
Algorithms and Data Structures for Haptic Rendering:

Curve Constraints, Distance Maps, and Data Logging
Dan Morris

Stanford University Robotics Lab
Computer Science Department

Stanford, CA 94305-9010

dmorris@cs.stanford.edu

ABSTRACT Section 4 will discuss a threaded data structure for lock-free

In this paper, we describe three novel data processing techniques Streaming of data from a high-priority haptic rendering thread to a
used for haptic rendering and simulation: lower-priority disk-interaction thread.

e We present an approach to constraining a haptic device to 2. HAPTIC CURVE CONSTRAINTS
travel along a discretely-sampled curve.

2.1 Background
e We present an approach to generating distance maps from Haptic devices generally provide a user with three or six degrees

surface meshes using axis-aligned bounding box (AABB) of freedom. Haptic feedback, however, offers the possibility of
trees. Our method exploits spatial coherence among dynamically reducing the effective degrees of freedom available
neighboring points. within the device’s workspace via virtual constraints.

e We present a data structure that allows thread-safe, lock-free Non-penetration constraints associated with surfaces are
streaming of data from a high-priority haptic rendering extremely common and are used in nearly every haptic simulation
thread to a lower-priority data-logging thread. involving interaction with rigid objects, but other types of

We provide performance metrics and example applications for constraints have been abpLied using haptic devices as well.
each of these techniques. C++-style pseudocode is provided Abbott et al [1] propose virtual fixtures” to assist in dexterous
wherever possible and is used as the basis for presenting our manipulation; the goal is to reduce the degrees of freedom
approaches. Links to actual implementations are also provided involved in a complex task and/or to restrict a device’s motion to
for each section. a “safe” portion of the workspace. This may be particularly

suitable for robotic surgery applications in which an actuated

. . . master can assist the surgeon by restricting the movement of the

Categories and Subject Descriptors slave. The authors discuss multiple types of fixtures, including a
H.5.2 [Information Interfaces and Presentation]: User Interfaces — “guidance virtual fixture” (GVF), which is a constraint associated
Haptic I/O; H.5.1 [Information Interfaces and Presentation]: with a 3D curve. Garroway and Hayward [2] constrain the user to
Multimedia Information Systems an analytic curve to assist in editing a spatial trajectory.

In both of these cases, it is assumed that the closest point on the

General Terms curve to the current haptic probe position and/or the distance to
Algorithms, Human Factors that point are readily available, either by analytic computation or

by explicitly tracking the progress of the haptic probe along the

Keywords curve.
Haptics, haptic rendering, virtual fixtures, distance maps, . . .

synchronization, threads, voxelization, flood-filling, kd-tree, 2.2 Discretized Curve Constraints
curve constraints For some applications, particularly those where constraints can be

dynamically added and removed, it may be necessary to constrain

a user to a curve beginning at an arbitrary starting point, or to

1. INTRODUCTION recover when the constraint has been significantly violated. It is
Applications Incorporating haptic feedback are subject to thus necessary to rapidly find the closest point on a curve to the
significant performance constraints; it is generally accepted that current haptic probe position.
an application needs to sustain a 1kHz haptic update rate before

sampling effects become perceptible. In addition, analytic representations are not always available for
curves; curves are most generally represented as discretely-

This stringent computanon-nme limitation requires careful sampled, ordered point sets rather than analytic functions. This is
consideration of the design and implementation of preprocessing, particularly useful, for example, for haptic training applications
rendering, and data streaming techniques. In this paper, we (e.g. [3,4,5]), in which one might use previously-recorded
present three techniques for optimized haptic data processing, trajectories as teaching examples.
each in an individual section of the paper. Section 2 will discuss

the implementation of a haptic curve constraint, or “virtual We thus provide a rapid method for finding the closest point on a
fixture”, using kd-trees. Section 3 will discuss the rapid (offline) discretely-sampled curve to a current probe position. We also
generation of exact signed distance fields for surface meshes. present an approach to tracking the constraint position on a curve

1

when the haptic device may deviate from the constraint and 2
approach other points on the curve to which it should not become

constrained. Tying the haptic device to this constraint position by

a virtual spring will provide a general-purpose curve constraint.

A curve is assumed to be represented as a series of N points, each device 3

of which stores its 3-dimensional position, an index into a linked- O
list or flat array that stores the N points in order, and its

arcposition along the curve (the curve runs from arcposition 0.0 to 4
arcposition 1.0). The curve is not required to have a uniform

sampling density. Each point p; (for 1 # 0 and 1 # (N-1)) 1s 5
implicitly part of two line segments, [py — pi] and [pi = Pil.

For clarity, I will provide C++ pseudocode of the relevant data 1structures and computations throughout this section, beginning 6
with the representation of the curve and sample points. The

‘vector’ class is assumed to represent a 3-dimensional vector and Figure 1. The device should be constrained to the segment
to support the expected operators. between vertices 1 and 2, but sparse sampling of the curve
struct curvePoint { places it closer to vertex 4 than to either of these vertices.

vector pos; This motivates the use of a broader nearest-neighbor search to

unsigned int index; handle this case properly.
float arcpos;

bs std: :set<unsigned int> candidateSegments;
struct curve { for (unsigned int 1=0; 1<N; i++) |
unsigned int Nj; candidateSegments. insert (neighbors [i1]);
curvePolint* points;

} Now for each of those candidate segments, we compute the
smallest distance between our device position pg, and the

All of these points are then placed in a standard kd-tree [6] (a segment, using the approach presented (and available online) in
3d-tree in this case). A kd-tree stores a point set and provides [7]. We assume we have a function distanceToSegment that
efficient retrieval of the subset of points that lie within a bounding takes a test position and a segment defined by the indices of its
rectangle. This can be generalized at minimal cost to return the two endpoints and returns the corresponding distance and point of
approximate nearest K neighbors to a given test point. We will closest approach (as a t-value, where 0.0 is the segment start and
assume that our kd-tree provides the following function, which 1.0 is the segment endpoint). We find the segment with the
returns the K points closest to testPoint: smallest distance to the haptic device point:

void search(// Find the point of closest approach among
vector testPoint, // all candidate segments
int K, curvePoint* points);

struct distanceRecord {

At each timestep at which a haptic constraint force is requested, Li Segmentiax
we use this interface to find the N closest points to the device Float dis tance;
position pg. N 1s chosen empirically; higher values of N require }
more computation time but reduce the occurrence of incorrect

forces resulting from sparse sampling of the curve. Figure 1 float shortestDistance = FLT MAX;
demonstrates this problem and illustrates why using N=1 does not distanceRecord closest;

generally give correct results. std: :set<unsigned int>::iterator iter;

// Get the points closest to the device // Loop over all candidate segments
vector pdev = getDevicePosition(); for (i1ter=candidateSegments.begin() ;
curvePoint neighbors[N]; iter != candidateSegments.end(); iter++) {
myKDTree.search(pdev, N, neighbors);

int index = *iter;

The N returned points are sorted by index, and for each returned float t:
point p; we build the two associated line segments ([p;.; — p;] and

[pi — piri]) and insert them into an ordered list of candidate line // What's the smallest distance to this
segments that might contain the closest point to our haptic probe. // segment ?
This ordering reduces redundancy; we now have a maximum of float distance =
(but generally less than) 2N line segments to search. We can distanceToSegment (pdev, index, index+l,t);

: Ce distanceRecord dr (index, t,distance) ;
compactly represent each line segment as its first index, so we can

store the candidate set as an ordered, non-redundant list of // Ts this the smallest distance
indices: // we've found so far (to any segment)?
// Sort the candidate line segments by index if (distance < shortestDistance) f{

2

distance value in the above routine (this pseudocode replaces the

2 distance computation in the above routine):
// known from our previous iteration

] float previousArcPos;

device 3
float distance = distanceToSegment(pdev,

index, index+1, t) ;

// Find the arcposition of the closest
// point of approach on this segment

5 float newArcPos =
(myCurve.points[index] .arcpos*t)
n

1 6 (myCurve.points[index+1].arcpos* (1.0-t));

Figure 2. The device passes through vertex 4 on its way // Find the arcdistance between this test
between vertices 1 and 2, but should still be constrained to // point and my previous constraint position
segment [1,2] to guide the user along the correct curve shape. tloat arcidst =

fabs (previousArcPos —- newArcPos);

closest = dr; // Weight our 'distance' value according to
shortestDistance = distance; // this arcposition.

} distance = distance +
arcidst * ARC PENALTY WEIGHT;

oo. . : : Higher values of ARC_PENALTY_WEIGHT maximally
For most curves, it is now sufficient to simply apply a constraint ces co :

) :) eliminate “jumping” along the curve (Figure 2). However,
force pulling the device toward the closest point on the closest : : So :

segment with stiffness Koo. inappropriately high values may cause friction-like effects as the
user rounds sharp corners in the curve and is prevented from

// Generate a constraint force pulling “jumping” around corners when he should be allowed to move to
// the haptic device toward the closest subsequent segments. We have found this effect to be
// point on the curve imperceptible for a wide range of values of

ARC_PENALTY_WEIGHT (see Section 2.3).
vector start =

.nyeusveposts lclosest.segmentldx].pos; 2.3 Implementation and Results
myCurve.points[closest.segmentIdx +1].pos; The above algorithm was implemented in C++ using the public-

vector closestPoint = domain kd-tree available in [8], a Phantom haptic device [9], and

start + (end - start) * closest.t; the CHAI 3D libraries for haptics and visualization [10]. Curves

vector force = were generated according to [5], with 2000 points. N (number of

Kconstraint * (closestPoint - pdev); nearest neighbors to search) was set to 100, with the arc penalty
weight set to 1.0.

This approach, however, fails in the case illustrated in Figure 2.

Here, due to normal deviation from the constraint path (resulting

from limited stiffness), the device passes through vertex 4 on its 4

way between vertices 1 and 2, but should still be constrained to

segment [1,2] to guide the user along the correct curve shape. °
This can be handled by a modification to our distance- 2

computation function, which takes into account the arcdistance of B /
the point to which the haptic device was most recently p=

constrained. Essentially, when choosing the closest point on the = 0
curve, we want to penalize points that are far from the test point £ Ne
both in Euclidean distance and in arclength. N ,
We assume that the distance computation function is provided the R —Cue
arcposition of the point to which the device was previously

constrained (or a flag indicating that this is a new constraint and 4% 85 5 45 4 35 3 25 =

there is no previous state, in which case the distance returned is X Position (cm)

Just the usual Euclidean distance). For each segment we process, Figure 3. Black lines indicate correspondences between device
we find the closest point on that segment to the haptic device and position (green) and constraint position (red). The highlighted
compute the corresponding Euclidean distance as usual. We then areas show regions where the device approached a region on
take the absolute difference in arcposition between this point and the curve that was distant in terms of arclength and was thus
the previous constraint point, multiply it by an empirically- appropriately constrained to the current curve segment,
selected penalty factor, and return this weighted “score” as our despite being physically closer to the “incorrect” segment.

3

0.5 2.5

mn m
£ 045 E
® 2 2
E 04 E

s © 15

3 0.3 2
5 0.25 9
8 02 g
2 2

8 0.1 Es
0.05, 0.2 0.4 0.6 0.8 1 1.2 14 16 1.8 2 800 400 600 800 1000 1200 1400 1600 1800 2000

Millions of trajectory samples N (number of neighbors used)

Figure 4. Increase in computation time with increasing Figure 5. Increase in computation time with increasing N
trajectory size, N (number of neighbors used) fixed at 100. (number of neighbors used), trajectory size fixed at 2000.
The increase is approximately linear, but even with two

million samples, the computation time is well under 1ms. O for each point in P. When O is an orientable surface (a surface
that partitions R" into two subspaces), the sign of the stored

Figure 3 demonstrates the robustness of our approach. We see the distance at a point indicates the subspace in which that point lies
actual path of the device in green, constrained by force vectors (in particular, this sign is often used to indicate whether a point is
(indicated in black) to the curve. We see several regions inside or outside a closed surface OQ). The distance transform
(highlighted in blue) where the device very closely approaches a takes a set of points P and an object O and annotates P with a
region of the curve that is distant from the current constraint distance map on OQ. The closely-related closest-point transform
position in terms of arclength, and the constraint position takes a set of points P and an object O and annotates each point in
correctly remains on the current region of the curve. P with the location of the closest point on O, without distance

For the constant values presented above, mean computation time information. The closest-point transform is computed by
per haptic iteration on a 1GHz Pentium 4 was 0.2ms, well below definition whenever a distance map is generated.
the accepted perceptual threshold of 1ms per haptic computation.

Figure 4 shows the dependence of computation time on the 3.2 Background
number of samples in the trajectory for a fixed N (number of The distance map is an implicit object representation with
neighbors used in constraint search). We see that even with very extensive applications in computer graphics, for example in
large trajectories (up to two million samples), computation time is physical simulation [13] and isosurface generation [14].

well below ms. Figure > shows the dependence of computation Distance maps have also been applied in haptics, to search for
time on N (number of neighbors used in constraint search) for a . : :

oo collisions between a haptic tool and the environment [15], to
fixed trajectory size. Although this increase is also approximately : : Lo

: :) provide constraint forces when navigating a volume [16], and to
linear, there is a much more expensive constant factor associated : : :
oo : : .. : constrain a surface contact point to the boundary of a region [17].

with increasing N, since this increases the number of floating-

point distance computations. Several methods have been proposed for computing distance

: : : : : fields, distance maps, and closest point transforms. Many
As a final point, we note that our distance-computation function Co. :

tes the cl ; 1 ret df h t/ ¢ applications in computer animation use the approximate but
SCNCTAtes TE CIOSEHL POLL TElumed from cach pointscemen extremely efficient Fast Marching Method [18]. [19] proposes a
comparison, so this is the only part of our overall approach that : : a»

: : method based on Voronoi regions and local rasterization, and
would need to be modified to represent line segments as Bezier d _ : 201. M |s or other internolation functions provides an open-source implementation [20]. More recently,
curve segmen p approaches have emerged that use parallel graphics hardware to
An implementation of the algorithm discussed here is included as accelerate distance field computation [21].

part o on haptic mentoring™ experimental platform 5], We propose an alternative method for generating exact distance
avatlable at. maps from point sets to triangle meshes that leverages bounding-

http://cs.stanford.edu/~dmorris/haptic_training box structures, which are already generated as a preprocessing
step for many interactive applications in haptics and graphics.

. DISTANCE MAP GENERATION : :3 5 NC GEN 0 3.3 Distance Map Generation
3.1 Terminology The following procedure assumes that we are given a list of points
For an object O on R" and a set of points P on RN", the distance P, preferably sorted in an order that promotes spatial coherence
field is defined as the smallest distance from each point in P to a (this is generally the case in practice, where regular voxel grids
point on O. The distance metric is generally Euclidean distance, are used as the point set and sorting is trivial). We are also given
but any symmetric, non-negative function satisfying the triangle a set of triangles M, which represent one or more logical objects
inequality can serve as a distance metric. The distance map is the in a scene.

distance field annotated with the position of the closest point on

4

struct AABBox : public AABBNode {

Upper-bound distance // the actual pounding box
for boxB vector3 xyzmax, Xyzmiln;

Box D // my children in the AABB tree
Box B AABBNode left, right;

}

Lower-bound distance

for box B // A structure representing a leaf node
struct AABBLeaf : public AABBNode {

triangle t;
}

Upper-bound distance

Box A for boxA // The inputs to our problem
Lower-bound distance

for box A // The Pi's

P. O std: :list<vector3> voxels;I

Figure 6. Distance transformation for point P;. If we’ve the LLnenale set H, pre-processed into
processed Box A before we process Box B, we will not descend AABBOX tree Toot:
to Box B’s children, because Box B’s lower-bound distance is -

greater than Box A’s upper-bound distance. // All the boxes we still need to look at
// for the current voxel. This may not be

We further assume that a bounding-volume hierarchy has been // empty after a voxel is processed; placing
built on M. A strength of this approach is that it leverages // nodes here to be used for the next voxel

common bounding-volume techniques, which are used in a variety // 1s our mechanism for exploiting spatial

of existing applications in haptics and graphics. Without loss of // coherence.
generality, we will assume that the hierarchy is composed of axis- std: :1list<AABBNode> boxes_to_descend;
aligned bounding boxes (AABB’s). Further details on the
construction and characteristics of AABB trees can be found in // The smallest squared distance to a
122]. // triangle we’ve seen so far for the

// current voxel...

The general approach to finding the closest point on M to a point //
P; in P is to descend the AABB tree, computing lower and upper // We generally track squared distances,
bounds on the distance to each box we descend, and tracking the // which are faster to compute than actual

’ // distances. When all is said and done,

lowest upper bound d,, we've encountered so far (the lowest // taking the square root of this number
guaranteed” distance). If the lower bound for a box is farther // will give us our distance value for this
from P; than dy,, we can skip this box (see Figure 6). Using this // voxel.
culling approach and exploiting spatial coherence among float lowest dist sq = FLT MAX;
subsequent points in P by selectively mixing breadth-first and

depth-first examination of our bounding volume hierarchy, we can // The point associated with this distance
build distance maps in a manner that is both efficient and heavily vector3 closest _point;
parallelizable.

// The tree node associated with the closest

In the following pseudocode, we assume without loss of // point. We store this to help us exploit

generality that the AABB tree representing our triangle mesh is in // spatial coherence when we move on to our
the same coordinate frame as our point list; in practice coordinate // next voxel.
transformations are performed before distance computation //
begins. We also assume for clarity of terminology that the list of // This will always be a leaf.

: : : oo. AABBNode closest polnt node;
points P is a series of voxel locations (this is the case when — —

computing the distance transform on a regular grid), so we refer to // The lowest upper-bound squared distance
the P;’s as “voxels” and locations on the surface M as “points”. // to a box we've seen so far for the

// A simple AABB tree hierarchy // current voxel.
float lowest upper dist sq = FLT MAX;

// A generic tree node maintaining only a
// parent pointer. This pseudocode avoids // Process each voxel on our list, one
// pointer notation; all links within the // at a time...
// tree and all references to AABBNode’s in

// the code should be read as pointers. std::list<vector3>::iterator lter =
struct AABBNode { AABBNode parent; 1}; voxels.begin();

// A structure representing a bounding box while (iter != voxels.end) |
// and pointers to child nodes.

5

// Grab the next point // the distance from a point to a
vector3 v = (*iter); // triangle; [7] provides an optimized

// routine with a thorough explanation.
// Now we’re going to find the closest float dsg;

// point in the tree (tree root) to wv... vector3 closestpt on tri;
//

// See below for the implementation of // Find the closest point on our

// find closest point. // triangle (leaf.t) to v, and the
find closest point (v); // squared distance to that point.

compute squared distance (v, leaf.t,
// Now output or do something useful dsg, closestpt on tri;
// with lowest dist sg and closest point;
// these are the values that should be // Is this the shortest distance so far?

// associated with v in our output if (dsg < lowest dist sq) |
// distance map...

do something useful (); // Mark him as the closest we've seen
lowest dist sg = dsq;

// So it’s time to move on to the next closest point = clostpt on tri;
// voxel. We'd like to exploit spatial closest point node = node;
// coherence by giving the next voxel
// a "hint" about where to start looking // Also mark him as the "lowest upper
// in the tree. See the explanation below // bound", because any future boxes
// for what this does; the summary is that // whose lower bound is greater than

// 1t seeds 'boxesto descend' with a // this value should be discarded.
// good starting point for the next voxel. lowest upper dist sg = dsqg;
seed next voxel search); }

} // This was a leaf; we’re done with him

// whether he was useful or not.

// Find the closest point in our mesh to return;
// the sample point Vv }

void findclosestpoint (vector3 v) {
// If this 1s not a leaf, let’s look at

// Start with the root of the tree // his lower- and upper-bound distances

boxes to descend.push back (tree root); // from v.
//

while (! (boxes todescend.empty)) | // Computing lower- and upper-bound
AABBNode node = // distances to an axis-aligned bounding

boxes to descend.pop front(); // box is extremely fast; we just take
process node (node, Vv) ; // the farthest plane on each axis

} float best dist = 0;
float worst dist = 0;

}

// If I'm below the x range, my lowest
// Examine the given node and decide whether // x distance uses the minimum x, and
// we can discard it or whether we need to // my highest uses the maximum x
// visit his children. If it’s a leaf, if (v.x < node.box.xyzmin.x)

// compute an actual distance and store best dist += node.box.xyzmin.x - v.x;
// it if it’s the closest so far. worst dist += node.box.xyzmax.x - V.X;
// }

// Used as a subroutine in the main voxel

// loop (above). // If I'm above the x range, my lowest x

void processnode (AABBNode node, vector3 v){ // distance uses the maximum x, and my
// highest uses the minimum x

// Is this a leaf? We assume we can get else if (v.x > node.box.xyzmax.x) {

// this from typing, or that the actual best dist += v.x - node.box.xyzmax.Xx;
// implementation uses polymorphism and worst dist += v.x - node.box.xyzmin.x;
// avoids this check. }

bool leaf = isleaf (node);

// If I'm in the x range, x doesn't
// If it’s a leaf, we have no more // affect my lowest distance, and my
// descending to do, we just need to // highest-case distance goes to the

// compute the distance to this triangle // farther of the two x distances
// and see if it’s a winner. else {

1f (leaf) { float dmin =

fabs (node.box.xyzmin.x - v.X);

// Imagine we have a routine that finds float dmax =

6

fabs (node.box.xyzmax.x —- v.X); void seed next voxelsearch() {
double dworst = (dmin>dmax) ?dmin:dmax;
worst dist += dworst; // Start at the node that contained our

} // closest point and walk a few levels
// up the tree.

// Repeat for y and z... AABBNode seed node = closest point node;
for (int 1=0; 1i<TREE ASCEND N; i++) {

// Convert to squared distances if (seed node.parent == 0) break;
float lower dsg = best dist * best dist; else seed node = seednode.parent;
float upper dsg = worst dist * worst dist; }

// If his lower-bound squared distance // Put this seed node on the search list

// 1s greater than lowestupper dist sq, // to be processed with the next voxel.
// he can’t possibly hold the closest boxes todescend.pushback (seed node);
// point, so we can discard this box and
// his children. }

1f (lower dsg > lowestupper dist sq)

return; In summary, for each voxel in P; we track the lowest upper-bound
distance that we’ve found for a box as we descend our AABB

// Check whether I'm the lowest tree, and discard boxes whose lower-bound distance is larger.
// upper-bound that we’ve seen so far, When we reach a leaf node, we explicitly compute distances and
// so we can later prune away . p y P
// non-candidate boxes. compare to the lowest distance we found so far. We exploit
if (upper dsq < lowest upper dist sq) |{ spatial coherence when processing a voxel by first searching a

lowest upper dist sq= upper dsq; small subtree in which we found the closest point for the previous
} BN BN BN BN voxel.

// If this node could contain the 3.4 Implementation and Results
// closest point, we need to process his The approach presented here was evaluated in the context of
// children. generating internal distance fields (finding and processing only
// voxels that lie inside a closed mesh) during the process of
// Since we pop new nodes from the front oo . CL. LL. :
// of the list, pushing nodes to the front voxelization. Voxelizer is an application written in C++ that loads
// here results in a depth-first search, meshes and uses a flood-filling process to generate voxel
// and pushing nodes to the back here representations of those meshes, optionally including distance
// results in a breadth-first search. A fields. Both the flood-filling and the distance-field generation use

// more formal analysis of this tradeoff the public-domain AABB tree available in CHAI [10].
// will follow in section 3.4. Co

boxes to descend.push front (node.left); To evaluate the suitability of our approach and the benefit of our
boxesto descend.push front (node.right); exploitation of spatial coherence, we generated voxel arrays and

// Or, for breadth-first search... A oa A
// boxesto descend.push back (node.left); ASP
// boxesto descend.push back (node.right);) SL

} 4 Y ull

When we’ve finished a voxel and it’s time to move on to the next yi
voxel, we'd like to exploit spatial coherence by giving the next E
voxel a “hint” about where to start looking in the tree. We expect -

the node that contains the closest point to the next voxel to be a (a) (b)
“near sibling” of the node containing the closest point to the

current voxel, so we’ll let the next voxel’s search begin at a —

nearby location in the tree by walking a couple nodes up from the dh

best location for this voxel. h > = Pt —
The constant TREE_ASCEND_N controls how far up the tree we a Ir !
walk to find our “seed point” for the next voxel. Higher values TY /
assume less spatial coherence and require more searching in the ~ 7 of J
case that the next voxel is extremely close to the current voxel. ;a

Lower values assume more spatial coherence and optimize the gr
case in which subsequent voxels are very close, while running a (Cc) (d)

higher risk ofacomplete search. Figure 7. Meshes used for evaluating distance map
Section 3.4 discusses the selection of an optimal value for computation. (a) Gear: 1000 triangles. (b) Happy: 16000
TREE_ASCEND_N. triangles. (¢) Dragon: 203000 triangles (d) Bunny: 70,000

triangles.

7

HE i 70
VE —bunny (70k tris)
Thal 60. |gear(1k tris)
ea ~happy (16k tris)
i Sh 0 dragon (203k tris)

HHT = 40

(a) (b) Eo

Ee NS AT fh # p— 2 4060 8 100 120 140 160 180 200
7 ay Can THR Ril ww oh Long axis mesh resolution (voxels)

£51SR\’ 4 > we 4 Figure 9. Performance of our distance-map computationBEFxRE , approach on all four meshes at a variety of mesh resolutions.
Sh8L ZHETN | field generation for each of the four test meshes at a variety of
AF Ceri d resolutions. The voxel arrays generated represent surface and

(c) (d) internal voxels only; the full distance field for voxels outside the

Figure 8. The same meshes displayed in Figure 7, after using mesh is not generated. Long axIs resolution Indicates the
. «es . cps number of voxels into which the longest axis of the mesh’s

the voxelizer application to identify internal voxels (voxel : gee : : :
ters are in green for surface voxels and red for internal bounding-box is divided; voxels are isotropic so the resolutions ofeen a1 . . the other axes are determined by this value.

voxels) by flood-filling. The long axis resolution in each case

here is 50 voxels. We note that for small resolutions, on the order of 30 voxels,

distance fields for a variety of meshes (Figures 7 and 8) at a Hmes for distance computation are interactive or nearly
variety of voxel densities and a variety of values for interactive, even for complex meshes. We also note that in
TREE ASCEND_N (see above). Furthermore, at each parameter general, distance computation represents the significant majority
set, we generated distance fields using both depth- and breadth- of the total time required to Pperform the combined flood-filling
first search. The following sections discuss the performance and distance-field — generation (on average, distance-field
results from these experiments. generation represents 86% of the total time).

Figure 9 shows the dependence of computation time on long axis

OVERALL PERFORMANCE resolution for all four meshes. As expected, all meshes display an

Co exponential increase in computation time as voxel resolution

Table 1 shows the computation time for flood-filling and distance- increases, but even at very high resolutions, computation time is

Mesh Triangles Long axis resolution Voxels Total time (s) Distance time (s)

7168 0.736 0.683

95628 6.107 5.282

529024 29.033 25.258

1561728 82.341 71.585

4156 0.144 0.117

54270 1.751 1.383

286813 9.228 7.282

829321 27.137 21.387

2020 13495 1177

25308 1.387 1.208

132910 6.132 5.261

381120 16.956 14.48

203k 2550 0.494

203k 31674 3.158 2.859

203k 164061 11.839 10.558

203k 468238 30.13 26.633

Table 1. A comparison of flood-filling and distance-computation times for all four meshes at a variety of voxel resolutions.

8

70 15

—Long axis voxels: 30

Long axis voxels: 135

— Long axis voxels: 195 D
2 50 >
£ £"

c 40 5
© S

El 30 3
£ ES
S 20 O

10

0, 0 1 2 3 4 5 6 7 %] 40 60 80 100 120 140 160 180 200
TREE_ASCEND_N value Long axis mesh resolution (voxels)

Figure 10. Performance benefit of exploiting spatial coherence Figure 11. Comparison of depth- and breadth-first search for
and optimal value selection for TREE_ASCEND_N (results the “happy” mesh using a TREE_ASCEND_N value of 0
shown here are for the “happy” mesh). A value of -1 indicated (optimal).

that spatia) coherence was not exploited Neuf node (o cine . significantly better. This is illustrated in Figure 12, which shows. . . ne results for the “happy” mesh at various resolutions with no
triangle) that contained the shortest distance for the previous : :
voxel. assumption of spatial coherence.

tractable for preprocessing applications (only above one minute IMPLEMENTATION AVAILABILITY
for one of the four meshes and only above a long axis resolution

of 180 voxels). A binary version of this application, with documentation and the
models used in these experiments, is available online at:

SPATIAL COHERENCE http://cs.stanford.edu/~dmorris/voxelizer

To analyze the benefit of exploiting spatial coherence in distance- Voxelizer is currently used to generate the voxel meshes used in
map computation, and to identify the optimal value of [23]; distance fields are used to shade voxels based on their
TREE_ASCEND_N (the number of tree levels fo step up in distances to anatomic structures.
generating a “hint” location for the next voxel’s distance search), oo
voxel arrays and distance fields were generated for all four meshes Future work will include leveraging the obvious parallelism
with various values of TREE_ASCEND_N. Figure 10 shows the available in this approach; voxels are processed nearly
results for the “happy” mesh (this mesh was chosen arbitrarily; independently and could easily be distributed across machines
results were similar for all four meshes). A TREE_ASCEND_N with a nearly linear speedup. Furthermore, the simple nature of
value of -1 indicated that spatial coherence was not exploited at the computations performed here makes this suitable to
all; 1.e. every distance search started at the top of the tree. A value parallelization across simple processing units, such as those
of 0 indicated that the “hint” node was the leaf node (a single available on commercial GPUs, which have been successfully
triangle) that contained the shortest distance for the previous used to process AABB-based collision queries by [24]. We
voxel. would also like to explore the performance impact of using other

bounding-volume hierarchies (e.g. oriented-bounding-box trees

Exploting spatial coherence yields five-fold improvement in and sphere trees), which fit trivially into our framework.
performance (a reduction in distance field time from 62 seconds to

13 seconds) for the largest resolution shown in Figure 10. This

corresponds to the difference between TREE_ASCEND_N values

of 0 and 1. Further increasing TREE_ASCEND_N does not 120 ———
further improve performance; it is clear in Figure 10 that zero is

the optimal value. This is equivalent to assuming that locality 100

extends as far as the closest triangle; it isn’t worth searching 0

neighboring AABB nodes as well before searching the whole tree. g 8

5 60
DEPTH- VS. BREADTH-FIRST SEARCH ©

=
Q.

To compare the use of depth- and breadth-first distance search, E 40
voxel arrays and distance fields were generated for all four meshes ©
using each approach. Figure 11 shows the results when using the 20
optimal TREE_ASCEND_N value of 0. Depth-first search is

consistently better, but by a very small margin. % 40 60 80 100 120 140 160 180 200
Long axis mesh resolution (voxels)

h ial coh loited — which .When spatial co erence 1s not exp oited _ WHICH SELVES as a Figure 12. Comparison of depth- and breadth-first search for
surrogate for the case in which the point set is not sorted and does ” :

: : the “happy” mesh using a TREE ASCEND N value of -1 (no
not provide strong spatial coherence — depth-first search performs ih) — —

exploitation of spatial coherence).

9

4. HAPTIC DATA LOGGING producer thread and a consumer thread, with the constraint that
the consumer thread does not need to access data immediately

4.1 Background after the data are produced. The only synchronization primitive
It is conventionally accepted that a user will begin to notice required is an atomic pointer-sized write, provided by all current
discretization artifacts in a haptic rendering system if the system’s hardware. This structure does not address sleeping; it’s assumed
update rate falls below 1kHz. Furthermore, as a haptic that the producer never sleeps (it’s a high-priority loop).
application’s update rate falls, the system becomes more prone to Periodically waking the consumer — who might sleep — is a trivial
instability and constraint violation. With this in mind, it is extension.
essential that designers of haptic software structure applications to

allow high-bandwidth, low-latency generation of haptic forces. We present this approach in the context of a haptic application,
but it’s equally applicable to other applications with similar

There are two relevant implications of this requirement. First of threading structures, for example neurophysiological and
all, haptic computation must run on a thread that allows psychophysical experiments. For example, the implementation
computation at 1kHz. This is non-trivial on single-CPU systems discussed here is used by the software presented in [11], which is
running non-real-time operating systems, which typically have used in the experiments presented in [12].
thread timeslices of 15ms or more. In other words, naively

sharing the CPU among a haptic application thread and other 4.2 Data Structure
application or system threads will not nearly provide the necessary The data structure presented is labeled a “blocked linked list”
Pperforhance. Boosting thread and process priority is asimple (BLL). The BLL is a linked list of blocks of data records; the
solution that is ofivred by common OS's, bus indiscriminaisly list’s head pointer is manipulated only by the consumer, and the
boosting thread priority can prevent other application tasks (e.g. list’s tail pointer is manipulated only by the producer. The BLL is
graphic rendering) and even critical operating system services initialized so that the head and tail pointers point to a single
from running. Common solutions to this problem include using block. In docode:: oo : : . In pseudocode:
dual-CPU PC’s, boosting thread priority while manually ensuring

that the persistent haptic loop will yield periodically, and/or using struct bllrecord ({
hardware-triggered callbacks to control the rate of haptic force // the relevant data structure is defined
computation. // here; in practice the BLL is templated

// and this structure is not explicitly

Additionally, this stringent performance constraint means that // defined
“slow” tasks (those that require more than one millisecond on a bi
regular basis) cannot be placed in the critical path of a haptic

application. Graphic rendering, for example, is often struct bll block |
computationally time-consuming and is generally locked to the // the data stored in this block
refresh rate of the display, allowing a peak throughput of bll record data [BLOCK SIZE];
approximately 30Hz on most systems (lower if the graphical scene - -

is particularly complex). For this reason, nearly all visuohaptic // how many data records have actually
applications decouple graphic and haptic rendering into separate // been inserted?

threads. int count=0;

Disk I/0 is another task that incurs high latencies (often over // conventional linked list next pointer
10ms), particularly when bandwidth is high. For a haptic bll block* next=0;
application that requires constantly logging haptic data to disk — BN

such as a psychophysical experiment involving a haptic device — it Ys

is essential to place blocking disk I/O on a thread that is distinct

from the haptic rendering thread. struct BLL {

Using this common scheme, data synchronization between a // conventional linked list head/tail ptrs
haptic thread (which collects position data from the haptic device, bll block *head, *tail;
computes forces, and sends forces to the device) and a “slow”

thread (handling graphics and disk I/O) can become a bottleneck. // initialize to a new node
Traditional locks allow the slow thread to block the haptic thread, BLL() { head = tail = new bll block; }
and if the locked region includes a high-latency operation, the
haptic thread can stall for an unacceptable period. Many bi
applications are able reduce the data exchanged among threads to

a few vectors or small matrices, and forego synchronization The BLL offers the following interface:
entirely since the probability and impact of data conflicts are rare.

// This function is called only by the

Data logging tasks, however, cannot take this approach. Even // producer (haptic) thread to insert a new
small errors resulting from race conditions can place data files in // piece of data into the BLL.
an unrecoverable state. Furthermore, the high bandwidth of data void BLL: :push back(bll_records d) {
flow increases the probability of conflicts if data queued for file ,

output is stored in a traditional linked list. We thus present a data oIN Led ue a oct = no
structure that allows lock-free synchronization between a // risk of conflict because fhe

10

// consumer never accesses the tail. consumer thread, allowing access to elements up to but not
if (tail->count == BLOCK SIZE) { including the head block.

* : — o °

boll _block® newtall = new bll block; 4.3 Implementation and Resultsnewtall->next = tail; : :
A template-based, C++ implementation of this data structure is

// After this, I can never touch available at:

// the old tall again, Shee http://cs.stanford.edu/~dmorris/code/block_linked_list.h
// the consumer could be using it

tail = newtail; This implementation was used in [5], [11], and [12], and
introduced no disk latency on the high-priority haptic/experiment

} threads.

// Insert the new data record BLOCK SIZE is a performance variable; in practice it is also
tail->datalcount] = d; templated but it need not be the same for every block. Higher
count++; values improve bandwidth on the consumer thread, since larger

disk writes are batched together and allocated memory is more

localized, but may result in larger peak latencies on the consumer

// This function is called only by the thread (due to larger writes). Higher values of BLOCK SIZE
// consumer (logging) thread to flush also increase the latency between production and consumption. A
// all available data to disk BLOCK_SIZE value of 1000 was used in [3], [11], and [12].

void BLL::safe flush() {

// If the tail pointer changes during ACKNOWLEDGMENTS
// this call, after this statement,

// that’s fine; I’11 only log up to Support was provided by NIH LM07295 and the AO Foundation.
// the tail at this instant. I can’t The “dragon”, “bunny”, and “happy” models were obtained from
// access ‘tail’ directly for the rest the Stanford 3D Scanning Repository [25]. The “gear” model was
// of this call. obtained from the TetGen examples page [26]
bll block* mytail = tail;

// If there are no filled blocks, this REFERENCES

// | loop won’ t run; no harm done. [1] Abbott, J., Marayong, P., and Okamura, A. Haptic Virtual
while (head != mytail) { Fixtures for Robot-Assisted Manipulation. 12th International

// Dump this whole block to disk or Symposium ofRobotics Research (ISRR), October 2005.
// perform other high-latency operations [2] Garroway, D. and Hayward, V. A Haptic Interface for

fwrite (head->data, Editing Space Trajectories. Poster presented at ACM
sizeof (bll record),BLOCK SIZE,myfile); SIGGRAPH & EuroGraphics Symposium on Computer

Animation. August 2004.
// Increment the head ptr and clean up Co
// what we’ re done with [3] Williams, R.L., Srivastava, M., Conaster, R., and Howell,

bll block oldhead = head; J.N. Implementation and Evaluation of a Haptic Playback
head = head->next; System. Haptics-e, Vol. 3, No. 3, May 3, 2004.

delete oldhead; [4] Feygin, D., Keehner, M., and Tendick, F. Haptic Guidance:
Experimental Evaluation of a Haptic Training Method for a

Perceptual Motor Skill. Proceedings 10th IEEE Symposium

}; on Haptic Interfaces for Virtual Environment and
Teleoperator Systems, March 2002.

The central operating principle 1s that the push back routine [5] Morris, D., Tan, H.Z., Barbagli, F., Chang, T., and Salisbury,
only accesses the current tail; when the tail is filled, a new block K. Haptic Training Enhances Force Skill Learning. [EEE
becomes the tail and this routine never touches the old tail again. World Haptics, Tsukuba, Japan, March 2007.
The safe flush routine flushes all blocks up to but not 61 Bentlev. J. L. Multidi nal b h df
including the current tail. If the current tail changes during this [6] Bent YJ. Le es Pa pindary searc Pvg %
routine’s execution, it may leave more than one block unflushed, ee 200.jy ommunications of the ’
but it will not conflict with the producer’s push back routine. (Sep.), 309-517.

[7] Schneider, P. and Eberly, D.H. Geometric Tools for

These two routines comprise the important components of the Computer Graphics. Morgan-Kauffman, 2003. Relevant
data structure; required but not detailed here are additional source:
initialization routines and a “tail flush” routine that flushes the

current tail block and can be fun when the producer is http://www.geometrictools.com/Foundation/Distance/
permanently finished or has downtime (the pseudocode above Wm3DistVector3Segment3.cpp
never flushes the last, partially-filled block). The BLL also

presents an O(N) routine for safe random element access by the

11

http://www.geometrictools.com/Foundation/Distance/Wm3D [16] Bartz, D. and Guvit, O. Haptic Navigation in Volumetric
istVector3Triangle3.cpp Datasets. Second PHANToM Users Research Symposium,

[8] Mount, D.M. and Arya, S. ANN: A library for approximate Zurich, Switzerland, 2000.
nearest neighbor searching. CGC 2nd Annual Fall [17] Kim, L., Sukhatme, G., and Desbrun, M. A haptic rendering

Workshop on Computational Geometry, 1997. Available at technique based on hybrid surface representation. IEEE

http://www.cs.umd.edu/~mount/ANN . Computer Graphics and applications, March 2004.

[9] Massie, T.H., and Salisbury, J.K. The PHANTOM Haptic [18] Sethian, J.A. A fast marching level set method for

Interface: A Device for Probing Virtual Objects. Symp. on monotonically advancing fronts. In Proc. Nat. Acad. Sci.,

Haptic Interfaces for Virtual Environments. Chicago, IL, volume 93 of 4, pages 1591-1595, 1996.

Nov. 1994. [19] Mauch, S. Efficient Algorithms for Solving Static Hamilton-
[10] Conti, F., Barbagli, F., Morris, D., and Sewell, C. CHAI: An Jacobi Equations. PhD thesis, 2003.

Open-Source Library for the Rapid Development of Haptic [20] Closest Point Transform (open-source software):
Scenes Demo paper presented at IEEE World Haptics, Pisa, http://www.acm.caltech.edu/~seanm/projects/cpt/cpt.html
Italy, March 2005.

[21] Sud, A., Otaduy, M., and Manocha, D. DiFi: Fast 3D

[11] Morris, D. TG: A software package for behavioral Distance Field Computation Using Graphics Hardware.
neurophysiology and closed-loop spike train decoding. Eurogrpahics 2004
Technical documentation, 2006. Available at
http://cs.stanford.edu/~dmorris/projects/tg2_description.pdf [22] Cohen, J.D., Lin, M.C., Manocha, D., and Ponamgi M. I-

COLLIDE: An Interactive and Exact Collision Detection

[12] Ojakangas, C.L., Shaikhouni, A., Friehs, G.M., Caplan, System for Large-Scaled Environments. Proc. ACM
AH, Serruya, M.D. Saleh, M., Morris, D.S., Donoghue, Symposium on Interactive 3D Graphics, pp. 189-196, 1995
J.P. Decoding movement intent from human premotor cortex
neurons for neural prosthetic applications. Journal of Clinical [23] Morris, D., Girod, S., Barbagli, F., and Salisbury, K. An
Neurophysiology, December 2006, Volume 23, Issue 6, Interactive Simulation Environment for Craniofacial Surgical
p577-584. Procedures. Proceedings of MMVR (Medicine Meets Virtual

Reality) XIII, Long Beach, CA, January 2005. Studies in

[13] Fisher, S. and Lin, M. Fast Penetration Depth Estimation for Health Technology and Informatics, Volume 111.
Elastic Bodies Using Deformed Distance Fields. IROS 2001.

[24] Thrane, N. and Simonsen, L.O. A comparison of acceleration

[14] Varadhan, G., Krishnan, S., Sriram, L, and Manocha, D. structures for GPU assisted ray tracing. Master’s thesis,
Topology Preserving Surface Extraction Using Adaptive University of Aarhus, Denmark, 2005.
Subdivision. Eurographics Symposium on Geometry

Processing, 2004. [25] http://graphics.stanford.edu/data/3Dscanrep/

[15] McNeely, W.A., Puterbaugh, K.D., and Troy, J.J. Voxel- [26] http://tetgen.berlios.de/fformats.examples.html
Based 6-DOF Haptic Rendering Improvements. Haptics-e,
vol. 3, 2006.

12

