —-c tl.txt

ptx -F\\ abcdefghijklmnopgrstuvwxyz
seq —-f %0 1

tloxt: "\t \tMD5 ("

2.txt: "\b\b\b\b\b\b\b\t"

3.ext: "\n"

Figure 8: Command lines and inputs which trigger the
bugs found by KLEE in COREUTILS version 6.10. All
bugs cause program crashes on our Intel Pentium D ma-
chine running Fedora Core 7 with SELinux.

crash bugs, most caused by inadvertent memory over-
flows. The bug in seq had been already fixed in the de-
velopers’ version, but all the other bugs received imme-
diate attention from the developers, and were each con-
firmed and fixed within two days of our report.

A list of test inputs which trigger bugs on our systems
is shown in Figure 8. The first three were around since
1992 so should theoretically crash any COREUTILS dis-
tribution. The next three (which use the —Z option) re-
quire SELinux. The others are more recent, and do not
crash older COREUTILS distributions.

As an illustrative example, we discuss the bug that we
found in pr, a tool used for paginating files before print-
ing. Figure 8 shows a simple test case that KLEE gener-
ates to segfault pr, invoking it with flag —e, which tells
it to expand tabs to spaces, on a file containing a series



602: #define TAB_WIDTH(c_, h_) ((c-) — ((h=) % (c-)))
-1-3.22: clump_buff = xmalloc(MAX(8,chars_per_input_tab));
... /] (set s to clump_buff)

2665:

width = TAB_WIDTH(chars_per_c, input_position);
2666:
2667: if (untabify_input)
2668: {
2669: for (i = width; i; ——i)
2670: St =1 7
2671: chars = width;
2672: }
Figure 9: Code snippet from pr where a mem-

ory overflow of clump_buff via pointer s is pos-
sible if chars_per_input_tab chars_per_c
and input_position < 0.

of backspace characters followed by a tab.

Figure 9 shows the portion of the code contain-
ing the bug. On the path where the bug occurs,
both chars_per_input_tab and chars_per_c are
equal to the tab width (let’s call it 7). Line 2665
(via the macro on line 602) computes width as
(T'— input_position mod T'). The root cause
of the bug is the incorrect assumption that 0 < z
mod y < y, which only holds for positive integers.
When input_position is positive, width will be
indeed less than 7" since (0 < input_position
mod T < T'). However, in the presence of backspaces,
input_position can become negative, so (-7 <
input_position modT < T). Consequently,
width canbe as largeas (2 x T — 1).

The bug arises when the code allocates a buffer
clump buff of size T (line 1322) and then writes
width characters into this buffer (lines 2669-2670) via
the pointer s (initially set to clump_buff). Because
width can be as large as (2 x7'—1), a memory overflow
is possible. Note that the tab width 7" can be specified
from the command line, and thus this is an unbounded
buffer overflow.

This bug is representative of the bugs found by KLEE
in COREUTILS: complex, non-obvious code which is
hard to reason about manually. As a consequence, this
bug has been present in pr for more than 15 years, since
at least 1992 when COREUTILS was first added to a CVS
repository.

5.1.5 MiNIXx Utilities

MINIX has its own utility suite with many of the same
programs as in GNU COREUTILS. As a quick check to
ensure our results were not somehow COREUTILS spe-
cific, we ran KLEE on 14 simple MINIX utilities. We
found two buffer overflows and got 90.6% overall cover-

11

age.

5.2 Checking tool equivalence

When KLEE reaches an assert or a similar error check-
ing if statement, it tries to drive execution down both
branches. Thus, if KLEE can hit the error on a certain
path, then it will. Conversely, if the condition leading to
the error is not satisfiable on a path, then KLEE can prove
full correctness along that path.

Assume we have two procedures int p (int x)
and int p’ (int x) that purport to implement the
same interface. For example, p and p’ could be two
different implementations of the same library function,
or perhaps p is a simple reference implementation and
p’ aheavily optimized version. Then, running roughly
the following code with KLEE will check p and p’ for
equivalence:

int x;
make_symbolic (&x);
assert (p(x) == p’ (x));

When a path reaches the assert, if any possible value
of the constraints on that path could violate the assert
(and the constraint solver can reason about all con-
straints), then KLEE will generate a test case that does
so. If at least one implementation is correct on that path,
then such a mismatch is a correctness violation in the
other.

Conversely, if the constraint solver shows such a value
does not exist, then we have proved that the two imple-
mentations are equivalent for all values on the checked
path. These are both powerful results, completely be-
yond the reach of traditional testing. One way to look at
KLEE is that it automatically translates a path through a
C program into a form that a theorem prover can reason
about. As a result, proving path equivalence just takes a
few lines of C code (the assertion above), rather than an
enormous manual exercise in theorem proving.

There are many applications of this basic approach.
For example, p’ could be a patched version of p that
purports to only remove bugs, and so should have strictly
fewer crashes. Or we may have a function and its inverse
(such as compress and uncompress) and so can
check that assert (uncompress (compress (x) )
== X).

We checked the equivalence of the MINIX tools dis-
cussed in §5.1.5 against the COREUTILS implementa-
tions. For example, given the same input, the MINIX
and COREUTILS versions of wc should output the same
number of lines, words and bytes, regardless of how the
tool is implemented internally. In fact, all Unix utilities
should conform to IEEE Standard 1003.1 [1], and both
MINIX and COREUTILS suites intend to do so.



Tool Input MINTX COREUTILS
wce 0:0 00 3 01 3

we 0\t0 013 02 3

we 0\no 113 123

we O\f\r 113 013
basename | "" / "
basename | —— PP - PP

printf \\ nn \

printf ST * % S

printf $i nn 0

printf $x -2 ffftfffe ittt
printf $%r "" | $%s Sr

printf $is "" | -1077520586s 0s

fold-w2 | \t \t \n\t
fold-w2 | \t\t\t | \n\t\n\t\n\t | \t\n\t\n\t

Table 3: Mismatches automatically detected by KLEE

We have not yet added automatic cross-checking to
KLEE. We currently crosscheck by manually including
the MINIX tool into the COREUTILS program and re-
name any conflicting identifiers. Because of the required
manual work, we only crosschecked four applications.
However, we hope that this will convey the general idea
behind this KLEE capability. We plan to do a full study
demonstrating this technique in future work.

The input to a Unix tool consists of the command-line
options and the input files. For the tools we checked,
the output is written on stdout. Thus, our system runs
both the MINIX and the COREUTILS implementation of
a tool on identical inputs, and compares the characters
written on stdout. When a mismatch is detected, the
system generates a test case, which is subsequently run
on a GCC-compiled version of each tool, to confirm the
mismatch. Table 3 shows several mismatches automati-
cally detected by KLEE between the MINIX and CORE-
UTILS versions of wc, basename, printf and fold.
These mismatches reveal several bugs in the MINIX ver-
sions of the tools. For example, wc incorrectly counts
the number of words and the number of lines in certain
cases 2 and fold incorrectly adds an additional new-
line when it encounters a tab at the end of a line. The
printf tool reveals a large number of mismatches be-
tween the two versions (we presented only a small sam-
ple in Table 3), while the two basename versions dis-
agree on only two inputs.

5.3 The HiStar OS Kernel

To demonstrate the applicability of our system to other
forms of system code we applied KLEE to testing a user-
mode version of the HiStar [29] operating system kernel.

20n the upside, the MINIX version always gets the number of bytes
correct!

12

: static void test(void *upage, unsigned num_calls) {
klee_make_symbolic(upage, PGSIZE, "upage");
for (int i=0; i<num_calls; i++) {

uint64_t args[8];

for (int j=0; j<8; j++)

klee_make_symbolic(&args[j], sizeof(args[j]), "arg");
kern_syscall(args[0], args[1], args[2], args[3],
args[4], args[5], args[6], args[7]);

0:  sys_self_halt();
1: }

2 O0oOoONOOOAWN =

Figure 10: Our test driver for the HiStar kernel. The
test makes a single page of user memory symbolic and
executes a user-specified number of system calls (which
may refer to the given page) with entirely symbolic argu-
ments.

| Test | Random | KLEE | ELOC |
With Disk 50.1% 67.1% 4617
No Disk 48.0% 76.4% 2662

Table 4: Coverage on the HiStar kernel for runs with
up to three system calls, configured with and without
a RAM disk. For comparison, we implemented a test
driver which calls a random system call and uses random
values for all other inputs. This driver was run one mil-
lion times, with and without a disk.

To do so we use a user-mode version of the kernel which
uses an optional RAM disk and a small amount of core
memory.

This kernel uses a simplified bootstrap procedure
which creates the core kernel data structures and initial-
izes a single thread with access to a single page of user
memory. Once loaded, this thread executes the test pro-
cedure shown in Figure 10, which makes the user mem-
ory symbolic and executes a user-specified number of
system calls using entirely symbolic arguments.

Although this environment may seem very restrictive,
in practice we have found that this approach is able to
quickly generate test cases — sequences of system call
vectors and memory contents — which cover a large por-
tion of the HiStar kernel and uncover interesting behav-
iors. Table 4 shows the coverage obtained for the core
kernel for runs with and without a disk. When config-
ured with a disk, a majority of the uncovered code can
only be triggered when there are a large number of ker-
nel objects. This currently does not happen in our testing
environment; we are investigating ways to exercise this
code adequately during testing.

We also tested HiStar using a version of our driver
which select a random system call number and uses ran-
dom values for all other inputs. The results from running
this driver one million times are also shown in Table 4.



1 : uintptr_t safe_addptr(int *of, uint64_t a, uint64_t b) {
2 :  uintptr_tr = a + b;

3: if (r<a)

4 *of = 1;

5 : return 1

6

t 3

Figure 11: HiStar function containing an important secu-
rity vulnerability. The function is supposed to set o f to
true if the addition overflows but can fail to do so in the
32-bit version for very large values of b.

KLEE’s tests achieve significantly more coverage than
random testing both for runs with (+17.0%) and without
(+28.4%) a disk device.

In addition to generating tests which cover a sub-
stantial portion of the kernel, our testing found a crit-
ical security bug in the 32-bit version of HiStar. The
safe_addptr function containing the bug is shown in
Figure 11. The function is supposed to set xof to true
if the addition overflows. However, because the inputs
are 64 bits the test used is insufficient (it should be (r <
a) || (r < b))and the function can fail to indicate
overflow for large values of b.

The safe_addptr function is used to implement
HiStar’s validation of user memory addresses prior to
copying data to or from user space. A kernel routine
takes a user address and a size and computes if the user is
allowed to access the memory in that range; this routine
uses the overflow to prevent access when a computation
could overflow. This bug in computing overflow there-
fore allows a malicious process to gain access to mem-
ory regions outside its control for system calls where the
user can pass in an arbitrarily large size.

6 Related Work

Researchers have recently designed a variety of tools
based on symbolic execution [9, 19, 10, 28, 18, 20, 6,
15, 14, 8, 16]. We discuss how our work compares in the
way it addresses (1) the environment problem and (2) the
path explosion problem.

To the best of our knowledge, traditional symbolic ex-
ecution systems [11, 12, 24] are static in a strict sense
and do not call out into the live running environment at
all. They either cannot handle programs that make use of
the environment or require a complete working model.
More recent work in test generation [10, 19, 28] does al-
low external interactions but forces them to use entirely
concrete procedure call arguments. This approach al-
lows these tools to check this kind of code, but prevents
them from exploring more behaviors: a concrete exter-
nal call will do exactly what it did, rather than all things

13

it could potentially do. In a sense, KLEE combines the
best of both worlds: when calls already have concrete ar-
guments, it can call the external environment (allowing it
to handle a broad range of programs), but it also provides
a facility to judiciously make symbolic those parts of the
environment that are interesting in terms of generating
behaviors.

The path explosion problem has instead received more
attention [6, 18, 20, 26, 16]. Similarly to the search
heuristics presented in Section 3, search strategies pro-
posed in the past include Best First Search [10], Gener-
ational Search [20], and Hybrid Concolic Testing [26].
Orthogonal to search heuristics, researchers have ad-
dressed the path explosion problem by testing paths com-
positionally [18, 5], and by tracking the values read and
written by the program [6].

Like KLEE, other symbolic execution systems imple-
ment their own optimizations before sending the queries
to the underlying constraint solver, such as the simple
syntactic transformations presented in [28], and the con-
straint subsumption optimization discussed in [20].

Similar to symbolic execution systems, model check-
ers have been used to find bugs in both the design and
the implementation of software [21, 22, 7, 13, 17]. These
approaches often require a lot of manual effort to build
test harnesses. However, to some degree, the approaches
are complementary to KLEE: the tests KLEE generates
could be used to drive the model checked code, similar
to the approach embraced by the Java PathFinder (JPF)
project [23].

7 Conclusion

The long-term goal of our work is to be able to take an ar-
bitrary program and routinely get 90%+ code coverage,
crushing it under test cases that explore all interesting
paths with all interesting values. While there is still a
long way to go to reach this goal, the results in this paper
show that the approach can get high code coverage over a
broad range of real applications, coverage that exceeded
that of a high-quality, manual test suites constructed in-
crementally over a period of 15 years, as well as finding
bugs that had been around over a decade. The techniques
we describe should work well with other tools and give
similar help in handling a broad class of applications.

8 Acknowledgements

We would like to thank the GNU COREUTILS develop-
ers, and in particular Jim Meyering, the maintainer of
COREUTILS, for promptly confirming our bug reports
and fixing the bugs, as well as providing us with a va-
riety of useful information about COREUTILS.



‘We would also like to thank Nickolai Zeldovich, the
designer of HISTAR, for his great help in checking HIS-
TAR and in particular for providing us with a user-level
driver.

We also thank Philip Guo for his careful proofreading
and valuable comments on the text.

References

[1

—

[2

—

[3
[4

_ =

[5

—_

[6

=

[7

—

[8]

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

IEEE Std 1003.1, 2004 edition. http://www.unix.org/
version3/ieee_std.html, May 2008.

Security focus website, http://www.securityfocus.
com, March 2008.

uCLibc website. http://www.uclibc.org/, May 2008.

United States National Vulnerability Database website, http:
//nvd.nist.gov, March 2008.

ANAND, S., GODEFROID, P., AND TILLMANN, N. Demand-
driven compositional symbolic execution. In Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS
2008) (2008).

BOONSTOPPEL, P., CADAR, C., AND ENGLER, D. RWset: At-
tacking path explosion in constraint-based test generation. In
Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS 2008) (2008).

BRAT, G., HAVELUND, K., PARK, S., AND VISSER, W. Model
checking programs. In /EEE International Conference on Auto-
mated Software Engineering (ASE) (2000).

BRUMLEY, D., NEWSOME, J., SONG, D., WANG, H., AND
JHA, S. Towards automatic generation of vulnerability-based sig-
natures. In Proceedings of the 2006 IEEE Symposium on Security
and Privacy (2006).

CADAR, C., AND ENGLER, D. Execution generated test cases:
How to make systems code crash itself. In Proceedings of the
12th International SPIN Workshop on Model Checking of Soft-
ware (August 2005).

CADAR, C., GANESH, V., PAWLOWSKI, P., DILL, D., AND
ENGLER, D. EXE: Automatically generating inputs of death.
In Proceedings of the 13th ACM Conference on Computer and
Communications Security (October-November 2006).

CLARKE, E., AND KROENING, D. Hardware verification using
ANSI-C programs as a reference. In Proceedings of ASP-DAC
2003 (January 2003), IEEE Computer Society Press, pp. 308—
311.

CLARKE, E., KROENING, D., AND LERDA, F. A tool for check-
ing ANSI-C programs. In Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS) (2004), K. Jensen and
A. Podelski, Eds., vol. 2988 of Lecture Notes in Computer Sci-
ence, Springer, pp. 168-176.

CORBETT, J., DWYER, M., HATCLIFF, J., LAUBACH, S.,
PASAREANU, C., ROBBY, AND ZHENG, H. Bandera: Extracting
finite-state models from Java source code. In ICSE 2000 (2000).

CoSTA, M., CASTRO, M., ZHOU, L., ZHANG, L., AND
PEINADO, M. Bouncer: Securing software by blocking bad in-
put. In Proceedings of the 21th ACM Symposium on Operating
Systems Principles (SOSP) (October 2007).

COSTA, M., CROWCROFT, J., CASTRO, M., ROWSTRON, A.,
ZHou, L., ZHANG, L., AND BARHAM, P. Vigilante: end-to-
end containment of Internet worms. In Proceedings of the 20th
ACM Symposium on Operating Systems Principles (SOSP) (Oc-
tober 2005).

14

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

EMMI, M., MAJUMDAR, R., AND SEN, K. Dynamic test input
generation for database applications. In International Symposium
on Software Testing and Analysis (ISSTA’07) (2007), ACM.

GODEFROID, P. Model Checking for Programming Languages
using VeriSoft. In Proceedings of the 24th ACM Symposium on
Principles of Programming Languages (1997).

GODEFROID, P. Compositional dynamic test generation. In Pro-
ceedings of the 34th Symposium on Principles of Programming
Languages (POPL’07) (Jan. 2007).

GODEFROID, P., KLARLUND, N., AND SEN, K. DART: Di-
rected automated random testing. In Proceedings of the Con-
ference on Programming Language Design and Implementation
(PLDI) (Chicago, IL USA, June 2005), ACM Press.

GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. Automated
whitebox fuzz testing. In NDSS ’08: Proceedings of Network and
Distributed Systems Security (2008), pp. 151-166.

HOLZMANN, G. J. The model checker SPIN. Software Engi-
neering 23,5 (1997), 279-295.

HOLZMANN, G. J. From code to models. In Proc. 2nd Int.
Conf. on Applications of Concurrency to System Design (New-
castle upon Tyne, U.K., 2001), pp. 3-10.

KHURSHID, S., PASAREANU, C. S., AND VISSER, W. Gen-
eralized symbolic execution for model checking and testing. In
Proceedings of the Ninth International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (2003).

KROENING, D., CLARKE, E., AND YORAV, K. Behavioral con-
sistency of C and Verilog programs using bounded model check-
ing. In Proceedings of DAC 2003 (2003), ACM Press, pp. 368—
371.

LATTNER, C., AND ADVE, V. Llvm: A compilation framework
for lifelong program analysis & transformation. In CGO ’04:
Proceedings of the international symposium on Code generation
and optimization (Washington, DC, USA, 2004), IEEE Computer
Society, p. 75.

MAJUMDAR, R., AND SEN, K. Hybrid concolic testing. In Pro-
ceedings of the 29th International Conference on Software Engi-
neering (ICSE’07) (May 2007).

MILLER, B., Kosk1, D., LEE, C. P., MAGANTY, V., MURTHY,
R., NATARAJAN, A., AND STEIDL, J. Fuzz revisited: A re-
examination of the reliability of UNIX utilities and services.
Tech. rep., University of Wisconsin - Madison, 1995.

SEN, K., MARINOV, D., AND AGHA, G. CUTE: A concolic unit
testing engine for C. In In 5th joint meeting of the European Soft-
ware Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE’05) (Sept.
2005).

ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIERES, D. Making information flow explicit in HiStar.
In USENIX’06: Proceedings of the 7th conference on USENIX
Symposium on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2006), USENIX Association, pp. 19-19.



