
KLEE: Unassisted and Automatic Generation of High-Coverage

Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler *

Stanford University

Abstract program inputs with symbolic values and replace cor-

Wi boli | responding concrete program operations with ones that
¢ present a new SymbBOLC execution tool, KLEE, ca- manipulate symbolic values. When program execution

pable of automatically generating tests that achieve branches based on a symbolic value, the system (con-
high A ona diverse set o Jaox and ceptually) follows both branches at once, maintaining on
environmenta y-intensive Programs. we app 16 KLEE each path a set of constraints called the path condition
to all 90 programs in the GNU COREUTILS utility suite, which must hold on execution of that path. When a path
which form the core user-level environment installed on terminates or hits a bug, a test case can be generated by
amos! all ha systems and, as sue represent some solving the current path condition to find concrete val-
of the most cavily bo ye po opRE Pro” ues. Assuming deterministic code, feeding this concrete
stams in existence. Tor 54% of these utilities, KLEE'S input to an raw version of the checked code will cause it
automatically generated tests covered 80—-100% of exe- to follow the same path and hit the same bug
cutable statements and, in aggregate, significantly beat .

: : Results from these tools and others are promising.
the coverage of the developers’ own hand-written test :

However, while researchers have shown such tools can
suites. KLEE also found nine serious bugs (including :

: get high coverage and find bugs on a small number of
three that had been missed for over 15 years!) and pro- : :
duced : : programs, it has been an open question, especially touced concrete inputs that triggered the errors when run

: : outsiders, whether the approach has any hope of consis-
on the uninstrumented code. When applied to MINIX’s o CE

: : CL tently achieving these goals on real applications. Two
versions of a small selection of the same applications, :

: a. : common concerns are the exponential number of paths
KLEE achieved similar coverage (along with two bugs).) : :
In addi :] through code and the difficulty of handling the environ-n addition, we also used KLEE to automatically find nu 3 : .,

: ment (“the environment problem”). Neither concern has
merous incorrect differences between several MINIX and b H helned by the fact th includ
COREUTILS tools. Finally, we checked the kernel of the pect much heipe y the fact thal most past WOTK, etd
q : ing ours, has usually reported results on a limited set of
ISTAR operating system, generating tests that achieved hand-oicked benchmarks and tvoically h cluded

76.4% (without paging enabled) and 67.1% coverage ana-pieied bene -. sand typically has not include
(with paging) and found one important security bug. ay coverage MUMbELs.

This paper makes two contributions: First, we present

. a new symbolic execution tool, KLEE, which we de-
1 Introduction signed from scratch to be robust and to deeply check a

broad range of applications. We leveraged several years

The importance of testing and the poor performance of of lessons from our previous tool, EXE [10]. KLEE uses
fandom and manual approaches has led to much recent jovel constraint solving optimizations that improve per-
work in using symbolic execution to automatically gener- 00006 by over an order of magnitude and let it han-
ate high-coveragetest inputs [9, 19, 10, 28, 18, 20,6, 15, g1e many programs that are completely intractable other-
14, 8, 16]. At a high-level, these tools use variations on ie Tg space-efficient representation of a checked path
the following idea: Instead of running code on manually ang it can have tens to hundreds of thousands of such
or randomly constructed fnput, they run it on symbolic hath active simultaneously. Its search heuristics effec-
input initially allowed to be “anything.” They substitute tively select from these large sets of paths to get high

* Author names are in alphabetical order. Daniel Dunbar is the main code coverage. Its simple, straightforward approach to
author of the KLEE system. handling the environment let it check a broad range of

1

system-intensive programs. 3 With one exception, KLEE got these high-coverage

Second, we show that KLEE’s automatically generated results by checking the applications “out of the box”
tests get high coverage on a diverse set of real, com- without requiring any special-case source modifica-
plicated, and environmentally-intensive programs. Our tions. (We did a one-line modification to sort to
main evaluation applies KLEE to all 90 programs in the shrink a large buffer that caused problems for the
latest stable version of GNU COREUTILS (version 6.10). constraint solver.)
In total, COREUTILS consists of about 78,000 lines of li- 4 KLEE finds important errors in heavily tested code.

brary code and 65,000 lines in the actual utilities. The KLEE found nine fatal errors in the latest version
utilities themselves interact aggressively with their en- COREUTILS (including three that had escaped detec-
vironment to provide a variety of functions, including tion for 15 years!), which account for more crash-
managing the file system (e.g., 1s, dd, chmod), display- ing bugs than found in 2006, 2007 and 2008 com-
ing and configuring system properties (e.g., logname, bined. In addition, KLEE produces concrete inputs
printenv, hostname), controlling command invo- that can be run independently to demonstrate the er-
cation (e.g., nohup, nice, env), processing text files ror, greatly simplifying debugging. All outstanding
(e.g., sort, od, patch), and so on. They form the core bugs were confirmed and fixed each within two days
user-level environment installed on almost all Unix sys- of our report and versions of the tests KLEE generated
tems. They are used daily by millions of people, bug were included in the standard regression suite.
fixes are handled promptly, and new releases are pushed 5 KLEE also handles operating system code well. We
regularly. The breadth of functions they perform means applied it to the core part of the HISTAR kernel,
that our system cannot be a “one trick pony” special- achieving an average statement coverage of 76.4%
cased to one application class. Moreover, the heavy use (with disk) and 67.1% (without disk) and finding a
of the environment stress tests our system where sym- serious security bug.
bolic execution has historically been weakest. 6 KLEE is not limited to finding low-level program-

Further, the robustness of COREUTILS programs make ming errors such as memory overflows, but has also
them very tough tests in terms of bug-finding. They been applied to checking functional correctness by
arguably are the single most well-tested suite of open- finding inconsistencies between several purportedly
source applications (e.g., is there a program the reader identical MINIX and COREUTILS tools.
has used more often than “1s”?). The “fuzz” study We give an overview of our approach in the next sec-
found that GNU utilities had 2.5 to 7 times less fail- ~~ tion. Section 3 describes KLEE, focusing on the most

ures than the utilities on seven commercial Unix sys- important optimizations we do. We then discuss how we
tems [27]. This difference was in 1995, and there have model the environment (§ 4) and then our experiments
been over 12 more years of testing since then. The last (8 5). Finally we describe related work (§ 6) and then
COREUTILS vulnerability reported on the SecurityFo- conclude (§ 7).
cus or the US National Vulnerability Database was three

years ago [2, 4]. 2 Overview
Our experiments (§ 5) show the following:

I KLEE works well on a broad set of complex pro- This section explains how KLEE works by walking

grams. When applied to the entire 90-program through the testing of MINIX’s tr tool. Although this

COREUTILS suite it automatically generated tests version of t r is very small — only 169 lines, 83 of which

covering 80—-100% of the statements on 84% of the are executable — it illustrates several issues common to

utilities, in aggregate covering 81.9% of the total the programs we check:

code. Sixteen tools have 100% coverage and 38 1 Complexity. The code’s intent is to translate and

over 90%. These results held true when applied to delete characters from its input. It hides this in-

14 comparable versions of MINIX utilities, where it tent well beneath non-obvious input parsing code,

achieved over 90% statement coverage (and found tricky boundary conditions, and hard-to-follow con-

two bugs). To the best of our knowledge, CORE- trol flow. For example, Figure 1 shows one of the

UTILS contains an order of magnitude more pro- complicated string parsing procedures contained in

grams than prior symbolic test generation work has the utility.

attempted to test. 2 Environmental Dependencies. Most of the code is

2 KLEE can get significantly more code coverage than controlled by environmental input. Command line

a concentrated, sustained manual effort. The 90- arguments determine what procedures execute, input

hour run used to generate its COREUTILS coverage values determine which way if-statements trigger,

beat the developer’s own test suite built incremen- and the program depends on the ability to read from

tally over fifteen years by over 14%! the file system. These inputs often come from un-

2

1 : void expand(char *arg, unsigned char *buffer) { values for all register and memory locations are tracked
2: inti, ac; with complete precision. This allows KLEE to check at

: Mh Lae) NUT each dangerous operation (assertions, memory accesses)
5 argA if any value exists that could cause an error and to at-
6 : i=ac=0: tempt to drive the program down all feasible paths.
7: if (farg >= 0’ && arg <= "7") {
8 : do {
9: ac = (ac << 3) + Targ++ — 0’; 2.1 Testing Process
10: ++;

hs } while (i< 4 && *arg >= "0’ && *arg <= ' 7’); Through careful design, KLEE makes it easy to start
12: “buffer++ = ac; checking many real programs in seconds. It requires no
I } se If (are rs) source modifications, specifications, or any manual work
15: } else if (‘arg == ’ [’) { on the part of the user other than giving command line
16: arg++; values indicating the number and size of files, command

17: i = Targ++; line strings, or other inputs to test the code on. The user
18: if (farg++ I= 7-7) { : . . :
10; “buffer++ = 7 [7° just needs to compile their code using 1 1vm—gcc com-
20: arg —= 2; piler which behaves exactly as gcc, except that it emits
21: continue; LLVM bytecode object files. For example, the t r tool is
22: } compiled using:
23: ac = *arg++;

24: while (i <= ac) *buffer++ = i++; llvm-gcc ——emit-1llvm tr.c -o tr.bc
25: arg++; /* Skip ’]” */] . .

26: 1 else KLEE runs directly on the emitted result and dynamically
27: *buffer++ = *arg++; links in LLVM versions of libc and our environmental

28: } model, described later (§ 4). The following command
4 4 | was used to test tr:
31: int main(int argc, char® argv[]) { klee ——max—-time 2 —-sym-args 10 10

32: int index = 1; ——sym—-files 1 2000 —--max-fail 1 tr.bc
33: if (argc > 1 && argv[index][0] == "-") {

34: ce The ——max-time option indicates that KLEE should

o> } be run for two minutes, while the ——sym—-args option
37: expand(argv[indexw+]: specifies that the program should be run on up to two
38: ... command line arguments, each up to 10 characters long.

39: } The ——sym—files option directs the environment to
make standard input and one additional file symbolic,

Figure 1: A representative example of the kind of non- each of which contain 2000 bytes of data. Finally, the
obvious code, taken from MINIX’s tr which is difficult —-—-max—fail option indicates that system calls should

to verify by inspection or random testing. be allowed to fail at most one time along each program
path (e.g. read () returning ETO).

During testing, KLEE generates concrete test cases for

constrained external sources (ranging from the user a]] program errors and for any path through the program
to network packets) and the code must handle arbi- which covers a new instruction or branch. After testing is
trarily invalid or malevolent values gracefully. complete, these test cases can be rerun independently of
The code illustrates two additional common features. KLEE through a separate replay driver. This driver uses

First, it has bugs, which KLEE finds and generates test the test case data to construct appropriate inputs to the
cases for. Second, KLEE quickly achieves good code program (arguments, files, pipes, etc.) and then runs the
coverage, generating 40 test cases which cover all exe- program natively. Separating test case evaluation from
cutable lines and all branches in the program in under generation in this fashion ensures that test cases have the
two minutes. correct behavior when run using the native compiler, and
The goal of KLEE is (1) to hit every line of executable allows the use of standard tools (e.g., gdb, gcov) for

code in the program by running it in all possible waysand ~~ debugging and evaluating the test results.
(2) to check each line against all possible input values to

find if some input could trigger errors. | 2.2 Symbolic Execution
KLEE’s basic strategy is to replace a programs inputs

with symbolic variables whose values are initially uncon- When KLEE runs the program, it tries to explore ev-

strained. Program values are represented by formulae ery possible path. This is done by executing the pro-

instead of actual bits and as the program executes the gram symbolically, i.e. tracking all constraints on inputs

3

marked symbolic as each instruction is run. When a con- <I>
ditional that depends on a symbolic input is encountered, / :
a constraint solver is used to determine which direction

the path will follow. In some cases execution is not con- O
strained to follow a single path — the condition can be F

true or false depending on the input — and the execution iD
conceptuallyforks. When this happens, KLEE clones the /
current process and follows both paths, adding the appro-

priate constraint to the path conditions of each process. O
To clarify this process, we explain how KLEE finds one F L

of the bugs in expand (). iD:
The actual error is on lines 16-18 in Figure 1. The /\.

code assumes that an argument containing ’ [’ will be

followed by at least two more characters. However, if O ©
the argument ends with ’ [7 , then the increments to arg

skip the terminating / \ 0’ character of the string and the Figure 2: A path to the bug in MINIX 5 tr. Circles rep-
dereference on line 18 is out of bounds. resent active processes and the expressions in diamonds

Recall that we test tr using between 0 and 2 argu- indicate places where execution forked.
ments each of up to 10 characters. KLEE executes tr

with an initial path constraint that 1 < argc < 3 (one 3 The KLEE Architecture
extra argument is reserved for the program name) and

without constraints on the arguments. In Figure 1 when ~~ The KLEE architecture for symbolic execution is a com-
KLEE reaches line 33 in this procedure it needs to deter- plete redesign of EXE, our previous system [10]. KLEE
mine which direction the process should take through the has been implemented with a focus on precision and scal-
branch. To do so, the constraint solver is queried to see ability. Conceptually, KLEE keeps an explicit model of
if the path condition, i.e. 1 < argc < 3, impliesargc > 1 every possible state that can result from executing the
or its negation. In this case, the branch condition can be input program symbolicly, including accurate bit-level
true (argc € {2,3}) and false (argc = 1) and execution ~~ modeling of the majority of legal C operations!
will fork. The path condition will be updated to argc = 1 KLEE is implemented as a virtual machine for the Low
in the process following the false path and 2 < argc < 3 Level Virtual Machine [25] (LLVM) assembly language.
in the process following the true path. LLVM uses a RISC-like instruction set with an infinite

Once there are multiple concurrent processes at each number of registers. Although the instruction set is pri-

instruction step, KLEE must choose which process to ex- marily intended for use as part of the compiler infras-

ecute. Details of the scheduling algorithm are given in tructure, we have found the representation adequate for

Section 3, for now we assume that KLEE follows the path interpreting directly. Additionally, KLEE provides spe-

that will reach the bug. As execution continues along this cial intrinisic functions which the program can call to

path, KLEE will update the variables index and arg as create symbolic variables and to communicate with the

appropriate and will fork four more times, again at line underlying operating system.

33 in main and at lines 3, 4, 15, and 18 in expand. At a high level, KLEE functions as an interesting hy-

Figure 2 shows the branch tree at the point when KLEE brid between an operating system and an interpreter. Pro-

detects a buffer overflow. The expressions along interior ~~ cesses are explicitly modeled by their stack, heap, pro-

nodes indicate the places where execution forked and cir- gram counter, and path condition. The core of KLEE is a

cles represent active processes. interpreter loop which evaluates instructions until execu-

When KLEE encounters a bug or a process exits, the tion 1s complete. However, unlike a typical interpreter, at
path condition records the entire set of constraints on the ~~ each instruction step KLEE selects a process to interpret
input that are necessary to drive the program down that using a number of search strategies, described in greater
path. The constraint solver is used to determine a con- detail below. Once a process has been selected, KLEE
crete set of input values which satisfy all of these con- executes a single instruction in the context of that pro-
straints which are written out as a test case. For the path cess:

that exposed the buffer overflow bug on line 18, KLEE 1 The implementation of most instructions is straight-
generates the input argc=2 and argv [1] = *['" forward. For example, for an add instruction the con-
(the contents of symbolic files are irrelevant here), which ~~ —(——————————— Ce

} } The current implementation has the following limitations: sym-

can be rerun on a raw version of tr to verity the bug bolic floating point and 1ong jmp are unsupported and the size of dy-
independently of KLEE. namically allocated objects cannot be symbolic.

4

tents of the argument registers are loaded. If both

operands are concrete then the add is performed na- echo 91,912
. . . . pathchk 51,494
tively, otherwise an Add expression is created from

the arguments. In either case the result is written 1s 15,799
back to the result register.

2 The implementation of most instructions is straight- ~~ Table 1: Maximum number of KLEEprocesses that fit in
forward. For example, adding two symbolic 1GB of memory for four of the COREUTILS utilities we
operands generates the constraint that the result is tested.
equal to the sum of the two operands.

3 At a branch instruction, a constraint solver is used the application can only access memory that 1s inside an
to determine if the branch condition must be true or allocated object (i.e. a global variable, stack object, or
must be false given the current path constraints. If object obtained via malloc). With this representation,
so then execution follows the appropriate path. Oth- KLEE can implement copy-on-write at the level of indi-
erwise the process is cloned and both paths are fol- vidual objects which is very effective at minimizing the
lowed, with the each child’s path condition updated ~~ amount of memory we require per-process. Furthermore,
appropriately. by implementing this structure as a persistent map the

4 At process termination — a return from main or heap can be cloned in constant time and portions of the
an exit system call — KLEE queries the constraint ~~ map which are shared among multiple processes do not
solver to determine a set of concrete values that sat- require additional memory.
isty the process path constraints. These values are Table 1 gives examples for the maximum number of
used to generate a test case which can be replayed concurrent process which fit in 1GB for a number of the
and will follow the same execution path. To avoid COREUTILS applications we tested.
generating a large number of uninteresting test cases,

by default KLEE only generates test cases for paths .

which covered new code, either an unexecuted in- 3.2 Process Scheduling
struction or an untaken branch. KLEE uses a number of search heuristics to select the pro-

5 Al any instruction where an CITor can occur, for cess to run at each instruction step. Our basic approach is
example a memory error or divide by zero, KLEE to interleave two different strategies, each emphasizing a
checks to see if the error is possible along the cur- different goal:
rent Path. 1 so then KLEE creates a test case which 1 Random path selection maintains a binary tree
will exhibit the error and continues interpreting the recording the program path followed for all active
current process with the additional constraint that the processes, i.e. the leaves of the tree are the current
error does not occur. processes and the internal nodes are places where ex-

6 Ata load or store instruction, KLEE determines the ecution forked. Processes are selected by traversing
set of objects which the target address could point this tree from the root and randomly selecting the
to. If the address could point to multiple objects the path to follow at branch points. Therefore when a
process is cloned once for each Possible target and branch point is reached the set of processes in each
each new process adds the constraint that the address subtree will have equal probability of being selected,
is in-bounds of that object. Although this operation regardless of their size.
is potentially CXpensive, in practice it does not occur This strategy has two important properties. First, it
frequently and this implementation greatly simplifies favors processes which are high in the branch tree
the representation of a memory read or write expres- and therefore are relatively unconstrained. It is valu-
S10M. able to select these processes more frequently be-

cause they have greater freedom to reach uncovered

3.1 Scalability code. Second, and most importantly, this strategy
avoids starvation when some part of the program is

The number of possible execution states is exponential rapidly creating new states, i.e. “fork bombing”.
in the size of the symbolic input and in practice grows 2 A strategy which attempts to select states that are
quite quickly. It is not uncommon for KLEE to be simu- likely to cover new code in the immediate future.
lating tens or even hundreds of thousands of concurrent Heuristics are used to compute a weight for each pro-
processes during the first few minutes of interpretation, cess and a random process is selected according to
even for small programs. these weights. Currently these heuristics use a com-

To deal with these problems, instead of a flat page- bination of the minimum distance to an uncovered

based memory model KLEE uses a memory model where instruction, taking into account the call stack of the

5

process, and whether the process has recently cov- i Bae
ered new code. yyy | --- Independence

These strategies are composed by selecting from each or Ne Cache
in a round robin fashion. Although this interleaving 200

may increase the time for a particularly effective strategy 3 y
to achieve high coverage, it protects the system against 5 190 pa
cases where one individual strategy would become stuck. £ a
Furthermore, because the strategies are always selecting 1 oT
processes from the same pool, using interleaving allows “ a
the strategies to interact cooperatively. ee CC

Finally, once selected each process is run for a “time A

slice” defined by both a maximum number of instruc- ’ v2 —Nama ve :
tions and a maximum amount of time. The time to ex-

ecute an individual instruction can vary widely between Fjoyre 3: Performance comparison of KLEE’s solver op-
simple instructions, like addition, and instructions which imizations on COREUTILS. Each tool is run for the same
may use the constraint solver or fork, like branches or pymber of instructions and results are then normalized

memory accesses. Time-slicing processes helps ensure 3nd average across all applications.
that a process which is frequently executing expensive
instructions will not dominate execution time.

a constraint set. By storing the cache in this fashion,

eo. the counterexample cache gains three additional ways to

3.3 Query Optimization eliminate neries: e y
Checking with KLEE is almost always dominated by the 1 When a subset of a constraint set has no solution,
time it takes to solve the queries made to the underlying then neither does the original constraint set. Adding
constraint solver. Therefore, almost all of our efforts to constraints to an unsatisfiable constraint set cannot
improve system performance have focused on eliminat- make it satisfiable.
ing or simplifying queries. In particular, KLEE uses two 2 When a superset of a constraint set has a solution,
important optimizations which have proven highly effec- then this is also a solution for the original constraint
tive at reducing query time: constraint independence and set. Dropping constraints from a constraint set does
counterexample caching. not invalidate a solution to that set. oo
The first optimization, constraint independence, takes 3 When a subset of a constraint set has a solution, it

advantage of the natural decomposition of programs into 15 likely that this is also a solution for the original
modular components. This optimization was first imple- set. This 15 because the extra constraints often do not
mented for EXE, our previous symbolic execution sys- invalidate the solution to the subset. Since checking
tem [10]. Briefly, constraints can be divided into dis- a potential solution is cheap, KLEE tries substituting
joint independent subsets based on the symbolic vari- mn all solutions for subsets of the constraint set and
ables which they reference. By explicitly tracking these returns a satisfying solution, if found. oo
subsets, KLEE can frequently eliminate irrelevant con- As an example of the effectiveness of these optimiza-
straints in a query prior to passing it to the underlying ~~ tons, we performed an experiment where all 90 CORE-
constraint solver. UTILS applications were first run for 5 minutes with both

Furthermore, due to the nature of symbolic execu- of these optimizations turned off. We then reran with
tion, queries have a considerable amount of redundancy. constraint independence and the counterexample cache
Although a straightforward caching mechanism which enabled separately and together for the same number of
memoizes queries is effective at eliminating a large num- Instructions. The results in Figure 3 show an order of
ber of queries, it does not take advantage of the additional magnitude Improvement In execution time and indicate
logical structure of a query. We have developed an alter- that the optimizations scale very well, with each becom-
nate mechanism, the counterexample cache, to take full ing more effective as more instructions are executed.
advantage of previous query results.

The counterexample cache functions by caching a map 4 Environment Modeling
of sets of constraints to counterexamples (i.e. variable

assignments), with a special sentinel used when a set of ~~ Systems code interacts with the environment (e.g. the

constraints has no solution. This mapping is stored in operating system, the user) in many ways: by read-

a custom data structure which allows efficiently search- ing command-line arguments or environment variables,

ing for cache entries for both subsets and supersets of ~~ reading and writing files, checking file metadata such as

6

file permissions and size, sending and receiving pack- { . ize¢ read(int fd, void *buf, size_t count) {
ets over the network, and so on. To effectively test such 2 : if (is_invalid(fd)) {

code, we want to explore all legal values that could come ~~ 3: errno = EBADF;

from the environment, rather than just a single set of con- : } return —1;
crete values. For example, checking the permissions of 6: struct klee_fd *f = &fds[fd];
a file should be able to return all possible legal permis- 7 . if (is_concrete_file(f)) {

sions the file could have. Roughly speaking, in KLEE ~~ 8: intr = pread(f—>real_fd, buf, count, f—> off);

we accomplish this by interposing at each place the user i. it rey -
can read environmental data and instead return symbolic 11: return r:
data, constrained to obey any required invariants. For ex- 12: } else {

ample, the bytes of a command-line argument (on Unix: 13: r* sym files are fixed size: don’t read beyond the end. */
. . . 14: if (f—>off >= f—>size)

a C string) are entirely unconstrained, except for the last 15. return 0:
null terminating byte. The code that does this interposi- 16: count = min(count, f—>size — f—>off);
tion is traditionally called a “model.” A key feature of 17: memcpy (buf, f—>file_data + f—>off, count);

KLEE’s models is that they are written in normal C code. ~~ 18: f—>off += count;
. . 19: return count;

As a result, the user can readily customize, extend, or 20: }
even replace them without having to understand the in- 21: }
ternals of KLEE. The current models are around 2,500

lines of code. We now describe how KLEE makes the file Figure 4: Sketch of KLEE’s model for read ().

system symbolic. KLEE’s internal processes execute within a single Unix
process (the one used to run KLEE), then unless we du-

4.1 A symbolic file system plicated file descriptors for each of them (which seemed
expensive), a read by one would affect all the others.

Applications read a significant amount of information If the file descriptor is symbolic, read () just copies
from the file system: file data itself, metadata informa- out the symbolic file data into the supplied buffer (lines
tion such as file sizes and permissions, directory names, 13-19). Any subsequent constraints on this data will be
etc. When they attempt to read such information from preserved in the case that read () is called again on the
concrete files and directories, we want things to “just same file descriptor and range with no intervening write.
work” as they would when the code is running natively. We provide similar symbolic models for the most
When they read this information from places that could =~ common system calls, including open, close, read,
contain arbitrary data (such as a file provided on the com- write, 1seek and stat.
mand line), we want the returned values to be symbolic, Unsurprisingly, the choice of what interface to model

but constrained to respect any necessary invariants. In has a big impact on model complexity. Rather than hav-

this way, we can explore all potential actions, and still ing our models at the system call level, we could have in-

have no false positives. stead built them at the C standard library level (fopen,

KLEE meets these requirements by providing a simple fread, etc.). Doing so has the potential performance
symbolic file system implementation, and checking on advantage that, for concrete code, we could run these op-
each operation, whether the action is for a concrete file erations natively. The major downside, however, is that
or a symbolic one. In the former case, it calls the cor- the standard library contains a huge number of functions,
responding system call in the running operating system, which would make modeling tedious and error-prone. By
while in the latter case it returns symbolic data, being only modeling the much simpler, low-level system call
careful to return the same values for multiple observa- ~~ API, we can get the richer functionality by just compil-
tions of the same object. ing one of the many implementations of the C standard

Figure 4 gives a rough sketch of the implementation library (we use uClibc [3]) and let it worry about cor-
we use for read () calls, eliding details needed to make ~~ rectness. As a side-effect, we simultaneously check the
linking work, to handle calls on standard input, and to library for errors as well.
deal with failures. The code maintains a set of file de- The actual symbolic file system itself is fairly crude,

scriptors, created at file open (), and records for each containing only a single directory with N symbolic files
whether the associated file is symbolic or concrete. If init. KLEE users specify both /N and the maximum file
the file descriptor £d is concrete, our implementation of size. This symbolic file system coexists with the real file
read () accesses the actual disk file by calling the un- system, so that applications can open both symbolic and
derlying operating system using pread () (lines 7-11). concrete files.
We use pread because, unlike read, it does not af- The current rule for deciding which open calls bind

fect the position of the file descriptor it is given: Since to a symbolic file is that if the program calls open with a

7

concrete name, we (attempt to) open the actual file, while v

if it calls it with a symbolic name, we treat the file as .
symbolic. Thus, the call:

int fd = fopen("/etc/fstab", O_RDNLY); 10

will set £d to point to the actual configuration file

/etc/ fstab, while doing the same call with a sym- N
bolic command-line argument argv [11]: "

int fd = fopen(argv[l], O_RDNLY);

will set £d to point to a symbolic file and argv [1] con- .

strained to equal this symbolic file’s name. 7] I] —. . 0 1

In the case of symbolic files, a call to open with an iN iN © © © © © ©
i i } OS © N § ~ SN N &

unconstrained symbolic name will match each of the N 5 > SR PC
symbolic files in turn, and will also fail once. Thus, we Executable Lines of Code

can regard a call to open () as a branch point with N +41
possible outcomes, N of which return a file descriptor to ~~ Figure 5: Histogram showing the number of COREUTILS
one of the symbolic files, and one which fails. For exam- tools that have a given number of executable lines of code
ple, given N = 1, the second call to open () shown in (ELOC), including library code. Most tools (53) have
the code above will generate two paths: one in which £4 ~~ between 3K and 4K ELOC.
points to the single symbolic file in the environment, and

one in which £d is set to 1 indicating error. command-line arguments, and the set of all the files and
their associated data and metadata that were accessed on

4.2 Failing system calls the path explored by KLEE.

In addition to the kind of failures expected during the Running a test case then simply means creating these
: CL files on the running file system. Since our symbolic file

normal execution of an application (e.g., file not found,
Ce : system consist of NV symbolic files in the current direc-

end of file), there are certain failures which are rarely ex- : LL.
Co tory, the test case will consist of the description of NV

pected (e.g., write () fails because the disk is full). We
files (names, data, metadata) that we can easily create in

extended the KLEE environment with a failing mode in Co.
) : C. the current directory. We can then run the application on

which the system simulates such failures. The motivation
: : : : . the generated command-line arguments. The only chal-

for including such failures is twofold: First, not handling
rs Cc lenge in this case is running a test case where certain

such failing situations can lead to unexpected and hard
: Co system calls fail. In order to run these test cases outside

to diagnose bugs. Second, even when applications do in- :
: : : of KLEE, we constructed a simple utility that ptraces the

clude code for dealing with failures, this code is almost Lo.
: : given application in the manner of a debugger, and skips

never exercised by the regression suite. We made this Lo
: : : : the system calls that were supposed to fail, returning in-

mode optional since whether such failures are interesting Co
: oo : oo stead an error to the ptraced application.
1s application-specific — a simple application may not

care about disk crashes, while a mail server expends a lot

of code to handle such cases. As Section 5 shows, failing 5 Evaluation
system calls does not give large aggregate coverage im-

h the 1 icky) bi : : :

0rovements, but 1s reduired toae {ne >)on This section gives our coverage results and bugs found
Y app W y HIgh Coverage. for COREUTILS (§ 5.1), MINIX (§ 5.1.5), and HiStar

(85.3). We also give preliminary measurements of the

4.3 Rerunning test cases effectiveness of KLEE at finding deep correctness errors

A core principle of KLEE is that the test cases it gen- (55.2)
erates can be run on the raw application, independently

of KLEE. This completely eliminates any potential prob- 5.1 GNU Coreutils
lems with the system, makes it easy to confirm and report

bugs, and to generate test suites. This section reports the results of using KLEE to check

Thus, when an application interacts with the sym- all 90 tools that are part of the GNU COREUTILS suite

bolic environment, a test case generated by KLEE in- of utilities. Previous work, ours included, has evaluated

cludes a concrete instantiation of the symbolic environ- constraint-based execution on a small number of hand-

ment for the path explored. That is, it contains concrete selected benchmarks. To the best of our knowledge,

8

COREUTILS contains an order of magnitude more pro-

grams than prior work has attempted to test. (w/o lib code) | of tools | (w/ called lib code)
Figure 5 breaks down the tools by executable lines of

code (ELOC), including library code the tool calls. For

COREUTILS, ELOC are usually a factor of 3 smaller than

actual lines of code. It’s clear that the tools are not toys 70-80% | 8 | 4199 |
— the smallest have over 2K ELOC, over half (53) have 60-70% | 6 | 5217 |
more than 3K, and ten have over 6K.

Table 2: Number of COREUTILS tools which achieve

5.1.1 Methodology statement coverage in the given ranges. Note, as we
discuss (§ 5.1.2), to avoid double-counting our cover-

With a single exception, we ran all of GNU COREUTILS age, numbers here and in the other figures exclude li-
with no modifications. The exception was sort, which brary code (which gets shared by many applications). No
required a one-line change to shrink an overlay large tool gets less than 60% coverage. The rightmost column
buffer that made process size unmanageable. shows the average ELOC for tools within each range, in-

Almost all tools were tested using the same command: cluding called library code (again, see text).
./run <tool—-name> —-sym—-args 10 2 2

——sym—files 2 8

[-—-max—-fail 1] We made sure to report results for the entire CORE-

——max—-time=60 UTILS suite, the worst along with the best. We made the

which tells KLEE to run the given tool with up to three decision fron the beginning !0 do 50, preventing us from
: : (even unintentionally) cheating through the use of frag-

arguments, the first one (if present) being of length at Co ..
: ile optimizations that would blow up on some (or even

most 10, and the next two (if present) of length at most LL.

2. The option ——sym—fi les specifies a symbolic envi- many) applications.
ronment with two symbolic files, one of whichis stdin,

each containing 8 bytes. The ——max—fail option spec- 5.1.2 Coverage Results
ifies that the system should fail at most one system call

on each path; we show this option inside brackets be- Table 2 gives aggregate statement coverage results:
cause we run both with and without this option. Finally, = KLEE gets 100% statement coverage on 16 tools, over
the ——max—t ime option specifies that each tool should ~~ 90% on 54 tools, and over 80% statement coverage on
be run for at most 60 minutes. 76 tools (84.4% of all tools). The minimum coverage

For eight tools where the coverage results were unsat- achieved on any tool 1s 62.0%, and the average coverage
isfactory, we consulted the man page and increased the ~~ across all tools is 81.9%.
number and size of files and argument strings. We see such high coverage on a broad swath of appli-

After KLEE produced test cases, we conservatively cations “out of the box” as a convincing demonstration
measured how comprehensive they were by recording in the power of the approach, especially since it is across
statement coverage. We chose statement coverage be- the entire tool suite rather than from just cherry-picking
cause it is widely-understood and uncontroversial. Note, (say) the best 54 performers.
however, that it dramatically underestimates KLEE’S ca- Note that we do not count coverage of library code in
pability of exploring each statement on many different ~~ our measurements since it makes them harder to inter-
paths (potentially all of them) with all possible values. pret:

We do a hard end-to-end check of coverage by run- I Including library code in the coverage percentages
ning the generated test cases on a stand-alone version of we report would double-count many lines, since of-
the tool that has been compiled using for instrumenta- ten the same library function is called by many appli-
tion with gcov. Doing this measurement independently cations.
of our system completely eliminates the effect of bugs 2 Doing so would also unfairly under-count coverage.
in KLEE and verifies that the produced test case does, in For a given application, often much of a library func-
fact, run the code it claims. tion is dead code for the reason that library code

Similarly, concrete test cases also allow bug confirma- 1s general but the call sites are not. For exam-
tion independently of KLEE, by running the program on ple, printf is exceptionally complex, but the call
the test case for a given error. As a result, a version of the printf (*‘*hello’’) can only hit a small a frac-
test cases for all previously unknown bugs we reported tion (missing the code to print integers, floating point,
have now been included in the official GNU COREUTILS formatting, etc.).

test suite. However, in terms of the raw size of the application, the

9

100% 100%

Hl Base + Fail

[1] Base

80% ~
x 50%

S =: : atlzl z 0% rrpBl
= 0% = |

3 —50%

20% 8

0% | —100% 5 13 25 50 75 90
1 25 50 75 90

Figure 6: Statement coverage for each application with ~~ Figure 7: Relative coverage difference between KLEE
and without failures. and the COREUTILS manual test suite, computed by sub-

tracting the executable lines of code covered by manual

tests (Lian) from KLEE tests (Lge.) and dividing by the
total executable lines of code (including called library total possible: (Lice — Liman)/Liotar. Higher bars are
code) Is Interesting: KLEE must be able to handle this peter for KLEE, which beats manual testing on all but 13
library code (and gets no credit for doing SO In terms of applications, often significantly.
coverage) in order to exercise the code in the tool itself.

Figure 6 further shows the coverage achieved on each paste —d\\ abcdefghl Jkimnopqrstuvexyz
of the 90 COREUTILS tools, with and without trigger- _pr —e t2.txt

ing failing system calls (§4.2). Exploring the failure path tac —-r t3.txt t3.txt
of system calls is mostly useful for hitting the last few mkdir -7 a b

lines of high-coverage tools, rather than significantly im- mkfifo -Z2 a b

proving the results overall (which it only improves from mknod -Z a b p

79.4% to 81.9%). The one exception is pwd which re- mdSsum -c tl.txt

quires system call failures to improve from 21.2% to ptx -F\\ abcdefghijklmnopgrstuvwxyz
70.8%. The next largest coverage improvement for a sin- seq —f 50 1
gle tool is a more modest (but still notable) 12.5% extra tl.1xt: "\t \tMD5 ("
coverage. 2.1xt: "\b\b\b\b\b\b\b\t"

t3.txt: "\n"

5.1.3 Comparison against developer test suites Figure 8: Command lines and inputs which trigger the

Each utility in COREUTILS comes with an extensive pues found by KLEE in (-OREUTILS Port o1% All
manually-written test suite, extended each time a new Le cause poeCea entium LD ma-
bug fix or extra feature is added. An obvious experiment ~~ “HC TRAE Tedora Lore wit HX.
is to see how well KLEE does in comparison. Overall, the

developers get 67.5%, while KLEE gets 81.9%. Thus, a hb 4 by nad
90 hour run of KLEE (1 hour per application) exceeds the oo pes, mosJ 4 na eeeg
coverage of test suites built over a period of fifteen years OWS. : © blig I seq hac been already fixed in t © ae
by over 14%! velopers’ version, but all the other bugs received imme-

Figure 7 gives a relative view of KLEE versus devel- diate attention from the developers, and were each con-
oper tests by subtracting the lines hit by manual testing firmed and fixed within two days of our report.
from those hit by KLEE and dividing this by the total pos- A list of test inputs which trigger bugs on our systems
sible. A bar above zero indicates that KLEE beat the man- 1S shown in Figure 8. The first three were around SINCE
ual test (and by how much). A bar below measures the 1992 so should theoretically crash any COREUTILS dis-
opposite. KLEE beats manual testing (sometimes signifi- tribution. The next three (which use the —Z option) re-
cantly) on the vast majority of the applications. quire SELinux. The others are more recent, and do not

crash older COREUTILS distributions.

5.1.4 Bugs found As an illustrative example, we discuss the bug that we
or found in pr, a tool used for paginating files before print-
We found nine bugs in the latest version of COREUTILS ing. Figure 8 shows a simple test case that KLEE gener-

(version 6.10), in md5sum, mkdir, mkfifo, mknod, ates to segfault pr, invoking it with flag —e, which tells

paste, pr, ptx, seq and tac. All of these were it to expand tabs to spaces, on a file containing a series

10

602: #define TAB_WIDTH(c_, h_) ((c.) — ((h2) % (c_))) age.

1322: clump_buff = xmalloc(MAX(8,chars_per_input_tab));

... J (set s to clump_buff) 5.2 Checking tool equivalence
2665: width = TAB_WIDTH(chars_per_c, input_position);

2666: When KLEE reaches an assert or a similar error check-

oo 2 (untabifyinput) ing if statement, it tries to drive execution down both
2669: for (i = width; i; ——i) branches. Thus, if KLEE can hit the error on a certain
2670: Yopg = 10 path, then it will. Conversely, if the condition leading to
2671: chars = width; the error is not satisfiable on a path, then KLEE can prove
2672: } full correctness along that path.

Assume we have two procedures int p (int x)

Figure 9: Code snippet from pr where a mem- and int p’ (int x) that purport to implement the
ory overflow of clump buff via pointer s is pos- same interface. For example, p and p’ could be two
sible if chars_per_input_tab == chars_per_c different implementations of the same library function,
and input_position < 0. or perhaps p is a simple reference implementation and

p’ a heavily optimized version. Then, running roughly

the following code with KLEE will check p and p’ for

of backspace characters followed by a tab. equivalence:
Figure 9 shows the portion of the code contain- |

ing the bug. On the path where the bug occurs, int x; |
both chars_per_input_tab and chars_per_c are make_symbolic (ex) ’
equal to the tab width (let’s call it 1"). Line 2665 assert (pix) == p’ (x));
(via the macro on line 602) computes width as ~~ When a path reaches the assert, if any possible value
(I'— input_position mod 7). The root cause of the constraints on that path could violate the assert
of the bug is the incorrect assumption that 0 < = (and the constraint solver can reason about all con-
mod y < y, which only holds for positive integers. straints), then KLEE will generate a test case that does
When input_position is positive, width will be so. If at least one implementation is correct on that path,
indeed less than T since (0 < input.position then such a mismatch is a correctness violation in the
mod T" < T'). However, in the presence of backspaces, other.

input_position can become negative, so (—1' < Conversely, if the constraint solver shows such a value
input_position modT < T). Consequently, does not exist, then we have proved that the two imple-
width can be as large as (2 x T' — 1). mentations are equivalent for all values on the checked
The bug arises when the code allocates a buffer path. These are both powerful results, completely be-

clump buff of size I" (line 1322) and then writes yond the reach of traditional testing. One way to look at
width characters into this buffer (lines 2669-2670) via ~~ KLEE is that it automatically translates a path through a
the pointer s (initially set to clump buff). Because C program into a form that a theorem prover can reason
width canbe as large as (2 x1'—1), a memory overflow about. As a result, proving path equivalence just takes a
is possible. Note that the tab width T° can be specified few lines of C code (the assertion above), rather than an
from the command line, and thus this is an unbounded enormous manual exercise in theorem proving.
buffer overflow. There are many applications of this basic approach.

This bug is representative of the bugs found by KLEE ~~ For example, p’ could be a patched version of p that
in COREUTILS: complex, non-obvious code which 1s purports to only remove bugs, and so should have strictly
hard to reason about manually. As a consequence, this fewer crashes. Or we may have a function and its inverse
bug has been present in pr for more than 15 years, since (such as compress and uncompress) and so can
at least 1992 when COREUTILS was first added to a CVS check that assert (uncompress (compress (x))
repository. == x).

We checked the equivalence of the MINIX tools dis-

5.1.5 MIiNIx Utilities cussed in §5.1.5 against the COREUTILS implementa-
tions. For example, given the same input, the MINIX

MINIX has its own utility suite with many of the same and COREUTILS versions of wc should output the same

programs as in GNU COREUTILS. As a quick check to number of lines, words and bytes, regardless of how the

ensure our results were not somehow COREUTILS spe- tool 1s implemented internally. In fact, all Unix utilities

cific, we ran KLEE on 14 simple MINIX utilities. We should conform to IEEE Standard 1003.1 [1], and both

found two buffer overflows and got 90.6% overall cover- MINIX and COREUTILS suites intend to do so.

11

Tool Input MINIX COREUTILS 1 : static void test(void *upage, unsigned num_calls) {
we 0:0 003 013 2 : klee_make_symbolic(upage, PGSIZE, "upage");
we 0\t0 013 023 3: for (int i=0; i<num_calls; i++) {
WC 0\nO 1 1 3 1 2 3 4 : uint64_t args[8];
we 0\f\r 11 3 01 3 5: for (int j=0; j<8; j++)
basename | "" / nn 6 : klee_make_symbolic(&args[j], sizeof(args[j]), "arg");
basename | —— PP _ pp 7: kern_syscall(args[0], args[1], args[2], args[3],
- i. 8 : args[4], args[5], args[6], args[7]);prin \\ \ 9:

printf 5% x 5 5% 10: sys_self_halt();
printf $i nn 0 11: }
printf $x —2 fifttfte fifttrttttttfe
rintf $%r "" | %%s Sr : :

cintf sis "| 10775205865 0s Figure 10: Our test driver for the HiStar kernel. The
fold-w2 | \t \t \n\t test makes a single page of user memory symbolic and
fold-w2 | \t\t\t | \n\t\n\t\n\t | \t\n\t\n\t executes a user-specified number of system calls (which

may refer to the given page) with entirely symbolic argu-

Table 3: Mismatches automatically detected by KLEE ments.

ELOC

We have not yet added automatic cross-checking to With Disk | 50.1% | 67.1% | 4617
KLEE. We currently crosscheck by manually including 48.0% | 76.4% | 2662

the MINIX tool into the COREUTILS program and re-
name any conflicting identifiers. Because of the required ~~ Table 4: Coverage on the HiStar kernel for runs with
manual work, we only crosschecked four applications. ~~ UP 10 three system calls, configured with and without
However, we hope that this will convey the general idea ~~ @ RAM disk. For comparison, we implemented a test
behind this KLEE capability. We plan to do a full study driver which calls a random system call and uses random

The input to a Unix tool consists of the command-line ~~ 110n times, with and without a disk.
options and the input files. For the tools we checked,
the output is written on stdout. Thus, our system runs : :

both Le MINIX and the COREUTILS implementation of To do so we use a user-mode version of the kernel which
: Co uses an optional RAM disk and a small amount of core

a tool on identical inputs, and compares the characters emor p
written on stdout. When a mismatch is detected, the Thi gi | ified boost d
system generates a test case, which is subsequently run (US CIEL USES a SIMPUNEE DOOISHAP protec
on a GCC-compiled version of each tool, to confirm the which creates the core kernel data structures and initial-
mismatch. Table 3 shows several mismatches automati- izes a single thread with access to a single page of user
cally detected by KLEE between the MINIX and CORE- memory. Once loaded, this thread executes the test pro-
UTILS versions of we, basename, printf and fold cedure shown in Figure 10, which makes the user mem-
These mismatches reveal several bugs in the MINIX ver- a pymbolic and ee a orecified umber of
sions of the tools. For example, wc incorrectly counts SYSIEI Calis USHIZ on HEL SYMDOTE dlgUIMENLS. Co
the number of words and the number of lines in certain Although this environment may seem very restrictive,
cases 2 and fold incorrectly adds an additional new- in practice we have found that this approach is able to
line when it encounters a tab at the end of a line. The quickly generate test cases — sequences of system call
printf tool reveals a large number of mismatches be- vectors and memory contents — which covera large por-
tween the two versions (we presented only a small sam- tion of the HiStar kernel and uncover interesting behav-
ple in Table 3), while the two basename versions dis- iors. Table 4 shows the coverage obtained for the core
agree on only two inputs kernel for runs with and without a disk. When config-

ured with a disk, a majority of the uncovered code can

only be triggered when there are a large number of ker-

5.3 The HiStar OS Kernel nel objects. This currently does not happen in our testing

To demonstrate the applicability of our system to other environment; we are investigating ways to exercise thiscode adequately during testing.

forms of system code we applied KLEE (0 testing a user- We also ested HiStar usin a version of our driver
mode version of the HiStar [29] operating system kernel. &

which select a random system call number and uses ran-

20n the upside, the MINIX version always gets the number of bytes dom values for all other inputs. The results from running
correct! this driver one million times are also shown in Table 4.

12

1 : uintptr_t safe_addptr(int *of, uint64_t a, uint64_t b) { it could potentially do. In a sense, KLEE combines the
2: uintptr_tr = a + b; best of both worlds: when calls already have concrete ar-

3: f(r <a guments, it can call the external environment (allowing it
: | reoe to handle a broad range of programs), but it also provides
6:1} a facility to judiciously make symbolic those parts of the

environment that are interesting in terms of generating

Figure 11: HiStar function containing an important secu- behaviors. : : :
rity vulnerability. The function is supposed to set xo f to The path explosion problem has instead recetved more
true if the addition overflows but can fail to do so in the attention [6, 18, 20, 26, 16]. Similarly to the search
32-bit version for very large values ofb. heuristics presented in Section 3, search strategies pro-

posed in the past include Best First Search [10], Gener-

ational Search [20], and Hybrid Concolic Testing [26].

KLEE’s tests achieve significantly more coverage than Orthogonal to search heuristics, researchers have ad-
random testing both for runs with (+17.0%) and without ~~ dressed the path explosion problem by testing paths com-
(+28.4%) a disk device. positionally [18, 5], and by tracking the values read and

In addition to generating tests which cover a sub- written by the program [6].
stantial portion of the kernel, our testing found a crit- Like KLEE, other symbolic execution systems imple-
ical security bug in the 32-bit version of HiStar. The ment their own optimizations before sending the queries
safe_addptr function containing the bug is shown in to the underlying constraint solver, such as the simple
Figure 11. The function is supposed to set xof to true Syntactic transformations presented in [28], and the con-
if the addition overflows. However, because the inputs ~~ 5%"aint subsumption optimization discussed in [20].
are 64 bits the test used is insufficient (it should be (r < Similar to symbolic execution systems, model check-
a) || (r < b)) and the function can fail to indicate ers have been used to find bugs in both the design and
overflow for large values of b. the implementation of software [21, 22,7, 13, 17]. These
The safe_addptr function is used to implement approaches often require a lot of manual effort to build

HiStar’s validation of user memory addresses prior to test harnesses. However, to some degree, the approaches
copying data to or from user space. A kernel routine are complementary to KLEE: the tests KLEE generates
takes a user address and a size and computes if the user is could be used to drive the model checked code, similar
allowed to access the memory in that range; this routine to the approach embraced by the Java PathFinder (JPF)
uses the overflow to prevent access when a computation project [23].
could overflow. This bug in computing overflow there-

fore allows a malicious process to gain access to mem- 7 Conclusion
ory regions outside its control for system calls where the

user can pass in an arbitrarily large size. The long-term goal of our work is to be able to take an ar-
bitrary program and routinely get 90%+ code coverage,

6 Related Work crushing it under test cases that explore all interesting
clate or paths with all interesting values. While there is still a

Researchers have recently designed a variety of tools one byY goto reac this goal ne results in this paper
based on symbolic execution [9, 19, 10, 28, 18, 20, 6, show that the approac can get igh code coverage overa
15, 14, 8, 16]. We discuss how our work compares in the broad range of real applications, coverage that exceeded

that of a high-quality, manual test suites constructed in-
way it addresses (1) the environment problem and (2) the 1 ra period of 15 vears. as well as findin
path explosion problem. crementatly over ap YEA, A

To the best of our knowledge, traditional symbolic ex- bugs that had been around over a decade. the techniques’ rn we describe should work well with other tools and give

ecution systems [1 1, 12, 24] are static thd strict SCHSC similar help in handling a broad class of applications.
and do not call out into the live running environment at

all. They either cannot handle programs that make use of

the environment or require a complete working model. 8 Acknowledgements
More recent work in test generation [10, 19, 28] does al-

low external interactions but forces them to use entirely We would like to thank the GNU COREUTILS develop-

concrete procedure call arguments. This approach al- ers, and in particular Jim Meyering, the maintainer of

lows these tools to check this kind of code, but prevents COREUTILS, for promptly confirming our bug reports

them from exploring more behaviors: a concrete exter- and fixing the bugs, as well as providing us with a va-

nal call will do exactly what it did, rather than all things riety of useful information about COREUTILS.

13

We would also like to thank Nickolai Zeldovich, the [16] EMMI, M., MAJUMDAR, R., AND SEN, K. Dynamic test input

designer of HISTAR, for his great help in checking HIS- generation for database applications. In International Symposium
. . ‘1 . on Software Testing and Analysis (ISSTA’07) (2007), ACM.

TAR and in particular for providing us with a user-level
driver [17] GODEFROID, P. Model Checking for Programming Languages

ore . . using VeriSoft. In Proceedings of the 24th ACM Symposium on

We also thank Philip Guo for his careful proofreading aes ofProgramming fozages (1997). yp
and valuable comments on the text. [18] GODEFROID, P. Compositional dynamic test generation. In Pro-

ceedings of the 34th Symposium on Principles of Programming

NB [19] GODEFROID, P., KLARLUND, N., AND SEN, K. DART: Di-
[1] IEEE Std 1003.1, 2004 edition. http: //www.unix.org/ rected automated random testing. In Proceedings of the Con-

version3/ieee_std.html, May 2008. ference on Programming Language Design and Implementation

[2] Security focus website, http://www.securityfocus. (PLDI) (Chicago, IL USA, June 2005), ACM Press.
com, March 2008. [20] GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. Automated

[3] uCLibe website. http: //www.uclibc.org/, May 2008. Disriered 50testing. nn008, pigofNetwork and
[4] United States National Vulnerability Database website, http: 21] Ho R G1 Th del 5 . SPIN . foware Engi//nvd.nist. ov, March 2008. LZMANN, J € model checker . 0 are ngi-

J neering 23,5 (1997), 279-295.
[S] ANAND, S., GODEFROID, P., AND TILLMANN, N. Demand-

driven compositional symbolic execution. In Tools and Algo- [22] POLZMARN, ©. J om code to models on ghéoc. Nerithms for the Construction and Analysis of Systems (TACAS onf. on Applications of Concurrency to System Design (New-
2008) (2008). castle upon Tyne, U.K., 2001), pp. 3-10.

[6] BOONSTOPPEL, P., CADAR, C., AND ENGLER, D. RWset: At- [23] KHURSHID, S., PASAREANU, C. S., AND VISSER, W. Gen-
tacking path explosion in constraint-based test generation. In eralized symbolic execution for model checking and testing. In
Tools and Algorituns for the Construction and Analysis of Sys- Proceedings of the Ninth International Conference on Tools and
tems (TACAS 2008) (2008). Algorithms for the Construction and Analysis of Systems (2003).

[7] BRAT, G., HAVELUND, K., PARK, S., AND VISSER, W. Model [24] KROENING, D., CLARKE, E., AND YORAV, K. Behavioral con-
checking programs In IEEE International Conference on Auto- sistency of C and Verilog programs using bounded model check-
mated Software Engineering (ASE) (2000). ne In Proceedings ofDAC 2003 (2003), ACM Press, pp. 368—

[8] BRUMLEY, D., NEWSOME, I, SONG, D., WANG, H., AND [25] LATTNER, C., AND ADVE, V. Llvm: A compilation framework
JHA, S. Towards automatic generation of vulnerability-based sig- for lifelong program analysis & transformation. In CGO "04:
aes (000 of the 2006 IEEE Symposium on Security Proceedings of the international symposium on Code generationY and optimization (Washington, DC, USA, 2004), IEEE Computer

[9] CADAR, C., AND ENGLER, D. Execution generated test cases: Society, p. 75.

How to make systems code crash itself. In Proceedings of the [26] MAJUMDAR, R., AND SEN, K. Hybrid concolic testing. In Pro-
12th 005).PIN Workshop on Model Checking of Soft- ceedings of the 29th International Conference on Software Engi-are (Aug neering (ICSE’07) (May 2007).

[10] CADAR, C., GANESH, V., PAWLOWSKI, P, DILL, D., AND [27] MILLER,B.,KOosklI,D., LEE, C. P., MAGANTY, V., MURTHY,
ENGLER, D. EXE: Automatically generating inputs of death. R.. NATARAJAN. A.. AND STEIDL. J. Fuzz revisited: A re-
In Proceedings of the [3th ACM Conference on Computer and examination of the reliability of UNIX utilities and services.
Communications Security (October-November 2006). Tech. rep., University of Wisconsin - Madison, 1995.

[11] CLARKE, E., AND KROENING, D. Hardware verification using 128] SEN. K.. MARINOV, D.. AND AGHA, G. CUTE: A concolic unit

iPO03) reerence In Proceedings ofASS testing engine for C. In In 5th joint meeting ofthe European Soft-
a1 (January) omputer Society Fress, pp. - ware Engineering Conference andACMSIGSOFTSymposium on

the Foundations of Software Engineering (ESEC/FSE’05) (Sept.

[12] CLARKE, E., KROENING, D., AND LERDA, F. A tool for check- 2005).

ing ANSI-C programs. In Tools and Algorithms for the Con- [29] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
struction and Analysis ofSystems (TACAS) (2004), K. Jensen and MAZIERES, D. Making information flow explicit in HiStar.
A. Podelski, Eds., vo oe of Lecture Notes in Computer Sci- In USENIX’06: Proceedings of the 7th conference on USENIXence, Springer, pp. -176. Symposium on Operating Systems Design and Implementation

[13] CORBETT, J., DWYER, M., HATCLIFF, J., LAUBACH, S., (Berkeley, CA, USA, 2006), USENIX Association, pp. 19-19.

PASAREANU, C., ROBBY, AND ZHENG, H. Bandera: Extracting

finite-state models from Java source code. In ICSE 2000 (2000).

[14] CosTtA, M., CASTRO, M., ZHOU, L., ZHANG, L., AND

PEINADO, M. Bouncer: Securing software by blocking bad in-

put. In Proceedings of the 21th ACM Symposium on Operating

Systems Principles (SOSP) (October 2007).

[15] CosTA, M., CROWCROFT, J., CASTRO, M., ROWSTRON, A.,

ZHou, L., ZHANG, L., AND BARHAM, P. Vigilante: end-to-

end containment of Internet worms. In Proceedings of the 20th

ACM Symposium on Operating Systems Principles (SOSP) (Oc-

tober 2005).

14

