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Abstract

Current alignment algorithms for registering range data captured from a 3D

scanner assume that the range data depicts identical geometry taken from different views.

However, in the presence of scanner calibration errors, the data will be slightly warped.

These warps often cause current alignment algorithms to converge slowly, find the wrong

alignment, or even diverge. In this research report, we present a method for aligning

warped range data represented by polygon meshes. Our strategy can be characterized as

a coarse-to-fine hierarchical approach, where we assume that since the warp 1s global, we

can compensate for it by treating each mesh as a collection of smaller piecewise rigid

sections, which can translate and rotate with respect to each other. We split the meshes

subject to several constraints, in order to ensure that the resulting sections converge

reliably.
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Chapter 1

Technique

Calvin: “I wonder why man was put on earth. What's our purpose? Why are we here?”

Hobbes: “Tigerfood.” - Bill Waterson

Optical 3D scanners typically scan an object from only one direction at a time, so multiple

scans are acquired in order to capture an object in its entirety. Assuming that the relative pose of these

scans are not known with precision (which 1s typically the case), the scans must be aligned before they

can be merged into a single mesh.

A general alignment pipeline consists of two steps. First, pairwise matching 1s performed, i.e.

for every pair of scans that overlap some fraction of their surface, we compute a pairwise registration.

Refer to [3] and [4] for two widely used pairwise registration techniques. Global registration is then

performed, 1.e. we align the set of scans from the pairwise registration results. A number of global

registration techniques have been proposed, such as those discussed in [2], [5], [10], and [13].

The ideal registration pipeline would be robust to the errors introduced by 3D scanning

devices. One such source of error 1s noise, and indeed, many previous techniques are robust to

moderate amounts of noise. However, another possible source of error is warp. If the geometry of the

scanner used to acquire the range scans is even slightly miscalibrated, or becomes miscalibrated as a

result of prolonged use in the field, then significant systematic geometric displacement may be present

in the range data. Unlike noise, warpage is typically smooth, as well as monotonic (as opposed to

oscillatory). We assume in this paper that the form of this warp 1s not known.

Unfortunately, existing registration techniques fail to align scans in the presence of even slight

warping, since they compute only rigid transformations. In particular, pairwise ICP may converge to a

local minimum or oscillate between incorrect alignment results. Figure 1 demonstrates the failure of

ICP to align two scans captured under poor calibration. Similarly, in global registration, the scans may

converge to a local minimum, oscillate, or even in some cases diverge in shape. Figure 2 illustrates the

failure of global registration under incorrect calibration. There are several ways one might attempt to

solve the warp problem. One technique that can be used prior to acquiring the range scans is to

directly calibrate the scanner accurately. However, this 1s difficult with a large, reconfigurable

scanner, especially if it is deployed in the field like the one used in the Digital Michelangelo project

[9]. One can alternatively endeavor to learn the warp by self-calibration of the range scans. We

attempted this approach, by locating corresponding point-pairs on overlapping pairs of scans, then

expressing each of these points in terms of our particular 21-dimensional scanner space. Using a non-

linear optimization system, we then attempted to solve for the scanner parameters. However, the

degrees of freedom we considered are not fully independent; thus the system is ill-conditioned.
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Figure 1. An example of two meshes that exhibit warp. Top left: Two scans acquired under correct calibration; average

point-to-plane error over 200 corresponding point-pairs is 0.13 mm. Bottom left: a depth disparity map of the face of the

angel (black indicates 0 mm depth disparity between the meshes and white 1.0 mm disparity). Top right: the same 2 scans

aligned under simulated incorrect calibration; the average point-to-plane error over 200 point-pairs is 1.81 mm. Bottom

right: a depth disparity map of the face. The predominance of white areas shows misalignment on the order of 1.0 mm in

many areas. In the Digital Michelangelo Project [9], we often saw this much misalignment due to miscalibration of our
scanner.
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>“

Figure 2. A multi-mesh set exhibiting warp. Top: the scans were acquired under correct calibration, and properly form a

closed loop. Bottom: the scans are misaligned due to warp from scanner miscalibration. Inset: 4 mm misalignment

between 2 scans (colored different shades of gray). Misalignments during global registration are typically larger than those

seen during pairwise alignment because poor pose from even only a single mesh can be propagated to all of its pairwise

partners.

Another class of solutions to the warp problem involves introducing a compensating warp into

the meshes themselves. There are several options. First, one could fit a low-order polynomial

function to the warp. This approach has been proposed for 2D image data in order to produce image

mosaics [12]. As a 3D analogue, one can conceive of locally warping overlapping regions of meshes

to improve their fit. We are aware of two techniques for fitting a warping function in 3D. Szeliski

and Lavallee proposed using an octree-spline to warp a mesh to fit to another [14]. We discuss using
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this technique as an extension to our method in Chapter 3. We are also aware of work by Bernardini

on conformance smoothing [personal communication].

There are two drawbacks to fitting a warping function. First, it introduces many degrees of

freedom, and thus may be difficult to control. Second, fitting is likely to be slow, mainly because ICP

1s an optimized technique for the special case of rigid alignment.

Our solution therefore is to use a piecewise rigid compensating warp, in which each mesh is

cut into a set of overlapping regions, which are allowed to translate and rotate relative to each other.

The resulting set of regions, each with their own translation and rotation, constitute a piecewise rigid

approximation of the (unknown) curved warp. Since this involves solving an ill-conditioned non-

linear optimization for which there 1s no known direct solution, we instead use an iterative solution.

An iterative solution adds many degrees-of-freedom, so to improve the robustness and convergence

speed of our algorithm, we perform this cutting in a coarse-to-fine manner. While we have used this

method only on polygon meshes from range data, it 1s generally applicable to meshes with arbitrary

topology, and to sets of points without connectivity (i.e. point-clouds) as long as normals are defined.

Section 1.1 discusses our algorithm in further detail. There are several smaller algorithmic design

decisions (e.g., how to subdivide meshes and how to size the overlaps) that we will address further on
in Section 1.2.

1.1 Overview of Registration Pipeline

Our strategy for aligning warped meshes is to iterate over aligning the set of meshes using our

previous alignment techniques, followed by splitting those meshes that exhibit the worst alignment

error into overlapping sub-meshes, thereby allowing them to act independently in the subsequent

alignment/dicing iteration. Figure 3 contains the pseudocode for this algorithm.

// Given: set of meshes S

// Let I equal set of corresponding points

a. loop until alignment error < e€rroO¥esired

b. for every overlapping P, Q in S,

C. palrwise align (P, Q)
d. T.add (sample (P, Q correspondences)

e. end for loop

f. global registration(s, I)
g. for (1=0:numpalrs to dice)

h. [Pyorst, Qworst] = worstalignedpair (S)
1. [Pq, Ps] = dice (Pyorst)

J. 1f (!dicedPyorst successfully) break
k. [Q1, Qo] = dice (Quorst)

1. 1f (!dicedQuorst successfully) break
m. S.add (Py, Py, Qi, Q2)

n. S.remove (P), S.remove(Q)

o. end for loop

p. 1f no new meshes added to S, break

g. end loop

Figure 3. Pseudocode for aligning warped meshes

Alignment (steps (a)-(1)):

We begin each iteration of the loop in (a)-(p) with pairwise aligning every overlapping pair of

meshes P and Q in the set of meshes S in steps (b) and (¢). The prevailing method used to rigidly

align two meshes based on their geometry is the Iterative Closest Point (ICP) algorithm, originally

proposed by Besl & McKay [3]. The algorithm finds corresponding points between P and Q, then

uses a closed-form method to find a rigid-body transform that minimizes an error metric between the
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corresponding point-pairs. In each subsequent iteration, the algorithm identities new corresponding

points, then recomputes the rigid-body transform. This process continues as long as the error

improves. ICP must be initialized with a rough approximation of the true alignment. There are

several variants of the ICP algorithm that employ differing error metrics and methods of identifying

corresponding points. For a study of these variants, refer to Rusinkiewicz’s analysis [11].

In the Digital Michelangelo project (described in Levoy, ef al. [9]), we used a variant of ICP

devised by Chen & Medioni [4]. In this variant, the alignment error 1s defined as the sum over the set

of uniformly sampled corresponding point-pairs of the squared distance from the first point to the

plane tangent to a normal defined at its corresponding point. More recently, we devised two

improvements on Chen-Medioni. Instead of uniformly sampling points on P and Q, both

improvements are non-uniform sampling strategies that sample at a higher rate in areas that exhibit

more features, and less in areas that appear planar. The first sampling strategy, termed normal-space

sampling, was formulated by Rusinkiewicz in [11]. This algorithm chooses sample points such that

their associated normals more uniformly populate the sphere of directions. The second strategy

chooses points based on the covariance matrix between P and Q. This algorithm is described in our

companion paper [6].

In step (d), a sampled subset of the corresponding point-pairs found in (c) are added to a set of

corresponding point-pairs I. Then in (f), we compute a global registration over S, based on this set of

point-pairs. Many global registration techniques have been proposed. Bergevin, ef al. [2] iterates

over computing a rigid-body transform for each mesh separately, then applying the set of transforms

simultaneously. Stoddart & Hilton [13] attach imaginary springs between the points in each pair of

correspondences, and then minimize the energy measure in the resulting dynamic system. Pulli [10]

uses pairwise matchings as constraints to incrementally register meshes to a growing set, and includes

a backtracking step when the error becomes undesirably large. Fusiello, ef al. [5] diffuse the error

evenly over pairwise rotation and translation results independent of the locations of the corresponding

point-pairs, to increase speed of the algorithm.

In the Digital Michelangelo project, we used Pulli’s algorithm. Pulli’s algorithm attempts to

diffuse alignment error evenly over the set of meshes by repeatedly applying Horn’s method without

recomputing corresponding point-pairs, because doing so is computationally expensive, as Pulli

argues.

Since Pulli’s algorithm is a least-squares method, the number of corresponding point-pairs we

sample and add to I for any given mesh-pair is proportional to how much relative motion between the

meshes in the pair will affect the residual error. Thus, the number of point-pairs sampled is inversely

proportional to how much the meshes in the pair will be allowed to move relative to each other during

global registration. There are a couple of sampling strategies that can be used for these point-pairs.

First, we can take into account the same number of point-pairs for every mesh pair, and hence, relative

motion in every mesh-pair is penalized evenly. However, we choose not to do this, because we would

like to penalize relative motion between mesh-pairs differently depending on how well they form a

“lock-and-key” (i.e. how deep and well-defined the global minimum in the error landscape 1s). We

wish to let certain mesh pairs, which do not have many features in the overlap region, slide relative to

each other, while we simultaneously constrain the motion of other mesh-pairs which are well-featured

in the overlap region. In order to accomplish this, we set the number of point-pairs we add to I for a

given mesh-pair proportional to the stability measure for the overlap region given by the method in
[6].

Dicing (steps (g)-(0)):

Finally in (g)-(0), we dice some of the meshes in S into halves. We must first decide how

many meshes to dice (i.e. how to set numpairstodice in (g)). Dicing a mesh introduces
additional degrees of freedom into the system, so the control we have over the compensating warp we
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are introducing 1s inversely proportional to the number of meshes we dice. Since we would like as

much control as possible, this argues for dicing fewer meshes. However, dicing fewer meshes means

we may have to run more iterations of our algorithm, which means repeating the (expensive) rigid

alignment steps. Hence, we typically set numpairstodice to one-quarter the number of
original meshes.

A second question we must address 1s which meshes to dice. We could choose meshes based

upon known scanner warps. However, one of our assumptions is that the warp 1s unknown. Another

option is to choose meshes based on the modes of deformation of the system. This 1s an area of future

work. Still another option is to use a greedy algorithm to select the pair of meshes exhibiting the

worst alignment error. This 1s what we chose to implement; the meshes are selected in this manner in

(h).

Then in (1) and (k), we dice the meshes we selected. Section 1.3 discusses our mesh

subdivision algorithm. We add the new meshes to S in (m) and remove the old meshes from S in (n).

Then if the alignment error of the system is lower than the alignment error desired, we halt the

algorithm. If not, we iterate again.

One caveat to note is that we designed constraints on the geometry and size of the diced

sections we create (also discussed in the next section) in order to ensure that the compensating warp

introduced in the system is controllable. Thus it may not always be possible to subdivide the

particular meshes we chose in step (h) because the mesh 1s too small or the overlap is unstable. Both

are explained in Section 1.3. Steps (J) and (1) check whether the meshes were subdivided successfully.

If they were not, we could simply halt the algorithm. However, we may have already added new

meshes to S in previous dicing iterations of (g)-(0). Hence, we instead break out of the dicing loop,

and check if we added new meshes to S (i.e. if we were able to dice any meshes). If we did, we check

the alignment error, and if it is still greater than our desired threshold, we loop back into the rigid-

alignment process in (b). If S does not contain any new meshes, we halt the algorithm.

1.1 Hierarchical Splitting of Meshes

In this section, we describe our mesh subdivision algorithm and the constraints we designed to

ensure that we can control the compensating warp we introduce.

1.1.1 Subdividing a mesh

To subdivide a mesh M into two regions M; and M; (as in steps (1) and (k) of the pseudocode

in Figure 3), we divide its oriented bounding-box B into two overlapping boxes B;, B, along the

longest dimension of B, as shown in Figure 4. B; and B, will become the oriented bounding-boxes

for M; and M; respectively. The vertices and triangles that B; encompasses become M;, and the

vertices and triangles that B, encompasses become M,. In any single iteration of our alignment

pipeline, we dice both meshes in a preselected number (num pairs todice in step (g)) of mesh
pairs.
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Figure 4. Our subdivision strategy illustrated on a sample mesh M. M is first subdivided along the horizontal direction into

M, and M,. Submesh M, is then later split horizontally again. The right child is determined to be unstable, so splitting stops.

The left child is later split vertically.

Note that Figure 4 is a binary tree, and that the manner in which the tree is traversed

determines how each mesh is diced during the course of our algorithm. If we wish to introduce the

same number of degrees of freedom to each mesh, we can traverse the tree in a breadth-first manner,

in which the original mesh will always be represented by roughly evenly sized regions. Alternatively,

if we wish to warp meshes one at a time, we can traverse the tree depth-first so that each region is

diced fully before we consider another. We do neither. Instead, we use a greedy algorithm with

respect to depth in which meshes are considered equal candidates for dicing regardless of their level

on the tree. We conjecture the greedy algorithm will out-perform both breadth- and depth-first

traversals. In the pseudocode, no special action 1s needed for this particular coarse-to-fine strategy.

In order to ensure convergence, we introduce some constraints when subdividing the mesh.

Shape of regions: Scanner warp is difficult to measure, especially in the field (as unfortunately was

the case in the Digital Michelangelo project), so we make two simplifying assumptions about the

nature of these warps. First, we assume that it 1s isotropic in all directions. Hence, we dice meshes

along their longest oriented bounding-box direction so that in the limit the regions will have an even

aspect ratio. Second, we assume that the warp 1s spatially uniform across the original mesh.

Therefore, we are equally willing to subdivide.

Minimum size of regions: The original meshes will (most likely) differ in size. Hence, we control

the compensating warp we introduce by the size of each region, not by the number of regions into

which we dice each mesh. Every time we dice a mesh, we would like to minimize the number of

degrees of freedom introduced, as well as minimize the residual error. Unfortunately, these two goals

argue for opposing constraints on the size of the regions. In order to minimize the degrees of freedom,
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we should create large regions. However, to minimize the residual error, we should create small

regions. Fortunately, we already minimize the rate at which we introduce degrees of freedom into the

system by taking a hierarchical approach. Thus, we are free to create small regions. But since

residual error is proportional to scanner noise, which is proportional to mesh resolution, we need to

Impose a minimum region size that is proportional to mesh resolution. We currently set the minimum

size equal to mesh resolution. In practice, the meshes are usually not (in our experiments) diced that

finely because they are not geometrically stable, as explained in [6].

1.1.1 Sizing the overlap

In addition to constraining the minimum region size, we also need to design constraints for

creating the overlapping regions within a warped mesh such that their movement in relation to each

other during alignment will be well controlled. From a mechanical point of view, we can view the

overlap between two meshes as a hinge. The strength of the hinge between two meshes is proportional

to the following two quantities.

1. Relative size of overlap region: In order to ensure the compensating warp 1s controlled, we

should avoid excessive motion of the regions relative to each other. As Figure 5 illustrates,

corresponding point-pairs between two regions with the same relative rotation will have longer

distances and hence a higher squared error if the overlap region is larger. Hence, to prevent excessive

relative motion, we should create large overlaps. However, we would like to introduce some warp,

which means we need to allow a certain amount of relative motion. This argues for a smaller overlap

region. We use an overlap size that 1s 40% the size of the original meshes (i.e., we set the volume of

the overlapping region’s oriented bounding box to 40% the volume of B).

(a)
! —» lower error

smaller overlap

(b)

oShigher error®--------------@

larger overlap

Figure 5. Example showing that overlap size determines the “stiffness” of the hinge between 2 overlapping meshes during

global registration. The meshes in (a) and (b) have the same relative rotation, but since the overlap in (b) is larger than in

(a), the point-to-plane error in (b) is higher. Thus, the hinge is (b) is stiffer than in (a).

2. Presence of features in the overlap region: Another factor that affects the strength of the hinge

between two meshes is the presence and type of features present in the overlap area. There are 3

common types of features we may see in any given area of a mesh. First, the area may be planar,

which means our alignment error metric will detect translation errors in z (perpendicular to the plane),

but not x-translations, y-translations, or spin about the z-axis. Second, the area may be planar and

noisy. This case is even worse than the first, because in the presence of noise the normals may point

in slightly incorrect directions, causing the error landscape to have local minima. Third, the area may

have stable “lock-and-key” features. With such features, the error landscape for that area will have a

deep, well-defined global minimum. Hence, ideally we would like to create overlap regions in areas

that have such “lock-and-key” features.
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To achieve this, we could analyze the normals of the corresponding point-pairs in a manner

similar to normal-space sampling [11]. If the normals sufficiently populate the sphere of directions

(specifically, if they create a 3D basis), the mesh pair will be stable during alignment. Alternatively,

we could conduct a full stability analysis by analyzing the eigenvalues of the covariance matrix

between the two meshes. This idea 1s explored in our companion paper [6]. At present, we use a full

stability analysis, in which an overlap region is only created in areas with a minimum eigenvalue

above a predetermined threshold.

1.1.1 Deciding distribution and number of point-pairs

After subdividing the mesh, we must determine how to sample the corresponding point-pairs

in the overlap region for use in global registration, to ensure that the compensating warp we introduce
1s correct.

There are several options for choosing a distribution of sample point-pairs. The first is to use a

uniform distribution. However, Rusinkiewicz showed that a major disadvantage of using uniform

distribution is that some features may be undersampled, leading to an inability to correctly determine

components of the relative rigid-body transformation [11]. Thus, a better option 1s to use normal-

space sampling, also proposed in [11]. However, normal-space sampling may not sufficiently

minimize rotational uncertainty in registration, so an even better option is to use covariance-based

sampling [6]. In the present paper, we use this covariance-based approach.

The number of corresponding point-pairs chosen is also important. As we said in the

beginning of Section 1.2.2 on sizing the overlap, the overlap between two meshes can be considered a

hinge. We would like to keep the compensating warp controlled; thus, we would like to create stiff

hinges between regions originating from the same mesh. The global registration method we use is a

least-squares method. Thus, a higher sampling of the overlapping region between two meshes will

constrain their motion to a higher degree, creating a stiffer hinge. Hence, we increase the number of

corresponding point-pairs we sample for global registration between overlapping regions originating

from the same mesh to a number larger than the number used between other overlapping meshes; in

practice, we typically double this number.

1.1.1 Eliminating biases due to overscanning

In areas of the object that were scanned more extensively than other areas, many meshes will

overlap that area, and hence more point-pairs from that area will be considered during global

registration. We believe this bias 1s an underappreciated source of error in global registration

algorithms. This problem 1s compounded by our technique, because we effectively create additional

meshes, which will increase the number of point-pairs considered during global registration (even if

we did not sample double the number of point-pairs between regions originating from the same mesh).

The distribution of these new meshes over the area of the object may be uneven, and thus the

distribution of point-pairs over the object may also change unevenly.

To avoid this bias, our variant of global registration normalizes the number of point-pairs

based on the object. Ideally, we would like to normalize by surface area, but this 1s difficult to

implement. Hence, our approximation normalizes by volume. This 1s a good approximation if the

surfaces do not fold too quickly, which is true for scanned surfaces. Our strategy is to break the axis-

aligned bounding box containing the set of rigid meshes into voxels. Each voxel will only accept a set

maximum number of point pairs (we typically use 1000 points per voxel). Global registration is then
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run on this subset of the original corresponding point-pairs. Figure 6 displays results showing the

need for this variant of global registration.

\h : we >
4 SlyWi ir “

Figure 6. Global registration example showing the need for area-normalization. In the top image, the point-pairs were not

normalized. The object has 3-4 meshes overlapping in all but one area (denoted with a square). This area contains only 2

overlapping meshes, and as illustrated in the zoomed image, the meshes have separated. The bottom image illustrates our
result with area-normalization.
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Chapter 2

Results

“I'd like mornings better if they started later.”

- Garfield the cat (by Jim Davis)

In this chapter, we demonstrate our algorithm running on real data. In each case, we will

display the mesh resulting from aligning and merging the original (warped) meshes, and the mesh

resulting from applying a compensating warp. We evaluate the quality of our alignment by computing

the average of the 10% of point-pairs over the object that exhibit the greatest point-plane distance.

2.1 Results on sample Digital Michelangelo project data

Figure 7 shows a set of meshes from the Digital Michelangelo project capturing the face of

Michelangelo’s David. The top half shows a mesh resulting from aligning and merging the face under

incorrect calibration. The inset exhibits a particularly noticeable artifact about the lips. Our error

metric computed over the original set of meshes that created this mesh was 1.15 mm. The bottom

displays the mesh resulting from adding compensating warp. The inset shows that the objectionable

artifacts present in the original mesh have now largely disappeared. Our error metric computed over

the diced set of meshes is roughly 0.8 mm. Both meshes were scanned at 0.5 mm resolution.

2.2 Results on sample Forma Urbis Romae project data

Figure 8 shows a set of meshes from the Forma Urbis Romae Project (refer to the project

website at http://graphics.stanford.edu/projects/forma-urbis). The Forma Urbis was a marble map of

the city of Rome carved during ancient times. During the fall of the empire, the map broke into

fragments, some of which still exist today. A set of 4 scans captures the top of fragment 033abc.

Figure 8(a) shows the mesh resulting from aligning and merging the 4 scans under slightly

incorrect calibration. Our error metric under incorrect calibration evaluates to 0.787 mm. Figure 8(b)

contains the mesh resulting from adding compensating warp. Our error metric now evaluates to 0.395

mm, a 2x reduction in the misalignment. The spacing between range samples in both meshes is 0.5
mm.

The inset in Figure 8(a) exhibits an artifact arising from misalignment error during global

registration. The lines are warped and blurred, and appear very different from the photograph

displayed. Our algorithm reduced this artifact; the result 1s shown in the inset of Figure 8(b). The

running times for each step of the algorithm executed on an Intel Pentium 4 2.80 GHz processor are

displayed in the table in Figure 9. The running times show that the time to dice each mesh at every

iteration 1s small compared to the expensive pairwise matching step.

Thus, in this Forma Urbis case, we have reduced misalignments by a factor of roughly 2x,

placing them close to the resolution of our scanner.
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Figure 7. Results on the face of Michelangelo’s David. Top: alignment and merging under incorrect calibration. The lips

exhibit gross misalignments on the order of 1.9 mm. Bottom: our results. The artifacts in the lips have been greatly
reduced.
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Figure 8. Results on a marble fragment of the Forma Urbis Romae. Left. computer rendering of mesh from alignment and

merging under incorrect calibration. Left inset: blurring of the map due to incorrect alignment. Plot shows that a sample

incision is shallow (at a depth of 0.25 mm) and incorrectly shows two minima. Right: results of our technique on same input

scan. Right inset: the blurring is greatly reduced, and the depth of the incision measures 0.5 mm, which is more consistent

with the approximate depth of the Forma Urbis incisions.
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Figure 9. Breakdown of running times by step for Forma Urbis case. We begin with 4 meshes, which we

break into 37 scanner sweeps. Times are given in minutes:seconds. The minimum size of the resulting

meshes was 15 cm along the longest dimension. The size of the original fragment is approximately 85 cm

by 120 cm.

2.3 Discussion of results on sample Forma Urbis Romae project data

One of the motivating goals behind this work is to automatically align the scans in

the Forma Urbis Romae dataset to a high degree of precision, in order to produce high-

resolution 3D models of all of the fragments. We wish to add these high-resolution 3D

models to a fragment database already containing historical information and color data of

cach of the fragments (refer to http://formaurbis.stanford.edu/docs/FURdb.html); this

database will eventually be made publicly available and serve as a resource for scholars.

The majority of the fragments scanned with our custom-built scanner (used on the

Digital Michelangelo project and modified for the Forma Urbis Romae project) remain

poorly aligned, with errors typically on the order of a few of millimeters. Misalignments

usually manifest themselves as false geometry in the final merged mesh. Unfortunately,

false geometry can be difficult to distinguish from the true geometry representing the

actual shape of the object, and thus may be confusing or misleading to scholars using the

3D models to study the fragments. Thus, it is clear that the alignment of the scans must

be improved before they can be merged into final models and included in the database.

However, there are 478 unaligned fragments, making it prohibitively time-consuming to

improve the alignment of all the fragments manually. Thus, it was hoped that an

automatic procedure to align the scans could be formulated.

The method discussed in this paper has yielded a technique for automatically

aligning the scans capturing the top surfaces of these fragments. We have demonstrated

our technique on the top surface of one of the larger fragments in Section 2.2. Having

sufficiently accurate models of the top surfaces are of particular importance to scholars

because the map data itself was carved into the top surface.

However, the method discussed in this paper alone is insufficient to align the

complete models of the fragments. This is due to the fact that there are other problems in

the scans besides warp from miscalibration.

One of the major problems is grazing-angle data. Ideally, the scanner should

always be oriented perpendicularly to the surface being scanned. However, in some

scans, parts of the surface may be captured with the laser making an acute angle with the

surface. There are two complications that arise in these cases. First, all laser

triangulation scanners record poor data at oblique scanning angles because the laser beam

spreads out on the surface (refer to the appendix of [10]); second, subsurface scattering in

the marble compounds this problem by introducing bias and noise into the process of

sensing the spread-out beam [7]. Figure 10 demonstrates our measurement strategy for
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the Forma Urbis fragments. Most of the vertices in the scans capturing the upper and

lower edges were scanned at an oblique angle, making two out of the five scans for every

fragment problematic to align because the point samples and normals (which are derived

from the points) are unreliable.

There are two classes of techniques we could use to address this issue. We can

either try to fix the unreliable data, or we can discard it.

If we wish to try to fix the data, we could blur each vertex based on scan angle.

Before alignment, we could convolve each vertex with a blurring filter whose radius is

directly proportional to the scan angle. Since the normals are derived from the point-

samples, this would have the effect of blurring both the geometry and the normals. This
1s an area of future work.

If we wish to discard the unreliable data, we can discount, or alternatively

downweight, vertices captured at a grazing angle. We have developed and experimented

with some such techniques.

Specifically, we have implemented a scheme for discounting vertices, in which

vertices scanned with an angle greater than a predetermined threshold are discarded. The

scan 1s then retriangulated. However, it 1s unclear how the threshold should be chosen

since a low threshold may discard too much data, and a high threshold may allow too

much false data. In practice, as illustrated in Figure 10, we discard vertices where the dot

product between the normal and the scan direction 1s less than 0.65, which roughly

corresponds to an angle of 50 degrees. Another consideration 1s that since data is

discarded, holes may be present in the final mesh. These holes can either be ignored or

plausible geometry can be interpolated with a hole-filling algorithm.

pi BiA

7 Si Gi

Figure 10. Sample scan demonstrating our filtering technique. The scan on the right is the filtered version

of the scan on the left, where we filtered all vertices where the dot product between the normal and the scan

direction was less than 0.65, which roughly corresponds to an angle of 50 degrees. As this figure

demonstrates, much of the scan data is filtered out, meaning many of the vertices were scanned at an acute

angle to the surface and were thus unreliable samples.

Still another technique we considered is to downweight the unreliable data during

merging. Because we consistently used one particular measurement strategy (shown in

Figure 11), we know that the scans we labeled up and down exhibit unreliable points and

normals. Thus, after alignment, we can downweight these scans during interpolation to
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have a very low weight (the exact level of down-weighting does not matter), so that the

algorithm only uses data from these scans when it has no other choice. The difficulty

with this approach is that if misalignments are present, bulges can form where the top

scan ends and no longer overlaps the up scan (and analogously where the bottom scan no

longer overlaps the down scan). The bulges form because the scans are no longer

averaged when they overlap; instead, because of this weighting scheme, there is a

discontinuity (or large “step”) in the interpolation.

scan direction

up

"edge"

AE} "bottom"
Figure 11. Diagram showing our measurement strategy for the Forma Urbis Romae fragments. The

labeled lines indicate cross-sections of the scans that were taken. The top, bottom, and edge scans were

captured with the scanner oriented perpendicularly to the surface. The corners were captured with the

scanner angled at 45 degrees away from the normal to the top surface for the up scans, and 45 degrees

away from the normal to the bottom surface for the down scans. Because the up and down scans were

captured at an oblique angle, the points and normals (which are derived from the points) are generally

unreliable in these scans, making it problematic to align them correctly to the rest of the scan set.

A final alternative 1s to simply discard the up and down scans after alignment and

before interpolating the final mesh. For archaeological research on the Forma Urbis,

accuracy on the top surfaces is very important. Misalignments between the up and fop

scans typically cause false geometry (such as double incisions) in the final mesh. Thus,

while we would like to make our models as complete as possible, our first priority is to

make the top surfaces accurate. Hence, sometimes we are forced to trade off

completeness of our models for accuracy of the top surface by simply deleting the up and
down scans.

Figure 12 demonstrates each of these techniques on the scan set capturing the

shape of fragment #037Aac, and notes the common artifacts produced with each

technique. We have found that by using these techniques to align grazing-angle scans,

coupled with mesh dicing for the larger fragments, we have been able to align and merge
models for the Forma Urbis database.

However, for many fragments, the underlying problem of misalignment between

the top and edge surfaces remains regardless of the alternative chosen. In these

fragments, there seems to be not enough data to form the correct relationship between

these two surfaces. In the next chapter on Conclusions & Future Work, 1 will make some

recommendations specifically for the Forma Urbis project about this issue.
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In addition to the techniques discussed above, we could try to downweight

vertices gradually with scan angle; this down-weighting scheme could be implemented in

ICP or during merging. In ICP, we could change the sample rate smoothly with scan

angle. Alternatively, we could weight each vertex proportional to scan angle during

merging by setting a confidence value. We attempted this solution, but there are two

implementation blocks. First, VRIP works off an orthographic assumption, so the

confidence values for the vertices must be set prior to merging. Second, setting the

confidence prior to merging conflicts with our current implementation of accounting for

edge curl. Specifically, VRIP normally will discount vertices within a certain number of

edges away from the boundary since these vertices exhibit bias. However, if the

confidence of all vertices is set prior to VRIP, this functionality 1s disabled. Hence, the

implementation of these schemes 1s another area of future work.
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Figure 12(a). Mesh of Forma Urbis fragment #037Aac exhibiting misalignment artifacts from grazing-

angle scans. (This fragment is approximately 80 cm x 40 cm on the top, which is smaller than the size at

which we typically witness warp from miscalibration of our particular scanner.) Note the incorrect

geometry on the top surface, manifested by double-incisions.
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Figure 12(b). Results from filtering the scans by scan-angle. Note that there are still some faint double

incisions present. More aggressive filtering would eliminate these artifacts, but there would also be too

little data to align the fop scan to the up scan correctly.
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Figure 12(c¢). Results from downweighting the up and down scans during interpolation. The double

incisions are no longer present, but a 0.7 mm misalignment between the fop scan and the up scans has

caused a bulge on parts of the rim of the fragment. (A similar bulge exists on parts of the bottom rim of the

fragment.)

Figure 12(d). Results from deleting the up and down scans before interpolation. The double incisions are

no longer present, and there is no false geometry introduced, but there are significant holes in the final
mesh.
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Chapter 3

Conclusions & Future Work

“Don’t worry about the world coming to an end today. It’s already tomorrow in Australia.”
- Charles Schulz

In this paper, we presented a method for making mesh alignment techniques more

robust to scanner miscalibration. Previous methods that computed rigid transformations

only are robust to noise, but may fail or produce incorrect alignments in the face of warp.

We presented a method for introducing a minimal compensating warp in the mesh data to

allow convergence. This method does not require a specific characterization of scanner

warp, and 1s relatively simple to implement.

One limitation of our proposed method pertains to our choice of compensating

warp. We choose a piecewise rigid model that in the limit converges to a curved warp.

However, if scanner miscalibration introduced a warp that is not curved, this method will

not converge.

A second limitation of our method 1s that we do not guarantee that the shape of

the object converges to the correct answer. We introduce a controlled, minimal amount

of warp and ensure geometric constraints are met so that the resulting shape will not

diverge. However, without independent observations to constrain the shape of the object,

it 1s difficult to compare the shape resulting from our method with the actual shape of the

original object. In the Digital Michelangelo project, we obtained independent

measurements of several points on most of the statues scanned using a theodolite (a

surveying tool that locates points in 3-space). As future work, we can incorporate this

data as additional constraints on the shape of the object [1].

A third set of limitations pertains to the design of the algorithm. Currently when

creating sub-meshes, we set the overlap to be a fixed percentage of the oriented

bounding-box. However, this overlap may be of an incorrect size: it may be too large and

thus overconstrain the motion of its constituent meshes during global registration, or it

may be too small and may not constrain the motion of its constituent meshes enough.

Hence, it seems as though we should grow the overlap region until it contains enough

features to render the matching stable, e.g. using the machinery to analyze stability that

appears in our accompanying paper [6].

One intriguing area of future work lies in global registration itself. It seems

advantageous to redistribute the sampling of corresponding point-pairs in this step based

on a one mesh to many meshes stability analysis. Currently the point-pair distribution is

decided in ICP considering only a one-mesh to one-mesh stability relationship. However,
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during global registration we could consider the stability of a mesh in relation to all of its

overlapping partners, as shown in Figure 13.

B, § B,

<5y

L,
Figure 13. A diagrammatic example demonstrating the need for re-distributing the point-pairs in global

registration based on a one-to-many stability analysis. The parallel lines indicate features, e.g. incisions in a

Forma Urbis fragment. The features in any one of the B’s are insufficient to constrain A’s motion, but any

two are sufficient. For example, in B, the incisions are parallel to the x-axis, so the two meshes are

constrained in the y-direction, but are free to slide in x. Similarly for B, the meshes are constrained in a

single direction, but since this direction is different from B,, the two will form a 2D basis, constraining sliding

in the plane.

Also, as mentioned in the introduction, our method implicitly converges in the

limit to a curved warp. However, we could instead explicitly fit a warp function to our

data. We could first fit a spline to each of the meshes. The spline data would show us the

directions in which the meshes are being warped. Then if we subsequently ran the

technique discussed in this paper, we could modify the distribution of points to allow

movement to compensate for these known warps.

Finally, an improved measurement strategy can reduce the effect of warp and

generally increase the accuracy of alignment. As noted in Section 1.2.2, a set of meshes

can be viewed as a mechanical system. By analyzing this system, we conjecture that a

scheme for view-planning can be devised. Also, knowledge about the scanner itself, such

as which axes are less accurate than others, can help improve the measurement strategy.

Recommendations for the Forma Urbis project data

For the Forma Urbis project, it may not be possible to align the top surface to the

edge surface (and the bottom surface to the edge surface) for many of the fragments if the

data in the up and down scans is too unreliable. If techniques such as filtering the up and

down scans (which has been implemented) and blurring (which has not) do not fix the

alignment, two alternatives discussed in the previous section are to downweight the up

and down scans during interpolation or to delete the up and down scans before

interpolation.

In some cases, we may wish to produce two models of the fragment. We could

produce a lower-resolution model containing all of the scans, with the error distributed

evenly. This model could be used for matching algorithms that require judging the

thickness of the fragment or the angle of the top surface to the edge surface. Then, since

accuracy of the top surface is very important for this project, a high-resolution model

could be produced where the top surface is as error-free as possible. This second model

could be used for matching algorithms that require very accurate data on the incisions.
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