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Figure 1: A 2,500 square kilometer region of San Francisco Bay Area terrain with 10 billion polygons of geometric data, streamed and
rendered in real time over a broadband Internet connection. This panoramic image was stitched from screen shots of our real-time rendering
environment, obtained by rotating the camera around a static viewpoint.

Abstract

We present a system for distributed rendering of large and detailed
virtual worlds. A cluster of servers create and maintain a hierarchi-
cal representation of the world that can be propagated to an unlim-
ited number of clients through a content-distribution network. The
preprocessing is easy to parallelize and storage requirements are
minimal. Using a small subset of the representation, a client can ex-
plore a large and detailed world in real time on consumer hardware
over a commodity Internet connection. The required bandwidth is
independent of the size of the world. We report extensive perfor-
mance measurements with a 2,500 square kilometer world, densely
populated with objects comprising 10 billion polygons.

1 Introduction

Detailed three-dimensional models of vast geographic environ-
ments are becoming more common. Services such as Google
Earth and Microsoft® Virtual Earth provide large geo-referenced
databases of imagery and terrain data, and three-dimensional mod-
els of buildings and vegetation are rapidly being integrated [Google
Inc. 2008]. Semi-autonomous modeling of extended urban areas
is now practical [Bosse et al. 2004; Thrun and Montemerlo 2005].
It is expected to yield an abundance of three-dimensional geometry
that can be incorporated into these services to create detailed virtual
cities, countries, and continents.

Networked virtual worlds that do not correlate with real spaces
already host millions of participants daily [Miller 2007]. Their
scale approaches real-world cities in terms of land mass, popula-
tion, and economic vitality. These three-dimensional online envi-
ronments are being used for social interaction, commerce, educa-
tion, and scientific research [Bainbridge 2007]. Some allow users to
contribute their own three-dimensional content. Such worlds now
contain hundreds of thousands of continuous virtual acres covered
with detailed user-generated architecture and flora.

A critical bottleneck in engineering such systems is the display

of complex three-dimensional environments to many simultaneous
users in real time over a bandwidth-limited network. Some of the
most popular virtual worlds are too large to fit on any single ma-
chine and cannot be preloaded. A common solution in practice is to
transmit and display only nearby geometry: objects that are imme-
diately adjacent to the viewpoint. The typical cutoff radius is a few
hundred meters or less. This hinders the participants’ experience
by precluding long or panoramic views and limits the visual nature
of the worlds.

This paper describes a system for the representation and display
of distant geometry in virtual worlds. It is tailored to environments
that extend across vast territories and feature local detail through-
out. It has the following distinctive characteristics:

— It is appropriate for worlds with fine detail at planetary scales.

— It can accommodate any geometric model, not just special
classes such as terrains.

— Its storage cost is a small fraction of the original world data.

— The representation can be computed in linear (or parallel log-
arithmic) time.

— It can be created on a commodity cluster using simple parallel
algorithms.

— Itcan be served to an unlimited number of users using existing
content-distribution networks.

— Changes to the model are quickly and efficiently processed
and the update can be transmitted to clients within a short
(though not real-time) period of time.

— Finally, the bandwidth needed is bounded as a function of
maximal user velocity and is independent of the size of the
world. In practice, the consumed bandwidth is a small frac-
tion of the bandwidth required to maintain nearby geometry.

The system hierarchically partitions the world, storing in each
cell a collection of orthographic depth images of the cell contents,
taken from a small set of canonical directions. Once generated,



the depth images can be delivered by web servers or a content-
distribution network. A local change can be propagated up the hi-
erarchy in a logarithmic number of steps.

A client uses standard techniques to render the region that lies
within a fixed small distance around the viewpoint. A logarithmic
set of depth images are used to display the rest of the world. If a
participant’s velocity is bounded, the bandwidth required to main-
tain these depth images during real-time exploration is independent
of the size of the world. If the viewpoint is far from complex geom-
etry, for example at high altitudes, velocity can increase exponen-
tially within the same bandwidth limit. The client can optimize the
display of distant depth images by compositing them into cubical
environment maps, thus bringing the rendering load from logarith-
mic down to constant.

We evaluate the system using scenes that capture the character-
istics of our target worlds. Our primary test scene stretches over a
50 x 50 km? expanse covered with buildings and other objects at
density and level of detail that are typical of modern virtual world
environments. It comprises 10 billion polygons. This scene can be
preprocessed on a 16-node server cluster in about two hours and the
size of the resulting representation is only 2% of the storage con-
sumed by the world model itself. We demonstrate that a client run-
ning on a consumer workstation can explore this scene in real time
over a broadband Internet connection. The bulk of the bandwidth
is consumed by nearby geometry. Our representation provides the
experience of a visually complete world at a bandwidth increase of
roughly 10% over the transmission of nearby geometry alone.

2 Design Goals

The system was designed to address the following goals. These are
derived from the needs of existing virtual world platforms and their
expected growth.

Large worlds: The system must scale to worlds that spread across

virtual continents and are densely covered with individual ob-
jects and local detail. Previous work has often focused on
smaller regions. For the emerging worlds, models of whole
countries are being assembled.
To develop a valuable sense of scale, consider planet Earth,
which has 150 million square kilometers of land area. At
an average density of one polygon per square meter (our test
scene has 4 p/m?), this yields 150 tera-polygons. We view this
as a useful guidepost for research on scalable virtual world
systems.

General content: The approach must handle an unstructured and
unpredictable variety of geometric content. Many techniques
were developed for terrains, indoor environments, cities, and
individual objects. We seek a general approach that is com-
patible with any type or representation of input geometry. Be-
cause of the user-modifiable nature of some of the most in-
triguing virtual worlds, content is largely unpredictable and
varies through time.

Many users: The system must serve society-scale numbers of
concurrent participants. Although it is unavoidable that the
computational costs of networking, physics simulation, and
world logic rise with the number of participants, the compu-
tational load imposed on the server by rendering and geomet-
ric representation tasks should ideally be independent of the
number of users. Furthermore, artificial limits must not be
placed on the number of participants simultaneously occupy-
ing the same local area of the world.

Bounded storage: Storage cost must be a linear function of the
input model size. Ideally, a proportionately small overhead
will be added to the storage already consumed by world data
such as meshes and textures.

Bounded preprocessing: The time needed to compute the repre-
sentation must be linear in the size of the world.

Bounded bandwidth: The bandwidth required per individual
client must be independent of the size of the world. Ideally, at
most a small linear overhead will be added to the bandwidth
required to maintain objects that are within short distance of
the viewer. Such objects need to be transmitted in any case
for latency reasons.

Dynamic updates: The time to update the representation follow-
ing incremental changes to the world must be at most logarith-
mic in the size of the world. In the new user-modifiable virtual
worlds, the content of the scene can change significantly dur-
ing the world’s lifetime. Approaches that potentially require a
substantial fraction of the preprocessing to repeat in response
to a local change in the world are not viable.

Easy parallelization: Virtual worlds are already too large to be
stored or processed on any single server. Existing commer-
cial systems use commodity clusters connected by local area
networks. Such clusters work best when algorithms are eas-
ily parallelizable, such as with Google’s map-reduce frame-
work [Dean and Ghemawat 2004]. Algorithms that require
optimization across the extent of the scene would be hard to
parallelize on existing data centers and are less appropriate.

Visual fidelity: The visual experience provided by the system on
every client should be maximized and should strive to ap-
proach the quality of a local real-time environment.

3 Assumptions

We believe the following assumptions are acceptable to virtual
world participants and justifiable in light of current platforms. They
allow us to develop a practical system that addresses all of the stated
design goals.

Static subset: We assume that a significant fraction of spatially
large objects in the world are static. This holds for most of
terrain, buildings, and vegetation. Note that many semanti-
cally significant dynamic objects, such as humans, can be suc-
cinctly represented in parametric form for extremely efficient
transmission [Allen et al. 2003]. Our system is compatible
with direct communication and rendering of such objects.

Bounded density: We assume that the world can grow to arbi-
trary size, but that the spatial density of geometry (polygons
per square meter) is bounded by a constant. This bounds the
amount of work performed by any client or server.

Bounded velocity: We assume that a participant’s speed of move-
ment is bounded. This is used to analyze the network band-
width consumed by new regions coming into view. This does
not preclude discontinuous forms of transport such as telepor-
tation. The velocity limit grows exponentially if the partici-
pant is away from geometric detail, for example in flight.

Precomputed shading: We assume that shading can be precom-
puted for distant static objects and reused despite changes in
the view direction. This is a very common assumption for
distant geometry in real-time environments.

4 Overview

Our system is a distributed client-server implementation. When
used, there are many clients and multiple servers. See Figure 2
for an overview.

To create the hierarchical representation, static geometry in the
world, such as terrain and buildings, is subdivided into an octree
[Samet 2006]. The leaf level is a regular grid of cells that covers the
world. Each server is assigned a separate subtree and these subtrees
partition the world. Any number of servers can be accommodated.
For simplicity, assume that the world is partitioned among servers
at a particular octree level, so that this partition forms a coarse grid.

For each leaf cell, the corresponding server renders its content
from a number of canonical directions to form a set of orthographic
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Figure 2: An overview of the system.

depth images. The set of directions we use is a subset of the princi-
pal directions of a cube, as shown in Figure 3(a). The resolution of
the depth images is a parameter, by default set to match the expected
screen resolution on the client rendering platforms. The views may
be rendered using any rendering system, including graphics hard-
ware and/or high-quality off-line ray tracers.

Depth images for higher-level cells are obtained by composit-
ing the corresponding images from the children, as shown in Fig-
ure 3(b). The same canonical directions are used throughout. To
form an orthographic depth image at a non-leaf cell, the eight corre-
sponding images from the children cells are combined using RGBZ
compositing. The result is a single depth image at the same reso-
lution as the original eight that covers twice as much of the world
along each axis.

The bottom-up construction of the hierarchy is handled by a sin-
gle server within its subtree. These subtrees are then combined to
populate the highest-level cells. This is handled analogously to the
lower levels, except data is now transferred over a local area net-
work. This stage concludes rapidly since the number of high-level
cells is proportionately very small.

Once the depth images are created, they may be transferred to
web servers or a content-distribution network. This makes it possi-
ble to scale the system to many more users, as modern CDNs serve
hundreds of millions of people per day [Akamai Technologies, Inc.
2008].

The hierarchical arrangement ensures that updating the geomet-
ric content of a leaf cell requires only to re-render the associated
depth images and then propagate the update through a logarithmic
number of cells by using fast image compositing operations. The
revision can be distributed through the CDN using standard tech-
niques.

The clients are remote machines connected to the network. We
assume each client has full rendering capabilities and a GPU. A
client is associated with a single viewer. It maintains valid geometry
within a fixed distance around the viewer by communicating with
a server. The client also maintains a set of depth images that allow
it to display the remainder of the world. This set is kept current by
a background thread that predictively fetches new images from the
network as the viewer moves through space.

We show that a logarithmic number of depth images are gener-

ally sufficient for a perceptually satisfactory display of the world.
More distant regions are covered by higher-level images. These
images are sparser, in the sense that a given area is represented by
fewer depth pixels. However, such regions are also more coarsely
represented on the viewer’s screen, where a single pixel covers
greater area as well. The system quantitatively balances these con-
siderations.

To reduce the number of depth pixels drawn by the client, the
more distant depth images are combined into a cubical environ-
ment map whose faces are depth images. These depth images are
reused within a cell. This brings the number of displayed depth im-
ages from logarithmic down to constant. This step is optional and
results in improved performance if the available hardware cannot
render the original number of three-dimensional points in real time.
(About two hundred million for our largest test scene.)

This system satisfies the stated design goals. The preprocessing
runs in linear time and uses linear storage that is not much greater
than that required to store the world model itself. Parallelization is
simple and the number of servers is easily varied. Finally, assuming
the viewer’s velocity is below an appropriate threshold, the required
bandwidth is bounded independently from the size of the world.

Several design issues were given careful consideration in the ar-
chitecture of the system:

Geometric level-of-detail vs. Image-based techniques: Our sys-
tem has to accept a wide and unpredictable variety of geo-
metric content. It must represent huge and unstructured col-
lections of objects succinctly. Even in light of significant
advances in geometric simplification [Luebke et al. 2002],
image-based approaches are inherently less model-dependent.

Light fields vs. Depth images: A densely sampled light field
[Gortler et al. 1996; Levoy and Hanrahan 1996] represents
the outgoing lighting distribution from a complex object. New
views can be generated from the light field using resampling.
RGBZ images approximate a light field well, except at oc-
cluding contours and where the object is shiny. Theoretically,
adding depth to a light field makes it possible to decrease the
angular resolution. This allows us to use only a few direc-
tions when creating the depth images. After initial trials, we
chose against uniformly sampled light fields in favor of depth
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Figure 3: (a) The nine canonical directions for orthographic depth images. The figure shows the content of a leaf-level octree cell and four of
the resulting depth images, shown without the depth information for clarity. (b) Higher levels of the hierarchy are assembled from the lower

levels using rapid image compositing operations.

images in order to minimize preprocessing, storage, and band-
width costs.

Hierachical points vs. Depth images: One of the best general
methods for handling level of detail is hierarchical point
representations as used in QSplat [Rusinkiewicz and Levoy
2000]. Point representations uniformly sample geometry and
can thus be splatted without introducing holes. However, a
disadvantage of the point representation is that the number of
points depends on the depth complexity, since interior points
are represented in the upper levels of the hierarchy. When
such cells are drawn, they will have high depth complexity.
An advantage of depth images is that the depth complexity
will always be constant, an important issue if we want to guar-
antee that a cell can be drawn in constant time.

Layered depth images vs. Multiple views: In general, no canon-
ical direction will be perfectly aligned with a particular view-
ing angle. Thus an object that is occluded in a depth image
may be visible to a viewer. This leads to the well-known
problem of disocclusion, caused by missing data in the repro-
jected image. Two approaches have been proposed for min-
imizing such artifacts: utilizing depth images from multiple
viewpoints [Max et al. 1999; Lischinski and Rappoport 1998]
and layered depth images (LDIs) [Shade et al. 1998]. Having
images from widely varying directions allows us to more uni-
formly sample objects. After experimenting with both meth-
ods, we opted for increasing the number of depth images per
cell instead of adding layers of depth. However, a long and
narrow inset or passage that is not aligned with any of the
projection directions may still appear to be missing. We rec-
ognize that this is a fundamental problem with any system
using depth images, and is a limitation of our system.

5 Server Architecture

The geometry in the world is partitioned into a regular grid of cells,
each 200 x 200 x 200 m®. These cells form the leaves of a pyramid,
or octree. The octree subdivision can be asymmetric, for example if
the world has significantly greater extent in some of the axes. Our
test scenes are set on terrains and required no subdivision in the

vertical axis.

The world is distributed among the available servers for prepro-
cessing. Each server is responsible for a subtree of the hierarchy.
These subtrees are equal in size. If there are n servers, each is re-
sponsible for 1/n-th of the world.

For each cell (leaf or otherwise) in the octree, orthographic depth
images of the cell’s content from a number of directions are cre-
ated. The set of directions is the same for all cells. Our implemen-
tation uses a subset of the principal directions of a cube, namely
{~1,0,+1}3\ {0,0,0}. The specific nine directions we used are
illustrated in Figure 3(a). Note that upward-facing directions were
not included because our test scenes have few overhanging faces.
Any set of directions could have been used, with a proportional in-
crease or decrease in storage and preprocessing time.

For the leaf cells, the depth images are created on the respective
servers by rendering the contents of each cell. Each server node
reads in the model for that cell, renders all orthographic views for
the different directions, and then writes the depth images to disk.
Reading the model once saves disk bandwidth, which is often the
rate limiting resource. Rendering may be performed using a graph-
ics card or software renderer. The rendering setup on the server
should match the rendering setup on the clients to eliminate seams
and other differences in appearance. Finally, when rendering we
turn on full antialiasing to remove as many aliasing artifacts from
the leaf images as possible. If the polygons and texels are bounded
by a minimum size, we can render at resolution that ensures that
they are sampled at the Nyquist frequency.

Depth images for higher-level cells are created from lower-level
images using two-dimensional compositing. This is illustrated in
Figure 3(b). Consider a cell that is part of a subtree handled by a
single server. To create an orthographic depth image from a partic-
ular projection direction, the corresponding images from the eight
children cells are composited. The resulting image has the same
resolution as the original eight but covers twice as much of the
world along each axis. We composite at the resolution of the chil-
dren images and then average down by a factor of two. The depth
of an output pixel is the closest of the depths of the candidate pixels
in the composited images.



Depth images for the highest-level cells that transcend server
boundaries are assembled analogously, the only distinction being
that images are exchanged using a fast local area network linking
the servers. Each one of these highest-level cells is assigned in a
bottom-up process to a server that handles one of the children cells.
Since the highest levels of a hierarchy contain exponentially fewer
nodes, this final stage is considerably faster for our test scenes than
the intra-server assembly of the lower levels.

To summarize, this algorithm is linear in space and time because
the number of octree cells is proportional to the number of leaf cells,
and each step takes constant time if we assume the scene character-
istics that were proposed in Section 3. It is also easy to parallelize.

6 Client Architecture

The client uses the scene graph (including mesh and texture data)
for objects that fall within a fixed radius around the viewer’s loca-
tion. This requires 4 (for 2.5D scenes) or 8 (for full 3D octrees)
leaf cells. The scene graph is transferred to the client using the
CDN. Rendering the nearest parts of the world as geometry reduces
latency and guarantees that nearby objects are drawn faithfully.

The more distant parts of the world are displayed by rendering
depth images. These depth images are found by traversing the oc-
tree from the top, marking each cell for display if its associated
depth images have sufficient resolution. They have sufficient reso-
lution if a hypothetical pair of adjacent pixels would be separated by
at most one pixel after reprojection. We can conservatively bound
the distance between pixels because we know the depth range as-
sociated with the octree node. When a qualified cell is reached, its
subtree is not traversed further. The set of displayable octree cells
is maintained by a background thread that downloads the associ-
ated depth images from the CDN. We have also developed several
simple algorithms for prefetching cells before they are needed.

The above algorithm guarantees that the resolution of distant oc-
tree cells is always the same. Standard counting arguments can be
used to show that at any viewpoint the number of relevant cells from
each level of the hierarchy is constant [Samet 2006]. Thus the entire
background can be represented using a logarithmic number of cells.
For each of these cells, we identify and download a small number of
depth images (three by default) whose projection directions make
the smallest angle with the view direction.

If a viewer is moving at constant velocity, we can determine the
rate that is needed to fetch new octree cells. Regan and Pose [1994]
showed that a cell in a hierarchy (in their case, hierarchical environ-
ment maps) need only be updated when the user crosses a bound-
ary of a cell of the same size as the octree cell; this hypothetical
update cell is centered on their viewpoint. Thus, nearby octree cells
change at twice the frequency of the next level of the hierarchy,
which changes at twice the frequency of the next, etc. The band-
width required to maintain all relevant depth images is thus less than
twice the bandwidth consumed by updating the leaf cells. This is a
constant factor of the viewer’s movement speed and is independent
of the scale and complexity of the world.

If the lowest-level octree cells occupied by the viewer are empty,
for example if the viewer is in flight and is not near any geometric
objects, depth images that come from cells at these levels need not
be rendered or updated. This allows the maximal movement speed
achievable within a certain bandwidth cap to increase exponentially
as the viewpoint moves away from detailed information.

Rendering load reduction. The total number of points in the
depth images that the client is required to maintain for our largest
test scene is over two hundred million (assuming an image reso-
lution of 640 by 480). This number grows logarithmically in the
size of the scene. For example, squaring each dimension (e.g.,
from 50 x 50 km to 2,500 x 2,500 km?) would double the render-
ing load to about half a billion points. Doubling the image resolu-

tion would also double the number of points. This is just beyond
the real-time capabilities of current graphics hardware.

The rendering load can be reduced by compositing the depth im-
ages into a small set of cubical environment maps centered near the
current viewpoint. The faces of the environment maps are them-
selves depth images. We found that a single environment map
suffers from disocclusion artifacts, so we create 8 cubical environ-
ments each centered at the vertices of the cubical cell surrounding
the viewpoint. As the viewpoint approaches a cell boundary, we
create new cubical environment maps at the new vertices of the ad-
jacent cell. Normally only 4 new environment maps need to be
rendered when the face is crossed.

With an image resolution of 640 by 480, we found that good
results are obtained if the resolution of the environment map faces is
1024 by 1024. Thus, the 8 cubical environments contain 48 million
points. This is much less than the 200+ million points in the octree
cells, and hence significantly speeds up the rendering of individual
frames.

The cost of this reduction in rendering load is offset by the cost
of creating the environment maps. This cost is amortized over many
frames since the environment maps are reused while the viewpoint
remains in the same cell. However, care is required to prevent this
compositing from interfering with the primary rendering task. Our
initial implementation conducted the compositing process on the
GPU, but we found the system was faster if the compositing was
performed on a number of background CPU threads using fast SSE
algorithms, taking advantage of multiple cores when available.

Finally, we have opted to use the simplest possible point ren-
dering algorithm, drawing each point as a square equal in size to
a pixel. Points are rendered using antialiasing, and we oversample
the environment maps by a factor of two to further reduce aliasing
and decrease the chance of a hole appearing.

7 Implementation and Results

The following table describes two of the models used to test our
system. The first is a flat 12.8 x 12.8 km? plane populated with
pre-modeled geometry. To create the second scene we used a
51.2 x 51.2 km? region of San Francisco Bay Area terrain at 10m
resolution, obtained from the San Francisco Bay Area Regional
Database (http://bard.wr.usgs.gov). We populated this
terrain with a mix of hand-modeled buildings and vegetation, and
procedural skyscrapers. The skyscrapers were placed in accordance
with a population density map from the Spokane, WA, region. (The
Bay Area population density map did not yield visually pleasing
results because of the bay that cuts through the area. This also ac-
counts for the relative flatness of our model.)

Scene 1 Scene 2
Area 12.8km x 12.8km 51.2km x 51.2km
Max altitude 150m 350m
Total polygons 614.4 million 9.8 billion
Model storage 294 GB 1.0 TB
Octree levels TX) x 1Y) x 7(Z) | 8X) x 1(Y) x 8(Z)
Leaf cell area 200m x 200m 400m x 400m
Polygons/meter” 3.75 3.85

Note that although some objects repeat many times in the test
scenes, we utilized no instancing. Every occurrence of an object is
treated as a distinct model. It is reloaded afresh from the disk and
stored separately in memory, thus we do not take advantage of the
repetitions.

The system was implemented on a number of Unix-based plat-
forms, including 32- and 64-bit Linux and Mac OS X, and tested
with a variety of NVIDIA and ATI GPUs. Our primary cluster was
a 16-node Linux rack with fairly old ATT 9800 graphics chipsets.
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Figure 4: Preprocessing times, in minutes, for 1/16-th of Scene 1
on a single server node. These equal the preprocessing times for
Scene 1 on respective 16-node server clusters.

The test models were partitioned into 16 regions and distributed
among the servers. Depth images were generated at 1024 <1024
resolution. Figure 4 shows the preprocessing times for Scene 1 on
three server configurations.

For compression, each depth image was divided into color
(RGB) and depth (Z) components. The color component was heav-
ily compressed using a JPEG codec at the 50 quality setting. The
depth component was treated with lossless ZIP compression. These
two compressed buffers were serialized into a single depth im-
age. Typical file sizes were in the 100-300KB range, with occa-
sional complex views approaching IMB. The size of the complete
database is as follows:

Model size Size of all | Storage over-
depth images | head
Scene 1 | 294 GB 1.5GB 0.5%
Scene2 | 1.0 TB 22 GB 2%

Thus the storage overhead of the hierarchical depth image repre-
sentation is negligible compared to the cost of storing the geometry
itself.

A basic HTTP server (MiniHttpd) was set up on each of the 16
nodes. The client requested depth images by filename. These were
typically transmitted in a fraction of a second over our fast network
connection (intra-departmental Ethernet). For a more representative
scenario, we hosted the content distribution server on a remote ma-
chine that we connected to over a broadband Internet connection.
We provide empirical evidence from both scenarios. We found that
a fast broadband connection can support rates of movement simi-
lar to those on a Local Area Network, because the computational
load of compositing depth images into environment maps remains
a bottleneck when network bandwidth is no longer an issue.

Our primary test machine for the client was a quad-core work-
station with 8GB of memory and an NVIDIA 8800 GTX graphics
card. While this is on the high end of current workstations, it was
bought off-the-shelf in a consumer electronics store, pre-assembled
as a Hewlett-Packard Pavilion m9180f. We upgraded it only by
doubling the default 4GB of RAM and replacing the graphics card.
To reduce memory requirements on the client end, depth images
were kept in memory in compressed form and decompressed on-
the-fly as required for compositing.

The active set of depth images at any given time numbered about
200 for the 12.8km scene and 250 for the 51.2km scene. This gives
a total of about 200 million points to splat, which was too slow on
our test system. By compositing the depth images into environment
maps, as described in Section 6, we were able to achieve interactive
rendering rates: 30+ fps for depth images alone and about 10-20fps
for depth images and geometry. A plot of the frame rate during
an automated test run is presented in Figure 5. The variability in
the frame rate is caused by environment map compositing. Better
scheduling algorithms that involve prefetching should alleviate this
behavior.
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Figure 5: Client frame rate measured over an automated four-
minute test path through Scene 2, traced at 15 meters/second over
an Internet connection. The red curve represents direct rendering of
all of the depth images on the GPU. The green curve reflects the use
of environment map compositing as described in Section 6. The pe-
riodic frame rate peaks occur as the viewer crosses cell boundaries,
and environment maps that are no longer relevant are discarded.

Bandwidth utilization during the same test run is shown in Figure
6 for both Internet and LAN connections. Note that the movement
speed in these experiments is 15 meters per second, which is over
30 miles per hour—a normal driving speed.

The bandwidth consumed by depth images was between 6% and
12% of the bandwidth consumed by nearby geometry, as shown in
Table 1. Thus, for additional 12% bandwidth, our system extends
the visible part of the world to the horizon.

We also measured the time taken to update the hierarchy when
the content of a leaf cell (400 x 400 m? area) is modified. When
all depth images that are touched are loaded cold from disk, the
update takes 20.5 seconds. (15.2 seconds for the lower 6 levels, 5.3
seconds for the upper 2 levels, averaged over 6 tests.) Thus, local
updates such as a newly erected or razed building can be rapidly
propagated through the system.

8 Related Work

Image-based systems. The seminal MMR system [Aliaga et al.
1999] utilized an array of advanced geometric and image-based
techniques to enable interactive visualization of complex static data
sets such as a detailed power plant model. The system partitions
the model into cells and for each cell creates a set of textured depth
meshes [Darsa et al. 1998; Mark et al. 1997; Sillion et al. 1997] that
depict how the rest of the model appears from within the cell. This
general approach is not appropriate for our application scenario.
The target virtual worlds are so huge that no single server node
would be able to render (or even store) the entire world to create
the requisite textured depth meshes. Furthermore, the preprocess-
ing time is quadratic in the size of the model, as the entire model
has to be rendered from each of the cells. Lastly, a local change in
the world would potentially require recreating the entire set of tex-
tured depth meshes, violating the dynamic updates requirement. In
spite of these issues MMR was a key inspiration for all subsequent
systems.

Many other approaches spread image-based representations
throughout the environment to assist subsequent rendering. Decoret
etal. [Decoret et al. 1999] describe multi-layered impostors and uti-
lize these for rendering acceleration in a similar fashion to MMR.
Other methods take the particular scene geometry into account
in positioning the image-based representations [Aliaga and Lastra
1999; Jeschke et al. 2005; Rafferty et al. 1998; Shade et al. 1996;
Wilson and Manocha 2003]. Our design goals necessitate a system
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Figure 6: Network bandwidth utilized in an automated four-minute test path through Scene 2, traced at 15 meters/second over two different
network connections: a fast local area network and a consumer Internet connection. The first experiment (left) was conducted with default
rendering. The second experiment (right) was conducted with all compositing and rendering turned off, simulating a situation in which
computational load is never a bottleneck. Note that the client software utilized additional bandwidth provided by the fast LAN connection for
batch downloads. The sharp spike at the beginning of both red graphs represents the rapid download of the initial set of geometry and depth
images over the LAN; subsequent spikes correspond to points where cell boundaries are crossed and new depth images are batch downloaded.

that is largely independent from the particular scene content to en-
sure fast updates, easy parallelizability, and rapid and numerically
stable preprocessing.

Schaufler and Stiirzlinger [1996] cover an environment with im-
ages in a regular grid that is similar to ours. Their images contain
no depth information and have to be dynamically generated as the
viewer moves through the scene. Their approach was not designed
for and would not be appropriate for distributed applications, but
is an important precursor of our system due to its simplicity and
agnosticism to the particulars of the model.

Depth images have also been proposed to represent complex
scene geometry [Chen and Williams 1993; McMillan 1997]. Shade
et al. [1998] introduce the Layered Depth Image as a rendering
primitive. These are used by Chang et al. [1999] to create LDI
trees that hierarchically represent three-dimensional models. This
elaborates upon the approach of Schaufler and Stiirzlinger [1996]
by adding (layered) depth information. Max proposed hierarchical
z-buffers for drawing trees [Max and Ohsaki 1995]. He also pro-
posed to use multiple parallel projections along the cubical face di-
rections, an approach which later extended to use texture mapping
hardware [Max et al. 1999] and LDIs [Lischinski and Rappoport
1998]. We were inspired by these papers in developing our system.

Another important precursor to our work was the priority render-
ing approach of Regan and Pose [1994]. They made the observa-
tion that distant environment maps can be rendered less frequently
than those up close. By counting the update rates under constant
velocity, they showed that only a constant number of updates are
needed on average. Similar arguments apply to mipmaps [Tanner
etal. 1998]. On average the bandwidth needed to prefetch mipmaps
is constant when moving at constant velocity. We use this basic in-
sight to prove our bandwidth bounds.

Other rendering acceleration techniques. Since the number of
pixels on the display is constant, the ideal real-time rendering algo-
rithm will strive towards performance that is largely independent of
scene complexity [Clark 1976; Sudarsky and Gotsman 1997]. One
avenue of research towards this goal is geometric level of detail
techniques that produce coarse representations for distant objects,
see [Luebke et al. 2002] for a recent survey. Level of detail has
been successfully applied to terrains. The mipmap representations
of textures [Williams 1983] coupled with the clipmap technique for

prefetching and culling [Tanner et al. 1998; Losasso and Hoppe
2004] make it possible to roam over the Earth in real-time. These
techniques do not work well for our application because we need to
simplify collections of millions of objects.

Another approach to rendering acceleration is to cull parts of
the scene that are outside the field of view or occluded [Cohen-
Or et al. 2003]. Airey et al. [1990] and Teller and Séquin [1991]
were among the first to develop visibility culling algorithms in the
context of architectural models. A long line of research pursues
visibility techniques for urban environments, culminating with the
approach of Leyvand et al. [2003].

Point-based systems [Rusinkiewicz and Levoy 2000; Wand
et al. 2001] are able to handle huge models in real time by sam-
pling points from the surface of the models. Rusinkiewicz and
Levoy [2001] develop view-dependant progressive transmission
that adapts point-based methods for remote rendering. There are
many advantages to a point-based representation, but one impor-
tant drawback is that the average depth complexity can grow lin-
early. We have elected to use depth images to avoid this increase in
depth complexity.

Remote rendering. Remote rendering [Schmalstieg 1997] has
been used extensively to render very large datasets. As model size
increases, it becomes more efficient to render images near the data
on the server, and transfer images rather than models over a net-
work. Remote rendering also leverages widely available commod-
ity video streaming codecs. A disadvantage is that interactive ap-
plications will have additional latency. Mann and Cohen-Or [1997]
and Yoon and Neumann [2000] present image-based approaches to
remote rendering, in which the server actively assists each client
with the rendering task. These approaches do not meet our design
goals due to potentially high loads on the server, which in our tar-
get setting must be able to support very large numbers of concurrent
participants.

Networked virtual environments. Singhal and Zyda [1999] re-
view the state of the art in networked virtual environments circa
1999. Much of the earlier work focused on networking issues in
virtual world systems [Funkhouser 1995; Macedonia et al. 1995],
with emphasis on how to efficiently transfer updates to a large num-
ber of participants using multicast and how to reduce latency using



Viewer speed | Nearby Depth images | Image vs.

(m/s) geometry (Mbps) geometry
(Mbps) costs

2 7.6 0.9 11.4%

5 19.5 1.8 9.4%

10 39.6 3.0 7.7%

15 59.5 43 7.2%

20 79.5 55 6.9%

40 159.5 10.7 6.7%

Table 1: Amount of bandwidth required to maintain nearby geom-
etry vs. depth images. The bandwidth was averaged over three
400-second test runs at each of the listed movement speeds. Depth
images require an order of magnitude less bandwidth.

dead reckoning. Schmalstieg and Gervautz [1996] and Teler and
Lischinski [2001] consider bandwidth-limited remote walkthroughs
and develop heuristics to guide the transmission of geometry.

9 Discussion and Future Work

In this paper we have applied image-based rendering to the display
of large virtual worlds. Our approach is to use a hierarchial RGBZ
representation to approximate the distant parts of the world. The
key result is that any one client need only access a number of depth
samples that is proportional to its image resolution times a loga-
rithmic factor in the size of the world, and that this set of samples
can be kept current under a constant bandwidth cap independent of
the size of the world. Applying this approach directly (with no en-
vironment map compositing to reduce the rendering load) requires
over two hundred million points for our test scene. Since this num-
ber grows only logarithmically in the size of the world, the entire
planet Earth would require about one billion points. Although this
number of points is beyond what current graphics hardware can ren-
der in real-time, and what can be delivered over consumer Internet
connections, we are not far. Once GPUs and networks cross this
performance threshold these techniques will become forever prac-
tical.

There are, however, two algorithmic ways the system could be
improved. First, we would like to absolutely guarantee that the
environment is optimally sampled so that no holes will ever appear
in the reprojected depth images. We believe a combination of depth
images and points might provide this guarantee at little additional
cost. Second, the overall depth complexity is still quite high. We
could reduce the depth complexity significantly by knowing more
precisely when we could reduce the number of views, and by using
some form of occlusion culling.

Finally, we have built a prototype of our system that runs on a
small cluster with a few clients to demonstrate the feasibility of
the methods we have developed. We are actively working towards
scaling our system to much larger configurations. We believe that
participating with others in a visually rich virtual world will signif-
icantly affect one’s sense of presence in the space.
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