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Abstract

This paper describes the hardware F-Buffer implementation featured in the latest ATI graphics processors. We

discuss the implementation choices made in each chip and the various implementation challengesfaced like over-

flow handling. The F-Buffer was originally intended as a solution for multi-pass shading. We demonstrate this

functionality, comparing it to traditional multi-pass rendering techniques, and show performance results. Given

hardware F-Buffer support, we describe extended uses like order independent blending. We also show how afuture

F-Buffer implementation might be extended to allow more advanced operations like data filtering.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Graphics processors 1.3.7

[Computer Graphics]: Color, shading, shadowing, and texture

1. Introduction e Exploration of functionality and features made possible

oo by F-Buffer support.

Multi-pass rendering is the traditional method for handling e Proposed extensions to the current F-Buffer implementa-
large shaders that need to be refactored into smaller shaders : I.

oo oo tion to allow greater flexibility and performance.
to fit within the resource limits of hardware. Even though

hardware resources are increasing, there are still limits on the

number of interpolants, program length, texture fetches, and 2. Overview of F-Buffer

available memory that still make it necessary to use multi- Mark and Proudfoot’s introduction of the F-Buffer [MPO1]
pass rendering for large shaders [CNS™02,FHHO4,RLV04]. presents a thorough explanation and overview of the basic
However, using standard render-to-texture techniques to functionality and implementation options of an F-Buffer. We
store intermediate values can create visible artifacts when briefly review the basic concepts here.
shading transparent objects because overlapping fragments

overwrite previously stored temporary values for that screen The F-Buffer provides an enhanced method for storing
location. A rasterization order FIFO buffer, an F-Buffer, is intermediate results during multi-pass rendering. As frag-
an enhanced method of storing fragment data which assigns ments are rasterized in the first pass of a shader, the fragment
a unique storage location to each rendered fragment [MPO1]. data generated by the pass is stored in a FIFO buffer (an F-
Using an F-Buffer for intermediate results allows for multi- Buiter). This data will include, for each output Iragment, one
pass rendering with correct transparency. or more RGBA colors, used for temporaries in intermediate

passes. In subsequent passes, this stored data is read from

This paper presents the F-Buffer implementation available the FIFO buffer as input data, where it is used for that pass’s
in ATT 9800 [ATIO3b] and X800 [ATI04] series graphics pro- computations.

cessors. The primary contributions of this paper are: Generally, every rendering pass except the first reads from
e An explanation of the different implementation choices one or more F-Buffers. If a pass represents a leaf of the shade
made in each generation of hardware and their ease of use. tree it does not need to read from an F-Buffer since there

are no temporaries to be restored. Every shader pass except

the last always writes to at least one F-Buffer. The last pass
0 of the shader writes to the framebuffer as in normal render-

T mhouston@graphics.stanford.edu ing. Hardware that can simultaneously read two F-Buffers
i {preetham, segal}@ati.com and write one F-Buffer is sufficient to render any shade tree
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F-Buffer implementation, mostly dealing with overflow han-

dling, referred to as ATI Fbuffer2.

3.1. Common implementation

We discuss the common implementation choices between

the two generations of processors. These choices are the core

Standard Method F-Buffer of the F-buffer implementation dealing with where and how

Figure 1: Here we use a simple example to show the dif F-Bulffers are stored, rasterized to, and how previous passes’
ference between traditional multi-pass rendering using the du are restored. Most of the desten decisions oo made
framebuffer and using an F-Buffer when rendering transpar- to have minimum impact on the rest © Processor Cestsh,
ent objects. We draw a cyan triangle behind a yellow trian- and to reuse as much of the standard pipeline functionality
gle, each with an opacity of 0.5. We use a two pass shader as possible.
that saves offthe triangle colors in thefirst pass and restores F-Buffers are stored in graphics DRAM for processors

the colors in the second pass. As is shown, the traditional with onboard memory, and in host memory for processors

method restores the values of the last fragments drawn for without onboard memory. The storage requirements for on-

both triangles vielding incorrect results. chip F-buffers are too large, and would therefore be too ex-

pensive, for the number of fragments many applications need

to store. For example, storing a float4 value per fragment at

1024 x 1024 would require up to 16 MB. Even worse, using

composed of binary operations, with more F-Buffer inputs multiple F-Buffer targets, the user could output to four float4
supporting more complex shade trees. values through the use of multiple render targets, requiring

The most important property of the F-Buffer is that it as- up to 64MB. Similar to writing to a standard framebuffer, the
sociates a unique storage location with each rasterized frag- latency of writing to an F-Butier is hidden by the rendering
ment. In contrast, a framebuffer can associate more than parallelism of the hardware.
one fragment with a single storage location, if there are F-Buffers are treated in much the same way as stan-
overlapping polygons rendered. An F-Buffer’s association dard 2D textures. At creation, F-buffers are defined to
of each fragment with its own storage location eliminates have a square size in powers of 2 (e.g. 32x32, 64x64,...,
the transparent-surface-rendering difficulties of conventional 2048x2048). This allows us to reuse all of the texture ma-
multi-pass rendering. With an F-Buffer, there is no longer chinery already available in the driver and processor, allow-
a storage conflict between multiple fragments covering the ing the use of standard texture lookups to restore values from
same pixel, although partially-transparent surfaces must still the F-Buffer. When the F-buffer is in read mode, the ad-

be rendered in back-to-front order. See Figure I. dress of the fragment in the F-Buffer is calculated from a

F-Buffers use graphics memory more efficiently and flex- global counter maintained by the scan converter and passed
ibly than auxiliary framebuffers (deep framebuffers) would. to the fragment shader via the fragment color interpolant.
An ideally sized F-Buffer uses just enough memory to hold This value needs to be scaled by the size of the F-buffer be-
the fragments produced by the current shader. In contrast, an ing used. The user binds the previous F-buffer to one of the
auxiliary framebuffer also uses memory for all of the pix- texture units and performs a texture lookup to restore the
els that are not touched by the current shader. An example previous values. The disadvantage of this approach is that it
of the space savings of F-Buffer over using the framebuffer adds the cost of one dependent texture lookup and requires
for storage can be seen in Figure 2. The reads and writes to the use of one interpolant (fragment color), but it provides a
an E-Buffer are perfectly coherent, since F-Buffer accesses flexible method for the restoration of values and the use of
are FIFO rather than random. For an off-chip F-Buffer, this multiple previously stored F-butferS, up to 16. An cxample
property allows memory reads and writes to efficiently use of the output of a triangle rasterized to F-Buifers of different
large-granularity transfers. Ses is bound to texture and displayed is provided in Figure

3. Implementation Polygons are rasterized on every pass. The original pa-
per concentrates on a single rasterization approach, but this

The original F-Buffer paper describes several possible hard- can drastically increase the amount of storage required for

ware implementations. We discuss the F-Buffer implemen- an F-Buffer and limit the shading flexibility. All interpolants

tation in the ATI 9800 and X800 series graphics processors (e.g. color, texture coordinates, etc) generated in the first

and why certain design choices were made. The ATI 9800 pass would have to be stored if needed for subsequent passes.

series implements what is referred to as ATI Fbuffer in the Since only the first pass can generate interpolants, the pro-

marketing literature, and the X800 series has an improved grammer 1s limited to the interpolants available. As noted
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Figure 2: Thisfigure shows how an F-Buffer is laid out in memoryfor different sizes. Thefragments are output into the F-Buffer

in rasterization order. On the left is the rainbow triangle to be rasterized to a 512x512 window. For the 64x64 F-Buffer, we are

only able to output the first 4096fragments, the top corner of the triangle. For 128x128, we get a little bit further before we

overflow the F-Buffer. At 256x256, we have successfully rasterized the triangle, and have a small amount of wasted space. At

512x512, we can easily fit all of the fragments into the F-Buffer. Most of the buffer is unused, corresponding to the amount of

wasted space when using traditional multi-pass rendering.

in [CNS™02, RLV*04, FHHO04], a lack of interpolants in it- user must restart the current shading pass by submitting a
self can create the need for multi-pass rendering. Rasteriz- smaller batch of geometry. After the successful batch is fully

ing polygons on each pass requires less storage and enables shaded and output to the framebuffer, the next batch will

more flexible use of interpolants. The disadvantage of this need to be submitted for shading. Fortunately, since over-

approach is that multi-pass shading a scene with many ver- flow can be detected at the end of the first shading pass, only

tices can become bound by vertex processing instead of frag- one pass of wasted work can occur.

ment processing. This will be explored in more detail in sec-
tion 4. Although this is a functional solution, it puts a large bur-

den on the user to achieve correctness and a large perfor-

Conventional framebuffer operations (depth test, alpha mance premium on overflow. To avoid overflow altogether,
test, stencil, etc) are performed at the end of the last shader the user is forced to estimate how many fragments an ob-
pass, when F-Buffers are only used as input. Therefore, each ject will generate and batch geometry accordingly. This may
pass using an F-Buffer must generate the exact same order force the user to be overly conservative in their rendering un-
of fragments for the previous values to be restored correctly. less they have intimate knowledge of the rasterization prop-
All fragments that may be rasterized must be accounted for erties of the hardware. Encountering overflow with this im-
in the F-Buffer. This means that many operations that might plementation can lead to redundant computation and ineffi-
normally mask a fragment output, e.g. using the KIL instruc- ciencies in shading.
tion in a fragment program, setting write masks, or using

alpha/stencil/depth tests, are disabled when an F-Buffer is The X800 series provides hardware overflow handling,
bound as output. However, the advantage of forcing con- which greatly eases the burden on the programmer. The
sistent fragment generation is that the same F-Buffer can hardware allows the F-buffer to fill up, and provides the user
be used as both input and output since we can avoid read- feedback that an overflow has occurred as well as the number
modify-write hazards as we always read and write to the of F-Buffers of the allocated size needed to handle the over-
same location. This guarantee cannot be made if a user ac- flowing fragments. The overflow handling implementation
cesses an F-Buffer with general texture addressing. provides a user-controlled fragment window. This window

specifies the range of fragments, which is an F-buffer size

number of fragments offset by multiples of the F-Buffer size,

3.2. Overflow Handling allowed to be written to the F-buffer. All fragments outside

As mentioned in the original F-Buffer paper, overflow han- of the specified fragment window will be discarded early,
dling is one of the more complex aspects of an F-buffer im- before entering the fragment processors. For example, if theg is one o p p

. user defines a 32x32 F-buffer and generates 2048 fragments,
plementation. This is where the two generations of hardware Co.

differ in implementation. this will overflow the buffer exactly one time. The user will
shade the first 1024 fragments with their multi-pass shader,

With the 9800 series, the programmer creates an F-Buffer and the remaining 1024 fragments of overflow will be dis-

of a certain size and is responsible for handling overflow. carded. The user can then shift the F-buffer window by one,

The user can query the hardware to test whether overflow has and the first 1024 fragments will be discarded and the sec-

occurred after their submitted geometry’s fragments have ond 1024 will be shaded. A longer example in pseudo code is

committed to the F-Buffer. Fragments overflowing the F- available in Appendix A. This functionality allows for every

Buffer generate undefined results. If overflow occurs, the fragment to be shaded only once, regardless of the amount
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ted thin glass shader on a low vertex and high vertex count

i a sphere of the same size with different F-Buffer sizes.

Figure 3: A 3 pass pitted thin glass shader applied to a

sphere and lit with the St. Peter’s Basilica illumination data

[Deb98] rendered to a 512x512 window using a 128x128 F-

Buffer. Rendering this object requires 23 F-Buffer windows,

or 69 passes total. Correct transparency is maintained be-

cause each fragment rendered gets its own storage in the

F-Bufjer during intermediate passes. Even though fragments outside of the current F-Buffer
window are discarded before fragment shading, there is still

the cost of sending the geometry through the vertex units

each pass. For each F-Buffer window, we must resend the

of overflow, but may require the geometry to be submiticd geometry. If the F-Buffer size is chosen small enough, ge-
matty times, once for cach shading pass for cach F-Buifer ometry processing will dominate the cost of rendering each
window. F-Buffer window. We expect the performance of shading

to increase linearly with a reduction in the the number

4 R of F-Buffer windows required, until we become fragment. Results : ,
processing bound, in which case performance should stay

In this section, we will concentrate on the F-Buffer support roughly the same since the same number of fragments are

in the X800 series and later hardware since they have a more rendered regardless of F-Buffer window size. The effect of

flexible implementation. Using ASHLI [ATIO3a], we have this can be seen in Figure 4 where we show the render-

created a pitted glass shader that exceeds the resource lim- ing performance of a simple and highly tessellated sphere,

its available on all current hardware. This shader is a com- with 12,288 and 196,608 vertices respectively, rendered to a

bination of the glass and stucco Renderman shaders. Us- 1024x1024 framebuffer using different sized F-Buffers. We

ing RDS [CNS™02], ASHLI chooses to split the shader into are using the same three pass shader as above for these tests.
three rendering passes. Since this shader relies on blending The low vertex sphere is vertex processing bound for small

and our test objects generate overlapping fragments, tradi- F-Buffer sizes, but becomes fragment processing bound for

tional multi-pass techniques using render-to-texture fail to larger F-Buffer sizes. For the 64x64 F-Buffer, we overflow

shade the object correctly. As can be seen in Figure 3, be- 162 times, so we must submit geometry a total of 489 times

cause each fragment gets a unique storage location in the F- for our 3 pass shader. For the 256x256 F-Buffer, we overflow

Buffer, correct shading is preserved. The difference in ren- only 10 times and have to submit the geometry 33 times to

dering transparent objects with an F-Buffer and traditional complete our shading. In both cases, we shade the same total

framebuffer rendering can best be seen with the simple ex- number of fragments, but the larger F-Buffer has many fewer

ample in Figure 1. Because of the implementation decisions vertices sent through the vertex processors to complete the

made, the performance of rendering to F-Buffers with no shader. For the more tessellated sphere, we are heavily ver-

overflow is equivalent to using traditional framebuffer meth- tex bound and you can just start to see the performance curve

ods. knee over when using very large F-Buffers.
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5. Discussion on a fragment, that fragment still needs to be accounted for

F-Buffers provide an elegant mechanism to support multi- in the output of the F-Buffer. If it were possible to prevent
CL the fragments from being output to the buffer and still pro-

pass rendering while being able to maintain correct trans-
: duce a FIFO, interesting data filtering operations could be

parency. With compiler and runtime support for F-Buffer

added to systems like RTSL [PMTHOI] and ASHLI performed. For example, if the user was generating a ver-
: : tex array with the fragment shader, they could kill fragments

[ATI03a], very large shaders can be used with objects re-

quiring transparency. to prevent certain vertices from being output into the buffer.
The main difficulty in this addition is finding a way to keep

However, given hardware support for F-Buffer, there are the coherent output properties of F-Buffer in maintaining
other rendering problems that can be solved. In this section performance.
we talk about extended uses of F-Buffer for shading op-

erations. We also explore several possible implementation One of the performance 155UES not yet discussed with the
changes to optimize F-Buffer support and to make it more current implementation is the inability to use early tests to
fAexible. prevent fragment generation. For example, if a very complex

shader is applied to an object that is partially occluded, we

would like to be able to use early-z tests to prevent the ren-

5.1. Extended shading operations dering of the occluded fragments. The difficulty with the cur-

We can implement order-independent blending by storing rent implementation is that the culling of fragments because
the final fragment colors as well as their xyz screen space of the F-Buffer window is done prior to the early discard
location into two separate F-Buffers. Instead of forcing the units. It would be interesting to explore which early tests
user to sort the geometry, we will use the F-Buffer to sort could be supported by F-Buffer. Any implementation must
the fragments into the correct order for blending. Since we ensure that the same fragments must be generated for each
have xyz values and the final color for each fragment, we pass, and if the output will not be included in the F-Buffer,
can sort the fragments to achieve order-independent blend. how to maintain coherent output into the F-Buffer.
Using a stable sort, like bitonic sort, we can sort fragments

with the same xy screen space location by z value. This can 6. Conclusion
be done in O(log’n) passes. When the F-Buffer is rebound
and restored in the final pass, we generate the fragments in We have demonstrated the first available commodity hard-
the correct order for blending. In the case of overflow, we ware implementation of F-Buffer and discussed the various
have to store each of the overflows in separate F-Buffers and design choices made. With these design choices, F-Buffer
sort between and within each buffer, which is non-trivial and support was able to be incorporated with minimal impact on
expensive. the rest of the processor design. Using F-Buffer, multi-pass

rendering with correct transparency can now be achieved

There are many papers and researchers that have com- with full hardware acceleration. We have also discussed sev-
mented on the need for a method which uniquely stor© each eral uses of F-Buffer for extended rendering tasks. Now that
fragment rendered. The F-Buiier provides a solution to this hardware accelerated support is available, we hope that the
need. Many algorithms traditionally relying on the sorting graphics community will explore other uses and extensions
of geometry can be reimplemented by sorting the fragments to E-Buffer.
stored in the F-Buffer after rendering has occurred. For ex-

ample, unstructured volume rendering often relies on the vis-

ibility sorting of tetrahedral. Callahan et al. [CICS05] de- Appendix A: F-Buffer Pseudo Code

scribe a k-buffer implementation to handle resorting frag- DisplayLoop
ments in the correct order, but it is limited to small number while remaining F-Buffer windows
of overlapping fragments. Using an F-Buffer and sorting it

similar to the above, it may be possible to handle larger val- Set the F-Buffer window

ues of k as well as to improve the efficiency of the algorithm.

There are also interesting possibilities for CSG applications for pass 0 to 2

by modifying Goldfeather’s algorithm [GMTF89] to make
use of F-Buffers. if pass 0

Attach F-Bufferl to offscreen framebuffer

Bind offscreen framebuffer

5.2. Hardware extensions

: : : : if pass 1
As previously discussed, the current implementation does Attach F-Buffer? to offscreen framebuffer
not allow for some of the conventional framebuffer opera- Bind offscreen framebuffer
tions to be performed when using F-Buffer. We also do not Bind F-Bufferl to texture

allow late discard functions from preventing output to the F-

Buffer. For example, if a shader executes a KIL instruction if pass 2
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Bind normal framebuffer S., HANRAHAN P.: A real-time procedural shading sys-

if first F-Buffer window tem for programmable graphics hardware. ACM Transac-

Draw background objects tions on Graphics (August 2001). 5
Enable blending N
Enable test functions (depth,stencil,alpha) [RLV"04]  RIFFEL A., LEFOHN A. E., VIDIMCE Kk.
Bind F-Buffer? to texture LEONE M., OWENS J. D.: Mio: Fast multipass partition-

ing via priority-based instruction scheduling. In Graphics

Setup transforms Hardware 2004 (Aug. 2004), pp. 35-44. 1,3
Bind vertex and fragment programs for pass

Render geometry

if first F-buffer window and pass is 0

Get remaining number of F-Buffer windows to render
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