
d.tools: Integrated Prototyping for
Physical Interaction Design

Bjorn Hartmann, Scott R. Klemmer, and Michael Bernstein

Stanford University HCI Group

Computer Science Department, Stanford, CA 94305-9035, USA

{bjoern, srk, mbernst} (@cs.stanford.edu

ABSTRACT

Designers tasked with imagining future information appli-
ances currently employ separate tools for rapidly prototyp-

ing the form (the atoms) and the interaction model (the bits) nN
because integrated prototyping of bits and atoms requires iaresources and knowledge outside the reach of design gener- =alists. Based on interviews with product designers, we pT.created d.tools, a system enabling non-programmers to ~ SVprototype the bits and the atoms of physical user interfaces Be aw —in concert. d.tools lowers the threshold to prototyping func-

tional physical interfaces through plug-and-play hardware Figure 1. d.tools enables designers to rapidly prototype the
that is closely coupled with a visual authoring environment. circuits and code of information appliances using pictures
We evaluated the d.tools use threshold through a first-use and parts.
study with thirteen participants; the study showed that the some dimensions of interest. Prototypes are the pivotal
tool is accessible and encourages reflective design practice. medium that structures innovation, collaboration, and crea-
We tested the d.tools range of design support by recreating tivity in the most successful design studios [19]. These
existing research and commercial devices; this demon- prototypes play important roles for four distinct constituen-
strated that the visual language was sufficiently expressive cies. First, designers create prototypes for their own benefit;
for existing and emerging real-world designs. visually and physically representing ideas externalizes

cognition and provides the designer with backtalk [37] —

Author Keywords surprising, unexpected discoveries that uncover problems or
Toolkits, information appliances, design tools, prototyping, generate suggestions for new designs. Second, prototypes
hardware-software integration, physical user interfaces provide a locus of communication for the entire design

ee Ls team; through prototypes, the tacit knowledge of individu-

ACM Classification Keywords : als is rendered visible to the team. Third, prototypes are
H.5.2. [Information Interfaces: User Interfaces-input de- integral to user-centric development by providing artifacts
vices and strategies; interaction styles; prototyping; user that can be used for user feedback and usability testing.
centered design. D.2.2 [Software Engineering]: Design Finall ¢ Iso i I Is in cli: y, prototypes are also important sales tools in client

Tools and Techniques—State diagrams; user interfaces. relationships—many product designers live by the principle
INTRODUCTION “never enter a client meeting without a prototype in hand.”
Information appliances—small portable devices such as Through much of the design process, designers today create
mobile phones, digital cameras, and music players—are two separate sets of prototypes: “looks-like” prototypes that
growing quickly in number and diversity. To arrive at show only the form of a device (the atoms), and “works-
usable interface designs, product designers commonly build like” prototypes that use a computer display to demonstrate
a series of prototypes— approximations of a product along its interaction (the bits). The time and expertise require-

ments for creating comprehensive prototypes that tie form

and function together prohibit their use until late in devel-

opment. At that time, monetary constraints and resource

commitments prohibit fundamental design changes [42].

However, only integrated functional prototypes can uncover

the interdependence between bits and atoms that character-

izes the final user experience. To enable designers to proto-

type bits and atoms in concert, we have developed d.tools, a

system that introduces integrated interactions [24] to enable

rapid prototyping of information appliances (see Figure 1).

1

2 J B— Statechart i . || =

Device =Z SES KD© Cd 2 z
Editor EiEEoY | fii 3

- So. pos ra LORS , "
3 wwe Asset Library Browser b=meee pin 107 = =
VIL]+)[# [<I @[=)[W] | property View ie Nt 5 ®
chart for a mobile phone orototype. microcontroller; they are connected to plug boards to com-municate over an 12C bus. Top right: d.tools supports output

to small-form-factor LCDs. Bottom: Examples of supported
plug-and-play hardware.

Design Tools

Myers et al. introduced the terms threshold and ceiling to device outputs (see Figure 2); state transitions are triggered
describe use properties of a tool: the threshold is the diffi- by physical inputs. Users graphically arrange icons of rec-
culty of learning and using a system, while the ceiling ognized physical 1/0 components into a virtual representa-
captures the complexity of what can be built using the tion of the physical device. This iconic representation af-
system [30]. Today, programming in general purpose lan- fords rapid matching of software widgets with physical 1/0
guages and electronic circuit design are still the prevalent components. d.tools dynamically detects the presence and
means of creating functional prototypes of physical user capabilities of attached hardware components, enabling the
interfaces; the high threshold for these tools has been a software editor to be couple to the hardware configuration.
gating factor to designers, and the time commitment of

these tools makes them infeasible for rapid iterative explo- UNDERSTANDING CURRENT DESIGN PRACTICES
ration. These difficulties of high-threshold tools echo the To create a design tool offering these benefits in a manner
experiences of developing graphical user interfaces (GUIs) felicitous with current design practices, we conducted
twenty years ago; today nearly all GUIs are built with the structured interviews with designers and surveyed the inter-
assistance of user interface design tools [30]. action requirements of existing devices.

Recent research and commercial systems have demon- Interviews
strated the power of providing software abstractions to We conducted individual and group interviews with eleven
physical devices (e.g. [9; 15, 21, 38]). However, the exper- designers and managers at three product design consultan-
tise threshold and time investment required make them cies in the San Francisco Bay Area. To understand how
inappropriate for designers, particularly at the early stages. design students could benefit from prototyping tools that
The contribution of the d.tools research described in this help them focus on the design aspects of their education, we
paper is a system that lowers the thresholdfor functional interviewed three product design master’s students.
prototyping and provides a sufficiently high ceiling to

design useful systems. Professional design companies have access to resources and
expertise to create integrated functional prototypes that

Prototyping with d.tools demonstrate interaction in a high-fidelity form factor (iden-
d.tools supports design thinking rather than implementation tified by one interviewee as “Comdex models” to convey
tinkering. With d.tools, designers place physical controllers their importance for trade shows). Pering has described the
(e.g., buttons, sliders), sensors (e.g., accelerometers, com- use of such comprehensive prototypes for user experience
passes), and output devices (e.g., LEDs, LCD screens, and testing of PDAs [35]. However, these solutions are generally
speakers) directly onto form prototypes, and author behav- expensive one-offs that that can not be reused or easily
ior visually in our software workbench (see Figure 2 and 3). modified. Their cost limits deployment to later stages of the
d.tools employs a PC as a proxy for embedded processors so design process and to large projects.

designers can focus on Uset experience-related tasks rather For earlier stages, designers reported using lower-fidelity
than implementation-related details. The d.tools library : : : :
: : prototyping solutions such as using PowerPoint and Excel
includes an extensible set of smart components that cover a

: : spreadsheets or Photoshop layers to express UI control flow.

wide range of input and output technologies. One design manager noted that user interface evolution was
Designers create interaction prototypes in d.tools using a harder and slower than iterating hardware designs. One
PC-based visual authoring environment, inspired by the reason is that many design consultancies have more me-
statecharts visual language [16]. States in the editor specify chanical engineers and design generalists than programmers

or electrical engineers on staff: technical work has to be Entertainment and research devices form the vanguard of
queued or outsourced. d.tools addresses these difficulties physical interactions, and helped us understand emerging

with early-stage design by giving design generalists a trends. Devices such as the Nintendo Revolution game

ready-to-hand tool for building functional prototypes at controller, experimental musical controllers, and research

their desk or workstation. systems such as the Sensing PDA [18] and Tablet Whacking

: , : [17] make use of a broader range of sensors: orientation,
Design students’ access to resources is even more con- :

: : : . acceleration data, pressure. Non-graphical output via sole-
strained; two of the three interviewees reported giving up : bo :

)) : noids or vibrating motors (e.g., [40]) is currently rare, even
on trying to prototype the electronics of their projects. : : :

: in research, but is an important area for future growth.
Students expressed a need for narrative or storyboard-based

design that allows them to capture only key interaction These survey results offer important design guidelines for

paths without having to develop a comprehensive interface d.tools. The d.tools architecture should support both dis-

model up front. As with our professional interviewees, crete and continuous input, and graphical and sound output.

students fell back on lower-fidelity mock ups such as slid- The architecture should not be a closed system; it should
ing transparencies in and out of acrylic blocks to simulate enable fluid integration of emerging sensor technologies as

screen output. They expressed dissatisfaction with those designers adopt them.

techniques because they failed to suspend disbelief of their

test users. In response, we designed d.tools focus on con- D.TOOLS ARCHITECTURE
crete interaction sequences and to support high-fidelity, d.tools was developed using the same iterative design proc-
low-latency output comparable to that of finished products. ess that our target audience employs. We summarize our

exploratory work and then describe the full implementation.
Survey of existing information appliances

To inform the architecture and library requirements for Prototyping a Prototyping Tool

d.tools, we tallied the use of input and output components An integrated prototype requires interaction, physical input,
by 24 devices in three categories: mobile consumer elec- and output. Our formative prototype employed Macromedia
tronics, stationary control interfaces, and novel systems that Flash [1] for the interaction, a Phidgets interface kit [15] for
introduce interactions not yet common in the mainstream. the input, and a RS232-controlled color LCD screen

: : : earthLCD ezLCDO0O1) for display. We designed visual
Mobile appliances such as portable media players, cell (: :) play g :

. : interaction techniques for authoring the UI of one specific
phones and digital cameras predominantly use a large num- : : : : :

information appliance: a media player, for which we also
ber of buttons (~5 to 71), and a small number of switches : : : Ln

) L built a physical device out of layered sheets of laser-cut Ya
(~1 to 3) as inputs. With these digital controls, UI state is : , ae :

: : : acrylic (see Figure 4). Flash affords rapid interaction devel-
not apparent in the physical state of the input components : :

: opment and Phidgets provided a complete C# API for sens-
and is mostly communicated through status LEDs and color : C1
LCD M devices feat : h out and ing physical input. A TCP socket server connected the Flash

SCICChS. VIANY (qevIees Teatlre MICrophone input an GUI editor to the LCD screen and Phidgets hardware by
stereo sound output; capacitive and other sensors are gain- , : :
) larity in th - toard h as th marshaling physical input events as XML messages and
oeHN ed o © IPE CC -garde (such as the unmarshaling Flash XML commands into API calls foriPod wheel) but are not yet commonplace. Phidgets and our LCD library.

Stationary interfaces include appliances from musical con- This prototype anchored our discussions with professional
trol surfaces to home automation/room control panels. They desi : : : :: : esigners. Designers found the visual authoring environ-
often rely on continuous dedicated controls such as rotary : : Co :

) : : ment, in which states iconically represent the physical
knobs (potentiometers or encoders) and sliders as inputs rr , : :

: ge. : device, immediately compelling. We learned that the fluid-
which offer a physical indication of their state. LED and text , :

: : ity of our design tool should also extend to hardware com-
LCD output is common; graphical LCDs are less common, ts. Interv: ted out the di t bet
but gaining popularity ponents. Interviewees pointed out the disconnect betweeng & Pop fluid drag-and-drop interactions in software and the solder-

DE ——— ing, screwing, and software development required to inte-

= = grate hardware into an application. Armed with this infor-
JT = mation, we implemented the complete d.tools system.

| Tr Lz fatal Software
Ea Win EEa The d.tools visual authoring environment is implemented in

BR \a Ueto, == : Java J2SE 5.0 as an Eclipse IDE plug-in using its Graphical
EN. = FR. Editing Framework (GEF). Eclipse furnishes a standardi #6* N application framework with flexible handling of multiple

| A ——————————————————————————

—_— editors, views, and wizards. The d.tools Eclipse plug-in
comprises 9,850 lines of logical code (18,600 lines of

Figure 4. We brought this Flash + Phidgets prototype to physical code, which includes comments and white space).
design companies to elicit feedback during our fieldwork. The d.tools interface comprises a device designer, a state-

3

chart designer, and associated views for specifying proper- dashed lines. Input components act as binding sources and

ties. expose different signals, such as the continuous position of
a slider, or the state of a switch. These signals can be bound

Device designer to different targets exposed by output components.
In the device editor, designers author an iconic representa-

tion of the appliance they are prototyping: they create To facilitate a seamless map between the statechart author-
arrange and resize input and output components, then con- ng interface and the physical prototype, both are always
trol their look by dragging and dropping images from the live. Selecting a state in the visual authoring environment
asset library image browser onto the device outline or onto sets the physical device's current State, .and vice versa.
individual components. (While d.tools recognizes the de- Integrating these representations and providing fast, global
vice type, designers may wish to add a particular look to control of application state has two important benefits.
their visual prototype.) d.tools supports image transparency First, it provides a clear and consistent mental mode] to
and can read graphics in JPEG, GIF, and PNG formats. The designers. Second, it facilitates the designer’s ability to
component library of the device editor currently comprises extemporaneously contro] Interactions during walkthroughs
the following inputs: buttons, switches, sliders, knobs, with clients and prototype testing with end users. As a first
accelerometers, and general voltage varying sensors; and step toward enabling designers to analyze user interaction
the following outputs: LCD screens, speakers and LEDs data, time-stamped state transitions are recorded in a log
Input and output components are presented according to file.
their affordances. For example, while buttons and switches Tiaht and | lina of hard d soft
are both one-bit controls, d.tools retains their distinct affor- iLacod oohr lyout and
dances in software (switches physically maintain their state, ou ut combonenYDho oe he bt counlin veop hard
while buttons return to a default position after each press). tp p S 5 puns :

ware components and their software duals (see Figure 5).

Statechart designer The software listens for incoming messages and sends out
Designers define their prototype’s behavior by creating hardware state change events via serial (RS232) and UDP
interaction graphs with the statechart designer (see Figure ports. When a physical component is plugged mn, a J
2). States are graphical instances of the device design; they No ng vr componento pt in t N ol¢ editor
describe the content assigned to the outputs of the prototype an propagate to the statechart. ch a physical compo-
at a particular point in the UI: screen image, sound, LED nent 15 unplugged, the software dual is decoupled from the
behavior. As in the device editor, content can be assigned to physical component and deactivated. d1o0ls indicates
output components of a state by dragging and dropping deactivation by drawing a red x over the visual component.
items from the asset library onto a component. d.tools uses a two-phase delete mechanism because compo-

Transitions represent the control flow of an application; nents are bound fo designer-authored information (state
they define rules for switching the currently active state in content and ransitions). Separating deactivation from re-
response to user input (hardware events). They are repre- moval enables designers to review the action and remap the
sented graphically as solid-line arrows connecting two interaction logic to an alternate control if desired. To en-
states. Transitions have one or more input components and courage exploration, all user interface actions are imple-
an input event associated with each such component. For mented on a command stack that supports multiple levels of
example, a designer can author that a button press transi- undo. After initiating a delete mn software Of TCMOVINg 4a
tions from one state to a second. Designers can specify hardware component, designers can reassigh that compo-
multiple options for a transition’s input (Boolean OR); they ren > ransions and content to a different component by
can also specify synchronous operation of multiple inputs rite and dropping a new component on top of an
(Boolean AND). When a user operates a physical control, equivalent inactive component.
d.tools checks whether that input matches the condition(s) Designers can switch to a loose coupling mode if they
for any transitions outbound from the current state. If there prefer software-centric development, if they want to work
is a match, d.tools updates the visual interface’s current with only a subset of the hardware in their design, or if they
state and sends this new state’s content (images, sounds, do not have access to the hardware toolkit. When loosely
LED behaviors, etc.) to the device. These state transitions

express the controlflow portion of the interaction design.
SOFTWARE HARDWARE SOFTWARE HARDWARE SOFTWARE i

d.tools also supports data flow: the continuous attributes of i >)
output elements. Designers specify this data flow logic > p 2
through intra-state bindings, which create a link between an

input and an output component within a single state. For PLUG IN UNPLUG
example, while a speaker receives discrete events to play : i i i i :

and pause a sound (specified through transitions), continu- Figure 5. d.tools introduces an integrated approach: hard-
ous control specifies the volume (specified through bind- ware components and their software duals are tightly cou-
ings). Graphically, bindings are shown as arrows with pled.

coupled, d.tools is agnostic to the presence of hardware input to the master or setting the state of an attached output
components: it can receive data events from hardware and according to received commands (see Figures 3, 6). Com-

will follow matching transitions, but it will not add or ponents can be hot-plugged into the 12C bus via plug boards

deactivate software components based on con- with polarized 4-pin plugs carrying 12C data and clock, +5

nect/disconnect actions of physical components. volts and ground. A polling loop over a database of known
: : : : components allows the master controller to track presence

When a designer switches from loose to tight coupling, One W p
: : and identity of hardware components. Sensors are polled at

d.tools scans the hardware to ascertain which components :
: : : 250Hz to 1kHz, depending on the number of attached com-

specified in the hardware diagram currently have hardware : :
: : : ponents. Most human input devices require less than

duals attached. Visual components are active when their i»
: : 100Hz. The master generates additional OSC messages to

hardware dual is present. When the hardware is detached, : :
: .. : notify the d.tools software of the configuration change.

the visual component is inactive. : Cg :
Occasionally, electrostatic discharge during plugging can

interrupt operation of the 12C bus, which requires a manualHardware : :
: : : : : 3 second hardware reboot; this problem can be avoided by

This section describes design rationale for and implementa- :roducine 12C bus buffer chins in the blue board
tion of the d.tools hardware platform. d.tools provides plug- iiroducing Us bullet Chips I the pig boards.
and-play integration of individual 10 components by mak- d.tools distinguishes audio and video from lower-bandwidth
ing each component smart (adding a dedicated small micro- components (buttons, sliders, LEDs, etc.). The modern PC
controller) and networking the components on an 12C bus A/V subsystem provides plug-and-play support for audio
(see Figure 6). 12C offers a large base of existing compati- and video; for these components d.tools simply uses the
ble hardware, sufficient bandwidth characteristics for most existing infrastructure. For graphics display on the small
interaction components and easy connection-point expan- screens commonly found in information appliances, d.tools
sion through daisy-chaining. Output devices that require includes an LCD display which can be connected to a PC
higher bandwidth are handled separately by PC peripherals. graphics card with video output (Purdy AND-TFT-25PAKIT).

A master controller board coordinates hardware-to-PC This screen 1° controlled by a secondary video card con-
CL : nected to a video signal converter.communication. This controller transforms hardware events

into OpenSoundControl (©SC) messages. OSC 15 an open Modularity allows for substitution and extension
protocol developed specifically for real-time control of i for phvsical : hree |
human performance systems Tool support tor physical computing operates at three lev-

els: the wire protocol, the hardware-to-PC interface, and the

Atmel microcontrollers are used to implement this architec- software level. To facilitate extensibility by advanced users
ture because of their low cost, high performance, and pro- and the software development community at large, d.tools
grammability in C. We used the open source WinAVR tool builds on existing open source APIs for all three layers; no
chain [6] and the commercial TAR AVR workbench [41] existing systems provide a comparable level of extensibil-

compilers. The d.tools microcontroller code comprises 1260 ity. With closed architectures, designers are unable to create
logical lines and 2100 physical lines. their desired prototype if the tool does not contain all re-

: : : : quired library elements. Our interviews and use of Phidgets
I2C is a serial multi-drop bus architecture where one master : : Coy : :

d , h th h two data and in our university's interaction design course demonstrated
or ‘ > Un 1 a.iie ootl TWO od that limited libraries are indeed a problem in current prac-
CLOCK Tes. UP 10 us devices tan be connected at 4 tice. d.tools employs 12C as its wire protocol; OSC for the
temporally-multiplexed data rate of 100 Kbps. We pro- : :

: : hardware-to-PC interface, and Eclipse and Java as the soft-
grammed an Atmel ATmegal28-based Procyon Engineering :. Lo ware interface.
AVRmini v3.1 board to serve as the communication liaison

between the host PC and individual hardware components. Each of these three APIs has a rich development commu-
It serves as 12C master and also sends OSC messages over nity. For example, there are OSC implementations for the
an RS232 connection at 115 Kbps (or USB via Virtual Com- data flow languages Pd and Max/MSP [4]. The d.tools
Port drivers). Individual interface components each have hardware connects these languages to the physical world.
their own 8-pin microcontroller (Atmel ATtiny45) that runs To show this modularity, we have used a d.tools slider to
an 12C slave program sending sensor data from an attached select pitch and a d.tools button to trigger sound in Pd.

Similarly, other hardware toolkits can be used with d.tools

10 hardware, by writing an OSC wrapper that communicates with the

I d.tools software. We have written a reference wrapper to| i connect a Phidgets InterfaceKit to d.tools. The Phidgets API
ATtiny45 voy LL m——— affords detection of connection status for components such

- == = bese | RS232 <==" as servo motor controllers and component aggregators such
C Jother 2c anys PCrunningdtools ag InterfaceKits, and LED banks. Phidgets does not provide: ATmegal28 . . PTI

device eg, 10 hardware, |2C master this information for small, individual components such as
accelerometer e.g. button

Figure 6. The d.tools plug-and-play hardware architecture.

5

buttons and LEDs; thus, tight coupling behavior is not pants whose skills matched those of the d.tools target audi-

available. ence: general design experience, but no required back-
: : round in building physical user interfaces, electronics or

The design choice of whether all components should be stot od s physical u ’ :
: : programming. Most participants were students or alumni of

smart trades off larger size for plug-and-play functionality: Lo.
: design-related graduate programs at our university. Two

d.tools components afford faster prototyping and a lower 1 : : | hg
development threshold through tight coupling: however undergraduates with design experience also participated.

: : ’, J While all had some prior exposure to programming, only
plain electronics are smaller as they do not require a dedi- .

: :) one participant reported to be fluent; none self-rated as
cated microcontroller per component. It is certainly also . ,

: : : : experts. Participants’ ages ranged from 20 years to 37
possible to mix smart and plain components in a particular ol

Co years; six were male, seven were female.
device, or to initially prototype with smart components for

their richer tool integration and later in the design process, :
Fidelit df trains ; | ¢ Pilot Study

ov laelity and tormi> en replace some o Three participants served as pilot testers, which allowed us
the smart components with the smaller plain components. to iteratively refine our testing protocol. The pilots uncov-
The d.tools hardware component library can be extended ered stumbling blocks not related to the technical part of
with other devices that conform to the 12C standard. In our system: they alerted us to the importance of labeling

addition to our own ATtiny controlled components, we have otherwise identical hardware components to give users a
successfully added 12C chips from other manufacturers into way to differentiate them, of making available third party
our system: a Phillips PCF8591 12C A2D converter for volt- software tools for image creation during the study so par-
age-varying inputs such as potentiometer knobs, and a ticipants could add their own graphics to their prototypes,
Procyon Engineering ADXL accelerometer board, which and of providing online documentation and design patterns
uses an ADS7828 12C A2D converter. Currently, adding such for participants to refer to. To support opportunistic design
new components requires programming expertise; source strategies, we also added a set of images of common navi-
code for both microcontroller and Eclipse environments is gation elements and symbols to the asset library.
freely available to users.

Laboratory Evaluation

Performance We began each two-hour session for the ten participants in

Performance matters in three distinct areas of the d.tools the full study by demonstrating the d.tools software editor

system: designer interaction with the software workbench; and the hardware components. We then gave the partici-
plugging and unplugging of hardware in tightly coupled pants two narrowly-defined tasks and one open-ended
mode; and user interaction with a physical prototype. design project. For the first task, participants were asked to

complete a cell phone navigation menu that the experi-
Interaction with the d.tools software workbench 15 respon- menter had started during the demonstration. For the second
sive on the 3.0GHz PCs used in our evaluation. Noticeable task, participants were asked to build a functional physical
lags only occur when operations such as device layout prototype of a device with one button and one switch as
updates and state dragging involve repainting many graphic inputs, and one LED and a speaker as outputs. Pressing the
elements in complex statecharts. These delays are incidental button should play a sound clip and toggling the switch
rather than Intrinsic to our architecture and are a result of should turn the LED on or off. The two components were to
using the GEF’s suboptimal graphics engine. Plugging and function independently of each other.
un-plugging hardware is reflected in software representa-

tions after one to two seconds. This latency is sufficient to The third assignment was to begin prototyping a digital
convey causality. Round-trip latency from the time a user music player for children. Participants were given written
generates a hardware event in an input component (e.g., by guidelines such as “children prefer dedicated controls and
pressing a button) until a signal is generated in an output like elements that move better than buttons,” and were told
component (e.g., LED turns on) is on the order of 100ms, to focus on the out-of-box experience. As the study allotted
within the range of perceptual causality [12]. Refactoring son) | BEA 5 Hu A
code to separate hardware output from graphics updates AG “a ¥ - oY) ER ® ® a ® ©
may improve this performance. e ATER AE |]

EVALUATION Ba # = |
We present two evaluations of our system — a first-use Pr Do ry Pr
study with thirteen participants, and the use of our toolkit to von §) .

rebuild prototypes of three existing devices. Ye Bi [| |]
Ng =) AD

First-Use Study N (J
We conducted a controlled study of d.tools in our labora- |)
tory to assess the ease of use and felicity of our tool for i

design prototyping. The study group comprised 13 partici- Figure 7. Prototypes created by our study participants. Left:
a music player; Right. statechart and device for task 2

only 30 to 45 minutes for this part, participants were in- the user’s point of view instead of wondering about how to
formed that they were not expected to produce a finished implement a particular behavior. This was especially true

product. To sketch and build physical prototypes, we pro- for authoring UI navigation flows.
ided an 18" x 24" d, sheets of foam core, pens, a : CL.

vided an papel bad, OTC, PENS, The experimenter asked participants to hand over the de-
selection of tools, glue and tape, and a label printer. As the :)) : :

. vices built for task two — while observing this on-the-spot
final step of the study, participants were asked to complete : : :

) user test, many subjects expressed the wish to iterate on
a 26 question survey. : : :

their designs and produced another version two to ten min-

Study Results utes jater. This suggests the advantage of the rapid iteration
All participants successfully completed both closed tasks, cycles that €.1001s ehables.
regardless of prior experience in user interface design or Participants consistently gave d.tools high marks for ena-
physical computing. Task one took a mean of 9 minutes bling usability testing (u=4.6 on a 1 to 5 Likert scale with
while task two took a mean of 24 minutes to complete (see neutral value 3; 6=0.70), shortening the time required to
Figure 8). build a prototype (u=4.3; 6=0.67) and helping to under-

Participants followed heterogeneous approaches: some stand the user experience at design time (u=4.25; 6=1.03).
started by exploring the ergonomics of different shapes to : :

d DY ©XP S S p Needs: software simulation, larger library, richer feedbacketermine input component placement; others focused on Cn : :
: : One significant shortcoming discovered through the study

requirements analysis on paper; yet others worked exclu- : : : :
: : was the lack of software simulation of an interaction model:

sively in software. d.tools was most frequently used for : : :
. : : : : the evaluated version did not provide a mechanism for

determining layout of interaction components in the device : : :
: : : : : stepping though an interaction without attached hardware.

designer, and reasoning about the interaction model in the : :
: . : : : A software simulation mode would complement the soft-

statechart designer. Two participants with prior physical :
:) : : : ware-centric loosely coupled work flow.

computing experience built functional physical prototypes

with navigation and sound playback in less than 30 minutes. Participants also found the d.tools hardware library too
limited and noted that this constrained their designs. Some

The success ofa low threshold and tight coupling participants explicitly asked how difficult it would be to
Almost all users commented positively on the tight cou- extend the hardware library. Some participants desired
pling of hardware components and their software counter- more robust hardware connectors: they were concerned
parts, especially the automatic recognition of hardware about damaging or unhooking wires during plugging and
connections. Authoring statecharts through link-and-create unplugging and wished for a more “Lego-like” fit. We have
actions was immediately intuitive. Refining default behav- yet to find a commercially available connector set that
lors through text properties and expressing functional inde- combines small size, polarized plugs, positive lock, and
pendence in a statechart took longer; nevertheless, partici- robustness to a high number of plug cycles. Users also
pants mastered these strategies by the end of the session. wished for aggregate inputs that have become standard

After an initial period of learning the d.tools interface, naviea of elements for information appliances such asparticipants spent much of their time with design thinking combined up-down buttons and five-way Joysticks.
— reasoning about how their interface should behave from In the visual authoring interface, the study uncovered an

N inconsistency in our handling of click-and-drag actions
2S 2 . . .

&° Expertise So 9 between the device editor and the statechart editor. Fur-
»&SI i) > SSE SF thermore, d.tools could benefit from better feedback on

« &SN&Sy& oN© 5© transitions and visualization of input component state in the» e 0 . \ . KN oe oe .
FF FREE FE EE SIC statechart — some participants looked for transition informa-

1m HMI EI Ea. 7/77/29 tion in the components of a state, instead of in the proper-
2 = 1 HB = E0 0; 22 ties of transitions themselves.
3 EH EH I 1 HOE EEG 7/7, 29

4m IEE Es 7 12 Editing textual properties worked well for subjects who had

5 " - EE Y////%6. 26 some comfort level with programming, but was disliked by
° VE VE BE BE | SEE|S777 17 one product designer who described himself as a “visual
7 1 1 EH EE 77739 » ; hii hicall nsiY EY iy pe 1s person.’ nteraction techniques or graphically specifying
om mM BE I 1 mB mms EE properties would likely address this.
10 EEN BN DEI 7777 19

* user added functionality wi time spent building Rebuilding Existing Devices

beyond assignment foam core model To evaluate the current toolset’s expressiveness, we recre-
Figure 8: Task completion times, and prior experience and ated prototypes for three existing devices—an Apple iPod
expertise of the study participants. Participants completed task ~~ Shuffle music player, the back panel of a Casio EX-Z40
1 In an average of 9 minutes, and task 2 in an average of 24 digital camera, and the Sensing PDA published in [18].
minutes. These times demonstrate that prototyping with d.tools Figure 9 shows statechart diagrams of these prototypes. We
is fast enough to be appropriate for early-stage design.

7

distilled the key functionality of each device and prototyped ES ADI IPod SHU

these key interaction paths. = Sin

Interactive physical prototypes have two scaling concerns: { a te] = 2] & Jthe complexity of the software model, and the physical size - " 8 Ir :
of the prototype. This rebuilding exercise demonstrated that Lda J

d.tools diagrams of up to 50 states are visually understand- | a
able on a desktop display (1600 x 1200); this scale is suffi- - p— SaHEA Back
cient for the primary interaction flows of current devices. NEEAN a
Positioning and resizing affords effective visual clustering [radeTEa
of subsections according to gestalt principles of proximity | NSS era.a
and similarity. However, increasing transition density J\\NS, Yara

makes maintaining and troubleshooting statecharts taxing. B-EE aThis limitation is shared by other visual authoring environ- IFIPiCA ——
ments. The design of more complex interfaces would bene- Raid] le] ——
fit from the ability to create reusable aggregations of func- ar i RE YEE
tionality and implementing more of Harel’s visual abstrac- ra 4) mm (a)tions [16], especially hierarchical grouping. y

Models were created at a scale of 1.5:1 since cabling and

the small microcontrollers attached to each d.tools compo- i EY 0

nent require additional space inside the device enclosure. y a i -

While miniaturization of our components can mitigate this J eeissue to a certain extent, there still exists a principal mis- | - Le bd EH EB Cm
match between the physical scale appropriate for manipula- t,o BE sensngron p=
tion during prototyping and the scale of components used in SE

computer-aided manufacturing. Build times in minutes

Figure 9 shows the breakdown of prototyping times into Apple iPod Shuffle I ——_—————rl 2 -
graphic design time, d.tools design time, and physical Casio EX-Z40 Back Ziti iii 7 mmm 1 Vo

construction time. d.tools successfully cut the time that is Sensing PDA one day; inspired changesin d.tools code base

implementation-details-related to a small fraction, enabling ~~ = time spent making graphics: : : = timespent in d.tools

the prototyping to be driven by design concerns. miient lim i deidee

RELATED WORK Figure 9. Statechart diagrams and build times of prototypes
The d.tools system supports early-stage design activities. for three existing devices: iPod Shuffle, Casio digital camera
Prior work has created early-stage design tools for other back, Sensing PDA.

domains, including graphical [26], web [22, 33], multime-

dia [8], speech [23], multimodal [39], and cross-device [28] models of general programming. d.tools seeks to transfer
user interfaces. The d.tools system also draws on related the benefits of end-user programmability to the domain of
work in end-user programming and tools for physical com- physical interaction design.
puting. This section summarizes each area and how d.tools : :

relates to each body of work. Tools for Physical Computing : :
d.tools builds on prior work on physical computing tools,

End-user and visual programming including programming toolkits, multimedia authoring
Nardi [32] notes that while general-purpose programming extensions, and visual authoring systems.
languages are too far removed from the tasks faced by Toolkits for Proarammers
domain experts to be adopted into their work processes, The Phideet g5 " oduced physical wideets:
these users are not averse to using formal languages per se. e Phidgets | SyStem INITOTUEed physical WICSEL.
Task-specific languages with abstractions that match the programmable ActiveX controls that encapsulate communi
professional’s work domain (e.g., spreadsheets, CAD) have cation with USB-attached physical devices, such as a
been tremendously successful. switch, pressure sensor, or servo motor. The graphical

ActiveX controls, like the d.tools visual authoring environ-

Domain-tailored visual authoring environments have been ment, provide an electronic representation of physical state.

system [34] shows that the same usability and human- loose coupling between input and application logic, and the
centered design strategies used to construct task-specific ability to develop physical Interactions that functio1 across
languages can also be employed to develop more accessible an entire ubiquitous computing environment. iStuff, in

conjunction with the Patch Panel [10], enables standard Uls control sensors and actuators. While a benchmark for low-

to be controlled by novel inputs. threshold authoring, Lego Mindstorms targets autonomous

Papier-Maché [20, 21] introduced a software architecture robotics jhoe he abstractions are inappropriate for
for acquiring and abstracting physical input, most notably Shing phy
computer vision. d.tools employs the user-centered tool STCtools [31] employs a statechart editor coupled with pen

design methods that Papier-Maché introduced, but focuses input and geo-referenced projection to prototype informa-

on mechatronic input. tion appliances. It is the only other tool besides d.tools that

Wiring [11] is an 10 board that extends the Processing [36] provides explicit support for integrated raster graphics: : : oo . isplays. There are several advantages to a small display
environment in which behavior is authored through a Java- Ce. Lo 7

: LL. . : : over projection: higher resolution; freedom from occlusion;
extensible scripting language. Wiring and Processing differ Sa :)

: : better mobility; and lower system complexity. At this point,
from d.tools in that they seek to teach textual programming : :

: the STCtools library comprises solely buttons and is not
to design students. : : ; :

designed to support richer interactions.

Pin& Play [25] offers smart components with conductive Maestro [3] is a commercial design tool for prototyping
pins that can be pushed into a multi-layer surface which : : : : :

: mobile phone interactions. It provides a complex visual
acts as the network medium and power source. The act of : : :

: : : state language with code generators, software simulation of
attaching a component to the surface itself establishes a oa : .

. : . prototypes, and compatibility with Nokia’s Jappla hardware
communications connection. Ergodex [13] follows a similar :
y . platform. Maestro and Jappla together offer high ceiling,
put any element anywhere” approach, but uses RF technol- : :

ogy to allow freeform placement of buttons on a tablet high fidelity mock-up development; however, the complex-
Y P ity of the tools make them too heavyweight for the informal

Application logic for these toolkits is created through a UI sketching that d.tools targets.
textual programming language such as Java or C. The

d.tools visual authoring environment contributes a lower CONCLUSIONS AND FUTURE WORK
threshold tool and provides stronger support for rapidly This paper introduced d.tools, an integrated prototyping
developing the “insides of applications” [30] than these environment that lowers the threshold for creating func-
systems. However, textual programming offers a higher tional physical prototypes. To better understand how d.tools
ceiling and allows for novel control of existing applications, is used in longitudinal practice, we have released d.tools to
which d.tools does not. the design community as open source (see

http://hci.stanford.edu/d-tools). This winter, we will deploy

Extending Multimedia Authoring d.tools in our university’s interaction design studio course
Teleo [38] is a commercial system offering similar benefits to ascertain the strengths and weaknesses of this interaction
to Phidgets. Teleo’s primary distinction is that it is pro- model for design students. d.tools introduces an architecture
grammed with Max/MSP [4] or Macromedia Flash [I], that provides a low threshold for design generalists, and
rather than through Microsoft Visual Studio. modular extensibility for developers. Currently, we are

Calder [7, 27] integrates RFID buttons and other wired and researching tec ques for developers to fore fluidly mn
: : : Co : crease the software ceiling of the d.tools visual authoring

wireless devices with C and Macromedia Director [1]. Fluid : : i» :: :) CL. anguage. We are also exploring opportunities for integrat-
integration with physical mock-ups is aided by the small . LL

: ing digitally-controlled fabrication technologies such as 3D
form factor of the devices. >. :

printing [14] into d.tools.

DART [29] provides augmented reality authoring in the
Macromedia Director [1] environment. It abstracts technol- ACKNOWLEDGMENTS
ogy issues such as sensor input from designers. We thank Nirav Mehta for help with fieldwork and the

d.tools Flash prototype. We also thank the designers who
This class of toolkits enables those in the interaction design participated in our fieldwork, the pilot, and the evaluation
community already familiar with scripting languages of study: and Terry Winograd, Bill Verplank and Wendy Ju
multimedia applications to prototype physical devices such for stimulating discussions.
as remote controls and game controls. The goal of tools in

this area should be similar to the goal of web authoring REFERENCES

tools such as Macromedia Dreamweaver [1], where (for the 1 Macromedia. http://www.macromedia.com
most part) users can move fluidly between textual and 2 LEGO Mindstorms Robotic Invention System.
visual authoring modes. d.tools shares this goal but offers a http://www.mindstorms.lego.com/
authoring environment focused on designing artifacts rather 3 Maestro, 2005. Cybelius. http://www.cybelius.com/products
than creating a media experience. 4 Max/MSP. Cycling '74.

http://www.cycling74.com/products/maxmsp.html

Visual Authoring 5 Simulink. http://www.mathworks.com

The Lego Mindstorms Robotic Invention System [2] offers 6 WinAVR. http://winavr.sourceforge.net

a visual environment based on control flow puzzle pieces to

9

7 Avrahami, D. and S. E. Hudson. Forming interactivity: a tool 25 Laerhoven, K. V., N. Villar, A. Schmidt, H.-W. Gellersen, M.

for rapid prototyping of physical interactive products. In Pro- Hékansson, and L. E. Holmquist. Pin&Play: The Surface as

ceedings of DIS '02: Conference on Designing interactive sys- Network Medium. IEEE Communications Magazine 41(4):

tems: ACM Press. pp. 141-46, 2002. IEEE. pp. 90-96, 2003.

8 Bailey, B. P., J. A. Konstan, and J. V. Carlis. DEMAIS: 26 Landay, J. A. and B. A. Myers. Sketching Interfaces: Toward

designing multimedia applications with interactive story- More Human Interface Design. IEEE Computer 34(3). pp. 56—

boards. In Proceedings of Proceedings of the ninth ACM in- 64, 2001.

ternational conference on Multimedia: ACM Press. pp. 241— 27 Lee, J., D. Avrahami, S. Hudson, J. Forlizzi, P. Dietz, and D.

50, 2001. Leigh. The Calder Toolkit: Wired and Wireless Components
9 Ballagas, R., M. Ringel, M. Stone, and J. Borchers. iStuff: a for Rapidly Prototyping Interactive Devices. In Proceedings of

physical user interface toolkit for ubiquitous computing envi- ACM Symposium on Designing Interactive Systems: ACM

ronments. CHI: ACM Conference on Human Factors in Com- Press. pp. 167-75, August, 2004.

puting Systems, CHI Letters 5(1). pp. 537-44, 2003. 28 Lin, J. Damask: A Tool for Early-Stage Design and Prototyp-
10 Ballagas, R., A. Szybalski, and A. Fox. Patch Panel: Enabling ing of Cross-Device User Interfaces. In Proceedings of Con-

Control-Flow Interoperability in Ubicomp Environments. In ference Supplement to ACM UIST 2003 Doctoral Sympo-
Proceedings of PerCom 2004 Second IEEE International Con- sium: ACM Press. pp. 13-16, 2003.

ference on Pervasive Computing and Communications: IEEE 29 Macintyre, B., M. Gandy, S. Dow, and J. D. Bolter. DART: a
Press. pp. 241-52, 2004. toolkit for rapid design exploration of augmented reality ex-

11 Barragan, H., Wiring: Prototyping Physical Interaction De- periences. UIST: ACM Symposium on User Interface Soft-

sign, Interaction Design Institute, Ivrea, Italy, 2004. ware and Technology, CHI Letters: ACM Press. pp. 197-206,

12 Card, S. K., T. P. Moran, and A. Newell, Chapter 2: The 2004.
Human Information Processor, in The Psychology of Human- 30 Myers, B., S. E. Hudson, and R. Pausch. Past, Present, and
Computer Interaction. Lawrence Erlbaum: Hillsdale. pp. 23- Future of User Interface Software Tools. ACM Transactions

97, 1983. on Computer-Human Interaction 7(1). pp. 3-28, 2000.

13 Ergodex, DX1 Input System. http://ergodex.com 31 Nam, T.-J. Sketch-Based Rapid Prototyping Platform for

14 Gershenfeld, N., Fab: Personal Fabrication, Fab Labs, and the Hardware-Software Integrated Interactive Products. In Pro-

Factory in Your Computer: Basic Books, Inc. 278 pp. 2005. ceedings of CHI '05 extended abstracts on Human factors in

15 Greenberg, S. and C. Fitchett. Phidgets: easy development of computing systems: ACM Press. pp. 1689-92, 2005.
physical interfaces through physical widgets. UIST: ACM 32 Nardi, B. A., A Small Matter of Programming: Perspectives
Symposium on User Interface Software and Technology, CHI on End User Computing. Cambridge, MA: MIT Press. 162 pp.
Letters 3(2). pp. 209-18, 2001. 1993.

16 Harel, D. Statecharts: A visual formalism for complex sys- 33 Newman, M. W., J. Lin, J. I. Hong, and J. A. Landay.
tems. Sci. Comput. Program. 8(3). pp. 231-74, 1987. DENIM: An Informal Web Site Design Tool Inspired by Ob-

17 Hinckley, K. Bumping Objects Together as a Semantically servations of Practice. Human-Computer Interaction 18(3). pp.
Rich Way of Forming Connections between Ubiquitous De- 259-324, 2003.
vices. In Proceedings of Ubicomp, 2003. 34 Pane, J., A Programming System for Children that is Designed

18 Hinckley, K., J. Pierce, M. Sinclair, and E. Horvitz. Sensing for Usability, Unpublished PhD, Carnegie Mellon University,
Techniques for Mobile Interaction. UIST: ACM Symposium Computer Science, Pittsburgh, 2002.
on User Interface Software and Technology, CHI Letters 2(2). http://www.cs.cmu.edu/~pane/thesis
pp. 91-100, 2000. 35 Pering, C. Interaction design prototyping of communicator

19 Kelley, T., The Art of Innovation: Currency. 320 pp. 2001. devices: towards meeting the hardware-software challenge. in-
20 Klemmer, S. R., Tangible User Interface Input: Tools and teractions 9(6). pp. 36-46, 2002.

Techniques, Unpublished PhD, University of California, 36 Reas, C. and B. Fry. Processing: a learning environment for
Computer Science, Berkeley, CA, 2004. creating interactive Web graphics. In Proceedings of
http://hci.stanford.edu/srk/KlemmerDissertation.pdf SIGGRAPH 2003 conference on Web graphics: ACM Press.

21 Klemmer, S. R., J. Li, J. Lin, and J. A. Landay. Papier-Maché: p- 1, 2003.

Human Factors in Computing Systems, CHI Letters 6(1). pp. Materials, in Bringing Design to Software, T. Winograd, Edi-
399-406, 2004. tor. ACM Press: New York. pp. 171-84, 1996.

22 Klemmer, S. R., M. W. Newman, R. Farrell, M. Bilezikjian, 38 Shiloh, M., Teleo: Rapid Prototyping Toolkit. San Francisco,
and J. A. Landay. The Designers’ Outpost: A Tangible Inter- CA. http://www.makingthings.com/teleo.htm
face for Collaborative Web Site Design. UIST: ACM Sympo- 39 Sinha, A. K. and J. A. Landay. Capturing User Tests in a
sium on User Interface Software and Technology, CHI Letters Multimodal, Multidevice Informal Prototyping Tool. In Pro-
3(2). pp. 1-10, 2001. ceedings of ICMI-PUI: ACM International Conference on

23 Klemmer, S. R., A. K. Sinha, J. Chen, J. A. Landay, N. Aboo- Multimodal Interfaces: ACM Press. pp. 117-24, 2003.
baker, and A. Wang. SUEDE: A Wizard of Oz Prototyping 40 Snibbe, S. S., K. E. MacLean, R. Shaw, J. Roderick, W. L.
Tool for Speech User Interfaces. UIST: ACM Symposium on Verplank, and M. Scheeftf. Haptic Techniques for Media Con-
User Interface Software and Technology, CHI Letters 2(2). pp. trol. UIST: ACM Symposium on User Interface Software and
1-10, 2000. Technology, CHI Letters 3(2). pp. 199-208, 2001.

24 Klemmer, S. R., B. Verplank, and W. Ju. Teaching Embodied 41 Systems, I., Embedded Workbench for Atmel AVR, version
Interaction Design Practice. In Proceedings of Conference on 4.11. Foster City, CA. http://www. iar.com/
Designing for User eXperience, 20035. 42 Ulrich, K. T. and S. D. Eppinger, Product Design and Devel-

opment. 2nd ed: Irwin McGraw-Hill. 384 pp. 2000.

