
Color Calibration for Arrays of Inexpensive Image Sensors

Master’s with Distinction in Research Report

Neel S. Joshi

March 2004

Stanford University

Department of Computer Science



Abstract

The recent emergence of inexpensive image sensors has enabled the construction of large

arrays of cameras for computer graphics and computer vision applications. These

inexpensive image sensors have inconsistent color responses. These inconsistencies can

cause significant errors in color sensitive multi-camera applications. We present an

automated, robust system for calibrating large arrays of image sensors to achieve

significantly improved color consistency. We acquire images of a Macbeth color checker

placed in the scene and perform gain and offset calibration on each individual sensor.

This process combined with a global correction step maximizes the response range by

maximizing contrast and minimizing the black level and ensures linear response that 1s

white balanced for the scene. We present results with data acquired from 45, 52, and 95-

camera arrays calibrated both indoors and outdoors for a variety of color-sensitive

applications including high-speed video, matted synthetic aperture photography, and

multi-camera optical flow.
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Chapter 1

Introduction

2 : :

9 mm
Figure 1: Color variations across image sensors. These two images were taken at the same time from

adjacent cameras under typical lab light levels. The cameras are made with the same CMOS image

sensor. The settings affecting color balance and color gain are identical, yet there is a significant

perceptible color difference between these two images.

Researchers have investigated a number of techniques that use multiple images for a

variety of applications in computer graphics and vision. Techiniques such as light field

rendering [Levoy and Hanrahan 1996], high-dynamic range photography [Debevec and

Malik 1997], and optical-flow [Black and Anandan 1993] are traditionally implemented

by acquiring multiple images from a single camera. Using a single translating camera to

capture data from multiple views, limits these applications to static scenes. As image

sensors have become smaller, cheaper, and more powerful, researchers have begun to use

large numbers of video cameras to extend these applications to dynamic scenes. These

now commodity image sensors give researchers a significant amount of flexibility that

has allowed them to build on previous techniques and has allowed them to tackle new

research challenges. Virtualized Reality [Rander et al. 1997] and its successor, the 3D-

Room, [Kanade et al. 1998], are two large arrays that have explored the power of using

multiple cameras for a variety of graphics and vision applications. Camera arrays have

been used for real-time application such as MIT's distributed light field array [Yang et al.

2002]. The Stanford Light Field Camera Array [Wilburn et al. 2002] has been used for a

number of applications including high-speed video [Wilburn et al. 2004], synthetic

aperture photography [Vaish et al. 2004], and spatiotemporal view interpolation [Wilburn
et al. 2004].
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Along with the increased flexibility and power resulting from using inexpensive cameras,

there are a number of hurdles. Image sensors are often designed to accurately represent

relative color differences but are not designed to represent absolute color; for most

single-camera applications this 1s acceptable. In certain multi-camera applications where

images are combined from multiple sensors these inconsistencies cause large artifacts in

the resulting images. As researchers begin to apply single-camera techniques to data

acquired from camera arrays, consistent color response becomes critical. Figure 1

illustrates the inconsistent color response that 1s seen with our inexpensive video
cameras.

Multi-camera applications combine images in various ways depending on the goal of the

applications. For some of our applications we combine images by interleaving entire

images in a sequence or by pasting together sections from multiple images. For other

applications we apply computational methods on images from multiple cameras. For all

of these applications it 1s necessary to adjust the cameras to have similar color responses.

Otherwise when images are pasted together there will be perceptible “seams” between

image sections and our computational methods will fail because brightness consistency

assumptions are violated by inter-camera color inconsistencies. The process of ensuring

inter-camera color consistency 1s referred to as radiometric or color calibration and it

involves adjusting the on-camera controls and processing the camera’s image data so that

all cameras respond similarly when imaging a scene.

Color calibration 1s a challenge as image sensors have many sources of error that need to

be accounted for. For example, image sensors often have non-linearity at the extremes of

their range. In addition, many image sensor’s on-board image processing introduces

additional errors. A calibration process should calibrate each camera so that it gives a

consistent linear response across each color channel, where the data for the imaged scene

saturates or clips as little as possible. The process should be robust to non-linearity in the

sensor and should be able to handle a variety of lighting conditions. For large arrays, the

system should be fast and automatic and require little human intervention. The result of

the calibration process should produce images with both small perceptual color
differences and small absolute numerical differences.

We show a system that 1s completely automated that robustly, efficiently, and accurately

calibrates a large number of cameras to a known desired response curve. We calibrate

the brightness and contrast of our cameras using a Macbeth color checker with a novel

method that provides robustness to non-linearity in the sensor response curve. We

correct for non-uniform illumination on our color chart and use a simple calibration

system to automatically detect corresponding points on our color target. By

implementing part of our pipeline with the processor on each camera board, we compute

image statistics at high-speed and in parallel for all cameras. For a final global correction

step we use a floating-point gain and offset correction, a look-up table re-mapping, and a

3x3 transform to further reduce error. Figure 2 shows a block-diagram overview of our

calibration process. This process will be described in detail in Chapter 3. Our calibration

system enables us to produce high quality results with various graphics and vision
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Online camera calibration

detection illumination correction calibration

correction correction (least squares)

Post-processing

Figure 2: A diagram showing the multiple stages of our color calibration pipeline. There are “online”

steps completed before acquiring data. The “online” process includes adjusting camera settings based

on sampled values from a Macbeth color checker. The “post-processing” steps include corrections

computed from uploaded images of the color checker that are then applied to the acquired data.

applications. We will show three color-sensitive applications that benefit from this type

of color calibration: high-speed video, synthetic aperture photography with matting, and

multi-camera optical flow. We have not addressed producing true-color output, as this 1s

unnecessary for our targeted applications, although existing techniques in this area could

be applied to the final stage of our processing pipeline.

1.1. Related Work

Researchers have studied the importance of color calibration for single camera systems

[Barnard and Funt 1999] and [Grossberg and Nayar 2002]. This work has shown that it

1s possible to calibrate a single camera well using either scene statistics or images of

color charts. With the increasing availability of low-cost projector systems, there has

been work in color calibration for achieving uniformity across tiled projector displays

[Majumder et al. 2000]; however, there has been little work in applying color calibration

techniques to multi-camera systems. For certain multi-camera systems such as the 3D-

room [Vedula 2001] at CMU, color calibration has been ignored. For the RingCam, an

omni-directional camera used for generating panoramas, [Nanda and Cutler 2001]

designed a color calibration system that uses image statistics to calibrate color response.

The brightness value is calibrated by acquiring a “black™ scene at zero exposure and then

adjusting the brightness control on the camera so the mean intensity 1s some desired

“black value”. The contrast is adjusted by changing the gain such that the mean intensity

of the image 1s some desired “mean brightness” value, which they default to 127; their

system allows this target value to be user specified. The scene 1s white balanced by

adjusting the red and blue gain settings on the camera to make the amount of green, blue

and red in the scene equal. This can be done using the mean intensity of the images for
each color channel or the user can select a “white” area to be used. The cameras are
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calibrated to each other by adjusting gain and offset settings to match overlapping regions
of the cameras’ views.

The RingCam system was designed for real-time calibration to handle changing light

levels and for a camera setup with partially overlapping views. For generating real-time

panoramas this calibration procedure produces good results; however, this application

and setup 1s very different from the light field acquisitions we are concerned with. In

generating panoramas they were able to use blending to ease perceptual color differences

when transitioning between images from two cameras. We want to composite images

without blending as we have multiple image seams. Refer to Figures 8 through 10 for an

example of this type of image composition. Since blending is not an option, our

applications demand better color calibration. The real time distributed light field camera,

[Yang et al. 2002], applied the RingCam calibration system for calibration of their light

field camera array. It 1s unclear how color-sensitive their application was, but we have

found that applying this technique to our light-field setup does not produce acceptable

results with our applications.

The RingCam system has several weaknesses that cause it to be unsuitable for our needs.

It 1s scene-based and requires the user to pick a good target value for the image mean.

Although the cameras’ views do overlap partially, there are large non-overlapping

regions near the extremes. Calibrating using image statistics when each camera 1s not

looking at exactly the same scene 1s error prone. We will show that the calibration

process 1s very sensitive to the target image mean and differences in non-overlapping

views of the scene. Another weakness of this method 1s its reliance on dark images for

black-level calibration. A common approach for acquiring these images with a large

number of cameras 1s to set the camera exposure to zero. For our particular image

sensors we have found that even with the camera exposure at zero, some light is

integrated. Placing lens caps on cameras 1s time consuming and tedious for 100 cameras

and 1t 1s difficult to do without disturbing the focus setting of the lenses. Blocking out

light with black felt has the same problems, as it 1s undesirable to rest anything on the

camera lenses once they have been focused and aimed. In sunny outdoor settings a much

more opaque covering 1s needed to block out all light. Our method allows calibration to

proceed without dealing with these difficulties.

Several post-processing techniques produce high-quality results when applied to

uncalibrated cameras. [Porikli and Divakaran 2003] successfully use a correlation

modeling function to post-process images. We have opted for a set of much simpler

techniques that are better suited to a large number of cameras. A correlation modeling

function requires computing pair-wise modeling functions for matching color response.

For a large number of cameras, computation increases on the order of n®. Since n may be
large in our application, we seek a calibration method whose computation cost does not

grow quadratically with n.
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Chapter 2

Framework
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Figure 3: The image sensor. (a) A simplified diagram showing the processing pipeline in our

Omnivision CMOS image sensor. All processing is done in the analog domain. Inaccuracy in the analog

circuitry causes most of the color inconsistencies between image sensors. (b) The pattern of color filters

covering the image array known as the Bayer mosaic.

2.1 CMOS Image Sensor Overview

We will give a brief overview of the image-processing pipeline on our Omnivision sensor

to illustrate the types of errors that are introduced by the electronics and processing on

the chip. Figure 3a shows the processing pipeline for our CMOS image sensor. While

the analysis and calibration procedure we present was designed for our particular sensor,

many image sensors have a similar structure and exhibit the same types of errors. The

image sensor consists of an array of photodiodes covered by color filters arranged in what

1s known as a Bayer mosaic, as shown in Figure 3b. The accumulated charge 1s fed

though a series of analog amplifiers and other analog circuitry before it 1s digitized. Most

CMOS video cameras, including ours, have some amount of on-board image processing
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Figure 4: Our imaging hardware. Left: a close up of one of our cameras using an Omnivision CMOS
image sensor. Right: a custom image processing board that includes a Motorola Coldfire processor.

to demosaic the raw sensor output and to do a RGB to YCbCr conversion, which 1s used

for MPEG encoding the camera data. These cameras also have automatic image

processing features for automatic gain, white-balance, and exposure control. Our camera

also exposes an interface for manually setting color channel gains and offsets.

Our CMOS image sensor shows significant color response differences even when the

parameters controlling the image processing steps are identical across different sensors.

For our image sensors we have seen significant errors in both the raw sensor output and

the final demosaiced YUV output. The errors in the raw sensor output break down into

three categories: non-linearity in the sensor response, gain and offset setting inaccuracies
1solated to each color channel, and inaccuracies due to cross-channel effects.

It’s unclear what exactly causes the non-linearity within our sensor. We have seen that

there 1s a slight non-linearity in the center of the sensor response curve in addition to

significant non-linearity in the extremes of the curve. We have also found that our sensor

seems to internally saturate at a level less that than its maximum output value. The

camera manufacturer claims that the sensor output 1s normalized to a range of (16, 240)

although the specifications are unclear on how or why this 1s done. We suspect this

process 1s partly responsible for non-linearity at the extremes.

The errors in the gain and offset settings are due to a number of causes. On our sensor

there 1s inaccuracy in the application of the gain and offset settings in addition to a

limited amount of precision as they can only be adjusted by discreet quantities. The offset

settings offer reasonable precision while gain setting has a somewhat large step size

giving only coarse control. In addition our experiments have shown that the actual gain

applied varies significantly from the documented values.

The cross color channel effects can occur for a number of reasons. We believe these are

due to small differences in the color gels between image sensors. Differences in the color

gel cause wavelength-dependent effects that cause a distortion of the color space.

The image processing steps for RGB to YCbCr conversion include a 3x3 RGB to RGB

color-space transform applied to perform a transformation from the sensor’s RGB cell

response to the RGB response of a typical computer monitor. We have found that even

when the raw sensor output 1s well matched, the RGB to YCbCr process introduces color
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Figure 5: Three configurations of the array used for light field acquisition. Left: A 95 camera subset

of this setup was used for multi-camera optical flow based interpolation and for comparative

experiments on color calibration. Middle: This densely packed 52 camera setup cameras was used to

acquire high-speed video. Right: This 45 camera setup with wide-angle lenses was used for outdoor

acquisition.

discrepancies. The details of this process are undocumented for our sensors, but as this

happens in an analog domain, the cause of the errors should be similar to those in the raw

sensor processing. While our sensor provides several controls to adjust the raw sensor

output, it provides an incomplete set of controls to control the RGB to YCbCr

conversion. We have found that the automatic settings for white-balance, gain-control,

and exposure control produce unusable results. To get reliable and consistent color data,

we must use the raw Bayer data directly. With a full set of adjustments for each color

channel in the raw Bayer data, we can calibrate the raw sensor output, acquire the raw

sensor data, and achieve successful results with our applications. We use a publicly

available demosaicing algorithm [Chang et.al.] that produces good results.

2.2 Experimental Setup

For our multi-camera experiments we used the camera array described by [Wilburn et al.

2004]. Our camera array consists of 100 custom video cameras using Omnivision

OV8610 sensors to capture 640x480, Bayer mosaic color images at 30fps. Each camera

has a processing board that manages the compression and IEEE1394 interface. This

processing board also has a Motorola Coldfire processor and Xilinx FPGA to provide on-

board image processing. Figure 4 shows a single camera and processing board. The

array can take up to twenty synchronized, sequential snapshots from all of the cameras at

once. The images are stored locally in memory at each camera, limiting us to only 2/3 of

a second of video. Using MPEG compression at each camera, we can capture essentially

indefinitely. The array can be reconfigured for a variety of setups for light-field

acquisition. Figure 5 shows several configurations of the array used for the data collected

for this paper.
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Chapter 3

Process

Our calibration pipeline uses images of a Macbeth color checker taken by all of the

cameras. We use a diffuse photographic graycard to capture the non-uniform lighting at

the location where we place the color chart and use the values recorded for the gray card

to adjust for the non-uniform lighting. We then image the color checker and iteratively

adjust the gain and offsets on each channel so the sensor output fits a line through the six

gray patches on the chart. We use a line that maps the brightest and darkest squares to

RGB values of (220,220,220) and (20,20,20), respectively. By calibrating each channel to

this linear response, we simultaneously white balance our images and maximize the

usable data in each color channel for each camera. A post-processing step applies a

floating point gain and offset correction, generates lookup tables to correct for residual

non-linearity, and then determines a 3x3 color transform to best match, in the least

squares sense, each camera’s output to the mean values from all of the sensors. At the

moment we are not correcting for cos” falloff or vignetting as we have found that these
affects cause minimal errors in our applications.

3.1 Automatic Detection of the Macbeth Color Chart

As all steps of our calibration process depend on having corresponding points on the

Macbeth color checker across a large number of cameras, we developed a method to

automatically detect the patches on the color chart in the view of each camera. To do this

we leverage a simple geometric calibration technique typically used for image

registration [Vaish et al. 2004]. We place a planar geometric calibration target of know

geometry in the scene and take a single image of the target with each camera. Using a

corner-detector we extract point-correspondences for each image and compute 2D

homographies that warp the 1mage-space coordinates to the coordinate system on the

plane of the calibration target. We then place the Macbeth color chart at a predetermined

location where we have pre-measured and recorded the locations of the centers of the

patches on the color chart in the coordinate system of the geometric calibration target.

By using the inverse of the 2D homography we computed from the previously acquired

images, we can compute the image-space coordinates, 1.e. pixel locations, of the centers

of the color chart patches for each camera. Figure 6 illustrates the process.

8



TT EEOEER
EEOEERR

mousy ofefeBefofe
fom

ssc EEO ERN

EEOEESR

(b)

EEOEEN

L.- ion 1

(c) (d)

Figure 6: Automatic detection of the Macbeth color checker chart. (a) Using corner based feature

detector we can find corresponding points on a planar geometric calibration target of know geometry.

A 2D homography is computed to warp the image of the calibration target to a known coordinate

system. The coordinate system is such that the origin is the top left corner of the top left square

where one pixel corresponds to one millimeter. (b) The 2D homography applied to the original image.

(c) The Macbeth color checker is placed at a known, pre-measured location on the geometric

calibration target. The inverse of the 2D homography computed to warp (a) to (b) is used to warp

the known locations of the color patch centers to pixel coordinates. (d) A small window around the

patch center is used for spatial averaging.

To be robust to camera noise we want to average over a number of pixels lying within

each patch. We average over four frames to reduce the effects of temporal noise, while

we average spatially over a small window around the patch centers to reduce the effects

of fixed pattern noise. If the color checker takes up too small of an area in the images we

may unintentionally expand the square to include pixels outside the desired patches — this

1s undesirable. The problem can be exacerbated when the color chart 1s not fronto-

parallel to the image plane. In practice this does not pose a problem as our feature

detector 1s very conservative and will not detect enough features if the geometric

calibration target 1s not large enough in the image (less that 300x300 pixels). When the

color checker is parallel to the image plane the entire chart 1s on the order of 200 pixels

wide making an individual patch a 30x30 pixel square. To be safe we use a much smaller

window of 6x6 pixels. If the feature detector indicates that the geometric calibration

target 1s too far away we must move the target closer. We then store the bounding

coordinates for the averaging windows for every patch for each camera. The averaging

windows are shown in Figure 6d. These stored coordinates are used repeatedly during

the process. If the tilt of the chart became a significant problem in our use of a square

patch for averaging, it is a relatively simple extension to store a pixel list that represents a
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non-square region to be averaged over for each patch. This could accommodate

averaging over pixels on the target from significantly off-axis views.

3.2 Non-uniform Illumination Correction

One potential source of error in color calibration 1s the effect of illumination variation

across the color checker. Non-uniform illumination of the color checker skews the gray

patch values, causing gain and offset miscalibration. We endeavor to uniformly

illuminate the color checker in our scene and place the checker in the center of the
cameras’ views, so that radiometric falloff due to the camera lens has a minimal effect.

While keeping the color chart in the center of the image is simple enough it 1s often

difficult to control the lighting in a scene without a specialized setup. Before we perform

gain and offset calibration we correct for non-uniform illumination by recording the

illumination by placing a photographic gray card at the same location where we will

place the Macbeth color chart. We record the RGB values across the gray card at the

same locations where the Macbeth chart will be sampled and compute scale values that

correct for non-uniform illumination. We use these scale values in all steps of the

calibration process to adjust the recorded color values from the Macbeth color checker to

remove illumination effects. The data plotted in Figure 7 has been corrected for
illumination effects.

3.3 Gain and Offset Calibration

We calibrate the gains and offsets for each camera to ensure that the raw data output for

our scene uses the maximal range of the sensor (i.e. the data 1s not clipped or clustered

into a small range). We turn off gamma correction and calibrate the gains and offsets so

that each color channel observes the same linear response. This also serves to white-

balance the scene. Instead of separately calibrating the offset (i.e. black-level) of the

cameras from black images and then adjusting gain (i.e. contrast) off of a reference gray

or white value, we calibrate both offset and gain in one step. We do this by acquiring an

image of the Macbeth color checker and fitting a line to the recorded RGB values for the

gray patches on the color chart. By using a least squares line fit to multiple gray values

we are more robust than a method that computes gain and offset using black and gray

images. These methods essentially fit a line to two points. By fitting to more than two

points we are robust to errors in the sampled points. We have observed that the upper

and lower ends of the sensor response curve tend to be non-linear. With a two-point

black-level/contrast calibration, the offset 1s calibrated using data recorded in a known

non-linear region of the sensor, while the single gray value used for gain computation

could lie in a non-linear portion at the upper end of the sensor if gray-level 1s too bright

due to scene lighting or the default gains before calibration. By using a linear fit to the

four middle level gray values on the color checker, we calibrate using data in the more

reliable middle range of the sensor.

10
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Figure 7: Sensor response curves. Red, Green, and Blue response curves plotted for 95 cameras.

The X-axis is luminance while the Y-axis is the measured sensor response. (a) The response curve at

default gains, with gamma off. (b) The cameras have been calibrated to the target response curve

(the straight black line visible at the upper end of the response curve) using the gain and offset

adjustments on the camera. There is residual non-linearity apparent for several cameras. (c¢) Gain

and offset correction in post-processing with floating-point precision. The central part of the curve is

more on target. There is residual non-linearity. (d) Look-up table remapping to correct for non-

linearity. (e) The final response curves after the 3x3 transform. Note the responses are linear, but

have become misaligned as the least squares optimizations makes equal trade-offs to minimize error

across all colors. This introduces some error in the matching of the gray patches but reduces overall
error in all the patches.
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Through trial and error, we have found that a good response curve for our sensors is the

line determined by the black patch (3.1% reflective) on the Macbeth color checker

mapping to the value of 20 and the white patch (90.0% reflective) to value 220. The

slope and y-intercept from the linear fit on the sampled gray values serves as the current

gain and offset for the sensor. The ratio of the slope of the fit line to that of the target

linear response curve 1s used as a multiplier for the current gain setting. The difference

of the y-intercept of the fit line to that of the target linear response curve 1s used to adjust

the current offset setting. Due to inaccuracy in implementation of the gain and offset

settings on our cameras, we do this process iteratively. With our image sensors the gain

for the green channel 1s global, so we first calibrate the green channel and then calibrate

the red and blue channel in parallel. Figure 7a and 7b shows the sensor response curves

before and after the gain and offset calibration process.

3.4 Post-processing

The gain and offset calibration does a reasonable job of calibrating the cameras to be

radiometrically similar. However errors in the gain and offset settings, non-linearity in

the sensors, and color distortions remain. We have designed a three-stage post-

processing pipeline that explicitly addresses these issues.

The first step 1s to correct for residual errors in gain and offset. The settings for gain and

offset have some discretization that occurs in their implementation. On our image

sensors there 1s reasonable precision in the offset setting where the offset can be adjusted

from [-64 to 64] in single increments — our experiments have show that in practice the

offset adjustment adheres to this. The gain setting 1s far less precise and accurate. It has

a somewhat large step size giving only coarse control. In addition our experiments have

shown us that the actual gain applied varies significantly from the documented values.

To correct for these errors we image the Macbeth color checker and perform a line fit and

compute gain multipliers and offset adjustments just as in the previous step; however we

apply these adjustments in a floating-point domain with more precision and accuracy.

We compute these gains and offsets per channel and apply them to the images of the

color checker. The gain and offset adjustments are saved for later use. Figure 7c shows

the sensors responses after this correction.

The next step 1s to correct for non-linearity in the sensor. We compute a look-up table

that re-maps the response curve of each channel to the desired linear response curve. For

each possible color value from 0 to 255, for each channel and camera we use a piecewise

linear curve based on the 6 gray values on the Macbeth chart and their imaged RGB

values. This piecewise linear curve 1s used to compute the luminance value for each

color value. This luminance value 1s plugged into the equation for the desired response to

compute the target color. We then have a mapping from each cameras color response to

the desired response. Figure 7d shows the sensors responses after the look-up table
correction.
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We have now corrected each camera individually to produce images with a desired linear

response across each channel independently. The final step is to correct for color

distortions and to minimize error globally by computing a 3x3 RGB to RGB color

transform that minimizes error in the least squares sense. Previous methods have used a

similar technique to correct for color differences across cameras; however, they typically

pick one camera as the reference camera and compute a per-camera transform to match to

the reference camera. We have found that matching to a reference camera 1s often not the

best way to globally minimize error. When matching to a single reference camera there

1s a danger that the camera 1s an outlier. Matching to the mean color values across all

cameras 1S a more robust approach that 1s less affected by single outlier cameras. This

method keeps the transformations minimal in magnitude (minimizes the per-camera

colorspace scale, rotation, and shear) and provides a more attainable goal for the error

minimization. We compute average values for the 24 patches on the Macbeth color

checker and compute a 3x3 transform that minimizes the error between each cameras

RGB values for the 24 patches and the average values. Figures 7e¢ shows the sensor

response curves after this final post-processing stage.

3.5 Scalability

Our system 1s scalable due to particular implementation and design decisions. The use of

2D homographies for automatic location and computation of point correspondence on the

Macbeth color checker significantly enhances the scalability of our technique. Without

this a user would need to manually click points to identify location on the chart. This 1s

tedious for small numbers of cameras and impractical and error prone for large numbers
of cameras.

By leveraging our camera’s on-board processing power we are able to significantly cut

down on image transfer and image processing time and are able to parallelize certain

computations. While this 1s by no means necessary for the successful application of our

method, we have found it to be a great asset when calibrating a large numbers of cameras.

We have implemented functionality to upload the patch coordinates resulting from our

automatic color chart detection to the Motorola Coldfire processors on each camera

board. We then take images and have the Coldfire perform the temporal and spatial

averaging in RAM for the 24 patches on the color checker. This process significantly

reduces the total calibration time as the data returned from the cameras 1s significantly

reduced and the image reading and averaging is done in parallel across all cameras.

Using the Coldfire for averaging reduces the camera to host PC download to 72 bytes

from the 300KB for the entire image.
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Chapter 4

Results

In this section we will show 1mages and error statistics for data acquired from a 95-

camera array with no color calibration, with an implementation of the color calibration

system used for the RingCam, and with our color calibration system. Further we will

show results from color calibration outdoors and experimental results from high-speed

video, matted synthetic aperture photography, and multi-view optical flow.

We have found that a good way to visually judge the results of color calibration 1s to

create single composite images from multiple cameras. We create these image

compositions by registering images using 2D homographies to align a geometric

calibration target from all views to one reference view. We select multiple 5x5 pixel

blocks from each registered image and paste together a final image. We have found this

to be a good test as it simulates the type of image reconstructions often used in 1image-

based rendering and it easily reveals perceptible color differences, as there 1s no blending

or interpolation between adjacent blocks. See Figures 8 through 11 and Table 1 for

comparison and analysis of image compositions from data acquired with a 95-camera

array uncalibrated, calibrated with RingCam calibration method, and calibrated with our

method with and without our post-processing steps.

We also show results for three color-sensitive applications: high-speed video, synthetic

aperture photography with matting, and multi-camera optical flow. High-speed video

and synthetic aperture photography composite images from multiple cameras where color

inconsistency causes perceptible color artifacts. Multi-camera optical flow 1s a computer

vision method that 1s sensitive to color differences because it assumes constant brightness

across views for corresponding points on objects in a scene. Although it 1s possible to

formulate optical flow and other vision methods to be more robust to color variations

[Kim et al. 2003] and [Black and Anandan 1993], most formulations of popular vision

methods will produce poor results with the significant color differences seen in an un-

calibrated camera setup.
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4.1 High-speed Video

By capturing a light-field using an array of video cameras that provides control over

individual camera trigger time and exposure time, a high-speed event can be captured by

staggering camera trigger times to more densely sample a scene in time. By

geometrically aligning images from different cameras and properly interleaving frames

from the video streams according to the staggering pattern, a single high-speed video

sequence can be created. Because we interleave images from our cameras, variations in

their color response will cause frame-to-frame intensity and color differences perceived

as flickering in the resulting high-speed video. To correct for a particular timing artifact

in our sensors we must “temporally slice” though a set of images creating an image

composed of data from a large subset of the 52-camera array we used for acquisition

[Wilburn et al. 2004]. With accurate color calibration, these intensity and color

differences are minimized in the resulting high-speed video sequence. Figure 12 shows

three frames from a high-speed sequence from the temporally sliced sequence. The

reader 1s encouraged to view the video sequence located at

hitp.//graphics.stanford.edu/papers/highspeedarray/balloons.mpg to appreciate the

effects of the color calibration process. In this video there are some residual color effects

that are apparent after our temporal correction. See Chapter 5 for a discussion of this
correction and the artifacts it introduces.

4.2 Synthetic Aperture Photography with Matting

Light fields can be used to simulate the defocus blur of a conventional lens by re-

projecting some or all of the images onto a focal plane in the scene. This consists of

registering the images onto a reference plane, translating the images, and averaging them.

Objects on the focal plane will appear sharp, while those not on this plane will appear

blurred in the resulting image [Levoy and Hanrahan 1996] and [Isaksen et al. 2000]. This

synthetic focus can be thought of as resulting from a large-aperture lens. We call this

synthetic aperture photography. When the aperture 1s wide enough, occluding objects in

front of the focal plane are so blurred as to effectively disappear. In traditional synthetic

aperture photography the large number of values averaged together serves to average out

color differences. Synthetic aperture photography can be very successful without color

calibration [Vaish et al. 2004]. One modification to synthetic aperture photography is to

create per image mattes to remove the occluded pixels from individual frames before

averaging them to create the synthetic aperture result. Mattes can be created using a

variety of techniques. Some techniques matte out pixels of a certain color deemed the

color of the occulder. Other techniques use statistical analysis of the image data to

attempt to detect occluded and unoccluded pixels. The use of mattes significantly

improves synthetic aperture results when attempting to see through partial occluders as

occluded pixels don’t contribute to the resulting image. With dense occluders only a very

small subset of cameras contributes to create each individual pixel. Using a small

number of cameras for averaging makes color calibration important, as color differences

don’t average out as well. Without accurate color calibration, there is inconsistency
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between pixels averaged from different sets of cameras. Figure 13 illustrates the

importance of color calibration in synthetic aperture photography when using mattes.

4.3 Multi-camera Optical Flow

Traditional optical flow techniques use the brightness consistency assumption to compute

pixel flow between images from multiple viewpoints. Brightness consistency states that

for a particular point on an object in a scene the brightness i.e. color value should be

invariant as that point 1s viewed from various viewpoints. Violations of this assumption

cause errors in traditional formulations of optical flow and cause incorrect flow vectors to

be computed. Optical flow techniques have been modified to be more robust to

brightness violations; however these techniques are intended to provide robustness to

natural violations of the brightness consistency assumption due to shadows, motion

boundaries, or specular reflections. As optical flow techniques are generally designed to

run on multiple images from a single camera, these techniques do not handle systematic

color differences well. Accurate color calibration significantly improves the results of

multi-view optical flow techniques applied to multi-camera systems by calibrating the

recorded data to more closely resemble data acquired from a single moving camera.

Figure 14 shows a successful view-interpolation result created from running optical flow

on four images with data from a fully calibrated array and it shows a failure case when

run on data from a partially calibrated data set.
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Figure 8: Uncalibrated cameras. This images shows clear color differences between cameras. There

are visible patches of varying hue and brightness on the Macbeth color checker. Note: these composite

images are created from source images that are registered only at the plane of the geometric calibration

target — the “blocky” pattern in the background is due to pasting together pixel blocks from unaligned

areas and for the sake of these comparisons can be ignored.

= - rn So awe m,nen = el a

ft ilyen Ca a .
dimedl mmOomEE nr
re TE pmo EER ar ;

- xy | ot ay '
EAeuwmmn ! :

(a)

re
: Tur gira aie,
pegE | -— rm - Es;
a pt SE i glle gw nama wi Ty eRe)

mEOEEE.
 EEDEEN
0 :
-E I

on I

wow S

(b)

Figure 9: Other color calibration methods. (a) Images calibrated using scene statistics [Nanda and Culter

2001]. Color values from the Macbeth color checker were not used directly by this calibration process.
The Macbeth Chart is used only to evaluate the success of the calibration process. Image (a) is saturated

as we used a default value of 127 as the mean value for contrast calibration. This process is very sensitive

to selecting an appropriate image mean. (b) The same process with a better-selected target image mean

of 70. Color differences are still apparent.
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Figure 10: Our color calibration method. (a) Our gain and offset calibration alone with no post-

processing. The results are significantly improved over those in Figure 9b; however, color differences

are still apparent particularly in the red patches. (b) Our full color calibration pipeline. Color differences

are almost imperceptible. There are artifacts on borders between color patches. These are due to

geometric misalignment and demosaicing. Demosaicing artifacts appear due to color aliasing introduced

by the Bayer pattern. In these images, the artifacts appear as subtle shades of red, green, and blue at

the edges of some color patches. The bright yellow patch particularly shows these effects.
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Figure 11: Color calibration outdoors. The images illustrate the application of our method outdoors

with no control over lighting conditions. These images were created using 7x7 pixel blocks from

registered images acquired from a 45-camera array. Left: image composition with gain calibration,

but no post processing. Right: image composition after post processing stages. Without the post

processing color differences are still visible in the image.
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Calibration Method RMS percent |RMS percent |RMS percent

Te EEEred green blue

error in red error in green error in blue

error in red error in green error in blue

error in x error in

Table 1: Error statistics. Here we show several error analysis metrics to analyze the performance of

various calibration methods. Our gain and calibration method without any post process significantly out
performs the scene-based method. With post-processing the error is reduced further in relative and

absolute errors in red, green, and blue with the most significant effect in the reduction of maximum

error. With our full calibration procedure the error is on average one gray-level. RMS chromaticity (Xx, y)

error is also reduced by our process, but not as significantly.
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Figure 12: High-speed Video. Due to a particular correction that needs to be applied to correct for a

timing artifact of our cameras in our high-speed video setup, each of these three sequential video

frames is created from different a subset of the cameras in our array. With color calibration these

images appear to come from one camera. There are residual color effects that are only apparent in

video. These effects are a temporal pattern that occurs as a result of our timing correction. They

become apparent to the human eye as there is a periodic nature to the residual color difference as the

order in which the images are re-sampled changes over time.
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Figure 13: Synthetic aperture photography. (a) Synthetic aperture result without matting or color

calibration. (b) Result using matting without color calibration. (c) Result with color calibration without

matting. (d) Result with matting and color calibration. The unmatted result (a) shows accurate color

similar to the result with calibrated data (c) as color errors are averaged out over 95 cameras. With the

matted results (b) and (d), on average 4 cameras are averaged for every pixel. The result with

uncalibrated data (b) now shows saturated pixels and the light green and yellow patches on the color

checker appear to be more similar in color than in the unmatted result. With the calibrated result (d) the

color patches retain the same color balance as in the unmatted data. Note: the black patterns on the

Macbeth chart in these images are due to light field aliasing where the occluder has not completely
bliirred out. These natterns are not die to inter-camera color variations.
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Figure 14: Spatiotemporal optical flow. Optical flow is an application that relies heavily on color

calibration as it has a central assumption of brightness consistency. Perceptual color differences are

still undesirable, but of greater concern are numerical differences. Four Images acquired from

different locations and at different times are aligned with multi-dimensional optical flow. Left: Data

acquired from a partially calibrated setup shows noticeable flow inaccuracies on the fine details such

as the person's eye. The soccer ball is relatively sharp. Right: Data from a second acquisition after

full calibration with full post-processing applied. The details of the eye are preserved and the soccer

ball is sharper.
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Chapter 5

Conclusions and Future Work

We have shown that it 1s possible to accurately and precisely calibrate a large number of

lost cost video cameras with very low residual error. By using a color target of known

luminance we calibrated our cameras to a desired response curve with a method that 1s

robust to the non-linearity present in low-cost image sensors. We have shown a simple

method for correcting for non-uniform illumination — an effect that can significantly

affect color calibration and that can’t often be controlled for in certain acquisitions. Our

geometric calibration system provides a robust, automated way to detect our color

checker and along with our use of on-board image processing allows the system to scale

to large numbers of cameras without increased complexity. We use a multi-stage post-

processing step designed specifically to address the types of color inaccuracies seen in

our low-end sensors. Our error analysis shows the benefit of our method over one using

image means for light field acquisition. Our error statistics show an eight to ten times

reduction of RMS absolute error, RMS percent error, and maximum error in red, green,

and blue relative to the image-mean based method. Using our calibration we obtain high

quality computer vision and graphics results from large arrays of inexpensive image
Sensors.

Our results illustrate some interesting properties of color imaging. The high-speed video

work shows how images can be reconstructed from a large number of cameras without

objectionable color artifacts. We have noticed some residual color effects that are only

apparent in video. These effects are a temporal pattern that occurs as a result of our

timing correction. They become apparent to the human eye, as there is a periodic nature

to the residual color difference as the order in which the images are re-sampled changes

over time. Our high-speed work has also revealed some other color artifacts, which are

difficult to correct. We have noticed that the color artifacts that remain in our high-speed

video are most noticeable in the background. Due to our lighting setup and short

exposure times, these background areas are significantly darker than the rest of the scene,

but show larger color shifts. One possible explanation 1s that these errors are a result of

color quantization. Color quantization is the loss of precision that can occur during of a

number of stages of the image-processing pipeline. This loss of precision could

correspond to just a few gray levels. A quantization error in bright areas in an image 1s

imperceptible as it 1s represents a lower percent error for the larger color value. These
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errors are also less noticeable in brighter areas due to how our eye adapts to and perceives

brightness. In darker areas these errors are much more significant. Quantization errors

can appear as an intensity change or as they can occur independently in each channel

errors can cause a color shift. While we are able to overcome some quantization effects

during our calibration procedure by using raw image frames and averaging images

spatially and temporally, these effects are difficult to overcome with video as there 1s

quantization in MPEG compression and for particular applications averaging image

frames 1s not an option.

In our application of spatiotemporal optical flow we have found that flow errors still

occur with well-calibrated cameras. Particularly we have seen color artifacts and

resulting flow errors when aligning images of the soccer ball in our dataset at certain

time-steps as the ball 1s moving through our scene. There are only a few frames where

color differences are noticeable on the ball. We have found that this depends on the

location of the ball in the scene and particularly on the directionality of the lighting. The

soccer ball we filmed with 1s slightly specular, so under directional lighting, which 1s not

completely unavoidable, the intensity of the imaged ball varies with viewing angle 1.e. the

color difference 1s real. This 1s a known problem with specular objects in these types of

applications and it would occur even in the ideal case of perfectly color calibrated

cameras or even with images acquired from a single moving camera.

There are other sources of error that we don’t correct for. Many imaging devices

experience changes in their response with variations in temperature. We have not

attempted to model this behavior. It 1s unclear if errors due to these effects are even

noticeable. It 1s further unclear how best to correct for these errors. In practice when

researchers have noticed heat related affects the common approach 1s to let the system

“warm up” and stabilize before conducting an experiment.

There are several potential directions for future work 1n this area. Our system 1s designed

for light field acquisitions where all the cameras have some working volume in common.

One extension to this work is to deal with a camera array setup with partially or non-

overlapping views. There are several considerations here. To image a color chart one

may move the chart around the scene so that all cameras can view that chart at some

point in their working volume. One has to be careful when moving the chart as the

lighting falling on the chart will change and each camera may see a slightly differently

illuminated chart. Possible solutions to this are to create a self-illuminated target,

although then very strict control 1s needed over the lighting conditions.

A limitation of this work 1s that cameras must be calibrated under filming light levels and

exposure levels. While this has not yet been a limitation in our work, there are situations

in which a full recalibration with a light level changes 1s impractical. Handling changing

light levels without full calibration would be an added convenience and might be

necessary for certain applications. One possible approach is to update a calibrated array

by using imaging or other techniques to detect a light level change in a precise way and

using this information to update camera gain and offset settings. Implementing this

without re-imagine a color checker is not straight forward as each camera has to be
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characterized in some way so that the errors in gain and offset adjustment are properly

handled when readjusted for new light levels.

Sensor characterization leads to another potential interesting area for future work. In our

calibration procedure we have made no effort to characterize individual sensors

explicitly, but instead try to match all sensors equally well. Another approach would be

to detect and label outlier cameras or better yet to cluster cameras by their particular

types of color differences. By labeling individual sensors in this way it would be possible

to bin cameras and intelligently use cameras that agree well for certain applications or

pick cameras based on particular qualities. For example for a certain scene one might

know that the red channel’s needs to be of high accuracy, so only cameras with well

behaved red response would be used. Using sensor characterization to better calibrate

and better distribute cameras in an application specific way could be a fruitful way to

produce even higher quality results from inexpensive sensors.
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