
Iterative Design of a Paper+ Digital Toolkit:
Supporting Designing, Developing, and DebugginJ J

Ron B. Yeh, Scott R. Klemmer, Andreas Paepcke
Marcello Bastéa-Forte, Joel Brandt, Jonas Boli

Stanford University HCI Group, Computer Science Departmenty Pp Y p
Stanford, CA 94305-9035, USA

[ronyeh, srk]@cs.stanford.edu

With advances in digital pens, there has been recent interest Cd
in supporting augmented paper in both research and com- a, wr | fr um

mercial applications. This paper introduces the iterative av RR - dl ‘MIDI
design of a toolkit for event-driven programming of aug- i al a= pL. A- =
mented paper applications. We evaluated the toolkit with 69 EN =

students (17 teams) in an external university class, gather- we wi EE
ing feedback through e-mail, in-person discussions, and er Ls m— =
analysis of 51,000 lines of source code produced by the ar) i EE"

teams. This paper describes successes and challenges we p { Ges O LEEdiscovered in providing an event-driven architecture as the v/ A TY EE
programming model for paper interaction. Informed by this | > =
evaluation, we extended the toolkit with visual tools for Faure 1. The R3 h ications toolkit < develLo : igure 1. The R3 paper applications toolkit supports developers

designing, developing, and debugging, thereby lowering he through an event-driven model, output to devices, and visualiza-
threshold for exploring paper UI designs, providing infor- tions for design. With R3, developers have created tools for tasks
mal techniques for specifying UI layouts, and introducing such as web design (left) and music composition (right).

visualizations for event handlers and programming inter- Co

faces. These results have implications beyond paper bop We highlight PN pere. ForSrample, Audio Note-applications—R3 takes steps toward supporting program- 00K 15d paper interface that correlates han written notes
ming by example modification, exploring APIs, and with audio of lectures [36]. A-book enables biologists to
improved visualization of event low ’ augment their lab notebooks with a PDA that helps them

create links to digital content [21]. PADD coordinates doc-
ACM Classification Keywords uments in the digital and physical worlds— handwritten

H.5.2. [Information Interfaces]: User Interfaces—input physical annotations are overlaid on the source PDF 8].
devices and strategies, prototyping; user-centered design. PapierCraft enhances these digital documents, enabling
D.2.2 [Software Engineering]: Design Tools and Tech- users to edit them with pen gestures [20]. Print-n-Link
niques— User interfaces. detects citations in documents, and allows readers to re-

Keywords trieve them in a mobile setting [27]. Finally, ButterflyNet
Toolkits, augmented paper, design tools, device ensembles. enables field biologists to find photos by navigating field

notes [42]. In the commercial realm, the FLY pen can run

INTRODUCTION applications from games to daily planners [19].
This research addresses toolkit support for computationally- CL

augmented pen-and-paper applications, as many domains— Currently, many applications leverage the Anoto pen plat-
e.., biology [21, 42] and music (see Figure 1)—require a form [2], though other technologies are also available. For
level of robustness, readability, and battery life not present example, the Eo pen works with unmodified paper usingin today’s tablet computers. In recent years, the approach of UHEASOUR® 10 delermine the pen s focation [6]. However,
integrating paper and digital interactions [13, 40] has re- current infrastructure support for designing integrated paper
ceived increasing attention due to advances © both and digital interactions requires considerable expertise.

: £ : : Anoto provides two tools: one for designing Forms (FDK)
commercial technology and interactions research. Commer- d ther f : data (SDK) 121. The FDK
cial digital pens [2, 6] can now capture handwriting and and ahother 107 Dot a 2 |) =) 5 ol
send it to a computer wirelessly, in real-time. This synchro- augments paper with a tiny dot pattern, enabling digita
nous interaction between pen, paper, and computer allows pens to identify their location. The SDK provides access to
aver interfaces to control an application the ink strokes after a user has docked his digital pen. Itb P allows developers to render ink, but does not provide sup-

This toolkit research is motivated by the many projects that port for real-time interface events (e.g., when a user crosses
have demonstrated the potential of augmenting pen and off a task on his paper calendar). Similarly, PADD integrates

1

Application Event Handlers Paper Toolkit Runtime Services and Plugins
AN i - Flash GUI Integration

inkCollector { Input Coordinates R3 Event Dispatcher Paper Ul Rendering
= Streamed from Pen | io per Coordinates to Swing Components & Utilities

Region-Relative Coordinates Gesture Recognition
Pens Roa. : : | Find Event Handlers for Handwriting Recognition

9 clickHandler { the Region
i. Welle iy) Hello world!$< Run Event Handling Code,

3 } which may leverage Services |4 Output Devices inghong Forward Actions to Devices Tools
| 2 aa Actions Paper Ul Sketcher= -_ pe [] ~ JavaRobot, TextToSpeech Ink API Browser

Designer/Devéloper: \ OpenURL, and more... 4 «| Event Visualizer
Figure 2. In this high-level overview of the R3 architecture, note how input arrives from pens and paper, and output is sent to devices. R3
lowers the threshold for processing real-time and batched pen input, and dispatches events to the handlers created by the developer. R3
services are flexibly coupled, so they can be used separately from the toolkit. On the lower right, we see the debugging tools that we imple-
mented in response to user feedback and our analysis of the source code developers produced.

handwritten annotations back into digital documents [8], To evaluate R3’s architecture, we deployed the toolkit to an

but does not support event handling. iPaper provides real- undergraduate HCI class of 69 students (17 teams). Through

time retrieval of media associations [34], yet requires sig- analysis of the students’ source code, we found that R3
nificant centralized infrastructure to handle requests. provided a low threshold for programmers to create paper

We address this steep learning curve by taking a user- user interfaces. Moreover, we found that developers:
centered approach to designing a paper + digital toolkit. * Used programming by example modification to speed

Specifically, this research demonstrates that providing tools their development with new frameworks (such as R3).

to help designers explore different solutions, and iteratively e Had cognitive difficulty in selecting and composing
improve upon them, can lower the threshold for creating visual operations on digital ink.
applications [24] and provide wider walls for exploring the . D ded debuoos el
design space [33]. With effective tools, designers can better oP i" on debugging output to iteratively grow
support mobile computing through digital paper. their applications.

This paper presents the R3 paper applications toolkit. Its Ne also discovered limitations of the R3 approach,Agoals are to reduce the time required for designers to create fly concerning the speed at which a esighel could explore
prototypes, to support the reuse of components through and test designs. In response to these findings, we Intro-
inspection and copying, and to help developers recycle and duced visualJesien. development ne debugging tools tocustomize old solutions for new usage contexts. To support support rapie ©Xp oration. n the following section, we
the large community of designers familiar with graphical highlight R3’s architectural features, and describe how a
interfaces, R3 introduces the GUI’s event-driven and model- developer uses It to create pen-and-paper applications. We
view-controller architectures [16] to augmented paper ap- then describe our evaluation of the toolkit, through both
plications. Beyond lowering the learning threshold, R3 internal use and external deployment. We detail observa-
contributes methods to: tions from the deployment, and describe how we applied

Specify oo orf q handlers b resulting design implications to a second iteration of R3. To* opecily paper user interfaces and event handlers Dy conclude, we frame our contributions in related work and
sketching with an inking pen on physical paper. suggest future directions.

* Integrate the development process with visualizations THE PAPER TOOLKIT ARCHITECTURE
of the UI and event handlers to aid in debugging. C1 : :

In providing toolkit support for pen-and-paper interfaces,

. Explore custom coding solutions through a direct ma- our goal was to augment, and not replace, developers’
nipulation API browser that generates source code. existing practices. For this reason, we modeled R3’s archi-

The R3 toolkit enables designers to create rich paper-centric tecture after event-driven GUI architectures, such as
applications (see Figures 2). To do this, R3 builds upon the Windows Forms [22] and Java Swing [38]. R3 receives
Anoto platform to support interactions with pen and paper. input from one or more digital pens, and invokes event
With Anoto, an inking pen reads a location-specifying dot handlers attached to active regions on a paper interface (see
pattern printed on a paper page. This enables R3 to receive Figure 2). This approach, which draws on traditional GUI
the location, force, and time of each pen stroke either in idioms, eases the development transition between graphical
real time (through Bluetooth) or in batched mode (after the and augmented paper interaction by providing existing
user docks his pen). developers with a familiar programming model. On the

whole, this model is effective for paper + digital interfaces.

However, the GUI architectural paradigm cannot be copied directly through the R3 Java API, or 3) use R3’s support for
wholesale to this domain because paper cannot itself pre- model-based paper Uls, which separate an XML interface

sent real-time graphical feedback; we introduce the specification from the Java-based application logic. This

challenges to designing augmented paper interaction and approach of using XML as an interface representation was

describe how R3 addresses them. seen in [1, 26], and is used in, e.g., Mozilla’s XUL [23].

Designing a Paper Interface Event Handling with Multiple Pens

Consider this scenario: Karen would like to design a task The R3 architecture distinguishes itself from traditional GUI

management application that will allow users to jot notes on architectures in two ways. First, analogously to research on

paper. After writing a note, the user will tap a dedicated toolkits for multiple mice (e.g., [10]), R3 handlers can re-

rectangle at the bottom of the paper with his pen. Through a ceive input from multiple pens, determined through a PeniD

Bluetooth connection, a nearby computer will capture the in the PenEvent. Applications that leverage this multiple-

strokes and add the note to the user’s digital calendar. pen functionality include Diamond’s Edge, a collaborative

R3’s development process proceeds as follows: on a PC, drawing environment, and the Twistr game, a two-player,
Karen uses R3’s interface layout tool to create a Sheet ob- bimanual interface where players use pens to tap photos
ject (analogous to a Swing JFrame). Then, she creates one from a set on a large paper print (see Figure 3). In Twistr, a
large Region to capture the user’s handwriting, and a small single pressed event is invoked when any of the four pens is
Region to act as an upload button (see Figure 2, left). She depressed. The handler requests the PenID, and rewards the
adds two Event Handlers: an ink collector to the large re- appropriate player for finding his photo.
gion, and a click handler to the small region. Karen then Providing Feedback through Output Devices
prints the paper UI; R3 automatically renders Anoto pattern The second way that R3 differs from the traditional GUI
on the active regions. When active, the ink collector re- architecture is that interaction happens within a device
ceives the user’s strokes from the wireless connection. ensemble [31], where user actions are distributed across
When the user taps on the paper button, Karen’s code re- paper and computer (see e.g., [42]). To support this interac-
trieves ink from the ink collector (optionally passing it tion style, R3 provides feedback by invoking Actions on
through handwriting recognition), renders it as a JPEG im- devices, such as a handheld display. These ensemble inter-
age file, and uploads it to the user’s web calendar. actions are accomplished through a mobile code approach
However, suppose that Jim, a graphic designer who does [39], passing Java as XML across a network. The program-
not program, collaborates with Karen. In this case, Karen mer instantiates a Device with a remote IP address. The
offloads the design of the paper UI to Jim. R3 allows Jim to program can then ask the remote Device to invoke an Ac-
use any graphical tool to design the interface’s look-and- tion (e.g., OpenURL). Other than the computer’s host name,
feel. Jim and Karen can thus work in parallel. Jim can de- R3 abstracts network details from the developer.

sign the art in Adobe [Mlustrator, export to PDF, and use R3’s With this approach, a pen-and-paper program can provide
direct manipulation paper interface builder to add and name real-time interaction across multiple devices. For example,
interactive regions. Meanwhile, Karen can create the back- in BuddySketch—an application we built to provide shared
end code. When Jim has finished, he provides Karen with sketching mn video conferencing—each computer 1S a De-
his paper UI specification. Karen’s program reads in the vice, and in response to input on paper, one computer asks
paper UI and attaches handlers to the named regions. its remote peer to update ink or display photographs.

The R3 library provides many pen event handlers, including Debugging and Testing with Event Save and Replay
click detectors, marking gesture interpreters, and handwrit- To assist developers in debugging applications, R3 logs
ing recognizers (which use the recognition service, seen in

Figure 2). The flexibility of R3’s event architec-

ture allows developers to create their own

handlers. When Karen and Jim print the paper

interface, R3’s print subsystem automatically

instruments regions containing handlers with the \ 4 |

Anoto dot pattern. Lastly, with the printed UI in & hd
hand, they can test their application immediately. A = JUS id :
Overall, R3’s approach of separating interface wp SE —_ | Callin, NE
design from implementation augments existing ALON > aEEE)
practices, as graphic artists can use familiar tools k AE 5 <= eeED
such as Adobe Illustrator to create the visual X ~14 == BEEN
design of the paper ul. The paper Ul develop- Figure 3. Left) Students used R3 to produce research such as Diamond's Edge
ment process is also flexible, as the developer [3], a collaborative drawing environment integrating sketching on paper with
can either 1) start from a PDF, 2) generate the Ul manipulations on a digital table. Right) The authors used R3 to explore large

paper interfaces, including this Twistr game, which recognizes four pens.

3

every PenEvent. A developer can replay this logged input port our own research on large paper surfaces (GIGAprints)
stream using the R3 GUI. Saving and replaying user input [41]. Diamond’s Edge and GIGAprints were presented as a

offers four benefits. First, logged input can be valuable in poster and a video at Ubicomp 2006.

automated unit testing of graphical user interfaces, tradi- One genre of concern that these projects highlighted was
tionally a weakness in testing frameworks. Second, the need to support flexible input. To accomplish this, we
debugging with logged input is preferable because working abstracted the input architecture, creating a Pen interface
with the same input produces consistent results across trials. that enables simultaneous input from multiple physical
Third, debugging with logged input is more efficient, as it devices, and enables developers to implement their own
eliminates the need to physically reproduce the input on subclass for the input technology of their choice. We also
every occasion. Lastly, this architectural feature is useful found that in multiple projects, developers needed to pack-
for saving and later reviewing tests with end users. age incoming pen samples and interpret them as higher-
Implementation level user actions. While Anoto tools provide direct access
The R3 toolkit is primarily implemented with Java SE 6.0, to x and y coordinates, our toolkit collects these into ab-
with smaller components providing services to the main stractions like clicks, gestures, and freeform ink.

toolkit. Pen input from the Anoto SDK is handled through a Observations of an External Deployment
Microsoft NET 2.0 component, since the drivers are pro- While longitudinal use by experts (the authors and col-
vided as Windows DLLs. As the “user interface” created by leagues) offered insight on the ceiling of the platform’s
R3 is physical paper, there needs to be a printer-friendly flexibility and extensibility, use by novices (students at
format for these interfaces. To provide a system that is another university) helped us understand R3’s accessibility.
widespread, flexible, and low threshold, we chose PDF: R3’s To observe on-the-ground use of the principles manifest in
paper interface builder is implemented as an Adobe Acrobat the R3 toolkit, we provided it to an undergraduate HCI class
plug-in; the interface can be augmented, and the dot pat- at an external university (the authors were not part of the
terns rendered, using the iText PDF library. Handwriting teaching staff). In this class, 69 students (17 teams) de-
recognition is built on Microsoft’s Tablet PC recognizer. siened and built pen-and-paper projects. Students began
DETERMINING NEEDS THROUGH LONG-TERM USE using R3 in the eighth week of the fourteen-week class,

We employed a mixed-methods approach to designing and after they had tested their early-stage paper prototypes [29].
evaluating R3. Our evaluation comprised three methods: We summarize these projects in Figure 4. Project topics
building applications ourselves, observing its use in a class, were varied, including paper-based web design, personal
and analyzing the source code developers produced. Each organizers, and sharing tools for news and blogs. Of the 17
approach highlights distinct considerations; for example, in- ~~ Paper Uls created by these teams, 16 allowed the selection
depth analysis of the code can help to improve the toolkit at of buttons or areas on the page. Only three accepted pen
the API and architecture levels, whereas anecdotes from gesture as input. Most applications were mobile (10 of 17),
long-term usage may inform the design process as a whole. and four supported batched input.
Over the last ten months, the architectural features of R3 During the deployment, the first author held two in-person
have evolved based on our desire to address three goals: sessions at the university to answer questions and receive

Learnability How low is the threshold for learning to feedback. He also responded to postings on the R3 news-
create useful paper interfaces? Which aspects of R3 group. In total, this comprised more than 20 hours of
contributed to lowering this threshold, and which were providing support and gathering feedback. After the semes-

bottlenecks to further lowering it?
Extensibility What is the ceiling on the complexity of Project Themes 2 Blog Map MedicineToDos

. g . 1 Games Music News Restaurant Voting WebDesign

applications that experts can create? Which R3 aspects selection 16 AALAVAANAAAEANNN
contribute to this, and which prevent a higher ceiling? Type of Interaction Handwriting 11 EENEEEEEEEE

i. : : : Drawing 3 HEN

Explorability Will designers create a large variety of Gesture > HEE
applications, utilizing a large variety of input tech- Mobile Application ' 0 0 0 00 © © ® PY)
niques? How can R3 better support the ability for Handwriting or Gesture Recognition 7 LX JO ¥ JOFJ ® ®

designers to rapidly create and test ideas? iteratesinpees © 2999 5 : ® oe od ®
Feedback from Internal Use Boy teraction . : 5 ® “hia td ®
Two students used an early version of R3 to develop Dia- NUMBEROF PROJECTS A B CD E F GH 1 J KL MN O P Q

mond’s Edge (see Figure 3), a drawing environment that Figure 4. Summary of 17 class projects developed with R3. We see
integrates paper with digital tables [3]. This project com- that R3 supported a variety of projects (though three dealt with
prised only 20 source files, leveraging R3 for capturing university exams). Notice that while selection interactions were
. . . NE common (e.g., check a box), advanced interactions such as ges-
input from multiple pens, rendering digital ink on a canvas, tures were rare (e.g., draw a musical note). Notably, only four of the
and sending drawings to printers. We also used R3 to sup- projects implemented asynchronous interactions, where ink and

actions are batch processed once the user returns to their desktop.

ter, we analyzed the project mate- GUIAppSetup [INE]

rials, including reports and source mp EE WayDl—
code, to evaluate the successes — WET E—

and limitations of R3. This work paperuicomponents — — paperTootkit |BEET!demonstrates that in-depth analy- PaperUtils_ EET] Snippet JET] Seif IEEE—
sis of the products of a toolkit can ProgramUtils NT Class ENEEEEEET] Helloworld [ET]

be used to inform the design of What source code was copied? How much at a time? Where was it copied from?
the toolkit itself. Figure 5. Teams used copy-and-paste to facilitate coding. Many times, developers would copy
Out of our analysis of the team a class file needed to get a program working, and then customize the skeleton to address their

materials, our notes from provid- new needs. Developers can benefit from tools that support this coding-by-growing behavior.
ing support, and analysis of

50,962 lines of code, we identified three areas as opportuni- patterns, provide evidence, and introduce designs that we
ties for improved support: better debugging infrastructure, added to enhance these practices.
integrating batched and real-time interactions, and support Programming by Example Modification
for web application platforms. While streaming support Our first observation was that developers would copy
worked well during development, operating the digital pens chunks of source code, paste it into their project, and then
in batched mode—where data resides on the pen until it is grow their application around this working base. This find-
synchronized through a cable —can ease deployment of ing is consistent with earlier studies (e.g., [14, 30]). In our
mobile applications, as it eliminates the need for a PC with- analysis, we wanted to identify what types of code develop-
in wireless range at runtime. Through the students’ written ers copied, how much they would copy at one time, and
reports, it became clear that tools should treat batched mode from where they would copy from the code.

and Streaming mode more interchangeably. This suggests We used a combination of static analysis methods to detect
that, as user interface tools Support a broader spectrum of the code clones. First, we used MOSS, a tool traditionally
input technologies, the abstraction goals put forth through used to detect plagiarism in software [32], to detect simi-
UIMS and model-based interface research [24] are likely to larities between the student projects and the toolkit. Since
play an increasingly important role. MOSS could not work with code residing on the web, we
Consistent with current trends, six teams integrated web also reviewed the corpus by hand to identify potential
applications into their projects, from “scraping” HTML to clones. We found that looking for unusual comments and
working with established APIs (e.g., Flickr and Google method names was effective in identifying copied code.
Calendar). Consequently, students asked that R3 provide Once we identified a candidate, we would perform a text
stronger support for these kinds of applications. For exam- search over the entire corpus, and a web search, to discover
ple, one group wanted to integrate their application with the the source of the copied code. To our knowledge, this paper
Apache Tomcat servlet container. A second group wanted presents the first work that uses static code analysis to study
to create a Firefox plug-in. As applications move online, developers’ copy-and-paste behavior for the purpose of
toolkit support is most effective when it not only provides assessing the usability of a toolkit.

strong intra-application support, but support for integrating We found that the frequency of copying was independent of
external services. whether the code was supporting the paper or the GUI parts
Overall, R3 was a big success. 17 teams with no prior ex- of the interaction (see Figure 5). The data shows that 41%
perience in building paper interfaces (many without GUI of the 159 copied pieces of functionality supported the GUI,
programming experience) were able to build working pro- and 37% supported the paper. Of the instances we discov-
jects using R3 in less than six weeks. ered, developers most often (96 of 159) copied one class

INFORMING DESIGN WITH SOURCE CODE ANALYSIS file (rather than whole packages, single methods, or snip-
We now describe how we used source code analysis as an pets) and then modified the class to fit their application.
evaluation method to help us assess R3’s usability. Examin- Developers copied from several sources, including their
ing the source code produced by developers offers an own “Hello World assignment, the R3 toolkit, and the Web

: SP (e.g., the Java Swing tutorials).
empirical account of usage patterns and gives insight into

usability successes and limitations of the API. We reviewed In addition to studying what was copied, and how much was
the 304 source files by hand; these files comprised ~35,000 copied at one time, we also analyzed where code was cop-
statements and ~51,000 lines of code, including comments. ied from. We found that the single most common source of
We recorded observations for each file, with special em- copied code was the paper application template provided
phasis on the paper related code. Throughout the code for use in the students’ first assignment. Prior research (e.g.,
review, we noticed three recurring themes—coding-by- [14, 30]) found that developers use copy-and-paste to save
example modification, customizing tool support, and itera- time during development. In addition to efficiency, we find
tive debugging. In the next sections, we highlight the that developers use this technique to cope with learning

APIs (to reduce errors using the unfamiliar framework).

5

Sononrme ohn a Iterative Debugging of Event Handlers
spe oF thesecustomized operations One technique that we used to understand “trouble spots” in

Distribution Bekeetinzines oN the API—where developers struggled—was to search the
of Ink OverlayOnimage © source code for debug output (e.g., System.out.printin()). As

Operations Ee debugging statements are generally used to display state,
Recognize Handwriting, 100 the values of variables, or signal error conditions, they may

ipertExAenWl: 10 reveal which parts of R3 were more difficult to work with.

as i —_ The source files contained 1232 debugging statements
% of operations using the R3 API Numberof operations performed on digital ink (containing println). We examined and annotated each one

with NO CUSTOMIZATION Operationsmay comprise MULTIPLE LINESof code (see Figure 7). From this data, we see where these debug-
Figure 6. While the display and scale operations were commonly ging statements are located. Our code analysis found that
customized, it took more effort to create application-specific solu- 39% of all console output functions were inside event han-
tions for calculating metrics for and recognizing strokes. Making it i .
easier to explore these opportunities may lower the threshold and dlers: 333 debugging statements were located in GUI event
pull up the tail of this curve. handlers, and 145 were located in R3 event handlers.

Since the developers only had a few weeks to learn the R3 We also examined what was printed in each debug State-
architecture, copy-and-paste was a natural strategy. Copy- ment. While many of the values were objects particular to
ing provided a working base functionality upon which each project, we found that a large portion of statements
developers could grow their project. This suggests that tools were of the “got here” type (statements that serve no pur-
can embrace the development practice of growing code pose other than to tell the developer that a code block was
through tools to generate these “Hello World’s” and support reached). In fact, when coupled with the data on where the
the copying-and-pasting of working code segments. Today, debug statements were located, we find that more than half
development environments provide ways to generate com- of GUI event handler printlns and almost a third of R3 event
mon code templates that can be customized. For example, handler printins were “got here” statements. This suggests
the Eclipse IDE expands the word “try” into a full Java #ry- that we can help developers better understand when their
catch exception handling block. These templates are in- event handlers are being reached.
tended to help developers avoid the mundane details, Early on, these statements can serve as working stubs,
reducing errors and speeding up the programming process. helping developers keep track of which event handlers have
There are two alternate approaches. First, R3 can provide not been implemented. We observed this when printins
ways to generate working examples from documentation. were placed next to tool-generated comments. For example:

Second, R3 can support the rapid generation of working System.out.printin("zoom In");
code from high-level specifications of the paper application // TODO Auto-generated Event stub actionpPerformed()

(such as drawings). We address these issues later. Later, these debug statements can help developers visualize

Customizing Tool Support: Extending Ink Operations what their program is doing in response to pen input. This
In their projects, students not only used the provided R3 code evolution is referred to as “debugging into existence”
library elements, they also created their own (e.g., a custom [30]. The printins in event handlers suggest that we can
paper UI PDF renderer). This behavior was most pronounced improve developers’ understanding of event handlers, and
in the area of manipulating digital ink, where developers provide better support for existing debugging practices.
who needed custom features would either subclass, or copy- Successes and Shortcomings
and-modify existing toolkit components. To gather this R3 main success centers on its familiar programming mod-
data, we searched for and categorized all instances of ink el, which presented a low threshold for students. For
operations in the class’s source code corpus. In Figure 6, we instance, one team wrote in their final report for the course:
see that while groups directly used R3 to decorate and dis- “We have a very good impression of the R3 toolkit, and we
play ink objects, only a handful felt comfortable enough to oo
implement customized interactions for their applications. Debugging Statements: Where are they? Whatis printed?
The developers who needed custom solutions extended the abe BB —
library to include operations to recognize inked gestures, Main IEEE] Message IH

select ink in space and time, and cluster strokes for calculat- reat i—=
ing location and size. Since some developers extended R3’s Paper Event Handler INEEYT Identifier INSTT]

ink operations library, one might conclude that R3 omitted or Mts} error es acre,M—
elements that should have been included; however, we GUI Event Handler INESSSNETY] Object ValueI)

expect that even with a large set of available operations 1232 STATEMENTS 1422 DESCRIPTIVE TAGS

developers will still find the need to composite or create Figure 7. Analysis of the source code of 17 projects revealed that
their own custom solutions people place most of their debugging statements (printins) in event

handlers (GUI and R3). Many of the only statements tell the devel-
oper when the code “Got Here.” However, most are of object values
specific to the particular application.

believe that it presents an acceptable threshold of entrance itorWon al
for a novice to moderately skilled Java programmer.” Be- Tenraler typeYop 12 | |

cause R3 extended established GUI conventions, students in J y="6.567" width="2.412" height="1.328">
the semester-long class could use their experience while si EO
working on their paper interfaces. Notably, many students a
learned GUI programming as a part of this introductory a
course (one group reported that “none of us had developed }

event-driven programs prior to this project.”). The fact that private void initializepaperur() {
. . . oo. Region regionRegionl = sheet.getRegion("Regionl");

Swing and R3 are architecturally similar meant that students setupRegionl(regionRegionl);

did not have to learn two different programming models. RegionlvegionRegionZ =lsheet.getRegion(Region2’D;

Through its extensible architecture, R3 provides a high Figure 8. R3 translates low-fidelity paper sketches to working paper

ceiling of application complexity— four teams leveraged ntertace specifications (XML & Java), or an equivalent GUI that can: :] e used for simulation.
this to create their own ink handling. Team D recognized

when users crossed out handwritten text, and updated a web INTEGRATING CODE WITH VISUAL DESIGN AND TEST
planner to reflect the completed task. Team G recognized In R3’s second iteration, we introduced tool support for
paper-based games (e.g., tic-tac-toe). Team I detected boxes exploration, augmenting the coding practices we observed:
users had drawn, and supported import of photos into those

areas. Team N recognized handwritten musical symbols, * coding-by-growing from “hello world” programs
including whole, half, quarter, and eighth notes, and trans- * debugging events through “got here” statements

lated the composition into MIDI files. * customizing and composing operations of ink strokes

This field study also exposed shortcomings in R3. First, Supporting these practices enhances R3’s explorability, as
designing with R3 had a bottleneck —users reported that designers can prototype, customize, and test their programs
printing paper Uls inhibited rapid design, development, and more quickly. The insight here is that currently, designers
testing, as printing a paper interface is much slower than of paper Uls must maintain a mental mapping between the
rendering a GUL. We later eliminated the need to print dur- code that they write and the 2D visual representation of the
ing design and testing by providing a graphical preview of input surface. That is, there exists both a large gulf of exe-
the paper Ul, and a means to use preprinted notebooks to cution, the gap between the designer’s goals and the toolkit
simulate the UL actions he needs to attain those goals, and a large gulf of
Second, R3 developers could not debug paper Uls without evaluation, the difficulty in determining whether the paper
physical pens. One developer noted that “the fact that we Ul is working based on the toolkit’s output [12]. We suggest
had only one pen to share made it extremely difficult for that visual tools can narrow these gaps. The ideas we pre-
everyone to write individual pieces of code....only one sent in this section bridge the visual task of designing and
person at a time could perform any debugging.” While R3’s testing paper Uls to the less visual task of writing back-end
support for recording pen events and replaying them pro- code to make the application work.

vides a mechanism that addresses this issue, save & replay From Paper Prototypes to Working Interfaces
was not advertised as a tool for distributed debugging. To support the coding-by-example modification observed in
Third, R3 did not provide a transparent way to swap batched our code analysis, we included a feature to allow a designer
and real-time pen interactions. Batched pen data would to export a drawn-on-paper sketch of an interface to code
appear to the program as ink (/ike in PADD), and would not that will generate the UI (see Figure 8). This reduces the
explicitly invoke event handlers (R3) or media associations imitial effort of learning to lay out paper Ul components and
(iPaper). The deployment revealed that while developers attach event handlers to them, and enables designers with-
prefer using real-time pen input during testing, many expect out programming experience to create paper UIs. Currently,
their users to operate in a disconnected environment (10 of we support a simple visual language: the outermost box
17 projects were mobile apps). Providing easy ways to becomes a Sheet; internal components become Regions;
interchange batched and real-time interaction would address lines that exit the Sheer become Event Handlers. Text writ-

the desire to use synchronous systems for debugging and ten next to a handler is recognized and matched to a
asynchronous ones for deployment. Finally, because R3 particular handler in R3’s library. Finally, the sketch is
provides many features, it is difficult for newcomers to exported to an XML representation, which is read in at run-
quickly grasp the extent of the toolkit’s architecture. Look- time to generate the paper user interface.
ing at the developer experience, we find that R3 should

provide visual aids for the exploration, development and Visual Browser for Ink Operations
testing of paper UIs. Our source code analysis revealed that people would extend

the existing ink operations by copying and modifying tool-

kit code (e.g., an ink rendering snippet). We also found that

occasionally, developers would rewrite code even when it

7

Visual Preview mun AP Browser Paper and Tablet-based Simulation
pe —— Finally, to eliminate the need to print while debugging, we

————— added two ways to simulate the paper Ul. First, we allowed
” — | simulation (through a tablet or mouse). Second, we now

Ne | allow developers to bind any patterned paper to regions at
ee ——— application runtime. Therefore, developers can use pre-

Tee nerashesns printed Anoto notebooks to simulate their paper Uls.

= BK RELATED WORK
rk ink =Ceodeterer, This research builds upon earlier work in user interface

Export Code Button software architectures, design tools, and studies of existing
eeecee— development and debugging practices.

Figure 9. R3 supports rapid exploration of the Ink API by providing User Interface Software Architectures and Design Tools
a browser that shows the effect of method calls visually and imme- The R3 approach was inspired mainly by architectures for
diately, and allowing developers to export code to their IDE. : : :

graphical user interfaces. The first iteration of the paper

already existed in the toolkit (e.g., exporting ink to a JPEG). toolkit borrowed the basic ideas of components, layout,
These observations on the customization of ink operations event handling, and extensibility from GUI toolkits like Java
suggest that we can provide a more effective way for devel- Swing [38], Windows Forms [22], and SubArctic [11]. R3
opers to understand what is available in the R3 Ink API, how extends this model to device ensembles composed of both
each operation would affect the digital ink, and how one augmented paper and digital systems. The second iteration
might customize them. of R3 supports an XML representation of the paper Ul, gen-

Our working prototype presents source code alongside erated by the designer’s hand-sketched prototypes. This
visual previews of ink strokes (see Figure 9). Suppose a representation was inspired by the movement to better
developer wants to find the longest stroke in a list of /nk- separate the view from event handling, seen in earlier work
Strokes. She browses the API through drop-down menus, [1,26] and now on commercial platforms (e.g., XUL [23]).
and selects getStrokeWithMostSamples(). Upon adding this For paper interfaces, there exist several authoring tools.
method, the longest stroke is highlighted in red. She copies Anoto’s SDK [2] enables developers to access pen samples,
the resulting code into her IDE, where she can grow the but provides no explicit support for event handling or out-
code if necessary. A complementary approach would be to put to devices. Several frameworks build on Anoto. Cohen
integrate API finding into Web searches [37]. et al.’s work [4] integrates pen input with speech com-

Visual Debugging of Event Handlers mands. PADD supports the integration of annotations on a
The challenge with using console output for debugging physical document back into the digital one [8]. iPaper is a
events is that event handling code does not run until the data-centric approach that maps pen input to remote data
developer provides input to bring the program to the desired and code stored on the iServer [27, 34]. One limitation with
state. Having a rapid way to debug events would save con- this approach is that a database Server containing these
siderable work. Our source code analysis of debugging resources must be accessible to the pen’s host. This general-
output reveals that we need to help developers understand ized approach works na production system, but it limits
what happens when event handlers are called. the speed at which a designer can explore prototypes on her

local machine. iPaper is the platform most related to our
The second iteration of R3 provides techniques to support

debugging. We now provide visual representations of the Ul Eyamva ce SR
during testing, and visualize the source code reached by prterof Bans fe 4
each event handler as the program runs. To help developers

understand which event handlers are called, R3 provides a 370470370374) IZ —

visualization of the event handlers laid out on the 2D paper BT RI
UI (see Figure 10). The visualization tracks statistics, such Activated Regio it ee
as how many times an event was triggered. To improve h i
existing practice, R3 provides a new debug-to-console tech- Code Context
nique; the developer invokes R3’s showMe() method to send Slag nn ese[oe

values to both the console and a 2D visualization of the [ge | re rt
paper UI. This helps a developer see which event handlers i ooORS
were called, and evaluate the object values in context of TE —— EE — Hd
that event handler. When the debugging tool is hidden, Figure 10. Building on debugging practices, R3 presents output on

console, behaving exactly like printin(). highlighted. A panel splays the vent code from ihe context of the
region. Finally, showMe() displays output next to the region.

own, and is largely complementary to our interaction- event activation, but increases visibility by overlaying de-

centric approach. However, R3’s Actions hides the network bug output on the paper UI.

complexity that iPaper exposes (HTTP requests between FUTURE WORK
client and server); instead, R3 devices act as peers. R3’s

: oo : : : Looking forward, we see the results of the R3 study as
main contribution beyond the prior work is the depth in the to th luable directions for furth he
evaluation of extensive use of the toolkit, and the subse- suggesting three valliable directions 1or tUrthel research.
quent iteration of the architectural abstractions. Ordering Constraints—it is difficult to enforce interaction

tino Codi constraints on a paper Ul In a display with graphical feed-
Supporting Existing oding Practioes dine th | back, a developer can gray out a component when it is not
pl csigning the R3 Su an ooen ing the resu ts, ne appropriate. On paper, one cannot stop a user from arbitrar-
few on prior research on t © deve opment practices 0 ily checking a box or turning to the next page. Today,

software chgIneets, specifically in how software is created developers must provide textual directions to the user, and
and modified. Rosson and Carroll studied the code reuse handle input that is incomplete or out-of-order.
practices of four programmers and found that they benefited

from having working examples (usage contexts) that they Synchronous vs. Asynchronous—R3 supports real-time pen
could modify to include in their own project [30]. In addi- interactions through event handlers; batched data requires
tion to providing running demonstrations, R3 supports rapid separate ink handlers, to import saved ink into an applica-
generation of working code through sketching, allowing tion. We have since found this to be a limitation. Future R3
novice developers to specify a working base and incremen- iterations will process batched input through event handlers,
tally grow their application. This sketching approach was and allow developers to provide hints (e.g. if real-time
introduced in SILK [17], and is used by recent systems (e.g., feedback is unavailable, disregard this event”).
[25]). R3’s differs in that developers can sketch with pen Slow Refresh—today, if the user needs to update his paper

and paper instead of a digital tablet (providing a more interface, he must print out a new copy with the new infor-

mobile alternative), and then specify event handlers by mation. Future toolkits should provide explicit support for

writing their name. R3 also exports the interface to integrate scheduling updates to this paper view (we think of paper as

with final working code. the view in MVC, but with an extremely low refresh rate).

Besides [30], at least two other studies note that program- CONCLUSION

METS use copy-and-paste to reduce typing, and ensure that Through an iterative design of the R3 paper applications
the fine details (e.g., method names) are correct. First, Kim toolkit, we learned that a traditional event-driven approach
et al. studied expert programmers and found that copy-and- can provide an approachable platform for programmers to
paste was used to save time when creating or calling similar build pen-and-paper applications. Additionally, support for
methods [14]. Later, LaToza et al. found that modifying visual development and debugging can make the process
usage contexts was one of several types of code duplica- pyych more efficient. However, there remain toolkit chal-
tion, which causes problems when fixing bugs or lenges in this space (e.g., support for integrating non-
refactoring [18]. However, these studies did not concentrate programmers into the process).
on user interface development. Our own observations sup- TIE : :

: Our results also have implications for the design of graphi-
port the existence of the copy-and-paste and code-by- a. :

: : : cal applications. For example, one might allow a designer
growing behaviors, and suggest that users rely on copying : ;

to import a paper sketch into a GUI builder. We also found
when they need to learn a new API. : :
CL it valuable to use both long-term deployment and the static

R3’s visualizations for the paper UI and handlers extend analysis of source code to inform the design process. We
ideas developed in software visualization research. DeLine suggest that future tool design should be informed by such
et al. introduced designs to help developers visualize com- techniques. From this study, we conclude that toolkits
mon code paths [5]. The R3 debugger applies this real-time should explicitly support programming by example modifi-
highlighting to event handlers. However, most of the work cation, provide efficient exploration of APIs, and present
in this community seeks to understand class relationships, good visualizations of program event flow.
algorithms, and data structures [35]. We extend this effort :
b : : : The R3 toolkit and code analysis tools are open source;y helping developers understand the relationships between) : :

. they, and a video demonstrating this research, can be found
GUIs, event handlers, and debug output. In digital arts, Fry t htto://hei. stanford edu
has visualized call graphs of code bases (e.g., [7]). In inter- at Attp-/7Icl. Stanford. cal paper.
face research, Hands demonstrated an accessible, playing- REFERENCES

card visualization for objects, where properties were shown 1 Abrams, M., C. Phanouriou, A. L. Batongbacal, S. M. Wil-
in a tabular format [28]. However, event handlers were liams, and J. E. Shuster. UIML: An Appliance-Independent

represented only in natural language, or implicitly defined XML User Interface Language. In Proceedings of The Lighth
by textual properties. Papier-Maché’s monitoring window International World Wide Web Conference, 1999.
demonstrated that visuals of objects and events can enhance 2 Anoto AB, Anoto Technology, 2007. http://www .anoto.com
the debugging process [15]. R3 also supports the display of

9

3 Bernstein, M., A. Robinson-Mosher, R. B. Yeh, and S. R. 24 Myers, B., S. E. Hudson, and R. Pausch. Past, Present, and

Klemmer. Diamond's Edge: From Notebook to Table and Future of User Interface Software Tools. ACM Transactions

Back Again. Ubicomp Posters, 2006. on Computer-Human Interaction 7(1). pp. 3-28, 2000.

4 Cohen, P. R. and D. R. McGee. Tangible Multimodal Inter- 25 Newman, M. W._, J. Lin, J. I. Hong, and J. A. Landay.

faces for Safety Critical Applications, Communications ofthe DENIM: An Informal Web Site Design Tool Inspired by Ob-

ACM, vol. 47(1): pp. 41-46, 2004. servations of Practice. Human-Computer Interaction 18(3).

5 DeLine, R., A. Khella, M. Czerwinski, and G. Robertson. pp. 259-324, 2003.

Towards Understanding Programs through Wear-based Filter- 26 Nichols, J., et al. Generating Remote Control Interfaces for

ing. SoftVis: ACMSymposium on Software Visualization. pp. Complex Appliances. UIST: ACMSymposium on User Inter-

183-92, 2005. face Software and Technology. pp. 161-70, 2002.

6 EPOS, EPOS Digital Pen, 2007. http://www.epos-ps.com 27 Norrie, M. C., B. Signer, and N. Weibel. Print-n-Link: Weav-

7 Fry, B., distellamap, 2007. http://benfry.com/distellamap ing the Paper Web. DocEng: ACMSymposium on Document

8 Guimbretiére, F. Paper Augmented Digital Documents. UIST: Engineering, 2006.
ACMSymposium on User Interface Software and Technology. 28 Pane, J., A Programming Systemfor Children that is Designed
pp. 51-60, 2003. for Usability., Unpublished PhD, Carnegie Mellon University,

9 Hong, J. I. and J. A. Landay. SATIN: a Toolkit for Informal Computer Science, Pittsburgh, PA, 2002.
Ink-based Applications. UIST: ACMSymposium on User In- www.cs.cmu.edu/~pane/thesis
terface Software and Technology. pp. 63-72, 2000. 29 Rettig, M. Prototyping for tiny fingers, Communications ofthe

10 Hourcade, J. P. and B. B. Bederson, Architecture and Imple- ACM, vol. 37(4): pp. 21-27, 1994.
mentation ofa Java Package for Multiple Input Devices 30 Rosson, M. B. and J. M. Carroll. The Reuse of Uses in Small-
(MID). Technical Report, University of Maryland 1999. talk Programming. ACM Transactions on Computer-Human
http://www.cs.umd.edu/hcil/mid Interaction 3(3). pp. 219-53, 1996.

11 Hudson, S. E., J. Mankoff, and I. Smith. Extensible Input 31 Schilit, B. N. and U. Sengupta. Device Ensembles. Computer
Handling in the subArctic Toolkit. CHI: ACM Conference on 37(12). pp. 56-64, 2004.
Human Factors in Computing Systems. pp. 381-90, 2005. 32 Schleimer, S., D. S. Wilkerson, and A. Aiken. Winnowing;:

12 Hutchins, E. L., J. D. Hollan, and D. A. Norman. Direct Ma- Local Algorithms for Document Fingerprinting. SIGMOD:

nipulation Interfaces. Human-Computer Interaction 1(4). pp. ACMInternational Conference on Management ofData. pp.
311-38, 1985. 76-85, 2003.

13 Johnson, W., H. Jellinek, L. K. Jr., R. Rao, and S. Card. Bridg- 33 Shneiderman, B., G. Fischer, M. Czerwinski, B. Myers, and
ing the Paper and Electronic Worlds: The Paper User M. Resnick, Creativity Support Tools. Washington, DC: Na-
Interface. CHI: ACM Conference on Human Factors in Com- tional Science Foundation. 83 pp. 2005.
puting Systems. pp. 507-12, 1993. 34 Signer, B., Fundamental Conceptsfor Interactive Paper and

14 Kim, M., L. Bergman, T. Lau, and D. Notkin. An Ethno- Cross-Media Information Spaces, Unpublished PhD, ETH Zu-
graphic Study of Copy and Paste Programming Practices in rich, Computer Science, Zurich, 2006. http://www.
OOPL. International Symposium on Empirical Software Engi- globis.ethz.ch/script/publication/download?docid=411
neering. pp. 83-92, 2004. 35 Stasko, J., J. Domingue, M. H. Brown, and B. A. Price, Soft-

15 Klemmer, S. R., J. Li, J. Lin, and J. A. Landay. Papier-Maché: ware Visualization: Programming as a Multimedia
Toolkit Support for Tangible Input. CHI: ACM Conference on Experience: MIT Press. 550 pp. 1998.
Human Factors in Computing Systems. pp. 399-406, 2004. 36 Stifelman, L., B. Arons, and C. Schmandt. The Audio Note-

16 Krasner, G. E. and S. T. Pope. A cookbook for using the book: Paper and Pen Interaction with Structured Speech. CHI:
model-view controller user interface paradigm in Smalltalk- ACM Conference on Human Factors in Computing Systems.
80. Object Oriented Programming 1(3). pp. 26-49, 1988. pp. 182-89, 2001.

17 Landay, J. and B. A. Myers. Interactive sketching for the early 37 Stylos, J. and B. A. Myers. Mica: A Web-Search Tool for
stages of user interface design. CHI: ACM Conference on Finding API Components and Examples. VLHCC: Visual
Human Factors in Computing Systems. pp. 43-50, 19935. Languages and Human-Centric Computing. pp. 195-202,

18 LaToza, T. D., G. Venolia, and R. DeLine. Maintaining Men- 2006.
tal Models: A Study of Developer Work Habits. International 38 Sun Microsystems, Swing, 2007.
Conference on Software Engineering. pp. 492-501, 2006. http://java.sun.com/javase/6/docs

19 LeapFrog Enterprises, FLYPentop Computer,, 2007. 39 Thorn, T. Programming Languages for Mobile Code, ACM

http://www. flypentop.com Computing Surveys (CSUR), vol. 29(3): pp. 213-39, 1997.
20 Liao, C., F. Guimbreti¢re, and K. Hinckley. PapierCraft: A 40 Wellner, P. Interacting With Paper on the DigitalDesk, Com-

Command System for Interactive Paper. UIST: ACMSympo- munications ofthe ACM, vol. 36(7): pp. 87-96, 1993.
sium on User Interface Software and Technology. pp. 241-44, 41 Yeh, R. B., J. Brandt, J. Boli, and S. R. Klemmer. Interactive

2005. Gigapixel Prints: Large, Paper-based Interfaces for Visual
21 Mackay, W. E., G. Pothier, C. Letondal, K. Boegh, and H. E. Context and Collaboration. Ubicomp ExtendedAbstracts (Vid-

Sorensen. The Missing Link: Augmenting Biology Laboratory eos), 2006.
Notebooks. UIST: ACMSymposium on User Interface Soft- 42 Yeh, R. B,, et al. ButterflyNet: A Mobile Capture and Access

ware and Technology. pp. 41-50, 2002. System for Field Biology Research. CHI: ACM Conference on

22 Microsoft, Windows Forms, 2007. Human Factors in Computing Systems. pp. 571-80, 2006.

http://www.windowsforms.net

23 Mozilla, XUL, 2007. http://www.mozilla.org/projects/xul

