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ABSTRACT

Many simulation environments — particularly those intended for
medical simulation — require solid objects to deform at interactive
rates, with deformation properties that correspond to real
materials. Furthermore, new objects may be created frequently
(for example, each time a new patient’s data is processed),
prohibiting manual intervention in the model preparation process.
This paper provides a pipeline for rapid preparation of deformable
objects with no manual intervention, specifically focusing on
mesh generation (preparing solid meshes from surface models),
automated calibration of models to finite element reference
analyses (including a novel approach to reducing the complexity
of calibrating nonhomogeneous objects), and automated skinning
of meshes for interactive simulation.

Categories and Subject Descriptors
1.6.0 [Simulation and Modeling]: General; 1.6.1 [Simulation and
Modeling]: Model Validation and Analysis

General Terms
Algorithms
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1. INTRODUCTION AND RELATED WORK
1.1 Background

Interactive physical simulation has become a critical aspect of
many virtual environments. Computer games are increasingly
using physical simulation to allow players a wider range of
interactions with their surroundings; this has become such a
prevalent phenomenon that dedicated hardware has become
available for rigid body mechanics [29], and software libraries are
becoming available to dedicate graphics resources to physical
simulation [30]. Simulation for games currently focuses primarily
on rigid body dynamics and particle systems (for fluid, smoke,
explosions, etc.), but will likely move toward deformable solid
simulation as the standard for realism increases.

Many medical simulation environments — both commercial
([311,[321,[331.[341.[35].[36]) and academic [37],[38].[39],[40],
[41]) — already depend on modeling deformable solids. The vast
majority of tasks performed during surgery involve interaction
with deformable bodies, so a medical simulator is expected to not

only represent deformation, but to model it with sufficient
accuracy for effective training. Force/deformation curves of
virtual organs should correspond to their real counterparts, and
deformation should vary realistically among patients, among
tissue types, and even within a tissue type.

Currently many of these simulators focus on canonical cases,
whose creation requires significant manual intervention by
developers, technicians, or manufacturers. As surgical simulation
enters mainstream medical practice, the use of patient-specific
data in place of canonical cases is likely to become common,
allowing a much broader range of applications and training cases.
This scenario prohibits the use of tedious manual procedures for
data preprocessing.  Similarly, as games incorporate more
sophisticated simulation techniques, rapid preparation of
deformable models will be required to continue the current trend
toward player-generated and custom content.

This paper addresses this need: automatic preparation of realistic
deformable models for medical simulation and computer games.
We restrict our discussion to a particular simulation method in the
interest of focusing on automation of model preparation (rather
than simulation), but the techniques presented here can be
generalized to other models.

We assume that the user provides a surface model of the desired
structure; this is a reasonable assumption, as surface models are
the standard object representation in games and are easily derived
from automatically-segmented medical images. We further
assume that the user provides constitutive properties describing
the material they are attempting to represent; this is also a
reasonable assumption, as constitutive properties for a wide
variety of materials are available in engineering handbooks.
Constitutive properties for biological tissues can be measured
experimentally ([42],[43].[44]).

Section 2 discusses the generation of volumetric (tetrahedral)
meshes from surface meshes. Section 3 discusses the use of a
finite element reference model to calibrate an interactive
simulation. ~ Section 4 discusses simulation and rendering,
focusing on a geometric interpretation of the simulation technique
presented in [16] and a mesh skinning technique that is suitable
for our deformation model. The remainder of Section 1 discusses
work related to each of these three topics.

1.2 Related Work: Mesh generation

“Mesh generation” generally refers to the process of discretizing a
space into volumetric elements. The space is frequently defined
by either an implicit or explicit surface boundary, and the
elements are generally explicit solid units, commonly tetrahedra
or hexahedra when the space is three-dimensional.



Ho-Le [5] provides a summary of core methods in mesh
generation for finite element analysis, and Zhang [4] provides a
summary of more recent work in this area. Si [2] describes a
common, public-domain package for mesh generation,
specifically targeted toward finite element analysis applications.
Recent work on mesh generation employs physical simulation in
the meshing process (e.g. [3]).

The work most closely related to the approach presented in
Section 3 of this paper is that of Mueller [1], which also focuses
on generating approximate, non-conformal meshes for interactive
simulation.

1.3 Related Work: Deformation Calibration

Early work exploring the relationship between non-constitutive
simulations (generally mass-spring systems) and finite element
analyses began with Deussen et al [10], who optimize a 2D mass-
spring system to behave like an analytically-deformed single 2D
constitutive element. Similarly, van Gelder [13] analytically
derives spring constants from constitutive properties for a 2D
mass-spring system. This work also includes a theoretical proof
that a mass-spring system cannot exactly represent the
deformation properties of a constitutive finite element model.

While most work in this area has been oriented toward volumetric
solid deformation using simulation results as a ground truth, Bhat
et al [6] use video of moving cloth to calibrate simulation
parameters for a cloth simulation. Similarly, Etzmuss et al [9]
extend the theoretical approach of van Gelder [13] to derive a
mass-spring system from a constitutive model of cloth.

Bianchi et al [7] demonstrate that a calibration procedure can
enable a 2D mass-spring system to recover the connectivity of
another 2D mass-spring system; deformation constants are held
constant. Bianchi et al [8] later demonstrate the recovery of
spring constants, and the 2D calibration of a mass-spring system
to a finite element reference model. They do not extend their
calibration to 3D, and do not provide a mechanism for handling
the exponential growth in optimization complexity associated
with 3D objects and complex topologies. Choi et al [11] use a
similar approach to calibrate a homogeneous mass-spring system,
and Mosegaard [12] uses a similar optimization for simple models
but takes dynamic behavior into account during optimization.

1.4 Related Work: Mesh Skinning

Mesh skinning describes the process of animating the vertices of a
rendered mesh to correspond to the behavior of an underlying
skeleton.  This has become a very common technique for
rendering characters in games and video animation; the skeleton
often literally represents a character’s skeleton and the rendered
mesh generally represents the character’s skin. Skinning is easily
implemented in graphics hardware [45], making it suitable for a
variety of simulation environments.

Recent work on mesh skinning has focused on correcting the
inaccuracies that result from naive blending, as per [15], and on
automatically associating vertex movements with an implicit
underlying skeleton [14] as a form of animation compression.
However, bones are generally defined and associated with
vertices manually by content developers, as part of the
modeling/animation process.

2. MESH GENERATION
This section discusses our approach to generating tetrahedral
meshes from surface meshes for interactive deformation.

2.1 Background

Previous approaches to generating tetrahedral meshes (e.g.
[1]1,[2].[3].[4]) from surface meshes have generally focused on
generating conformal meshes (meshes whose bounding surface
matches the target surface precisely) for high-precision finite
element simulation. Consequently, the resulting meshes are
generally highly complex, particularly near complex surface
regions.

Interactive simulation presents a different set of requirements and
priorities for mesh generation. Since the use of interactive
simulation techniques comes with an intrinsic loss in precision,
some discrepancy between the target surface mesh and the
resulting volumetric mesh is generally acceptable. In particular,
the computational expense of increased tetrahedron count does
not justify the benefits of a conformal mesh. This is particularly
true for applications in games, where physical plausibility and
interactivity take precedence over perfect accuracy. For most
applications, the surface used for interactive rendering is
decoupled from the simulation mesh, so the nonconformality of
the mesh will not affect the rendered results (see Section 4).

Like finite element simulation, most interactive simulation
techniques have difficulties when tetrahedral aspect ratios
approach zero. In other words, “sliver” tets are generally
undesirable, since they are easily inverted and do not have well-
defined axes for volume restoration forces.

The behavior of interactive simulation techniques is often visibly
affected by topology, so a homogeneous material is generally
most effectively simulated by a mesh with homogeneous
topological properties. Thus there is an intrinsic advantage to
regularity in deformable meshes.

Thus the goal of the technique presented here is to automatically
generate nonconformal, regular meshes with large tetrahedral
aspect ratios.

It is also desirable for the process to proceed at nearly interactive
rates for meshes of typical complexity, so the process can easily
be repeated following topology changes or plastic deformation
during interactive simulation.

2.2 Mesh Generation

Our mesh generation procedure begins with a surface mesh
(Figure 1a), for which we build an axis-aligned bounding box
(AABB) hierarchy (Figure 1b).

The AABB tree is used to rapidly floodfill (voxelize) the surface
(Figure 1c). The floodfilling begins with a seed voxel, identified
by stepping a short distance along the inward-pointing surface
normal of a mesh triangle. This voxel is considered to be an
internal voxel. Floodfilling sequentially pulls internal voxels
from a queue. A ray is cast from each known internal voxel to
each of its neighbors; the AABB hierarchy is used to determine
whether this ray crosses the object boundary, with spatial
coherence exploited as per [26]. If the ray does not cross the
surface, the neighbor is marked as an internal voxel and is placed
on the queue. If the ray does cross the surface, the neighbor is
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Figure 1. Stages of the mesh generation process: (a) initial
surface mesh, (b) axis-aligned bounding box hierarchy for
rapid voxelization (c, with voxel centers in green), and (d)
splitting of voxels into tetrahedra.

marked as a border voxel and is not considered for further
processing. Floodfilling proceeds until the queue is empty.

The resolution of voxelization — which determines the resolution
of the output tet mesh — is user-specified. Since voxels are
isotropic, the user need only specify the voxel resolution of the
mesh’s longest axis, a simple precision metric that a user can
intuitively relate to the target application. Voxelization is allowed
to proceed one voxel outside the surface; for interactive
simulation techniques that include collision-detection and
penalty-based collision response, it is generally desirable to
slightly overestimate object volume at this stage.

Each resulting voxel (defined by its center point) is then used to
create a cube of eight vertices. Vertices are stored by position in
a hash table; existing vertices can thus be recalled (rather than re-
created) when creating a voxel cube, allowing shared vertices in
the output mesh. Each resulting cube is then divided into five
tetrahedra (Figure 2), yielding the final tetrahedral mesh (Figure
1d).

2.3 Implementation and Results
The mesh generation approach presented here was incorporated
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Figure 2. Splitting a cube (voxel) into five tetrahedra.

into the voxelizer package, available online and discussed in more
detail in [26]. The package is written in C++ and uses CHAI [27]
for visualization and collision detection (AABB tree
construction).  Files are output in a format compatible with
TetGen [2].

To evaluate the computational cost of our approach, and thus its
suitability for real-time re-meshing, we generated tetrahedral
meshes for a variety of meshes (Figure 3) at a variety of
resolutions on a 1.5GHz Pentium 4. Resolutions were specified
as “long axis resolution”, i.e. the number of tetrahedra along the
output mesh’s longest axis (Section 2.2).

Table 1 summarizes these results. Mesh generation time is almost
precisely linear in output tet count (Figure 5), and mesh
generation time is below one second for meshes up to
approximately 250,000 tets. Mesh generation proceeds at
graphically interactive rates (>10Hz) for meshes up to
approximately 20,000 tets. Current parallel simulation techniques
([46].[47]) allow simulation of over 100,000 tets interactively;
mesh generation for meshes at this scale is not real-time (about
500ms), but would be sufficiently fast — even at these extremely
high resolutions — to allow nearly-interactive background
remeshing in cases of topology changes and large deformations.

Figure 4 shows mesh generation times as a function of the user-
specified precision variable: long axis mesh resolution.

A binary version of our mesh generation approach is publicly
available at:

http://cs.stanford.edu/~dmorris/voxelizer

3. CALIBRATION TO GROUND TRUTH

DEFORMATION

This section discusses the automated -calibration of non-
constitutive deformation properties using known constitutive
properties and a finite-element-based reference deformation.

(d)

Figure 3. Meshes used for evaluating mesh generation. (a)
Gear: 1000 triangles. (b) Happy: 16000 triangles. (c) Dragon:
203,000 triangles (d) Bunny: 70,000 triangles.



Input mesh | Input mesh size | Long axis resolution | Output mesh size Tetrahedralization time
(triangles) (tets) (tets) (s)

bunny 70k 30 35840 0.153
bunny 70k 75 478140 1.98
bunny 70k 135 2645120 10.139
bunny 70k 165 4769080 18.287
gear 1k 30 20780 0.101
gear 1K 75 271350 1.132
gear 1k 135 1434065 5.789
gear 1k 165 2504240 9.961
happy 16k 30 10100 0.057
happy 16k 75 126610 0.562
happy 16k 135 662745 2.7
happy 16k 165 1178725 4.74
dragon 203k 30 12750 0.083
dragon 203k 75 158370 0.772
dragon 203k 135 820305 3.57
dragon 203k 165 1453270 6.042

Table 1. Tetrahedralization time for the meshes shown in Figure 3, at various output mesh resolutions.

3.1 Background

Techniques for simulating deformable materials can be classified
coarsely into two categories: constitutive and non-constitutive
models.

Approaches based on constitutive models (e.g.
[19].[20],[21].[22].[23].[24].[25]) generally use equations from
physics to describe how a material will behave in terms of
physical constants that describe real materials — e.g. Poisson’s
coefficient, Young’s modulus, etc. These constants can generally
be looked up in an engineering handbook or determined
experimentally for a particular material. Many methods in this
category are variants on finite element analysis (e.g.
[19].[20],[21]), which uses known constitutive relationships
between force and deformation to predict how a material will
deform. These methods are traditionally very accurate, and are
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Figure 4. Mesh generation times at various output mesh

resolutions. Long axis resolution, rather than output tet

count, is used as the dependent variable; this is an intuitive

metric for user-specified mesh precision.

used for computing stresses and strains for critical applications in
structural mechanics, civil engineering, automotive engineering,
etc. However, these methods are generally associated with
significant computational overhead, often requiring solutions to
large linear systems, and thus cannot generally be run at
interactive rates. When these approaches are adapted to run at
interactive rates, they are generally limited in the mesh
resolutions they can process in real-time.

In contrast, many approaches to material deformation are non-
constitutive, e.g. [16],[17],[18].,[46],[47]. Rather than using
physical constants (e.g. elastic moduli) to describe a material,
such approaches describe objects in terms of constants that are
particular to the simulation technique employed.  Many
approaches in this category are variants on the network of masses
and springs, whose behavior is governed by spring constants that
can’t be directly determined for real materials. In general, these

methods are thus not accurate in an absolute sense. However,
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Figure 5. Mesh generation times at various output mesh
resolutions.



many approaches in this category can be simulated at interactive
rates even for high-resolution data, and these approaches often
parallelize extremely well, offering further potential speedup as
parallel hardware becomes increasingly common.

In short, the decision to use one approach or the other for a
particular application is a tradeoff between realism and
performance, and interactive simulations are often constrained to
use non-constitutive techniques.

For applications in entertainment or visualization, simulation
based on hand-calibrated constants may be adequate. But for
high-precision applications, particularly applications in virtual
surgery, a deformation model is expected to behave like a specific
real material. It is often critical, for example, to teach absolute
levels of force that are necessary to achieve certain deformations,
and it is often critical to differentiate among tissue types based on
compliance. Thus roughly-calibrated material properties are
insufficient for medical applications.

Furthermore, traditional mass-spring systems are usually
expressed in terms of stiffnesses for each spring, so the only way
to vary the behavior of a material is to vary those stiftnesses. For
any significant model, this translates into many more free
parameters than a content developer could reasonably calibrate by
hand.

Even if sufficient manual labor is available to manually calibrate
canonical models, this calibration would generally be object-
specific, as much of the deformation properties of a mass-spring
network are embedded in the topology and geometry of the
network [48]. Therefore calibrated spring constants cannot be
directly transferred among objects, even objects that are intended
to represent the same material.

The present work aims to run this calibration automatically, using
the result of a finite element analysis as a ground truth. While
calibration results still cannot be generalized across objects, the
calibration runs with no manual intervention and can thus be
rapidly repeated for arbitrary sets of objects.

3.2 Homogeneous Calibration
The following are assumed as inputs for the calibration process:

e A known geometry for the object to be deformed, generated
according to the procedure outlined in Section 2.

e A known set of loads — defined as constant forces applied at
one or more mesh vertices — that are representative of the
deformations that will be applied to the object interactively.
In practice, these loads are acquired using a haptic
simulation environment and an uncalibrated object. Note
that a single “load” may refer to multiple forces applied to
multiple (potentially disjoint) regions of the mesh.

e  Constitutive elastic properties (Poisson’s coefficient and
Young’s modulus) for the material that is to be represented.

The supplied constitutive properties are used to model the
application of the specified loads using an implicit finite element
analysis, providing a ground truth deformation to which non-
constitutive results can be compared. This quasi-static analysis
neglects dynamic effects; extension to dynamics is an area for
future work.

The same loads are then applied to the same geometry using a
non-constitutive simulation, and the simulation is allowed to
come to steady-state (a configuration in which elastic forces
precisely negate the applied forces). For the implementation
presented in Section 3.3 we use the deformation model presented
in [16], but for this discussion we will treat the simulation
technique as a black box with a set of adjustable parameters.

There are, in most cases, large subsets of the parameter space that
will not yield stable deformations. In traditional mass-spring
systems, for example, inappropriately high constants result in
instability and oscillation, while inappropriately low constants
result in structural collapse. In either case, local variation in
parameters cannot be reliably related to variation in deformation.
Optimization will proceed most rapidly if it begins with a baseline
deformation that can be used to quickly discard such regions in
the parameter space. Therefore, before beginning our
optimization, we coarsely sample the parameter space for a fixed
number of simulations (generally 100) and begin our optimization
with the optimal set among these samples, as per [6] (our
optimality metric follows). If none of our samples yield a stable
deformation, we randomly sample the space until a stable
deformation is obtained.

We then compute an error metric describing the accuracy of this
parameter set as the surface distance between the meshes resulting
from constitutive and non-constitutive deformation:
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...where e (o) is the error (inaccuracy) for a parameter set ¢ and
load L, nvertices is the number of vertices in our mesh, pey.(i) is
the position of vertex i following constitutive deformation, and
DProncons(1) 18 the position of vertex i following non-constitutive
deformation with parameter set ¢. Note that the non-constitutive
deformation is computed once at the beginning of the
optimization procedure and is not repeated.

This error metric assumes a one-to-one correspondence between
vertices in the two meshes; in practice this is the case for the
implementation presented in Section 3.3, but were this not the
case, the lower-resolution mesh could be resampled at the
locations of the higher-resolution mesh’s vertices. The deformed
positions of the resampled vertices could then be obtained by
interpolating the deformed positions of the neighboring vertices in
the lower-resolution mesh after deformation (this is analogous to
interpolating displacements by free-form deformation [49]).

When multiple loads (to be applied separately) have been defined,
we average the resulting errors over those loads to define an
accuracy metric for a parameter set:

nloads

E(@@)= Y e, (9)

...where E(¢) is the average error for the parameter set ¢ and
nloads is the number of separate loads to apply. In practice
nloads is often 1, but we will continue to use the more general
E(¢) notation that allows for multiple loads.



The goal of our optimization is thus to find the parameter set ¢
that minimizes E(¢):

@ =argmin E(p)
4

...where @ is our output parameter set, representing the best
match to the supplied constitutive parameters for the specified
deformations, and ¢ is bounded by user-specified upper- and
lower-bounds, which generally do not vary from problem to
problem.

We solve this constrained minimization problem through
simulated annealing [50] (SA), a stochastic optimization
technique that follows local gradients in a problem space to arrive
at minima of the energy function, but periodically jumps against
the gradient to avoid local minima. In particular, we use the
adaptive simulated annealing [28] (ASA) variant on SA, which
automatically adjusts the annealing parameters over time to
converge more quickly than traditional SA.

For very simple linear problems, such as identifying the optimal
spring constant for a single tetrahedron being stretched in a single
direction, we have also employed gradient descent, which is
extremely efficient, but complex error landscapes prevent this
approach for significant problems. We will discuss further
applications for simpler approaches in Section 5.

At the completion of the simulated annealing procedure, we will
have a non-constitutive parameter set @ that optimally matches
our non-constitutive deformation to our constitutive deformation.
The annealing procedure may take a significant amount of time to
complete, but it proceeds with no manual intervention and can
thus be efficiently used to prepare numerous deformable models.

3.3 Implementation

We have implemented the described calibration process using an
implicit solver for our constitutive deformation and the method of
[16] for our non-constitutive deformation. The finite element
package Abaqus [51] is used for reference deformations, and our
interactive deformation model is implemented in C++ using
CHAI [27] for visualization. Deformation results from both
packages are collected in Matlab [52], and optimization is
performed with the ASA package [54] through the ASAmin
wrapper [53]. Gradients are estimated by finite differencing.

The selected deformation model is described in more detail in
Section 4; the key point for this discussion is that nodal forces are
computed based on four deformation parameters: a volume
preservation constant k, (defined for each tetrahedron), an area
preservation constant k, (defined for each face), a length
preservation constant ky (defined for each edge), and a viscous
damping force Kgump.- These four values are the free parameters
for our optimization. For the results presented in Section 3.4,
they are taken to be homogeneous throughout the material.
Nonhomogeneity will be introduced in Section 3.5. In practice,
the viscous damping force is always uniform and is allowed to
vary only coarsely; once it is calibrated to a reasonable value for a
problem, variations should affect the time required to reach
steady-state but not the final deformation.

Since we use a quasi-static, implicit simulation for constitutive
deformation, we require steady-state results from our non-
constitutive simulation as well. A simulation is determined to be

Figure 6. The deformation problem analyzed in section 3.4.
Nodes highlighted in blue are fixed in place; green arrows
define the applied load.

at steady-state when the maximum and mean vertex velocities and
accelerations are below threshold values for a predetermined
amount of time. These values are defined manually but do not
vary from problem to problem. Simulations that do not reach
steady-state within a specified interval are assigned an error of
DBL_MAX.

3.4 Results: Homogeneous Calibration

We will demonstrate the effectiveness of this approach through a
case study, using the problem depicted in Figure 6. Here the base
of the gear model is fixed in place (nodes indicated in blue), and
opposing forces are applied to the “front” of the gear. This load
will tend to “twist” the gear around its vertical axis. The
simulated object is defined to be approximately 2 meters wide,
with 50 pounds of force applied at each of the two load
application points. The constitutive simulation uses a Young’s
modulus of 100kPa and a Poisson’s coefficient of 0.45 .

Figure 7 graphically displays the results of the calibration
procedure for this problem. The undeformed mesh is shown in

(o)

Figure 7. Results after calibration for the problem shown in
Figure 6. Each subfigure shows a “top view” of the model
introduced in Figure 6. (a) Undeformed model. (b) Ground
truth deformation (resulting from finite element analysis). (c)
Baseline  non-constitutive  deformation (hand-selected
constants). (d) Calibrated non-constitutive deformation. (b)
and (d) are nearly identical, indicating successful calibration.
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Figure 8. Optimization trajectory for the calibration shown in
Figure 7. Each error value is shown in blue; the green line
represents the lower envelope of the blue line, or in other
words the best result found so far at any point in the
optimization process. The region highlighted in red indicates
the rapid initial gradient descent. The y-axis is compressed to
improve visibility; the initial error is 0.9, and the maximum
error (assigned to non-terminating simulations) s
DBL_MAX.

Figure 7a. For comparison, the result of a non-constitutive
deformation using constants selected through several minutes of
manual calibration is presented in Figure 7c. Note that this is not
an unreasonable or inconsistent response to the applied loads.
Figures 7b and 7d show the results of constitutive deformation
and calibrated non-constitutive deformation, respectively. The
two models are nearly identical, indicating a successful
calibration. Using the error metric described in section 3.2, the
error was reduced from 0.9 (uncalibrated) to 0.08 (calibrated).

Figure 8 looks more closely at the optimization trajectory during
this calibration. The optimization proceeds from left to right,
with each point representing a simulation pass. Higher values on
the y-axis indicate less accurate deformation. The highlighted
area indicates the optimization’s efficient use of the error gradient
for rapid descent from the initial error result. This indicates that a
bounded optimization, for which the user specified an acceptable
error bound, rather than waiting for a global optimum, would
proceed extremely rapidly. This is likely to be the most practical
usage model for this approach.

The “jittery” appearance of the error plot, with numerous
simulations resulting in very large errors, results from the
annealing process’s tendency to occasionally jump from a “good”
region of the parameter space to an unexplored region of the
parameter space. These jumps often result in unstable
simulations, which are assigned a high error.

Having obtained calibrated constants for this problem, we would
like to demonstrate that these constants translate to another load
applied to the same object; i.e. we’d like to confirm that our
results are not overfit to the particular load on which the system
was calibrated.

Figure 9 demonstrates a new load applied to the same model,
which will produce an entirely different deformation and will
stress the mesh along a different axis. Figure 10 shows the result
of transferring the calibration to this problem. Again we present
the undeformed mesh and a “baseline” mesh (constants selected

Figure 9. Calibration verification problem. Nodes highlighted
in blue are fixed in place; green arrows define the applied
load.

quickly by hand) for comparison. We again see an excellent
correlation between Figure 10b and Figure 10d, indicating a
successful calibration transfer. The RMS vertex error was
reduced from 1.0 to 0.1 in this case. The resulting error was thus
only slightly higher than the residual self-calibration error
represented in Figures 7 and 8.

3.5 Nonhomogeneous Calibration

The results presented so far were based on homogeneous
materials, i.e. the four calibrated constants were uniform
throughout the object. There are, however, two motivations for
allowing inhomogeneous deformation constants.

The first is to allow calibration to inhomogeneous reference
objects. An object whose material properties vary in space
clearly cannot be represented with homogeneous deformation
parameters. This is particularly relevant for applications in virtual
surgery, where tissues may have material properties that vary
according to microanatomy or pathology, or may represent

(c)

Figure 10. Calibration verification results. (a) Undeformed
model. (b) Ground truth deformation (resulting from finite
element analysis). (c) Baseline non-constitutive deformation
(hand-selected constants). (d) Calibrated non-constitutive
deformation, using the results obtained from the problem
presented in Figure 6. (b) and (d) are nearly identical,
indicating successful calibration transfer to the new problem.

(d)



compound materials such as muscle coupled to bone.

A second motivation for allowing inhomogeneous deformation
constants is to compensate for deformation properties that are
artificially introduced by the geometry and topology of the
simulation mesh. van Gelder has shown, for the two-dimensional
case, that uniform stiffness properties fail to simulate a uniform
object accurately [13]. It is also known that mesh geometry and
topology can introduce undesired deformation properties into
mass-spring simulations [48]. We would thus like to allow
constants to vary within our calibrated mesh, even when it is
intended to represent a homogeneous object.

Previous approaches to nonhomogeneous deformation calibration
(e.g. [8].[12]) have allowed stiffness constants to vary at each
node, which links optimization complexity directly to mesh
resolution and presents an enormous optimization landscape.

We present a novel approach to nonhomogeneous parameter
optimization, which decouples optimization complexity from
simulation complexity and mesh resolution. Specifically, rather
than presenting the per-node deformation parameters directly to
the optimizer, we allow the optimizer to manipulate deformation
parameters defined on a fixed grid; those parameters are then
interpolated by trilinear interpolation to each node before every
simulation pass. This imposes some continuity constraints on the
resulting parameter set (nearby vertices will have similar
parameter values), but can greatly speed up the optimization
process, making possible the calibration of large meshes that
would be prohibitively expensive to optimize per node.

Figure 11 shows an example of the decoupling of the optimization
and simulation meshes. The optimization mesh can be arbitrarily
simplified to allow, for example, variation of parameters along
only one axis of the object (using ak x 1 x 1 optimization grid).

As a preprocessing step, each simulation vertex is associated with
a set of weights defining the optimization nodes that affect its
parameter set. Specifically, we assign weights to the eight
optimization nodes that form a cube around each simulation
vertex. We will refer to the coordinates of those nodes as

I_XJ, |—x—|, |_yJ, |—y—|, I_Z J, |_Z—| , representing the upper and lower

bounds of this vertex’s cell in the optimization grid. The
coordinates of the eight nodes of this cell are thus:

o O O o]

[ )

o O
Figure 11. Decoupled simulation and optimization meshes.
The optimizer adjusts constants on the larger grid (blue
nodes), which are interpolated to the simulation mesh (red)
before each simulation pass.

lx Ly} Lz]
lx Ly }=]
lx [y ]Lz)
Lx L[y 1]=]
[x 1Ly} [z]
[x Ly }]=]
[x1[y]lz]
EI2E

We then define the cell-relative position of vertex v along each
axis as:

N e R L S L )

Vo = x =[x /A x]-|x])
v, =0y=Ly Didyl-ly)
v.u =vz=lz/lz]-]z)

And the trilinear interpolation weights for this vertex associated
with each optimization node are:

0 (d-v,)0d- VY rel A=v_.,)

(I=v, 1=V yrel YV.er)

(I=vu )(vyre/ A=v..,)
(I=v,.) yrel YV.er)

(Ve ) = VY rel A=v..,)
Ve )T —v yrel YV.)
Ve )V YA =V 1)

7 (Ve )V yrel YVoer)

Calibration nodes that do not affect parameter values at any
vertex (for example, the upper-left calibration node in Figure 11)
are discarded and are not used for optimization. In practice,
weights are assembled into a (highly sparse) matrix of size
[number of calibration_nodes] x [number of vertices] that can be
multiplied by a vector of values of length [number of calibration
nodes] for each parameter to quickly compute the parameter value
at each vertex by matrix-vector multiplication.

AN N R W =

Parameter values defined on the optimization grid cannot be used
directly for simulation, so to compute a parameter value p, for a
particular simulation vertex v before a simulation pass, we
compute the weighted sum:

7
pv =zwlpi
i=0

...where w; is the weight associated with node i, as defined above
(node numbering here is within a cell, not over the entire grid)
and p; is the parameter value at node i (supplied by the optimizer).

In summary, we learn deformation parameters on a fixed grid,
which is generally more sparse than the simulation mesh, and
interpolate values to simulation nodes at each evaluation of the
error metric. This decouples optimization complexity from mesh
complexity.
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Figure 12. Improvement in self-calibration due to
nonhomgeneous calibration. For each problem, the residual
calibration errors following homogeneous and
nonhomogeneous calibration are indicated in blue and purple,
respectively.

3.6 Results: Nonhomogeneous Calibration

We suggested in Section 3.5 that nonhomogeneous calibration
should improve calibration results even for homogeneous objects.
We will thus revisit the problems presented in Section 3.4 and
assess the benefit of nonhomogeneous calibration.

Figure 12 shows the error reduction for “self-calibration” (the
residual error at the completion of optimization) for the two
“gear” problems introduced in Section 3.5. A significant error
reduction is observed in both cases, indicating that the optimizer
is able to use the additional degrees of freedom provided through
nonhomogeneity. In both cases, a grid resolution of 5 x 5 x 3 was
used, where the shortest axis of the gear (the vertical axis in
Figure 7a) was assigned to the shortest axis (3 nodes) of the
calibration grid.

Having established the benefit of nonhomogeneous calibration for
homogeneous objects, we would like to demonstrate the ability of
our calibration technique to learn variations in material properties
within nonhomogeneous objects.

Figure 13 shows the results of a nonuniform calibration for a cube
that was modeled with a uniform Poisson’s coefficient (0.499) but
included two regions with different Young’s moduli (50kPa and
1000kPa) (Figure 13a). An applied load (Figure 13b) resulted in
virtually no displacement in the “hard” (bottom) portion of the
object according to finite element analysis (Figure 13c). This
reference deformation was used to learn constants on an
interpolation grid, which converged to the results shown in Figure
13f (values are interpolated to vertices in the figure). Figure 13f
shows the distribution of kg k, and k, showed similar
distributions, and the damping constant was treated as uniform for
this calibration.  The resulting non-constitutive deformation
(Figure 13e) can be contrasted with the optimal result obtained
using homogeneous values for all four constants (Figure 13d).

Figure 14 summarizes the calibration of deformation parameters
for a more complex model. Here a grid of 54 nodes is used to
calibrate a simulation mesh of over 700 nodes.

B E = 50kPa (soft)
[ E = 1000kPa (hard)

(a)

o k=273

(e) (f)

Figure 13. Results following a nonhomogeneous calibration.
The object was modeled with a nonuniform Young’s modulus
(a), and subjected to the load indicated in (b), with blue
highlights indicating zero-displacement constraints. (c) The
resulting deformation according to finite element analysis
(note that the load is absorbed almost entirely in the “soft”
region). (d) The resulting deformation according to a
calibrated, non-constitutive model with homogeneous
parameter values. (e) The resulting deformation according to
a calibrated, non-constitutive model with nonhomogeneous
parameter values; note that the load is correctly absorbed in
the top part of the object. (f) The distribution of k, values
after calibration.

4. RENDERING AND SIMULATION

We have now discussed our approaches to preparing and
calibrating tetrahedral meshes and deformation parameters for
interactive simulation.  This section reviews our selected
simulation approach, a reformulation of the method presented in
[16]) and discusses our approach to mesh skinning during
simulation.
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Figure 14. Calibrated material properties for a more
complex mesh. (a) The ground truth (constitutive) set of
material properties for the object; the two regions have
different values for Young’s modulus. (b) The tetrahedral
mesh used to simulate this model, generated as per Section 1,
and the coarse optimization grid used to calibrate this mesh;
the grid is 9x3x3 nodes, or 8x2x2 cells. (c) The problem used
to calibrate this model; blue highlights indicate zero-
displacement constraints, and green arrows indicate applied
forces. (d) and (e) show the calibrated values for k, (k, and k,
showed similar patterns), displayed on the rendering and
simulation meshes, respectively, with the scale of ky values
indicated in (f). The learned regions of high and low kg
correspond closely to the regions of high and low Young’s
modulus in (a).

4.1 Simulation

The deformation model presented in [16] addresses important
limitations in traditional mass-spring systems. In particular, local
volume-preservation and area-preservation forces, computed for
each tetrahedron and each tetrahedral face, respectively,
complement traditional length-preservation forces computed
along each tetrahedral edge. This model enforces local volume
conservation, which approximately constrains global volume, and
allows a much wider variety of material behaviors to be expressed
than a traditional mass-spring system.

The original presentation of this approach [16] presents these
constraint forces as analytic derivatives of energy functions. We
will present equivalent geometric interpretations; our

10

Vi

Figure 15. Geometric representations of energy derivatives
with respect to vertex v;, i.e. the direction in which each force
should be applied to vertex v;. (a) Distance preservation. (b)
Area preservation. (c) Volume preservation. The double-
headed arrow indicates force direction in each case.

implementation is based on these geometric representations of the
constraint forces.

DISTANCE PRESERVATION

The energy function Ep associated with the distance-preservation
force between two connected vertices v; and v; is [16]:

2
‘vj —v,’—DO

1
E,(v,,v)==k
D d
R D,
...where D, is the rest length of this edge (computed in
preprocessing) and kg is the distance-preservation constant
associated with this edge.

The force applied to vertex v; to minimize this energy is the
traditional spring force:

A4 i v,
Fy,(v,)= kd(’vj _Vi’ - D,
b
J 1
Intuitively, energy is minimized by shortening or lengthening the
spring to its rest length, so we apply a force toward the opposing
vertex, whose magnitude depends on the edge’s deviation from
rest length (Figure 15a).

In practice, edge lengths are computed before any forces are
calculated, so they can be accessed by each vertex without
recomputation.



AREA PRESERVATION
The energy function E, associated with the area-preservation
force for the triangle consisting of vertices vj, v, and vy is [16]:
| 2
1| Sl x| - 4y
EA(v,,vj,vk)=5ka )

...where A, is the rest area of this triangle (computed in
preprocessing) and k, is the area-preservation constant associated
with this triangle.

To understand the force we should apply to vertex v; to minimize
this energy, we will view this triangle with the edge (vj,vi) on the
horizontal axis (Figure 15b). The area of this triangle is equal to
V2 times its baseline ( |vi — vj| ) times its height. Since the baseline
of the triangle cannot be affected by moving vertex v;, the
gradient of the triangle area in terms of the position of v; is clearly
along the vertical axis (maximally affecting the height of the
triangle). We thus compute this perpendicular explicitly to find
the direction of the area-preservation force to apply to vertex v;:

1 _ (Vk—v-)O(vi—v,)
areagradient(v,) = (v, - V/)_ [("k - "/)' T V; olv, — Vli
F,(v,) _ areagradient(v,)

Jorcedir, (v,) = |F L )| N |areagradient(vi )|

Here we have just decomposed the vector (vi — vj) into
components parallel to and perpendicular to (vi — v;) and
discarded the parallel component, then normalized the result
(areagradient) to get our force direction.

The magnitude of this force should be proportional to the
difference between the current and rest areas of the triangle. We
compute the area as half the cross-product of the edges, i.e.:

forcemag ,(v,) = %((Vk =v)x(v, _"i))_ 4,

...where A, is the rest area of this triangle, computed in
preprocessing.

And we scale the final force by the area-preservation constant k,
associated with this triangle:

F,(v,))=k, e forcemag ,(v,)e forcedir, (v,)

In practice, triangle areas are computed before any forces are
calculated, so they can be accessed by each vertex without
recomputation (area computation also yields triangle normals,
which are used for computing volume-preservation forces).

VOLUME PRESERVATION

The energy function Ey associated with the volume-preservation
force for the tetrahedron consisting of vertices vi, vj, vi, and v, is
[16]:

1 2
7(vj - vi). ((Vk - Vi)x (Vi —V ))_ Vo

1,16
EV(Vi’vj’vkﬂvl)zgkv v,
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(b)

Figure 16. Skinning a rendering mesh on a simulation mesh.
(a) Original mesh, used for interactive rendering. (b)
Tetrahedral mesh, used for interactive simulation. (c)
Rendering mesh skinned on simulation mesh (with cutaway
view).

...where V, is the rest volume of this tetrahedron (computed in
preprocessing) and k, is the volume-preservation constant
associated with this tetrahedron.

To understand the force we should apply to vertex v; to minimize
this energy, we will view this tetrahedron with the face (vj,vi,v))
on the horizontal plane (Figure 15c). The volume of this
tetrahedron is equal to 1/3 times its base area ( /2 ( (vi — vj) X (Vi —
vj) ) ) times its height. Since the base area of the tetrahedron
cannot be affected by moving vertex v;, the gradient of the
tetrahedron volume in terms of the position of v; is clearly along
the vertical axis (maximally affecting the height of the
tetrahedron). We thus compute this perpendicular (the normal to
the triangle (vj,v,v;) ) explicitly to find the direction of the
volume-preservation force to apply to vertex v;:

volumegradient(v;) = ((vk -, )x (v, v /»
F,(v;) _ volumegradient(v,)

dir (v) = -
Jorcedir, (v,) E(v,)| |volumegradient(v,)|

Here we have just computed a vector normal to the triangle
(vj-ViuV1) (volumegradient) and normalized the result.

The magnitude of this force should be proportional to the
difference between the current and rest volumes of the
tetrahedron. We compute the volume of the tetrahedron and
subtract the rest volume:

forcemag, (5) =< (=% )o (0 =) x4, =v)- ¥,

...where V, is the rest area of this triangle, computed in
preprocessing.



And we scale the final force by the volume-preservation constant
k, associated with this tetrahedron:

F,(v,) =k, forcemag, (v,)e forcedir,(v,)

In practice, tetrahedral volumes are computed before any forces
are calculated, so they can be accessed by each vertex without
recomputation.

As is described in [16], these forces are accumulated for each
vertex and integrated explicitly using Verlet integration. A
viscous damping force is also applied to each vertex according to
a fourth material constant Kamp.

4.2 Mesh Skinning

The tetrahedral mesh used for simulation will generally present a
lower-resolution surface than the original mesh; rendering this
surface directly significantly limits rendering quality (compare
Figure 16a to Figure 16b). It is thus desirable to decouple the
rendering and simulation meshes by “skinning” a rendering mesh
onto a simulation mesh (Figure 16c).

This type of mesh skinning is common for applications that have
a low-resolution rigid skeleton for animation and wish to deform a
rendering mesh to reflect the movements of the underlying bones,
an operation that can be performed on commodity graphics
hardware [45]. However, such approaches assume a low-degree-
of-freedom underlying skeleton and are thus not suitable for
skinning complex meshes. Furthermore, mesh skinning usually
involves manual assignment of vertices to one or more bones,
which is not practical when the set of independently deforming
components is very large. In other words, manually assigning
vertices to be controlled by specific tetrahedra would be
prohibitively time-consuming.

We thus present an automatic mechanism for skinning a rendering
mesh onto a simulation mesh. Our approach is similar to free-
form deformation [49], which determines the movement of
vertices in a deforming space defined by a grid of control points.
In our case, the physically-based deformation of the tetrahedral
mesh defines a deforming space, and the vertices of the rendering
mesh are translated accordingly.

Specifically, we perform a preprocessing step that begins with
defining a “vertex-space” coordinate frame for each vertex v on
the surface of the simulation mesh. We assume that surface
vertices in the simulation mesh are tagged as such during the
mesh generation process (Section 2). The vertex-space coordinate
frame F,,, with origin at v, is defined by the three reference
vectors Fy, Fy, and F,, which are created as follows and are
orthogonal by construct (Figure 17):

e  F,: the surface normal at v,. Surface normals are computed
before and during simulation by averaging the face normals
of all triangles that contain v,.

e F,: The component of first “surface edge” connected to v,
that is perpendicular to the normal at v, A “surface edge” is
defined as an edge that connects to another vertex that is on
the surface of the mesh. This component is computed as
follows:

Fy = (vopposite — VY ) - (((voppos/te — VY ) N )N)
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Figure 17. Vertex-space coordinate frame definition. The
triangles shown in gray, and their edges, are not used
explicitly for defining this vertex’s coordinate frame, but will
influence the frame through their influence on the surface
normal.

...where v, is the vertex at which we’re defining a frame,
Vopposite 1S the simulation vertex at the other side of the
selected surface edge, and N is the unit normal vector at V.
F, approximates a local surface tangent vector.

e  F,: The cross-product of Fy and F,.

F;, Fy, and F, are each normalized to yield an orthonormal basis.
Note that in practice, coordinate frames are not defined until
vertices are used in subsequent steps, so that coordinate frames
are not computed for vertices that are not used for skinning. We
have presented coordinate-frame definition first for clarity.

After defining coordinate frames, we place all simulation vertices
on the surface of the simulation mesh in a kd-tree [55].

For each vertex on the rendering mesh, we then find the nearest
nneighbors vertices on the surface of the simulation mesh.
Higher values for nneighbors result in more expensive rendering
but more accurate rendering mesh deformation. In practice we
generally set nneighbors = 5.

For each vertex v, on the rendering mesh, and each of its nearby
vertices v, on the simulation mesh, we then compute the world-
frame offset of v, relative to v, and rotate it into the coordinate
frame F, defined at v,:

offset .. (v,,v.)=v, =V,
Fx F.y F.z
F,.x F.y F,z
F.x F.y F.:z
05l 7,-7,) = R, Joffset,

...where Fy, Fy, and F, are the components of F,,, as computed
above. We store offset,..(v,,V,) for each of the nneighbors vy’s



associated with v,. We also compute, for each offset,eyex(Vs,Vy), @
weighting factor defined by the distance between v, and v, (closer
vertices should have more influence over v,). The weighting
factor for a particular (v,,v,) is computed as:

1

-V

2
r s |

W(Vr ’vS) = nneighbors 1

2

=

i

f— vS
...where the denominator here is a normalization factor ensuring
that the nneighbors weights add up to 1.

The indices of all weighted vertices, the weight values, and the
offset,ex values are stored for each rendering vertex v,.

During each frame of interactive rendering, for each vertex v,, we
look up the indices and deformed positions of each weighted
vertex vs. Then to find the position at which v, should be
rendered, we recompute each coordinate frame F, exactly as
described above (including normalization) using the deformed
position of vy, yielding new F,, Fy, and F, vectors (which we’ll
refer to as F,’, Fy’, and F,”). The new position for v, based on a
simulation vertex v; is then computed as:

! ’ ’
p(vr’ vs) = F;c b fogetvertex‘x + F‘y hd Ometvertex‘y + F; hd Offgetvertex‘z

The coordinate frame is based on the local surface normal and the
local tangent vector (the chosen surface edge), and thus rotates
with the space surrounding vy.

The final position for v, is the weighted average of the position
“votes” from each vy:

nneighbors

p(vr): Zw(vr’vsi).p(vr’vsi)

4.3 Implementation and Results

The proposed simulation approach is a reformulation of [16], so
we refer to their results for detailed deformation results. The
proposed skinning approach was implemented using CHAI [27]
for visualization and the ANN library [56] for kd-tree searching.
With N=5 and a the simulation and rendering meshes shown in
Figure 16 (50,000 rendered faces and 13,000 simulated
tetrahedra), simulation proceeds at 200fps, with rendering taking
place every 10 simulation frames (20fps).

Skinning results are best communicated by video, so we have
made a video of our skinning approach, applied during interactive
deformation, available at:

http://cs.stanford.edu/~dmorris/video/dragon_deforming.avi

5. CONCLUSION AND FUTURE WORK

We have presented an automated pipeline for interactively
deforming an object originally defined as a surface mesh.
Pipeline stages included mesh generation, calibration to a
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constitutive  model simulated and

simulation/rendering.

using annealing,

5.1 Future Work: Mesh Generation

Future work on mesh generation will focus on generating
nonuniform meshes that provide more resolution in more detailed
regions of the surface model; the AABB hierarchy that we already
create  during voxelization provides a multiresolution
representation of the object that translates naturally into a voxel
array. Calibration (Section 3) will compensate for simulation
artifacts resulting from nonuniform mesh resolution. Also,
simulations that involve topology changes (cuts and fractures) and
large deformations may benefit from dynamic background re-
meshing, another area for future research.

5.2 Future Work: Calibration

Our calibration procedure is currently naive to the deformation
model and treats each error function evaluation as a black box.
Calibration would be greatly sped up by automatically and
dynamically generating loads that probe sensitive, high-
resolution, or user-highlighted regions of the mesh. Also, error
gradients are currently estimated by finite differencing; more
sophisticated approaches would adjust constants more efficiently
using ad hoc heuristics that predict the effects of parameter
changes (for example, higher stiffness constants are likely to
reduce overall deformation).

Additionally, a more sophisticated error metric would penalize
shape deformation but allow rigid body transformations; the
current per-vertex-distance metric penalizes all errors equally.
The calibration could also derive a more accurate seed point for
optimization by using simple, canonical models (for example,
homogeneous cubes or single tetrahedra) to obtain approximate
canonical values for deformation constants representing particular
material properties.

Non-geometric error metrics that incorporate stress or surface
tension would also improve the applicability of our approach to
applications that require force information, e.g. simulations
incorporating haptics or fracture/cut modeling.

Another application of the presented approach is topology
optimization. The ability to find optimal constants for a given
topology can be generalized to iteratively adjust topology, to
minimize mesh size and simulation complexity while still
satisfying a given error bound.

We would also like to generalize our calibration approach to more
complex deformation models, particularly incorporating
dynamics, nonlinear stress/strain relationships, plasticity, and
topology changes.

5.3 Future Work: Parallelization

Finally, all of the approaches presented in this paper lend
themselves extremely well to parallelization, and are expected to
benefit from parallel implementations. Voxelization can be
parallelized across regions at a high level, or across AABB nodes
at a finer level. A custom annealing procedure could make use of
multiple, simultaneous samples in the parameter space, and would
be further optimized by a parallelized version of the simulation
itself, as per [46]. The skinning approach presented in Section 4
is particularly well-suited to parallel implementation on graphics
hardware, especially when using a simulation technique such as



[46], [47], [17], or [18], which place vertex positions in a GPU-
resident render target that can be accessed from a vertex shader
used to transform the vertices of the rendering mesh.

Supplemental Material
The mesh generation approach presented in Section 2 is available
in binary form at:

http://cs.stanford.edu/~dmorris/voxelizer
A video of our mesh skinning approach is available at:

http://cs.stanford.edu/~dmorris/video/dragon _deforming.avi
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