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ABSTRACT

Designers tasked with imagining future information appli-
ances currently employ separate tools for rapidly prototyp-
ing the form (the atoms) and the interaction model (the bits)
because integrated prototyping of bits and atoms requires
resources and knowledge outside the reach of design gener-
alists. Based on interviews with product designers, we
created d.tools, a system enabling non-programmers to
prototype the bits and the atoms of physical user interfaces
in concert. d.tools lowers the threshold to prototyping func-
tional physical interfaces through plug-and-play hardware
that is closely coupled with a visual authoring environment.
We evaluated the d.tools use threshold through a first-use
study with thirteen participants; the study showed that the
tool is accessible and encourages reflective design practice.
We tested the d.tools range of design support by recreating
existing research and commercial devices; this demon-
strated that the visual language was sufficiently expressive
for existing and emerging real-world designs.
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INTRODUCTION

Information appliances—small portable devices such as
mobile phones, digital cameras, and music players—are
growing quickly in number and diversity. To arrive at
usable interface designs, product designers commonly build
a series of prototypes—approximations of a product along

Figure 1. d.tools enables designers to rapidly prototype the
circuits and code of information appliances using pictures
and parts.

some dimensions of interest. Prototypes are the pivotal
medium that structures innovation, collaboration, and crea-
tivity in the most successful design studios [19]. These
prototypes play important roles for four distinct constituen-
cies. First, designers create prototypes for their own benefit;
visually and physically representing ideas externalizes
cognition and provides the designer with backtalk [37] —
surprising, unexpected discoveries that uncover problems or
generate suggestions for new designs. Second, prototypes
provide a locus of communication for the entire design
team; through prototypes, the tacit knowledge of individu-
als is rendered visible to the team. Third, prototypes are
integral to user-centric development by providing artifacts
that can be used for user feedback and usability testing.
Finally, prototypes are also important sales tools in client
relationships—many product designers live by the principle
“never enter a client meeting without a prototype in hand.”

Through much of the design process, designers today create
two separate sets of prototypes: “looks-like” prototypes that
show only the form of a device (the atoms), and “works-
like” prototypes that use a computer display to demonstrate
its interaction (the bits). The time and expertise require-
ments for creating comprehensive prototypes that tie form
and function together prohibit their use until late in devel-
opment. At that time, monetary constraints and resource
commitments prohibit fundamental design changes [42].
However, only integrated functional prototypes can uncover
the interdependence between bits and atoms that character-
izes the final user experience. To enable designers to proto-
type bits and atoms in concert, we have developed d.tools, a
system that introduces integrated interactions [24] to enable
rapid prototyping of information appliances (see Figure 1).
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Figure 2. The d.tools visual authoring environment integrates

software and hardware prototyping. This screen shows a state-

chart for a mobile phone prototype.

Design Tools

Myers et al. introduced the terms threshold and ceiling to
describe use properties of a tool: the threshold is the diffi-
culty of learning and using a system, while the ceiling
captures the complexity of what can be built using the
system [30]. Today, programming in general purpose lan-
guages and electronic circuit design are still the prevalent
means of creating functional prototypes of physical user
interfaces; the high threshold for these tools has been a
gating factor to designers, and the time commitment of
these tools makes them infeasible for rapid iterative explo-
ration. These difficulties of high-threshold tools echo the
experiences of developing graphical user interfaces (GUIs)
twenty years ago; today nearly all GUIs are built with the
assistance of user interface design tools [30].

Recent research and commercial systems have demon-
strated the power of providing software abstractions to
physical devices (e.g., [9, 15, 21, 38]). However, the exper-
tise threshold and time investment required make them
inappropriate for designers, particularly at the early stages.
The contribution of the d.tools research described in this
paper is a system that lowers the threshold for functional
prototyping and provides a sufficiently high ceiling to
design useful systems.

Prototyping with d.tools

d.tools supports design thinking rather than implementation
tinkering. With d.tools, designers place physical controllers
(e.g., buttons, sliders), sensors (e.g., accelerometers, com-
passes), and output devices (e.g., LEDs, LCD screens, and
speakers) directly onto form prototypes, and author behav-
ior visually in our software workbench (see Figure 2 and 3).
d.tools employs a PC as a proxy for embedded processors so
designers can focus on user experience-related tasks rather
than implementation-related details. The d.tools library
includes an extensible set of smart components that cover a
wide range of input and output technologies.

Designers create interaction prototypes in d.tools using a
PC-based visual authoring environment, inspired by the
statecharts visual language [16]. States in the editor specify

Figure 3. Top left: Smart components have their own RISC
microcontroller; they are connected to plug boards to com-
municate over an 12C bus. Top right: d.tools supports output
to small-form-factor LCDs. Bottom: Examples of supported
plug-and-play hardware.

device outputs (see Figure 2); state transitions are triggered
by physical inputs. Users graphically arrange icons of rec-
ognized physical I/0 components into a virtual representa-
tion of the physical device. This iconic representation af-
fords rapid matching of software widgets with physical I/0
components. d.tools dynamically detects the presence and
capabilities of attached hardware components, enabling the
software editor to be couple to the hardware configuration.

UNDERSTANDING CURRENT DESIGN PRACTICES

To create a design tool offering these benefits in a manner
felicitous with current design practices, we conducted
structured interviews with designers and surveyed the inter-
action requirements of existing devices.

Interviews

We conducted individual and group interviews with eleven
designers and managers at three product design consultan-
cies in the San Francisco Bay Area. To understand how
design students could benefit from prototyping tools that
help them focus on the design aspects of their education, we
interviewed three product design master’s students.

Professional design companies have access to resources and
expertise to create integrated functional prototypes that
demonstrate interaction in a high-fidelity form factor (iden-
tified by one interviewee as “Comdex models” to convey
their importance for trade shows). Pering has described the
use of such comprehensive prototypes for user experience
testing of PDAs [35]. However, these solutions are generally
expensive one-offs that that can not be reused or easily
modified. Their cost limits deployment to later stages of the
design process and to large projects.

For earlier stages, designers reported using lower-fidelity
prototyping solutions such as using PowerPoint and Excel
spreadsheets or Photoshop layers to express Ul control flow.
One design manager noted that user interface evolution was
harder and slower than iterating hardware designs. One
reason is that many design consultancies have more me-
chanical engineers and design generalists than programmers



or electrical engineers on staff: technical work has to be
queued or outsourced. d.tools addresses these difficulties
with early-stage design by giving design generalists a
ready-to-hand tool for building functional prototypes at
their desk or workstation.

Design students’ access to resources is even more con-
strained; two of the three interviewees reported giving up
on trying to prototype the electronics of their projects.
Students expressed a need for narrative or storyboard-based
design that allows them to capture only key interaction
paths without having to develop a comprehensive interface
model up front. As with our professional interviewees,
students fell back on lower-fidelity mock ups such as slid-
ing transparencies in and out of acrylic blocks to simulate
screen output. They expressed dissatisfaction with those
techniques because they failed to suspend disbelief of their
test users. In response, we designed d.tools focus on con-
crete interaction sequences and to support high-fidelity,
low-latency output comparable to that of finished products.

Survey of existing information appliances

To inform the architecture and library requirements for
d.tools, we tallied the use of input and output components
by 24 devices in three categories: mobile consumer elec-
tronics, stationary control interfaces, and novel systems that
introduce interactions not yet common in the mainstream.

Mobile appliances such as portable media players, cell
phones and digital cameras predominantly use a large num-
ber of buttons (~5 to 71), and a small number of switches
(~1 to 3) as inputs. With these digital controls, UI state is
not apparent in the physical state of the input components
and is mostly communicated through status LEDs and color
LCD screens. Many devices feature microphone input and
stereo sound output; capacitive and other sensors are gain-
ing popularity in the commercial avant-garde (such as the
iPod wheel) but are not yet commonplace.

Stationary interfaces include appliances from musical con-
trol surfaces to home automation/room control panels. They
often rely on continuous dedicated controls such as rotary
knobs (potentiometers or encoders) and sliders as inputs
which offer a physical indication of their state. LED and text
LCD output is common; graphical LCDs are less common,
but gaining popularity.

Figure 4. We brought this Flash + Phidgets prototype to
design companies to elicit feedback during our fieldwork.

Entertainment and research devices form the vanguard of
physical interactions, and helped us understand emerging
trends. Devices such as the Nintendo Revolution game
controller, experimental musical controllers, and research
systems such as the Sensing PDA [18] and Tablet Whacking
[17] make use of a broader range of sensors: orientation,
acceleration data, pressure. Non-graphical output via sole-
noids or vibrating motors (e.g., [40]) is currently rare, even
in research, but is an important area for future growth.

These survey results offer important design guidelines for
d.tools. The d.tools architecture should support both dis-
crete and continuous input, and graphical and sound output.
The architecture should not be a closed system; it should
enable fluid integration of emerging sensor technologies as
designers adopt them.

D.TOOLS ARCHITECTURE

d.tools was developed using the same iterative design proc-
ess that our target audience employs. We summarize our
exploratory work and then describe the full implementation.

Prototyping a Prototyping Tool

An integrated prototype requires interaction, physical input,
and output. Our formative prototype employed Macromedia
Flash [1] for the interaction, a Phidgets interface kit [15] for
the input, and a RS232-controlled color LCD screen
(earthLCD ezL.CDO001) for display. We designed visual
interaction techniques for authoring the UI of one specific
information appliance: a media player, for which we also
built a physical device out of layered sheets of laser-cut 4"
acrylic (see Figure 4). Flash affords rapid interaction devel-
opment and Phidgets provided a complete C# API for sens-
ing physical input. A TCP socket server connected the Flash
GUI editor to the LCD screen and Phidgets hardware by
marshaling physical input events as XML messages and
unmarshaling Flash XML commands into API calls for
Phidgets and our LCD library.

This prototype anchored our discussions with professional
designers. Designers found the visual authoring environ-
ment, in which states iconically represent the physical
device, immediately compelling. We learned that the fluid-
ity of our design tool should also extend to hardware com-
ponents. Interviewees pointed out the disconnect between
fluid drag-and-drop interactions in software and the solder-
ing, screwing, and software development required to inte-
grate hardware into an application. Armed with this infor-
mation, we implemented the complete d.tools system.

Software

The d.tools visual authoring environment is implemented in
Java J2SE 5.0 as an Eclipse IDE plug-in using its Graphical
Editing Framework (GEF). Eclipse furnishes a standard
application framework with flexible handling of multiple
editors, views, and wizards. The d.tools Eclipse plug-in
comprises 9,850 lines of logical code (18,600 lines of
physical code, which includes comments and white space).
The d.tools interface comprises a device designer, a state-



chart designer, and associated views for specifying proper-
ties.

Device designer

In the device editor, designers author an iconic representa-
tion of the appliance they are prototyping: they create,
arrange and resize input and output components, then con-
trol their look by dragging and dropping images from the
asset library image browser onto the device outline or onto
individual components. (While d.tools recognizes the de-
vice type, designers may wish to add a particular look to
their visual prototype.) d.tools supports image transparency
and can read graphics in JPEG, GIF, and PNG formats. The
component library of the device editor currently comprises
the following inputs: buttons, switches, sliders, knobs,
accelerometers, and general voltage varying sensors; and
the following outputs: LCD screens, speakers and LEDs.
Input and output components are presented according to
their affordances. For example, while buttons and switches
are both one-bit controls, d.tools retains their distinct affor-
dances in software (switches physically maintain their state,
while buttons return to a default position after each press).

Statechart designer

Designers define their prototype’s behavior by creating
interaction graphs with the statechart designer (see Figure
2). States are graphical instances of the device design; they
describe the content assigned to the outputs of the prototype
at a particular point in the UI: screen image, sound, LED
behavior. As in the device editor, content can be assigned to
output components of a state by dragging and dropping
items from the asset library onto a component.

Transitions represent the control flow of an application;
they define rules for switching the currently active state in
response to user input (hardware events). They are repre-
sented graphically as solid-line arrows connecting two
states. Transitions have one or more input components and
an input event associated with each such component. For
example, a designer can author that a button press transi-
tions from one state to a second. Designers can specify
multiple options for a transition’s input (Boolean OR); they
can also specify synchronous operation of multiple inputs
(Boolean AND). When a user operates a physical control,
d.tools checks whether that input matches the condition(s)
for any transitions outbound from the current state. If there
is a match, d.tools updates the visual interface’s current
state and sends this new state’s content (images, sounds,
LED behaviors, etc.) to the device. These state transitions
express the control flow portion of the interaction design.

d.tools also supports data flow: the continuous attributes of
output elements. Designers specify this data flow logic
through intra-state bindings, which create a link between an
input and an output component within a single state. For
example, while a speaker receives discrete events to play
and pause a sound (specified through transitions), continu-
ous control specifies the volume (specified through bind-
ings). Graphically, bindings are shown as arrows with

dashed lines. Input components act as binding sources and
expose different signals, such as the continuous position of
a slider, or the state of a switch. These signals can be bound
to different targets exposed by output components.

To facilitate a seamless map between the statechart author-
ing interface and the physical prototype, both are always
live. Selecting a state in the visual authoring environment
sets the physical device’s current state, and vice versa.
Integrating these representations and providing fast, global
control of application state has two important benefits.
First, it provides a clear and consistent mental model to
designers. Second, it facilitates the designer’s ability to
extemporaneously control interactions during walkthroughs
with clients and prototype testing with end users. As a first
step toward enabling designers to analyze user interaction
data, time-stamped state transitions are recorded in a log
file.

Tight and loose coupling of hardware and software

d.tools introduces plug-and-play functionality for input and
output components through a tight coupling between hard-
ware components and their software duals (see Figure 5).
The software listens for incoming messages and sends out
hardware state change events via serial (RS232) and UDP
ports. When a physical component is plugged in, a corre-
sponding virtual component is created in the device editor
and propagated to the statechart. When a physical compo-
nent is unplugged, the software dual is decoupled from the
physical component and deactivated. d.tools indicates
deactivation by drawing a red x over the visual component.

d.tools uses a two-phase delete mechanism because compo-
nents are bound to designer-authored information (state
content and transitions). Separating deactivation from re-
moval enables designers to review the action and remap the
interaction logic to an alternate control if desired. To en-
courage exploration, all user interface actions are imple-
mented on a command stack that supports multiple levels of
undo. After initiating a delete in software or removing a
hardware component, designers can reassign that compo-
nent’s transitions and content to a different component by
dragging and dropping a new component on top of an
equivalent inactive component.

Designers can switch to a loose coupling mode if they
prefer software-centric development, if they want to work
with only a subset of the hardware in their design, or if they
do not have access to the hardware toolkit. When loosely
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Figure 5. d.tools introduces an integrated approach: hard-
ware components and their software duals are tightly cou-
pled.



coupled, d.tools is agnostic to the presence of hardware
components: it can receive data events from hardware and
will follow matching transitions, but it will not add or
deactivate  software = components based on con-
nect/disconnect actions of physical components.

When a designer switches from loose to tight coupling,
d.tools scans the hardware to ascertain which components
specified in the hardware diagram currently have hardware
duals attached. Visual components are active when their
hardware dual is present. When the hardware is detached,
the visual component is inactive.

Hardware

This section describes design rationale for and implementa-
tion of the d.tools hardware platform. d.tools provides plug-
and-play integration of individual 10 components by mak-
ing each component smart (adding a dedicated small micro-
controller) and networking the components on an 12C bus
(see Figure 6). 12C offers a large base of existing compati-
ble hardware, sufficient bandwidth characteristics for most
interaction components and easy connection-point expan-
sion through daisy-chaining. Output devices that require
higher bandwidth are handled separately by PC peripherals.

A master controller board coordinates hardware-to-PC
communication. This controller transforms hardware events
into OpenSoundControl (OSC) messages. OSC is an open
protocol developed specifically for real-time control of
human performance systems.

Atmel microcontrollers are used to implement this architec-
ture because of their low cost, high performance, and pro-
grammability in C. We used the open source WinAVR tool
chain [6] and the commercial IAR AVR workbench [41]
compilers. The d.tools microcontroller code comprises 1260
logical lines and 2100 physical lines.

12C is a serial multi-drop bus architecture where one master
and many slaves exchange messages through two data and
clock lines. Up to 127 bus devices can be connected at a
temporally-multiplexed data rate of 100 Kbps. We pro-
grammed an Atmel ATmegal28-based Procyon Engineering
AVRmini v3.1 board to serve as the communication liaison
between the host PC and individual hardware components.
It serves as 12C master and also sends OSC messages over
an RS232 connection at 115Kbps (or USB via VirtualCom-
Port drivers). Individual interface components each have
their own 8-pin microcontroller (Atmel ATtiny45) that runs
an 12C slave program sending sensor data from an attached
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Figure 6. The d.tools plug-and-play hardware architecture.

input to the master or setting the state of an attached output
according to received commands (see Figures 3, 6). Com-
ponents can be hot-plugged into the 12C bus via plug boards
with polarized 4-pin plugs carrying 12C data and clock, +5
volts and ground. A polling loop over a database of known
components allows the master controller to track presence
and identity of hardware components. Sensors are polled at
250Hz to 1kHz, depending on the number of attached com-
ponents. Most human input devices require less than
100Hz. The master generates additional OSC messages to
notify the d.tools software of the configuration change.
Occasionally, electrostatic discharge during plugging can
interrupt operation of the 12C bus, which requires a manual
3 second hardware reboot; this problem can be avoided by
introducing 12C bus buffer chips in the plug boards.

d.tools distinguishes audio and video from lower-bandwidth
components (buttons, sliders, LEDs, etc.). The modern PC
A/V subsystem provides plug-and-play support for audio
and video; for these components d.tools simply uses the
existing infrastructure. For graphics display on the small
screens commonly found in information appliances, d.tools
includes an LCD display which can be connected to a PC
graphics card with video output (Purdy AND-TFT-25PAKIT).
This screen is controlled by a secondary video card con-
nected to a video signal converter.

Modularity allows for substitution and extension

Tool support for physical computing operates at three lev-
els: the wire protocol, the hardware-to-PC interface, and the
software level. To facilitate extensibility by advanced users
and the software development community at large, d.tools
builds on existing open source APIs for all three layers; no
existing systems provide a comparable level of extensibil-
ity. With closed architectures, designers are unable to create
their desired prototype if the tool does not contain all re-
quired library elements. Our interviews and use of Phidgets
in our university's interaction design course demonstrated
that limited libraries are indeed a problem in current prac-
tice. d.tools employs I12C as its wire protocol; OSC for the
hardware-to-PC interface, and Eclipse and Java as the soft-
ware interface.

Each of these three APIs has a rich development commu-
nity. For example, there are OSC implementations for the
data flow languages Pd and Max/MSP [4]. The d.tools
hardware connects these languages to the physical world.
To show this modularity, we have used a d.tools slider to
select pitch and a d.tools button to trigger sound in Pd.
Similarly, other hardware toolkits can be used with d.tools
by writing an OSC wrapper that communicates with the
d.tools software. We have written a reference wrapper to
connect a Phidgets InterfaceKit to d.tools. The Phidgets API
affords detection of connection status for components such
as servo motor controllers and component aggregators such
as InterfaceKits, and LED banks. Phidgets does not provide
this information for small, individual components such as



buttons and LEDs; thus, tight coupling behavior is not
available.

The design choice of whether all components should be
smart trades off larger size for plug-and-play functionality:
d.tools components afford faster prototyping and a lower
development threshold through tight coupling; however,
plain electronics are smaller as they do not require a dedi-
cated microcontroller per component. It is certainly also
possible to mix smart and plain components in a particular
device, or to initially prototype with smart components for
their richer tool integration and later in the design process,
as fidelity and form constraints increase, replace some of
the smart components with the smaller plain components.

The d.tools hardware component library can be extended
with other devices that conform to the 12C standard. In
addition to our own ATtiny controlled components, we have
successfully added 12C chips from other manufacturers into
our system: a Phillips PCF8591 12C A2D converter for volt-
age-varying inputs such as potentiometer knobs, and a
Procyon Engineering ADXL accelerometer board, which
uses an ADS7828 12C A2D converter. Currently, adding such
new components requires programming expertise; source
code for both microcontroller and Eclipse environments is
freely available to users.

Performance

Performance matters in three distinct areas of the d.tools
system: designer interaction with the software workbench;
plugging and unplugging of hardware in tightly coupled
mode; and user interaction with a physical prototype.

Interaction with the d.tools software workbench is respon-
sive on the 3.0 GHz PCs used in our evaluation. Noticeable
lags only occur when operations such as device layout
updates and state dragging involve repainting many graphic
elements in complex statecharts. These delays are incidental
rather than intrinsic to our architecture and are a result of
using the GEF’s suboptimal graphics engine. Plugging and
un-plugging hardware is reflected in software representa-
tions after one to two seconds. This latency is sufficient to
convey causality. Round-trip latency from the time a user
generates a hardware event in an input component (e.g., by
pressing a button) until a signal is generated in an output
component (e.g., LED turns on) is on the order of 100ms,
within the range of perceptual causality [12]. Refactoring
code to separate hardware output from graphics updates
may improve this performance.

EVALUATION

We present two evaluations of our system — a first-use
study with thirteen participants, and the use of our toolkit to
rebuild prototypes of three existing devices.

First-Use Study

We conducted a controlled study of d.tools in our labora-
tory to assess the ease of use and felicity of our tool for
design prototyping. The study group comprised 13 partici-

pants whose skills matched those of the d.tools target audi-
ence: general design experience, but no required back-
ground in building physical user interfaces, electronics or
programming. Most participants were students or alumni of
design-related graduate programs at our university. Two
undergraduates with design experience also participated.
While all had some prior exposure to programming, only
one participant reported to be fluent; none self-rated as
experts. Participants’ ages ranged from 20 years to 37
years; six were male, seven were female.

Pilot Study

Three participants served as pilot testers, which allowed us
to iteratively refine our testing protocol. The pilots uncov-
ered stumbling blocks not related to the technical part of
our system: they alerted us to the importance of labeling
otherwise identical hardware components to give users a
way to differentiate them, of making available third party
software tools for image creation during the study so par-
ticipants could add their own graphics to their prototypes,
and of providing online documentation and design patterns
for participants to refer to. To support opportunistic design
strategies, we also added a set of images of common navi-
gation elements and symbols to the asset library.

Laboratory Evaluation

We began each two-hour session for the ten participants in
the full study by demonstrating the d.tools software editor
and the hardware components. We then gave the partici-
pants two narrowly-defined tasks and one open-ended
design project. For the first task, participants were asked to
complete a cell phone navigation menu that the experi-
menter had started during the demonstration. For the second
task, participants were asked to build a functional physical
prototype of a device with one button and one switch as
inputs, and one LED and a speaker as outputs. Pressing the
button should play a sound clip and toggling the switch
should turn the LED on or off. The two components were to
function independently of each other.

The third assignment was to begin prototyping a digital
music player for children. Participants were given written
guidelines such as “children prefer dedicated controls and
like elements that move better than buttons,” and were told
to focus on the out-of-box experience. As the study allotted
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Figure 7. Prototypes created by our study participants. Left.
a music player; Right. statechart and device for task 2



only 30 to 45 minutes for this part, participants were in-
formed that they were not expected to produce a finished
product. To sketch and build physical prototypes, we pro-
vided an 18" x 24" paper pad, sheets of foam core, pens, a
selection of tools, glue and tape, and a label printer. As the
final step of the study, participants were asked to complete
a 26 question survey.

Study Results

All participants successfully completed both closed tasks,
regardless of prior experience in user interface design or
physical computing. Task one took a mean of 9 minutes
while task two took a mean of 24 minutes to complete (see
Figure 8).

Participants followed heterogeneous approaches: some
started by exploring the ergonomics of different shapes to
determine input component placement; others focused on
requirements analysis on paper; yet others worked exclu-
sively in software. d.tools was most frequently used for
determining layout of interaction components in the device
designer, and reasoning about the interaction model in the
statechart designer. Two participants with prior physical
computing experience built functional physical prototypes
with navigation and sound playback in less than 30 minutes.

The success of a low threshold and tight coupling

Almost all users commented positively on the tight cou-
pling of hardware components and their software counter-
parts, especially the automatic recognition of hardware
connections. Authoring statecharts through link-and-create
actions was immediately intuitive. Refining default behav-
iors through text properties and expressing functional inde-
pendence in a statechart took longer; nevertheless, partici-
pants mastered these strategies by the end of the session.

After an initial period of learning the d.tools interface,
participants spent much of their time with design thinking
—reasoning about how their interface should behave from
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Figure 8: Task completion times, and prior experience and
expertise of the study participants. Participants completed task
1 in an average of 9 minutes, and task 2 in an average of 24
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minutes. These times demonstrate that prototyping with d.tools

is fast enough to be appropriate for early-stage design.

the user’s point of view instead of wondering about how to
implement a particular behavior. This was especially true
for authoring UI navigation flows.

The experimenter asked participants to hand over the de-
vices built for task two —while observing this on-the-spot
user test, many subjects expressed the wish to iterate on
their designs and produced another version two to ten min-
utes later. This suggests the advantage of the rapid iteration
cycles that d.tools enables.

Participants consistently gave d.tools high marks for ena-
bling usability testing (u=4.6 on a 1 to 5 Likert scale with
neutral value 3; 6=0.70), shortening the time required to
build a prototype (u=4.3; 6=0.67) and helping to under-
stand the user experience at design time (u=4.25; 6=1.03).

Needs: software simulation, larger library, richer feedback
One significant shortcoming discovered through the study
was the lack of software simulation of an interaction model:
the evaluated version did not provide a mechanism for
stepping though an interaction without attached hardware.
A software simulation mode would complement the soft-
ware-centric loosely coupled work flow.

Participants also found the d.tools hardware library too
limited and noted that this constrained their designs. Some
participants explicitly asked how difficult it would be to
extend the hardware library. Some participants desired
more robust hardware connectors: they were concerned
about damaging or unhooking wires during plugging and
unplugging and wished for a more “Lego-like” fit. We have
yet to find a commercially available connector set that
combines small size, polarized plugs, positive lock, and
robustness to a high number of plug cycles. Users also
wished for aggregate inputs that have become standard
navigation elements for information appliances such as
combined up-down buttons and five-way joysticks.

In the visual authoring interface, the study uncovered an
inconsistency in our handling of click-and-drag actions
between the device editor and the statechart editor. Fur-
thermore, d.tools could benefit from better feedback on
transitions and visualization of input component state in the
statechart — some participants looked for transition informa-
tion in the components of a state, instead of in the proper-
ties of transitions themselves.

Editing textual properties worked well for subjects who had
some comfort level with programming, but was disliked by
one product designer who described himself as a “visual
person.” Interaction techniques for graphically specifying
properties would likely address this.

Rebuilding Existing Devices

To evaluate the current toolset’s expressiveness, we recre-
ated prototypes for three existing devices—an Apple iPod
Shuffle music player, the back panel of a Casio EX-Z40
digital camera, and the Sensing PDA published in [18].
Figure 9 shows statechart diagrams of these prototypes. We



distilled the key functionality of each device and prototyped
these key interaction paths.

Interactive physical prototypes have two scaling concerns:
the complexity of the software model, and the physical size
of the prototype. This rebuilding exercise demonstrated that
d.tools diagrams of up to 50 states are visually understand-
able on a desktop display (1600 = 1200); this scale is suffi-
cient for the primary interaction flows of current devices.
Positioning and resizing affords effective visual clustering
of subsections according to gestalt principles of proximity
and similarity. However, increasing transition density
makes maintaining and troubleshooting statecharts taxing.
This limitation is shared by other visual authoring environ-
ments. The design of more complex interfaces would bene-
fit from the ability to create reusable aggregations of func-
tionality and implementing more of Harel’s visual abstrac-
tions [16], especially hierarchical grouping.

Models were created at a scale of 1.5:1 since cabling and
the small microcontrollers attached to each d.tools compo-
nent require additional space inside the device enclosure.
While miniaturization of our components can mitigate this
issue to a certain extent, there still exists a principal mis-
match between the physical scale appropriate for manipula-
tion during prototyping and the scale of components used in
computer-aided manufacturing.

Figure 9 shows the breakdown of prototyping times into
graphic design time, d.tools design time, and physical
construction time. d.tools successfully cut the time that is
implementation-details-related to a small fraction, enabling
the prototyping to be driven by design concerns.

RELATED WORK

The d.tools system supports early-stage design activities.
Prior work has created early-stage design tools for other
domains, including graphical [26], web [22, 33], multime-
dia [8], speech [23], multimodal [39], and cross-device [28]
user interfaces. The d.tools system also draws on related
work in end-user programming and tools for physical com-
puting. This section summarizes each area and how d.tools
relates to each body of work.

End-user and visual programming

Nardi [32] notes that while general-purpose programming
languages are too far removed from the tasks faced by
domain experts to be adopted into their work processes,
these users are not averse to using formal languages per se.
Task-specific languages with abstractions that match the
professional’s work domain (e.g., spreadsheets, CAD) have
been tremendously successful.

Domain-tailored visual authoring environments have been
successful for domains such as real-time music synthesis
and control [4] and engineering simulation [5]. The HANDS
system [34] shows that the same usability and human-
centered design strategies used to construct task-specific
languages can also be employed to develop more accessible

Sensing PDA
Build times in minutes
22 35 38
Apple iPod Shuffle 72z R/ /////0/000 00

64 54 62
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Sensing PDA one day; inspired changes in d.tools code base

7227 = time spent making graphics
I = time spentin d.tools
it = time spent building physical device

Figure 9. Statechart diagrams and build times of prototypes
for three existing devices: iPod Shuffle, Casio digital camera
back, Sensing PDA.

models of general programming. d.tools seeks to transfer
the benefits of end-user programmability to the domain of
physical interaction design.

Tools for Physical Computing

d.tools builds on prior work on physical computing tools,
including programming toolkits, multimedia authoring
extensions, and visual authoring systems.

Toolkits for Programmers

The Phidgets [15] system introduced physical widgets:
programmable ActiveX controls that encapsulate communi-
cation with USB-attached physical devices, such as a
switch, pressure sensor, or servo motor. The graphical
ActiveX controls, like the d.tools visual authoring environ-
ment, provide an electronic representation of physical state.

iStuff [9] extended this idea to support wireless devices, a
loose coupling between input and application logic, and the
ability to develop physical interactions that function across
an entire ubiquitous computing environment. iStuff, in



conjunction with the Patch Panel [10], enables standard Uls
to be controlled by novel inputs.

Papier-Maché [20, 21] introduced a software architecture
for acquiring and abstracting physical input, most notably
computer vision. d.tools employs the user-centered tool
design methods that Papier-Maché introduced, but focuses
on mechatronic input.

Wiring [11] is an 10 board that extends the Processing [36]
environment in which behavior is authored through a Java-
extensible scripting language. Wiring and Processing differ
from d.tools in that they seek to teach textual programming
to design students.

Pin&Play [25] offers smart components with conductive
pins that can be pushed into a multi-layer surface which
acts as the network medium and power source. The act of
attaching a component to the surface itself establishes a
communications connection. Ergodex [13] follows a similar
“put any element anywhere” approach, but uses RF technol-
ogy to allow freeform placement of buttons on a tablet.

Application logic for these toolkits is created through a
textual programming language such as Java or C. The
d.tools visual authoring environment contributes a lower
threshold tool and provides stronger support for rapidly
developing the “insides of applications” [30] than these
systems. However, textual programming offers a higher
ceiling and allows for novel control of existing applications,
which d.tools does not.

Extending Multimedia Authoring

Teleo [38] is a commercial system offering similar benefits
to Phidgets. Teleo’s primary distinction is that it is pro-
grammed with Max/MSP [4] or Macromedia Flash [1],
rather than through Microsoft Visual Studio.

Calder [7, 27] integrates RFID buttons and other wired and
wireless devices with C and Macromedia Director [1]. Fluid
integration with physical mock-ups is aided by the small
form factor of the devices.

DART [29] provides augmented reality authoring in the
Macromedia Director [1] environment. It abstracts technol-
ogy issues such as sensor input from designers.

This class of toolkits enables those in the interaction design
community already familiar with scripting languages of
multimedia applications to prototype physical devices such
as remote controls and game controls. The goal of tools in
this area should be similar to the goal of web authoring
tools such as Macromedia Dreamweaver [1], where (for the
most part) users can move fluidly between textual and
visual authoring modes. d.tools shares this goal but offers a
authoring environment focused on designing artifacts rather
than creating a media experience.

Visual Authoring
The Lego Mindstorms Robotic Invention System [2] offers
a visual environment based on control flow puzzle pieces to

control sensors and actuators. While a benchmark for low-
threshold authoring, Lego Mindstorms targets autonomous
robotics projects; the abstractions are inappropriate for
designing physical user interfaces.

STCtools [31] employs a statechart editor coupled with pen
input and geo-referenced projection to prototype informa-
tion appliances. It is the only other tool besides d.tools that
provides explicit support for integrated raster graphics
displays. There are several advantages to a small display
over projection: higher resolution; freedom from occlusion;
better mobility; and lower system complexity. At this point,
the STCtools library comprises solely buttons and is not
designed to support richer interactions.

Maestro [3] is a commercial design tool for prototyping
mobile phone interactions. It provides a complex visual
state language with code generators, software simulation of
prototypes, and compatibility with Nokia’s Jappla hardware
platform. Maestro and Jappla together offer high ceiling,
high fidelity mock-up development; however, the complex-
ity of the tools make them too heavyweight for the informal
UI sketching that d.tools targets.

CONCLUSIONS AND FUTURE WORK

This paper introduced d.tools, an integrated prototyping
environment that lowers the threshold for creating func-
tional physical prototypes. To better understand how d.tools
is used in longitudinal practice, we have released d.tools to
the design community as open source (see
http://hci.stanford.edu/d-tools). This winter, we will deploy
d.tools in our university’s interaction design studio course
to ascertain the strengths and weaknesses of this interaction
model for design students. d.tools introduces an architecture
that provides a low threshold for design generalists, and
modular extensibility for developers. Currently, we are
researching techniques for developers to more fluidly in-
crease the software ceiling of the d.tools visual authoring
language. We are also exploring opportunities for integrat-
ing digitally-controlled fabrication technologies such as 3D
printing [14] into d.tools.
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