

Symmetry 2000 Hardware Maintenance

1003-54362-00

Symmetry 2000 Hardware Maintenance

1003-54362-00

Sequent Computer Systems, Inc.

Educational Services 15450 SW Koll Parkway Beaverton, OR 97006-6063 (800) 448-5295

All Materials Copyright 1991Sequent Computer Systems, Inc.

Table of Contents

	Course Description Welcome	iv V
1.	Product Overview Introduction System Features Industry Standards Self Check	1.3 1.5 1.7 1.10
2.	Architectural Overview S2000/200 System Diagram S2000/400 & S2000/700 System Diagram SSM Board SSM2 Board Processor Board Memory Board MBAD/MBIF DCC/OK Boards SCED CADM Self Check Sequent System Bus (SSB) SLIC Bus SCSI Bus VMEbus VMEbus VMEbus Boards MULTIBUS MULTIBUS Boards Peripherals Self Check	2.4 2.6 2.8 2.10 2.12 2.14 2.16 2.18 2.21 2.24 2.25 2.27 2.30 2.31 2.32 2.33 2.35 2.36 2.38

Table of Contents

3.	Hardware Configuration S2000/200 Cages, Buses S2000/400 with Expansion Cabinet S2000/700 with Expansion Cabinet System Board Identification MULTIBUS Board Indentification	3.4 3.9 3.16 3.24 3.26
	VMEbus Board Identification Lab - System Component Identification	3.27 3.28
4.	SSM Monitor System Startup Overview What is the Monitor? Lab - SSM Monitor Self-Paced Lesson	4.3 4.5 4.6
5.	Diagnostic Executive Diagnostic Executive Lab - Diagnostic Executive Self-Paced Lesson	5.3 5.5
6.	Hardware Replacement System Boards S2000/200 System Slot Usage S2000/400 System Slot Priorities S2000/700 System Slot Priorities Lab - Configuring System Boards VMEbus Boards MULTIBUS Boards Lab - MULTIBUS & VMEbus Boards System Console Lab - System Console and Modem	6.3 6.4 6.5 6.8 6.11 6.12 6.16 6.20 6.22

Table of Contents

	SCSI Devices GCR Tape Drive SMD Devices Lab - SCSI, GCR, SMD Power Supply S2000/200 Power Supply S2000/400 Power Supply S2000/700 Fans Lab - Power Supplies, Fans	6.23 6.25 6.26 6.29 6.30 6.31 6.33 6.37 6.38
7.	Site Prep and Installation Site Prep System Installation Steps Lab - Hardware Installation Installing SSM Software Lab - Software Installation	7.3 7.7 7.9 7.10 7.11
8.	Troubleshooting Diagnosing a Problem Normal Boot Operation Failure Mode Power-up System Log Lab - System Debug Standard Procedure Maintenance Contract	8.3 8.5 8.6 8.7 8.10 8.11

Symmetry 2000 Hardware Maintenance Course Description

Course Goals:

Provide students with a theoretical and practical working knowledge of the Symmetry 2000 hardware and the necessary skills to install, maintain and repair the Symmetry 2000 system.

Audience:

This course is designed for people who need to install, maintain, and service the Symmetry 2000 hardware.

Prerequisites:

Familiarity with computer hardware concepts and some experience maintaining computer hardware.

Duration:

4.5 days

Course Objectives:

During this course, each student will:

- describe the functions of the major hardware components of the Symmetry 2000 system
- initialize the system configuration and boot parameters
- execute the hardware diagnostics
- perform startup and shutdown procedures
- install and configure the hardware system
- install and configure various peripherals
- identify, remove, and replace the Field Replaceable Units (FRUs) of the Symmetry 2000 system

Welcome

Instructor Introduction

- Name
- Background
- Expectations

Student Introductions

- Name
- BackgroundExpectations

Schedule

- Breaks
- Lunch
- Start/stop time

Facilities

- Building access
- Messages
- Telephones
- Restrooms
- Smoking policy
- Parking
- Emergency exits

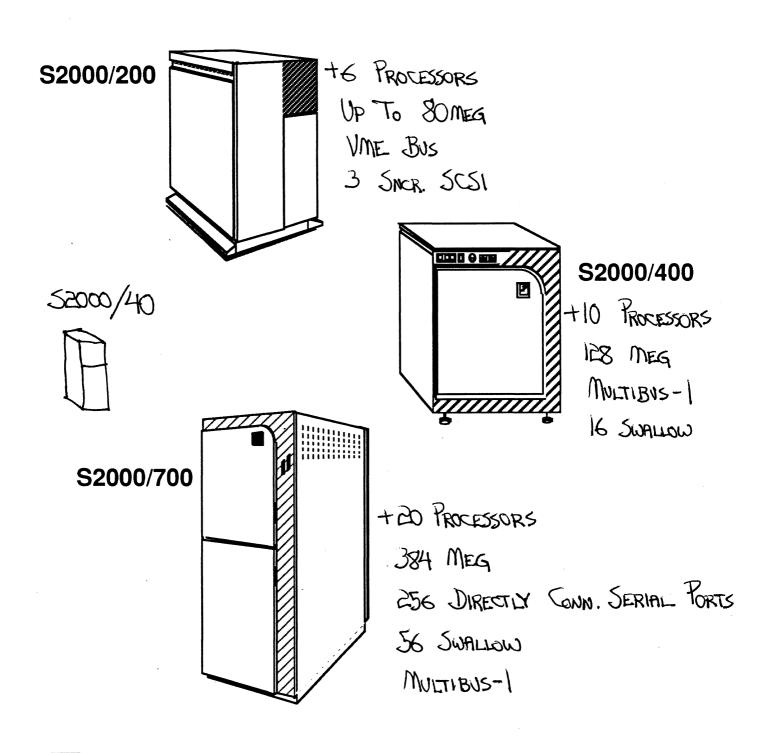
Chapter 1 Product Overview

Product Overview Objectives

You will:

- a. list two features of the S2000/200 system
- b. list two features of the S2000/400 system
- c. list two features of the S2000/700 system

Introduction


• Sequent manufactures high performance systems

STARTED IN 1983

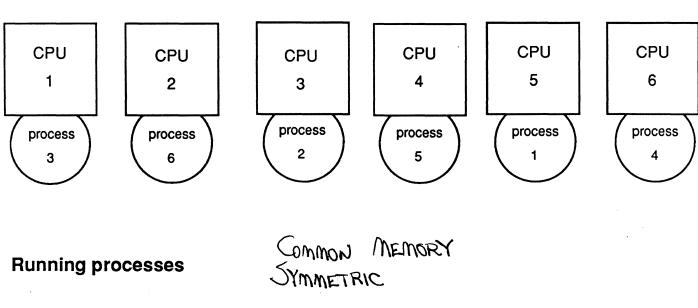
- Family line of products
 - small, 16-user, single-processor system
 - large, 256+ users, 32-processor system
- Binary-compatible between systems
- Interconnectivity between systems
- Industry standard hardware

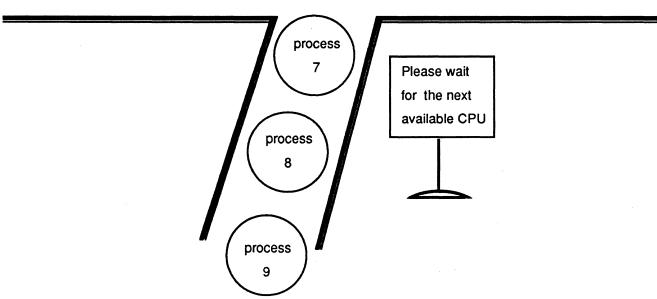
SCSI Bus

Symmetry 2000 Product Line

System Features

- Symmetry systems offer:
 - Multiprocessing MULTIPLE CPUS WORKING TOGETHER-
- Multitasking/Multiuser EACH JOB ITS SPLIT INTO
 ONE JOB BROKEN UP
 PIECES
 OVER MULTIPLE CPU'S
 - Industry standards INTEL 486 VINE BUSS
 SCSI
 SMD DRIVES
 - Expandable
 - UNIX-based operating system System 5 Base
 DYNIX PTX


 MUTIPROGRAM- MULTIPLE PEOPLE RUNNING DIFFERENT


 PROGRAMS AT THE SAME TIME-

RELIABLE - 1 FAILURE A YEAR MTBF

Multiprocessing

Process Distribution

Processes waiting for CPU time

Industry Standards

- Intel 80486 microprocessor
 HIGH PERFORMANCE FLATING POINT BUILT IN
- · VMEbus FASTER 32 BIT
- MULTIBUS 400 ¢ 700 MODELS 16 BIT
- SCSI bus and devices
- Ethernet
- UNIX operating system
 _{DYNIX} Pτχ 1.3

Expandable

- Wide range of expandability within a system
- Expand processing power without changing system cabinets or operating system
- Increase system memory
- Expand storage capabilities
- Increase I/O capabilities

UNIX-based Operating System

Supports SystemV or Berkeley versions of UNIX

Complete UNIX system ports

Support for multiprocessing

Self Check

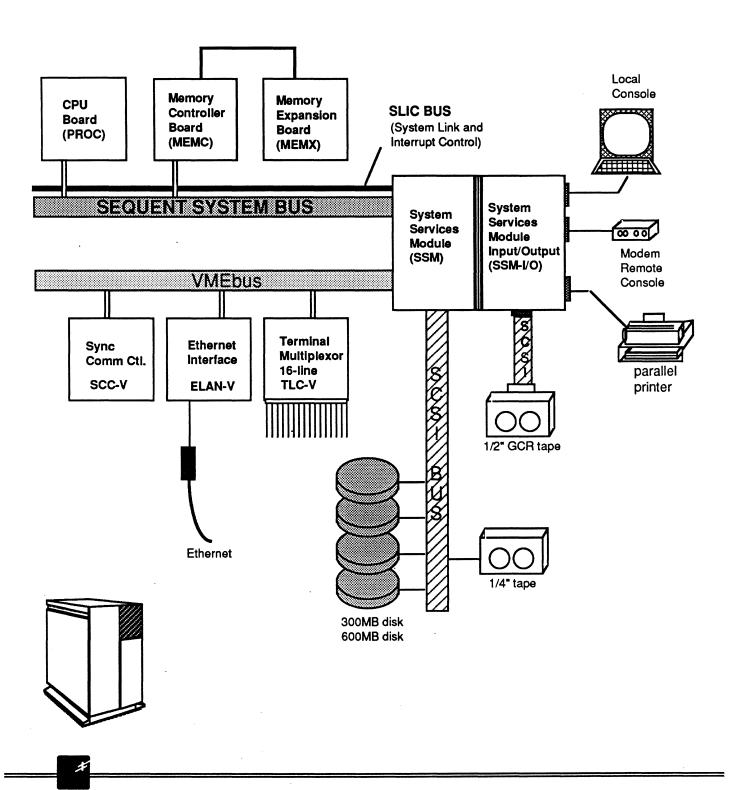
1. Write the letter of the correct answer in the blank.

E CPU used in Symmetry systems	Α	DYNIX/ptx™
	В	Ethernet
B Industry standard medium for inter-system communication	С	NSC 32032
inter system communication	D	MULTICS
A Sequent's version of UNIX	Ε	Intel 80486
	F	Expandable

2. List two features of each Symmetry 2000 system.

Chapter 2 Architecture Overview

Architecture Overview Objectives


You will:

- a. identify the major functional blocks of a S2000/200, S2000/400 & S2000/700 from system block diagrams
- b. describe the function of the following system boards:
 - SSM2 (System Services Module)
 - SSM (System Services Module)
 - PROC (Dual Processor Board)
 - MEMC (Memory Controller)
 - MEMX (Memory Expansion)
 - MBAD (MULTIBUS Adapter)
 - DCC (Dual-channel controller)
 - SCED (Ethernet board)
 - CADM (Clock, arbitration board)
- c. describe the function of these buses in an S2000 system:
 - System bus
 - SLIC bus
 - SCSI bus
 - VMEbus
 - MULTIBUS

Architectural Overview Objectives

- d. describe the function of the following MULTIBUS boards:
 - MBIF (MULTIBUS Interface board)
 - TLC-M (Terminal multiplexor board)
 - SCC-M (Synchronous Communications Controller)
 - PPC (Parallel printer controller)
- e. describe the function of the following VMEbus boards:
 - ELAN-V (Ethernet Interface Board)
 - TLC-V (Terminal Multiplexer)
 - SCC-V (Synchronous Communication Controller)
- f. describe the function of the following peripherals:
 - SCSI Disk
 - SCSI 1/4" Cartridge Tape Drive
 - SCSI 1/2" Tape Drive
 - SMD Disks

S2000/200 System Diagram

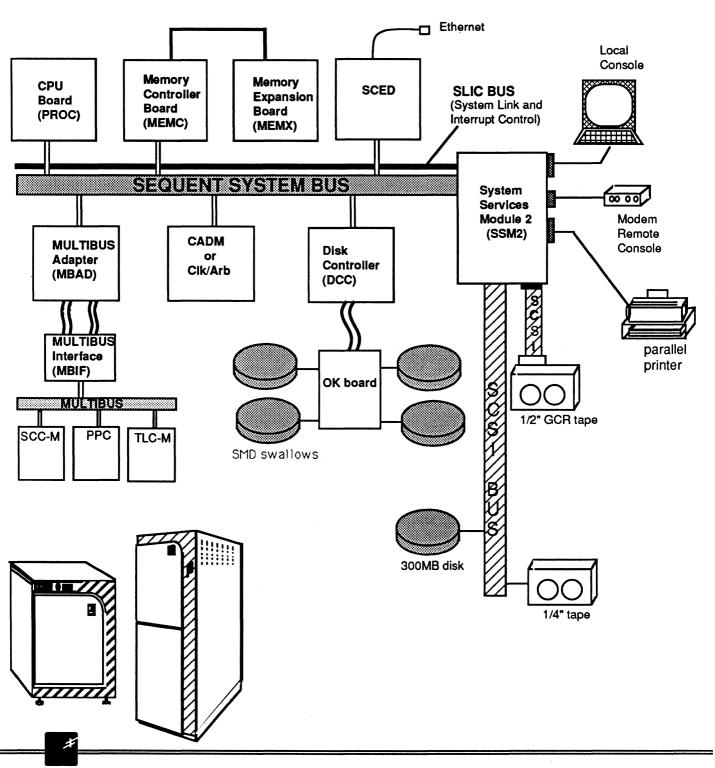
S2000/200 **System Components**

System boards

_	System Services Module	SSM
-	Processor Board	PROC
-	Memory Controller (8MB or 16MB)	MEMC
-	Memory Expansion (24MB or 48MB)	MEMX

Buses

-	Sequent System Bus	SSB	2B 8000
-	System Link Interrupt Control Bus	SLIC	
	Small Computer Systems Interface	SCSI	
	VMEbus	VMEb	us


VMEbus boards

-	Ethernet LAN Controller	ELAN-V
-	Terminal Line Controller	TLC-V
-	Synchronous Comm. Controller	SCC-V

Peripherals

- SCSI 1/4" tape drive SCSI 5 1/4" disk drives
- SCSI GCR 1/2" tape drive

S2000/400 & S2000/700 System Diagram

S2000/400 & S2000/700 **System Components**

System boards

-	System Services Module 2	SSM2
-	Processor Board	PROC
-	Memory Controller (8MB or 16MB)	MEMC
-	Memory Expansion (24MB or 48MB)	MEMX
_	Dual Channel Disk Controller	DCC/OK
-	MULTIBUS Adapter	MBAD
-	Ethernet Controller	SCED
_	Clock Arbitration Board	CADM

Buses

-	Sequent System Bus	SSB
	System Link Interrupt Control Bus	SLIC
	Small Computer Systems Interface	SCSI
-	MULTIBUS	MULTIBUS

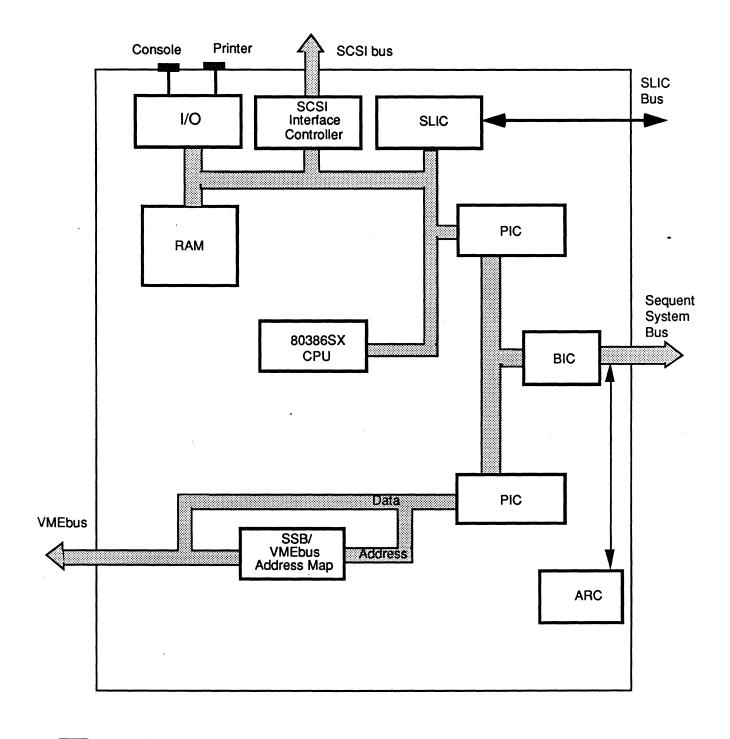
MULTIBUS boards

-	Terminal Line Controller	TLC-M
-	Synchronous Comm. Controller	SCC-M
_	Parallel Printer Controller	PPC

Peripherals

- SCSI 1/4" tape drive SCSI 5/14" disk drives
- SCSI GCR 1/2" tape drive SMD disks

SSM Board


- Resides only in the S2000/200 system
- Two board set
 - SSM
 - SSM-I/O
- Two main functions:
 - system initialization

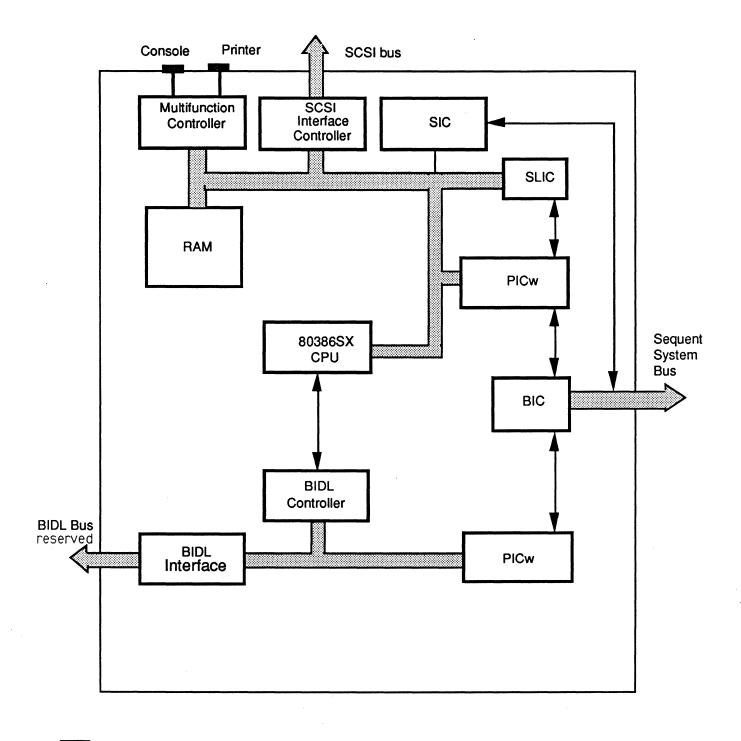
SSM self-test boot phase
Booting of operational firmware
Diagnostic processor
System configuration
Testing system configuration
Booting of operating system

- run-time responsibilities

Sequent system bus functions On-board communications functions VMEbus interface

SSM Board Block Diagram

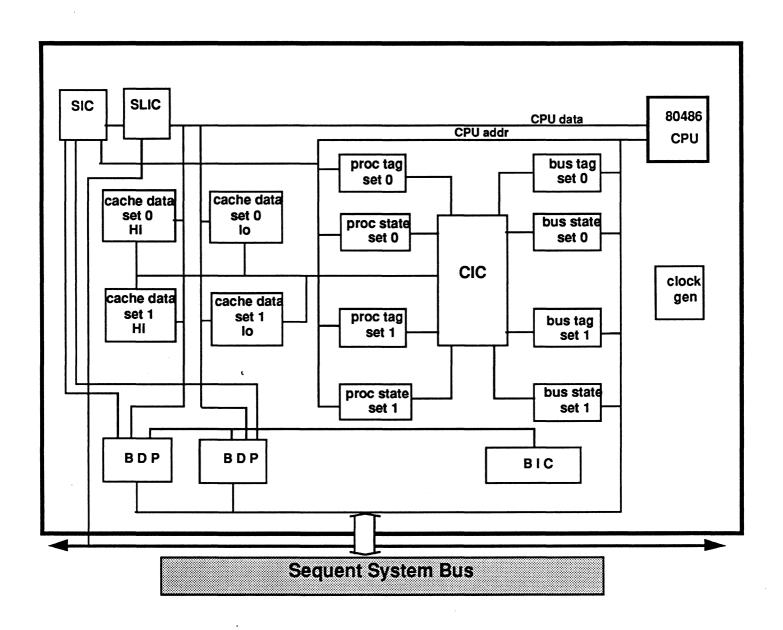
SSM2 Board


- Resides in the S2000/400 & S2000/700 only
- Single board
- Two main functions:
 - system initialization

SSM self-test boot phase Booting of operational firmware Diagnostic processor System configuration Testing system configuration Booting of operating system

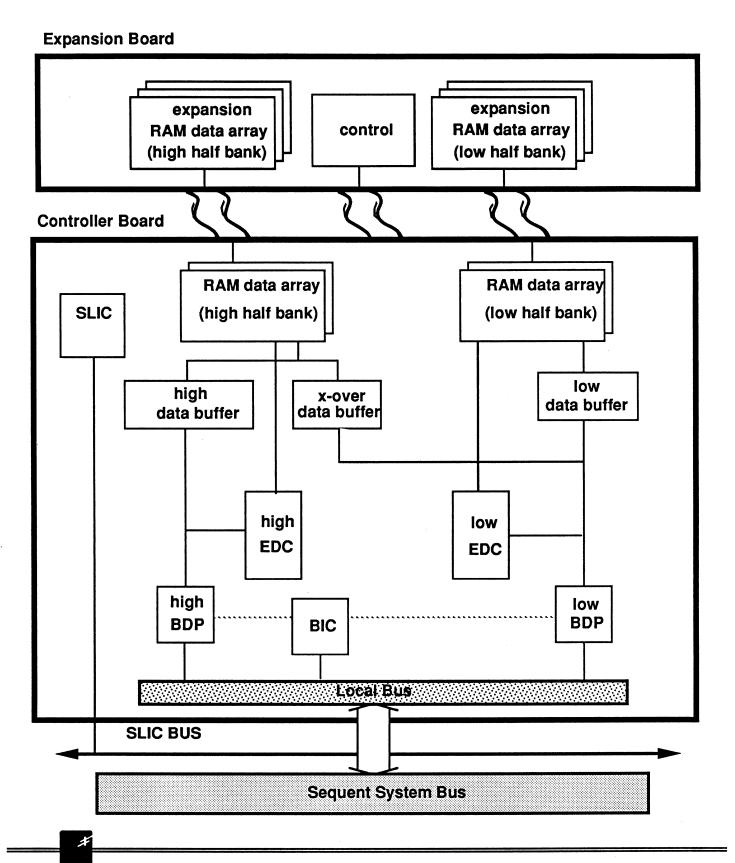
run-time responsibilities

On-board communications functions SCSI bus interface


SSM2 Board Block Diagram

Processor Board

- Based on Intel 80486 processors
- Two CPU's per board
- 25MHZ clock
- 512k byte cache per processor
- Supports 64-bit operations
- Memory management


Processor Board Block Diagram

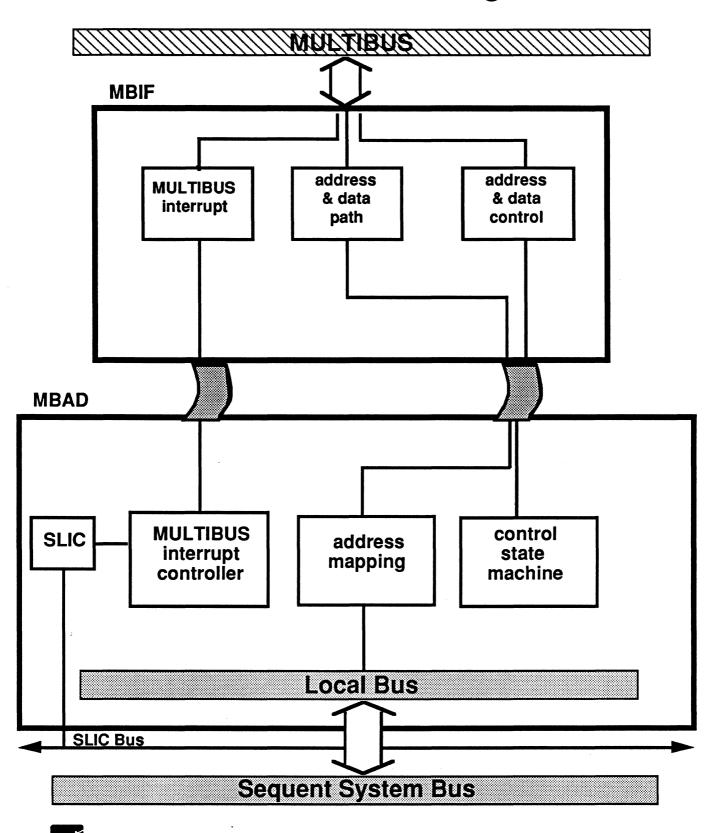
Memory Boards

- 8MB or 16MB of RAM on Controller Board
- 24MB or 48MB Expansion Board 128 MB Single Bit Error CHECK SYNDROME WORD / PARITY
- 64-bit Data Bus
- Single-bit error detect and correct
- Double-bit error detect (no correct)
- Error scrubbing during refresh

Memory Set Block Diagram

MBAD/MBIF

- Resides only in the S2000/400 & S2000/700
- Two-board set

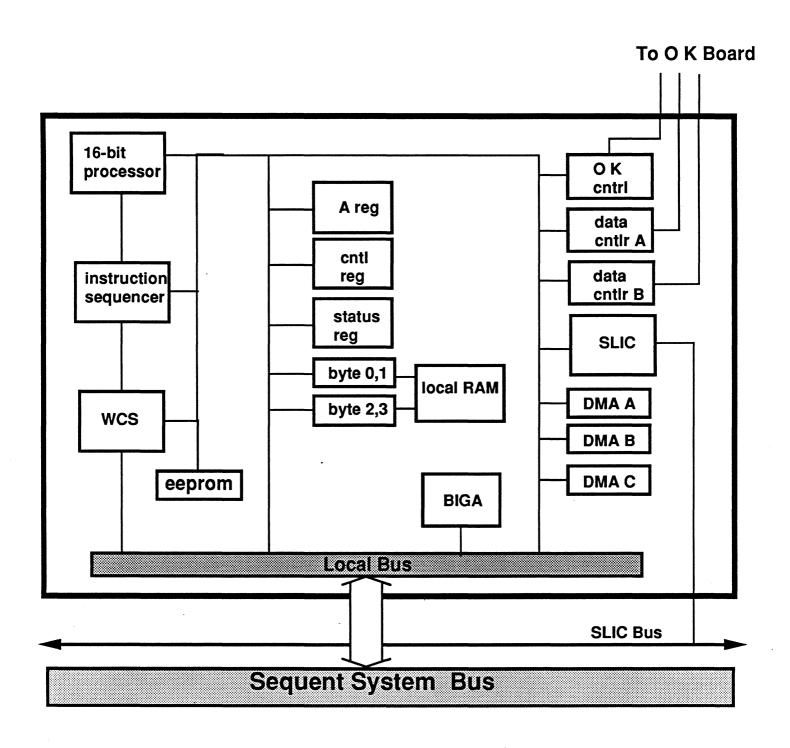

MBAD in Sequent card cage

interfaces with Sequent system bus

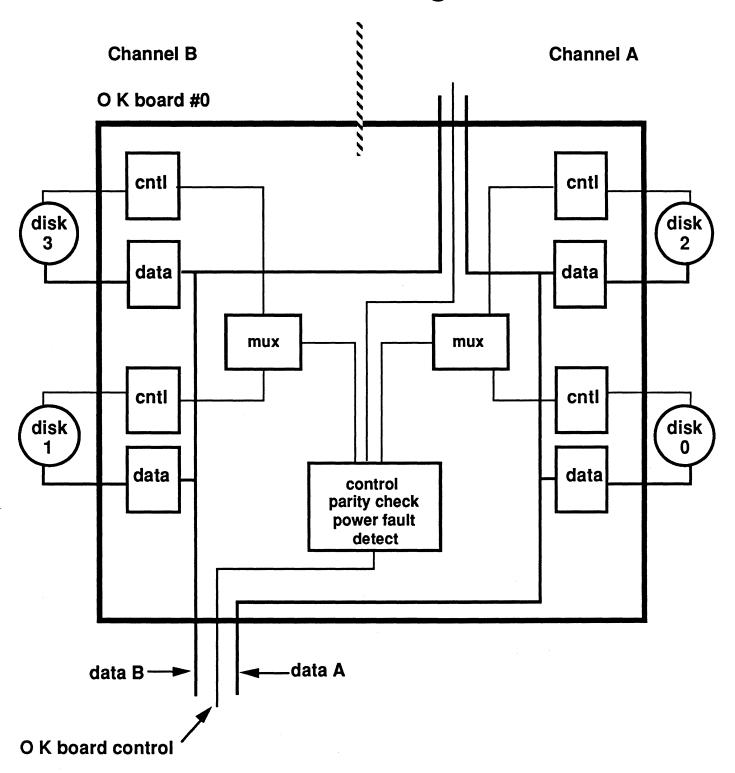
MBIF in MULTIBUS cage

- resides in the MULTIBUS expansion cabinet
- Euro-card format
- Interfaces Sequent system bus to MULTIBUS
- Boards are connected by external cabling

MBAD/MBIF Block Diagram

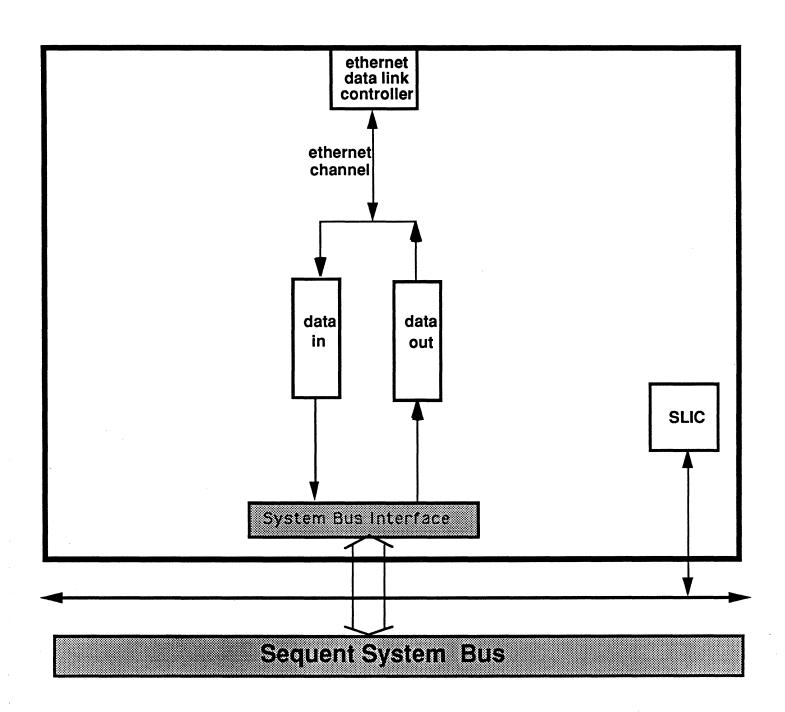


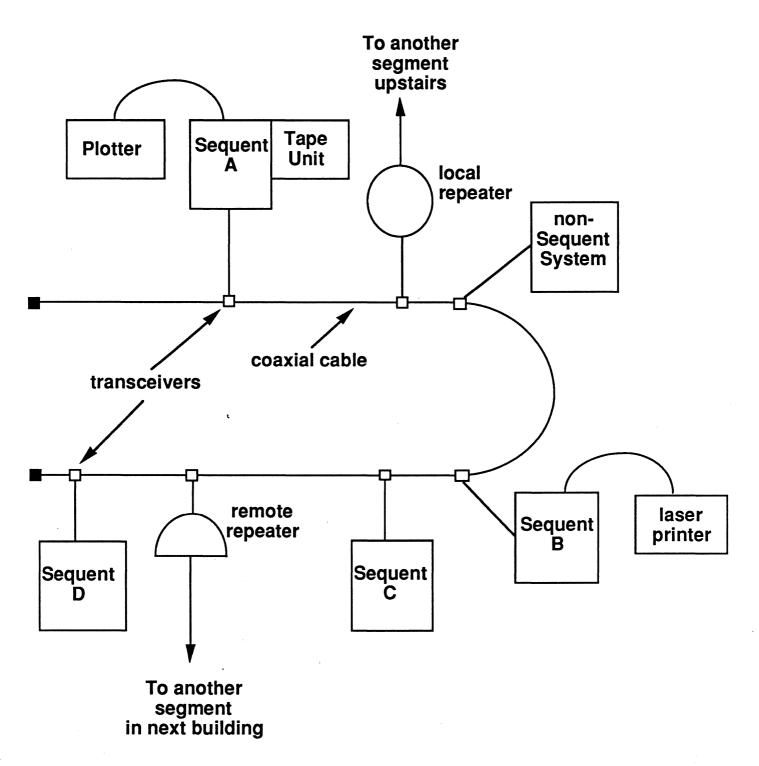
DCC/OK Boards


- S2000/400 & S2000/700 only
- Provides the interface to SMD disk subsystem
- DCC board provides the interface to the system bus
- OK board provides the interface to the SMD disks
- Up to 2 OK (multiplexor boards) per DCC
 - 4 disks per OK
 - 8 disks per DCC

TRANSFER RATE 25 MEG/CHNL

DCC Block Diagram


OK Block Diagram


SCED

- S2000/400 & S2000/700 only
- Provides the ethernet interface
- Resides in the system card cage

SCED Block Diagram

Ethernet LAN

CADM Clk/Arb

S2000/400 Clk/Arb Board

S2000/700 CADM Board

- Small board mounted on rear of backplane
- Provides system clocks to system boards
- Provides arbitration for Sequent system bus
- Large board located in rear of system bus in a special slot
- Provides system clocks to system boards
- Provides arbitration for Sequent system bus
- Drives processor activity lights on front panel
- Monitors +5 and -5V DC on backplane

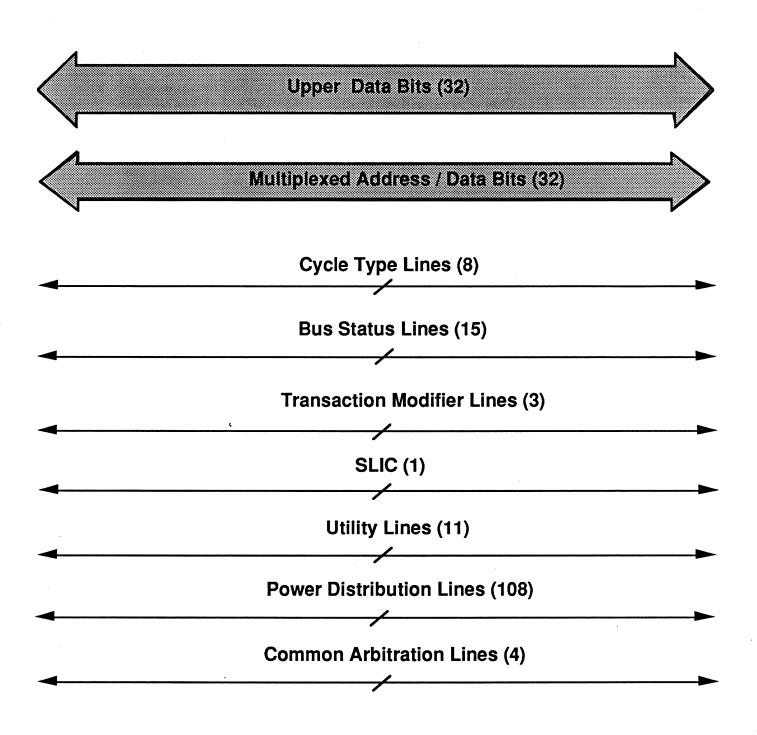
Self Check

1.	How many processors are there on each processor board?
2.	List all system boards for the S2000/200 and give one function of each.
	"DCC \OK
	MEMORY
	SCED
3.	List four functions of the SSM board 1. SELF TEST 2. SYSTEM CONF 3. VME BUS INTERFACE 4. BOOTING
4.	What are the two sizes of the memory expansion board?
	24 M, 48 M 128 M
5.	What is the difference between the Memory Controller board (MEMC) and the Memory Expansion board (MEMX)? EXPANSION BOARD ONLY HAS FOWER KUN TO IT
6.	Which board set provides the interface to the MULTIBUS? MBAD Which one resides in the system card cage?

Self Check

7. Which board on the S2000/400 and S2000/700 provides the ethernet interface? SCED

8. Which board(s) provide the interface to the SMD disk sub system?



Sequent System Bus (SSB)

SB 8000

- Connects the CPU's, memory, and I/O subsystem
- 64-bit data path multiplexed with 32 bits of address
- Data packets of 1, 2, 4, 8, 16 bytes
- Pipelined operation
- 53MB-per-second transfer rate
- Parity checking for address and data

Sequent System Bus Signals

SLIC Bus

- 1-bit wide serial bus that connects all SLIC's
- Exchanges interrupts between system boards
- Passes low level non-time critical messages
- Configures system boards
- Monitors individual subsystems
- Controlled by the SLIC chip on the SSM or SSM2

SCSI Bus

- Attaches mass storage devices to the system
- Supports high-speed high-volume data transfers
- Supports synchronous SCSI devices
- 4.8 megabyte-per-second transfer rate
- Controlled by the SSM or SSM2

VMEbus

- I/O bus for the S2000/200 system
- Asynchronous parallel I/O data transfer bus
- Supports high-speed communications between the system bus and I/O subsystem
- Supports various types of I/O controllers
- Supports Euro-card format
- SSM provides interface mapping between VMEbus and Sequent system bus

VMEbus Boards S2000/200

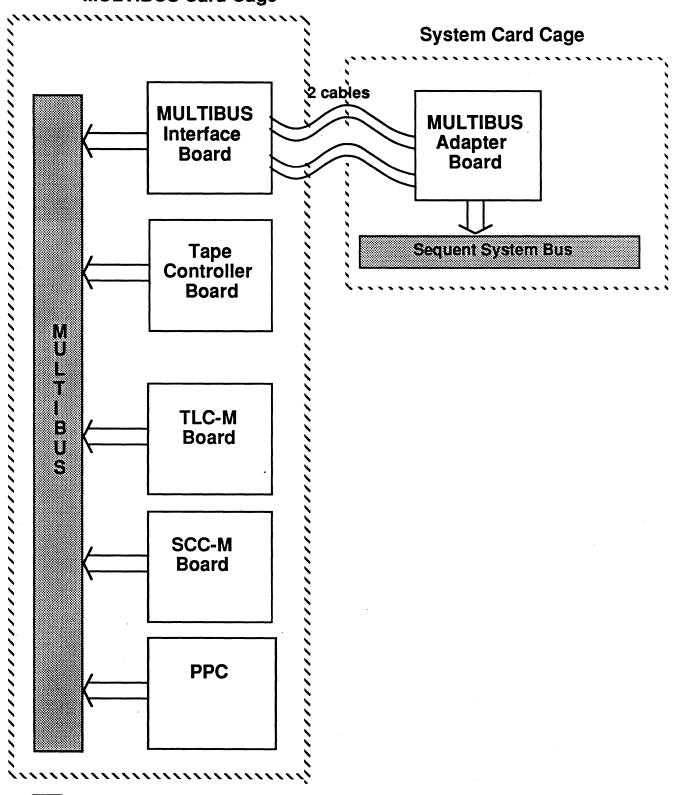
- Ethernet LAN controller (ELAN-V)
 - provides connection to local area network (LAN)
 - supports IEEE 802.3 version
 - up to 3 ELAN-Vs per VMEbus
- Terminal Line Controller (TLC-V)
 - provides 16 RS232-C serial ports
 - each port supports 38K baud
 - up to 5 TLC-Vs per VMEbus
- Synchronous Communications Controller (SCC-V)
 - high performance data communication
 - provides 4 serial communication channels

SDLC

HDLC

X.25

SNA


up to 4 SCC-Vs per VMEbus

MULTIBUS

- General-purpose I/O bus
- Supports wide variety of peripheral controllers
- Provides communications between Sequent system bus and I/O
- Allows I/O devices to access system memory

MULTIBUS Block Diagram

MULTIBUS Card Cage

MULTIBUS Boards

Terminal Line Controller (TLC-M)

- two-board set
- provides 16 asynchronous RS232-C serial ports
- up to 4 per MULTIBUS

Synchronous Communications Controller (SCC-M)

- supports HDLC protocol for X.25 networks
- provides 4 full duplex RS232-C
- up to 1 per MULTIBUS

Parallel Printer Controller (PPC)

- provides an interface to parallel line printers
- supports two simultaneous printers
- up to 1 per MULTIBUS

Peripherals

Systems	Туре	Max #	Size
S2000/200	5 1/4" SCSI disk 1/4" tape GCR 1/2"	4 1 1	1.2 GB 300MB/600MB 60MB N/A 8mm TAPE
S2000/400	5 1/4" SCSI disk 1/4" tape GCR 1/2" Swallow3 Swallow4 Swallow5 Swallow6	3 1 2 8	300MB/600MB 60MB N/A 264MB 540MB 792MB 1.55GB
S2000/700	5 1/4" SCSI disk 1/4" tape GCR 1/2" Swallow3 Swallow4 Swallow5 Swallow6	1 1 2 56	300MB/600MB 60MB N/A 264MB 540MB 792MB 1.55GB

System Components

Board/Device	S2000/200	S2000/400	S2000/700
SSM	Yes	No	No
SSM-I/O	Yes	No	No
SSM2	No	Yes	Yes
PROC	Yes	Yes	Yes
MEMC	Yes	Yes	Yes
MEMX	Yes	Yes	Yes
DCC/OK	No	Yes	Yes
MBAD/MBIF	No	Yes	Yes
SCED	No	Yes	Yes
CADM	No	No	Yes
Clk/Arb	No	Yes	No
MULTIBUS	No	Yes	Yes
TLC-M	No	Yes	Yes
SCC-M	No	Yes	Yes
PPC	No	Yes	Yes
VMEbus	Yes	No	No
TLC-V	Yes	No	No
ELAN-V	Yes	No	No
SCC-V	Yes	No	No
SCSI bus	Yes	Yes	Yes
1/4" SCSI tape	Yes	Yes	Yes
5 1/4" SCSI disk	Yes	Yes	Yes
SMD Swallow disk	No	Yes	Yes
1/2" GCR tape	Yes	Yes	Yes

Self Check

1.	List two functions of the SLIC bus. 1. CONFIGURATION OF BOARDS 2. EXCHANGES INTERRUPTS BETWEEN SYSTEM BOARDS			
2.	List two functions of the SSB. 1. GNNECTS CPU, MEM, JO 2. PARITY CHECKING			
3.	Which system(s) support the VMEbus? 200			
٠	The MULTIBUS? 400 AND 700			
4.	What is the VMEbus used for? ETHERNET, TLC, SCC.			
5.	List the boards that plug into the VMEbus and give one function of each. ETHERNET PPC PRINTER CONTROL			
	TLC 16 YORTS SERIAL			
	SCC 4 FULL DUPLEX SERIAL PORTS			
6.	The 1/4" tape drive plugs into which bus? <u>SCS\</u>			
7.	Which system board in the system does NOT connect to the SLIC bus? / NEIN X			

8. What is the 1/4" tape drive used for? BACKUPS

Self Check

10. Which board provides the interface to the SCSI bus? SCSI BORRD

11. List all of the devices that plug in the SCSI bus and give one function of each.

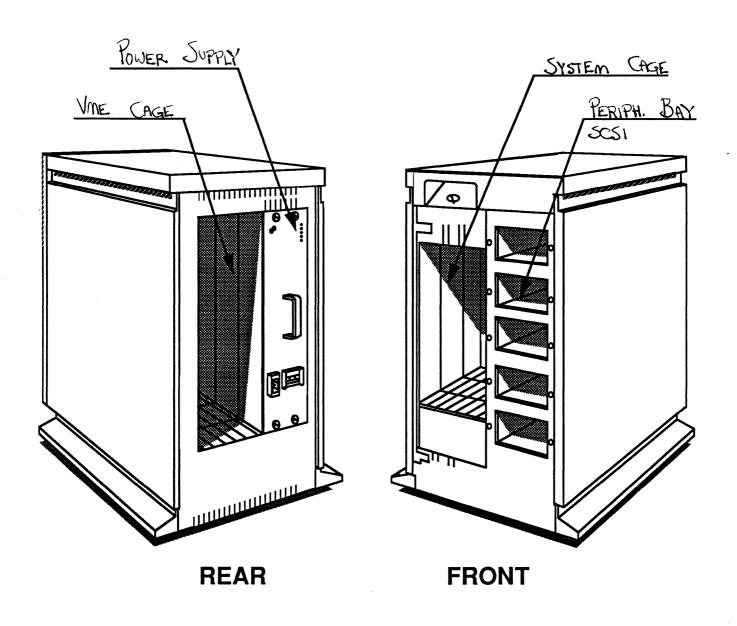
SCSI TAPE DRIVE

SCSI DISK DRIVE

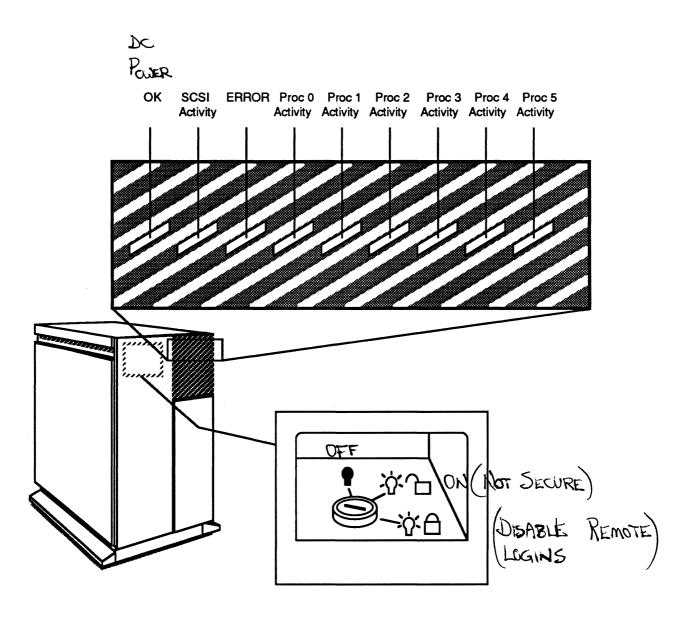
Chapter 3 Hardware Configuration

Hardware Configuration Objectives

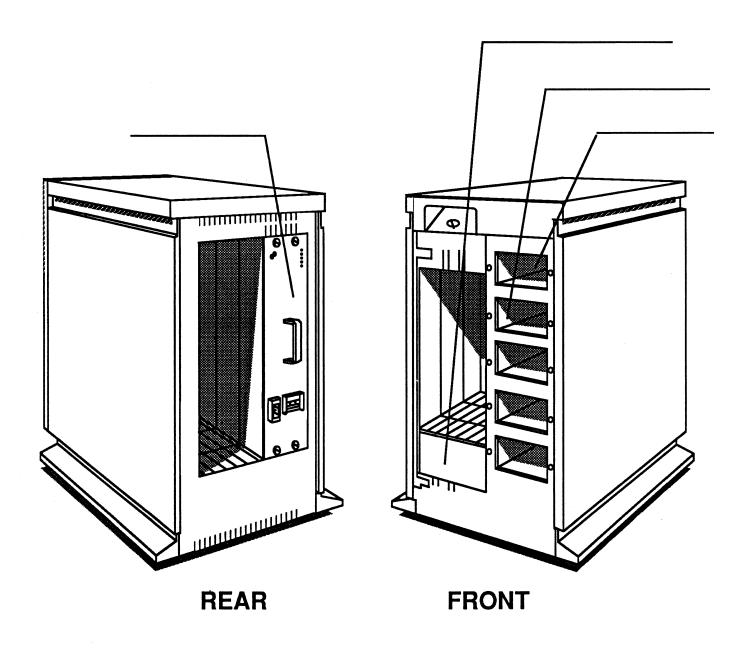
You will:


- a. identify and locate system card cage, MULTIBUS card cage, and VMEbus card cage for all three S2000 systems
- b. identify and locate all front panel LED's
- c. identify and locate the following system boards:
 - SSM2
 - SSM
 - SSM-I/O
 - PROC
 - MEMC
 - MEMX
 - DCC/OK
 - MBAD
 - SCED
 - CLK-ARB
- d. identify and locate the following MULTIBUS boards:
 - MBIF
 - TLC-M
 - SCC-M
 - PPC

Hardware Configuration Objectives

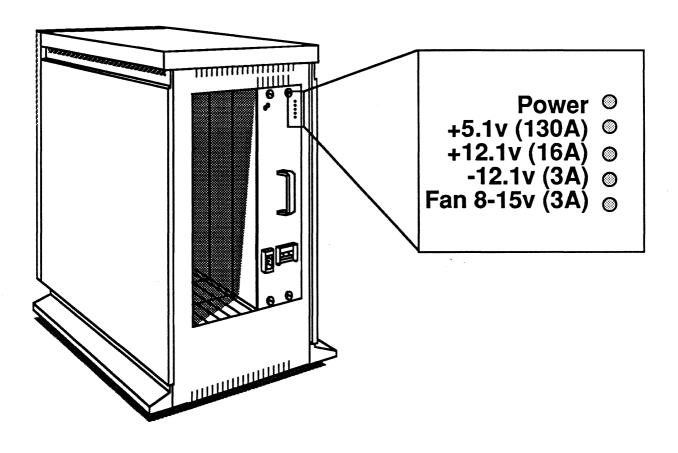

- e. identify and locate the following VMEbus boards:
 - ELÁN-V
 - TLC-V
 - DCP-V
- identify and locate the following peripherals:
 - SCŚI disk
 - SCSI 1/4" cartridge tape driveSCSI 1/2" tape drive

 - SMD disk drives
- g. identify and locate all DC power supplies


S2000/200 Cages, Buses

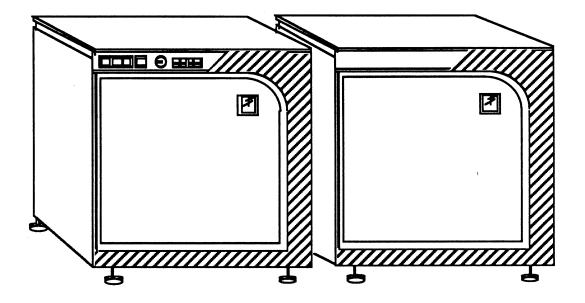
S2000/200 Operator Panel

S2000/200 Peripherals and Power Supply


S2000/200 Power Supply

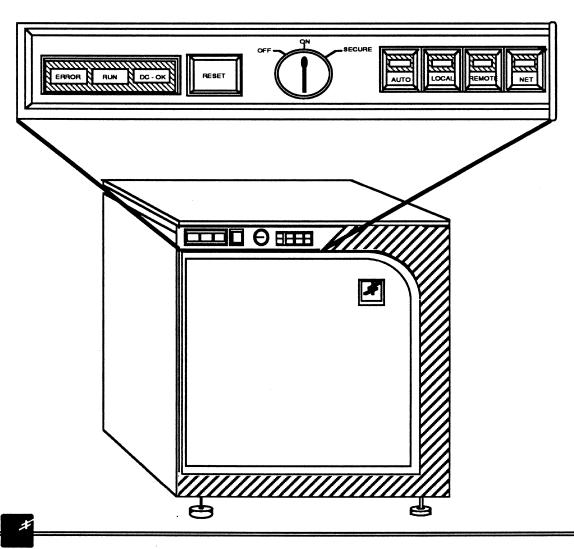
- Located in the rear of the system
- Provides DC voltages for all S2000/200 components

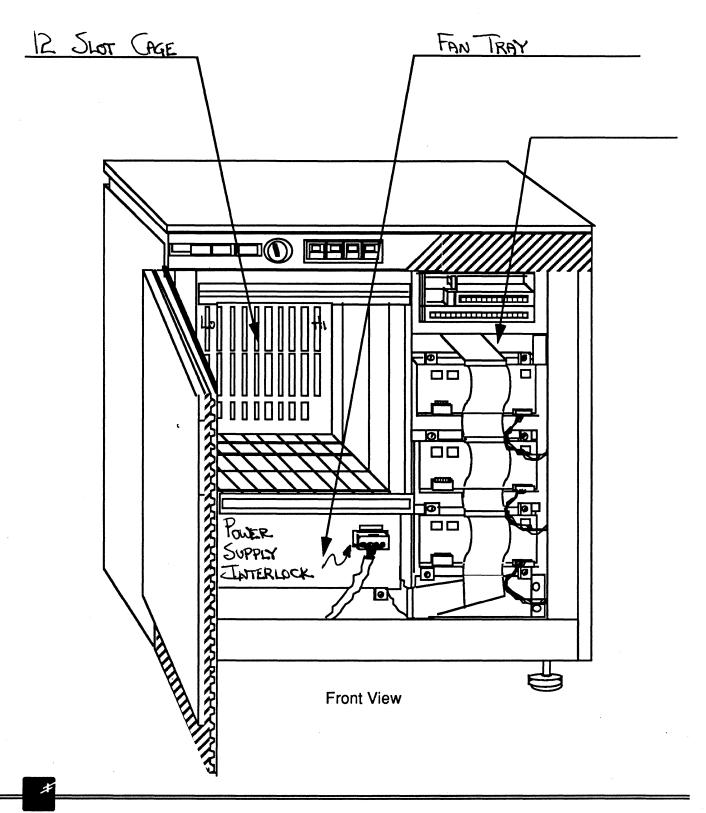
- 5 SCSI disk drives
- 1/4" SCSI tape drive
- Operates on a range of AC input voltages
 - 90 VAC 250VAC


Easy installation and removal

S2000/200 Power Supply Voltage Indicators

Indicator	Voltage	Tolerance
POWER	90 to 250 VAC	Only indicates breaker is ON and AC voltage is applied to power supply
+5 VDC	+5.10 VDC	±0.175 VDC
+12 VDC	+12.10 VDC	±0.60 VDC
-12 VDC	-12.10 VDC	±0.60 VDC
FAN(at low room temp)	+8.0 VDC < 20°C	±0.20 VDC
FAN(at higher room temp)	+14.5 VDC > 40°C	±0.20 VDC

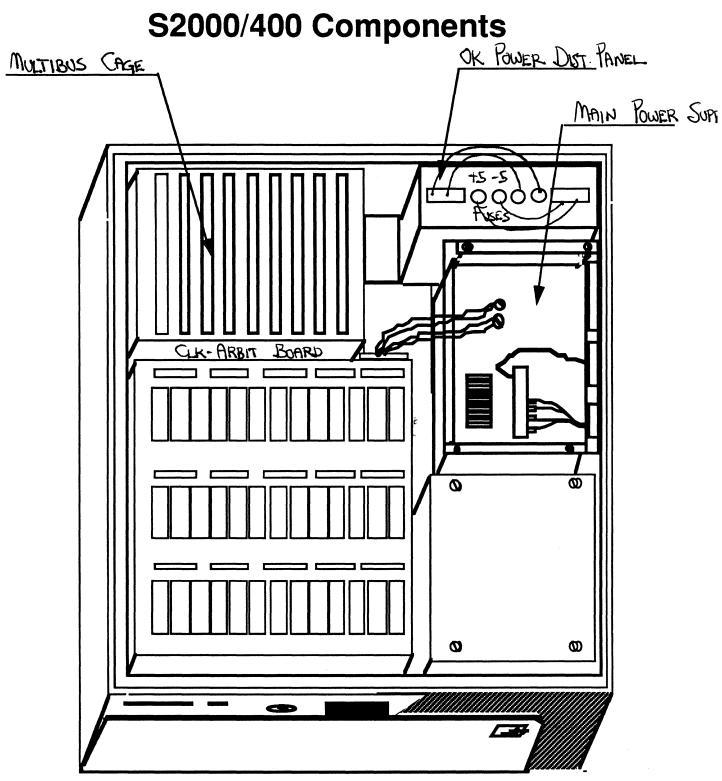

S2000/400 with Expansion Cabinet


- Main Cabinet
- Expansion Cabinet (Optional)

S2000/400 Operator Panel

- Three-position key switch
- Status indicators
- Control switches

S2000/400 Components


S2000/400 Peripherals

- SCSI devices located in the peripheral tower
 - 1/4" tape drives located at top
 - system disk located second from top ωρφ

1 CW

S CW

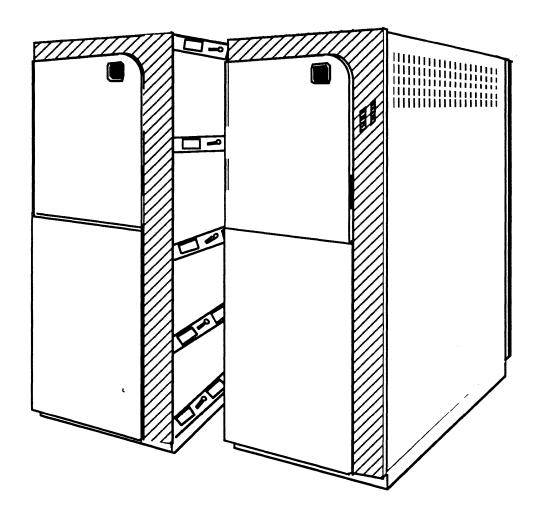
- SMD disks located in the expansion cabinet
 - 19" rack mount
- GCR 1/2" tape drive external to cabinets (table-top)

Top View

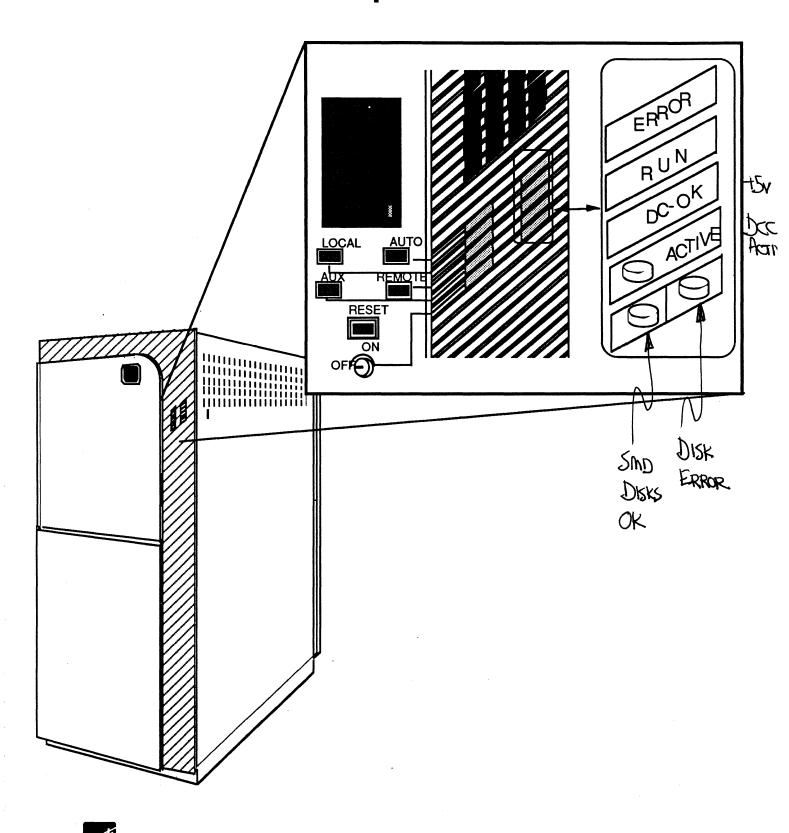
S2000/400 Power Supplies

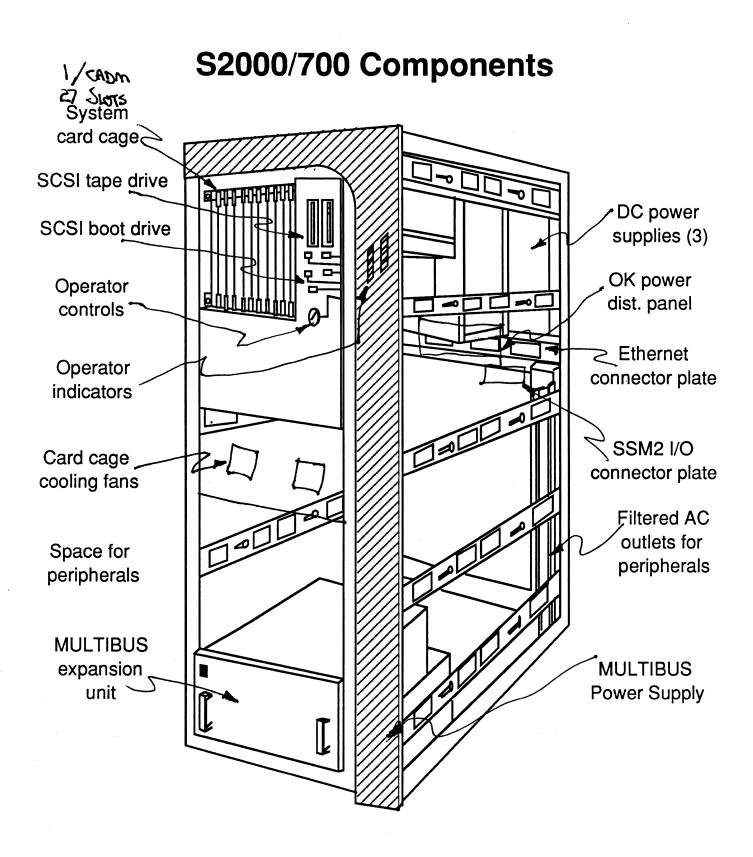
1000-watt power supply

- supplies +5vdc, -5vdc, +12vdc, -12vdc
- accessed from the top of the system
- supplies DC voltage for the following:
 System boards
 SCSI devices
 Fans


300-watt power supply

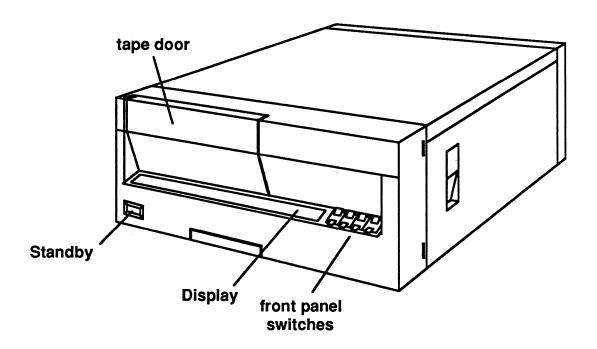
- supplies +5vdc, +12vdc, -12vdc
- supplies power for the MULTIBUS boards
- accessed from the rear of the system


MULTIBUS Card Cage

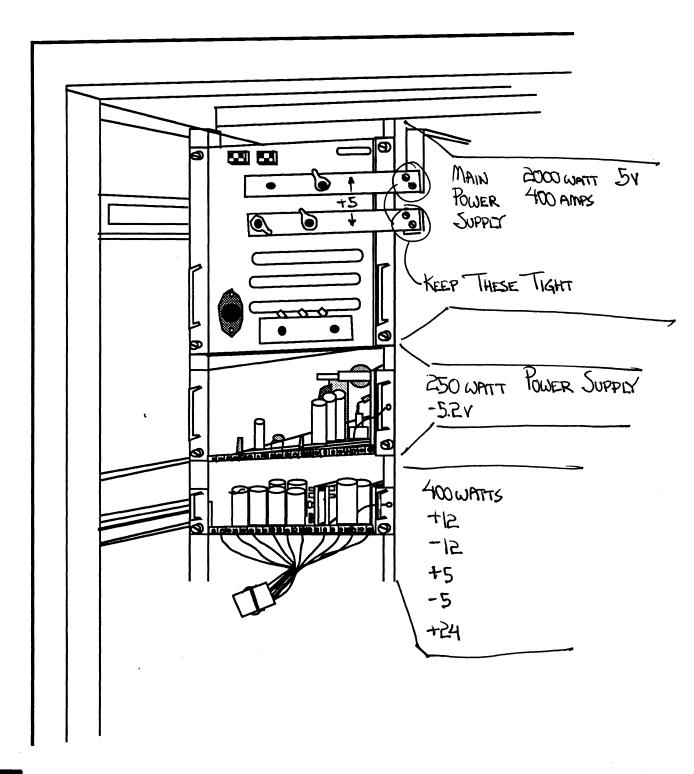

- Multibus card cage located in rear of main cabinet
 - contains 6 useable slots
- Multibus Expansion Units (MEU) reside in expansion cabinets
 - contains 8 useable slots
- Maximum configuration of 4 MEUs per S2000/400
 - maximum of 30 useable slots

S2000/700 with Expansion Cabinet

S2000/700 Operator Panel



S2000/700 Peripherals


- SCSI devices located in the front of the system
 - 1/4" tape drives accessed from front
 - wd 0 (boot device) located behind front panel
- SMD disks located in racks
 - system cabinet
 - expansion cabinet
- GCR 1/2" tape drive located in expansion cabinet
 - supports two GCRs

GCR Tape Drive

- Resides on the outside of the cabinet
- Connects to the SCSI bus on the SSM I/O panel
- Termination for SCSI bus at rear of GCR

S2000/700 Power Supplies

S2000/700 Power Supplies

2000-watt power supply

- supplies +5vdc @400 amps
- main system support

400-watt power supply

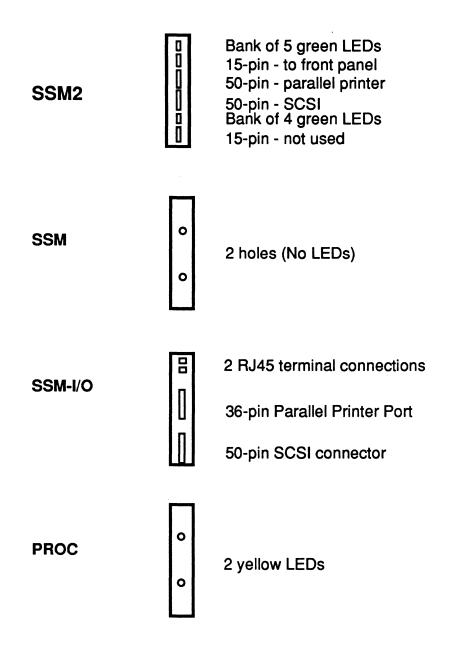
- supplies +5vdc, +12vdc, -12vdc, +24vdc
- provides power for the following:
 system card cage
 power distribution panel
 system fans
 SCSI devices

250-watt power supply

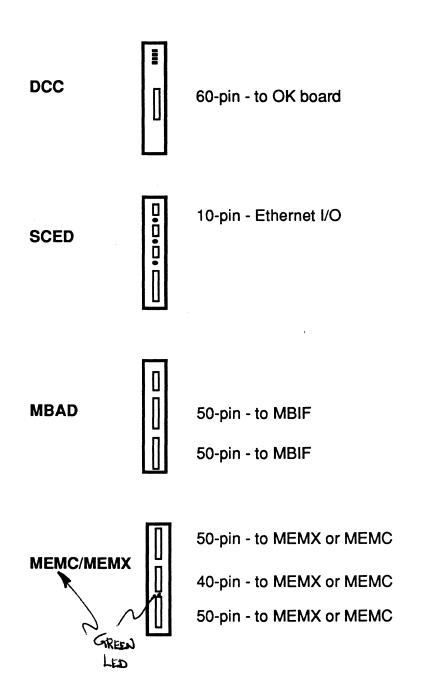
- supplies -5.2vdc
- provides power for the DCC boards

444-watt MULTIBUS supply

- supplies +5vdc, +12vdc, -12vdc
- provides power for MULTIBUS boards and fans

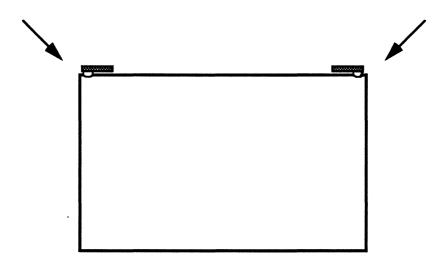

MULTIBUS Card Cage

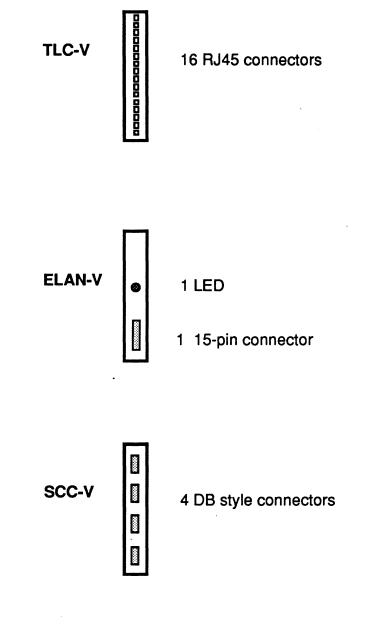
- MULTIBUS card cage located in bottom of main cabinet
 - contains 11 useable slots


- MULTIBUS Expansion Units (MEU) reside in expansion cabinets
 - contains 11 useable slots

- Maximum configuration of 4 MEUs per S2000/700
 - maximum of 44 useable slots

System Board Identification


System Board Identification


MULTIBUS Board Identification

Color Coded Thumb Levers

White	MBIF
Orange	TLC-M 2 BOARD SET
Blue	SCC-M
Black	Tape Controller
Green	PPC PRINTER BOTTOM SLOT
['] Purple	DCP JBN COMM- 4 PORT

VMEbus Board Identification

Lab System Component Identification

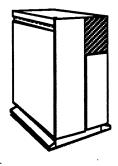
1. Identify how many of each of these components you have in your system.

System Type 700

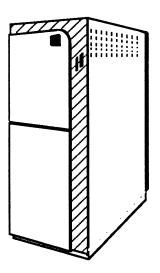
System Boards: Quantity	Slot	VMEbus Boards:
SSM		SCC
MEMC\	10	ELAN-V
MEMX	E2	TLC-V
PROCI		MULTIBUS Boards:
SSM-I/O		TLC-M <u>2</u>
MBAD		SCC-M
DCC	05	
SSM21	15	PPC
CADM	CADM	
SCED 1	14	

Lab System Component Identification

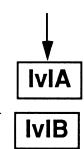
Disks:	Quantity	Miscellaneous:
SCSI Disks		System Card Cage
1/4"Cartridge Tape		VMEbus Card Cage
SMD Disks	_2	Multibus Card Cage
GCR tape drive		Power Supply
		GCR Tape
		Printer
		Fans

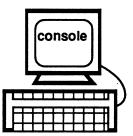


SSM Monitor Objectives


You will:

- a. manually boot to each of the two SSM stages
- b. get help at each stage
- c. print parameters for specific commands
- d. change command parameters
- e. use the <u>test</u> command to manually test hardware components
- f. display the system configuration using the config command
- g. interpret the system configuration
 - slot number of each board
 - status of each board
 - amount of memory in system
 - total number of processors
- h. change the system configuration
- i. automatically boot to level-B
- j. reboot the system using the <u>zap</u> command
- k. boot DYNIX/ptx
- move between system levels using <u>init</u> and <u>shutdown</u>
- h. boot to level-B from tape


System Startup Overview



Boot DYNIX/ptx

Powering Up the S2000

- Power up the system console
- Turn on AC power to the system by lifting up the circuit breakers at the rear of the system
 - expansion cabinets first
- Turn system key switch to the "on" position
- Verify correct LED status
- Messages to the system console in about 45 seconds

What is the Monitor?

- A program that runs from the firmware in the SSM and SSM2 boards P_{R0mS}
- Initiated at power-up

- Provides power-up testing of system components
- Single-user system monitor
- Supports system reconfiguration
- Loads diagnostics or the operational firmware
- Boots the operating system

Systems Services Module (SSM/SSM-2) Self-Paced Lesson

4.6

What is the SSM/SSM-2 Monitor?

The SSM/SSM-2 monitor is the System Services Module power-up monitor. It is a single-user system monitor that runs out of firmware on the SSM/SSM-2 board. You enter commands on the console; no other ports are available.

When you power up your system, there are tests that must be run, devices that must be acknowledged and initialized, and other procedures that must be performed to bring up the operating system. The SSM/SSM-2 goes through two stages (lvlA and lvlB) during power up. Each stage handles increasingly complex tasks.

The boot information for lvlA is stored and read from an EPROM on the SSM/SSM-2 board. The boot information for lvlB resides on disk.

The SSM/SSM-2 can automatically boot from one stage to the next. You also have the option of manually booting from one stage to the next, allowing an opportunity to modify command parameters.

The first stage, lvlA (level-A), performs self-tests on the SSM/SSM-2 hardware and specifies the location of the boot file for lvlB.

The second stage, lvlB (level-B), runs power-up tests on the system boards and provides an option to run diagnostics.

lvlB is the run-time environment for the SSM/SSM-2 monitor. You boot the operating system from this level.

lvlA (level-A)

lvlB (level-B)

SSM/SSM-2 Commands

The two stages have some common commands:

Getting help

help

displays a list of commands available

at each stage

help command displays command syntax for a

specific command

= optional argument = OR indicators

Displaying values

print command displays current parameter values for a specific command. If the parameter has no value, nothing displays.

Values are set in the same way at each level. The general format to set new values for a command is:

Setting values

command parameter=value

When typing commands, it is only necessary to enter as many characters as needed to distinguish the command from all the others. For example, you can enter any of the following for the print commands:

p pr print

If you make a mistake while typing a command line, use the backspace key to erase one character at a time on the line. To erase the entire line, press control-U. These terminal characteristics are set by default.

Specific examples of commands are provided throughout this lesson. A complete list of SSM/SSM-2 commands is included in the SSM/SSM-2 Power-Up Monitor Guide and the Diagnostic Executive Quick Reference Card.

lvlA (Level-A)

lvlA is the first stage of the SSM/SSM-2 monitor. During the power-up to lvlA, the SSM/SSM2 board performs several self tests, testing various chips on the board.

Practice 1

Power up a Symmetry system and observe the boot to lvlA. It will take about 45 seconds for the system to boot to lvlA. DC OK 2 BOTH LOCAL 5 GREEN

Below is the power-up listing for an S2000/200. The listing may differ for an S2000/400 or S2000/700.

Oct 24 08:30

•••

WARNING: Jumper Register exp = 0x206 act = 0x266

SCSI test

TOD test (1)

Panic Timeout Test

SLIC test

- Slave Registers Test
- Bin Interrupts Test
- NMI Interrupt Test

ARC test

VME INTR test

BIC test

CPU PIC test

IO PIC test

SIC test

- SLIC Access
- Local Access
- Register Defaults
- Packets
- Parity
- Comparison
- NMI's

Printer Port test (2)

VME IF test

VME Path Test

S2V Map Test

V2S Map Test

Timeout Test
Panic NMI Test
PIC Interface Test
IO PIC Parity Error Test
VME Interrupts Test
SSM IvlA testing complete
Spinning up disks...(3)
SSM Firmware (Level A) version 4.b.1.

During the boot to lvlA, the system:

- (1) tests pieces of the SSM/SSM-2 hardware tests the parallel printer port
- (2) tests the parallel printer port spins up the disks.

- remote

The lvlA prompt is ->. The following commands are available at lvlA.

lvlA commands

	characteristics
- local	display or change local console port
	characteristics
- zap	simulate a power cycle on SSM/SSM-2
- bh	boot host CPUs
- bo	set the boot path for other Sequent
	controllers with downloadable firmware
- bs	boot SSM/SSM-2 Firmware
- test	manually test pieces of the SSM/SSM-2
	hardware
- print	display parameter values for a command
- dump	display SSM/SSM-2 memory
- help	obtain on-line help for SSM/SSM-2 commands

display or change remote console port

Below are some examples of commands you'd use at lvlA.

To print the parameter values for the remote port, enter the following:

->print remote

baud = 9600 stop = 1 size = 8 parity = none flow = xoff

->

The command to set the baud rate for the remote port is:

-> remote baud=2400

Now, if you enter <u>print remote</u>, the baud rate reflects this change.

The command to set the baud rate for the local port is the same, but enter <u>local</u> instead of <u>remote</u>.

The local port has an additional parameter called autoBaud.

Sometimes the baud rate on the terminal and the baud rate on the SSM port are different. When this happens, your terminal doesn't respond. If the autoBaud flag is enabled, you can cycle through baud rates on the SSM port by pressing the break/pause key on your terminal. When both baud rates match, your terminal works properly again. It the autoBaud flag is not enabled, use the set-up key on your terminal to select the baud rate which matches the baud rate of the SSM port.

4.12

Practice 2

- 1. Display the list of commands available at lvlA. What command did you use?
- 2. Get help on the <u>local</u>, <u>zap</u>, and <u>bs</u> commands. What command(s) did you use?

 Help local
- 3. Display the parameter values of the <u>local</u>, <u>bh</u>, and <u>bs</u> commands. What command(s) did you use?

 Print local
- 4. Set the baud rate for the local port to 1200. Your terminal should not respond after you do this. What command did you use?
- 5. Cycle through the baud rates by pressing the break key until you reach the correct baud rate. Your terminal will respond with a prompt when you've reached the correct baud rate.
- 6. Enter the command to display the baud rate of the local port. What command did you use? (Notice the baud rate of the SSM port has been set back to 9600 to match the baud rate that was set when originally configuring the terminal.)

 Print local

Verify your answers with those provided in the Appendix.

Note:

Leave the system on for the rest of this lesson.

Testing

The system automatically performs a number of tests at lvlA and lvlB. The test command allows you to manually test components of the SSM/SSM-2 hardware at lvlA.

test command

To view <u>test</u>'s optional parameters, enter the following:

->help test

Here is an explanation of some of the parameters of the <u>test</u> command:

53c90

- SSM & SSM2 SCSI chip test

tod

- time of day display

slic

- slic bus

bic

frontPanel - the front panel - bus interface

cpic

- the SSM/SSM-2 CPU peripheral interface

controller

vpic

- the VMEbus peripheral interface controller

all

- tests all SSM/SSM-2 hardware components

The display may differ, depending upon which system you're using. You can stop the scrolling on a screen by entering control-s and restart screen output by entering control-q.

It is possible to hang the system if these tests are not run in order.

Practice 3

Test the components available at lvlA. What command did you use? test all

Verify your answers with those provided in the Appendix.

lvlB (Level-B)

lvlB is the second stage of the SSM/SSM-2 monitor. This level is the normal run-time environment of the SSM/SSM-2 monitor. The operating system, DYNIX/ptx, can be booted **only** from this level.

To boot from lvlA to lvlB, use the <u>bs</u> (boot string) command:

-> bs

Below is the power-up listing that appears during the boot from lvlA to lvlB.

```
booting SSM from 'wd(0,32)' (1)
loading 72089 bytes
Date 90/10/24 15:19:22 UTC
probe slic 0 2 3 4
Clear mem (2)
test MEM/1w.
test PROC/486w ....
test SSM2.
System Configuration: (3)
               no slic flags
                                    revision
  type
  MEM/1w
               0 2
                      00000000
                                    00.03.02 size=16.0Mb base=0x00000000 ileave
  MEM/1w
               1
                                    00.03.02 size=16.0Mb base=0x00000000 ileave
               0 0
                                    01.04.02 sysid=0x604 Bver=4.B.1 Aver=4.B.1 Console
  SSM
  PROC/486w
                                    00.08.01 25MHz 2*256K/16:no.0(slic8),1(9),2(10)
                       00000000
  PROC/486w
                                    00.08.01 25MHz 2*256K/16: 3(slic 11)
                       00000000
SSM Firmware (Level B) version 4.b.1
```

During this boot from lvlA to lvlB, the system:

- identifies where on disk the SSM/SSM-2 is being booted from and the number of bytes being loaded
- (2) tests system boards
- (3) | configures the system; displays the configuration listing

As the system boots to lvlB, boards are tested, and dots appear on the screen to indicate how many of that particular board are in the system. As processors are being tested, a dot appears for each processor, not for each processor board.

The following is an example of the SSM/SSM-2 hardware test output for four 486 processors:

PROC/486w

The lvlB prompt is ---> (Notice three dashes in the prompt). The following commands are available in addition to those already introduced at lvlA.

lvlB commands

- fprog	program FLASH proms on SSM boards
- mem	allow or disallow host memory interleave
- deconfig	deconfigure a controller
- config	display a configuration; configure a controller
- log	examine or manipulate the SSM/SSM-2 console
_	log
- reset	reset the host system; this usually forces a
	panic
- sysmodes	display or change system mode parameters
- rdump	display system memory

Practice 4

- 1. What command did you use to boot your Symmetry 2000 system from lvlA to lvlB?
- 2. Display the list of commands available at lvlB. What command did you use?

Verify your answers with those provided in the Appendix.

4.16

System Configuration

Two other new commands at this level are <u>config</u> and <u>deconfig</u>.

You can display the system configuration by entering the following:

--->config

Below is an example of the display:

System Configur	atio	n			
type	no	slic	flags	revision	
MEM/1w	0	2	00000000	00.03.02	size=16.0Mb base=0x00000000 ileave
MEM/1w	1	4	00000000	00.03.02	size=16.0Mb base=0x00000000 ileave
SSM	0	0	00000000	01.04.02	sysid=0x604 Bver=4.B.1 Aver=4.B.1 Console
PROC/486w			00000000	00.08.01	25MHz 2*256K/16:no.0(slic8),1(9),2(10)
PROC/486w			00000000		25MHz 2*256K/16: 3(slic 11)

Below is a description of each field of the configuration display:

type

Indicates board type. Board type can be any of the following:

MEM/1w	Symmetry Memory Controller
	(In the listing above, the "/1w"
	indicates a 64-bit wide mode)
MBAD*	MULTIBUS Adapter board
SCED*	SCSI Console Ethernet Diagnostics board
ZDC*	Dual Channel Disk Controller board
SSM2	System Services Module 2 board
PROC/486w	Symmetry Processor Board ("w" means wide mode board)
CADM*	Clock arbitration board
01110 IVE	Cioux momanon court

^{*}These boards are found only on the S2000/400 or S2000/700 and do not appear in the display above.

no

Indicates board number. The board number distinguishes multiple boards of a given type. Processor boards are the only exception to this rule; processors are numbered and listed individually, rather than by processor board.

slic

Indicates the board's address on the SLIC (System Link and Interrupt Controller). Dividing the slic number by 2 (integer division) will provide you the system card cage slot number of the board.

flags

Indicates the board's operating status. Flags should be all zeroes unless there is some problem.

revision

Indicates revision level of the board.

MULTIBUS Adapter Board (MBAD)

fw version

Indicates the version number of the firmware.

SCSI Console Ethernet Diagnostics board (SCED)

Enet

Represents the hexadecimal Ethernet address of a given SCED Ethernet controller. The first six digits are a Sequent-specific identifier; the last six are a unique Enet address.

Memory Board (MEM/1w)

size

Indicates the total amount of memory provided by a memory module (a controller plus its expansion board, if it has one).

base

Indicates the starting address of a given memory controller or expansion module.

ileave

Indicates whether a memory controller or expansion module's memory is interleaved with another module for increased system performance.

sysid Bver, Aver console

Systems Services Module board (SSM/SSM2)

Indicates a unique number associated with the system Indicates the version number of the level-A and level-B firmware

Indicates which SSM board the console is connected to (in case there's more than one)

Processor Board (PROC/486w)

Processors having a common configuration are listed together on one or more lines. (Up to three may be listed on one line.) Common characteristics are flags, hardware/software revision numbers, clock rate, existence of floating-point accelerator (FPA) and cache configuration.

Following the common information, individual processors are listed in the format: processor number (SLIC number).

In the example below, processors 0, 1, and 2 are listed on the same line because they all have similar characteristics. (Processor 3 on the following line would be too if there was room.) Processors with different characteristics are always on different lines. Two processors (0 and 1) are on the board in slot 4 and processor 2 is on the board in slot 5. (Slot number is calculated by slic divided by 2 - integer division).

pe	no	slic	flags	revision	
MEM/1w	0	2	00000000	00.03.02	size=16.0Mb base=0x00000000 ileave
MEM/1w	1	4	00000000	00.03.02	size=16.0Mb base=0x00000000 ileave
SSM	0	0	00000000	01.04.02	sysid=0x604 Bver=4.B.1 Aver=4.B.1 Console
PROC/486	W		00000000	00.08.01	25MHz 2*256K/16:no.0(slic8),1(9),2(10)
PROC/486	W		00000000	00.08.01	25MHz 2*256K/16: 3(slic 11)
>	•		0000000	00.00.01	25W112 2 25014 10. 5(Sile 11)

em Configu type	no	slic	flags	revision	
MEM/1w	0	2	00000000	00.03.02	size=16.0Mb base=0x00000000 ileave
MEM/1w	1	4	00000000	00.03.02	size=16.0Mb base=0x00000000 ileave
SSM 0	0		00000000	01.04.02	sysid=0x604 Bver=4.B.1 Aver=4.B.1 Console
PROC/486v	٧		00000000	00.08.01	25MHz 2*256K/16:no.0(slic8),1(9),2(10)
PROC/486v	V		00000000	00.08.01	25MHz 2*256K/16: 3(slic 11)

Practice 5

Answer the following questions using the system configuration listing **above**.

How many processors are there?
Four
How many processor boards?
Two

2. How much memory does this system have?

32. MB

3. What system card cage slots are the memory boards in?

4. How many boards are in the system card cage?

5. What system card cage slot is the first processor board in?

Four

Verify your answers with those provided in the Appendix.

Practice 6

- 1. Display your system configuration and answer the following questions:
 - a. How many processors are there?
 How many processor boards?
 - b. How much memory does this system have?
 - what system card cage slots are the memory board(s) in?
 - d. How many boards are \(\mathbb{G} \) in this system?
 - e. What system card cage slot is the first processor board in?

1 Tal

2. Display all commands available at lvlB. What command did you use?

help

3. Get help on these commands: config, deconfig, and bs
What command did you use?

help command name

4. Display the parameter values for these two commands: <u>bs</u> and <u>bh</u>
What commands did you use?

Print command name

Answers for question 1 will vary depending on your system. If you are not sure, ask the instructor for help. Verify your answers for questions 2 through 4 with those provided in the Appendix.

config and deconfig commands

The flags field in the system configuration listing indicates the status of a board. The last digit of the flags field can be:

- 0 board passed all tests and is operational
- 2 board failed power up tests and was deconfigured by the system
- 4 board was deconfigured by the user

If a board fails, you may need to deconfigure (logically remove) the board from the system configuration. At some point, you'll need to configure (add) that board back into the system configuration. The board will remain deconfigured until you reconfigure it or replace the SSM/SSM2 board.

In the case of processors, one processor may be failing and causing the error light to go on. You can deconfigure that processor which will turn off the error light. If you allow the error light to remain on, other possible errors may go undetected.

The commands <u>config</u> and <u>deconfig</u> allow you to do this. You must know the slic address to configure or deconfigure boards.

4.22

deconfig command

The following demonstrates how to deconfigure (remove) the first memory board and processor 0:

\					
>config System Config	uration				
type	no	slic	flags	revision	. 1000 1 0 00000000 1
MEM/1w	0	2	00000000	00.03.02	size=16.0Mb base=0x00000000 ileave
MEM/1w	1	4	00000000	00.03.02	size=16.0Mb base=0x00000000 ileave
SSM	. 0	0	00000000	01.04.02	sysid=0x604 Bver=4.B.1 Aver=4.B.1 Console
PROC/486			00000000	00.08.01	25MHz 2*256K/16:no.0(slic8),1(9),2(10)
PROC/486	w		00000000	00.08.01	25MHz 2*256K/16: 3(slic 11)
>decon	fig sli	c=2			
System Configu					
type	no	slic	flags	revision	
*MEM/1w	0	2	00000004	00.03.02	size=16.0Mb base=0x00000000 ileave
MEM/1w	1	4	00000000	00.03.02	size=16.0Mb base=0x00000000 ileave
SSM	0	0	00000000	01.04.02	sysid=0x604 Bver=4.B.1 Aver=4.B.1 Console
PROC/486	w		00000000	00.08.01	25MHz 2*256K/16:no.0(slic8),1(9),2(10)
PROC/486	w		00000000	00.08.01	25MHz 2*256K/16: 3(slic 11)
>decon	fig sli	c=8			
System Configu					
type	no	slic	flags	revision	
*MEM/1w	0	2	00000004	00.03.02	size=16.0Mb base=0x00000000 ileave
MEM/1w	1	4	00000000	00.03.02	size=16.0Mb base=0x00000000 ileave
SSM	0	0	00000000	01.04.02	sysid=0x604 Bver=4.B.1 Aver=4.B.1 Console
*PROC/486	w		00000004	00.08.01	25MHz 2*256K/16:no.0(slic8)
PROC/486		t	00000000	00.08.01	25MHz 2*256K/16: ,1(9),2(10),3(slic 11)
>					, , , , , , , , , , , , , , , , , , , ,

Note the asterisk (*) in front of the memory board and processor that were deconfigured. The last digit in the flag field is now a 4, which indicates the board was deconfigured by the user. Also, notice the deconfigured processor appears on a line by itself.

config command

The following demonstrates how to configure (add) the memory board and processor back into the system:

> config System Configu		2			
type MEM/1w MEM/1w SSM *PROC/486v PROC/486v	no 0 1 0	slic 2 4 0	flags 00000000 00000000 00000000 00000000	revision 00.03.02 00.03.02 01.04.02 00.08.01 00.08.01	size=16.0Mb base=0x00000000 ileave size=16.0Mb base=0x00000000 ileave sysid=0x604 Bver=4.B.1 Aver=4.B.1 Console 25MHz 2*256K/16:no.0(slic8) 25MHz 2*256K/16: ,1(9),2(10),3(slic 11)
>config	slic=8	8	***************************************	00.08.01	25W112 2 250K 10. ,1(9),2(10),3(SHC 11)
System Configu	ration				
type	no	slic	flags	revision	
MEM/1w	0 .	2	00000000	00.03.02	size=16.0Mb base=0x00000000 ileave
MEM/1w	1	4	00000000	00.03.02	size=16.0Mb base=0x00000000 ileave
SSM	0	0	00000000	01.04.02	sysid=0x604 Bver=4.B.1 Aver=4.B.1 Console
PROC/486	w		00000000	00.08.01	25MHz 2*256K/16:no.0(slic8),1(9),2(10)
PROC/486	w		00000000	00.08.01	25MHz 2*256K/16: 3(slic 11)
>					· ·

Practice 7

- 1. Display your system configuration.
- 2. Deconfigure a memory board and a processor from the system configuration. What command(s) did you use?
- 3. Configure the board and processor back into the system configuration. What command did you use?

Verify your answers with those provided in the Appendix.

SSM/SSM-2 Boot Flags

In this lesson, you have manually booted from lvlA to lvlB using the <u>bs</u> command.

The SSM/SSM-2 monitor can proceed through the two stages automatically if the appropriate flag is set in the boot commands. The bootflag that controls this process is called monAuto. This bootflag is a parameter of the <u>bs</u> command. To view the value of the monAuto flag, enter the following:

In this display, the monAuto flag is set to 0, which causes the system to be manually booted from one stage to the next.

If monAuto were set to 1, the system would automatically boot through lvlA and stop at lvlB. As the system proceeds through each stage, it pauses for five seconds and gives you a chance to abort the automatic boot. You'll have a chance to observe this in the next practice.

Here is an explanation of the other parameters of the <u>bs</u> command:

lvlBPath	- the disk type, unit and block on the SCSI disk
	where the lvlB boot file is located
diagPath	- the disk type, unit, partition, and pathname
	on the SCSI disk where the diagnostics
	are located
diagAuto	- flag which indicates if diagnostics can be
	booted manually (0) or automatically (1)
	from IvIB

bs command

The system will not allow both the diagAuto flag and the monAuto flag to be set to 1 at the same time. If one flag is set to 1 and you attempt to set the second flag to 1, the system resets the first flag back to 0.

You can change any of the <u>bs</u> parameters by entering the following:

--->bs parameter=value

To change the monAuto flag you enter the following:

--->bs monAuto=1

If you change any <u>bs</u> parameters, reboot the system by using the <u>zap</u> command. The <u>zap</u> command causes the system to start from lvlA and boot either manually or automatically, depending on the monAuto bootflag. Rebooting the system using <u>zap</u> takes about 60 seconds.

Practice 8

- 1. Display the <u>bs</u> parameter values. What command did you use?

 Print DS
- 2. Change the bootflag so the next time the system is rebooted, it will boot to lvlB automatically. What command did you use?

 be mon Auro = |
- 3. Reboot the system. Abort the boot at lvlA when prompted. How did you do this?

PRESS ANY KEY

4. Reboot the system. Don't interfere with the boot process.

ZAP

Booting DYNIX/ptx

bh command

The operating system, DYNIX/ptx, is booted only from lvlB. The <u>bh</u> (boot host) command boots the operating system. (**Do not** boot the system until instructed to do so in Practice 10).

To view the parameter values of the <u>bh</u> command, enter the following:

```
→
```

```
--->print bh
```

osPath = 0 wd(0,0)unix - r wd0s0 - s wd0s1

autoBoot = 0

tmpPath = 0 wd(0,0)unix -r wd0s0 -s wd0s1

auxPath = 88 wd(0,0)stand/dump wd(0,1) 8000

/dev/rdsk/wd0s1

autoDump = 1

loaderPath = wd(0,2)ssw/booterrPath = wd(0,2)ssw/boot

--->

Here is an explanation of the parameters of the <u>bh</u> command:

osPath - the disk type, unit, partition, and pathname

on the disk where the OS boot file is located. The first digit after the equal sign (=) in this string indicates whether to boot the system to single-user (2) or to multiuser (0). (More on single-user

and multiuser later).

autoBoot - flag which indicates if the operating system

is booted from lvlB manually (0) or

automatically (1)

tmpPath - the disk type, unit, partition, and pathname

on the disk where an alternate

boot file is located.

auxPath - the disk type, unit, partition, and pathname

on the disk of a boot file that is

used if there is a system panic.

autoDump - flag which indicates if sytem memory is dumped automatically (1) or not (0)

when a system panic occurs

loaderPath - specifies the path to the boot program

which is actually used to load the

operating system.

errPath - specifies the path where scan error

information is written; currently used by Sequent engineering only.

Setting monAuto to 1 and autoBoot to 1 causes the system to automatically go from power-up to DYNIX/ptx

The DYNIX/ptx operating system consists of two levels: single-user mode and multiuser mode. The first digit after the equal sign in osPath is set to a default of 0 (multiuser) at the factory, but you can change it to 2 (single-user).

Practice 9

- 1. Display the parameter values of the <u>bh</u> command. What command did you use?

 Print bh
- 2. What parameter of the <u>bh</u> command determines if the operating system is to be booted manually or automatically?
- 3. How would it be set to manually boot? $bh = avto B\omega t = 0$
- 4. Boot the operating system to DYNIX/ptx multiuser mode. What command did you use? Login as **root**. (There is no password; just press <return>)

System Levels

There are four system levels: lvlA, lvlB, DYNIX/ptx single-user mode and DYNIX/ptx multiuser mode.

You are already familiar with the power-up monitor levels.

You work on the DYNIX/ptx operating system in singleuser mode or multiuser mode. The prompt for singleuser mode is a #. The prompt when you login as root (as you do in this lesson) in multiuser mode is also a #.

Single-user mode

Single-user mode is the level where only the system console is active. Only one user is allowed on the system. Some system administration duties like backups and restores are performed at single-user mode.

Multiuser mode

Multiuser mode is the level where several users are allowed on the system. People doing their day-to-day work on a system are in multiuser mode. System administrators are able to perform some of their duties at multiuser mode when others are using the system.

Moving Between System Levels

There are times when you'll need to move between these system levels. For instance, if you need to power down a system, you need to move from multiuser mode to power-up monitor and then turn off the system. If you need to perform some system administration functions, you'll need to move from multiuser mode to single-user mode. You already know how to power up from the power-up monitor to DYNIX/ptx. There are two other commands that allow you to move between system levels: init and shutdown. These two commands can only be used in single-user or multiuser mode; they are not valid commands in the power-up monitor.

init command

The <u>init</u> command allows you to move between system levels without giving warning to any users who might be logged into the system. This is a good command to use when you're on the system by yourself; it's not a command to use when there are others on the system.

The init command has the following syntax:

init [state]

state can be:

0= power-up monitor 1=single-user mode

2=multiuser mode

Here are some examples:

init 2 move from single-user to multiuser

init 0 move from multiuser to power-up monitor

init 1 move from multiuser to single-user

shutdown command

The <u>shutdown</u> command performs the same function as the <u>init</u> command but allows you to give a warning message to any users who might be logged onto the system.

The shutdown command has the following syntax:

shutdown [-y] [-gsecs] [-istate]

-y When you enter shutdown, the system asks if you want to shut down the system. This option automatically answers 'yes' to this question.

-gsecs specifies a grace period between the time you send a message and system shutdown. Enter the grace period in seconds; the default is 60 seconds.

-istate runs <u>init</u> command; states are the same as described above, except that state 2 to move to multiuser mode is not available.

Here are some examples:

shutdown -y -g300 -i0
moves from single-user to the monitor;
gives users 5 minutes grace period

shutdown -y -g120 -i1

move from multiuser to single-user mode;
gives users 2 minutes grace period

shutdown -y -g120 -i0

move from multiuser to power-up monitor;
gives users 2 minutes grace period

Here is a table summarizing commands to move from one system level to another.

This table assumes these flag settings:

monAuto=0 autoBoot=0

(Flag settings of monAuto=1 and autoBoot=1 cause the system to automatically boot to DYNIX/ptx on power up.)

TO

F	R	O	M

		Power Off	Level A	Level B	Single-user	Multiuser
I	Power Off		turn key on	N/A	N/A	N/A
	Level A	turn key off	N/A	bs	N/A	N/A
	Level B	turn key off	zap	N/A	bh 2wd(0,0)unix	bh or bh Owd(0,0)unix
	Single-user	N/A	N/A	init O	N/A	init 2
	Multiuser	N/A	N/A	init () or shutdown -y -g60 -i()	init 1 or shutdown -y -g60 -i1	N/A

^{*}N/A means there is no direct route between the two system levels. Move between these system levels by combining several routes.

Practice 10

1. Shutdown the system to DYNIX/ptx single-user mode. Do not notify anyone else. What command did you use?

Init 1

2. Bring the system back to multiuser mode. What command did you use?

Init 2

3. Shutdown the system to the monitor level and notify others that the system will shut down in 10 seconds. Choose the option to bypass questions. What command did you use?

Shutdown -y -910 -10

4. Change all boot flags so that the system will boot automatically to DYNIX/ptx multiuser mode. How did you set the flags?

Ls mon Auto = 1 Lh auto Boot = 1

5. Reboot the system. What command did you use?

Zap

6. Shut down the system to lvlB and power off your system.

Init Ø

Booting to IvlB From Tape

When data on the system disk is corrupted or if SSM/SSM-2 software has not yet been installed, the SSM/SSM-2 monitor will not automatically boot from lvlA to lvlB. Then you use the ssm Diagnostics FW tape to boot the system to lvlB.

To boot to lvlB from 1/4 inch tape:

- 1. Boot the system to lvlA.
- 2. Insert the ssm Diagnostics FW tape.
- 3. Boot the system to level-B (lvlB) by typing:
 - ->bs tm(56,1) on S2000/200 systems
 - ->bs tm(56,3) on S2000/400 and S2000/700 systems

Practice 11

1. Boot to lvlB from the ssm Diagnostics FW tape. What steps did you follow?

2. Turn the system off.

Self Check

Following is a list of tasks you should be able to do at the completion of this self-paced lesson. Check off those that you feel you can do. If there are any you do not feel you can do, review this lesson or ask the instructor for assistance.

I can:	
	Manually boot to each of the two SSM/SSM-2 levels
	Get help at each level
	Print parameters for a specific command
	Use the test command to test hardware components
	Change command parameter values
	Display the system configuration
	Interpret the system configuration - list the slot number of all boards - tell if a board is operational or not - determine the total amount of memory in a system - determine the number of processors in a system
	Change the system configuration
	Automatically boot to lvlB
,	Reboot the system using the zap command
	Boot DYNIX/ptx
	Move between system levels using init and shutdown
	Boot to lvlB using the ssm Diagnostics FW tape.

Additional information about the SSM/SSM-2 Monitor is included in the SSM/SSM-2 Power-Up Monitor Guide.

Appendix Answers to Practice Exercises

Practice 2

h	e	l	p
11	C	ı	μ

1. Display the list of commands available at lvlA. What command did you use?

help local help zap help bs 2. Get help on the <u>local</u>, <u>zap</u> and <u>bs</u> commands. What command did you use?

print local print bh print bs

3. Display the parameter values of the <u>local</u>, <u>bh</u>, and <u>bs</u> commands. What command(s) did you use?

local baud=1200

- 4. Set the baud rate for the local port to 1200. Your terminal should not respond after you do this. What command did you use?
- 5. Cycle through the baud rates by pressing the break key until you reach the correct baud rate. Your terminal will respond when you've reached the correct baud rate.

print local

6. Enter the command to display the baud rate of the local terminal.

Practice 3

test all

Test the components available at lvlA.

What command did you use?

Practice 4

bs

help

- 1. What command did you use to boot your Symmetry system from lvlA to lvlB?
- 2. Display the list of commands available at lvlB.
 What command did you use?

Practice 5

- 4 processors
- 2 boards
- 32Mb
- Slots 1 & 2
- 5 boards (including SSM/ SSM-2)
- Slot 4 (slic/2)

1. How many processors are there?

How many processor boards?

- 2. How much memory does this system have?
- 3. What system card cage slots are the memory boards in?
- 4. How many boards are in the system card cage?
- 5. What system card cage slot is the first processor board in?

4.37

Practice 6

help

2. Display all commands available at lvlB.

What command did you use?

help config help deconfig help bs 3. Get help on these commands: config, deconfig, and bs

What commands did you use?

print bs print bh

4. Display the parameter values for these two commands: <u>bs</u> and <u>bh</u>

What commands did you use?

Practice 7

config

deconfig slic=x
(x=slic number)

config slic=x

- 1. Display your system configuration.
- 2. Deconfigure a memory board and a processor from the system configuration. What command(s) did you use?
- 3. Configure the board and processor back into the system configuration. What command did you use?

Practice 8

print bs

1. Display the <u>bs</u> parameter values. What command did you use?

bs monAuto=1

2. Change the bootflag that controls automatic or manual boot so the next time the system is rebooted, it will boot to lvlB automatically.

What command did you use?

zap
Press any key to
abort when
prompted.

3. Reboot the system. Abort the boot at lvlA when prompted.

How did you do this?

zap

4. Reboot the system. Don't interfere with the boot process.

What command did you use?

Practice 9

print bh

1. Display the parameter values of the <u>bh</u> command. What command did you use?

autoBoot

2. What parameter of the <u>bh</u> command determines if the operating system is to be booted manually or automatically?

bh autoBoot=0

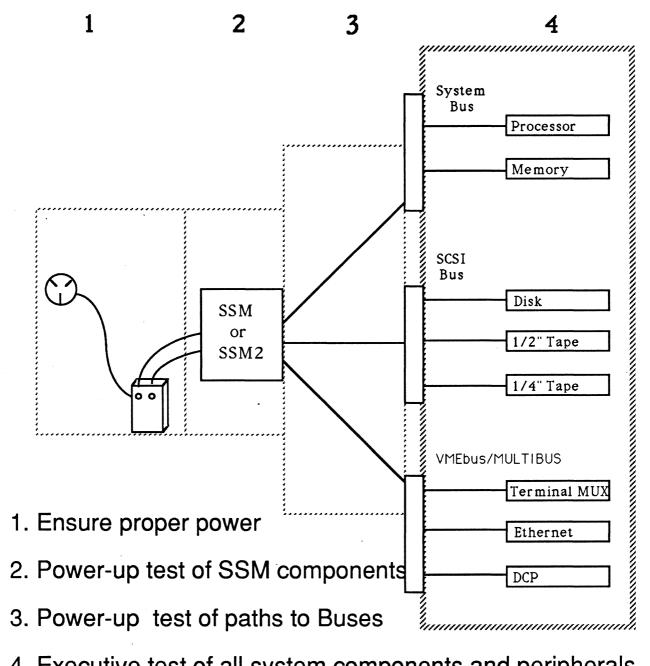
3. How would it be set to manually boot?

bh

4. Boot the operating system to DYNIX/ptx multiuser mode. What command did you use? Login as **root**. (There is no password; just press <return>)

Chapter 5 Diagnostic Executive

Diagnostic Executive Objectives


You will:

- a. boot the Diagnostic Executive from disk
- b. load the Diagnostic Executive from tape
- c. from the Diagnostic Executive menu:
 - get help on all commands
 - print current parameters of all commands
 - set parameters on the local and remote ports
 - select test execution parameters
 - configure hardware to test
 - select and execute tests and subtests
 - display the error log
 - execute the system quick tests
 - re-boot the system

Diagnostic Executive

- Diagnostic software that allows component level testing
- Interactive
- Menu driven format
- Executed from the SSM/SSM2 processor
- Booted from cartridge tape or disk
- Board level reconfiguration

Diagnostic Diagram

4. Executive test of all system components and peripherals

Using the Diagnostic Executive

Taking this lesson

This is a self-paced lesson on the Diagnostic Executive. You can work on it at your own pace; if you have questions ask the instructor for help. This lesson takes about an hour to complete.

This lesson is organized with information about a topic presented first, followed by a practice session. Read the information carefully and then enter commands when you see → in the left margin or during a practice exercise. Examples of user input are in bold.

A checklist outlining the steps to run diagnostics is included on page 5.36 of this lesson. The Diagnostic Executive Reference Card contains a list of all Executive commands.

Prerequisites

You should already know how to power up and power down a Symmetry 2000 system.

Objectives

During this lesson you will:

- boot the Diagnostic Executive from disk
- load the Diagnostic Executive from tape
- from the Diagnostic Executive menu:
 - get help on all commands
 - print current parameters of all commands
 - set parameters on the local and remote ports
 - select test execution parameters
 - configure hardware to test
 - select and execute tests and subtests
 - display the error log
 - execute the system quick tests
 - re-boot the system

The following commands invoke the Diagnostic Executive and this menu is displayed:

--->bs doDiags

or

--->bs wd(0,2)ssw/diag/exec

```
Diagnostic Executive Version 4.b.1
              Copyright (c) 1990 Sequent Computer Systems, Inc.
==>
                   Information about running scripts
==>
                                     i - information level
                                                                          r - run a test
                                    k - kill a test
l - loop control
m - menu control
                                                                          s - read a script
c - configure hardware
e - error control
                                                                          t - test select
f - foreground
                                                                          u - UART control
h (or ?) - help
                                     o - operator functions
                                                                          v - test variables
                                     x - execute a subtest
==>
```

Practice 1

- 1. Power up a Symmetry system to level-B and invoke the Diagnostic Executive.
- 2. Determine the version number of the Diagnostic Executive.

5.7

Using the Diagnostic Executive

Commands

Diagnostic Executive commands consist of top-level commands, subcommands, and second-level commands. Commands are **not** case sensitive.

The prompt changes to reflect the level of the menu you're in. Here is an example. Notice how the prompt changes.

```
Diagnostic Executive Version 2.0.0
             Copyright (c) 1990 Sequent Computer Systems, Inc.
==>
                 Information about running scripts
                                                                    r - run a test
b - boot
                                  i - information level
                                 k - kill a test
l - loop control
m - menu control
c - configure hardware
                                                                    s - read a script
e - error control
                                                                    t - test select
                                                                    u - UART control
f - foreground
                                  o - operator functions
h (or ?) - help
                                                                     v - test variables
                                  x - execute a subtest
==(i)>
            b - box
                                h - help
                                                       p - print
            f - flow
                                  m - menu
==(i)>m
==(im)>
             f- full menus h - help
                                               p - prompt only
                                  r - reference menus
==(im)>
```

In the example above, the prompt changes from ==> to ==(i)> to ==(im)> depending on the level in the menu. At the ==(i)> prompt, valid commands are b, f, h, m, and p. Entering any of these moves you down to the next level and the prompt changes to reflect the move.

To return to the main menu, press the Escape (ESC) key (located in the upper left-hand corner of your keyboard).

Practice 2

1. Explore all levels of the \underline{i} and \underline{e} commands.

5.8

Getting Help

The Diagnostic Executive has on-line help available at all levels. Help is not available in all cases; if no useful information is available, the message "no help message for this level" is displayed.

h or ? displays a list of all commands available

from the main menu and an explanation of how to obtain help on these commands

commandh displays help on specific menu command

Here are some command examples that are entered at the main menu:

ehihihelp for error control commandsihhelp for information level commandsimhhelp for information menu commands

Displaying parameters

You can also display current parameters (settings) of any menu command.

commandp displays current parameters for a

specific command. If the command has no parameters, nothing displays.

Here are some command examples that are entered at the main menu:

ip print current parameters for

information level commands

ep print current parameters for error

control commands

tp print a list of all available tests

The \underline{h} and \underline{p} commands can be entered at any level.

You can stop the scrolling on a screen by entering control-s and restart screen output by entering control-q. This is useful if screen displays take more than one screen.

Practice 3

- 1. Explore at least five commands on the Diagnostic Executive menu by:
 - a. getting help on each of these commands
 - b. printing the current parameters for each of these commands

Verify your answers with those provided in the Appendix.

5.10

Setting Remote and Local Port Parameters

Parameters for the local and remote port have default values. These parameters can be changed using the UART control menu option. The \underline{u} commands set the baud rate for the console and remote ports and specify whether a CRT terminal or printer is connected to a given port. The \underline{u} commands also allow you to set characters for erase, kill, interrupt, repeat and suspend.

To see what parameters are currently set, enter the following:

-

==>up

Here is an explanation of commands to set baud rate and terminal type:

Setting the Baud Rate

==>ubc <baudrate>

Sets the console baud rate; valid baud rates are 300, 1200, 2400, 4800, 9600, 19200, and 38400

Example: u

ubc 9600

==>ubr <baudrate>

Sets the remote port baud rate

Setting the Terminal Type

==>utc <type>

Sets the console terminal type; valid types are crt and printer

Example: utc crt

==>utr [enable | disable]

Enables/disables the remote console terminal (\$2000/200 only; use front panel button on \$2000/400 and \$2000/700)

Practice 4

- 1. Enable the remote port and set its baud rate to 1200 and its terminal type to be crt. What commands did you use? Utr 1200
- 2. Verify these changes.
 What command did you use?
- 3. Restore the baud rate of the remote port to 9600.
- 4. Verify these changes.

UP

Verify your answers with those provided in the Appendix.

Setting Terminal Characters

You may want to change the erase, kill, interrupt, repeat, or suspend character. The $\underline{\mathbf{u}}$ commands allow you to do this.

==>ue <character>

Sets the erase character; by default backspace. Be careful when setting this character. DON'T set it to"u" or "e" because this command will no longer work.

Example: **ue ^b** (control-b)

==>uk <character>

Sets the kill character; by default ^X or ^U.

5.12

==>ui <character>

Sets the interrupt character; by default ^C or ^[. This is the character you'd enter to terminate

a test

==>ur <character>

Sets the repeat character; by default 'J. This is the character you'd enter to repeat a command.

==>ud

restore default settings for the

erase, kill and interrupt

characters.

==>uh

get help on <u>u</u> commands

==>us <character>

Sets the suspend character; by default ^Z. This is the character you'd enter to suspend a test. (Covered in more detail later in this lesser.)

this lesson.)

Practice 5

1. Set the interrupt, erase, and kill characters for the console to characters of your choice. Be careful not to use any characters that are part of the command! What commands did you use?

W BU

2. Restore the system to its default settings. What command did you use?

ue cotrl H

Isolating Problems

When problems occur with a system, you need to follow an orderly procedure to isolate the cause of the problem.

Here are some general rules to follow:

- 1. Perform a visual inspection and check for the simple, obvious things first; make sure the power is correct, all boards are seated properly, and all cable connections are secure.
- 2. Resolve low level problems first; make sure the SSM power-up tests run successfully.
- 3. Make sure all status indicators are in the normal state; these include the front panel display, the power supply status indicators, and board indicators.
- 4. Use a building block approach when running diagnostics. Start with the SSM power-up tests. Then boot the Diagnostic Executive. Test one module at a time. Start with simple tests and build up to more complicated ones.
- 5. Keep variables at a minimum. Change only one item at a time and then re-run diagnostics.
- 6. Run tests for a period of time to ensure problem has been solved.

Running Diagnostic Tests

When running diagnostics, here are the steps to follow:

- 1. Set up parameters for information control, error control, and loop control.
- 2. Select the hardware to be tested.
- 3. Select the tests to be executed.
- 4. Run the tests.
- 5. Examine the test results.
- 6. Take corrective action.

Setting Parameters

Information Control

The <u>i</u> commands allow you to control the amount of information given in messages and menu displays.

Here is an explanation of information control subcommands:

i subcommands

- ib select whether text is enclosed in a box
- if select the level of information displayed for a given test
- im select the level of command menu displayed
- ip displays current parameters
- ih get help on i commands

Practice 6

- 1. Get help on the \underline{i} commands. What command did you use?
- 2. Display the current information control parameters. What command did you use?
- 3. Set information control parameters to the following:
 - a. flow level display test and subtest start and stop messages only
 - b. display full menus

What commands did you use?

Error Control

The <u>e</u> commands allow you to specify how the Diagnostic Executive behaves when it encounters an error. You can select how the Executive responds to an error and how the Executive logs and reports errors.

Here is an explanation of error control subcommands:

e subcommands

ea determines what action is taken when
a test encounters errors
el determines how error message logging
is handled
ep displays the current status of all error
control flags
er determines how the Executive reports
test errors

get help on the e commands

Practice 7

c.

eh

- 1. Get help on the <u>e</u> commands. What command did you use?
- 2. Display the current error control parameters. What command did you use?
- 3. Set the error control parameters to the following:
 - a. abort test on error
 b. write full error messages in the error log
 - report all errors era

Loop Control

The 1 command allows you to select the kind of looping to be performed when tests are run. This is useful when errors are intermittant. The 1 command has only subcommands; there are no second-level commands.

Here is an explanation of loop control subcommands:

l subcommands

- ld causes a loop on the failing data pattern
- le loop on the first subtest which gets an error
- lt causes a loop on all selected tests
- lc clears looping options (default)
- lp displays current state of loop flags
- lh displays help messages about the loop control commands

Practice 8

- 1. Get help on the <u>l</u> commands. What command did you use?
- 2. Display the current loop control parameters. What command did you use?
- 3. Set the loop parameters to the following:
 - a. loop on first subtest that gets an error

Configuring Hardware to be Tested

You must configure (select) the hardware to be tested before running diagnostic tests. The <u>c</u> commands allow you to configure components of the system hardware to test.

Here is an explanation of configuration control subcommands:

c subcommands

ca automatically scans the system to determine what hardware is installed and then selects all hardware components to test

Note: some types of hardware failures prevent "ca" from finding everything

cf set diagnostic flags for specified Sequent controller

cm set system mode values

ch displays help messages about the configuration control commands; also displays a list of all possible hardware components (devices)

Note: <u>ch <device name></u> displays help for specific devices

cp displays the currently configured system boards

Note: <u>cp <device name></u> displays currently configured <device name>

cs allows you to manually select and deselect controllers and devices

5.19

Practice 9

1. Display a list of all system boards that are currently configured. What command did you use?

CP

2. Get help on the <u>c</u> commands. What commands did you use?

 $\subset h$

3. Get help on these devices: wd (SCSI disk drive) and tm (SCSI tape drive). What command did you use?

Verify your answers with those provided in the Appendix.

Select and Deselect

The <u>cs</u> command is used to select and deselect controllers and devices to test. System boards are selected by default; this means that system board tests will run on all boards unless you specifically deselect them.

The minus (-) deselects hardware components. Deselect processor 0 by entering the following:

==>cs -proc/486w 0

This command deselects processor 0 so it will not be tested the next time processor tests are run.

The plus (+) adds hardware components back into the system configuration. To add processor 0 back into the configuration enter the following:

==>cs +proc/486w 0

5.20

Controllers and devices are deselected by default; therefore, if you want to run a test on any of these components, you must select or configure them first.

The command for selecting a controller or device is more complicated than for system boards.

Here is an example of selecting a tape drive to test:

==>cs +ssm2 0 ssm scsi 0 tm 56

Here is an explanation of that command:

ssm2 0	SSM board type and number
•	(Can be either ssm or ssm2;
	in this example, the first ssm2
	board is referenced)
ssm_scsi 0	SCSI bus number (in this
_	example, the first SCSI bus)
tm 56	device name and unit number
	(in this example, tape drive
	with unit number 56; default
	is 56)

The command to deselect this tape drive is:

==>cs -ssm2 0 ssm scsi 0 tm 56

Practice 10

- 1. Configure the SCSI tape drive.
 What command did you use?

 CS TSSM2 SSM_SCSI 0 tm 56
- 2. Verify the tape drive was configured. What command did you use?

Preferential treatment

When testing like components, the first component of its kind is tested first, the second component of its kind is tested next, and so on. For example, processor 0 is tested first, processor 1 is tested next, and so on. The same holds true for controllers and devices.

If you want testing to occur in a different order you need to use the <u>css</u> command. For instance, you may want processor 1 tested before processor 0. The <u>css</u> command allows you to do this.

==>css proc/486w 1

The <u>css</u> command also allows you to give preferential treatment to a component. For example, if you had two disk drives, wd0 and wd8, and you wanted to test wd8 before wd0, the command is:

==>css +ssm2 0 ssm_scsi 0 wd 8

To remove preferential treatment from a system board, you can enter either of the following commands:

==>cs proc/486w 0 (board remains selected)

or

==>css -proc/486w 0 (board is deselected)

Removing preferential treatment from any system component is the same as for system boards.

You can enter any of the following commands:

or

Practice 11

1. Give preferential treatment to processor 1. What command did you use?

2. Verify this change. What command did you use?

CP

Verify your answers with those provided in the Appendix.

5.23

Selecting Tests to be Executed

The t commands allows you to select which diagnostic tests to run.

Here is an explanation of the test control subcommands:

t subcommands

- ta searches the configuration table and selects all tests and subtests not flagged as out that apply to the currently configured hardware
- th displays help messages about the test control commands
- ts allows you to manually select and deselect tests and subtests
- tq automatically selects a "quick-look" version of all tests that apply to the currently configured hardware
- tp displays a list of tests and their current status (selected/deselected)

Enter the following command to display a list of all tests:

==>tp

Display a list of tests

 \rightarrow

To display a list of all tests in the "symmem" module, enter the following:

==>tp symmem

- *-Symmetry Memory Unit Test
- *-1 VLSI Verification
- *-2 Symmetry Memory EDC
- *-3 Symmetry Memory Support
- *-4 Symmetry Memory DRAM
- *-5 Symmetry Memory Modes
- *-6 System Bus Interface

A numbered list of tests appears. The "*" next to the number indicates there are subtests within that particular test. To display a list of subtests within Test 1 enter the following:

\rightarrow

==>tp symmem 1

- *-VLSI Verification
- *-1.1 SLIC and Configuration PROM
- *-1.2 BDP and BIC

Practice 12

- 1. Get help on the <u>ts</u> command. What command did you use?
- 2. Display all tests for the symproc module. What command did you use?

tp symproc

3. What number test in the dcc test module tests the OK board logic?

4.1

4. What number test in the csd test module will write/read the entire disk?

4.4

Verify your answers with those provided in the Appendix.

Select tests

The <u>ts</u> command allows you to select specific diagnostic tests to run. Using <u>ts</u> selects the test specified and deselects any other tests that may have been selected. Use the plus (+) and minus (-) to add or remove tests.

Here are some examples:

==>ts symproc Clears the current test

list and selects the Symmetry

processor test

==>ts +symmem Adds the Symmetry memory

test to the list of selected tests

==>ts -symproc Removes the Symmetry processor

test from the list of selected tests

==>ts symmem; ts +symproc

Selects Symmetry memory test and Symmetry processor test

These same commands are used to select and deselect subtests. Here are some examples:

Select multiple tests

a colon (:)

==>ts -tm 3.2 Removes tm subtest 3.2 from

the list of selected tests

==>ts csd Clears the current test

list and selects SCSI disk

drive tests

5.26

Display selected tests

Use the <u>rp</u> command to display all tests selected to run.

Practice 13

1. Select diagnostic tests to test the SCSI tape drive you have already configured. What command did you use?

ts tm

2. Display all selected tests. What command did you use?

rp

Verify your answers with those provided in the Appendix.

Running the Tests

There are two ways to run diagnostic tests.

The <u>r</u> command runs all selected tests and follows whatever loop, error control, and information control parameters you have set.

You can also run an individual test that has not been previously selected using the \underline{x} command. You can only run one test at a time using \underline{x} .

Here are some examples:

==>r runs all selected tests

==>x symmem runs the Symmetry memory test

==>x symmem 1.2 runs subtest 1.2 of the the Symmetry memory test

When running tests on the tape drives, put scratch tapes in the drives to avoid errors.

Practice 14

1. Run the test you have selected. Make sure there's a tape in the tape drive. What command did you use?

Verify your answers with those provided in the Appendix.

5.28

Suspending a Test

You can temporarily halt or suspend a test while it is running by pressing <u>control-z</u>. When you enter <u>control-z</u>, the word SUSPEND appears on the screen and then the Diagnostic Executive screen menu appears. The amount of time it takes the menu to appear varies, depending upon the test being run.

You may change information control, error control, or loop control parameters while a test is suspended. The changes take place when you resume execution of the test.

You may not print a list of selected tests or select or deselect tests while a test is suspended.

Resuming a Test

Enter \underline{fg} or \underline{f} to resume a suspended test. When a test is suspended it is held in the background. The \underline{fg} or \underline{f} command stands for foreground, meaning bring the test to the foreground and resume executing it.

Killing a Test

You can terminate a suspended test by using the \underline{k} (kill) command.

Interrupting a Test

You can interrupt a test before completion by pressing <u>control-c</u> or the Escape (ESC) key. This command terminates the test.

Practice 15

- 1. Run the tests you have selected again.
- 2. Suspend these tests and then restart them. What commands did you use?
- 3. Suspend these tests again and then kill them. What commands did you use?

Verify your answers with those provided in the Appendix.

Test Quick (tq)

The tq command automatically selects a "quick-look" version of all tests that apply to the currently configured hardware. This command doesn't select all tests but it does provide good test coverage. If the Executive encounters an error while running tests under the tq command, it automatically reruns the full set of tests for that piece of hardware before going on. These tests take about forty minutes to complete.

The tq command isolates a particular fault to the field-replaceable unit (FRU) level. Appendix A of the Diagnostic Executive User's Guide lists all tests and subtests and identifies those that are run during this quick test.

This quick test is run automatically when diagnostics are booted and the diagAuto flag is set to 1.

The command to select these quick tests is:

==>tq

You would need to then enter the \underline{r} command to actually run these tests. **DO NOT** start these tests now.

Test Autoschedule (ta)

The <u>ta</u> command searches the configuration tables and selects all tests and subtests not flagged as out that apply to the currently configured hardware. (Tests flagged as out do not run unless specifically selected). Tests selected by the "ta" command are more extensive than those run with the <u>tq</u> command. The command to select these tests is:

==>ta

You would then need to enter the \underline{r} command to actually run these tests. **DO NOT** start these tests now.

Practice 16

- 1. Configure all available hardware in your system. (Remember, there is a simple command to do this). What command did you use?
 - Ca
- 2. Select and run the quick tests on the selected hardware. What commands did you use?

tq

3. Interrupt these quick tests. What command did you use?

esc cntrl-C

Verify your answers with those provided in the Appendix.

5.31

Examining the Results

Error messages are displayed by a test to indicate a hardware failure. When tests have completed, check the results in an error log.

Prior to running the tests, you set error control parameters. You have choices about how much or how little error information you want displayed. This information is written to an error log.

There are three types of diagnostic messages and they have the following format:

<i></i>	information	non-error information; start/stop time of test	
<e></e>	еггог	error information; includes the following: - time of error - test name and subtest number - error number - SLIC number associated with failure - slot number of the subsystem	
<w></w>	warning	under test - name and number of the subsystem indicates conditions that could interfere with the	
		execution of the test	

Reading the Error Log

Use the <u>elp</u> command to print the error log.

Here is an example error message:

```
==> elp
-<E>- 21:23:47 UTC: tg, error number 78, pass 0
->E<- Failing Unit: TG 0 on SSM_SCSI 0 on SSM 0 (slot 0, SLIC 0)
->E<- Unknown SCSI device at target 0
->E<- Expected = HP
->E<- Actual = CDC
->E<- SUSPECT COMPONENTS (in order of decreasing probability):

1. SCSI 1/2 inch Tape Drive [logical unit 0]
2. System Services Module(SSM) [0]
==>
```

Clearing the Error Log

Use the <u>elc</u> command to clear the error log. Error messages are written to a memory buffer during the run of each test. By default, logging stops when the log buffer is full, so it is important to periodically clear the error log.

Practice 17

- 1. Select and run the test on the SCSI tape drive without putting a scratch tape in the drive. (This will cause errors.) What command did you use?
- 2. Display the error log. What command did you use?
- 3. Clear the error log. What command did you use?

elc

Verify your answers with those provided in the Appendix.

Returning to the Monitor

When you have finished running diagnostics, you must return to the SSM monitor before booting to DYNIX/ptx or shutting the system down.

The boot control command <u>b</u> allows you to do this.

Here is an explanation of boot control subcommands:

bt causes a boot of the system; if autoBoot is set to 1, will boot DYNIX; if monAuto is set to 1, will stop at level-B; otherwise stops at level-A

bp displays current boot strings and flags

Note: In this display, there are three references to auto flags; in order, they are monAuto, autoDiag, and autoBoot flags.

bh displays help messages for the boot control commands

Practice 18

1. Re-boot the system from the Diagnostic Executive. What command did you use?

Verify your answers with those provided in the Appendix.

5.34

Loading the Diagnostic Executive from Tape

If your disk is not accessible, you may have to load and run the diagnostics from tape. You can do this from level-B by inserting the ssm Diagnostics FW tape in the 1/4-inch SCSI tape drive and entering the following:

--->bs tm(56,6)

Practice 19

- 1. Boot the Diagnostic Executive from tape. What command did you use?
- 2. Re-boot the system to level-A and turn the key off. What command did you use?

Verify your answers with those provided in the Appendix.

5.35

CHECKLIST

When running diagnostics, here are the steps to follow: Set up information control parameters - i commands Set up error control parameters - e commands Set up loop control parameters - 1 commands Select (configure) hardware to test - c commands Select the tests to run - t commands Run the tests - r or x command Examine the results in the error log - e commands Take corrective action Sample diagnostics run: ==>imf; ife set information control to full menus and extended information about tests # continue on error ==>eac # ==>elf log full error messages ==>cs +ssm 0 ssm scsi 0 tm 56 configure the SCSI tape

5.36

##

==>ts tm

==>elp

drive to test

drive

view the error log

clear the error log

run the tests

select test to test SCSI tape

Self Check

Following is a list of tasks you should be able to do at the completion of this self-paced lesson. Check off those that you feel you can do. If there are any you do not feel you can do, review this lesson or ask the instructor for assistance.

I can:	
	Boot the Diagnostic Executive from disk
	Load the Diagnostic Executive from tape
	From the Diagnostic Executive menu:
	get help on all commands
	print current parameters of all commands
	set parameters on the local and remote ports
	set test execution parameters
	configure hardware to test
	select and execute tests and subtests
	display the error log
	execute the system quick tests
	re-boot the system

Additional information about the Diagnostic Executive is included in the Diagnostic Executive User's Guide.

Appendix Answers to Practice Exercises

Practice 3

- 1. Explore at least five commands on the Diagnostic Executive menu by:
 - a. getting help on each of these commands
 - b. printing the current parameters for each of these commands

command h (ch or ih, etc.)

commandp (cp or ip, etc.)

Practice 4

utr enable or front panel

ubr 1200 utr crt

up

ubr 9600

up

1. Enable the remote port and set its baud rate to 1200 and its terminal type to be crt. What commands did you use?

- 2. Verify these changes. What command did you use?
- 3. Restore the baud rate of the remote port to 9600.
- 4. Verify these changes.

Practice 5

ui any character ue any character uk any character 1. Set the interrupt, erase, and kill characters for the local port to characters of your choice. Be careful not to use any characters that are part of the command! What commands did you use?

ud

2. Restore the system to its default settings. What command did you use?

Practice 6

ih

1. Get help on the <u>i</u> commands. What commands did you use?

ip

2. Display the current information control parameters. What command did you use?

iff imf

- 3. Set information control parameters to the following:
 - a. flow level display start and subtest start and stop messages only
 - b. display full menus What commands did you use?

Practice 7

eh

1. Get help on the <u>e</u> commands. What commands did you use?

eр

2. Display the current error control parameters. What command did you use?

5.39

eaa elf

era

lh

lp

le

cp

ch

ch wd ch tm

- 3. Set the error control parameters to the following:
 - a. abort test on error
 - b. write full error messages in the error log
 - c. report all errors

Practice 8

- 1. Get help on the <u>l</u> commands. What commands did you use?
- 2. Display the current loop control parameters. What command did you use?
- 3. Set the loop parameters to the following:
 - a. loop on first subtest that gets an error

Practice 9

- 1. Display a lists of all system boards that are currently configured. What command did you use?
- 2. Get help on the <u>c</u> commands. What commands did you use?
- 3. Get help on these devices: wd (SCSI disk drive) and tm (SCSI) tape drive). What commands did you use?

Practice 10

- cs +ssm2 0 ssm_scsi 0 tm 56
- cp tm

- 1. Configure the SCSI tape drive. What command did you use?
- 2. Verify the tape drive was configured. What command did you use?

Practice 11

- 1. Give preferential treatment to processor 1. What command did you use?
- 2. Verify this change. What command did you use?

css +proc/486w 1

сp

Practice 12

tsh

- tp symproc
- 4.1
- 4.4

- 1. Get help on the <u>ts</u> command? What commands did you use?
- 2. Display all tests for the symproc module. What command did you use?
- 3. What number test in the dcc test module tests the OK board logic?
- 4. What number test in the csd test module will read/write the entire disk?

Practice 13

ts tm

1. Select diagnostic tests to test the SCSI tape drive you have already configured. What command did you use?

rp

2. Display all selected tests. What command did you use?

Practice 14

r

1. Run the test you have selected. What command did you use?

Practice 15

r

1. Run the tests you have selected again.

control-z f or fg

2. Suspend these tests and then restart them. What commands did you use?

control-z k 3. Suspend these tests again and then kill them. What commands did you use?

Practice 16

ca

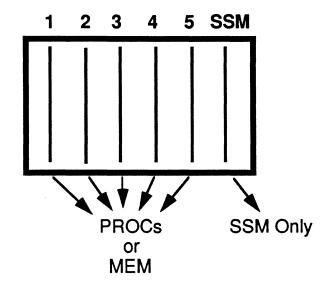
5.42

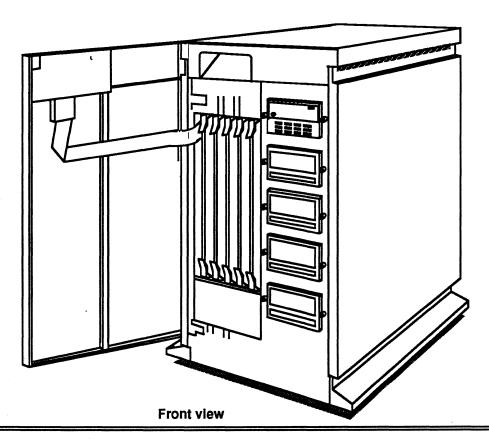
1. Configure all available hardware in your system. (Remember, there is a simple command to do this). What command did you use?

Chapter 6 Hardware Replacement

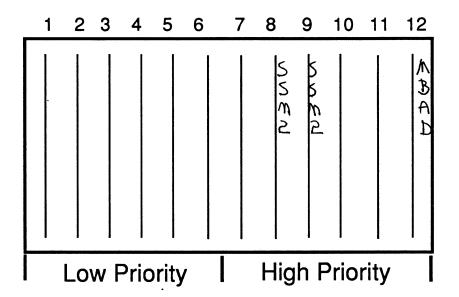
Hardware Replacement Objectives

You will:


- a. remove, install, configure and run diagnostics to verify the following:


 - system boardsVMEbus boards
 - **MULTIBUS** boards
 - system console
 - modem
 - disks
 - tape drives
 - power supplies
 - fans
- b. locate and describe the function of the on/off module

System Boards

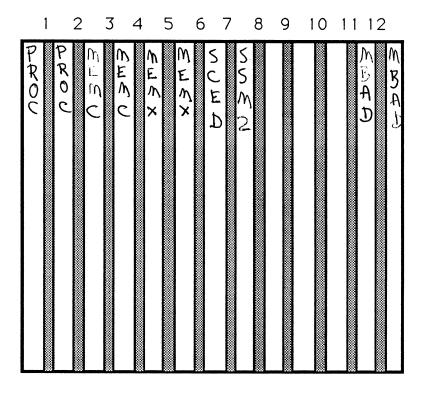

- SSM board ON™ ON 200
- SSM-I/O board ≥∞
- SSM2 board 400 700
- Processor board "b" 200 400 700
- Memory and Memory Controller n
- DCC board 400 700
- MULTIBUS Adapter board 400 700
- SCED board 400 700

S2000/200 System Slot Usage

S2000/400 System Slot Priorities

Processors or Memory

I/O Controllers or Memory

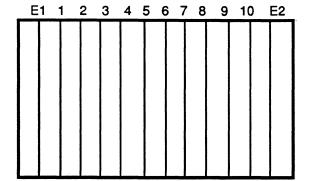

Procs
Mem C
Mem X

SSMZ SCED DCC MBAD

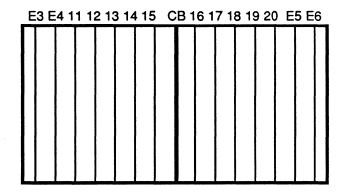
S2000/400 System Boards Configuration

Board type	Maximum # of Boards	Slot Priority
SSM2	1	High
PROC	5	Low
SCED	2	High
MEMC/MEMX	2 sets	H/L
MBAD	4	High
DCC	2	High

S2000/400 System Boards Configuration Exercise



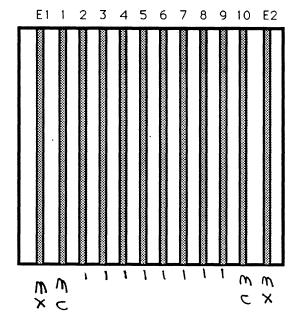

```
1 SCED 10
2 MBAD 12
1 DCC 11
2 PROCS 1 2
2 MEMC 3 4
2 MEMX 5 6
1 SSM2 8
```


IST SCED ALWAYS IN SLOT 7

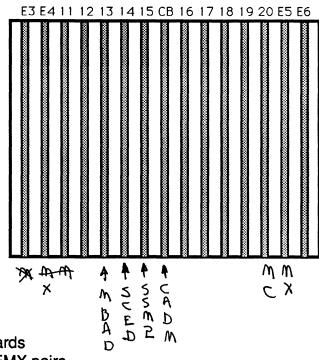
S2000/700 **Slot Priorities**

FRONT

REAR


1-10 - LOW priority 11-15 - HIGH priority 16-20 - HIGH/LOW priority E1-E6 - Memory Expansion CB - CADM Board Only

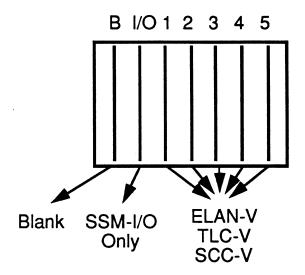
S2000/700 System Boards Configuration

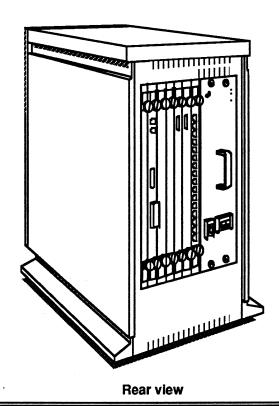

Board type	Max # of Boards	Slot Priority
SSM2 ZND SSMZ ADDITIONAL SCSI PRINTERS	1 (2)	High
PROC	10	Low
SCED	4	High
MEMC/MEMX	6 sets	H/L
MBAD	4	High
DCC	7	High

S2000/700 Board Configuration Exercise

BACK

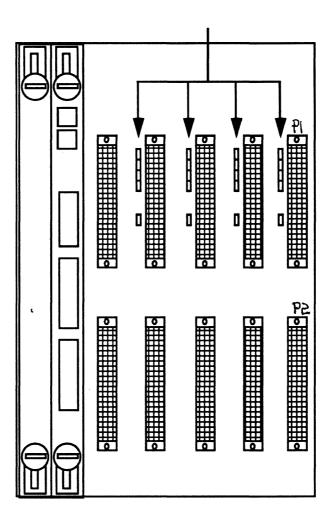
- 8 PROC boards
- 3 MEMC/MEMX pairs
- 3 DCCs
- 1 SSM2
- -1 MBAD
- -1 CADM
- -1 SCED


Lab Configuring System Boards


- 1. Remove all system boards from the system card cage. Place boards in anti-static bags. Switch systems with another group and configure the system boards in that system to the recommended procedure.
- * Follow the system board installation guides in Volume I of the manual set.
- 2. Run enough of the diagnostics to verify system board functionality.

VMEbus Boards

- All VMEbus boards go in the rear of the S2000/200
- Boards and VMEbus need to be configured
- Boards must be loaded from right to left
- · Left-most slot is not used
- No empty slots between boards


S2000/200 VMEbus Slot Usage

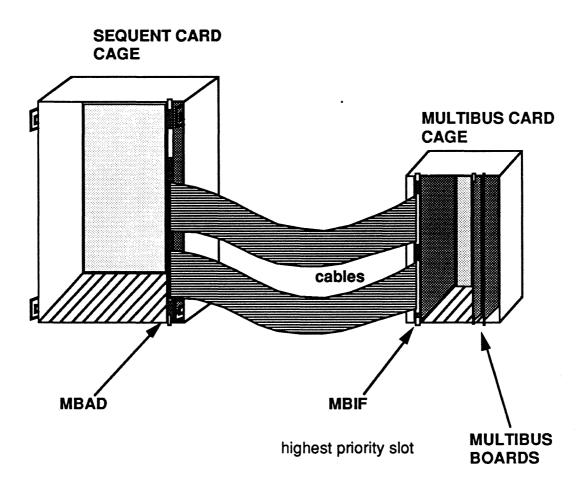
VMEbus Jumpers

Bus grant jumpers need to be removed or added depending on the particular configuration

Configuring VMEbus Boards

- S2000/200 supports three different VMEbus boards:
 - ELAN-V Max 3 - TLC-V 5 - SCC-V
- Boards must be hardware configured by use of switches and jumpers
- Verify functionality by running the appropriate diagnostic test(s)

MULTIBUS Boards


- All MULTIBUS boards reside in the MULTIBUS card cage
- Boards should be placed in correct priority slots
- ALL boards need to be hardware configured via jumpers and switches
- Boards must be cabled correctly

Diagnostics must be used to verify functionality

MULTIBUS Board Priority

- 1. MBIF board
- 2. Tape controller board (Xylogics 472)
- 3. TLC-M
- 4. DCP
- 5. PPC board

MULTIBUS Card Cage

Lab MULTIBUS & VMEbus boards

- 1. Remove all VMEbus and MULTIBUS boards from the systems. Place the boards in anti-static bags.
- 2. Switch systems with another group and install and configure the VMEbus and MULTIBUS boards per the chart below.
- 3. Verify functionality of all boards by running the appropriate diagnostics.
 - **Refer to the board installation manuals for switch settings and cabling issues.

Board	Controller/Board Number		
ELAN-V	1		
TLC-V	2		
SCC-V	2		
TLC-M	4		
PPC	0		
DCP	4		

System Console

- Connect the system console to the connector labeled cons1 on the I/O panel
 - RJ45 type connector
- Power up system console
- Set up the terminal characteristics by using the setup menu on the terminal
 - use the arrow keys to move around
 - save your settings
- Power up the system
- Verify correct local and remote settings

Configuring a Modem

- S2000s use a USRobotics Courier 1200 baud modem
 - used as a remote console
- Configure the modem using DIP switches
 - follow switch setting on bottom of modem (Dial-in)
- Connect the RJ45 cable to the cons2 port on the I/O panel
- Configure the remote port using the SSM monitor or the front panel switch
- Power up modem
- Power up the System

Lab System Console and Modem

- 1. Deinstall the system console from one of the systems. Change the system console set up (setup menu) and the local settings in the monitor so that its a challenge for the next group to install the console. Switch systems with another group and install that system console. Set up the local port to enable the autoBaud function. Follow the procedure in the System Installation Guide.
- 2. Install and configure a modem. Verify setup by dialing into the modem. Set the remote port to echo everything being typed to the terminal (system console) screen.

SCSI Devices

- Configure the drives using jumpers to determine logical device number
 - tape drive = logical device 7
 - boot disk drive = logical device 0
- Install disk drives in the system
 - slide in rack mount for S2000/200 systems
 - peripheral tower for S2000/400 system
 - located in fan tray for S2000/700 systems
- Verify devices using diagnostics
 - disk test (csd)
 - tape drive test (tm)
 - GCR tape drive (tg)

SCSI IDs

SCSI Device	ID#	Device#
1/4" tape drive	7	tm56
Boot disk	0	wd0
1st SCSI disk	1	wd8
2nd SCSI disk	2	wd16
3rd SCSI disk	3	wd24
1st GCR tape	5	tg40
2nd GCR tape	4	tg32
SSM board	6	N/A

GCR Tape Drive

Verify correct power

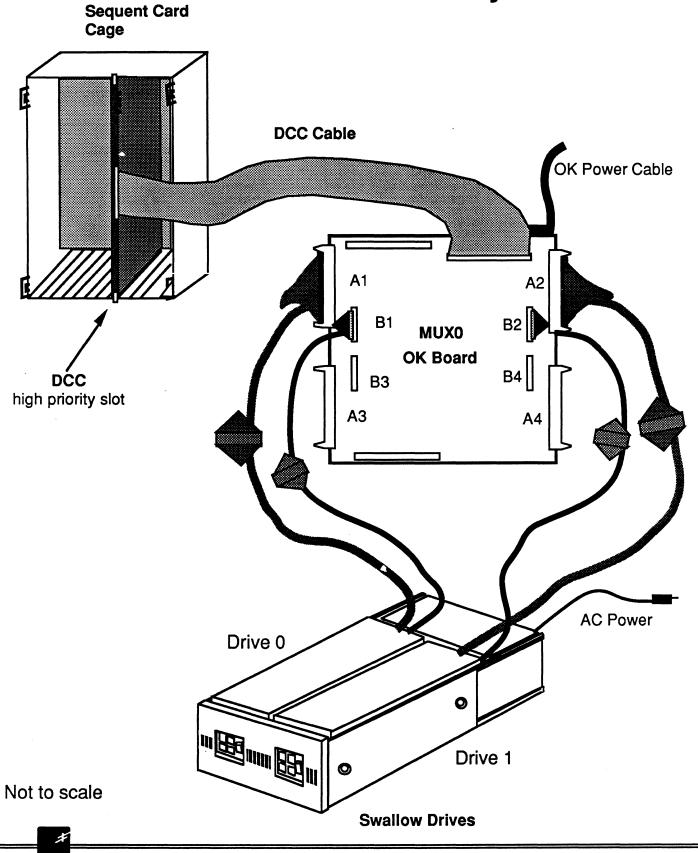
- check voltage select switch
- check the fuse on the GCR for proper voltage
- check the wall outlet for proper voltage

Connect the device to the I/O panel

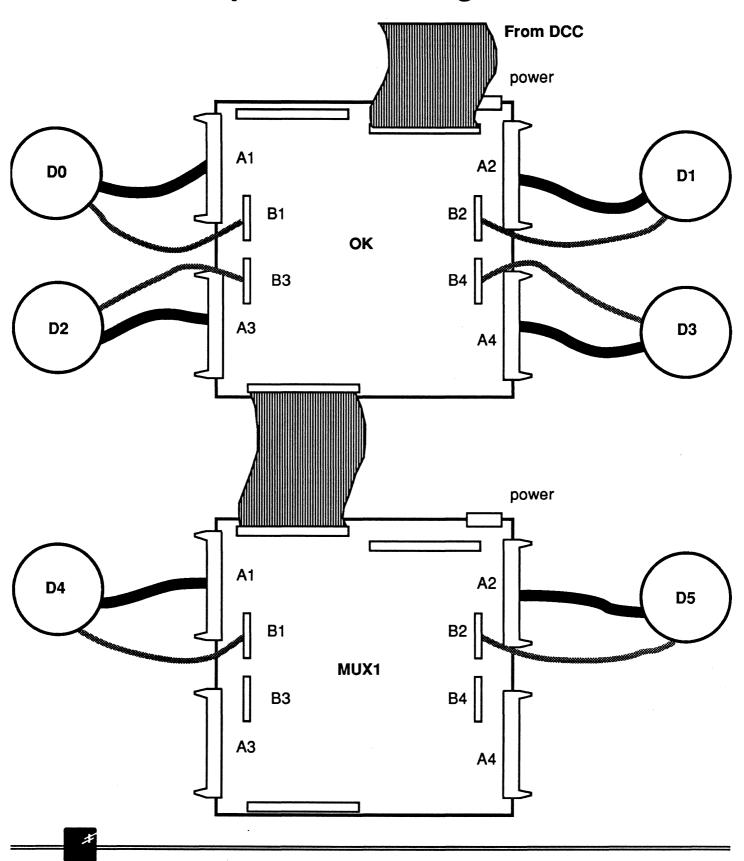
- connects via 10 foot SCSI cable
- move terminator from I/O panel
- install terminator onto vacant connector on GCR

Power-up GCR and set logical device number

- GCR = logical device 5; S2000/200 & /400
- S2000/700; top GCR=5; bottom GCR=4
- use the front panel display on the GCR


Verify functionality using diagnostics

GCR tape diags (tg)


SMD Devices

- Configure the drives using DIP switches to determine drive select number
 - switches accessed from the top of the drive
 - different swallows require different settings
- Install drives into 19" rack mounts
 - expansion cabinet only for S2000/400s
 - main or expansion cabinet for S2000/700s
- Verify correct cabling
 - DCC cables to OK board
 - OK board to drives
 - correct power and power connections
 - verify correct voltage selection on drive power supply
- Verify devices using the zd diagnostics

Swallow Drive Subsystem

Sample Drive Configuration

Lab SCSI, GCR, SMD

SCSI disks

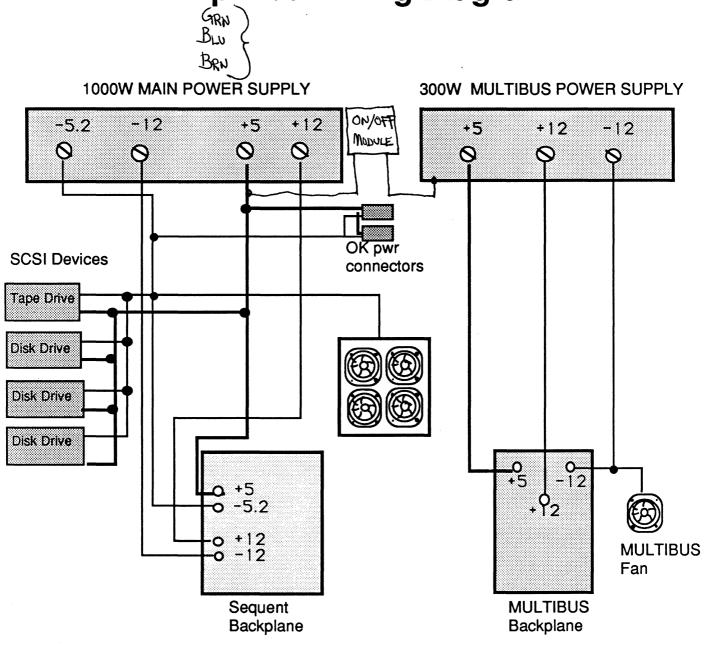
- 1. Remove the SCSI 5 1/4" disk drives (label drive 0) and the SCSI 1/4" tape drive from the system. Remove the address jumpers from the drives and place the drives in an anti-static bag.
- 2. Switch systems with another group and reconfigure all of the devices back into the system.
- 3. Verify functionality by running the appropriate diagnostics.

SMD disk

- Remove the 19" SMD disk rack from the system. Then remove at least one
 of the SMD drives from the disk rack. Verify that the drives are set for disk 0
 and disk 1. Reinstall the disks back into the rack and the rack back into the
 system.
- 2. Verify functionality by running the appropriate diagnostics.

GCR tape drive

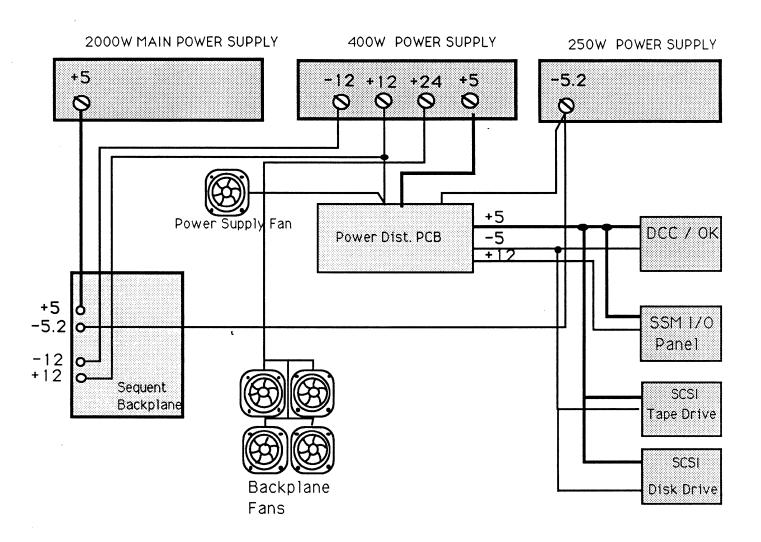
- 1. Install the GCR tape drive onto the S2000/200 or S2000/400 system.
- 2. Verify functionality by running the appropriate diagnostics.


Power Supply S2000/200

- One 950-watt power supply
- Supports a range of single phase voltages
 - 90VAC 250VAC
 - verify correct AC line cord
- Power supply is rack mounted
 - slides in and out of system on rails
 - no cables or connectors to manually connect
 - held by four captive fasteners on the front of the supply
- Verify supply is functioning correctly
 - check supply under load
 - check power supply status indicators
 - no voltage adjustments necessary

Power Supply S2000/400

- 2 power supplies
 - 1000w system supply
 - 300w MULTIBUS supply
- Turn off circuit breaker and unplug system
- 1000w supply accessed from the top of the system
- 300w supply accessed from the rear of the system
- Label wires and connectors
 - verify pin1 connection on molex plugs


S2000/400 Simplified Wiring Diagram

Power Supply S2000/700

- 4 power supplies
 - 2000w system supply located at top 400 AMP @ 5volts
 - 250w supply is second from top
 - 400w supply is third from top
 - 444w supply located in MULTIBUS
- Turn off circuit breaker and unplug system
- System supplies accessed from the rear of the system
- MULTIBUS supply accessed from the MULTIBUS cabinet
- Label wires and connectors
 - verify pin1 connection on molex plugs

S2000/700 Simplified Wiring Diagram

Power Distribution Panel

- Supplies +5vdc and -5vdc to the OK boards
 - +5vdc supplied by the 400watt supply
 - -5vdc supplied by the 250watt supply
- Support for 7 DCC boards (S2000/700)
- Located in the rear of the S2000/700 system
- Pop-up fuses
 - check to make sure all fuses are down
 - pop up and push down during install to insure contact
- S2000/400 distribution panel supports 2 OK boards
- · Screw in fast blow fuses

ON/OFF Module

S2000/700

- Monitors main power supply +5V
- Shuts down 200W and 300W supplies if +5 fails

S2000/400

- Monitors main power supply +5V
- Disables the MULTIBUS power supply if +5V fails

Fans

S2000/200

- Two DC fans mounted under the system card cage
- One DC fan mounted under the peripheral bay
- Clip mounted for easy removal

S2000/400

- Four 12V fans mounted under the system card cage
- One DC fan located under the peripheral bay

S2000/700

- Four 220V AC fans mounted on rear door
- Four 24V fans mounted under system card cage
- Two 12V fans mounted beside MULTIBUS card cage
- One 12V fan for the 200W and 300W supplies
- MULTIBUS power supply has its own fan

Lab Power Supplies, Fans

- 1. Remove and install at least one power supply from the systems. Label all wires and follow instructions in the installation guides. Have the instructor verify the wiring before powering on your system.
- 2. Locate, remove, and replace at least two fans in the system.

CAUTION - Remove AC power before removing supplies

Site Prep and Installation Objectives

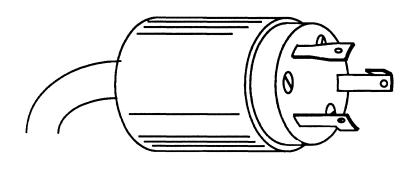
You will:

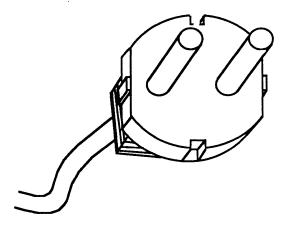
- a. identify the appropriate site prep parameters
- b. install S2000/200, S2000/400, S2000/700 systems according to the installation procedures
- c. install the SSM software and diagnostics according to the installation procedure
- d. verify system functionality using the quick check diagnostics
- e. boot the systems into single-user and multiuser modes
- f. examine the system error message logs

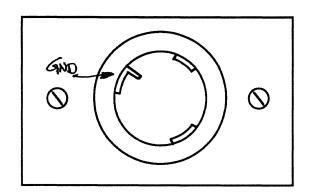
Site Prep

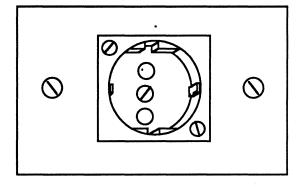
Space

- adequate spacing for air flow
- serviceability


Environmental


- 68 to 72 degrees preferred HARD DISKS SHOULD BE COOL
- 50% humidity preferred


Power


- proper power and phasing
- proper plug and receptacle

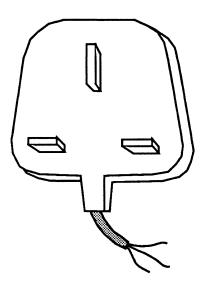
S2000/400 Plugs and Sockets

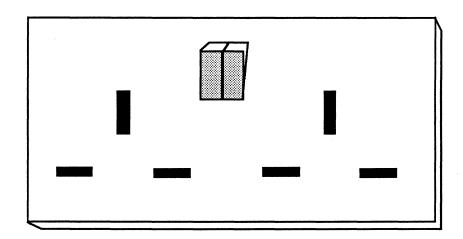
110V Single Phase

North America

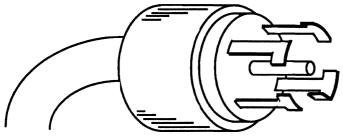
NEMA L5-20P - plug NEMA L5-20R - receptacle

20 AMP DEDICATED GROWT

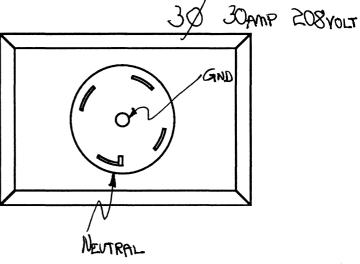

220V Single Phase

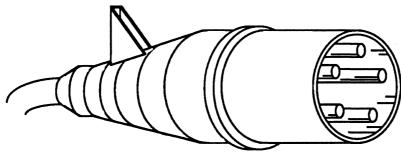

European Continent, Australia, and Japan

CEE 7-7 compatible

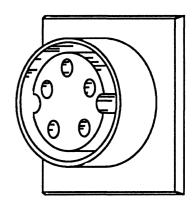

S2000/400 British Plug and Socket

Britain B.S. 1363





S2000/700 Plugs and Sockets



North America and Japan NEMA L21-30P - plug NEMA L21-30R - receptacle

Europe and Australia IEC 309 - plug CEE 17 - receptacle

System Installation Steps

- Unpack system cabinet
- Install the system cabinet
- Install and connect expansion cabinets
- Connect I/O devices
 - system console
 - terminals
 - printer
 - tape drive
 - user terminals
 - ethernet

System Installation Steps

- Install additional boards and disks
- Power up the system
- Run quick check diagnostics
- Boot operating system
- Check error logs
- Configure system software

Lab Hardware Installation

- 1. Deinstall one of the S2000 systems. Remove the SMD disk racks, terminals, modems, and GCR tape drive. Disconnect the main cabinet from the expansion cabinet. When completed, switch system with another group.
- 2. Perform a hardware installation. Install all available peripherals; GCR tape drive parallel printer, SMD disk drives, modem, user terminals.
- 3. Verify system function by running the quick check diagnostics. Correct any errors that may exists
 - * Refer to the hardware installation manuals

Installing SSM and Diagnostics

- 1. Boot system to level-A PROM LEVEL
- 2. Boot to level-B from tape DISK LEVEL
 - bs tm(56,3) 400 700 ONLY
- 3. Boot to operating system
 - bh
- 4. Install SSM/Diagnostic software according to the installation instructions

Lab Software Installation

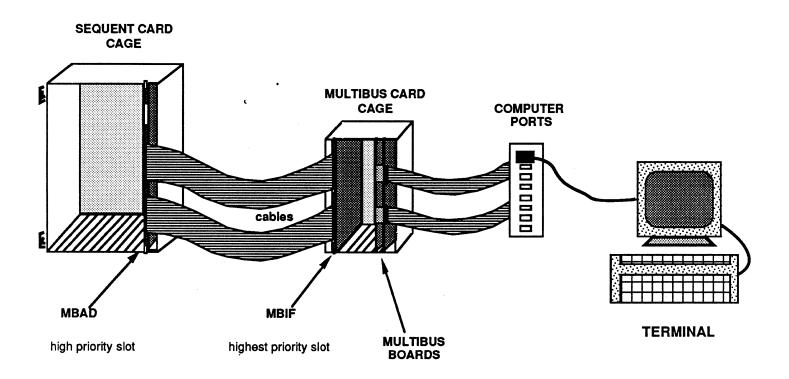
- 1. Install SSM software and diagnostics. Refer to the Installation Instructions with the tape.
- 2. Boot the monitor and diagnostics to verify that the installation was done correctly.

Periodic Maintenance Schedule

Frequency	Performer	Device	Procedure
WEEKLY	Customer	Tape Drives	Clean drive heads with electronic grade isopropyl alcohol
MONTHLY	Customer	Tape Drives	Clean entire tape path
QUARTERLY	Service	Cabinets	Clean air filters
	Service	Systems	Check power at receptacle if problems have been reported
	Service	Systems	Visually check cabling, fans, EMI shields, cabinet parts
			Monitor environment
			Review system logs for errors:
			/usr/adm/shutdownlog
			/usr/adm/messages
			Check DC voltages

Troubleshooting Objectives

You will:


a. identify various system problems using the SSM power-up monitor and the Diagnostic Executive.

Diagnosing a Problem

- Ask questions
- Perform visual inspections
- Check for cable and board seating
- Boot to SSM monitor to perform low level hardware testing
- Verify correct system configuration with SSM monitor
- Boot diagnostics and execute test(s)
- Change only one variable at a time, reverify

Checking Connections

- Board seating
- Cables
- Connectors

Normal Boot Operation

 SSM Monitor runs power up tests Date 90/11/17 17:07:05 UTC Power-up Invalidate caches Clear mem . . . test MBAD . test MEM/1w . test DCC . test PROC/486w test SCED .

SSM Monitor shows system config.

ASTERISKS

System Configuration: type no slic flags, revision MEM/1w 0 2 00000000 00.03.02 size=40.0Mb SCED 0 22 00000000 02.12.00 ver=44 host=...... 0 30 00000000 00.00.00 sysid=0x6 SSM2 ZDC 0 6 00000000 00.02.01 f/w version=17 PROC/486w 00000000 00.07.01 25MHz 2*256K 00000000000000.07.01 25MHz 2*256K PROC/486w

 Boards are initialized and the boot process is begun Date 09/03/07 23:41:24 UTC test SCED.
Clear mem.
Mem 16.0 Mb
init MBAD.
init SCED.
init ZDC.
init PROC/486w..
test
loading zd(0,0)boot
Boot

Failure Mode Power-up

Date 90/03/07 23:04:39 UTC

Power-up

SSM Monitor runs Invalidate caches power up tests

Clear mem . . .

test MBAD. test MEM/1w. test DCC.

test PROC/486w . Error: PROC/486w 1 : test timeout

Error: PROC/486w 1: test(s) failed. Warning: PROC/486w 1: hold ack timeout Warning: PROC/486w 1: hold ack timeout

test SCED.

SSM Monitor shows system config.

System Configuration:

type no slic flags revision

MEM/1w 0 2 00000000 00.03.02 size=40.0Mb SCED 0 22 00000000 02.12.00 ver=42 host=...... 0 6 00000000 00.02.01 f/w version=17 ZDC

PROC/486w 00000000 00.00.00 25MHz 2*256K .(slic 4) 040000(2) 00.00.00 25MHz 2*256K .(slic(5) * PROC/486w

SSM Monitor initializes boards and the boot process is begun Date 09/03/07 23:41:24 UTC

test SCED. Clear mem. Mem 16.0 Mb init MBAD.

init SCED. init ZDC.

PROC/486w 1: flag = 0x 04000002, not initialized

init PROC/486w .x

test

loading zd(0,0)boot

Boot

System Log

- dmesg provides a system log of errors and warnings
 - viewed from multiuser mode
 - logs single bit correct memory errors
 - logs hard and soft disk errors
 - logs boot up information and configuration listings

```
3RD MEMORY CONTROL
            # UCD
          MEM(1w 2): Correctable EDC HI error, local (refresh/scrub) cycle.
       07: bank=4 addr=0xe87a89c0 error status=0xc synd=0x1a
       07: MEM/1w 2: single bit error on data bit 22
       07: MEM/1w 2: Correctable EDC HI error, local (refresh/scrub) cycle.
       07: bank=4 addr=0xe87ae9c8 error status=0x8 synd=0x1a
       07: MEM/1w 2: single bit error on data bit 22
       07: zdle: Error (Header ECC error); cmd 0x1 at (637, 1, 74).
       07: \(\mathbb{z}\)dle: Filesystem blkno = 579710.
       07: zdle: cb status: 0xa3 0x1 0x0 0x0 0x10 0x0 0x3c
       07: zdle: Error (Header ECC error); cmd 0x1 at (637, 1, 74).
       07: zdle: Filesystem blkno = 579710.
Disk 2 07: zdle: Filesystem Dikho - 0.5.10.
07: zdle: cb_status: 0xa3 0x1 0x0 0x0 0x10 0x0 0x3c
       06: NFS server crg6 not responding, still trying
TART © 07: NFS server crg6 not responding, still trying
       07: NFS server crg6 ok
       02: NFS server crg6 ok
       07: NFS write error: on host eng3 remote file system full
       07: zdle: Error (Header ECC error); cmd 0x1 at (741, 1, 58).
       07: zdle: Filesystem blkno = 807142.
       07: zdle: cb status: 0xa3 0x1 0x0 0x0 0x10 0x0 0x34
```

Panics

```
SSM F/W: nmiClass:: nmiPanic - - NMI status: 8
   diagnose bus...
   SSM F/W: Error: Bus Pause!
   PROC/486w 0 tolic 18):
           int (00 (00)) int_en=23 ext1=DC ext0=B0
           bdpd low.ses chain: 0 0000
          bdpd low.des chain: 0 1002 6000
JH001D
           cic0.err chain: 0 300F F238
           bicd0.bicses chain: 0000 1400 0000
 BE
                   IFRPAUSE: detected RPAUSE
ZERGES
                   IFPAUSE: detected IPAUSE
           bdpd high.ses chain: 0 0001
           bdpd high.des chain: 0 0003 A000
   PROC/486w 1 (slic 19):
           int=00(00) int en=23 ext1=DC ext0=B0
           bdpd low.ses chain: 0 0000
           bdpd_low.des chain: 0 1002 6000
           cic0.err chain: 0 300F F238
           bicd0.bicses_chain: 0000 1400 0000
                   IFRPAUSE: detected RPAUSE
                   IFPAUSE: detected IPAUSE
           bdpd high.ses chain: 0 0001
           bdpd_high.des_chain: 0 0003 A000
   PROC/486w(2)(sli
           int=F0(20) int en=23 ext1=DC ext0=B0
                   INT1: SCLK hardware error
           bdpd_low.ses_chain: 0 0000
           bdpd_low.des_chain: 0 1002 8000
           cic0.err chain: 0 300F F238
           bicd0.bicses chain: 0000 1E00 0100
                   IFRPAUSE: detected RPAUSE
                   RPAUSED: driving RPAUSE
                   IFPAUSE: detected IPAUSE
                   IPAUSED: driving IPAUSE
                   ERRSRC8: RA/RAi hit on valid block
           bdpd high.ses chain: 0 0001
           bdpd high.des chain: 0 0002 8000
```

Panics

```
panic: SLIC NMI
09: Cpu registers:
     eax=ff ebx=97f0000 ecx=f edx=3c5600
09:
     esi=1b4090 edi=0 ebp=7fffff58 esp=7fffff54
09: Hex dump of panic stack:
09: 7fffff00:
                  31ec3 7fffff48
                                      31ecb
09: 7fffff10:
                 1b4090 7ffffff48 7fffff2c
                                             97f0000
09: 7fffff20:
                 3c5600
                                f
                                         ff
                                             97f0000
09: 7fffff30:
                 1b4090
                                0
                                          0
09:
   7ffffff40:
                            94140 7fffff58
                                               47019
                      0
09: 7fffff50:
                  75641
                          f7f556b 7fffff80
                                               45278
09: 7fffff60:
                      0
                            e2f22
                                     e00fe 7fffff90
09: 7fffff70:
                  11af8
                            e2d80
                                             97f0000
                                          0
09: 7fffff80:
              7fffffb8
                            44a5f
                                          2
09: 7fffff90:
                 1b4090 7fffffb8 7fffffac
                                             97f0000
09: 7fffffa0:
                 3c5601
                            89c94
                                      94120
                                               14351
09: 7fffffb0:
                      8
                              246 80000000
                                               142fb
09: 7fffffc0:
                     19
                                0 3fff0010
09: 7fffffd0:
                 1be310
                                0 7fffff8c
                                               4472b
09: 7fffffe0:
                 '1b40b8
                            562ff
                                         8a
                                               5628f
09: 7ffffff0:
                            44f4d
                                               94120
                     ff
                                     1b40b8
09: Stack @ 0x33ff0c
09: @ 0x47019 call (0x75641)
09: @ 0x45278 call(0x0, 0xe2f22, 0xe00fe, 0x7fffff90, 0x11af8)
09: @ 0x44a5f call(0x2)
09: @ 0x142fb call(0x19, 0x0, 0x3fff0010, 0x0, 0x1be310)
09: processor(0 stat 0xfd)flt 0x7f
                                        TRO3 3 Is BAD
09: processor 1 stat 0xfd flt 0x7f
09: processor 2 stat 0xfd fit 0x7f
09: processor (3) stat 0k8f flt 0x7f
09: processor 4 stat 0xfd flt 0x7f
09: processor 5 stat 0xfd flt 0x7f
09: processor\6 stat 0xfd\flt 0x7f
                                               ODB BALL NUMBER
09: processor | 7 stat 0xfd | flt 0x7f
09: processor 8 stat 0xfd flt 0x7f 09; processor 9 stat 0xbf flt 0x7f09:
               CPU REPERTING
                      ERROR
```

Lab System Debug

- 1. Boot the S2000 system and verify system functionality using the SSM power-up monitor and Diagnostic Executive.
- 2. Select and run tests for all PROC's, MBAD's, and system memory.
- 3. Correct any problems that you may encounter and reverify.
- 4. Use the remaining time to insert simple bugs into your system. Only insert bugs such as removing cables, reversing cables, unseating boards, disconnecting disk drives ect. DO NOT insert any bugs into the power subsystem or individual boards. Here are some suggestions:
 - 1. reverse the MBAD cables
 - 2. remove the SCSI terminator
 - 3. disconnect SCSI cable or power cable at a SCSI disk
 - 4. remove one of the cables from the MEMC/MEMX pair
 - 5. unseat the MBIF board
 - 6. reverse the DCC cable
 - 7. remove the SSM2 front panel cable
 - 8. unseat the SSM/SSM2 board
 - 9. disconnect the CADM cable
 - 10. power off the MULTIBUS
 - skip a slot in the VMEbus

Standard Procedure Maintenance Contract

- Customer calls Sequent Hotline with a problem
- Hotline determines the nature of the problem
- Field Engineer (FE) arrives at site with part
- FE contacts Sequent Hotline
- FE replaces part
- FE calls Hotline for RMA information

Replacement Procedure

- Detect failure with diagnostics
- Follow RMA procedure to get new FRU
- Use proper ESD procedure
 - remove bad FRU
 - remove new FRU from static protection
 - install new FRU
- Run system diagnostics to verify operation
- Return bad FRU with RMA information

RMA Faulty Hardware

- Information needed to return hardware:
 - item being returned
 - reason for return
 - serial number of item/system
 - part number
 - contact person and phone
 - PO number if applicable
 - billing and shipping address
- Call Sequent Hotline with information
- Label package with RMA number obtained from Sequent
- Return faulty item to Sequent:

Sequent Computer Systems, Inc. ATTN: Service Dept. RMA #xxx 15450 SW Koll Parkway Beaverton, OR 97006-6063

Sequent Technical Support

- Check release notes
- Call Sequent Hotline with information
 USA 1-800-854-9969
 Overseas 01-503-627-9875

5:00 am - 6:00pm Hotline manned from 6:00am - 5:00pm EST

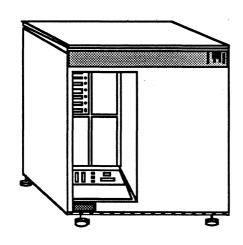
- Pager contact 24 hours/day
- · UUCP e-mail a mailbug

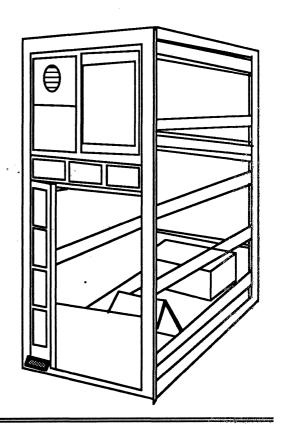
Getting Help

- Have the system serial number ready when you call
- Leave a number where you can be reached if a hotline person is not immediately available

•	U.S.A.	1-800-854-9969	24 nours
	U.S.A. local	578-4164	24 hours
•	Canada,	1-800-338-7852	24 hours
•	U.K.	0932-850879	8am to 6pm
		0932-859833	off hours

Serial Numbers


• The serial number is: on the system data sheet on the label at the rear


System 400 88xxx System 700 89xxx

SEQUENT COMPUTER SYSTEMS INC. BEAUERTON OR USA 97006-6063

MODEL NO. - \$27-1571-21B

SERIAL NO. - 88429

