
Hybrid Rendering for Interactive Virtual Scenes

Dan Morris, Neel Joshi

dmorris @cs.stanford.edu, nsj@cs.stanford.edu

Robotics Laboratory, Department of Computer Science, Stanford University, Stanford, CA

Abstract

Interactive virtual environments used in conjunction with haptic displays are often static-

viewpoint scenes that contain a mixture of static and dynamic virtual objects. The immersive

realism of these environments 1s often limited by the graphical rendering system, typically

OpenGL or Direct3D. In order to present more realistic scenes for haptic interaction without

requiring additional modeling complexity, we have developed a technique for co-locating a pre-

rendered, raytraced scene with objects rendered graphically and haptically in real-time. We

describe the depth-buffering and perspective techniques that were necessary to achieve co-

location among representations, and we demonstrate real-time haptic interaction with a scene

rendered using photon-mapping.

1. Introduction

The development of high-degree-of-freedom haptic feedback devices has allowed increasingly

realistic physical interactions with virtual objects. However, the computational complexity of

haptic rendering currently limits many haptic environments to simple geometric primitives or

low-polygon-count meshes (Ruspini et al, 1997). The realism of these simple environments and

the sense of physical immersion 1s thus heavily dependent on the graphic rendering system,

which 1s typically OpenGL.

Since most commercially available haptic devices are mounted to a non-mobile base, the virtual

environment used with these devices 1s often a static representation of the device's workspace,

typically rendered from a single or infrequently-changing point of view.

The need for convincing graphical representations of static-viewpoint scenes suggests raytracing.

However, interactive raytracing — even for fairly simple scenes — 1s not widely available (Wald et

al, 2003). Furthermore, the computational complexity of real-time raytracing would be

prohibitively high when coupled with the computational complexity of haptic rendering.

This paper describes a compromise between the interactivity of z-buffering and the detailed

visual effects provided by raytracing. We feed a RenderMan scene file (Upstill, 1990) to a

modified ray tracer that produces depth information along with the final image. Our system

them renders the raytraced image as a point-cloud in OpenGL, and uses the original RenderMan

scene file to place haptic objects in the environment. Additional objects can be rendered

graphically in real-time via OpenGL, using the original scene file and a custom projection

matrix. The result 1s a visuo-haptic environment that leverages the realistic graphical effects

available via raytracing.

Morris, Joshi - Hyrbrid Rendering - Page 1 of 7

2. Methods

Our system consists of two independent software modules. The first module 1s a modified

raytracer that exports depth information for each pixel. The second module 1s a real-time

rendering system that displays the output of the raytracer, renders additional objects in OpenGL,

and provides a haptic representation of the raytraced scene.

FIGURE 1 provides an overview of the system’s architecture.

perspective correction information

op : OpenGL
tiff image file

rendering
: : LRT

11b scene file
(raytracer)

ASCII depth haptic

file rendering

static object location

FIGURE 1: A schematic representation of the rendering system’s architecture

2.1. Raytracing

In order to extract depth information with a raytraced image, we modified the LRT raytracing

system, provided in source form with the preliminary manuscript of (Pharr and Humphreys,

2003). LRT reads RenderMan .rib files and generates standard image files in .tiff or .jpeg
format.

We modified LRT to recognize a custom .rib file option that requests an additional output file in

addition to the final image. This file 1s an ASCII table that provides a depth value for each pixel

in the image. Depth values are obtained by casting a ray from the viewpoint through each pixel

on the film plane and determining the distance along each ray at which the nearest object 1s

intersected. These are the same intersections that are used for generating pixel color in the final

image.

The exported depth values thus represent positive distance from the camera, in the same units

used to describe object and camera locations in the original scene description.

2.2 Graphical rendering

We developed a software package that reads the output files from LRT and renders each pixel in

the raytraced image as an OpenGL point. The system sets the OpenGL viewport to be the same

Morris, Joshi - Hyrbrid Rendering - Page 2 of 7

size as the input image, to ensure that each input pixel maps to exactly one pixel on the real-time

display. Because perspective correction and lighting effects have already been applied by the

raytracer, it 1s necessary to render the pixels orthographically, with OpenGL lighting disabled.

Thus, when rendered with no other objects in the scene, the OpenGL representation of the

raytraced points will be an exact replica of the .tiff file output by the raytracer.

The system also allows other objects to be rendered graphically in the scene, along with the

raytraced point-cloud. The goal of the system is to provide the illusion that these objects — which

are dynamically rendered in real-time — are part of the raytraced scene. Thus OpenGL objects

must be rendered with appropriate perspective correction, and they should occlude or be

occluded by appropriate points in the point cloud.

In order to achieve appropriate perspective correction, the system reads the original scene file to

determine the field-of-view angle used to generate the raytraced image. Objects are then

rendered in OpenGL using a standard perspective projection matrix, initialized with the OpenGL

function gluPerspective ().

The values written to the depth buffer after OpenGL vertices are transformed through this

projection matrix do not represent distance from the eyepoint. Rather, the depth buffer typically

represents a nonlinear function of eyepoint-distance, intended to maximize precision in the range

of distances near the eyepoint. The precise mapping of eyepoint distance z.,. through the
projection matrix defined by gluPerspective () or similar functions is:

zFar + zNear) zNear * zFarZ ransyjorme — Ze e
ranformed 0 Far — zNear zFar — zNear

...where Z;unsformea 15 the resulting depth value that 1s passed on to the viewport transformation,
zFar 1s the location of the far clip plane, and zNear 1s the location of the near clip plane.

The orthographic projection matrix used to render the point cloud is initialized using the

OpenGL function gluOrtho2D(). However, this projection matrix produces depth buffer

values in an entirely different range than those generated by the gluPerspective()

transformation. Therefore, in order to force objects rendered in real-time to properly occlude and

be occluded by raytraced points, it 1s necessary to modify this orthographic projection to produce

depth buffer values that line up with those generated by the perspective transformation.

Specifically, we “manually” perform the above transformation on each pixel’s depth value as it

1s read from the ASCII depth table produced by the raytracer. Thus the depth coordinate

associated with each pixel 1s exactly what should be fed to the viewport matrix to ensure a proper

comparison against the polygons rendered in real-time. In other words, we have pre-transtormed

each point’s z-coordinate, so we want our orthographic projection matrix to transform only x and

y, and not z. Therefore, we explicitly modify the standard gluOrtho2D () projection matrix as

follows before rendering our point cloud.

The immediate output of gluOrtho2D () :

Morris, Joshi - Hyrbrid Rendering - Page 3 of 7

2 0 0 right + left
right — left right — left

0 2 0 _ top + bottom
top — bottom top — bottom

0 0 —2 _ zFar + zNear
zlar — zZNear zlar — zZNear

0 0 0 1

...1s modified to...

2 0 0 — right + left
right — left right — left

0 2 0 top + bottom
top — bottom top — bottom

0 0 1 1

0 0 0 1

...where right and left are locations of the horizontal clipping planes, fop and bottom are the

locations of vertical clipping planes, and zFar and zNear are the locations of the near and far

clipping planes.

Note that the modified projection matrix does not operate on the z-coordinate of each input

vertex at all, so the correct depth values — computed “manually” for each raytraced point when

processing the input file — are passed directly to the viewport transformation. Thus the objects

rendered dynamically in OpenGL with a standard perspective projection “line up” correctly with

the points generated by the raytracer, which are rendered orthographically.

The system also reads the positions of light sources from the scene file, to place OpenGL lights

in the corresponding positions. Therefore, although much more sophisticated lighting effects are

available for raytraced objects, the lighting of dynamically-rendered objects appears

approximately correct in the scene.

2.3 Haptic rendering

This project was motivated by environments that are common to haptic rendering environments,

so 1t was critical to include co-located haptic rendering in our application. The system parses the

11b file that was used for raytracing and extracts the locations of all polygons. These polygons

are tessellated and rendered haptically as rigid triangles.

Morris, Joshi - Hyrbrid Rendering - Page 4 of 7

A dedicated thread reads the position of a haptic input device — either a SensAble Phantom

(Massie and Salisbury, 1994) or a Force Dimension Delta (Grange et al, 2001) — and transforms

the input device position into a device-independent range that is consistent with the location of

polygons in the rendered scene. The gain of this transformation — which controls the “physical

size” of the scene — can be set arbitrarily. The haptic thread continuously tests for penetration of

any of the polygons extracted from the scene file, and generates forces to oppose any penetration

of scene file objects. This 1s a standard technique used for haptic rendering of rigid surfaces

(Salisbury et al, 1995).

The position of the haptic device is also rendered as an OpenGL sphere in the scene using the

techniques described above. The result 1s that forces are generated when the visual

representation of the device intersects raytraced polygons, and the user has a sense of physical

interaction with raytraced objects.

2.4 Development notes

LRT development was done in Linux using GNU development tools.

Our rendering application runs in Windows, and was developed using Visual C++, MFC,

OpenGL, and the SensAble Ghost API for haptic rendering.

3. Results

As a demonstration of the system’s capabilities, we raytraced the classic “Cornell Box” (Goral et

al, 1984) using photon-mapping (Wann Jensen, 1996), an effect not achievable in real-time, and

read the corresponding scene file into our system. FIGURE 2 contains a screenshot of our running

application. Note that the blue sphere — representing the current position of the haptic device — 1s

rendered in real-time, but appears to be located between raytraced objects. Also note that the

specular highlight on the sphere appears to be the result of a light source that 1s at the location of

the light source in the raytraced scene.

A more convincing demonstration of occlusion and perspective transformation requires video,

and a video of the sphere moving around in the scene can be viewed at :

http://robotics.stanford.edu/jks—-folks/hybrid.rendering/ball.in.box.rm

Morris, Joshi - Hyrbrid Rendering - Page 5 of 7

x

pe y " Enable Haptic: |
be! . JM Dizable Haptic: |
Rs gi ; + se Delta

bison {Use Phantom

tos 2% Lids
Ee, !

FIGURE 2: A screenshot demonstrating an OpenGL object rendered among raytraced points.

4. Conclusion

4.1 Applications

We present a novel technique for aligning pre-rendered scenes with objects rendered in real-time.

This 1s significantly more powerful than simply texturing complex images onto polygons in an

OpenGL scene, since it allows occlusion among objects rendered in OpenGL and objects
rendered offline.

We also demonstrate a potential application of this technique by allowing a user to haptically and

graphically interact with raytraced objects in real-time. We expect that this will be a valuable

approach to demonstrating and exploring potential applications of haptic environments.

4.2 Future work

In order to increase the degree to which dynamically-rendered objects are truly interacting with

raytraced objects, we would like to incorporate real-time shadow-casting. Since we have the

Morris, Joshi - Hyrbrid Rendering - Page 6 of 7

location of the light source and the original polygons, it would be possible to cast projective

shadows onto those polygons and render translucent polygons that would partially occlude the

point cloud. The effect would be real-time shadowcasting onto raytraced objects.

Additionally, we would like to extend this work to allow haptic annotations (roughness, rigidity,

etc.) among the material properties specified in the original .rib file. This could be the basis for a

scene file format that describes both haptic and visual properties of rendered objects.

References

Goral C.M., Torrance K.E., Greenberg D.P., and Battaile B. “Modeling the interaction of light

between diffuse surfaces.” Proceedings of the 11th Annual Conference on Computer Graphics

and Interactive Techniques, 1984.

Grange S, Conti F, Helmer P, Rouiller P, and Baur C. “Overview of the Delta Haptic Device”.

Eurohaptics '01, Birmingham, England, July 2001.

Massie T.H. and Salisbury K. The Phantom Haptic Interface: A Device for Probing Virtual

Objects. In Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interface

for Virtual Environments and Teleoperator Systems (Chicago, IL), 1994.

Pharr M and Humphreys G. Physically Based Rendering: Design and Implementation ofa

Rendering System. 2003 (unpublished manuscript).

Ruspini D.C., Kolarov K, and Khatib O. “The Haptic Display of Complex Graphical

Environments.” Computer Graphics Proceedings, Annual Conference Series, 1997.

Salisbury K, Brock D, Massie M, Swarup N, and Zilles C. “Haptic Rendering: Programming

Touch Interaction with Virtual Objects.” Proceedings of the 1995 Symposium on Interactive 3D

graphics.

Upstill S. The RenderMan Companion: A Programmer's Guide to Realistic Computer Graphics.
1990.

Wald I., Purcell T.J., Schmittler J, Benthin C, and Slusallek P. “Realtime Ray Tracing and its

use for Interactive Global Illumination.” Eurographics State of the Art Reports, 2003.

Wann Jensen H. “Global Illumination using Photon Maps.” In “Rendering Techniques 96”,
1996.

Morris, Joshi - Hyrbrid Rendering - Page 7 of 7

