Slicing SAL
CSL Technical Report

Vijay Ganesh, Hassen Saidi, Natarajan Shankar
SRI International, Menlo Park, CA
{vganesh,saidi, shankar }@csl.sri.com

October 7, 1999

Abstract

Model checking has been successfully applied to verify finite-state sys-
tems albeit ones with small state-space. But most interesting systems have
very large or infinite state-spaces. Automatic Abstraction techniques can
help alleviate the state-space explosion problem to some extent. Another
complementary approach is the use of program slicing to automatically
remove portions of the input transition system irrelevant to the property
being verified. This may result in state-space reduction. The reduced state
system, if finite, may then be more amenable to model checking.

In this paper we discuss application of slicing to the SAL intermediate
language. SAL intermediate language (or just SAL) is a concurrent lan-
guage designed so that popular programming languages can be converted
to SAL and whole set of Abstraction, Program Analysis, Theorem Proving
and Model Checking tools/techniques can be combined and methodologies
defined to verify large state systems. We describe a novel algorithm for
slicing SAL and report on its implementation. It is one of the few slicing
algorithms which deal with concurrency. We also discuss methodologies
for combining slicing and other techniques to enable verification of larg-
er state systems, use of theorem proving techniques to refine slicing, and
techniques to convert temporal formulae into slicing criteria.

1 Introduction

Model checking [CES83, QS82] has proved very useful in verifying relatively small
finite state systems in a highly automated fashion. To enable highly automat-
ed verification of larger systems researchers have turned to automatic abstrac-
tion techniques [GS97, PHI7, CU98, BLOY8], methodologies to combine theo-
rem proving and model checking [BBC*96, ORR196, Sai97] and very recently

to program analysis techniques. Automatic abstraction techniques help in mak-
ing larger systems more tractable for model checking. Program analysis can
complement automatic abstraction in many ways. e.g. they can help discover
predicates as required by Predicate Abstraction [SS99]. More importantly certain
Program Analyses like Slicing can help remove code irrelevant to the property
under consideration from the input transition systems. Slicing can help reduce
the state-space of the system resulting in a safe approximation,and remove irrel-
evant components of the input software thus easing the subsequent verification
process.

Slicing was first reported by Mark Weiser [Wei84] as a technique to under-
stand very large and complex programs. Slicing has been used extensively by the
software engineering community to build debuggers and program understanding
tools. Many slightly varying definitions of slicing exist [Tip95], but we shall use
the following one. A static slice (henceforth referred to as a slice) of a pro-
gram is defined as those parts of the program that can potentially affect a slicing
criterion. A slicing criterion is (in our case) a set of program variables.[OL84]
describes slicing as graph reachability on a Program Dependence Graph (PDG)
of the program. [BH92| report on a slicing algorithm for arbitrary control flow.

In SAL, we envision combining Slicing with other techniques to verify large
systems. We envisage slicing as a pre-processing step before transition systems are
fed to the verification tools and conversely use verification techniques to improve
slicing.

This report is organized as follows. In Section 2 we provide a brief description
of SAL intermediate language. In Section 3 we provide definitions and finally
describe the slicing algorithm. In section 4 we describe the methodologies for
combining slicing with existing verification tools to verify larger designs. In sec-
tion 5 we describe related work. In section 6 we describe future work. In this
section we also discuss use of decision procedures to further refine slicing and
issues related to conversion of temporal formulae into slicing criterion. In section
7 we present conclusions.

2 SAL Intermediate Language

SAL (Symbolic Analysis Laboratory) is a framework for combining different tool-
s for abstraction, program analysis, theorem proving and model checking [BSS].
This framework aims to leverage the above techniques to bring greater automa-
tion in verifying larger/infinite state-space systems. The SAL intermediate lan-
guage (henceforth referred to merely as SAL) is a concurrent language designed
to describe both hardware and software systems as transition systems. This lan-
guage serves as the target for translators that extract transition systems from
specification and programming languages like Esterel, Java, Verilog etc. SAL is
quite similar to SMV [McM92] and reactive modules [AH96]. Each SAL program

consists of collection of modules. Modules may be composed synchronously or
asynchronously. Each module consists of guarded transitions and initializations.
Each module has input/output variables through which the module communi-
cates with other modules or its environment. The module may also have local
variables not visible outside the module. The Expression language of SAL is as
rich as the expressions in Java or Verilog. SAL supports composite data types like
arrays and records besides boolean, real, integer, natural, subrange etc..For the
purposes of our discussions we need only concentrate on the ’guarded transitions’
part of SAL. Please refer [BSS] for further information on SAL.

Each Guarded transition (or Guarded Command) consists of a guard and
an assignment part. The guard is a boolean expression in the current controlled
(local and output) variables and current and next observed (input) variables. The
assignment part is a list of equalities between the next of left hand side variable
and a right hand side expression in current and next variables. Each assignment
inside a guarded command can be executed simultaneously.

3 Slicing SAL

The input to the slicing algorithm consists of the slicing criterion and a SAL
program which may be synchronously or asynchronously composed of multiple
modules. The slicing criterion is merely a set of local /output variables of a subset
of the modules in the input SAL program. The output of the slicing algorithm
is another SAL program similarly composed of modules wherein irrelevant code
from each module has been sliced out. For every input module there will be an
output module, empty or otherwise. In a nutshell the slicing algorithm does a
dependency analysis of each module and computes backward transitive closure
of the dependencies. This transitive closure would take into return only a subset
of all transitions in the module. We call these transitions as observable and
the remaining transitions are called as 7 or silent transitions. We replace silent
transitions with skips.

The following definitions are necessary to describe the slicing algorithm. The
algorithm is described in detail in section 4

3.1 Slice

A program slice consists of the parts of a program P that may potentially affect
the slicing criterion at some point of interest in the program. In our case we do
not explicitly specify any points of interest but put the restriction that the slice
will behave as a projection of the original program with respect to the variables
specified in the slicing criterion. Our algorithm handles arbitrary control flow.

modulel: CONTEXT =
BEGIN

modulel: MODULE =
BEGIN

OUTPUT a : boolean

INPUT x : natural

LOCAL PC_1 : natural,yl : natural,

y2 : natural

INIT

TRUE -->
PC_1
yi =
y2 =
a = true;

NEXT

(PC_1 = 1) -—>
next(yl) =
next (PC_1)

1; //control variable

b

S O

b

1;
= 2’

(PC_1 = 2) -—>
next(yl) = x + 1;
next(a) = false;
next(PC_1) = 3;

(PC_1 = 3) -—>
next(a) = true;
next(y2) = x + 1;
next(PC_1) = 1;

MODULE-1

module2: CONTEXT =
BEGIN

module2: MODULE =
BEGIN

OUTPUT x : natural;
INPUT a : boolean, z : natural
LOCAL PC_2 : natural

INIT
TRUE -->
PC_2 = 1;//control variable
x = 0;
NEXT
(a AND PC_2 = 1) -—>
next(x) = x + 1;

next(PC_2) = 2;
(a = false AND PC_2 = 2) -—>

next(x) =z + 1;
next(PC_2) = 2;

MODULE-2

Figure 1: A sample SAL code with three modules. third module, which produces

output z in turn an input to module-2, is not shown here

3.2 Slicing Criterion

The slicing criterion is defined as a set of output/local variables of some mod-
ule(s), S = {vl,v2,---}. The slicing criterion may not include variables input
from the environment. Unlike the definition of slicing criterion in other algo-
rithms, our definition does not have a reference to a state/node of the control
flow graph(CFG) of the SAL program. In the context of SAL, which is primarily
designed for reactive systems, it is not always sensible to slice backwards from an
arbitrary node and ignore all susbsequent nodes from this arbitrary node. Reac-
tive systems generally tend to be non-terminating and constantly reacting to the
environment. This implies that these systems have a big outer loop and hence
slicing from any arbitrary node may result in slicing the whole system. Hence to
be most general, the slicing criterion does not refer to any particular node. Also,
in SAL there is no general concept of an exit control node, hence we arbitrarily
assume the node with highest value for the control variables to be the exit control
node.

3.3 Program Dependence Graph

The Program Dependence Graph (PDG) of a program is defined as a Control
Flow Graph (CFG) augmented with dependency edges. A CFG consists of nodes
where each node represents a control state and edges represent flow of control in
the program. Every CFG has a start node. A control node/state in the program
is defined by the values of the control variables. Any variables in the program
with a finite subrange can potentially act as a control variable. We require the
user to mark the control variables in each module. Our slicing algorithm converts
each module into a CFG then decorates it with dependency edges to construct
the PDG.

A control node of the PDG corresponds to a guarded transition in SAL. The
node contains the guard and assignments. One or more of the assignments will
define the control variables for the next control state. Please see figure 2 for a
PDG.

3.4 Dependency Edges

An edge between two nodes in a CFG is called a dependency edge if the two
nodes are related by a dependency relation. We need to consider only data
dependence and control dependence[Tip95]. There are many forms of data de-
pendence like flow dependence, output dependence [Tip95] etc. but we need only
flow dependence for our purposes. Our Slicing algorithm preserve the control flow
of the module and hence we do not consider control dependence.//hassen:think
about a counter-example in which we illustrate that if the control structure is
not preserved then branching bisimulation cannot be achieved. As explained ear-

lier,those transitions in the program which are not in the slice are replaced by
skips. To collapse the skips we use branching bisimulation algorithm [?].

3.5 Data Dependence

The sets DEF (i) and REF (i) denote the sets of variables defined and referenced
at CFG node i, respectively. We say a variable is defined when it is assigned. We
say a control node j is data dependent on node i if there exists a variable x such
that:

x € DEF(i)
r € REF(j)
there exists a path between from 7 to j without intervening definitions of x.

3.6 Control Dependence

Control Dependence is defined in terms of post-dominance. A node 7 in the CFG
is post-dominated by a node j if all paths from 7 to the EXIT node pass through
j- A node j is control dependent on a node 17 if:

There exists a path P from 7 to j such that any node in P is post-dominated by j
But ¢ is not post-dominated by j

3.7 Special considerations for SAL

As described earlier a typical SAL program is composed of modules. Each module
may modify certain output variables. These output variables may be fed back
into any module(s) as input or can go back to the environment. A SAL program
can be compared to a circuit composed of chips (modules). The slicing algorithm
computes a backward transitive closure of the dependences.

The following two possibilities need consideration. An output variable may be
completely ignored by the dependency analysis. In this case we do not consider
the definitions of that output variable or its references any further. Certain
definitions of an output variable may be captured by the dependency analysis and
certain other may not. In this case we have to forcibly include every definition
of this output variable. This has to be done to preserve the non-deterministic
behavior of SAL programs. consider the following scenario in which there are
two modules,modulel and module2, in a SAL program. The output variable,a, of

6

modulel is fed into module2. The dependency analysis ignores a certain definition
of a, def(a), in modulel. Let the control node corresponding to def(a) be C(a).
If in the original program modulel stopped after the node C(a), the value of
the input to module2 would be defined by def(a). If this definition is ignored in
the sliced output then for the same scenario the sliced program would misbehave.
Many other scenarios can be drawn up but the essential point is that all definitions
of dependent output variables and their dependences need to be captured. The
same argument does not apply to local variables since they do not interact outside
of the module.

SAL, unlike java, has only certain types of dependences for the shared vari-
ables. The input/output ports of a module are implemented thru’ shared in-
put/output variables. An output variable is modified by only one module but
can be read by multiple modules. In java, the same shared variable can be written
by multiple threads resulting in the need for an explicit synchronization. This
synchronization has to be carried over to the resulting slice. In SAL explicit
constructs for synchronization do not exist and it is the responsibility of the user
to provide synchronization through the use of control variables.

3.8 Unresolved input variables

After the dependency analysis of a module terminates, certain variables will still
have dependences as yet un-resolved. These variables are always input variables
to that module and will either be input from a module or from the environment.
If input from a module we add it to the set of unresolved input variables.

3.9 Correctness Criterion for Slicing

A Slice is correct if the behavior, described in terms of process graphs, of the
original program with respect a subset of variables used in the program and the
behaviour of the slice with respect to the same set of variables are branching
bisimilar. Process Graphs[GW96] define the behavior of a program in a run.
Branching bisimilarity was first defined by [GW96] as a notion of bisimilarity
more refined than weak bisimulation. Branching bisimilarity guarantees that
CTL*-X properties of the original program will be preserved in the slice. This
characteristic of branching bisimulation argument motivates us to base the cor-
rectness of our slicing algorithm on branching bisimulation. Every assignment
in the original program may correspond to transition(s) in the process graph.
By slicing certain assignments we are replacing these transition(s) in the process
graph of the original program by tau or non-observable transitions. The process
graph thus resulting is the behavior of the slice. The remaining transitions are
called observable transitions. At the moment we are in the process of proving
our slicing algorithm correct by arguing that the process graphs of the origi-
nal program and the slice, resulting by applying our algorithm, are branching

7

bisimilar.

4 The Slicing Algorithm

Roughly speaking the slicing algorithm computes a PDG for each module and
does a backward transitive closure of the dependences computed by the depen-
dency analysis. When the dependency analysis is complete for a module a few
un-resolved input variables may remain. A variable is said to be unresolved when
its dependences have not yet been resolved. The slicer then finds out if these in-
put variables are output of another module or input from the environment. If it
is an output of another module, input into the current module, then the slicer
slices this new module by computing a transitive closure of the dependences with
respect to the input variable (output for this module). the slicer stops when all
such input variables have been resolved. The backward transitive closure is also
called as the cone of influence. Since a SAL module in general does not have
an exit node we are forced to assume that the node with the largest value for
the control variables is the exit node. A notion of exit node is essential to com-
pute backward transitive closure of the dependences. We have given the slicing
algorithm in pseudo code below.

next(yl) = 1;
next(PCY) = 2;

next(yl) =z + yl;
next(a) = false;
next(PCy) = 3;

(PCl = 3) —
next(y2) =z + 1;
next(a) = true;
next(PCh) = 1,

9
Figure 2: Control Flow Graph of the SAL example in Figure 1. Statements

followed by right arrow are guards. Each assignment in a CFG node is executed
simultaneously, independently of other assignments in the same node.

(a ANPCy = 1) —
next(r) =z + 1;
next(PCy) = 2;

(a = false N\PCy =2) —
next(r) = z + 1;
next(PCy) = 1;

Function Slice(P : program, S : set of variables in the slicing criterion) : program

Declare
L : list of CFGs for each Module in P
G : Control Flow Graph (CFG) corresponding to a SAL Module.
D : Program Dependence Graph (PDG) corresponding to G.
@ : program /*sliced output*/

Begin
For Each Module in the SAL program
Begin
G := compute a CFG;
D := build a PDG on top of GG using dependency analysis;
insert D into L;
return PDG2Slice(L,S);
End.
End.

Function PDG2Slice(L : list of CFGs for each Module in P, S : slicing criterion)
Declare
sliceVars : Working set of variables to slice with.
prunedVars : Variables removed from the sliceVars set.
listO f Nodes : List of module’s CFG/PDG nodes.
initNode : Initialization node of CFG/PDG.
exttNode : Node with largest value for control variables.
Begin /*initially all assignments are in the deleted mode.*/
sliceVars := S}
prunedVars:= {}; /*empty set™/
For Each var, s, in sliceVars && not in prunedVars
Begin
m := module where the s is an output/local var;
listO f Nodes := m’s PDG nodes;
init Node := initialization node of PDG;
exitNode := node with the largest control values;
workingNode := exitNode;

. program

do

Begin
traverseDependencyEdges(workingNode, s, L);
found := searchForLargestControlNode(listO f Nodes);
workingNode = found,
While(init Node != found && initNode has not been visited);
remove s from sliceVars and add it to prunedVars;

End.

End.
End.

10

4.1 Termination arguments for the Slicing Algorithm

The For-loop of the function Slice() will terminate because any SAL program can
have only finite number of Modules. The PDG2S1ice() function has an outer For-
loop and an inner do-while loop. The functions traverseDependencyEdges() and
searchForLargestControlNode() should themselves terminate for PDG2S1ice()
to terminate. The traverseDependencyEdges() computes a fixed point or the
backward transitive closure of the dependences. Since the number of lines in a
module are finite, this function should terminate. While executing traverse-
DependencyEdges() the control nodes visited are marked. The function searchFor-
LargestControlNode() searches for that unvisited control Node which has the
largest values for the control variables. Since the number of control states is finite
(because there are only finite number of control variables each of finite subrange
type), and since the do-while loop forces traverseDependencyEdges() to visit all
nodes, eventually the searchForLargestControlNode() will return the init Node
and the do-while loop will terminate. The outer For-loop will terminate because
there are only finite number of variables in the SAL program. But the sliceVars
set does not remain constant. Unresolved input variables get added to it and
a variable which has been used for slicing gets deleted from the set. Deleted
variables are stored in prunedVars set. By maintaining the prunedVars set we
ensure that non-termination due to addition of the same variable again and again
to the sliceVars set, is prevented. //add some info on time complexity.

4.2 Implementation details

Our slicer has been written in Java and is integrated into the SAL parser. The
slicer accepts SAL programs and the slicing criterion from the command line.
Each guarded transition in a module forms a node in the control flow graph.
Each control node is determined by the values of the control variables defined
by the previous guarded transition. To construct the PDG, we first determine
definitions or values which reach a particular control node. This is determined by
the standard algorithm for reaching definitions given in the dragon book. Once
the reaching definitions are determined a subsequent pass over the flow graph,
determines the dependency edges. For every module a PDG is constructed. The
final pass executes the PDG2Slice() converting every PDG to a sliced module.
It is here that unresolved input variables are propogated from one module to
another until a fixed point is reached.

11

5 Methodologies for using slicing for verifica-
tion

Slicing is essentially a syntactic transformation and hence is best used as a pre-
processor. We believe that slicing will be most useful in aiding more powerful
semantic transformation like Property preserving Abstractions and in converting
real programs written in languages like Java, Verilog etc. to a more verifiable
or model checkable form. Slicing cannot replace semantic transformations like
Abstractions. Consider a bakery algorithm written in Verilog. It is typical that
the critical region has some code irrelevant to the mutual exclusion property
which needs to be verified. Slicing can easily remove this irrelevant code leaving
a skeleton Verilog code, which now is more amenable to verification. Engineers
tend not to design their programs to be verifiable. Slicing can aid real exist-
ing code and future programs to become more amenable to existing verification
tools/techniques.

For instance most chip designs tend to have a lot of extra circuitry for test and
debug purposes| CFR97]. This extra circuitry/code is generally irrelevant to the
property that needs verification. Slicing can help remove these modules in the
code thus easing the job of abstraction and invariant generation. The abstractor
and invariant generator will need to process fewer states.

One of the fundamental problems traditionally faced with slicing is that alias-
ing problems cause lowering in the quality of the slice. Aliasing problems are
caused mainly by pointers and also by arrays. Aliasing has been studied exten-
sively by the compiler community though very few good solutions exist. Aliasing
forces the dependence analysis to be more conservative thus leading to addition
of those lines in the slice which could otherwise have been omitted. Languages
(most hardware languages) without pointers will therefore benefit most from Slic-
ing. Other ways of tackling aliasing problems include use of decision procedures
to resolve aliases, and use of dynamic or quasi-static slicing instead of purely
static slicing.

6 Related Work

[Che93] was one of the first to propose an algorithm for slicing concurrent lan-
guages. [Che93| has not provided a correctness proof for the algorithm. Other
algorithms for slicing concurrent languages include ones by [DH99] and [Kri98].
[MT] have reused existing slicing algorithm by [Che93] to illustrate application
of slicing to model checking. [CFR97] also report on how slicing can be useful
for simulation, model checking etc. [DH99] report on building a slicer for Java
and have so far done the most comprehensive work on slicing for verification.
We believe that by building a slicer for an intermediate language, we can easily
retarget our tool-set for different language unlike dwyer et al. Also dwyer et al.

12

base the correctness of the their slicer on weak bisimulation. Weak Bisimulation
cannot preserve all CTL*-X properties unlike branching bisimulation [GW96].
We believe that by ensuring branching bisimilarity between the input program
and the sliced output we can use the slicer for many more types of properties.
Our slicing algorithm is one of the few reported which handle concurrency.

7 Future and Ongoing Work

We have built a slicing tool based on the algorithm presented in this paper. We
have tested this tool on some simple examples. At the moment one of the ongoing
efforts is to prove the correctness of our slicing algorithm based on a branching
bisimulation argument between the process graphs of the input program and its
slice. We plan to build a Verilog to SAL translator to test the effectivness of the
slicer in a real setting. Another ongoing effort is to improve the quality of the
slicer by incorporating decision procedures and invariant generator.

Invariant generation used in combination with decision procedures can refine
the control structure of the parallel composition of the modules in a SAL pro-
gram. In [?], it is shown that this combination allows us to discover that certain
transitions may not be executed in a certain order. Consider the example in
figure 1. The variable y is modified in module 1 only when the variable a is true.
In module 2 variable x is modified with an input variable z only when variable a
is false. Variable x forms the input to module 1, hence, the slice of module 2 will
include all assignmenents to x and their dependencies. The dependencies include
the variable z that is an output of module 3. Invariant generation techniques
allows us to determine that the output value of x that affects variable y1 is the
value generated by the assignment next (x)=x+1 that is executed only when a is
true. Therefore the assignment next (x)=z+1 will not affect the value of y1. The
slicer can then safely remove module 3.

Many safety properties refer to values of program or control variables ex-
plicitly. This fact can be leveraged to do quasi-static or dynamic slicing. In
quasi-static[Tip95] slicing certain program variables are assumed to retain an ini-
tial value under all runs of the program. The values specified in the property
can be used initialize these variables and then do a quasi-static slicing. Quasi-
static Slicing will return a much higher quality slice than purely static slicing.
Another issue which needs further exploration is the conversion of the property
specification in temporal into a slicing criterion.

8 Conclusions

We have presented a concurrent slicing algorithm for SAL. We have discussed the
use of slicing to verification and presented possible limitations of slicing. We have

13

also discussed methodologies for using slicing in conjunction with abstraction and
model checking. We have implemented a prototype tool based on our algorithm
and experimented with a few examples. We are at present working on a proof
of correctness for our algorithm. We also plan to use decision procedures to
improve the quality of the slice and improve the existing strategies to extract
slicing criterion from property specifications.

9 Acknowledgements

I wish to thank Ashish Tiwari and prof. Joseph Sifakis for taking time to hold
discussions with me during the early stages of this work. I thank Patrick Lincoln
and prof. John Mitchell for giving me an opportunity to work on this project.

References

[AH96] Rajeev Alur and Thomas A. Henzinger. Reactive modules. In Proceed-
ings, 11" Annual IEEE Symposium on Logic in Computer Science,
pages 207-218, New Brunswick, New Jersey, 27-30 July 1996. IEEE
Computer Society Press.

[BBC*96] Nikolaj Bjorner, Anca Browne, Eddie Chang, Michael Colon, Ar-
jun Kapur, Zohar Manna, Henny Sipma, and Tomas Uribe. Step:
Deductive-algorithmic verification of reactive and real-time system-
s. In Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of
the 8th Conference on Computer-Aided Verification (New Brunswick,
New Jersey, USA), volume 1102 of LNCS, pages 415-418. Springer
Verlag, August 1996.

[BH92] Thomas Ball and Susan Horwitz. Slicing programs with arbitrary con-
trol flow. In First International Workshop on Automated and Algorith-
mic Debugging, pages 223-240. vol 749 of Lecture Notes in Computer
Science, Springer-Verlag, 1992.

[BLO98] S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of
infinite state systems compositionally and automatically. In Proceed-
ings of the 9th Conference on Computer-Aided Verification, CAV’98,
LNCS. Springer Verlag, June 1998.

[BSS] The SAL Group: UC Berkeley, SRI, and Stanford. Sal intermediate
language. First draft on SAL.

[CES83] E.M. Clarke, E.A. Emerson, and E. Sistla. Automatic verification of
finite state concurrent systems using temporal logic specification: a

14

[CFR*97]

[Che93|

[CU9S]

[DH99]

[GS97]

[GW96]

[Kri9g]

[McM92]

practical approach. In 10th ACM Symposium on Principles of Pro-
gramming Languages (POPL83), 1983. Complete version published
in ACM TOPLAS, 8(2):244-263, April 1986.

E.M. Clarke, M. Fujita, S.P. Rajan, T. Reps, S. Shankar, and T. Teit-
elbaum. Program slicing for design automation: An automatic tech-
nique for speeding-up hardware design, simulation, testing and verifi-
cation. 1997.

J. Cheng. Slicing concurrent programs, a graph theoretical approach.
In Fuirst International Workshop on Automated and Algorithmic De-
bugging, pages 223-240. vol 749 of Lecture Notes in Computer Science,
Springer-Verlag, 1993.

Michael Colon and Thomas Uribe. Generating finite-state abstrac-
tions of reactive systems using decision procedures. In Proceedings of
the 9th Conference on Computer-Aided Verification, CAV’98, LNCS.
Springer Verlag, June 1998.

Matthew B. Dwyer and John Hathcliff. Slicing software for model
construction. In ACM SIGPLAN Workshop on Partial Evaluation

and Semantics-Based Program Manipulation, January,1999.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS.
In Conference on Computer Aided Verification CAV’97, LNCS 1254,

Springer Verlag, 1997.

Rob J. Van Glabeek and W. Peter Weijland. Branching time and
abstraction in bisimulation semantics. In Journal of The ACM, pages
553-600. ACM, 1996.

Jens Krinke. Static slicing of threaded programs. ACM SIGPLAN
Notices, 33(7):35-42, July 1998.

K. L. McMillan. Symbolic model checking. Phd thesis, Carnegie
Mellon University, July 1992.

Lynette I. Millet and Tim Teiterlbaum. Slicing promela and its ap-
plication to model checking, simulation, and protocol understanding.
Department of Computer Science, Cornell University.

K.J. Ottenstein and L.M.Ottenstein. The program dependence
graph in a software development environment. In ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Soft-
ware Development Environments, pages 177-184. ACM SIGPLAN
Notices 19(5), May, 1984.

15

[ORRT96] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS:

[PHO7]

[QS82]

[Sai97]

5599]

[Tip95]

[Wei84]

Combining specification, proof checking, and model checking. In Ra-
jeev Alur and Thomas A. Henzinger, editors, Computer-Aided Verifi-
cation, CAV ’96, number 1102 in Lecture Notes in Computer Science,
pages 411-414, New Brunswick, NJ, July/August 1996. Springer-
Verlag.

A. Pardo and G.D. Hachtel. Automatic abstraction techniques for
propositional p-calculus model checking. In Conference on Computer
Aided Verification CAV’97, LNCS 1254, Springer Verlag, 1997.

J-P. Queille and J. Sifakis. Specification and verification of concurrent
systems is cesar. In International Symposium on Programming, LNCS
137, pages 337 — 351. Springer Verlag, 1982.

Hassen Saidi. The Invariant-Checker : Automated deductive ver-
ification of reactive systems. In Proceedings of the 9th Confer-
ence on Computer-Aided Verification, CAV’97. Springer Verlag, 1997.
www.csl.sri.com/"saidi.

Hassen Saidi and Natarajan Shankar. Abstract and model check while
you prove. In Computer Aided Verification, 1999.

Frank Tip. A survey of program slicing techniques. In Journal of
programming languages,3:121-189, 1995.

M. Weiser. Program slicing. IFEE Transactions on Software Engi-
neering, SE-10(4):352-357, July 1984.

16

