Algorithms and Data Structures for Haptic Rendering:

Curve Constraints, Distance Maps, and Data Logging

Dan Morris
Stanford University Robotics Lab
Computer Science Department
Stanford, CA 94305-9010

dmorris@cs.stanford.edu

ABSTRACT
In this paper, we describe three novel data processing techniques
used for haptic rendering and simulation:

e We present an approach to constraining a haptic device to
travel along a discretely-sampled curve.

e We present an approach to generating distance maps from
surface meshes using axis-aligned bounding box (AABB)
trees. Our method exploits spatial coherence among
neighboring points.

e We present a data structure that allows thread-safe, lock-free
streaming of data from a high-priority haptic rendering
thread to a lower-priority data-logging thread.

We provide performance metrics and example applications for
each of these techniques. C++-style pseudocode is provided
wherever possible and is used as the basis for presenting our
approaches. Links to actual implementations are also provided
for each section.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User Interfaces —
Haptic 1/0; H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems

General Terms
Algorithms, Human Factors

Keywords

Haptics, haptic rendering, virtual fixtures, distance maps,
synchronization, threads, voxelization, flood-filling, kd-tree,
curve constraints

1. INTRODUCTION

Applications incorporating haptic feedback are subject to
significant performance constraints; it is generally accepted that
an application needs to sustain a 1kHz haptic update rate before
sampling effects become perceptible.

This stringent computation-time limitation requires careful
consideration of the design and implementation of preprocessing,
rendering, and data streaming techniques. In this paper, we
present three techniques for optimized haptic data processing,
each in an individual section of the paper. Section 2 will discuss
the implementation of a haptic curve constraint, or “virtual
fixture”, using kd-trees. Section 3 will discuss the rapid (oftline)
generation of exact signed distance fields for surface meshes.

Section 4 will discuss a threaded data structure for lock-free
streaming of data from a high-priority haptic rendering thread to a
lower-priority disk-interaction thread.

2. HAPTIC CURVE CONSTRAINTS
2.1 Background

Haptic devices generally provide a user with three or six degrees
of freedom. Haptic feedback, however, offers the possibility of
dynamically reducing the effective degrees of freedom available
within the device’s workspace via virtual constraints.

Non-penetration constraints associated with surfaces are
extremely common and are used in nearly every haptic simulation
involving interaction with rigid objects, but other types of
constraints have been applied using haptic devices as well.
Abbott et al [1] propose “virtual fixtures™ to assist in dexterous
manipulation; the goal is to reduce the degrees of freedom
involved in a complex task and/or to restrict a device’s motion to
a “safe” portion of the workspace. This may be particularly
suitable for robotic surgery applications in which an actuated
master can assist the surgeon by restricting the movement of the
slave. The authors discuss multiple types of fixtures, including a
“guidance virtual fixture” (GVF), which is a constraint associated
with a 3D curve. Garroway and Hayward [2] constrain the user to
an analytic curve to assist in editing a spatial trajectory.

In both of these cases, it is assumed that the closest point on the
curve to the current haptic probe position and/or the distance to
that point are readily available, either by analytic computation or
by explicitly tracking the progress of the haptic probe along the
curve.

2.2 Discretized Curve Constraints

For some applications, particularly those where constraints can be
dynamically added and removed, it may be necessary to constrain
a user to a curve beginning at an arbitrary starting point, or to
recover when the constraint has been significantly violated. It is
thus necessary to rapidly find the closest point on a curve to the
current haptic probe position.

In addition, analytic representations are not always available for
curves; curves are most generally represented as discretely-
sampled, ordered point sets rather than analytic functions. This is
particularly useful, for example, for haptic training applications
(e.g. [3.4,5]), in which one might use previously-recorded
trajectories as teaching examples.

We thus provide a rapid method for finding the closest point on a
discretely-sampled curve to a current probe position. We also
present an approach to tracking the constraint position on a curve

when the haptic device may deviate from the constraint and
approach other points on the curve to which it should not become
constrained. Tying the haptic device to this constraint position by
a virtual spring will provide a general-purpose curve constraint.

A curve is assumed to be represented as a series of N points, each
of which stores its 3-dimensional position, an index into a linked-
list or flat array that stores the N points in order, and its
arcposition along the curve (the curve runs from arcposition 0.0 to
arcposition 1.0). The curve is not required to have a uniform
sampling density. Each point p; (for i # 0 and i # (N-1)) is
implicitly part of two line segments, [p;.; — p;] and [p; = pi1].
For clarity, I will provide C++ pseudocode of the relevant data
structures and computations throughout this section, beginning
with the representation of the curve and sample points. The
‘vector’ class is assumed to represent a 3-dimensional vector and
to support the expected operators.

struct curvePoint ({
vector pos;
unsigned int index;
float arcpos;

i

struct curve {
unsigned int N;
curvePoint* points;

i

All of these points are then placed in a standard kd-tree [6] (a
3d-tree in this case). A kd-tree stores a point set and provides
efficient retrieval of the subset of points that lie within a bounding
rectangle. This can be generalized at minimal cost to return the
approximate nearest K neighbors to a given test point. We will
assume that our kd-tree provides the following function, which
returns the K points closest to restPoint:

void search(
vector testPoint,
int K, curvePoint* points);

At each timestep at which a haptic constraint force is requested,
we use this interface to find the N closest points to the device
position pge,. N is chosen empirically; higher values of N require
more computation time but reduce the occurrence of incorrect
forces resulting from sparse sampling of the curve. Figure 1
demonstrates this problem and illustrates why using N=1 does not
generally give correct results.

// Get the points closest to the device
vector pdev = getDevicePosition();
curvePoint neighbors([N];
myKDTree.search (pdev, N, neighbors);

The N returned points are sorted by index, and for each returned
point p; we build the two associated line segments ([p;.; — p;] and
[pi = pis1]) and insert them into an ordered list of candidate line
segments that might contain the closest point to our haptic probe.
This ordering reduces redundancy; we now have a maximum of
(but generally less than) 2N line segments to search. We can
compactly represent each line segment as its first index, so we can
store the candidate set as an ordered, non-redundant list of
indices:

// Sort the candidate line segments by index

1 6

Figure 1. The device should be constrained to the segment
between vertices 1 and 2, but sparse sampling of the curve
places it closer to vertex 4 than to either of these vertices.
This motivates the use of a broader nearest-neighbor search to
handle this case properly.

std::set<unsigned int> candidateSegments;
for (unsigned int i=0; 1i<N; i++)
candidateSegments.insert (neighbors[i]);

Now for each of those candidate segments, we compute the
smallest distance between our device position pg, and the
segment, using the approach presented (and available online) in
[7]. We assume we have a function distanceToSegment that
takes a test position and a segment defined by the indices of its
two endpoints and returns the corresponding distance and point of
closest approach (as a t-value, where 0.0 is the segment start and
1.0 is the segment endpoint). We find the segment with the
smallest distance to the haptic device point:

// Find the point of closest approach among
// all candidate segments

struct distanceRecord {
int segmentIdx;
float t;
float distance;

i

float shortestDistance = FLT MAX;
distanceRecord closest;
std::set<unsigned int>::iterator iter;

// Loop over all candidate segments
for (iter=candidateSegments.begin () ;

iter != candidateSegments.end(); iter++) {
int index = *iter;
float t;

// What’s the smallest distance to this
// segment?
float distance =

distanceToSegment (pdev, index, index+1,t) ;
distanceRecord dr (index, t,distance);

// Is this the smallest distance
// we've found so far (to any segment)?
if (distance < shortestDistance) {

device 3

1 6

Figure 2. The device passes through vertex 4 on its way
between vertices 1 and 2, but should still be constrained to
segment [1,2] to guide the user along the correct curve shape.

closest = dr;
shortestDistance = distance;

}

For most curves, it is now sufficient to simply apply a constraint
force pulling the device toward the closest point on the closest
segment with stiffness Keonsraine:

// Generate a constraint force pulling
// the haptic device toward the closest
// point on the curve

vector start =
myCurve.points[closest.segmentIdx] .pos;
vector end =
myCurve.points|[closest.segmentIdx +1].pos;
vector closestPoint =
start + (end - start) * closest.t;
vector force =
Keonstraint * (closestPoint - pdev);

This approach, however, fails in the case illustrated in Figure 2.
Here, due to normal deviation from the constraint path (resulting
from limited stiffness), the device passes through vertex 4 on its
way between vertices 1 and 2, but should still be constrained to
segment [1,2] to guide the user along the correct curve shape.
This can be handled by a modification to our distance-
computation function, which takes into account the arcdistance of
the point to which the haptic device was most recently
constrained. Essentially, when choosing the closest point on the
curve, we want to penalize points that are far from the test point
both in Euclidean distance and in arclength.

We assume that the distance computation function is provided the
arcposition of the point to which the device was previously
constrained (or a flag indicating that this is a new constraint and
there is no previous state, in which case the distance returned is
just the usual Euclidean distance). For each segment we process,
we find the closest point on that segment to the haptic device and
compute the corresponding Euclidean distance as usual. We then
take the absolute difference in arcposition between this point and
the previous constraint point, multiply it by an empirically-
selected penalty factor, and return this weighted “score” as our

distance value in the above routine (this pseudocode replaces the
distance computation in the above routine):

// known from our previous iteration
float previousArcPos;

float distance = distanceToSegment (pdev,
index, index+1,t) ;

// Find the arcposition of the closest

// point of approach on this segment

float newArcPos =
(myCurve.points[index].arcpos*t)
+
(myCurve.points[index+1].arcpos* (1.0-t));

// Find the arcdistance between this test
// point and my previous constraint position
float arcidst =

fabs (previousArcPos - newArcPos) ;

// Weight our 'distance' value according to
// this arcposition.
distance = distance +

arcidst * ARC PENALTY WEIGHT;

Higher values of ARC_PENALTY_WEIGHT maximally
eliminate “jumping” along the curve (Figure 2). However,
inappropriately high values may cause friction-like effects as the
user rounds sharp corners in the curve and is prevented from
“jumping” around corners when he should be allowed to move to
subsequent segments. We have found this effect to be
imperceptible for a wide range of values of
ARC_PENALTY_WEIGHT (see Section 2.3).

2.3 Implementation and Results

The above algorithm was implemented in C++ using the public-
domain kd-tree available in [8], a Phantom haptic device [9], and
the CHAI 3D libraries for haptics and visualization [10]. Curves
were generated according to [5], with 2000 points. N (number of
nearest neighbors to search) was set to 100, with the arc penalty
weight set to 1.0.

/

3r E
E Cm
-3r Constraint position | |
Device position
2

)

Z Position (cm)
- o

S

“ 6 55 -5 45 4 35 3 25
X Position (cm)

Figure 3. Black lines indicate correspondences between device
position (green) and constraint position (red). The highlighted
areas show regions where the device approached a region on
the curve that was distant in terms of arclength and was thus
appropriately constrained to the current curve segment,
despite being physically closer to the “incorrect” segment.

o
13

o
S
> &

o
©w
a

Median force computation time (ms)

03+
025+
02}
0.15
0.1
0.0 0‘.2 0‘.4 0‘.6 0‘.8 1‘ 1‘.2 114 1‘.6 118 2
Millions of trajectory samples
Figure 4. Increase in computation time with increasing

trajectory size, N (number of neighbors used) fixed at 100.
The increase is approximately linear, but even with two
million samples, the computation time is well under 1ms.

Figure 3 demonstrates the robustness of our approach. We see the
actual path of the device in green, constrained by force vectors
(indicated in black) to the curve. We see several regions
(highlighted in blue) where the device very closely approaches a
region of the curve that is distant from the current constraint
position in terms of arclength, and the constraint position
correctly remains on the current region of the curve.

For the constant values presented above, mean computation time
per haptic iteration on a 1GHz Pentium 4 was 0.2ms, well below
the accepted perceptual threshold of 1ms per haptic computation.
Figure 4 shows the dependence of computation time on the
number of samples in the trajectory for a fixed N (number of
neighbors used in constraint search). We see that even with very
large trajectories (up to two million samples), computation time is
well below 1ms. Figure 5 shows the dependence of computation
time on N (number of neighbors used in constraint search) for a
fixed trajectory size. Although this increase is also approximately
linear, there is a much more expensive constant factor associated
with increasing N, since this increases the number of floating-
point distance computations.

As a final point, we note that our distance-computation function
generates the closest point returned from each point/segment
comparison, so this is the only part of our overall approach that
would need to be modified to represent line segments as Bezier
curve segments or other interpolation functions.

An implementation of the algorithm discussed here is included as
part of our “haptic mentoring” experimental platform [5],
available at:

http://cs.stanford.edu/~dmorris/haptic_training

3. DISTANCE MAP GENERATION
3.1 Terminology

For an object O on R" and a set of points P on R", the distance
field is defined as the smallest distance from each point in P to a
point on O. The distance metric is generally Euclidean distance,
but any symmetric, non-negative function satisfying the triangle
inequality can serve as a distance metric. The distance map is the
distance field annotated with the position of the closest point on

Median force computation time (ms)

| | | , , , \ \
80 400 600 800 1000 1200 1400 1600 1800 2000
N (number of neighbors used)

Figure 5. Increase in computation time with increasing N
(number of neighbors used), trajectory size fixed at 2000.

O for each point in P. When O is an orientable surface (a surface
that partitions R" into two subspaces), the sign of the stored
distance at a point indicates the subspace in which that point lies
(in particular, this sign is often used to indicate whether a point is
inside or outside a closed surface Q). The distance transform
takes a set of points P and an object O and annotates P with a
distance map on O. The closely-related closest-point transform
takes a set of points P and an object O and annotates each point in
P with the location of the closest point on O, without distance
information. The closest-point transform is computed by
definition whenever a distance map is generated.

3.2 Background

The distance map is an implicit object representation with
extensive applications in computer graphics, for example in
physical simulation [13] and isosurface generation [14].

Distance maps have also been applied in haptics, to search for
collisions between a haptic tool and the environment [15], to
provide constraint forces when navigating a volume [16], and to
constrain a surface contact point to the boundary of a region [17].

Several methods have been proposed for computing distance
fields, distance maps, and closest point transforms. Many
applications in computer animation use the approximate but
extremely efficient Fast Marching Method [18]. [19] proposes a
method based on Voronoi regions and local rasterization, and
provides an open-source implementation [20]. More recently,
approaches have emerged that use parallel graphics hardware to
accelerate distance field computation [21].

We propose an alternative method for generating exact distance
maps from point sets to triangle meshes that leverages bounding-
box structures, which are already generated as a preprocessing
step for many interactive applications in haptics and graphics.

3.3 Distance Map Generation

The following procedure assumes that we are given a list of points
P, preferably sorted in an order that promotes spatial coherence
(this is generally the case in practice, where regular voxel grids
are used as the point set and sorting is trivial). We are also given
a set of triangles M, which represent one or more logical objects
in a scene.

o —%

Upper-bound distance
for box B

Box D
Box B — |

Lower-bound distance
for box B Box C

Upper-bound distance
for box A

Lower-bound distance
for box A

Figure 6. Distance transformation for point P;. If we’ve
processed Box A before we process Box B, we will not descend
to Box B’s children, because Box B’s lower-bound distance is
greater than Box A’s upper-bound distance.

We further assume that a bounding-volume hierarchy has been
built on M. A strength of this approach is that it leverages
common bounding-volume techniques, which are used in a variety
of existing applications in haptics and graphics. Without loss of
generality, we will assume that the hierarchy is composed of axis-
aligned bounding boxes (AABB’s). Further details on the
construction and characteristics of AABB trees can be found in
[22].

The general approach to finding the closest point on M to a point
P; in P is to descend the AABB tree, computing lower and upper
bounds on the distance to each box we descend, and tracking the
lowest upper bound dy, we’ve encountered so far (the lowest
“guaranteed” distance). If the lower bound for a box is farther
from P; than d,,, we can skip this box (see Figure 6). Using this
culling approach and exploiting spatial coherence among
subsequent points in P by selectively mixing breadth-first and
depth-first examination of our bounding volume hierarchy, we can
build distance maps in a manner that is both efficient and heavily
parallelizable.

In the following pseudocode, we assume without loss of
generality that the AABB tree representing our triangle mesh is in
the same coordinate frame as our point list; in practice coordinate
transformations are performed before distance computation
begins. We also assume for clarity of terminology that the list of
points P is a series of voxel locations (this is the case when
computing the distance transform on a regular grid), so we refer to
the P;’s as “voxels” and locations on the surface M as “points”.

// A simple AABB tree hierarchy

// A generic tree node maintaining only a
// parent pointer. This pseudocode avoids
// pointer notation; all links within the
// tree and all references to AABBNode’s in
// the code should be read as pointers.
struct AABBNode { AABBNode parent; };

// A structure representing a bounding box
// and pointers to child nodes.

struct AABBoOx public AABBNode {
// the actual bounding box
vector3 xyzmax, xyzmin;

// my children in the AABB tree
AABBNode left, right;
}

// A structure representing a leaf node
struct AABBLeaf public AABBNode {
triangle t;

}

// The inputs to our problem

// The Pi’'s
std::list<vector3> voxels;

// The triangle set M, pre-processed into
// an ARABB tree
AABBox tree root;

// All the boxes we still need to look at

// for the current voxel. This may not be
// empty after a voxel is processed; placing
// nodes here to be used for the next voxel
// 1s our mechanism for exploiting spatial
// coherence.

std::1ist<AABBNode> boxes to descend;

// The smallest squared distance to a

// triangle we’ve seen so far for the

// current voxel...

//

// We generally track squared distances,
// which are faster to compute than actual
// distances. When all is said and done,
// taking the square root of this number
// will give us our distance value for this
// voxel.

float lowest dist sg = FLT MAX;

// The point associated with this distance
vector3 closest point;

// The tree node associated with the closest
// point. We store this to help us exploit
// spatial coherence when we move on to our
// next voxel.

//

// This will always be a leaf.

AABBNode closest point node;

// The lowest upper-bound squared distance
// to a box we’ve seen so far for the

// current voxel.

float lowest upper dist sg = FLT MAX;

// Process each voxel on our list, one
// at a time...

std::list<vector3>::iterator iter =
voxels.begin () ;

while (iter != voxels.end) {

}

//
//

// Grab the next point
vector3 v = (*iter);

// Now we’re going to find the closest
// point in the tree (tree root) to v...
//

// See below for the implementation of
// find closest point.

find closest point (v);

// Now output or do something useful

// with lowest dist sqg and closest point;
// these are the values that should be

// associated with v in our output

// distance map...

do_something useful () ;

// So it’s time to move on to the next

// voxel. We’'d like to exploit spatial

// coherence by giving the next voxel

// a "hint" about where to start looking
// in the tree. See the explanation below
// for what this does; the summary is that
// it seeds 'boxes to descend' with a

// good starting point for the next voxel.
seed next voxel search();

Find the closest point in our mesh to
the sample point v

void find closest point (vector3 v) {

}

//
//
//
//
//
//
//
//

// Start with the root of the tree
boxes to descend.push back(tree root);

while (! (boxes to descend.empty)) {
AABBNode node =
boxes to descend.pop front();
process node (node, V) ;

}

Examine the given node and decide whether
we can discard it or whether we need to
visit his children. If it’s a leaf,
compute an actual distance and store

it if it’s the closest so far.

Used as a subroutine in the main voxel
loop (above).

void process node (AABBNode node, vector3 v) {

// Is this a leaf? We assume we can get
// this from typing, or that the actual

// implementation uses polymorphism and

// avoids this check.

bool leaf = isLeaf (node);

// If it’s a leaf, we have no more

// descending to do, we just need to

// compute the distance to this triangle
// and see if it’s a winner.

if (leaf) {

// Imagine we have a routine that finds

// the distance from a point to a

// triangle; [7] provides an optimized
// routine with a thorough explanation.
float dsqg;

vector3 closest pt on tri;

// Find the closest point on our
// triangle (leaf.t) to v, and the
// squared distance to that point.
compute squared distance(v,leaf.t,
dsg,closest pt on tri;

// Is this the shortest distance so far?
if (dsg < lowest dist sq) {

// Mark him as the closest we’ve seen
lowest dist sg = dsgqg;

closest point = clost pt on tri;
closest point node = node;

// Also mark him as the "lowest upper
// bound", because any future boxes
// whose lower bound 1s greater than
// this value should be discarded.
lowest upper dist sg = dsq;

}

// This was a leaf; we’re done with him
// whether he was useful or not.
return;

}

// If this is not a leaf, let’s look at
// his lower- and upper-bound distances
// from v.

//

// Computing lower- and upper-bound

// distances to an axis-aligned bounding
// box is extremely fast; we just take
// the farthest plane on each axis

float best dist = 0;

float worst dist = 0;

// If I'm below the x range, my lowest
// x distance uses the minimum x, and
// my highest uses the maximum x
if (v.x < node.box.xyzmin.x) {
best dist += node.box.xyzmin.x - v.Xx;
worst dist += node.box.xyzmax.x - V.X;

}

// If I'm above the x range, my lowest x
// distance uses the maximum x, and my
// highest uses the minimum x
else if (v.x > node.box.xyzmax.x) {
best dist += v.x - node.box.xyzmax.Xx;
worst dist += v.x - node.box.xyzmin.x;

}

// If I'm in the x range, x doesn't
// affect my lowest distance, and my
// highest-case distance goes to the
// _farther of the two x distances
else {

float dmin =

fabs (node.box.xyzmin.x - v.x);
float dmax =

fabs (node.box.xyzmax.x - v.X);
double d worst = (dmin>dmax) ?dmin:dmax;
worst dist += d worst;

}
// Repeat for y and z...

// Convert to squared distances
float lower dsg = best dist * best dist;
float upper dsq = worst dist * worst dist;

// If his lower-bound squared distance

// is greater than lowest upper dist sq,

// he can’t possibly hold the closest

// point, so we can discard this box and

// his children.

if (lower dsg > lowest upper dist sq)
return; B B B

// Check whether I'm the lowest

// upper-bound that we’ve seen so far,

// so we can later prune away

// non-candidate boxes.

if (upper dsq < lowest upper dist sq) {
lowest upper dist sq = upper dsqg;

t

// If this node could contain the

// closest point, we need to process his
// children.

//

// Since we pop new nodes from the front
// of the list, pushing nodes to the front
// here results in a depth-first search,
// and pushing nodes to the back here

// results in a breadth-first search. A
// more formal analysis of this tradeoff
// will follow in section 3.4.

boxes to descend.push front (node.left);
boxesitoidescend.pushifront(node.right);

// Or, for breadth-first search...

// boxes to descend.push back(node.left);

// boxes to descend.push back(node.right);
}

When we’ve finished a voxel and it’s time to move on to the next
voxel, we’d like to exploit spatial coherence by giving the next
voxel a “hint” about where to start looking in the tree. We expect
the node that contains the closest point to the next voxel to be a
“near sibling” of the node containing the closest point to the
current voxel, so we’ll let the next voxel’s search begin at a
nearby location in the tree by walking a couple nodes up from the
best location for this voxel.

The constant TREE_ASCEND_N controls how far up the tree we
walk to find our “seed point” for the next voxel. Higher values
assume less spatial coherence and require more searching in the
case that the next voxel is extremely close to the current voxel.
Lower values assume more spatial coherence and optimize the
case in which subsequent voxels are very close, while running a
higher risk of a complete search.

Section 3.4 discusses the selection of an optimal value for
TREE_ASCEND_N.

void seed next voxel search() {

// Start at the node that contained our
// closest point and walk a few levels
// up the tree.
AABBNode seed node = closest point node;
for (int i1=0; i<TREE ASCEND N; i++) {

if (seed node.parent == 0) break;

else seed node = seed node.parent;

}

// Put this seed node on the search list
// to be processed with the next voxel.
boxes to descend.push back(seed node);

}

In summary, for each voxel in P; we track the lowest upper-bound
distance that we’ve found for a box as we descend our AABB
tree, and discard boxes whose lower-bound distance is larger.
When we reach a leaf node, we explicitly compute distances and
compare to the lowest distance we found so far. We exploit
spatial coherence when processing a voxel by first searching a
small subtree in which we found the closest point for the previous
voxel.

3.4 Implementation and Results

The approach presented here was evaluated in the context of
generating internal distance fields (finding and processing only
voxels that lie inside a closed mesh) during the process of
voxelization. Voxelizer is an application written in C++ that loads
meshes and uses a flood-filling process to generate voxel
representations of those meshes, optionally including distance
fields. Both the flood-filling and the distance-field generation use
the public-domain AABB tree available in CHAI [10].

To evaluate the suitability of our approach and the benefit of our
exploitation of spatial coherence, we generated voxel arrays and

(d)

Figure 7. Meshes used for evaluating distance map
computation. (a) Gear: 1000 triangles. (b) Happy: 16000
triangles. (¢) Dragon: 203000 triangles (d) Bunny: 70,000
triangles.

(d)

Figure 8. The same meshes displayed in Figure 7, after using
the voxelizer application to identify internal voxels (voxel
centers are in green for surface voxels and red for internal
voxels) by flood-filling. The long axis resolution in each case
here is 50 voxels.

distance fields for a variety of meshes (Figures 7 and 8) at a
variety of voxel densities and a variety of values for
TREE_ASCEND_N (see above). Furthermore, at each parameter
set, we generated distance fields using both depth- and breadth-
first search. The following sections discuss the performance
results from these experiments.

OVERALL PERFORMANCE

Table 1 shows the computation time for flood-filling and distance-

)

bunny (70k tris;
601 gear (1k tris)
happy (16k tris)
dragon (2083k tris)

30

Computation time (s)
n
o

-
o
T

020 40 60 80 100 120 140 160 180 200
Long axis mesh resolution (voxels)

Figure 9. Performance of our distance-map computation
approach on all four meshes at a variety of mesh resolutions.

field generation for each of the four test meshes at a variety of
resolutions. The voxel arrays generated represent surface and
internal voxels only; the full distance field for voxels outside the
mesh is not generated. “Long axis resolution” indicates the
number of voxels into which the longest axis of the mesh’s
bounding-box is divided; voxels are isotropic so the resolutions of
the other axes are determined by this value.

We note that for small resolutions, on the order of 30 voxels,
times for distance computation are interactive or nearly
interactive, even for complex meshes. We also note that in
general, distance computation represents the significant majority
of the total time required to perform the combined flood-filling
and distance-field generation (on average, distance-field
generation represents 86% of the total time).

Figure 9 shows the dependence of computation time on long axis
resolution for all four meshes. As expected, all meshes display an
exponential increase in computation time as voxel resolution
increases, but even at very high resolutions, computation time is

Mesh Triangles Long axis resolution Voxels Total time (s) Distance time (s)
bunny 70k 30 7168 0.736 0.683
bunny 70k 75 95628 6.107 5.282
bunny 70k 135 529024 29.033 25.258
bunny 70k 195 1561728 82.341 71.585
gear 1k 30 4156 0.144 0.117
gear 1k 75 54270 1.751 1.383
gear 1k 135 286813 9.228 7.282
gear 1k 195 829321 27.137 21.387
happy 16k 30 2020 13495 177
happy 16k 75 25308 1.387 1.208
happy 16k 135 132910 6.132 5.261
happy 16k 195 381120 16.956 14.48
dragon 203k 30 2550 0.494 0.47
dragon | 203k 75 31674 3.158 2.859
dragon | 203k 135 164061 11.839 10.558
dragon | 203k 195 468238 30.13 26.633

Table 1. A comparison of flood-filling and distance-computation times for all four meshes at a variety of voxel resolutions.

Long axis voxels: 30
Long axis voxels: 75
Long axis voxels: 135
Long axis voxels: 195

Computation time (s)
8 8 &5 g

=)
L

1 ;i ; I I I I
° 4 5 6 7

2 3
TREE_ASCEND_N value

Figure 10. Performance benefit of exploiting spatial coherence
and optimal value selection for TREE_ASCEND_N (results
shown here are for the “happy” mesh). A value of -1 indicated
that spatial coherence was not exploited at all. A value of 0
indicated that the “hint” node was the leaf node (a single
triangle) that contained the shortest distance for the previous
voxel.

tractable for preprocessing applications (only above one minute
for one of the four meshes and only above a long axis resolution
of 180 voxels).

SPATIAL COHERENCE

To analyze the benefit of exploiting spatial coherence in distance-
map computation, and to identify the optimal value of
TREE_ASCEND_N (the number of tree levels to step up in
generating a “hint” location for the next voxel’s distance search),
voxel arrays and distance fields were generated for all four meshes
with various values of TREE_ASCEND_N. Figure 10 shows the
results for the “happy” mesh (this mesh was chosen arbitrarily;
results were similar for all four meshes). A TREE_ASCEND_N
value of -1 indicated that spatial coherence was not exploited at
all; i.e. every distance search started at the top of the tree. A value
of 0 indicated that the “hint” node was the leaf node (a single
triangle) that contained the shortest distance for the previous
voxel.

Exploting spatial coherence yields five-fold improvement in
performance (a reduction in distance field time from 62 seconds to
13 seconds) for the largest resolution shown in Figure 10. This
corresponds to the difference between TREE_ASCEND_N values
of 0 and 1. Further increasing TREE_ASCEND_N does not
further improve performance; it is clear in Figure 10 that zero is
the optimal value. This is equivalent to assuming that locality
extends as far as the closest triangle; it isn’t worth searching
neighboring AABB nodes as well before searching the whole tree.

DEPTH- VS. BREADTH-FIRST SEARCH

To compare the use of depth- and breadth-first distance search,
voxel arrays and distance fields were generated for all four meshes
using each approach. Figure 11 shows the results when using the
optimal TREE_ASCEND_N value of 0. Depth-first search is
consistently better, but by a very small margin.

When spatial coherence is not exploited — which serves as a
surrogate for the case in which the point set is not sorted and does
not provide strong spatial coherence — depth-first search performs

Breadth-first
Depthirst

o
T

Computation time (s)
(%,

020) 4‘0 éO éO 160 1é0 1210 1é0 1‘80 200
Long axis mesh resolution (voxels)

Figure 11. Comparison of depth- and breadth-first search for

the “happy” mesh using a TREE_ASCEND_N value of 0

(optimal).

significantly better. This is illustrated in Figure 12, which shows
results for the “happy” mesh at various resolutions with no
assumption of spatial coherence.

IMPLEMENTATION AVAILABILITY

A binary version of this application, with documentation and the
models used in these experiments, is available online at:

http://cs.stanford.edu/~dmorris/voxelizer

Voxelizer is currently used to generate the voxel meshes used in
[23]; distance fields are used to shade voxels based on their
distances to anatomic structures.

Future work will include leveraging the obvious parallelism
available in this approach; voxels are processed nearly
independently and could easily be distributed across machines
with a nearly linear speedup. Furthermore, the simple nature of
the computations performed here makes this suitable to
parallelization across simple processing units, such as those
available on commercial GPU’s, which have been successfully
used to process AABB-based collision queries by [24]. We
would also like to explore the performance impact of using other
bounding-volume hierarchies (e.g. oriented-bounding-box trees
and sphere trees), which fit trivially into our framework.

120 T T
Breadth-first
Depth-first

100 7

80 q

40t -

Computation time (s)

20 q

020 a 4‘0 6‘0 8‘0 160 1é0 1¢‘tO 160 1é0 200
Long axis mesh resolution (voxels)

Figure 12. Comparison of depth- and breadth-first search for

the “happy” mesh using a TREE_ASCEND_N value of -1 (no

exploitation of spatial coherence).

4. HaprrIiC DATA LOGGING
4.1 Background

It is conventionally accepted that a user will begin to notice
discretization artifacts in a haptic rendering system if the system’s
update rate falls below 1kHz. Furthermore, as a haptic
application’s update rate falls, the system becomes more prone to
instability and constraint violation. With this in mind, it is
essential that designers of haptic software structure applications to
allow high-bandwidth, low-latency generation of haptic forces.

There are two relevant implications of this requirement. First of
all, haptic computation must run on a thread that allows
computation at 1kHz. This is non-trivial on single-CPU systems
running non-real-time operating systems, which typically have
thread timeslices of 15ms or more. In other words, naively
sharing the CPU among a haptic application thread and other
application or system threads will not nearly provide the necessary
performance. Boosting thread and process priority is a simple
solution that is offered by common OS’s, but indiscriminately
boosting thread priority can prevent other application tasks (e.g.
graphic rendering) and even critical operating system services
from running. Common solutions to this problem include using
dual-CPU PC’s, boosting thread priority while manually ensuring
that the persistent haptic loop will yield periodically, and/or using
hardware-triggered callbacks to control the rate of haptic force
computation.

Additionally, this stringent performance constraint means that
“slow” tasks (those that require more than one millisecond on a
regular basis) cannot be placed in the critical path of a haptic
application. Graphic rendering, for example, is often
computationally time-consuming and is generally locked to the
refresh rate of the display, allowing a peak throughput of
approximately 30Hz on most systems (lower if the graphical scene
is particularly complex). For this reason, nearly all visuohaptic
applications decouple graphic and haptic rendering into separate
threads.

Disk I/O is another task that incurs high latencies (often over
10ms), particularly when bandwidth is high. For a haptic
application that requires constantly logging haptic data to disk —
such as a psychophysical experiment involving a haptic device — it
is essential to place blocking disk I/O on a thread that is distinct
from the haptic rendering thread.

Using this common scheme, data synchronization between a
haptic thread (which collects position data from the haptic device,
computes forces, and sends forces to the device) and a “slow”
thread (handling graphics and disk I/O) can become a bottleneck.
Traditional locks allow the slow thread to block the haptic thread,
and if the locked region includes a high-latency operation, the
haptic thread can stall for an unacceptable period. —Many
applications are able reduce the data exchanged among threads to
a few vectors or small matrices, and forego synchronization
entirely since the probability and impact of data conflicts are rare.

Data logging tasks, however, cannot take this approach. Even
small errors resulting from race conditions can place data files in
an unrecoverable state. Furthermore, the high bandwidth of data
flow increases the probability of conflicts if data queued for file
output is stored in a traditional linked list. We thus present a data
structure that allows lock-free synchronization between a

10

producer thread and a consumer thread, with the constraint that
the consumer thread does not need to access data immediately
after the data are produced. The only synchronization primitive
required is an atomic pointer-sized write, provided by all current
hardware. This structure does not address sleeping; it’s assumed
that the producer never sleeps (it’s a high-priority loop).
Periodically waking the consumer — who might sleep — is a trivial
extension.

We present this approach in the context of a haptic application,
but it’s equally applicable to other applications with similar
threading structures, for example neurophysiological and
psychophysical experiments. For example, the implementation
discussed here is used by the software presented in [11], which is
used in the experiments presented in [12].

4.2 Data Structure

The data structure presented is labeled a “blocked linked list”
(BLL). The BLL is a linked list of blocks of data records; the
list’s head pointer is manipulated only by the consumer, and the
list’s tail pointer is manipulated only by the producer. The BLL is
initialized so that the head and tail pointers point to a single
block. In pseudocode:

struct bll record {

// the relevant data structure is defined
// here; in practice the BLL is templated
// and this structure is not explicitly
// defined

}i

struct bll block {

// the data stored in this block
bll record data[BLOCK SIZE];

// how many data records have actually
// been inserted?
int count=0;

// conventional linked list next pointer
bll block* next=0;

i
struct BLL {

// conventional linked list head/tail ptrs

bll block *head,*tail;

// initialize to a new node
BLL() { head = tail = new bll block; }

i

The BLL offers the following interface:

// This function is called only by the
// producer (haptic) thread to insert a new
// piece of data into the BLL.

void BLL: :push back(bll records& d) |
// If we've filled up a block,
// allocate a new one. There’s no
// risk of conflict because the

// consumer never accesses the tail.
if (tail->count BLOCK SIZE) {

bll block* newtail =
newtail->next = tail;

new bll block;

// After this, I can never touch
// the old tail again, since

// the consumer could be using it
tail = newtail;

}

// Insert the new data record
tail->data[count] = d;
count++;

}

// This function is called only by the
// consumer (logging) thread to flush
// all available data to disk

void BLL::safe flush() {

//
//
//
//

If the tail pointer changes during
this call, after this statement,
that’s fine; I’11 only log up to
the tail at this instant. I can’t
// access ‘tail’ directly for the rest
// of this call.
b1l block* mytail = tail;

// If there are no filled blocks,
// loop won’t run; no harm done.
while (head != mytail) {

this

// Dump this whole block to disk or
// perform other high-latency operations
fwrite (head->data,

sizeof (bll record),BLOCK SIZE,myfile);

// Increment the head ptr and clean up
// what we’re done with

bll block oldhead = head;

head = head->next;

delete oldhead;

i

The central operating principle is that the push back routine
only accesses the current tail; when the tail is filled, a new block
becomes the tail and this routine never touches the old tail again.
The safe flush routine flushes all blocks up to but not
including the current tail. If the current tail changes during this
routine’s execution, it may leave more than one block unflushed,
but it will not conflict with the producer’s push back routine.

These two routines comprise the important components of the
data structure; required but not detailed here are additional
initialization routines and a “tail flush” routine that flushes the
current tail block and can be run when the producer is
permanently finished or has downtime (the pseudocode above
never flushes the last, partially-filled block). The BLL also
presents an O(N) routine for safe random element access by the

11

consumer thread, allowing access to elements up to but not
including the head block.

4.3 Implementation and Results
A template-based, C++ implementation of this data structure is
available at:

http://cs.stanford.edu/~dmorris/code/block_linked_list.h

This implementation was used in [5], [11], and [12], and
introduced no disk latency on the high-priority haptic/experiment
threads.

BLOCK_SIZE is a performance variable; in practice it is also
templated but it need not be the same for every block. Higher
values improve bandwidth on the consumer thread, since larger
disk writes are batched together and allocated memory is more
localized, but may result in larger peak latencies on the consumer
thread (due to larger writes). Higher values of BLOCK SIZE
also increase the latency between production and consumption. A
BLOCK_SIZE value of 1000 was used in [5], [11], and [12].

ACKNOWLEDGMENTS
Support was provided by NIH LM07295 and the AO Foundation.

The “dragon”, “bunny”, and “happy” models were obtained from
the Stanford 3D Scanning Repository [25]. The “gear” model was
obtained from the TetGen examples page [26].

REFERENCES

[1] Abbott, J., Marayong, P., and Okamura, A. Haptic Virtual
Fixtures for Robot-Assisted Manipulation. /2th International
Symposium of Robotics Research (ISRR), October 2005.

Garroway, D. and Hayward, V. A Haptic Interface for
Editing Space Trajectories. Poster presented at ACM
SIGGRAPH & EuroGraphics Symposium on Computer
Animation. August 2004.

(2]

[3] Williams, R.L., Srivastava, M., Conaster, R., and Howell,
J.N. Implementation and Evaluation of a Haptic Playback

System. Haptics-e, Vol. 3, No. 3, May 3, 2004.

Feygin, D., Keehner, M., and Tendick, F. Haptic Guidance:
Experimental Evaluation of a Haptic Training Method for a
Perceptual Motor Skill. Proceedings 10th IEEE Symposium
on Haptic Interfaces for Virtual Environment and
Teleoperator Systems, March 2002.

Morris, D., Tan, H.Z., Barbagli, F., Chang, T., and Salisbury,
K. Haptic Training Enhances Force Skill Learning. IEEE
World Haptics, Tsukuba, Japan, March 2007.

Bentley, J. L. Multidimensional binary search trees used for
associative searching. Communications of the ACM 18, 9
(Sep. 1975), 509-517.

Schneider, P. and Eberly, D.H. Geometric Tools for
Computer Graphics. Morgan-Kauffman, 2003. Relevant
source:

(4]

(5]

(6]

(7]

http://www.geometrictools.com/Foundation/Distance/
Wm3DistVector3Segment3.cpp

http://www.geometrictools.com/Foundation/Distance/Wm3D
istVector3Triangle3.cpp

Mount, D.M. and Arya, S. ANN: A library for approximate
nearest neighbor searching. CGC 2nd Annual Fall
Workshop on Computational Geometry, 1997. Available at
http://www.cs.umd.edu/~mount/ANN .

Massie, T.H., and Salisbury, J.JK. The PHANTOM Haptic
Interface: A Device for Probing Virtual Objects. Symp. on
Haptic Interfaces for Virtual Environments. Chicago, IL,
Nov. 1994.

[10] Conti, F., Barbagli, F., Morris, D., and Sewell, C. CHAI: An
Open-Source Library for the Rapid Development of Haptic
Scenes Demo paper presented at IEEE World Haptics, Pisa,
Italy, March 2005.

[11] Morris, D. TG2: A software package for behavioral
neurophysiology and closed-loop spike train decoding.
Technical =~ documentation, 2006. Available at
http://cs.stanford.edu/~dmorris/projects/tg2_description.pdf

[12] Ojakangas, C.L., Shaikhouni, A., Friehs, G.M., Caplan,
A.H., Serruya, M.D., Saleh, M., Morris, D.S., Donoghue,
J.P. Decoding movement intent from human premotor cortex
neurons for neural prosthetic applications. Journal of Clinical
Neurophysiology, December 2006, Volume 23, Issue 6,
p577-584.

[13] Fisher, S. and Lin, M. Fast Penetration Depth Estimation for
Elastic Bodies Using Deformed Distance Fields. IROS 2001.

[14] Varadhan, G., Krishnan, S., Sriram, T,, and Manocha, D.
Topology Preserving Surface Extraction Using Adaptive
Subdivision. Eurographics Symposium on Geometry
Processing, 2004.

[15] McNeely, W.A., Puterbaugh, K.D., and Troy, J.J. Voxel-
Based 6-DOF Haptic Rendering Improvements. Haptics-e,
vol. 3, 2006.

(8]

(9]

12

[16] Bartz, D. and Guvit, O. Haptic Navigation in Volumetric
Datasets. Second PHANToM Users Research Symposium,
Zurich, Switzerland, 2000.

[17] Kim, L., Sukhatme, G., and Desbrun, M. A haptic rendering
technique based on hybrid surface representation. IEEE
Computer Graphics and applications, March 2004.

[18] Sethian, J.A. A fast marching level set method for
monotonically advancing fronts. In Proc. Nat. Acad. Sci.,
volume 93 of 4, pages 1591-1595, 1996.

[19] Mauch, S. Efficient Algorithms for Solving Static Hamilton-
Jacobi Equations. PhD thesis, 2003.

[20] Closest ~ Point Transform (open-source software):
http://www.acm.caltech.edu/~seanm/projects/cpt/cpt.html

[21] Sud, A., Otaduy, M., and Manocha, D. DiFi: Fast 3D
Distance Field Computation Using Graphics Hardware.
Eurogrpahics 2004.

[22] Cohen, J.D., Lin, M.C., Manocha, D., and Ponamgi M. I-
COLLIDE: An Interactive and Exact Collision Detection
System for Large-Scaled Environments. Proc. ACM
Symposium on Interactive 3D Graphics, pp. 189-196, 1995

[23] Morris, D., Girod, S., Barbagli, F., and Salisbury, K. An
Interactive Simulation Environment for Craniofacial Surgical
Procedures. Proceedings of MM VR (Medicine Meets Virtual
Reality) XIII, Long Beach, CA, January 2005. Studies in
Health Technology and Informatics, Volume 111.

[24] Thrane, N. and Simonsen, L.O. A comparison of acceleration
structures for GPU assisted ray tracing. Master’s thesis,
University of Aarhus, Denmark, 2005.

[25] http://graphics.stanford.edu/data/3Dscanrep/
[26] http://tetgen.berlios.de/fformats.examples.html

