
Reflective physical prototyping
through integrated design, test, and analysis

Bjorn Hartmann, Scott R. Klemmer,

Michael Bernstein, Leith Abdulla, Brandon Burr, Avi Robinson-Mosher, Jennifer Gee

Stanford University HCI Group

Computer Science Department, Stanford, CA 94305-9035, USA

{bjoern, srk, mbernst, eleith, bburr, avir, jgee } (@stanford.edu

ABSTRACT desien
Prototyping is the pivotal activity that structures innova- B.

tion, collaboration, and creativity in design. Prototypes

embody design hypotheses and enable designers to test

them. Framing design as a thinking-by-doing activity fore- By
grounds iteration as a central concern. This paper presents Nt
d.tools, a toolkit that embodies an iterative-design-centered

approach to prototyping information appliances. This work —

offers contributions in three areas. First, d.tools introduces Bo C.-C
a statechart-based visual design tool that provides a low ; TEE Le A
threshold for early-stage prototyping, extensible through = — fe \4
code for higher-fidelity prototypes. Second, our research \ =

introduces three important types of hardware extensibility a test— at the hardware-to-PC interface, the intra-hardware

communication level, and the circuit level. Third, d.tools

integrates design, lest, and analysis of information appli- Figure 1. Toolkit support for design thinking: d.tools inte-
ances. We have evaluated d.tools through three studies: a grates design, test, and analysis for physical prototyping.
laboratory study with thirteen participants; rebuilding pro-

totypes of existing and emerging devices; and by observing interconnected [23 , 30]. Successful product designs result
seven student teams who built prototypes with d.tools. from a SCr1es of conversations with materials. Here, the

“conversations” are interactions between the designer and
ACM Classification: H.5.2. [Information Interfaces]: User the design medium— sketching on paper, shaping clay,
Interfaces — input devices and strategies; interaction building with foam core [31]. The epistemic production
styles; prototyping; user-centered design. D.2.2 [Software [22] of concrete prototypes affords unexpected realizations
Engineering]: Design Tools and Techniques — State dia- that a designer could not have arrived at without producing
grams; user interfaces. a concrete artifact. This articulation of design as a thinking-
General terms: Design, Human Factors by-doing activity foregrounds iteration as a central concern

Keywords: Toolkits, information appliances, design tools, of design process. And indeed, product designer Michael
prototyping, integrating physical & digital, design thinking Barry argues that, the companies that want to see the most

models in the least time are the most design-sensitive; the

INTRODUCTION companies that want that one perfect model are the least
Ubiquitous computing devices such as information appli- design sensitive.” [33]
ances—mobile phones, digital cameras, and music play- : : :

: : In this paper, we suggest iteration as a core concern for Ul
ers—are growing quickly in number and diversity. To : :

: : : tools and present d.tools, a design tool that embodies an
arrive at usable designs for such physical Uls, product : : : :
desioners commonly build a series of DrOLOLVDHES— an iterative-design-centered approach to prototyping physicalg y prototyp p STE

SN :) : Uls (see Figure 1). This work offers three contributions.
proximations of a product along some dimensions of inter-

est. These prototypes are the pivotal media that structure The first contribution is a set of interaction techniques and
innovation, collaboration, and creativity in design [21, 32]. architectural features that enable d.tools to provide a /ow
Design studios pride themselves on their prototype-driven threshold for early-stage prototyping. d.tools introduces a
culture; it is through the creation of prototypes that design- visual, statechart-based prototyping model (see Figure 2)
ers learn about the problem they are trying to solve. that extends existing storyboard-driven design practice [19].

Reflective practice, the framing and evaluation of a design To provide a higher ceiling than is possible with visual
oo . Ca. programming alone, d.tools augments visual authoring with

challenge by working it through, rather than just thinking it textual :
through, points out that physical action and cognition are extual programming.

—)0a [5 Sle Buttoni. »] 0) Sa Err | 'o
Yo toon —

fe =2 Ser rl porn iE[A SE dr a aL] =E COE i SL ZW,

Figure 2. Left. The d.tools software authoring environment offers (1) a device designer; (2) a statechart editor; (3) a source
code editor; and (4) an image browser. Right. The d.tools hardware interface (5) connects compatible hardware inputs (6)
to the PC. d.tools includes authoring support for small LCD screens (7).

Second, d.tools offers an extensible architecture for physi- tions is not nearly as fluid as prototyping of either pure

cal interfaces. In this area, d.tools builds on prior work [4, software applications or traditional physical products.

7,9, 13, 14, 26] that has shielded software developers from Most product designers have had at least some exposure to
the intricacies of mechatronics through software encapsula- programming but few have fluency in programming. De-
tion, and offers a similar set of /ibrary components. How- sign teams have access to programmers and engineers, but
ever, the d.tools hardware architecture is significantly delegating to an intermediary slows the iterative design
more flexible than prior systems by offering three exten- cycle and increases cost. Thus, while it is possible for in-
sion points —at the hardware-to-PC interface, the intra- teraction design teams to build functional physical proto-
hardware communication level, and the circuit level—that types, the cost-benefit ratio of “just getting it built” in
enable experts to extend the library. terms of time and resources limits the use of comprehen-
Third, d.tools integrates design, test, and analysis of infor- sive prototypes to late stages of the design process. Com-

mation appliances. In test mode, d.tools records a video of prehensive prototypes that integrate form factor (looks-like

the user’s interaction with the physical device and logs prototypes) and functions (works-like prototypes) are

interaction events to structure the video. Analysis mode mostly created as expensive one-offs that serve as presenta-

uses this integration of video and event logs to facilitate tion tools and milestones, but not as artifacts for reflective

post-test review of usability data. While iterative design is practice.

central to current practice, few tools—the notable excep- Interviewees reported using low-fidelity techniques to
tion being SUEDE [24]—have explored how this cycle can express UI flows, such as Photoshop layers, Excel spread-
be facilitated through computation. sheets, and sliding physical transparencies in and out of
The rest of the paper is organized as follows. We begin by cases (a glossy version of paper prototyping). However,

outlining key findings of fieldwork that motivated our they expressed their dissatisfaction with these methods

efforts. We then describe the key interaction techniques for since the methods often failed to convey the experience

building, testing and analyzing prototypes that d.tools of- offered by the new design. In response, we designed

fers. We next outline implementation decisions and con- d.tools to support rapid construction of concrete interaction

clude with a report on three different strategies we have sequences for experience prototyping [10] while leaving

employed to evaluate d.tools. room to expand into higher-fidelity designs for presenta-

FIELDWORK tions.
To learn about opportunities for supporting iterative design REFLECTIVE PROTOTYPING WITH D.TOOLS

of ubiquitous computing devices, we conducted individual In this section we discuss the most important interaction

and group interviews with eleven designers and managers techniques that d.tools offers to enable the rapid design and

at three product design consultancies in the San Francisco evaluation of interactive physical devices. d.tools supports

Bay Area, and three product design masters students. This design thinking rather than implementation tinkering. Us-

fieldwork revealed that designing off-the-desktop interac- ing d.tools, designers place physical controllers (e.g., but-

tons, sliders), sensors (e.g., accelerometers, compasses),

and output devices (e.g., LEDs, LCD screens, and speakers) The component library available to designers comprises a

directly onto their physical prototypes. The d.tools library diverse selection of buttons, switches, sliders, knobs, and

includes an extensible set of smart components that cover a RFID readers. Outputs include LCD screens, LEDs, and

wide range of input and output technologies. In design speakers. LCD and sound output are connected to the PC

mode, software duals of physical I/O components can be A/V subsystem, not our hardware interface. In addition,

graphically arranged into a visual representation of the general purpose input and outputs are available for design-

physical device (see Figure 2, part 1). On the PC, designers ers who wish to add custom components. Physical and

then author behavior using this representation in a visual virtual components are linked through a hardware address

language inspired by the statecharts formalism [16] (see that serves as a unique identifier of an input or output.

Figure 2, part 2). d.tools employs a PC as a proxy for an Authoring interaction models
embedded processor to prevent limitations of embedded Designers define their prototype’s behavior by creating
hardware from impinging on design thinking. interaction graphs in the statechart editor (see Figure 2).
Designers can test their authored interactions with the States are graphical instances of the device design. They
device at any point in time, since their visual interaction describe the content assigned to the outputs of the proto-
model is always connected to the “live” device. When type at a particular point in the Ul: screen images, sounds,
seeking to gather feedback from others, designers switch to LED behaviors. States are created by dragging from the
fest mode. In test mode, d.tools records live video and statechart editors palette onto the graph canvas. As in the
audio of user interactions with the prototype—important device editor, content can be assigned to output compo-
for understanding ergonomics, capturing user quotes, and nents of a state by dragging and dropping items from the
finding usability problems. d.tools also logs all user inter- asset library onto a component. All attributes of states,
action events and uses this log to automatically structure components and transitions (e.g., image filenames, event
the test videos. Video can provide critical usability insights types, data ranges) can also be manipulated in text form via
and aid in communicating these insights to other team attribute sheets.

members, but working with usability video can be prohibi- Transitions represent the control flow of an application;
tively time-consuming [27]. d.tools interactions with struc- they defi les f chine th {lv active state |: y define rules for switching the currently active state in

wired video enable rapid usability analyS15 through aggre- response to user input (hardware events). The currently
gate data visualization, Jast access lo video data through active state is shown with a red outline. Transitions are
the visual interaction model and vice versa, and finally represented graphically as arrows connecting two states.
comparative evaluation of multiple user tests in a video
matrix. To create a transition, designers mouse over

the input component which will trigger the

DESIGNING A PROTOTYPE oo transition and then drag onto the canvas. A
This section presents d.tools support for authoring interac- ie target copy of the source state is created and
tion models Wlth physica110 components. As an example 1 il source and target are connected. Transitionsscenario, consider a designer creating a handheld GPS unit are labeled with an icon of the triggering
featuring tilt-based map navigation. input component.
Designing physical interactions with “plug and draw” Conditions for state transitions can be composed using the
Designers begin by plugging Boolean AND and OR. A single such connective is applied
physical components into : II to all conditionals on a transition arrow, as
the d.tools hardware J Nl BN ae J] complex Boolean expressions are error-interface (which connects to [’ ha prone. More complex conditionals can be

their PC through USB) and ICD authored by introducing additional states.
working within the device designer of the authoring envi- Lf li This allows authoring conditionals such asronment. Physical components announce themselves to “transition if the accelerometer is tilted to

d.tools, creating virtual duals in this editor. Alternatively— the right, but only if the tilt-enable button is held down
when the physical components are not at hand or designing simultaneously.”
interactions for a control that will be fabricated later — Co

designers can create visual-only input and output compo- Within the visual editor, timers can be added as input com-
nents by dragging and dropping them from the device edi- ponents to a device to create automatic transitions or (con-
tor’s palette. A designer can later connect the correspond- nected with AND to a sensor input) to require a certain
ing physical control or, if preferred, even manipulate the amount of time to pass before acting on input daa. Auto-
behavior via Wizard of Oz [20] at test time. matic transitions are useful for sequencing output behav-

iors, and timeouts have proven valuable as a hysteresis

In the device editor, designers create, arrange and resize mechanism to prevent noisy sensor input from inducing
input and output components, specifying their appearance rapid oscillation between states.
by selecting images from an integrated image browser.

This iconic representation affords rapid matching of soft- While the statechart 5 visual representation aids a
ware widgets with physical 1/0 components. designer s understanding of the control flow, complex

designs still benefit from explanation. d.tools supports

commenting with text notes that can be freely placed on the pendent functionality, multiple states in d.tools can be

statechart canvas. active concurrently in independent subgraphs (e.g., the

Demonstrating transitions power button can always be used to turn the device off,
Through our own prototyping practice and through student regardless ofthe other state ofthe model).
projects built with d.tools, we discovered that fine-tuning Designers can attach Java code to

parameters of continuous sensors is a time-consuming, [res visual states to specify behaviors thattrial-and-error process. Mapping sensor values to discrete od NA = are beyond the capability of thecategories is further complicated by noise and non-linear ~0 |== | visual environment (e.g., dynami-
responses. The time taken “tuning the dials” could be better cally generate graphics such as map
spent exploring the design space. annotations). The right-click context menu for states offers

__ d.tools facilitates parameter setting in two actions to edit and hook or unhook Java code for each state.

| ways. First, the Sensor Data View pre- The first time a designer chooses to add code, d.tools gen-Tha [i sents a real-time visualization of all at- erates a skeleton source code file and opens a Java editor.
— tached continuous sensors. Second, We leverage the Eclipse programming environment to

ranges of sensor data that trigger transi- provide auto-completion, syntax highlighting, and inte-
B tions can be authored by demonstration. grated help. Eclipse automatically compiles, loads, and

The designer selects the input icon on the transition that updates code. d.tools offers a compact API that calls de-
represents the desired continuous input, bringing up a real- signers’ functions on transition and input events, allows
time display of the sensor’s current value and history. The designers to query input state of any attached hardware,
designer then performs the desired interaction with the gives write access to attached outputs (e.g., to program-
physical prototype (e.g, tilting an accelerometer to the matically change the image shown on the LCD screen), and
right or moving a slider) and presses keys to define upper allows remote control of third party applications (see Table
and lower thresholds for the transition. This technique 1). Using this API, two of the authors prototyped acceler-
replaces needing to set numerical sensor values through ometer-based zoom and pan control for the Google Earth
trial-and error parameter modification with a physical application in less than 30 minutes.
demonstration technique. This approach lends itself to Executing interaction models at design time
future work on machine-learning by demonstration for Designers can execute interaction models in three ways.
capturing more complex input patterns (cf. [12]). First, they can manipulate the attached hardware; the pro-

Raising the ceiling totype is always live. Second, they can imitate hardware
The statechart-based visual programming model embodied events within the software workbench by using a simula-
in d.tools enables rapid design of initial comprehensive tion tool where the cursor can be used to click and drag
prototypes, but the complexity of the control flow and virtual inputs that will then generate appropriate event
interactive behavior that can be authored is limited. To transitions. Finally, designers can employ the Wizard OfOz

support later phases of design, when labor and expertise [20, 24] technique by operating the prototype’s visual rep-
permit higher-fidelity prototyping, d.tools provides two resentation. In all cases, the prototype is fully interactive.
mechanisms that enable more complex interactions: paral- TESTING & ANALYZING PROTOTYPES

lel statecharts and extending statecharts with code. d.tools provides integrated support for designers to test
Expressing parallelism in single point-of- prototypes with users, and analyze the results to inform

CEs A\J control automata results in an exponen- subsequent iteration. Manual video annotation and analysis0B tially growing number of states. Our first- for usability tests is enormously time consuming. Even
use study also showed that expressing though video recording of user sessions is common in

parallelism via cross-products of states is not an intuitive design studios, resource limits often preclude later analysis.
authoring technique. To support authoring parallel, inde- We introduce d.tools support for video analysis through

Function Description

enterState() Is called when the code’s associated state receives focus in the statechart graph.

update (String component, Is called when a new input event is received while the code’s state has focus. The component's
Object newValue) hardware address (e.g., “/btn5” for a button) is passed in as an identifier along with the updated

value (Booleans for discrete inputs, Floats for continuous inputs, and Strings for received RFID
tags).

getInput (String component) Queries the current value of an input.

setOutput (String component, Controls output components. LCD screens and speakers receive file URLs, and LEDs and general
Object newValue) output components Booleans for on/off.

println (String msg) Outputs a message to a dedicated debug view in our editor.

keyPress (KeyEvent e) Inserts keyboard events into the system’s input queue (using Java Robots [1]) to remote control
keyRelease (KeyEvent e) external applications.

Table 1. The d.tools Java API allows designers to extend visual states with source code. The listed functions serve as
the interface between designer's code and d.tools runtime system. Standard Java classes are also accessible.

ort @ z \) oo" rr em wo

pea Sy 5 ae J 1| LJ El
N Cle = Ol Bw]. 1 "| A rw) u F y ! 3 is

i — EE CDI NIH) ON [TT[IW]
Bg iS © Opa AN NC TOOT IIT TT TTT (Im

Figure 3. In Analysis mode, statechart and recorded video are synchronized and each can be used to access the other.
Inset: simultaneous interaction with statechart and video editina is possible on a dual-screen workstation.

timestamp correlation between video and statechart (see quotes) or negative (e.g., usability problems) sections for

Figure 3); this video functionality is implemented as an later review. The experimenter’s annotations are displayed

extension to the VACA video analysis tool [11]. d.tools in the video view as a separate row on the timeline.

automatically creates timeline annotations that capture the Analyze
complete set of state transitions and device events at test A : ::) oo nalyze mode allows the designer to review the data from
time. After completing a test, at analysis time, the video : : : :: : user test sessions. The video view and statechart editor

view enables designers to access video segments from the function i : Lo))) Co nction in tandem as a multiple view interface [6] into the
statechart authoring environment and vice versa. This in- : :

: test data to aid understanding of the relationship between
teraction allows for fast video query and enables accessing : : : Lo
: : the user experience and the interaction model underlying it.
interaction code (the statechart) from a record of its execu- dt : :)])) tools supports both single user analysis and group analy-
tion (the video). The video view also enables comparison : : :

: : : sis, which enables designers to compare data across
of multiple test sessions (see Figure 4). ,

multiple users.

Test .]]] Single User Analysis
In test mode, d.tools executes user interactions Just as in Single user mode provides playback control of a test ses-
user statechart video the design phase. Interactions with sion video using a glanceable timeline visualization of the

R-LY the physical prototype are reflected flow of UI state and data throughout that session. d.tools| In the statechart, and outputs are atechart vides 1 speeds up video analysis by enabling

| reflected back in the device. Addi- In] designers to work both from theirtionally, however, d.tools logs all device events and state A TAA interaction models to corresponding
transitions for video synchronization. = video segments and from video

Switching to test mode initiates video capture. Then, as SAP " exploration to the statechart,events and transitions occur they are displayed on the video gs Sv facilitating analysis within the original
view timeline in real-time. To clarify correspondence be- ‘X design context. In addition to this
tween statechart and video views, a consistent color-coding dynamic search and exploration, the statechart also shows
is used for states and hardware components in both. One an aggregation of all user interactions during the test: the
row of the timeline corresponds to the state events for each line thicknesses of state transitions are modified to indicate
independent subgraph of the statechart (see Figure 3, part how often they were traversed (see Figure 3, part 4). This
1), and an additional row displays hardware events. Three macro-level visualization shows which transitions were
types of hardware events are displayed. Instantaneous most heavily traversed and which were never reached.

events, such as a switch changing from on to off, appear as Statechart to video: To access video from the interaction
single slices on the timeline. Events with duration, such as model, the designer can select a state in the statechart — the
the press and release of a button, show up as block seg- video annotations are automatically filtered such that only
ments (see Figure 3, part2). And continuous events, such as corresponding video clips are shown on the timeline and
slider movements, are drawn as small line graphs of that played. Similarly, the designer can query by demonstration:
event’s value over time (see Figure 3, part 3). manipulating a hardware component on the physical proto-
During the test session, the designer can make live annota- type (e.g., pushing a button or moving a slider) causes the
tions. d.tools offers dedicated buttons on an attached video corresponding input event category to be selected in the

control console to quickly mark positive (e.g., interesting video view. Designers can also select multiple categories

=.= Plug-and-Play Hardware
QL SSAA A080= d.tools contributes a plug-and-play hardware platform that

| KAWS 7 We We Wy BF BF B7 B2 BS == enables tracking identity and presence of smart hardware
& LNA AAA ALa components for plug-and-play operation. Io components

| 2 Ll AL SE for low-bandwidth data use a common physical connectorEE —_— EE —————— format so designers do not have to worry about which
= a plugs go where. Smart components each have a dedicated
-_- eT erTeene——— small microcontroller; an interface board coordinates

pt. bf AFree rm ——Dy a RVI. communication between components and a PC (see Figure
Rt 5). Components plug into the interface board to talk on a
ceTT TT ST TY CS TT common 12C serial bus (see Figure 6). The 12C bus abstracts

| electrical characteristics of different kinds of components,
Figure 4. Group Analysis mode aggregates timeline affording the use of common connectors. The interface

and video data of multiple user sessions into one view. board acts as the bus master and components implement
12C slave protocols. A USB connection to the host computer

by manipulating multiple hardware components within a provides both power and the physical communication
small time window. Thus, the designer can effectively layer.
search for a particular interaction pattern within the video

data by re-enacting the interaction on the prototype itself. Atmel microcontrollers are used to implement this architec-
ture because of their low cost, high performance, and pro-

Video to statechart: During video playback a dynamic grammability in C. The hardware platform is based around
visualization of transition history is displayed on top of the the Atmel ATmegal28 microcontroller on a Crumbl128
d.tools statechart. Active states get highlighted and d.tools development board from chip45. 1/0 components use At-
also animates a real-time moving trail along the state transi- mel ATtiny45 microcontrollers. Programs for these chips
tions, indicating which state was previously active and were compiled using the open source WinAVR tool chain
which will be active next. This window into the chronology and the IAR Embedded Workbench compiler. Circuit
of interactions provides a visual reminder of context. boards were designed in CADsoft Eagle, manufactured by
Group Analysis Advanced Circuits and hand-soldered.

Group mode collects all of the user capture sessions corre- dtools distinguishes audio and video from lower-
CEE sponding to a given statechart and displays bandwidth components (buttons, sliders, LEDs, efc.). The
aoc] them together. The timeline now aggregates modern PC A/V subsystem provides plug-and-play support

flows for each user. The video window for audio and video; for these components d.tools uses the
displays an n x m table of videos, with the existing infrastructure. For graphics display on the small

rows corresponding to the n users, and the columns corre- screens commonly found in information appliances, d.tools
sponding to the m categories (comprised of states, hard- includes LCD displays which can be connected to a PC
ware events, and annotations). Thus, a cell in the table graphics card with video output (e.g., Purdy AND-TFT-
contains the set of clips in a given category for a given 25PAKIT). This screen is controlled by a secondary video
user. Any set of these clips may be selected and played card connected to a video signal converter.
concurrently. Selecting an entire row plays all clips for a oo
particular user; selecting an entire column plays all clips of Hardware Extensibility BN
a particular category. As each clip is played, an indicator Fixed libraries limit the complexity ceiling of what can be
tracks its progress on the corresponding timeline. built with a tool by knowledgeable users. While GUIs have

converged on a small number of widgets that cover the

ARCHITECTURE AND IMPLEMENTATION design space, no such set exists for physical Uls because of
Implementation choices for d.tools hardware and software the greater variety of possible interactions in the real world.
emphasize both a low threshold for initial use and extensi- Hence, extending the library beyond what “comes with the
bility through modularity at architectural seams. In this

section we describe how these design concerns and exten- 12C input/output components (ATtiny45)

sibility goals are reflected in the d.tools architecture. ml 5 Ral 1: etve . a | a; § H:0 a

— or Rpm GHE EBe.g., slider | SE AZ Sa aa | -_—, Ron Ai
—a | Status LED Sills Beein H 4 be | ne uf

ATtiny45 (J LS Iara AR RY TL |
2 slave J] hi OSC msgs rN Alena piighLee—ICDA = ja USB master | Hes= |B0 ul ATtinyas E PC running d.tools controller HEH 2

accelerometer {Qf e.g, patton 12C master open |12C connectors

Figure 6. The d.tools architecture uses standardized, Figure 5. The d.tools board offers plug-and-play
open protocols for hardware and PC communication. interfacing for 1/0 components.

box” is an important concern for physical computing tools. Oc am"SOUR @
In the d.tools software, extensibility is provided by its Java SB es | as
hooks. In the d.tools hardware architecture (see Figure 6) oO . 3

extensibility is offered at three points: the hardware to PC | hy : % A Re ££
interface, the hardware communication level, and the elec- i grid Eptronic circuit. This allows experts with sufficient interest N \ a2

and skill to modify d.tools to suit their needs. o) © TAY
d.tools hardware and a PC communicate by exchanging a > &
OpenSoundControl (OSC) messages. OSC was chosen for RN TE —tl

its open source API, existing hardware and software sup- &° & 4SO P
port, and human readable addressing format (components v Sa a

have short path-like addresses — e.g., buttons are labeled

/btnl or /btn6.) By substituting devices that can produce o IB J! a O =8
OSC messages or software that can consume them, d.tools a Ai 2 |
components can be integrated into different workflows. For 5 Rd = = : ™
example, music synthesis programs such as PD and & aay - o_ -
Max/MSP can receive sensor input from d.tools hardware. OF 27 Yq
Connecting other physical UI toolkits to d.tools involves — iN
developing an OSC wrapper for them. As a proof of con- Figure 7. A selection of projects built with d.tools.
cept, we have written such a wrapper to connect Phidgets (1) music player for children; (2) media player; (3) digital
InterfaceKits to the d.tools software. camera back; (4) tangible drawer for a tabletop display; (5)

Developers can extend the library of smart I/O components voice message trading pebble; (6) tangible color mixer.
by adding components that are compatible with the indus- EVALUATION AND ITERATION
try standard 12C serial communication protocol. 12C offers a In this section, we outline the methodological triangulation
large base of existing compatible hardware. For example, we employed to evaluate and iteratively refine our tool.
the accelerometers used in d.tools projects are third party Evaluations were carried out at different points during a
products that send orientation to d.tools via on-board ana- seven-month period. First, an early version of the tool was
log-to-digital converters. Presently, adding new 12C devices tested by thirteen design students and professional design-
requires editing of a source code file for the master micro- ers in a first-use lab study to ascertain the use threshold.
controller; in future work this configuration will be pushed Second, the authors rebuilt prototypes of three existing
up to the d.tools authoring environment. devices and used it in a research project. Third, we made
On the circuit level, d.tools can make use of inputs that d.tools hardware kits available to students in a project-
vary in voltage or resistance and drive generic discrete centric interaction design course at our university. Figure 7
outputs with on/off control pulse width modulation. This shows some of the projects and devices built with d.tools
allows designers versed in circuit design to integrate new as part of these evaluations. These evaluations addressed
sensing and actuation technologies at the lowest level. This designing with d.tools and motivated the design-test-
level of expansion is shared with other hardware platforms analyze integration; we reserve evaluation of test and
that offer direct pin access to digital 1/0 lines and analog- analysis modes for future work.

to-digital converters. Establishing threshold with a First Use Study
Software We conducted a controlled study of d.tools in our labora-

To leverage the benefits of a modern IDE, d.tools was im- tory to assess the ease of use of our tool; the study group
plemented in Sun's Java JDK 5 as a plug-in for the open- comprised 13 participants (6 male, 7 female) who had
source Eclipse platform. Its visual editors are fully inte- general design experience. Participants were given three
grated into the Eclipse development environment. d.tools design tasks of increasing scope to complete with d.tools
uses the Eclipse Graphical Editing Framework (GEF) for within 90 minutes. Most participants were students or
graphics handling. d.tools file 1/0 is done via serialization alumni of design-related graduate programs at our univer-
to XML using XStream, which enables source control of sity.

device and statechart files in ASCII format using CVS or Successes

similar tools. Automatic recognition of hardware connections and visual
The video viewer is implemented in C# and uses Microsoft statechart authoring were intuitive and well-received. Re-
DirectShow technology for video recording and playback. fining default behaviors through text properties and ex-
Synchronization between the statechart and video views is pressing functional independence in a statechart was less
accomplished by passing XML fragments over UDP sockets intuitive; nevertheless, participants mastered these strate-
between the two applications. DirectShow was chosen gies by the end ofthe session.

because it allows synchronized playback of multiple After an initial period of learning the d.tools interface,
streams of video. participants spent much of their time with design thinking

—reasoning about how their interface should behave from HCI Design Studio
the user’s point of view instead of wondering about ow fo We deployed the d.tools hardware and software to student
implement a particular behavior. This was especially true project teams in a masters level HCI design course at our
for authoring UI navigation flows. institution [25]. Students had the option of using d.tools

In a post-test survey, participants consistently gave d.tools (among other technologies) for their final project, the de-
hi : 1 : _ : sign of a tangible interface. Seven of twelve groups usedigh marks for enabling usability testing (u=4.6 on 5 point ;
Li : : : : d.tools. In this real-world deployment, we provided techni-ikert scale), shortening the time required to build a proto- oo

_ : : cal assistance, and tracked usability problems, bug reports
type (u=4.3), and helping to understand the user experience

SE B and feature requests.
at design time (u=4.25).

Shortcomings discovered Successes
One sion J : : Students successfully built a range of innovative interfaces.ne significant shortcoming discovered through the study : pb i"

: : : : Examples include a wearable “sound pebble” watch that
was the lack of software simulation of an interaction :

: : : : allows children to record and trade secret messages with
model: the evaluated version did not provide for stepping Co. : : :

: : : \ their friends, a color mixing interface in which children can
though an interaction without attached hardware. This . ., :

. : : pour” color from tangible buckets onto an LCD screen,
prompted the addition of our software simulation mode. :

Co and an augmented clothes rack that offers product compari-
Specifying sensor parameters textually worked well for sons and recommendations via hanger sensors and built-in
subjects who had some comfort level with programming, lights.
but were judged disruptive of the visual workflow by oth- : :

: : : ay Students were able to work with supplied components and
ers. Interaction techniques for graphically specifying sensor : : : :

co extend d.tools with sensor input not in the included library.
ranges were added to address this issue. . :

For example, the color mixing group integrated four me-

Building existing and novel devices chanical tilt switches into their project.
To evaluate the expressiveness of d.tools’ visual language,

. . Shortcomings discovered
we recreated prototypes for three existing devices—an : Co :

: : Remote control of third party applications (especially Mac-
Apple iPod Shuffle music player, the back panel of a Casio : : :

. i romedia Flash) was a major concern — in fact, because such
EX-740 digital camera, and Hinckley et al.’s Sensing PDA : :

. : : : support was not integrated into the graphical tool, two
[18]. We distilled the central functionality of each device : : : :
d orot d these kev interacti th student groups chose to develop their project with Phidgets

and prototyped these key Interaction paths. [14], as it offers a Flash API. To address this need, we
Additionally, a novel project built with d.tools explored released a Java API for the d.tools hardware with similar

physical drawers as a file access metaphor for a shared connectivity and added Java execution ability to d.tools
tabletop display [29]. The first author built four drawer statecharts. We observed that student groups that used
mechanisms mounted underneath the sides of a Diamond- solely textual APIs ended up writing long-winded statechart
Touch interactive table. Opening and closing these drawers representations using switch or nested conditional state-
controlled display of personal data collections, and knobs ments; the structure of their code could have been more
on the drawers allowed users to scroll through their data. concisely captured in our visual language.

From these exercises, we learned that interactive physical The first author also served as a physical prototyping con-
prototypes have two scaling concerns: the complexity of the sultant to a prominent design firm. Because of a focus on
software model, and the physical size of the prototype. client presentation, the design team was primarily con-
d.tools diagrams of up to 50 states are visually understand- cerned with the polish of their prototype — hence, they
able on a desktop display (1920x1200); this scale is suffi- asked for integration with Flash. From a research stand-
cient for the primary interaction flows of current devices. point, this suggests—for “shiny prototypes”—a tool inte-
Positioning and resizing affords effective visual clustering grating the visual richness of Flash with the computational
of subsections according to gestalt principles of proximity representation and hardware abstractions of d.tools.

and similarity. | However, increasing transition density RELATED WORK
makes maintaining and troubleshooting statecharts taxing, : :
CL : : : The d.tools system draws on previous work in two areas:

a limitation shared by other visual authoring environments. : : :
: : : prototyping and evaluation tools, and physical computing

An area for future work is the design of techniques that : : :
: : . tools. This section summarizes how d.tools relates to each

selectively display transitions based on the current context.
body of work.

In building these systems, the percentage of implementa- oo

tion-related work (as opposed to graphic design or physical roo! support for prototyping and rapic viceo evaluation
construction) was less than 30% of total prototyping time, : o ¢ oe y relate yy t Pp esigh me 0do rt cmbodic
enabling the prototyping to be driven by design concerns. mn too oh SUEDE ” la A too . rapidly nototyp-
In the drawers project, the presence of multiple independ- ng Faee Interfaces. | UEDE oN oo pel oo
ent drawers prompted the need for multiple concurrently por’ x ’ esien-est ana oe -0 t oe oe Icate ulactive states as well as sensor data access from Java. modes. It also olers a ow-threshold visual authoring envi-

ronment and Wizard of Oz support. SUEDE has been used

and extended by several speech UI firms. SUEDE’s open

architecture enabled these firms to extend the visual envi- d.tools visual authoring environment contributes a lower

ronment to support complex interactions. d.tools extends threshold tool and provides stronger support for rapidly

SUEDE’s framework into a new application domain — developing the “insides of applications” [28]. Finally

physical user interfaces. It contributes a model for applying Phidgets only addresses the design part of the design-test-

design-test-analyze to applications that transcend software analyze cycle — it does not offer support for testing or ana-

development and adds integration of video analysis into the lyzing user test data.

cycle. Like SUEDE, the d.tools system supports early-stage Calder [4, 26] integrates RFID buttons and other wired and
design activities. wireless devices with C and the Macromedia Lingo lan-
This research also draws on prior work on structuring and guage. Fluid integration with physical mock-ups is aided

accessing usability video of GUI tests through user inter- by the small form factor of the devices. Calder shares with

face event records; Hilbert and Redmiles present a com- d.tools its focus on design; it also describes desirable me-

parative survey of such systems in [17]. Mackay described chanical attachment mechanisms and electrical properties

challenges that have inhibited the utility of video in usabil- (battery-powered RF transceivers) of prototyping compo-

ity studies, and introduced EVA, which offers researcher- nents. Like Phidgets, Calder’s user interface is a textual

initiated annotation at record time [27]. Hammontree ef al. API and only supports the design stage.

renentenFo) Obaense by Bane etal iStuff [7] extended the idea of programmatic control of: ! physical devices to support wireless devices, a loose cou-

[5] enabled an evaluator to access synchronized UI event pling between input and application logic, and the ability to
and video data of a user test by filtering event types develop physical interactions that function across an entire
through a regular expression language. While Weiler [34] ubiquitous computing environment. iStuff, in conjunction
suggests that proprietary solutions for event-structured with the Patch Panel [8], enables standard Uls to be con-
video have been in place in large corporate usability labs trolled by novel inputs. iStuff targets room-scale applica-
for some time, their proprietary nature prevented us from tions. The size of hardware components make it infeasible
learning about their specific functionality. Based on the to design integrated devices like information appliances.
data that is available, d.tools extends prior research and

commercial work in three ways. First, it moves off the The Lego Mindstorms Robotic Invention System [2] offers
desktop to physical UI design, where live video is espe- a visual environment based on control flow puzzle pieces
cially relevant, since the designers’ concern is with the to control sensors and actuators. While a benchmark for
interaction in physical space. Second, it offers a bi- low-threshold authoring, Lego Mindstorms targets robotics
directional link between model and video where video can projects; the programming abstractions are inappropriate

also be used to access and replay flow of control in the for designing physical user interfaces. Mindstorms supports
model. Third, it introduces comparative evaluation tech- developing autonomous stored programs which uns
niques for evaluating multiple user sessions. counter to storyboard-driven development and eliminates

designer access to model behavior at runtime.
Tool support for physical computing : :

The Phidgets [14] system introduced physical widgets: Maestro [3] 1s a commercial design tool for prototyping
programmable ActiveX controls that encapsulate commu- mobile phone Interactions. It provides a complex visual
nication with USB-attached physical devices, such as a state language with code generators, software simulation of
switch, pressure sensor, or servo motor. Phidgets abstracts prototypes, and compatibility with Nokia's Jappla hard-
electronics implementation into an API and thus allows ware platform. Maestro and Jappla together offer high
programmers to leverage their existing skill set to interface ceiling, high fidelity mock-up development; however, the
with the physical world. In its commercial version, Phidg- complexity of the tools make them too heavyweight for the
ets provides a web service that marshals physical 1/0 into informal prototyping activities that d.tools targets. The
network packet data, and provides several APIs for access- availability of such a commercial tool demonstrates the
ing this web service (e.g., for Java and ActionScript). importance of physical UI design tools to industry.
d.tools shares much of its library of physical components CONCLUSIONS AND FUTURE WORK
with Phidgets. In fact, Phidgets analog sensors can be con- This paper introduced d.tools, a prototyping environment
nected to d.tools. Both Phidgets and d.tools store and exe- that lowers the threshold for creating functional physical
cute interaction logic on the PC. However, d.tools differs prototypes and integrates support for prototype testing and
from Phidgets in both hardware and software architecture. analysis into the workflow. We have released d.tools to the
First, d.tools offers a hardware extensibility model not design community as open source (see hitp://hci.stan-
present in Phidgets. d.tools’ three extension points enable ford.edu/dtools/). Further work is underway to cut the
users with knowledge of mechatronics to add to the library tether to the PC by executing interaction models directly on
of supported devices. Second, on the software level, d.tools embedded platforms to enable development of truly mobile
targets prototyping by designers, not development by pro- prototypes. Finally, beyond individual tools, we are look-
grammers. Textual APIs have too high a threshold and too ing at creating entire design spaces that enable and support
slow an iteration cycle for rapid UI prototyping; they have iterative design for ubiquitous computing.
not generally been adopted by product designers. The

ACKNOWLEDGEMENTS 16 Harel, D. Statecharts: A visual formalism for complex sys-

We thank Mike Krieger and Scott Doorley for their help tems. Science ofComputer Programming 8(3). pp. 231-74,
with video production; Merrie Morris for collaboration on 1987.
the virtual drawers project; Arna Ionescu for discussions on 17 Hilbert, D. M. and D. F. Redmiles. Extracting usability in-
professional design practice; Intel for donating the PCs formation from user interface events. ACM Computing Sur-
used in this research; and the many product designers, veys 32(4). pp. 3 84-421, 2000.
students and study participants for working with d.tools 18 ineley. he J. bere. Sinclat nd E. Lovitz SenneCe echniques for mobile interaction. In Proceedings o :

and sharing their insights. ACMSymposium on User Interface Software and Technology:
REFERENCES ACM Press. pp. 91-100, 2000.

1 Java 2 Platform SDK: java. awt.Robot, 2006. Sun Microsys- 19 Houde, S. and C. Hill, What do Prototypes Prototype? n
tems. Handbook ofHuman-Computer Interaction, M. Helander,
http://java.sun.com/j2se/1.5/docs/api/java/awt/Robot.html T.E. Landauer, and P. Prabhu, Editors. Elsevier Science B. V:

2 LEGO Mindstorms Robotic Invention System. Amsterdam, 1997.

http://www.mindstorms.lego.com/ 20 Kelley, J. F. An iterative design methodology for user-
3 Maestro, 2005. Cybelius. http://www.cybelius.com/products friendly natural language office information applications.

4 Avrahami, D. and S. E. Hudson, Forming interactivity: a tool ACM Transactions on Office Information Systems 2(1). pp.
for rapid prototyping of physical interactive products, in DIS: 20-41, 1984.
ACM Conference on Designing interactive systems. ACM 21 Kelley, T., The Art ofInnovation: Currency. 320 pp. 2001.

Press. pp. 141-46, 2002. 22 Kirsh, D. and P. Maglio. On distinguishing epistemic from
5 Badre, A. N., M. Guzdial, S. E. Hudson, and P. J. Santos. A pragmatic action. Cognitive Science 18. pp. 513-49, 1994.

user interface evaluation environment using synchronized 23 Klemmer, S. R., B. Hartmann, and L. Takayama. How Bodies
video, visualizations and event trace data. Software Quality Matter: Five Themes for Interaction Design. In Proceedings of
Journal 4(2): Springer Netherlands. pp. 101-13, 1995. Design ofInteractive Systems, 2006.

6 Baldonado, M. Q. W., A. Woodruff, and A. Kuchinsky, 24 Klemmer, S. R., A. K. Sinha, J. Chen, et al. SUEDE: A Wiz-
Guidelines for using multiple views in information visualiza- ard of Oz Prototyping Tool for Speech User Interfaces. In
tion, in Proceedings ofthe working conference on Advanced Proceedings of UIST: ACMSymposium on User Interface
visual interfaces. 2000, ACM Press: Palermo, Italy. Software and Technology. p. 1-10, 2000.

7 Ballagas, R., M. Ringel, M. Stone, and J. Borchers. iStuff: a 25 Klemmer, S. R., B. Verplank, and W. Ju. Teaching Embodied
physical user interface toolkit for ubiquitous computing envi- Interaction Design Practice. In Proceedings ofDUX: Confer-
ronments. In Proceedings of CHI: ACM Conference on Hu- ence on Designing for User eXperience: AIGA, 2005.
man Factors in Computing Systems. p. 537-44, 2003. 26 Lee, J., D. Avrahami, S. Hudson, ef al. The Calder Toolkit:

8 Ballagas, R., A. Szybalski, and A. Fox. Patch Panel: Enabling Wired and Wireless Components for Rapidly Prototyping In-
Control-Flow Interoperability in Ubicomp Environments. In teractive Devices. In Proceedings ofDIS: ACM Conference
Proceedings ofPerCom 2004 Second IEEE International on Designing Interactive Systems: ACM Press. p. 167-75,
Conference on Pervasive Computing and Communications: August, 2004.
IEEE Press. p. 241-52, 2004. 27 Mackay, W. E. EVA: an experimental video annotator for

9 Barragan, H., Wiring: Prototyping Physical Interaction De- symbolic analysis of video data. SIGCHI Bulletin 21(2): ACM
sign, Interaction Design Institute, Ivrea, Italy, 2004. Press. pp. 68-71, 1989.

10 Buchenau, M. and J. Fulton Suri. Experience prototyping. In 28 Myers, B., S. E. Hudson, and R. Pausch. Past, Present, and
Proceedings of DIS: ACM Conference on Designing interac- Future of User Interface Software Tools. ACM Transactions

tive systems: ACM Press. pp. 424-33, 2000. on Computer-Human Interaction 7(1). pp. 3-28, 2000.
11 Burr, B. and S. R. Klemmer, VACA: A Tool for Qualitative 29 Ringel Morris, M., Supporting Effective Interaction with

Video Analysis, in ExtendedAbstracts ofCHI: ACM Confer- Tabletop Groupware, Unpublished PhD, Stanford University,
ence on Human Factors in Computing Systems. 2006, ACM Computer Science, Stanford, CA, 2006.

Press. 30 Schon, D. A., The Reflective Practitioner: How Professionals
12 Fails, J. and D. Olsen. A design tool for camera-based interac- Think in Action. New York: Basic Books. 374 pp. 1983.

tion. In Proceedings of CHI: ACM Conference on Human 31 Schon, D. A. and J. Bennett, Reflective Conversation with
Factors in Computing Systems: ACM Press. pp. 449-56, 2003. Materials, in Bringing Design to Software, T. Winograd, Edi-

13 Greenberg, S. and M. Boyle. Customizable physical interfaces tor. ACM Press: New York. pp. 171-84, 1996.
for interacting with conventional applications. In Proceedings 32 Schrage, M., Cultures of Prototyping, in Bringing Design to
of UIST: ACMSymposium on User Interface Software and Software, T. Winograd, Editor. ACM Press: New York. pp.

14 Greenberg, S. and C. Fitchett. Phidgets: easy development of 33 Schrage, M., Serious play - How the world's best companies
physical interfaces through physical widgets. In Proceedings simulate to innovate. Cambridge, MA: Harvard Business
of UIST: ACMSymposium on User Interface Software and School Press. 245 pp. 2000.
Technology. p. 209-18, 2001. 34 Weiler, P. Software for the usability lab: a sampling of current

15 Hammontree, M. L., J. Hendrickson, J., and B. W. Hensley. tools. In Proceedings of CHI: ACM Conference on Human
Integrated data capture and analysis tools for research and factors in computing systems: ACM Press, 1993.
testing on graphical user interfaces. In Proceedings of CHI:

ACM Conference on Human Factors in Computing Systems:

ACM Press. pp. 431-32, 1992.

