
Programming by a Sample:
Rapidly Prototyping Web Applications with d.mix

Bjorn Hartmann, Leslie Wu, Kevin Collins, Scott R. KlemmerJ . .
Stanford University HCI Grouy Pp

Gates Computer Science
Stanford, CA 94305

[bjoern, lwu2, kevine, srk]@cs.stanford.edu

RL:[http://site-with-api.com/|

As an increasing number of web sites provide APIs, sig- en URL: [http://site-with-api.com/|
nificant latent value for supporting developers’ use of these ju: Ee
APIs lies in the site-service correspondence: the site and its TTR D> EE ———,
API offer complementary representations of equivalent RN

functionality. We introduce d.mix, a tool that realizes this TIT EI.
latent value, lowering the threshold for creating web COPY apigetRecentimage(id=29384.)
mash-ups. With d.mix, users browse annotated web sites and megeoe my
perform a parametric copy of elements of interest. While a PASTE+EDIT

traditional copy contains web page elements, a parametric Figure 1. When programming by a sample, users first
copy performs proxy-based rewriting of pages to select the browse web sites that offer APIs through a roxy that adds
underlying programmatic calls that yield those elements. annotations. They then select pieces they wish to copy and
Developers can paste this code and edit, execute, and share send them to the d.mix editor, where they can change pa-
scripts on d.mix’s wiki-based authoring environment. This rameters graphically or edit the underlying API source code.
approach speeds the creation of web applications while

PIESEIVING the flexibility and high ceiling of script-based particular social situation or context” [31]. The small audi-
programming. An initial study with eight participants found : i |
d.mix to enable rapid experimentation, and suggested ave- ence of situated software applications limits developer re-
Hues for improving its annotation mechanism sources. As such, enabling faster and lower-threshold [25]

P = authoring of these applications provides a catalyst for
ACM Classification: H5.2 [Information interfaces and broader creation.

presentation]: User Interfaces—Graphical user interfaces. As the number and scale of APIs and web services increase.
General terms: Design, Human Factors and as programming entertains an ever-widening audience,

Keywords: programming by example modification, more software is written by opportunistically combining
mash-ups, web services, prototyping pre-existing, high-level blocks of functionality. In these

mash-ups, the program design resides in the glue layers that

Ropu ION f Service-Oriented Architect SOA combine the different chunks of functionality. We define a! © advent of service-Uriented Architectures (SOA) web mash-up as a web application that recombines elements
[7], the number and diversity of application building blocks from at least two or more external web applications.
that are openly available as web service APIs 15 growing Mash-ups are instances of the long tail [8] of software—the

rapilyhe eb site programmable eb com, wich tracks large numbers of small applications that cumulatively have aaval aol ity and use of we ET tieren big impact. One of the broad shifts introduced in the
available APIs as of March 2007. These APIs promise de- mash-up paradigm is that the designer’s effort and creativity
velopers " PON o interface Clements and data are reallocated: less time is spent building an application up
sources. Viany ol these we 5 are the programmatic in- brick by brick, while more time and ingenuity is spent

terface to success ned Sis. where the site and the i. finding and selecting components, and then creating andclate Oler complementary views ol the same under- shaping the “glueware” that interfaces them [16].
lying functionality. In essence, the web site is the largest, PIS s [16]
functional example of what can be accomplished with an Two factors are currently hampering broader use of web
API. To date, the potential value to developers that could be APIs: the complexity of installing web application envi-
achieved by coordinating these representations has largely ronments and the complexity of understanding and using
remained latent. web service APIS.

While web services have seen particular growth in the en- To enable flexible and rapid authoring of API-based web
terprise sector, rapid access to rich features and data also applications, this paper introduces d.mix (see Figure 1), a
make web APIs a promising tool for prototyping and the browser-based design tool with two notable attributes. The
creation of situated software: “software designed in and fora first is a programmable proxy system employing a

site-to-service map that establishes the correspondence across package and function boundaries, example-based
between elements shown on the site and the web service documentation provides value by aiding knowledge crys-

calls needed to replicate these data programmatically. This tallization and improving information scent [29].

system enables users to create code that invokes web APIs by For this reason, examples and code snippets, such as those in
browsing the respective web site and visually specifyingthe the Java Developers Almanac, are a popular resource. This

ned site Clements hey wish to use in ther oo pplication. approach of documentation through example complements
. MR on ribu on p EPA, © aclive rth more traditional, index-based documentation. d.mix com-
OSs SCHpLS generate y the proxy. 5 4d bines dynamic example generation with browsing of what

browser-accessible authoring tool, the active wiki provides a the examples would look like based on the most complete
configuration-free environment for authoring and sharing of example there is
both source code and working applications. Together, these
two components offer a perspective of how web developers Programming by a Sample, or by Example? |
could use the surface structure and social structure of the d.mix’s approach draws on prior work In programming by
web as a means to democratize the tools of production [8]. example, also known asprogramming by demonstration [12,
The d mix anoroach tareets the erowine eroun of web de. 21, 27]. In these systems, the user demonstrates a set of ac-

: PP = STOWINS SOUP tions on a concrete example—such as a sequence of image
signers and developers that are familiar with HTML and ulati : d th Of, licati
scripting languages (e.g., JavaScript and ActionScript), lo- oonanor operations an © yee tn oe NYton; or : : ’ ogic throu eneralization from that example. The logic

wering the experience threshold required to build and share = then be re-applicd to other similar cases p g
mash-ups. d.mix offers a completely graphical interaction oo
path, from selecting samples to pasting them into a new page The class of applications that d.mix addresses are those that
and changing their attributes using property sheets. Addi- employ web services. Through d.mix’s site-to-service map,
tionally, by virtue of displaying the actual underlying code a designer can sample a portion of an extant web page; d.mix
to users, d.mix allows developers with sufficient technical then replaces the surface attributes of that sample with the

expertise to drill down into code as needed. ned service calls that generated the sample While d.mix: CL. : : shares much of 1ts motivation with programming-
To create a system that is felicitous with the practices ofweb , qe

developers > employed a mixed-methods approach First by-example systems, the approach is quite distinct. Instead
each week. for eioht weeks. we met with web develo ors, of providing the computer with an example that the system
sine the d.mix rotoly . os 2 vrobe to elicit Honeaion on then generalizes, designers specify logic through locating
I. desi . Sonnfi 0 oD the firstouse experience of and parameterizing found examples. In this way, the task is
domi p S1 red ’ i us ab stud oP ht web more one of programming by example modification, which
IL, WE CONGUEted a prefiminaty 1ab Stuy With clght We Nardi highlights as a successful strategy for end-user de-

developers. Third, we built example applications using our : : :
: : : velopment [27]. Modification of a working example also

tool to explore a broader range of interaction designs. : : :
speeds development because it provides stronger scaffolding

The rest of this paper is structured as follows. To motivate than writing code tabula rasa.
the d.mix approach, we first present a short summary of

research in information foraging and programming by HOW TO PROGRAM BY A SAMPLE C :
: Co Lo A scenario will help introduce the main interaction tech-

demonstration. The next section introduces the main inter- :
: : : niques. We also encourage readers to watch the accompa-

action techniques of our system through a scenario, followed : : Pe

by the implementation of d.mix. We then describe the two nying video, on the web at http://hci.stanford.edu/mashups.
forms of evaluation undertaken: iterative feedback from web Jane is an amateur rock climber who frequently travels to
professionals and an initial laboratory study. We conclude new climbing spots with friends. Jane would like to create a
with a discussion of related research and commercial sys- page that serves as a lightweight web presence for the group.
tems, limitations of the current implementation, and an The page should show photos and videos from the latest
outlook to future work. outings. She wants content to update dynamically so she

BACKGROUND doesn’t have to maintain the page. She is familiar with HTML
Our work draws on models of information foracine and re- and has some JavaScript experience, but does not consider

: : : sing herself an expert programmer.
search in programming by demonstration. We present a brief oo
introduction to both areas here. Jane starts by browsing the photo and video sharing sites her

friends use. Scott uses the photo site Flickr and marks his

formation foraging ; bran ” pictures with the tag “climbing.” Drew also uses Flickr, but
5 the umber and size of programming HOTares SWells, uses an image set instead. Karen shares her climbing videos

locating and understanding documentation and examples is on the video site YouTube. In short, this content spans
playing an increasingly prominent role in developers” ac- multiple sites and multiple organizational approaches.
tivities [32]. d.mix assists users with information foraging Lo
by shortening the time spent hunting for information To start gathering content, Jane opens Scott S Flickr profile
patches. It co-locates two different kinds of information on in her browser and navigates to the past listing all his tags
one page: examples ofwhat functionality and data a web site (see Figure 2a). She then presses the sample this button
offers, together with information how one would obtain this n her browser bookmark bar. This reloads the Flickr page,
information programmatically. Because problems often cut adding dashed borders around the elements that she can

(a) Browse (b) Sample (c) Send to wiki (d) Wiki executes copied script

no Er — climbersportal HEE

KE saanane ooo ~ 3 “ i FL — gt =

(e) Browse & sample again (f) Edit properties in wiki (g) Edit source code in wiki (h) Share URL

Figure 2. With d.mix, users switch between foraging for content and editing copies of that content in an active wiki environment.

copy into her sampling bin. members to let them see the page (see Figure 2h).

Jane right-clicks on the on tag “climbing,” opening a context IMPLEMENTATION

menu which offers her the choice to copy the set of images In this section, we describe d.mix’s implementation for
Scott tagged with that word (see Figure 2b). The copied item sampling, parametric copying, editing, and sharing.

appears in her sampling bin, a repositionable floating layer «Sample This” button rewrites pages
on top of the page. d.mix provides two buttons, sample
She selects Send to Wiki and enters a new page name, this and stop sampling, that can be He Ef few Hsow feck
“ClimbersPortal” (see Figure 2¢). Her browser now displays added to a browser’s bookmark bar to ~~ © & (

this newly created page in the d.mix programmable wiki. enable or disable sampling mode. # samplethis J stop samping

The visual representation dynamically requests the specified Sample this is implemented as a CTRimages; the textual representation contains the correspond- bookmarklet—a bookmark containing Van BFTET
ing API call to the Flickr web service (see Figure 2d). JavaScript instead of a URL—that sends the current browser

Continuing her information gathering, Jane samples Sam’s location to our active wiki. This invokes the d.mix proxy,
climbing photo set on Flickr (see Figure 2¢). Her wiki page combining the target site’s original web markup with an-
now displays both Scott’s photos and several images from notations found using our site-to-service map (see Figure 3).
Sam. Jane would like the page to display only the latest three It is important to note that the original web site need not
images from each person. She right-clicks on Sam’s images provide any support for d.mix. The active wiki maintains a
to invoke a property sheet which shows that the content collection of site-to-service maps, contributed by knowl-
came from a Flickr photo set and gives parameters for the edgeable developers. The site-to-service map describes the
user id associated with the set and for the number of images programmatically accessible components that are associated
to show (see Figure 21). Changing the parameters reloads the with a particular set ofURLs (see Figure 4). For example, on
page and applies the changes. the Flickr web site, pages of the form

Jane then opens Karen’s YouTube video page. For Karen’s http://flickr.com/photos/<username>/tags contain a list of
latest video, d.mix offers two choices: copy this particular image tags for a particular user, displayed as a tag cloud. A
file, or copy the most recent video in Karen’s stream. Be- user's tags can be accessed by calling the API method
cause Jane wants the video on her page to update whenever flickr.tags.getListUser and passing in a user id. Similarly,
Karen posts a new file, she chooses the latter option. photos corresponding to tags for a given user can be re-
Next Jane would like to layout the images and add some

text. She clicks on “edit source,” which displays an HTML Original page Prozy Rewrition page with
. . . Server API annotations

document, in which each of the three samples she inserted - ”
corresponds to a few lines of Ruby script, enclosed by a | re|
structuring <div> tag (see Figure 2g). She adds text and a vanes Gl rrRea
table structure around the images. Remembering that Scott Eee. alll] aae
also sometimes tags his images with “rocks,” she modifies meee 2 Sc a pastas | N

the query string in the corresponding script accordingly. HEL]
STE wees O1T@-tO-SErVICE Map

When she is satisfied with the rendered view of her active ERE (writtenin the d.mix wiki

wiki page, she emails the URL of the wiki page to her group To ’
Figure 3. d.mix annotates web pages using an HTTP proxy.

trieved by a call to CoE GdenemieskG 4] Corresponding
flickr. photos.Search. ra wai swe we wen 2| Flickr API calls
When the user is in sampling mode, or tn a Sn Jz Sven, EER to O flickr. photos.getinfol

d.mix’s programmable HTTP proxy an vor Why's otgrantlf SE photo_id= 298655528") title. . . Guide to Ruby “5% by whytheluckystiff Return the current photos title.rewrites the viewed web page, adding — Aythelckystie ifo= lick ohotos.cetinol
JavaScript ~~ annotations. ~~ These — ’ iii RA
annotations serve two functions. First, OE isp URLS nd
d.mix uses the site-to-service map to MiSY + * static flickr.com/”

derive the set of web service compo- J& Nop Injosserveridnents which may be sampled from the \ LJ oom 1”) i + info.attributed[id]
current page. It does so by searching Lpog 0.vl +=for known markup patterns— using \a=. Pier
XPath and CSS selectors — and IgSi4 Return the static URL for this image.recording the metadata that will be qb} Apassed on to web services as parame- pie = A - O flickrtags.getlistPhoto(

aTSR Additional Information photo_id= “298655528")

ters, such as a user or photo ID, a — SE Gorinton HTN ONE Ole
search term, or a page number. paises flickr.photos.search(tags = "poignant ...")
Second, d.mix’s annotation visually=eSe | pee BORIS BT
augments the elements that can be

sampled with a dashed border as an Figure 4. The site-to-service map defines a correspondence between HTML elements
indication to the user. and web service API calls. This graphic highlights this mapping for three items on Flickr.

In the other direction, the “stop sampling” bookmarklet parameterizing a source code stub for flickr.photos.search
takes a proxy URL, extracts the client site URL and sets it as and generates the context menu for the element.
the new browser location, ending access through the proxy.
oo In essence, the d.mix mapping code is performing on-the-fly

d.mix is implemented in the Ruby programming language. web scraping ofpages the developer is visiting to extract the
We chose Ruby to leverage the freely available needed information for code generation. While scraping can
programmable proxy, the mouseHole [4] and Ruby’s be brittle—matching expressions can break when site op-
metaprogramming libraries. erators change class or ID attributes of their pages, it is also
Parametric copy is achieved by generating web API code common practice in web development [16] since it is often
An annotation of an HTML __ the only way to extract data without cooperation of site op-

element (e.g., an image on a PGE erators. An important design decision in d.mix is to scrape at
photo site) comprises a set of #7 SHeZEES authoring-time, when the designer is creating pages such as
action options. For each op- & BE the Flickr-and-YouTube mash-up in the scenario. By
tion, a right-click context 1 Sill | scraping parameters first, d.mix’s user-created pages can in
menu entry is generated. turn make API calls at run-time, which tend to be more stable
Associated with each menu entry is a block of source code, than the HTML format of the initial example pages.

which in d.mix is Ruby script. The code generation routines We acknowledge that building these rewrite rules is
draw both upon the structure ofthe page (to know what class time-intensive and requires expertise with DOM querying
of items are there) as well as the content of the page (which through XPath or CSS. However, UI tools such as Solvent
specific items are there). [19] that support building DOM selectors visually could al-
As an example of how d.mix’s source-code generation low much of it to happen by demonstration. Providing a
works, consider a “tag cloud” page found on Flickr. All tags smooth process for creating the site-to-service maps is
are found inside the following structure: important, but is somewhat orthogonal to the contributions
<p id="TagCloud”> of this paper. As such, we leave it to future work. For this

WEa.Sy paper, the salient attribute is that the site-to-service map
</p> need be created only once per web site. This can be per-

The site-to-service mapping script to find each element and formed by a somewhat expert developer, and then all de-
annotate it is: signers wishing to use that site can leverage that effort.

@user_id=doc.at ("input [@name='w']") ["value"] Server-side active wiki hosts and executes scripts

doc.search("//pl@id='TagCloud']/a") .each do |link| d.mix’s active wiki is a space where developers can freely
tag = link.inner html]]

src = generate source (:tags=>tag, :user id=>@user id) mix text, HTML, and CSS to determine document structure,

Jonnotations += context menu (link, "tag description”, src) as well as Ruby script to express program logic. Whenever a
developer enters a new page name in the “Send to Wiki”

In this code example, the Ruby code makes use of the dialog on a sampled page, a new wiki page of that name is
Hpricot library [3] to extract the user’s id from a hidden created (if needed) and the generated source code is pasted
form element. It then iterates over the set of links within the into that wiki page. The developer is then shown the ren-

tag cloud, extracts the tag name, generates source code by dered version of the wiki page, in which the web API calls

that d.mix generated are executed and their result is shown. a problem for large scale deployment (many sites limit the

To see the associated web markup (HTML / CSS) and Ruby number ofrequests you can issue in an hour), we believe our
code, a user can click on the “edit” button as in any other solution works well for prototyping and for deploying situ-
kind of wiki. The markup and snippets of script are then ational applications with a limited number of users.
shown in a browser-based text editor, which has rudimen- Sharing is built-in as applications are hosted server-side.

tary syntax highlighting and line numbering. When the user An important attribute of the d.mix wiki is that public
clicks on the “save” button, the wiki source is saved, as a sharing is the default and encouraged state. An end-user can

new revision, and the user is redirected to the rendered ver- contribute their own site-to-service mapping for a web site

sion of the wiki page. In this rendered version, HTML, CSS, they may or may not own, or simply submit small fixes to
and JavaScript tags take effect, and the embedded Ruby these mappings as a web site evolves. If an end-user makes
code is evaluated by a templating engine, which returns a use of d.mix to remix content from multiple data sources,
single string for each snippet of Ruby code. another end-user can just as easily remix the remix—copy-

When evaluating Ruby code, the active wiki does so in a ing, pasting, and parameterizing the elements from one ac-
sandbox, to reduce the security risks involved. The sandbox tive wiki page to another.
has limited access to objects such as the File class, but can ADDITIONAL APPLICATIONS

maintain application state in a database or make web service In this section we review additional applications of d.mix
calls through SOAP, REST, or other web service protocols. beyond the use case demonstrated in the scenario.

In traditional web interface design, the user interface de- Existing web pages can be virtually edited
signers create a mockup in HTML which is later thrown over The same wiki-scripted programmable HTTP proxy that
the wall to the front-end engineers (or vice versa). By con- d.mix employs to annotate API-enabled web sites can also be
trast, the active wiki allows web UI designers to quickly used to remix, rewrite, or edit any web page, document, or
switch between rendered view, markup, (meta)data, and web application to improve a site’s usability, aesthetics, or
application logic, with less cognitive friction involved in accessibility, enabling a sort of recombinant web. As an
keeping the mappings between the Model, View, and Con- example, we have created a rewriting script on our wiki that
troller—the active wiki keeps track of this for them. provides a connection between a popular event listing site

Pasted material can be re-parameterized and edited and a third-party calendaring web application. By parsing
In comparison to a standard copy-and-paste operation, the the event's microformat on the event site and injecting a
notable advantage of our parametric copy is that an ele- graphical button, users can copy events directly to their
ment’s properties can be changed after the fact. To provide personal calendar. Because this remix is hosted on our active
rapid editing of the most common parameters of a pasted wiki, it is immediately available to any web browser.
element—namely those passed to a web service, our wiki Another example is reformatting of web content to fit the
offers graphical editing of parameters through property smaller screen resolution and lower bandwidth of mobile

sheets, implemented as floating layers in JavaScript. devices. Using d.mix, we wrote a script that extracts only

Widget-based wiki platforms (e.g, [10]) also offer pa- essential information—movie names and show times—from
rameter-based editing oftheir widgets —but typically do not a cluttered web page. This leaner page can be accessed
offer access to the underlying widgets’ source-code repre- through its wiki URL from any cell phone browser (see
sentation. In contrast, d.mix generates Ruby script, which Figure 5). Note that the reformatting work is executed on the
can be edited directly. server and only the small text page is transmitted to the

phone. d.mix’s server-side infrastructure made it possible to

Like other development environments, the active wiki offers develop, test, and deploy this service in 30 minutes. In con-
versioning and importing of code living elsewhere on the trast, client-side architectures such as Greasemonkey [2] do
wiki. It does not yet support WYSIWYG wiki editing, but not work outside the desktop environment, while server-side
such functionality could be supported in the future. proxies can only be configured by administrators.
As a test of the complexity of code that can be written in a | |
wiki environment, we implemented all site-to-service map- ——

ping scripts as wiki nodes. This means the wiki scripts used ze 1 o Da)
to drive the programmable proxy and thus create new wiki SECE -_ln

pages are, themselves, wiki pages. To allow for modulari- Et oviesplayngsemy
zation of code, a wiki page can import code or libraries from ee mms aa ar

other wiki pages (analogous to “#include” in C or import in ng — |Java). 2 a pip
The generated code makes calls into Ruby modules that we mm A,
define, which broker communication between the active el i

wiki script and the web services. For example, users’ Ruby eo | oa |
scripts must reference working API keys, which are often TT
needed to make web service calls to popular web APIs. Figure 5. The rewriting technology in d.mix can be used to

tailor content to mobile devices. Here, essential information

While using a small static number ofweb API keys would be is extracted from a movie listings page.

Beyond web-only applications rla, BE a Gates 390 Light Control

The scenario presented in this paper focused on data-centric eg Fo - eT
APIs from successful websites with large user bases. While ro nl bi g \| = _—
such applications present the dominant use case ofmash-ups rm 1 2, i | Bw
today, we also see opportunity for d.mix to enable de- 1 e5- -
velopment of situated ubiquitous computing applications. A =] » =
wide variety of ubicomp sensors and actuators are equipped |

with embedded web servers and publish their own web ser- _ |

vices. This enables d.mix's fast iteration cycle to extend the , a 1

“remix” functionality into physical space. To explore d.mix hore 27 i -
design opportunities in web-enabled ubicomp applications, a i Wy

we augmented two smart devices available in our lab to > 4 y "
support API sampling: a camera that publishes a feed of lab -omi
activity, and a web-controlled power outlet. Combining er i :
elements from both servers, we created a wiki page that al- EE
lows remote monitoring of lab occupancy to turn off room Figure 6. An example of a d.mix ubicomp mashup: web
lights if they were left on at night (see Figure 6). services provide video monitoring and lighting control.

More important than the utility of this particular example is this direction for the web [22]—we believe further efforts in
the architectural insight gained: since the web services ofthe this direction to be a promising avenue for future work.

camera and power outlet were open to us, we were able to Informants saw the merits of the d.mix approach to extend
modify their web pages and embed API annotations with the beyond the PC-based web browser. A researcher at an in-
services. This proof of concept demonstrated that web ser- dustrial research lab expressed interest in creating an “elastic
vice providers can integrate support for API sampling di- office,” where web-based office software is adapted for
rectly into their pages, obviating the need for a separate mobile devices. This focus on mobile interaction encour-
site-to-service map on the d.mix server. aged our interest in using a mash-up approach to tailoring
FEEDBACK FROM WEB PROFESSIONALS web applications for mobile devices (see Figure 5).

As d.mix matured, we met weekly with web designers to Informants also raised the broader implications of a mash-up
obtain feedback for a period of eight weeks. Some of these approach to design. A user experience designer and a plat-
meetings were with individuals, others were with groups; form engineer at the offices of a browser vendor raised
the largest group was 12. We mostly recruited informants at end-user security as an important issue to consider. At a
professional events; informants included attendees of sev- fashion-centered web startup, a web developer brought our
eral Ruby programming language user groups, web devel- attention to the legal issues involved in annotating sites in a
opers at startup companies in Silicon Valley, and researchers public and social way.
at industrial research labs interested in web technologies. . : : :

Our recruiting method yielded informants with more exper-

Perhaps the most important issue raised by informants was tise than d.mix’s target audience; consequently, they asked
one of scale. An early informant was a web developer at a questions about—and offered suggestions for raising—the
Bay Area calendaring startup. He was most interested in the ceiling ofthe tool. In a group meeting with 12 web designers
technology to allow rewriting of third party pages through and developers, informants expressed interest in creating
scripts shared on a wiki. He saw performance as well as annotations for a new API, and asked how time-consuming
legal hurdles to grow our approach to many simultaneous this process was. We explained that annotation in d.mix
users. Another team voiced similar concerns, particularly requires 5 to 10 lines per element; this was met with a posi-
about scaling issues arising from the limits imposed by web tive response. A suggestion they offered for future work was
services as to how many API calls a user can make. Scaling for d.mix to fall back to HTML scraping when sites lack APIs.
concerns are clearly central to the question of whether a

mash-up approach can be used to create wide-distribution EVALUATION C
web applications; however, they are less critical for tools We conducted a first-use evaluation study with eight par-
such as d.mix that are primarily designed for prototyping ticipants: seven were male, one female; their ages ranged
and situated software. from 25 to 46. We recruited participants with at least some

web development experience. All participants had some

As the reach of mash-ups expands, informants were inter- level of college education; four had completed graduate
ested in how users and developers might locate relevant school. Four participants had a computer science education;
services. Several informants, including a JavaScript devel- one was an electrical engineer; three came from the life
oper at a web-based instant-messaging startup, suggested sciences. As recruiting developers with Ruby experience
that it was important to consider how tools might aid users in proved difficult, only 4 participants had more than a passing
finding new components. They noted that while services are knowledge of this scripting language. Everyone was familiar
rapidly proliferating, there is a dearth of support for search with HTML; six participants were familiar with JavaScript;
and sensemaking in this space. Mackay [23] and MacLean and six with at least one other high-level scripting language.
[24] have explored the social side of end-user-created Four participants had some familiarity with web APIs, but
software—and the recent Koala work has made strides in

only two had previously attempted to build a mash-up. First, participants commented on the advantage of having a

Study Protocol browser-based editing environment. There was “minimum
Study sessions took approximately 75 minutes. We made setup hassle,” since “you don’t need to set up your owny pp y , ie : Re

three web sites with APIs available for sampling—Yahoo! Servet. 0ne participant s comments sum up this point suc-
web search, the Flickr photo sharing site, and YouTube, a cinctly: “I don’t know how to set up a Ruby/API environ-

: : : : : ment on my web space. This lets me cut to the chase.”
video sharing site. For each site, d.mix supported annota-

tions for a subset of the site’s web API. For example, with Second, participants also highlighted the gain in develop-
Flickr, participants could perform full-text or tag searches ment speed. Participants perceived code creation by select-
and copy images with their metadata, but they could not ing examples and then modifying them to be faster than
extract user profile information. Participants were seated at a writing new code or integrating third party code snippets.

single-screen workstation with a standard web browser. We Third, participants felt that d.mix lowered the expertise
first demonstrated d.mix’s interface for sampling from web threshold required to work with web APIs because they were
pages, sending content to the wiki, and editing those pages. not required to search or understand an API first. A web
Next, we gave participants three tasks to perform. development consultant saw value in d.mix because he felt it
The first task tested the overall usability of our approach— would enable his clients to update their sites themselves.

participants were asked to sample pictures and videos, send Shortcomings
that content to the wiki, and change simple parameters of We also discovered a range of challenges our participants
pasted elements, e.g., how many images to show from a faced when working with d.mix. Universally, participants
photo stream. The second design task was similar to our wished for a larger set of supported sites. This is a not a tri-
scenario—it asked participants to create an information vial request since annotation of web pages requires devel-
dashboard for a magazine’s photography editor. This re- oper work. A longer public deployment is needed to gauge
quired combining data from multiple users on the Flickr site whether d.mix users can and will generate their own site-
and formatting the results. The third task asked participants to-service maps on the wiki.
to create a meta-search engine—using a text input search
form, participants should query at least two different web Other shortcomings discovered can be categorized into
services and combine search results from both on a single conceptual problems related to the action of sampling; dif-
page. This task required generalizing a particular example ficulty of multi-language development; insufficient er-
taken from a website to a parametric form by editing the ror-handling support in the wiki; and lack of documentation.
source code d.mix generated. Figure 7 shows two pages that Inconsistent model of our sampling implementation
one participant produced using d.mix. After completing the Participants were confused by limitations in what source
tasks, participants filled out a qualitative questionnaire on elements were “sampling-aware.” For example, to specify a
their experience and were also debriefed verbally. query for a set of Flickr images in d.mix, the user currently

Successes must sample from the link to the image set, not the results.
On a high level, all participants understood and successfully This Suggests that the dix architsciurs should always
used the workflow ofbrowsing web sites for desired content enable sampling from both the source and from the largel
or functionality, sampling from the sites, sending sampled page. Also, where there is a genuine difference in etiedt,
items to the wiki, and editing items. Given that less than one distinct highlighting treatments could be used to convey this.
hour oftime was allocated to three tasks, it is notable that all Participants complained about a lack of visibility whether a

participants successfully created dynamic pages for the first given page would support sampling or not. Since rewriting
two tasks. In task 3, five participants created working me- pages through the d.mix proxy introduces a page-load delay,
ta-search engines (see Figure 7). However, for three of the

participants without Ruby experience, its syntax proved a

hurdle; they only partially completed the task. Eeetwn ot
Our participants were comfortable with editing the gener- | Ambedros Dashboard

ated source code directly, without using the graphical yproperty editor. Making the source accessible to participants han ms = |B
allowed them to leverage their web design experience. For firey ee i

example, multiple participants leveraged their knowledge of nralo+- |
CSS styles to change formatting and alignment of our gen- poresstoierens
erated code to better suit their aesthetic sensibility. Copy and in ‘ i NR TTnes —
paste within the wiki also allowed participants to reuse their Pen 8 ii” TERA pv oe romain vere. |
work from a previous task in a later one. NEESSE on ag at re cy si
In their post-test responses, participants highlighted three -
main advantages that d.mix offered to them compared to Figure 7. Two pages a participant created during our user
their existing toolset: elimination of setup and configuration study. Leff image: Information dashboard for a magazine
barriers; enabling of rapid creation of functional web ap- editor, showing recent relevant images of magazine pho-
plication prototypes; and lowering of expertise threshold. tographers. Right image: Meta-search engine showing both

relevant web pages and image results for a search term.

participants browsed the web sites normally, and only turned RELATED WORK
on the sampling proxy when they had found elements they d.mix draws on existing work in three areas. First, it draws
wished to sample. Only after this action were they able to on research for end-user modification of the web. Second, it
find out whether the page was enhanced by d.mix. One relates to tools that lower the threshold of synthesizing web
means of addressing this is to provide feedback within the applications. Third, d.mix relates to projects that deal with
browser as to whether the page may be sampled; another locating, copying, and modifying program documentation
would be to minimize the latency overhead introduced and examples. We discuss each area in turn.

through the proxy so that users can always leave their Tools for end-user modification of web experiences
browser in sampling mode. Greasemonkey [2], Chickenfoot [9] and Koala [22] are cli-
Multi-language scripting ent-side Firefox browser extensions that enable users to re-

Dynamic web pages routinely use at least three different write web pages and automate browsing activities.

notation systems: HTML for page structuring, JavaScript for Greasemonkey enables the use of scripts that alter web
client-side interaction logic, and a scripting language such as pages as they are loaded; users create these scripts manually,
Ruby for server-side logic. This mixing of multiple pro- generally using JavaScript to modify the page’s Document

gramming languages in a single web page introduces both Object Model (DOM). Chickenfoot builds on Greasemon-

flexibility and confusion for web developers. key, contributing an informal syntax based on keyword

d.mix’s property sheets implementation exacerbated this pattern matching; the primary goal of this more flexible
complexity. It wrapped the generated Ruby code in a HTML syntax was to enable users with less scripting knowledge to
<div> element whose attributes were used to construct the create scripts. Koala further lowers the threshold, bringing to

graphical editor, but were also read by the Ruby code inside the web the approach of creating scripts by generalizing the
the tag to parameterize web API calls. Participants were demonstrated actions of users (e.g., [11, 26]).Of this prior
confused by this wrapping and unsuccessfully tried to insert work, Koala and d.mix are the most similar. d.mix shares
Ruby variables into the <div> tag. with Koala the use of programming-by-demonstration

techniques and the social-software mechanism of sharing

Lack of documentation & insufficient error handling scripts server-side on a wiki page. d.mix distinguishes itself
Many participants requested more complete documentation. in three important ways. First, Chickenfoot and Koala are
One participant asked for more comments in the code ex- end-user technologies that shield users from the underlying
plaining the format of API parameters. For example, two representation. d.mix’s approach is more akin to visual web
participants struggled to modify an image-search call to development tools such as Adobe Dreamweaver [1], using
support multiple parameters. A related request was to pro- visual representations when they are expedient, yet also
vide structured editors in the graphical property sheets that providing access to the code. Supporting direct editing of
offered alternative values and validated data entry. source enables experts to perform more complex operations;
Participants also complained that debugging their wiki it also avoids some of the “round-trip” errors that can arise
pages was hard. Several participants complained about the when users iteratively edit an intermediate representation.
“incomprehensible error messages” that syntax and execu- Second, prior work focuses on automating web browsing
tion errors generated. d.mix currently catches and displays and rewriting web pages using the DOM in the page source—
Ruby sandbox exceptions, along with the source code that they do not interact with web service APIs directly. In con-
generated the exception. trast, d.mix leverages the web page as the site for users to

How to go beyond the wiki environment? demonstrate content of interest; d.mix’s generalization step
Participants valued the active wiki for its support of rapid maps this to a web service API, and stores API calls as its
prototyping. However, because ofa perceived lack of secu- underlying representation. Third, with d.mix, the code is
rity, robustness and performance, participants did not regard actually executed server-side, in addition to being stored
the wiki as a viable platform for larger deployment. One server-side. In this way, d.mix takes an infrastructure service
participant remarked, “I’d be hesitant to use it for anything approach to support end-user remixing of web pages. This
other than prototyping” and two others expressed similar approach obviates the need for users to install any software
reservations. Our motivation was to target situational ap- on their client machine, and the increasing use of the web as
plications with a small number of users. A real-world de- a software platform provides evidence as to the merit of this
ployment would be needed to determine if the wiki is a approach.
suitable platform for deploying situational web applications. Tools for end-user synthesis of web experiences

Usability problems In addition to tools that support modification of a web page’s
Two smaller usability problems that disrupted participants’ DOM, there are several tools that lower the expertise thre-
work were also discovered: from experience with shopping shold required to create web applications that synthesize data
carts on commerce web sites, participants expected the from multiple pre-existing sources. Most notably, Yahoo!
sampling bin to be persistent across different pages within a Pipes [6], Open Kapow [5], and Marmite [34] are tools that
web site. Participants also wished that the “send to wiki” employ a dataflow approach for working with web services.
dialog offered a drop-down list of existing wiki pages in- Yahoo! Pipes also offers a visual node-and-link editor for
stead of requiring them to enter a full page name each time. manipulating web data sources. It focuses on visually re-

writing RSS feeds. Open Kapow offers a desktop-based

visual editing environment for creating new web services by in rich format, e.g., as a contact record into Microsoft Out-
combining data from existing sites through API calls and look. d.mix extends idea of structured copy into the domain

screen scraping. Services are deployed on a remote of source code. With d.mix however, the structuring is

“mash-up server.” The main difference between these sys- performed by the extensible site-to-service map as opposed
tems and d.mix is that Kapow and Pipes are used to create to through a hard-coded set of templates.

web evices meant of ae consumption, not LIMITATIONS AND FUTURE WORK
AppHCALIOns Or pages INIENACC AITCCLLy 101 USCIS. This section discusses limitations of the current implemen-
The Marmite browser extension draws on the dataflow ap- tation of d.mix and implications for future work.

proach manifest in Unix pipes and more recent visual tools, The ori : : :, : : : ¢ primary concern of this paper is an exploration of the
such as Apple’s Automator. The sources in Marmite consist : : : :

: . approach of authoring by sampling, not with the details of a
of calls to web services and the use of Marmite’s screen : :

. oo public deployment of such a tool. As such, there are security
scraper. Perhaps Marmite’s strongest contribution to NTP

: SUR and authentication issues that a widely-released tool would
end-user programming for the web lies in its linked repre- ,

: ; : need to address. Most notably, the current d.mix HTTP proxy
sentation of program implementation and state: the imple- : : :Co. does not handle cookies of remote sites as a client browser
mentation is represented through visual data flow and the : : « : a

RENEE would. This precludes sampling from the “logged-in web
current state is visualized as a spreadsheet. The user ex- : CL :

: CL .) —pages that require authentication beyond basic API keys.
perience benefit of this linked view is an improved under- So oT oo

standing of application behavior. Unlike d.mix, Marmite A second limitation is that using d.mix is currently limited to
applications run client side. An additional distinction from sites that are amenable to web scraping—i.e., those that
d.mix is that the end-user approach of Marmite is based on generate static HTML,as opposed to sites that rely heavily on
visual dataflow. One of the challenges of data flow, as the AJAX or Flash for their interfaces.
Marmite authors note, is that users have “a hard time Third, a comprehensive tool should offer support both for
knowing what operation to select” —we suggest that the working with content that is accessible through APIs and
direct manipulation embodied in d.mix’s program- content that is not [16]. d.mix could be combined with ex-
ming-by-demonstration ~~ approach ameliorates this isting techniques for scraping by demonstration.

gulf-of-execution | 18] challenge. Lastly, while d.mix is built on wikis, a social editing tech-
IBM’s QEDWIiki uses a widget-based approach to con- nology, we have not yet evaluated how use by multiple de-
structing web applications in a hosted wiki environment. velopers would change the d.mix design experience. Prior
QEDWiki’s widgets are similar to Marmite’s data sinks. This work on desktop software customization has shown that
approach suggests two distinct communities—those that people do share their customization scripts [23]. It would be
create the widget library elements, and those that use the worthwhile to study to what extent this holds to rewriting the
library elements—echoing prior work on a “tailoring cul- web, and what characteristic differences there are in this
ture” within Xerox Lisp Buttons [24]. d.mix shares QED- domain. It is our goal to have an open deployment in the
Wiki’s interest in supporting different “tiers” of develop- future to study these questions.
ment, with two important distinctions. First, d.mix does not) bx |) CONCLUSIONS
interpose the additional abstraction of creating graphical : : :

: Co : : : We have introduced the technique of programming by a
widgets; with d.mix, users directly browse the source site as : : : :

: DUNNE : sample through d.mix, a tool that embodies this technique.
the mechanism for specifying interactive elements. Second, : : 1s :

: : coe poets d.mix addresses the challenge of becoming familiar with a
d.mix better preserves the underlying modifiability of re- : :) : :

: Co : : web service API and provides a rapid prototyping solution
mixed applications by exposing script code on demand. :

structured around the acts of sampling content from an

Finding and appropriating documentation and code API-providing web site and then working with the sampled
The literature has shown [13, 16, 20] that programmers often content in an active wiki. Our system is enabled on a con-
create new functionality by finding an example online or in a ceptual level by a mapping from HTML pages to the API calls
source repository —less code is created tabula rasa than that would produce similar output. On a technical level, our
might be imagined. Recent research has begun to more fully system is enabled by a programmable proxy server and a
embrace this style of development. The Mica system [32] sandbox execution model for running scripts within a wiki.
augments existing web search tools with navigational Together with our past work [15, 17] we regard d.mix as a
structure specifically designed for finding API documenta- building block towards new authoring environments that
tion and examples. While Mica and d.mix both address the facilitate prototyping of rich data and interaction models.
information foraging issues [29] involved in locating ex-

ample code their a roachesa ely com lementar ACKNOWLEDGMENTS
b bp 2 b 4 We thank Leith Abdulla for programming and video

Several tools have supported mechanisms for copying web production help, whytheluckystiff for Ruby support, and
content and interface widgets in a structured manner [14, 28, Wendy Ju for comments on this paper.
30]. Most related to d.mix, Citrine [33] introduced tech-

niques for structured copy and paste between desktop ap-

plications, including web browsers. Citrine parses copied

text, creating a structured representation that can be pasted

REFERENCES 19 Huynh, D. and S. Mazzocchi, Solvent Firefox Extension,

1 Dreamweaver, 2007. Adobe Inc. 2007. http://simile.mit.edu/wiki/Solvent

http://www.adobe.com/products/dreamweaver 20 Kim, M., L. Bergman, T. Lau, and D. Notkin, An Eth-
2 Greasemonkey, 2007. http://greasemonkey.mozdev.org nographic Study of Copy and Paste Programming Prac-

3 Hpricot, afast and delightful HTML parser, 2007. tices in OOPL, in Proceedings ofthe 2004 International
http://code.whytheluckystiff.net/hpricot Symposium on Empirical Software Engineering. 2004,

4 The MouseHole scriptable proxy, 2007. IEEE Computer Society.
http://code.whytheluckystiff.net/mouseHole 21 Lieberman, H., ed. Your Wish is my Command. ed.

5 Open Kapow, 2007. Kapow Technologies. Morgan Kauiimana. 416 pp., 2001.
hitp://www.openkapow.com 22 Little, G., T. A. Lau, J. Lin, E. Kandogan, E. M. Haber,

6 Pipes, 2007. Yahoo! http://pipes.yvahoo.com and A. Cypher. Koala: Capture, Share, Automate, Per-
.. sonalize Business Processes on the Web. In Proceedings

7 Service-oriented computing. Communications ofthe of CHI 2007: ACM Conference on Human Factors in
ACM, M.P. Papazoglou and D. Georgakopoulos, ed. Computing Systems, 2007.
Vol. 46. 23 Mackay, W. E., Patterns of sharing customizable soft-

8 Anderson, C., The Long Tail: Random House Business. ware, in CSCW 1990: ACM conference on Com-
2006. puter-supported cooperative work. 1990.

9 Bolin, M., M. Webber, P. Rha, I. Wilson, and R. C. 24 MacLean, A., K. Carter, L. Lovstrand, and T. Moran,
Miller, Automation and customization of rendered web User-tailorable systems: pressing the issues with buttons,
pages, in UIST2005: ACMSymposium on User Interface in CHI 1990: ACM Conference on Human Factors in
Software and Technology. 2005. | Computing Systems. 1990.

10 Curtis, B., W. Vicknair, and S. Nickolas, QEDWiki, 25 Myers, B., S. E. Hudson, and R. Pausch. Past, Present,
2007. IBM Alphaworks. oo and Future of User Interface Software Tools. ACM
http://services.alphaworks.ibm.com/qedwiki/ Transactions on Computer-Human Interaction 7(1). pp.

11 Cypher, A. EAGER: programming repetitive tasks by 3-28, 2000.
example, mn CHI: ACM Conference on Human Factors 26 Myers, B. A., Peridot: Creating User Interfaces by De-
in Computing Systems. 1991. monstration, in Watch WhatIDo: Programming by

12 Cypher, A., ed. Watch What I Do - Programming by Demonstration. MIT Press. pp. 125-53, 1993.
Demonstration. MIT Press: Cambridge, MA. 27 Nardi, B. A., A Small Matter ofProgramming: Per-
632 pp., 1993. spectives on End User Computing. Cambridge, MA:

13 r airoanks. Ne oarlan, and W, Scherlss, Design ; MIT Press. 1993.ragments make using frameworks easier, in Proceed- : : :

ings ofthe 21stannualACMSIGPLANconference on 28 Drie RK, Livefr°ar207
puSorenACSystems, ranguages, an 29 Pirolli, P. and S. Card. Information Foraging. Psycho-

14 Fujima, J., A. Lunzer, K. Hornb, and Y. Tanaka, Clip, logical Review 106(4). pp. 643-75, 1999.
connect, clone: combining application elements to build 30 schraefel, m. c., Y. Zhu, D. Modjeska, D. Wigdor, and S.
custom interfaces for information access, in UIST 2004. Zhao. Hunter Gatherer: Interaction support for the cred”
ACMSymposium on User Interface Software and tion and management of within-web-page collections. In
Technology. 2004. Proceedings ofInternational World Wide Web Confer-

15 Hartmann, B., L. Abdulla, M. Mittal, and S. R. Klemmer. ence. Pp. bp. ! 72-81, 2002.
Authoring Sensor Based Interactions Through Direct 31 Shirky, C., Situated Software, 2004.
Manipulation and Pattern Matching. In Proceedings of http://www .shirky.com/writings/situated_software.html
CHI 2007: ACM Conference on Human Factors in 32 Stylos, J. and B. Myers. A Web-Search Tool for Finding
Computing Systems, 2007. API Components and Examples. In Proceedings ofIEEE

16 Hartmann, B., S. Doorley, and S. R. Klemmer, Hacking, Sympostum on Visual Languages and Human-Centric
Mashing, Gluing: A Study ofOpportunistic Design and Computing. pp. 195-202, 2006.
Development. Technical Report, Stanford University 33 Stylos, J., B. A. Myers, and A. Faulring, Citrine: pro-
Computer Science Department, October 2006. viding intelligent copy-and-paste, in UIST 2004: ACM

17 Hartmann, B., S. R. Klemmer, M. Bernstein, L. Abdulla, Symposium on User Interface Software and Technology.
B. Burr, A. Robinson-Mosher, and J. Gee. Reflective 2004.
physical prototyping through integrated design, test, and 34 Wong, J. and J. Hong. Making Mashups with Marmite:
analysis. In Proceedings of UIST2006: ACMSymposium Re-purposing. In Proceedings of CHI 2007:ACM Con-
on User Interface Software and Technology, 2006. ference on Human Factors in Computing Systems, 2007.

18 Hutchins, E. L., J. D. Hollan, and D. A. Norman. Direct

Manipulation Interfaces. Human-Computer Interaction

1(4). pp. 311-38, 1985.

