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Abstract

This paper describes the hardware F-Buffer implementation featured in the latest ATI graphics processors. We
discuss the implementation choices made in each chip and the various implementation challenges faced like over-
flow handling. The F-Buffer was originally intended as a solution for multi-pass shading. We demonstrate this
Sfunctionality, comparing it to traditional multi-pass rendering techniques, and show performance results. Given
hardware F-Buffer support, we describe extended uses like order independent blending. We also show how a future
F-Buffer implementation might be extended to allow more advanced operations like data filtering.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Graphics processors 1.3.7
[Computer Graphics]: Color, shading, shadowing, and texture

1. Introduction

Multi-pass rendering is the traditional method for handling
large shaders that need to be refactored into smaller shaders
to fit within the resource limits of hardware. Even though
hardware resources are increasing, there are still limits on the
number of interpolants, program length, texture fetches, and
available memory that still make it necessary to use multi-
pass rendering for large shaders [CNS*02,FHHO04,RLV *04].
However, using standard render-to-texture techniques to
store intermediate values can create visible artifacts when
shading transparent objects because overlapping fragments
overwrite previously stored temporary values for that screen
location. A rasterization order FIFO buffer, an F-Buffer, is
an enhanced method of storing fragment data which assigns
aunique storage location to each rendered fragment [MPO1].
Using an F-Buffer for intermediate results allows for multi-
pass rendering with correct transparency.

This paper presents the F-Buffer implementation available
in ATT9800 [ATI03b] and X800 [ATI04] series graphics pro-
cessors. The primary contributions of this paper are:

e An explanation of the different implementation choices
made in each generation of hardware and their ease of use.
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e Exploration of functionality and features made possible
by F-Buffer support.

e Proposed extensions to the current F-Buffer implementa-
tion to allow greater flexibility and performance.

2. Overview of F-Buffer

Mark and Proudfoot’s introduction of the F-Buffer [MPO1]
presents a thorough explanation and overview of the basic
functionality and implementation options of an F-Buffer. We
briefly review the basic concepts here.

The F-Buffer provides an enhanced method for storing
intermediate results during multi-pass rendering. As frag-
ments are rasterized in the first pass of a shader, the fragment
data generated by the pass is stored in a FIFO buffer (an F-
Buffer). This data will include, for each output fragment, one
or more RGBA colors, used for temporaries in intermediate
passes. In subsequent passes, this stored data is read from
the FIFO buffer as input data, where it is used for that pass’s
computations.

Generally, every rendering pass except the first reads from
one or more F-Buffers. If a pass represents a leaf of the shade
tree it does not need to read from an F-Buffer since there
are no temporaries to be restored. Every shader pass except
the last always writes to at least one F-Buffer. The last pass
of the shader writes to the framebuffer as in normal render-
ing. Hardware that can simultaneously read two F-Buffers
and write one F-Buffer is sufficient to render any shade tree
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Standard Method F-Buffer

Figure 1: Here we use a simple example to show the dif-
ference between traditional multi-pass rendering using the
framebuffer and using an F-Buffer when rendering transpar-
ent objects. We draw a cyan triangle behind a yellow trian-
gle, each with an opacity of 0.5. We use a two pass shader
that saves off the triangle colors in the first pass and restores
the colors in the second pass. As is shown, the traditional
method restores the values of the last fragments drawn for
both triangles yielding incorrect results.

composed of binary operations, with more F-Buffer inputs
supporting more complex shade trees.

The most important property of the F-Buffer is that it as-
sociates a unique storage location with each rasterized frag-
ment. In contrast, a framebuffer can associate more than
one fragment with a single storage location, if there are
overlapping polygons rendered. An F-Buffer’s association
of each fragment with its own storage location eliminates
the transparent-surface-rendering difficulties of conventional
multi-pass rendering. With an F-Buffer, there is no longer
a storage conflict between multiple fragments covering the
same pixel, although partially-transparent surfaces must still
be rendered in back-to-front order. See Figure 1.

F-Buffers use graphics memory more efficiently and flex-
ibly than auxiliary framebuffers (deep framebuffers) would.
An ideally sized F-Buffer uses just enough memory to hold
the fragments produced by the current shader. In contrast, an
auxiliary framebuffer also uses memory for all of the pix-
els that are not touched by the current shader. An example
of the space savings of F-Buffer over using the framebuffer
for storage can be seen in Figure 2. The reads and writes to
an F-Buffer are perfectly coherent, since F-Buffer accesses
are FIFO rather than random. For an off-chip F-Buffer, this
property allows memory reads and writes to efficiently use
large-granularity transfers.

3. Implementation

The original F-Buffer paper describes several possible hard-
ware implementations. We discuss the F-Buffer implemen-
tation in the ATI 9800 and X800 series graphics processors
and why certain design choices were made. The ATT 9800
series implements what is referred to as ATI Fbuffer in the
marketing literature, and the X800 series has an improved

F-Buffer implementation, mostly dealing with overflow han-
dling, referred to as ATI Fbuffer2.

3.1. Common implementation

We discuss the common implementation choices between
the two generations of processors. These choices are the core
of the F-buffer implementation dealing with where and how
F-Buffers are stored, rasterized to, and how previous passes’
data are restored. Most of the design decisions were made
to have minimum impact on the rest of the processor design,
and to reuse as much of the standard pipeline functionality
as possible.

F-Buffers are stored in graphics DRAM for processors
with onboard memory, and in host memory for processors
without onboard memory. The storage requirements for on-
chip F-buffers are too large, and would therefore be too ex-
pensive, for the number of fragments many applications need
to store. For example, storing a float4 value per fragment at
1024 x 1024 would require up to 16MB. Even worse, using
multiple F-Buffer targets, the user could output to four float4
values through the use of multiple render targets, requiring
up to 64MB. Similar to writing to a standard framebuffer, the
latency of writing to an F-Buffer is hidden by the rendering
parallelism of the hardware.

F-Buffers are treated in much the same way as stan-
dard 2D textures. At creation, F-buffers are defined to
have a square size in powers of 2 (e.g. 32x32, 64x64,...,
2048x2048). This allows us to reuse all of the texture ma-
chinery already available in the driver and processor, allow-
ing the use of standard texture lookups to restore values from
the F-Buffer. When the F-buffer is in read mode, the ad-
dress of the fragment in the F-Buffer is calculated from a
global counter maintained by the scan converter and passed
to the fragment shader via the fragment color interpolant.
This value needs to be scaled by the size of the F-buffer be-
ing used. The user binds the previous F-buffer to one of the
texture units and performs a texture lookup to restore the
previous values. The disadvantage of this approach is that it
adds the cost of one dependent texture lookup and requires
the use of one interpolant (fragment color), but it provides a
flexible method for the restoration of values and the use of
multiple previously stored F-buffers, up to 16. An example
of the output of a triangle rasterized to F-Buffers of different
sizes is bound to texture and displayed is provided in Figure
2.

Polygons are rasterized on every pass. The original pa-
per concentrates on a single rasterization approach, but this
can drastically increase the amount of storage required for
an F-Buffer and limit the shading flexibility. All interpolants
(e.g. color, texture coordinates, etc) generated in the first
pass would have to be stored if needed for subsequent passes.
Since only the first pass can generate interpolants, the pro-
grammer is limited to the interpolants available. As noted
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Figure 2: This figure shows how an F-Buffer is laid out in memory for different sizes. The fragments are output into the F-Buffer
in rasterization order. On the left is the rainbow triangle to be rasterized to a 512x512 window. For the 64x64 F-Buffer, we are
only able to output the first 4096 fragments, the top corner of the triangle. For 128x128, we get a little bit further before we
overflow the F-Buffer. At 256x256, we have successfully rasterized the triangle, and have a small amount of wasted space. At
512x512, we can easily fit all of the fragments into the F-Buffer. Most of the buffer is unused, corresponding to the amount of

wasted space when using traditional multi-pass rendering.

in [CNS*02, RLV*04, FHHO04], a lack of interpolants in it-
self can create the need for multi-pass rendering. Rasteriz-
ing polygons on each pass requires less storage and enables
more flexible use of interpolants. The disadvantage of this
approach is that multi-pass shading a scene with many ver-
tices can become bound by vertex processing instead of frag-
ment processing. This will be explored in more detail in sec-
tion 4.

Conventional framebuffer operations (depth test, alpha
test, stencil, etc) are performed at the end of the last shader
pass, when F-Buffers are only used as input. Therefore, each
pass using an F-Buffer must generate the exact same order
of fragments for the previous values to be restored correctly.
All fragments that may be rasterized must be accounted for
in the F-Buffer. This means that many operations that might
normally mask a fragment output, e.g. using the KIL instruc-
tion in a fragment program, setting write masks, or using
alpha/stencil/depth tests, are disabled when an F-Buffer is
bound as output. However, the advantage of forcing con-
sistent fragment generation is that the same F-Buffer can
be used as both input and output since we can avoid read-
modify-write hazards as we always read and write to the
same location. This guarantee cannot be made if a user ac-
cesses an F-Buffer with general texture addressing.

3.2. Overflow Handling

As mentioned in the original F-Buffer paper, overflow han-
dling is one of the more complex aspects of an F-buffer im-
plementation. This is where the two generations of hardware
differ in implementation.

With the 9800 series, the programmer creates an F-Buffer
of a certain size and is responsible for handling overflow.
The user can query the hardware to test whether overflow has
occurred after their submitted geometry’s fragments have
committed to the F-Buffer. Fragments overflowing the F-
Buffer generate undefined results. If overflow occurs, the
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user must restart the current shading pass by submitting a
smaller batch of geometry. After the successful batch is fully
shaded and output to the framebuffer, the next batch will
need to be submitted for shading. Fortunately, since over-
flow can be detected at the end of the first shading pass, only
one pass of wasted work can occur.

Although this is a functional solution, it puts a large bur-
den on the user to achieve correctness and a large perfor-
mance premium on overflow. To avoid overflow altogether,
the user is forced to estimate how many fragments an ob-
ject will generate and batch geometry accordingly. This may
force the user to be overly conservative in their rendering un-
less they have intimate knowledge of the rasterization prop-
erties of the hardware. Encountering overflow with this im-
plementation can lead to redundant computation and ineffi-
ciencies in shading.

The X800 series provides hardware overflow handling,
which greatly eases the burden on the programmer. The
hardware allows the F-buffer to fill up, and provides the user
feedback that an overflow has occurred as well as the number
of F-Buffers of the allocated size needed to handle the over-
flowing fragments. The overflow handling implementation
provides a user-controlled fragment window. This window
specifies the range of fragments, which is an F-buffer size
number of fragments offset by multiples of the F-Buffer size,
allowed to be written to the F-buffer. All fragments outside
of the specified fragment window will be discarded early,
before entering the fragment processors. For example, if the
user defines a 32x32 F-buffer and generates 2048 fragments,
this will overflow the buffer exactly one time. The user will
shade the first 1024 fragments with their multi-pass shader,
and the remaining 1024 fragments of overflow will be dis-
carded. The user can then shift the F-buffer window by one,
and the first 1024 fragments will be discarded and the sec-
ond 1024 will be shaded. A longer example in pseudo code is
available in Appendix A. This functionality allows for every
fragment to be shaded only once, regardless of the amount
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Figure 3: A 3 pass pitted thin glass shader applied to a
sphere and lit with the St. Peter’s Basilica illumination data
[Deb98] rendered to a 512x512 window using a 128x128 F-
Buffer. Rendering this object requires 23 F-Buffer windows,
or 69 passes total. Correct transparency is maintained be-
cause each fragment rendered gets its own storage in the
F-Buffer during intermediate passes.

of overflow, but may require the geometry to be submitted
many times, once for each shading pass for each F-Buffer
window.

4. Results

In this section, we will concentrate on the F-Buffer support
in the X800 series and later hardware since they have a more
flexible implementation. Using ASHLI [ATIO3a], we have
created a pitted glass shader that exceeds the resource lim-
its available on all current hardware. This shader is a com-
bination of the glass and stucco Renderman shaders. Us-
ing RDS [CNS*02], ASHLI chooses to split the shader into
three rendering passes. Since this shader relies on blending
and our test objects generate overlapping fragments, tradi-
tional multi-pass techniques using render-to-texture fail to
shade the object correctly. As can be seen in Figure 3, be-
cause each fragment gets a unique storage location in the F-
Buffer, correct shading is preserved. The difference in ren-
dering transparent objects with an F-Buffer and traditional
framebuffer rendering can best be seen with the simple ex-
ample in Figure 1. Because of the implementation decisions
made, the performance of rendering to F-Buffers with no
overflow is equivalent to using traditional framebuffer meth-
ods.
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Figure 4: Performance results from running the 3 pass pit-
ted thin glass shader on a low vertex and high vertex count
sphere of the same size with different F-Buffer sizes.

Even though fragments outside of the current F-Buffer
window are discarded before fragment shading, there is still
the cost of sending the geometry through the vertex units
each pass. For each F-Buffer window, we must resend the
geometry. If the F-Buffer size is chosen small enough, ge-
ometry processing will dominate the cost of rendering each
F-Buffer window. We expect the performance of shading
to increase linearly with a reduction in the the number
of F-Buffer windows required, until we become fragment
processing bound, in which case performance should stay
roughly the same since the same number of fragments are
rendered regardless of F-Buffer window size. The effect of
this can be seen in Figure 4 where we show the render-
ing performance of a simple and highly tessellated sphere,
with 12,288 and 196,608 vertices respectively, rendered to a
1024x1024 framebuffer using different sized F-Buffers. We
are using the same three pass shader as above for these tests.
The low vertex sphere is vertex processing bound for small
F-Buffer sizes, but becomes fragment processing bound for
larger F-Buffer sizes. For the 64x64 F-Buffer, we overflow
162 times, so we must submit geometry a total of 489 times
for our 3 pass shader. For the 256x256 F-Buffer, we overflow
only 10 times and have to submit the geometry 33 times to
complete our shading. In both cases, we shade the same total
number of fragments, but the larger F-Buffer has many fewer
vertices sent through the vertex processors to complete the
shader. For the more tessellated sphere, we are heavily ver-
tex bound and you can just start to see the performance curve
knee over when using very large F-Buffers.
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5. Discussion

F-Buffers provide an elegant mechanism to support multi-
pass rendering while being able to maintain correct trans-
parency. With compiler and runtime support for F-Buffer
added to systems like RTSL [PMTHO1] and ASHLI
[ATIO3a], very large shaders can be used with objects re-
quiring transparency.

However, given hardware support for F-Buffer, there are
other rendering problems that can be solved. In this section
we talk about extended uses of F-Buffer for shading op-
erations. We also explore several possible implementation
changes to optimize F-Buffer support and to make it more
flexible.

5.1. Extended shading operations

We can implement order-independent blending by storing
the final fragment colors as well as their xyz screen space
location into two separate F-Buffers. Instead of forcing the
user to sort the geometry, we will use the F-Buffer to sort
the fragments into the correct order for blending. Since we
have xyz values and the final color for each fragment, we
can sort the fragments to achieve order-independent blend.
Using a stable sort, like bitonic sort, we can sort fragments
with the same Xy screen space location by z value. This can
be done in 0(log2n) passes. When the F-Buffer is rebound
and restored in the final pass, we generate the fragments in
the correct order for blending. In the case of overflow, we
have to store each of the overflows in separate F-Buffers and
sort between and within each buffer, which is non-trivial and
expensive.

There are many papers and researchers that have com-
mented on the need for a method which uniquely stores each
fragment rendered. The F-Buffer provides a solution to this
need. Many algorithms traditionally relying on the sorting
of geometry can be reimplemented by sorting the fragments
stored in the F-Buffer after rendering has occurred. For ex-
ample, unstructured volume rendering often relies on the vis-
ibility sorting of tetrahedral. Callahan et al. [CICSO05] de-
scribe a k-buffer implementation to handle resorting frag-
ments in the correct order, but it is limited to small number
of overlapping fragments. Using an F-Buffer and sorting it
similar to the above, it may be possible to handle larger val-
ues of k as well as to improve the efficiency of the algorithm.
There are also interesting possibilities for CSG applications
by modifying Goldfeather’s algorithm [GMTF89] to make
use of F-Buffers.

5.2. Hardware extensions

As previously discussed, the current implementation does
not allow for some of the conventional framebuffer opera-
tions to be performed when using F-Buffer. We also do not
allow late discard functions from preventing output to the F-
Bufter. For example, if a shader executes a KIL instruction
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on a fragment, that fragment still needs to be accounted for
in the output of the F-Buffer. If it were possible to prevent
the fragments from being output to the buffer and still pro-
duce a FIFO, interesting data filtering operations could be
performed. For example, if the user was generating a ver-
tex array with the fragment shader, they could kill fragments
to prevent certain vertices from being output into the buffer.
The main difficulty in this addition is finding a way to keep
the coherent output properties of F-Buffer in maintaining
performance.

One of the performance issues not yet discussed with the
current implementation is the inability to use early tests to
prevent fragment generation. For example, if a very complex
shader is applied to an object that is partially occluded, we
would like to be able to use early-z tests to prevent the ren-
dering of the occluded fragments. The difficulty with the cur-
rent implementation is that the culling of fragments because
of the F-Buffer window is done prior to the early discard
units. It would be interesting to explore which early tests
could be supported by F-Buffer. Any implementation must
ensure that the same fragments must be generated for each
pass, and if the output will not be included in the F-Bulffer,
how to maintain coherent output into the F-Buffer.

6. Conclusion

We have demonstrated the first available commodity hard-
ware implementation of F-Buffer and discussed the various
design choices made. With these design choices, F-Buffer
support was able to be incorporated with minimal impact on
the rest of the processor design. Using F-Buffer, multi-pass
rendering with correct transparency can now be achieved
with full hardware acceleration. We have also discussed sev-
eral uses of F-Buffer for extended rendering tasks. Now that
hardware accelerated support is available, we hope that the
graphics community will explore other uses and extensions
to F-Buffer.

Appendix A: F-Buffer Pseudo Code
DisplayLoop
while remaining F-Buffer windows
Set the F-Buffer window

for pass 0 to 2

if pass 0
Attach F-Buffer] to offscreen framebuffer
Bind offscreen framebuffer

if pass 1
Attach F-Buffer2 to offscreen framebuffer
Bind offscreen framebuffer
Bind F-Bufferl to texture

if pass 2
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Bind normal framebuffer S., HANRAHAN P.: A real-time procedural shading sys-
if first F-Buffer window tem for programmable graphics hardware. ACM Transac-
Draw background objects tions on Graphics (August 2001). 5
Enable blending "
Enable test functions (depth,stencil,alpha) [RLV704] RIFFEL A., LEFOHN A. E., VIDIMCE K.,
Bind F-Buffer? to texture LEONE M., OWENS J. D.: Mio: Fast multipass partition-
ing via priority-based instruction scheduling. In Graphics
Setup transforms Hardware 2004 (Aug. 2004), pp. 35-44. 1,3
Bind vertex and fragment programs for pass
Render geometry

if first F-buffer window and pass is 0
Get remaining number of F-Buffer windows to render
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