
®

seo OpenServerTM
Operating System
Tutorial

seQ QpenServerTM

seQ QpenServer™
Operating System Tutorial

© 1983-1995 The Santa Cruz Operation, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated into
any human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise, without the prior written permission of the copyright owner, The Santa
Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, California, 95060, USA. Copyright infringement is a
serious matter under the United States and foreign Copyright Laws.

Information in this document is subject to change without notice and does not represent a commitment on
the part of The Santa Cruz Operation, Inc.

SeQ, the seQ logo, The Santa Cruz Operation, Open Desktop, QDT, Panner, seQ Global Access, seQ QK, seQ
OpenServer, seQ MultiView, seQ Visual Tel, Skunkware, and VP fix are trademarks or registered
trademarks of The Santa Cruz Operation, Inc. in the USA and other countries. UNIX is a registered
trademark in the USA and other countries, licensed exclusively through X/Open Company Limited. All
other brand and product names are or may be trademarks of, and are used to identify products or services
of, their respective owners.

Document Version: 5.0
1 May 1995

The sca software that accompanies this publication is commercial computer software and, together with
any related documentation, is subject to the restrictions on US Government use as set forth below. If this
procurement is for a DOD agency, the following DFAR Restricted Rights Legend applies:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restrictions
as set forth in subparagraph (c) (1) (ii) of Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013. Contractor/Manufacturer is The Santa Cruz Operation, Inc., 400 Encinal Street, Santa Cruz,
CA 95060.

If this procurement is for a civilian government agency, this FAR Restricted Rights Legend applies:

RESTRICTED RIGHTS LEGEND: This computer software is submitted with restricted rights under
Government Contract No. (and Subcontract No. , if appropriate). It may not be used,
reproduced, or disclosed by the Government except as provided in paragraph (g) (3) (i) of FAR Clause
52.227 -14 alt III or as otherwise expressly stated in the contract. Contractor/Manufacturer is The Santa
Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, CA 95060.

The copyrighted software that accompanies this publication is licensed to the End User only for use in strict
accordance with the End User License Agreement, which should be read carefully before commencing use
of the software. This sea software includes software that is protected by these copyrights:

© 1983-1995 The Santa Cruz Operation, Inc.; © 1989-1994 Acer Incorporated; © 1989-1994 Acer America
Corporation; © 1990-1994 Adaptec, Inc.; © 1993 Advanced Micro Devices, Inc.; © 1990 Altos Computer
Systems; © 1992-1994 American Power Conversion, Inc.; © 1988 Archive Corporation; © 1990 ATI
Technologies, Inc.; © 1976-1992 AT&T; © 1992-1994 AT&T Global Information Solutions Company; © 1993
Berkeley Network Software Consortium; © 1985-1986 Bigelow & Holmes; © 1988-1991 Carnegie Mellon
University; © 1989-1990 Cipher Data Products, Inc.; © 1985-1992 Compaq Computer Corporation; ©
1986-1987 Convergent Technologies, Inc.; © 1990-1993 Cornell University; © 1985-1994 Corollary, Inc.; ©
1988-1993 Digital Equipment Corporation; © 1990-1994 Distributed Processing Technology; © 1991 D.L.S.
Associates; © 1990 Free Software Foundation, Inc.; © 1989-1991 Future Domain Corporation; © 1994
Gradient Technologies, Inc.; © 1991 Hewlett-Packard Company; © 1994 IBM Corporation; © 1990-1993
Intel Corporation; © 1989 Irwin Magnetic Systems, Inc.; © 1988-1994 IXI Limited; © 1988-1991 lSB
Computer Systems Ltd.; © 1989-1994 Dirk Koeppen EDV-Beratungs-GmbH; © 1987-1994 Legent
Corporation; © 1988-1994 Locus Computing Corporation; © 1989-1991 Massachusetts Institute of
Technology; © 1985-1992 Metagraphics Software Corporation; © 1980-1994 Microsoft Corporation; ©
1984-1989 Mouse Systems Corporation; © 1989 Multi-Tech Systems, Inc.; © 1991 National Semiconductor
Corporation; © 1990 NEC Technologies, Inc.; © 1989-1992 Novell, Inc.; © 1989 Ing. C. Olivetti & C. SpA; ©
1989-1992 Open Software Foundation, Inc.; © 1993-1994 Programmed Logic Corporation; © 1989 Racal
InterLan, Inc.; © 1990-1992 RSA Data Security, Inc.; © 1987-1994 Secureware, Inc.; © 1990 Siemens Nixdorf
Informationssysteme AG; © 1991-1992 Silicon Graphics, Inc.; © 1987-1991 SMNP Research, Inc.; ©
1987-1994 Standard Microsystems Corporation; © 1984-1994 Sun Microsystems, Inc.; © 1987 Tandy
Corporation; © 1992-1994 3COM Corporation; © 1987 United States Army; © 1979-1993 Regents of the
University of California; © 1993 Board of Trustees of the University of Illinois; © 1989-1991 University of
Maryland; © 1986 University of Toronto; © 1976-1990 UNIX System Laboratories, Inc.; © 1988 Wyse
Technology; © 1992-1993 Xware; © 1983-1992 Eric P. Allman; © 1987-19891effery D. Case and Kenneth W.
Key; © 1985 Andrew Cherenson; © 1989 Mark H. Colburn; © 1993 Michael A. Cooper; © 1982 Pavel Curtis;
© 1987 Owen DeLong; © 1989-1993 Frank Kardel; © 1993 Carlos Leandro and Rui Salgueiro; © 1986-1988
Larry McVoy; © 1992 David L. Mills; © 1992 Ranier Pruy; © 1986-1988 Larry Wall; © 1992 Q. Frank Xia. All
rights reserved. SCO NFS was developed by Legent Corporation based on Lachman System V NFS. SCO
TCP /IP was developed by Legent Corporation and is derived from Lachman System V STREAMS TCP, a
joint development of Lachman Associates, Inc. (predecessor of Legent Corporation) and Convergent
Technologies, Inc.

About this book 1

How this book is organized 2
Related documentation ... 2
Typographical conventions ... 5
How can we improve this book? ... 5

Chapter 1

Getting started 7

seQ operating system ... 7
Logging in ... 9

Your terminal type 12
Changing your password 13
Identifying your shell 14

Logging out ... 15
Summary ... 17

Chapter 2

Electronic mail 19

Sending mail .. 19
Reading mail.. 21
Responding to mail ... 23
More mail features .. 25

Getting help 25
Saving mail ... 25
Deleting and recovering mail... 26
Forwarding mail.. 26
Using the vi editor in mail 26
Mailing several people at once: aliases 27

Summary ... 28

Chapter 3

Directories and files 29

Directories ... 29
Your home directory .. 31

Table of contents v

Identifying your current directory 31
Changing directories 31

Files ... 34
Listing the files in a directory 34
Hidden files 36
Listing more information about files 37
Narrowing the listing: using wildcards 38

Summary ... 40

Chapter 4

Writing and editing 41

Putting text into a file 41
Filenames 42
Looking at files 43

Using the vi editor ... 43
Entering text 44
Moving around in a file 46
Correcting mistakes .. 47

Printing files 49
Printing several copies .. 49
Checking on a print job 49
Canceling a print job 50

Summary ... 51

Chapter 5

Managing files 53

More ways to look at files ... 53
Reading a file one screen at a time 53
Reading just the first or last lines of a file .. 54

Making directories ... 55
Removing directories .. 56
Copying files ... 57
Renaming files ... 58
Removing files 59
Summary ... 60

vi

Chapter 6

Commands revisited: pipes and redirection 61

Putting the output of a command into a file ... 61
Using a file as input to a command .. 62
Joining files together .. 63
Background processing .. 64
Appending one file to another .. 64
Using pipes to build your own utilities ... 66
Summary ... 67

Chapter 7

Protecting files and directories 69

Reading a long listing ... 69
Permissions .. 70
Owner, group, other .. 71

Changing the group of a file ... 73
Changing the owner of a file ... 73
Changing the permissions on a file .. 74
Summary ... 76

ChapterS

Power tools 77

Searching for a file .. 78
Searching for text within files ... 79
Checking who is logged in .. 81
Finding out more information about a user ... 82
Finding out the time and date ... 82
Seeing a calendar .. 83
Remembering your appointments ... 83
Using a calculator ... 84
Clearing the screen ... 84
Summary ... 85

Table of contents vii

Chapter 9

Customizing your environment 87

Your environment .. 87
Changing your prompt .. 88
Setting your path ... 90
Default file permissions .. 91

Changing permissions with absolute mode 92
Setting your file creation mask 93

Configuring mail .. 93
Creating command aliases ... 95
Summary ... 97

Appendix A

Going from DOS to UNIX 99

Glossary ... 103

viii

About this book

Welcome to the seo OpenServer™ system which encompasses an operating
system based on UNIX technology. For information on where the rest of the
product is documented refer to "Related documentation" (page 2).

This book is aimed at people new to the UNIX system who will be working at
the command line prompt rather than using the graphical interface. If you
have little or no computer experience, relax. This book will introduce you
step-by-step to some of the key features of the UNIX system. If you have used
the UNIX system before, you can use this book as a refresher or a quick refer
ence guide.

Before you begin, you should have a user account set up for you. Ask your
system administrator (the person who looks after your system) to make sure
your account is set up.

DOS users who want to get started right away may want to turn to Appendix
A, "Going from DOS to UNIX" (page 99). This appendix contains Table A-I,
"Equivalent UNIX and DOS commands" (page 100) showing common DOS
commands and their UNIX system counterparts.

Although we try to present information in the most useful way, you are the
ultimate judge of how well we succeed. Please let us know how we can
improve this book (page 5).

About this book

How this book is organized

Each chapter in this book is a self-contained lesson for you to work through at
the computer. Each lesson builds on what you have learned before.

Question-and-answer sections often follow examples in this tutorial. These
sections give you a little more information about what you have learned, and
they tell you what to do if you see an error message. Question-and-answer
sections are indicated by Q and A in the margin.

A "Summary" section appears at the end of every chapter. This section sum
marizes the commands presented in the chapter and tells you where to look in
the seQ OpenServer documentation to find more information.

Related documentation

2

seQ OpenServer systems include comprehensive documentation. Depending
on which seQ OpenServer system you have, the following books are available
in online and/or printed form. Access online books by double-clicking on the
Desktop Help icon. Additional printed versions of the books are also avail
able. The Desktop and most seQ OpenServer programs and utilities are linked
to extensive context-sensitive help, which in turn is linked to relevant sections
in the online versions of the following books. See "Getting help" in the seQ
OpenServer Handbook.

NOTE When you upgrade or supplement your seQ OpenServer software,
you might also install online documentation that is more current than the
printed books that came with the original system. In particular, the new in
formation provided online with our regular Advanced Hardware Supple
ments (AHS) supersedes and f~equently obsoletes the material in the printed
version of this book. For the most up-to-date information, check the online
documentation.

Operating System User's Guide
provides an introduction to seQ OpenServer command-line utilities, the
seQ Shell utilities, working with files and directories, editing files with the
vi editor, transferring files to disks and tape, using DQS disks and files in
the seQ OpenServer environment, managing processes, shell program
ming, regular expressions, awk, and sed.

Tutorial

About this book

Operating System User's Reference
contains the manual pages for user-accessible operating system com
mands and utilities (section e).

Release Notes
contain important late-breaking information about installation, hardware
requirements, and known limitations. The Release Notes also highlight the
new features added for this release.

seQ Open Server Handbook
provides the information needed to get your seQ OpenServer system up
and running, including installation and configuration instructions, and
introductions to the Desktop, online documentation, system administra
tion, and troubleshooting.

Operating System Administrator's Reference
contains the manual pages for system administration commands and utili
ties (section ADM), system file formats (section F), hardware-specific infor
mation (section HW), miscellaneous commands (section M), and seQ
Visual Tcl™ commands (section TeL).

System Administration Guide
describes configuration and maintenance of the base operating system,
including account, filesystem, printer, backup, security, uuep, and virtual
disk management.

Graphical Environment Guide
describes how to customize and administer the Graphical Environment,
including the X Window System™ server, the SeQ® Panner™ window
manager, the Desktop, and other X clients.

Graphical Environment help
provides online context-sensitive help for Calendar, Edit, the Desktop,
Help, Mail, Paint, the seQ Panner window manager, and the UNIX®
command-line window.

Graphical Environment Reference
contains the manual pages for the X server (section X), the Desktop, and X
clients from seQ and MIT (section xe).

Guide to Gateways for LAN Servers
describes how to set up SeQ® Gateway for NetWare® and LAN Manager
Client software on an seQ OpenServer system to access printers, file
systems, and other services provided by servers running Novell ®
NetWare® and by servers running LAN Manager over DQS, QS/2®, or UNIX
systems. This book contains the manual pages for LAN Manager Client
commands (section LMe).

3

About this book

4

Mail and Messaging Guide
describes how to configure and administer your mail system. Topics
include send mail , MMDF, seQ Shell Mail, mailx, and the Post Office
Protocol (POP) server.

Networking Guide
provides information on configuring and administering TCP lIP, NFS®, and
IPX/SPXTM software to provide networked and distributed functionality,
including system and network management, applications support, and
file, name, and time services.

Networking Reference
contains the command, file, protocol, and utility manual pages for the
IPX/SPX (section P ADM), NFS (sections NADM, NC, and NF), and TCP lIP
(sections ADMN, ADMP, SFF, and TC) networking software.

PC-Interface Guide
describes how to set up PC-Interface™ software on an SCO OpenServer
system to provide print, file, and terminal emulation services to computers
running PC-Interface client software under DOS or Microsoft® Windows™.

Performance Guide
describes performance tuning for uniprocessor, multiprocessor, and net
worked systems, including those with TCP lIP, NFS, and X clients. This
book discusses how the various subsystems function, possible per
formance constraints due to hardware limitations, and optimizing system
configuration for various uses. Concepts and strategies are illustrated
with case studies.

sea Merge User's Guide
describes how to use and configure an SCO® Merge™ system. Topics
include installing Windows, installing DOS and Windows applications,
using DOS with the SCo OpenServer operating system, configuring hard
ware and software resources, and using SCO Merge in an international
environment.

sea Wabi User's Guide
describes how to use SCO® WabFM software to run Windows 3.1 applica
tions on the seo OpenServer operating system. Topics include installing
the seQ Wabi software, setting up drives, configuring ports, managing
printing operations, and installing and running applications.

The seo OpenServer Development System includes extensive documentation
of application development issues and tools.

Many other useful publications about SCO systems by independent authors
are available from technical bookstores.

Tutorial

About this book

Typographical conventions

This publication presents commands, filenames, keystrokes, and other special
elements in these typefaces:

Example:

lp or Ip(C)

Inewlc1ient.1ist

root

filename

(Esc)

Exit program?

yes or yes

"Description"

Cancel

Edit

Copy

File ¢ Find ¢ Text

$HOME

"adm3a"

Used for:

commands, device drivers, programs, and utilities (names,
icons, or windows); the letter in parentheses indicates the
reference manual section in which the command, driver, pro
gram, or utility is documented

files, directories, and desktops (names, icons, or windows)

system, network, or user names

placeholders (replace with appropriate name or value)

keyboard keys

system output (prompts, messages)

user input

field names or column headings (on screen or in database)

button names

menu names

menu items

sequences of menus and menu items

environment or shell variables

data values

How can we improve this book?

What did you find particularly helpful in this book? Are there mistakes in this
book? Could it be organized more usefully? Did we leave out information you
need or include unnecessary material? If so, please tell us.

To help us implement your suggestions, include relevant details, such as book
title, section name, page number, and system component. We would appreci
ate information on how to contact you in case we need additional explana
tion.

5

About this book

6

To contact us, use the card at the back of the sea Open Server Handbook, or
write to us at:

Technical Publications
Attn: eFT
The Santa Cruz Operation, Inc.
PO Box 1900
Santa Cruz, California 95061-9969
USA

or e-mail us at:

techpubs@sco.com or ... uunet!sco!techpubs

Thank you.

Tutorial

Chapter 1

Getting started

In this chapter, you will learn how to start a work session on a UNIX system
(how to log in) and how to finish a work session (how to log out).

Before you begin, you need to know your login name (username), password,
and terminal type. Ask your system administrator for this information.

seQ operating system

The UNIX operating system is a multiuser, multitasking operating system.

An "operating system" is a program that manages the resources of the com
puter. An operating system sets up a consistent way for programs to request
resources, such as time on the processor, or space in memory, from the
computer itself. Operating systems look after all the devices attached to the
computer, such as printers, modems, disks, and terminals. Another part of an
operating system's job is to maintain a filesystem; that is, to set up a consistent
way for information to be stored and retrieved.

7

Getting started

8

On a multiuser, multitasking system, several people can do several tasks at once using
the same computer.

The term "the UNIX operating system" usually refers to the kernel, which is
the heart of the operating system. People use a variety of shell programs to
communicate with the kernel, which, in turn, communicates with the hard
ware. The UNIX operating system also includes a wide range of programs
that meet the day-to-day needs of computer users and programmers.

Tutorial

Getting started

commands

Three layers of the UNIX system: kernel, shell, and commands

The UNIX system is called a multiuser operating system because more than
one person can use the computer at the same time. In a typical office setup,
one computer runs the UNIX operating system and several people share this
computer, each using a terminal which is connected to it.

The UNIX system is called a multitasking operating system because each user
can do several tasks at once. On a single-tasking operating system, such as
DOS, if you type a command that takes a long time for the computer to pro
cess, you have to wait for the computer to finish processing before you can
continue working. On a UNIX system, you can put commands "in the back
ground." This means you can start working on something else while the com
puter continues to process your other commands in the background.

Logging in

To start working on a computer running the UNIX system, the first thing you
need to do is log in. When you log in, you tell the computer your name and
your password, and it checks them against its records. If everything matches
up, the computer starts a login shell for you, puts you in your home directory,
and shows you a command prompt. You can then start working on the com
puter, typing commands at the prompt.

9

Getting started

10

After you turn on your computer or terminal, before you log in, you should
see a login: prompt:

login:

This is where you type your login name, which is the name by which the com
puter knows you.

login:

usemame
Password: r-::l r::\

-+ posswod -+ L.:J -+ ~

After you type your login name, you may see a pas sword: prompt:

login:susannah (Enter)

Password:

Most UNIX system users have a password that lets them into the computer. If
your UNIX system uses passwords, you should keep your password secret so
other people cannot use your account without your knowledge.

You should change the password given to you by your system administrator
so you have a new password that only you know. On some systems, you may
be prompted to change your password as soon as you log in. See "Changing
your password" (page 13) for instructions.

If you have correctly typed your login name and password, the computer logs
you in. Depending on your system, you may see a "message of the day."

Try logging in now:

1. Switch on your computer or terminal.

2. Press (Enter) a couple of times, until you see the login: prompt.

3. Type your login name and press (Enter).

4. If you see the password: prompt, type your password and press (Enter).

The computer logs you in. If this is the first time you have logged in, you may
be prompted to change your password. You may see some messages about
your system, and you may see a prompt for your terminal type. If you are
working on a system that has a graphical front -end you will need to open a
UNIX window by double clicking on the UNIX icon.

Tutorial

Getting started

Q: What if I make a mistake typing my login name or password?

A: Press the (Bksp) key to backspace over the misspelling and then retype.
You can backspace when you type your password even though you can
not see the letters on the screen.

Q: What if I see the message Login incorrect?

A: This means you made a mistake typing your login name or password. Try
again at the next login: prompt.

(Even if the mistake was in typing your login name, the computer waits
until you type your password to tell you. This means if someone is trying
to guess your login name or password, they will not know which one they
got wrong.)

On some systems, you may see the message Waiting for login retry: ..
between login: prompts. These systems keep track of how many times
you've tried to log in.

Q: What if I see the message Login timed out?

A: Some systems keep track of how many times you tried to log in and, after
a certain number of tries, they "time out" the login. This is a security
feature to make it more difficult to guess passwords.

If you see a message like this, ask your system administrator to modify
your login information so you can try to log in again.

Q: What if everything I type is coming out in capital letters?

A: The UNIX system is sensitive to the difference between upper- and lower
case letters, even at login time. If everything you type appears in capitals,
you cannot log in. If there is a (CapsLock) key on your terminal or com
puter, try pressing it. If this does not work, try switching your computer
off and on again. If you still cannot get lowercase letters, ask your system
administrator for help.

11

Getting started

Your tenninal type

12

After you log in, the computer may ask for your terminal type. This tells the
computer running the UNIX system what kind of terminal you are working
from, so it can display things in a way your terminal understands.

After you log in, you may see a terminal type prompt similar to this:

TERM = (ansi)

The terminal type in parentheses is what the computer thinks your terminal
should be. If this information is correct, you can press (Enter) to accept it. Oth
erwise, you should enter the correct terminal type and press (Enter).

In the example above, if you really were working from an ansi terminal, you
would press (Enter). If your terminal was a Wyse60, instead of an ansi termi
nal, you would enter:

TERM = (ansi)wy60 (Enter)

After you have set your terminal type, you see a command prompt.

Try setting your terminal type now:

1. Log in.

2. If you see the TERM= prompt, press (Enter) to accept the terminal type
shown in parentheses, or type in the correct terminal type. (If you do not
know your terminal type, ask your system administrator.)

Q: What if I do not see a terminal type prompt?

A: Some systems are set up to know what kind of terminal you are logging in
on automatically. These systems may not prompt you for the terminal
type.

Q: What if I make a mistake and set up the wrong terminal type?

A: If you make a typing mistake, you can backspace to correct it, if you have
not pressed (Enter) yet. Otherwise, if you accidentally set up the wrong
terminal type, or if you discover while you are working that you have the
wrong terminal type, there are two things you can do:

Tutorial

Getting started

• Log out and log back in again, then choose the correct terminal type .

• Reset your terminal from the command line. The way you reset your
terminal in the middle of your work session depends on the shell you
are using. (See "Identifying your shell" (page 14) for instructions on
determining which shell you are using.) If you are using the Bourne
shell (sh) or the Korn shell (ksh) , type:

TERM = term type ; export TERM

Here term type is the correct terminal type. If you are using the C shell
(csh), type:

setenv TERM term type

Changing your password

Depending on how your system is set up, you may be prompted to change
your password immediately when you first log in. This is a security feature to
ensure that you are the only person who knows your password.

If your system requires you to change your password the first time you log in,
you see a message like Your password has expired. The computer then
starts the password program.

You see a message like Setting password for user: loginname, where log
inname is your own login name. Next, you are prompted for your old pass
word. Type the password given to you by your system administrator, then
press (Enter). The computer responds with a message like Password change
is forced for loginname, where loginname is your login name. You then see
the first screen of the password program. Follow the instructions on the
screen to pick your own password or to have the computer generate a pass
word for you. Once you successfully change your password, the computer
finishes logging you in.

If you want to change your password again later, you can use the passwd
command to start the password program again. To use the passwd com
mand, type passwd and press (Enter). You will be prompted for your old
password, then you will be given the choice of picking your own password or
choosing a machine-generated password. Note that some systems may
restrict you from using the passwd program at certain times. This is a secu
rity feature that allows the system administrator to control how often users
change their passwords.

13

Getting started

Q: What if I type myoId password incorrectly?

A: If you type your old password incorrectly and press (Enter), the password
program will terminate. If you are changing your password at login, the
computer may log you out. In this case, log in again and carefully type
your old password when you are prompted.

If you are still logged in after mistyping your old password, you can just
restart the password program by typing passwd and pressing (Enter).

Q: What if I forget my password?

A: If you forget your password completely, all is not lost. Tell your system
administrator that you have forgotten your password. He or she will be
able to modify your records on the computer so you can log in again and
choose a new password.

Identifying your shell

14

Once you have set your terminal type, the computer shows you a command
prompt. This is where you type commands during the rest of your work
session. Each time you press (Enter), you see a new command prompt. The
prompt you see depends on the login shell you are using.

All the time that you are working on the UNIX system, you are working
within a shell. When you log in, you are automatically placed within a shell;
this is called your login shell. Shells are both command interpreters and pro
gramming languages. Each command line you type is interpreted by the
shell, which passes your requests to the appropriate program for processing.

For most of this tutorial, you will be using shells only as command inter
preters. In other words, you will be typing commands at the prompt and
seeing what they do.

In Chapter 9, "Customizing your environment" you will be introduced to the
concept of a shell script. These are text files that contain shell language
programs.

Tutorial

Getting started

There are three shells distributed with your seQ OpenServer system:

• Korn shell (ksh)

• Bourne shell (sh)

• C shell (csh)

See Chapter 10, "Configuring and working with the shells" in the Operating
System User's Guide for information about the differences among these shells
and the wide variety of features each shell provides.

By default (unless someone has changed it), the Bourne and Korn shells show
a dollar sign ($) as a command prompt. The C shell shows a percent sign (%)
by default.

(You can change your prompt by editing a file that the computer reads when
you log in. See Chapter 9, "Customizing your environment" for instructions.)

If you cannot tell which shell you are using from the prompt, you can ask the
computer by typing echo $SHELL. This says, "tell me the value of the variable
SHELL." The computer responds with an answer like:

/bin/sh

The last part is the name of the shell, sh (the Bourne shell), and the first part is
the directory in which it lives.

I

NOTE If you are running multiple shells the value of the SHELL variable
will not necessarily reflect the current shell and so this technique can only be
relied upon when you first log in.

Logging out

When you have finished using the computer, you should log out.

When you log out, no one can use your terminal until they correctly log in by
typing a valid login name and password. Logging out protects you from other
people doing potentially destructive things with your files if they are logged
in as you. It is a good security practice.

The command you type to log out depends on the shell you are using. To log
out using the Bourne shell, type exit and press (Enter).

15

Getting started

16

To log out using the C shell, type logout then press (Enter).

You may also be able to log out using a quick (Ctrl)D However, this may be
disabled on your system.

When you log out, the login: prompt reappears on your screen.

Try logging out now:

1. If you are using the Bourne or the Korn shell, type exit and press (Enter). If
you are using the C shell, type logout and press (Enter).

2. The UNIX system should log you out and the login: prompt should reap
pear on your screen.

Q: What if I see a message like:

exir: not found

A: In this example, the computer is telling you it cannot find a command
named exir. What you meant, however, was "exit". Try typing the com
mand again and press (Enter).

Q: What if I try to log out with (Ctrl)D and I see a message like:

Enter "exit" to logout

A: Some systems are set up so that you cannot log out with (Ctrl)D. This is so
that people do not accidentally log themselves out when they are typing
(Ctrl)D for another reason. Follow the instructions on the screen to log out
correctly.

Tutorial

Getting started

Q: What if I change my mind when I am typing a command, and I want to
cancel the command and start again?

A: There are two ways you can cancel the command you are currently typing
and start over:

• press the (Del) key on the numeric keypad

The (Del) key is called the interrupt key. You can use (Del) to interrupt a
command that has started to run as well as to cancel a command you
have not yet run. In most cases, this cancels the command and gives
you a new prompt. (With some commands, you may need to press
(Ctrl)D or a different quit command.)

• press (Ctrl)U

Pressing (Ctrl)U discards what you have typed on that line.

Summary

To log in

To log out
To set your terminal type
To change your password
To find out what shell you are using

For more information about

what happens when you log in
changing your password
selecting a password

login: login name
Pas sword: password
exit or logout or (Ctrl)D

TERM= (ansi) yourtermtype
passwd
echo$SHELL

See

login(M)
passwd(C)
Chapter 9, "Using a secure system" in
the Operating System User's Guide

17

Getting started

18 Tutorial

Chapter 2

Electronic mail

In this chapter, you will learn how to send electronic mail and how to read
and reply to mail that has been sent to you.

Before you begin, you should know how to log in and how to type commands
at the prompt.

Sending mail

You can send electronic mail with the mail command to anyone who uses
your computer system. If your system has a modem and the UUCP (UNIX-to
UNIX Communications Protocol) program is set up, you can send mail to any
one who is linked to your computer network. To send mail to someone on
your system, you type mail and then the receiver's login name. For instance,
if you wanted to send mail to Doug, you would type mail doug. Depending
on how mail is set up on your system, you may be prompted for a subject;
this subject shows up in the list of messages in the receiver's mailbox.

$ mail doug
Subject: My promotion

Then, you type your message.

19

Electronic mail

20

To begin new lines in a logical way, press (Enter) for each new line.

If you make mistakes while you are typing a mail message, you can backspace
to correct them. However, you cannot backspace across more than one line.
If you want to correct mistakes anywhere in a message, you need to use an
editor such as vi (the visual editor) to type your message. See "Using the vi
editor in mail" (page 26) for instructions.

When you have finished, go to a new line and press (Ctrl)D. This tells the
mail program you are ready to send the message. It may show you a Cc:
prompt; this is where you can type the names of people who you want to
receive a "carbon copy" of the message:

$ mail doug
Subject: My promotion
Thank you for your recent letter of promotion.
I look forward to the challenge of an executive position,
despite its long hours and tiring international travel.

(Ctrl)D

Cc: susannah

mail:

username
Subject:

subject

type message
~ Ctrl <d> ~

to send

Cc:

yourself, ~
others

Many people use the Cc: prompt to send a copy of their message back to
themselves, in addition to copying others. If you do not want to copy anyone,
press (Enter) at the Cc: prompt.

You do not have to conclude a message with your name; your login name is
automatically displayed at the beginning of the message and in the recipient's
mailbox.

Some people use mail to send reminder messages to themselves.

Try sending a mail message to yourself:

1. Log in.

2. Type mail and your login name and press (Enter).

3. If you see a Subj ect: prompt, type Grocery list as the subject, and press
(Enter).

Tutorial

Electronic mail

4. Type in the message, as shown in the following screen display.

5. When you have typed the message, press (Enter) to go to a new line, then
press (Ctrl)D.

6. If you see a Cc: prompt, press (Enter). mail sends the message, and returns
you to the prompt.

$ mail susannah
Subject: Grocery list
cat food
dry cat food
flea spray
litter tray liners
tuna
milk
(Ctrl)D

Cc: (Enter)

(end of message)

Q: What if I am in the middle of typing a message and I change my mind
about sending it?

A: You can cancel a mail message by pressing (Del) twice. The first time you
press (Del), mail responds with:

(Interrupt -- one more aborts message)

(This interrupt message does not actually appear in your mail message.)

The second time you press (Del), mail cancels the message and returns you
to the prompt.

Reading mail

When you first log in, your shell tells you if you have mail with a message like
You have mail. Depending on how your system is set up, you may also see a
message like You have new mail when new mail arrives.

To read your mail, type mail and press (Enter). If there are no messages in
your mailbox, you see a message like:

No mail for yourloginname

(yourloginname is really your login name.)

21

Electronic mail

22

Otherwise, you are brought into your mailbox.

An electronic mailbox lists all the messages you have waiting, and tells you a
bit about each:

seQ System V Mail (Version 3.2) Type? for help.
3 messages:

>3 susannah Wed Jun 29 15:23 9/237 "Grocery list"
2 doug Wed Jun 29 9:00 28/863 "Promotion"
1 sylvain Wed Jun 29 8:59 15/391 "Meet you after work"

&

In this example, there are three messages waiting, including the practice
message from the previous section. Here, the most recent message appears
first in the list, but your mailbox may show the oldest message first.

The & is the mail prompt. This is where you type commands while you are in
mail.

The > to the left of a message marks the current message. Next comes the
message number; this is how you identify a particular message. The sender,
the date and time the message arrived, the number of lines and characters in
the message, and as much of the "Subject:" line as can fit are also shown.

To read a message, type its message number, and press (Enter). If the message
is too long to fit on one screen, you see a ? at the bottom of your screen. Press
(Enter) to see the next page of your message. Once you read a message, it is
automatically saved to a file called mbox.

You can have another look at the message headers after you have begun to
read your mail by pressing h (headers) and (Enter). (If you want to stop read
ing a long mail message to look back at the message headers, press (Del). This
interrupts the current message and gives you the main mail prompt _ where
you can type h and press (Enter) to display the headers.) If you have more
than one screen of headers, you can use the z command to move forward and
backward through the header screens. Type z to move to the next screen of
headers or z- to go back to the previous screen of headers.

To quit mail, type q and press (Enter) at the main mail prompt.

Tutorial

Electronic mail

Try reading the message you sent to yourself:

1. Typemail and press (Enter) to enter your mailbox.

2. Type the number to the left of the message you sent yourself and press
(Enter). The message is displayed on your screen.

3. Type q and press (Enter) at the mail prompt to quit mail.

Responding to mail

You can respond to a mail message with the f command. If you have just read
a message, typing f at the mail prompt starts a response to that message. If
you have not read any messages, pressing f begins a response to the message
at the bottom of your screen. You can also type the following at the mail
prompt to respond to the message numbered number:

f number

When you respond to a message, mail automatically fills in the "To:" field
with the name of the sender of the original message, and the "Subject:" field
with "Re: the original subJect".

Lowercase f responds only to the sender of the message. If you want to
respond to the sender and everyone who was copied on the original mail, use
uppercase R.

For practice, send yourself another mail message and then respond to it:

1. Type mail and your login name, then press (Enter).

2. At the Subject: prompt, type Test message and press (Enter).

3. Type This is a test message as the body of the message.

4. Go to a new line and press (Ctrl)D to end the message.

S. If you see a Cc: prompt, press (Enter).

6. Go into your mailbox by typing mail, then pressing (Enter).

7. At the mail prompt, type the number of the test message you just sent and
press (Enter).

8. At the next mail prompt, type f.

9. Type a brief response, as shown in the following screen display, then go to
a new line, and press (Ctrl)D.

23

Electronic mail

24

10. If you see a Cc: prompt, press (Enter).

11. To read the response you just sent, type mail and press (Enter) to enter
mail again and then type the number next to the response message. You
will be able to tell it is a response to the previous message because it will
have the subject of that message in its "Subject:" line. (If you do not see
your response immediately, do not worry. It may take a moment or two
for your message to arrive.)

12. When you finish, type q and press (Enter) to quit mail.

From susannah Wed Jun 29 15:23:01 1994
To: susannah
Subject: Test message
Date: Wed Jun 29 15:23:02 1994

This is a test message

r

To: susannah
Subject: Re: Test message

Received the test message.
Thanks.

(Ctrl)D
CC: (Enter)

q

Tutorial

Electronic mail

More mail features

The mail program has a wide variety of features for sending and reading mail.
Only a few of these features are explained here; see mail(e} for a complete list.

Getting help

mail has two screens of online help that show you the available commands.

To get help when you are typing a message, go to a new line and type -?
(tilde-question mark). This is called a "mail compose escape;" you use these
escapes to give a command to the mail program while you are typing a
message. The help screen shown lists all the mail compose escapes.

To get help when you are reading your mail, type? at the mail prompt. The
help screen you see shows the commands available when you are reading
your mail.

Saving mail

You can save a mail message you have just read in a file by typing s and the
name of the file you want to save the message in, then pressing (Enter). You
can save any mail message in a file by typing s, the number of the message,
and the name of the file you want to save it in, and pressing (Enter).

For example, if you want to save the message "Promotion" in a file called
fromdoug, you could type s 2 fromdoug:

seo System V Mail (Version 3.2) Type? for help.
3 messages:

>3 susannah Wed Jun 29 15:23 9/237 "Grocery list"
2 doug Wed Jun 29 9:00 28/863 "Promotion"
1 sylvain Wed Jun 29 8:59 15/391 "Meet you after won

&s 2 fromdoug
"fromdoug" [New file] 28/863

This creates a new file called fromdoug that contains the mail message from
Doug. You can save several messages in the same file by using the same
filename each time you save a message. The contents of each message you
save will be added to the end of the file as you save them.

25

Electronic mail

Once you have a file that contains several messages, you can use the mail pro
gram to read these messages by typing mail-f filename, where filename is the
name of the file in which you have saved the messages, then pressing (Enter).
For example, if you wanted to use the mail program to look back at the
message from Doug, you could type mail-ffromdoug:

$ mail -f fromdoug
1 message

1 doug Wed Jun 29 9:00 28/863 "Promotion"

Deleting and recovering mail

You can delete a mail message you have just read by typing d and pressing
(Enter). If you want to delete the message you have just read and then read
the next message, type dp and press (Enter). (This deletes this message and
prints the next one to the screen.) Delete any message by typing d, the num
ber of the message you want to delete, and then pressing (Enter).

Recover the messages you deleted in the current mail session by typing u
(undelete) and pressing (Enter). The deleted messages reappear in your
message list. If you want to undelete a particular message, type u and the
message number of the message you want to undelete. You can only undelete
messages you have deleted during the current mail session. Once you quit
mail, the messages you have deleted are gone forever.

FOlWarding mail

You can forward mail to other people from within the mail program with the
f command. To forward the message you have just read, type f and the login
name of the person to whom you want to forward the message at the mail
prompt, then press (Enter). You can forward any message by typing f, the
message number, the login name of the person to whom you want it for
warded, and then pressing (Enter).

Using the vi editor in mail

26

You can use the vi editor to compose your mail messages. To do this, type-v
(tilde-v) on a new line when you are composing your mail message. This
brings you into vi. Any text you have already typed appears in vi, ready for
editing. (For instructions on using vi, see "Using the vi editor" (page 43).)

Tutorial

Electronic mail

Mailing several people at once: aliases

If you find that you are mailing messages to the same group of people over
and over again, you may want to set up a personal mail alias. A mail alias is a
single word you substitute for the names of several recipients.

For example, let's say you often found yourself sending messages to all the
sales people in your company: jane, john, jim, joe, and BitT. You could create
an alias named sales so instead of typing mail jane john jim joe biff, you
could simply type mail sales. To set up a mail alias, type:

a aliasname loginname loginname ...

Here, aliasname is what you want to call the alias and each loginname is the
login name of a person you want included in the alias. Do this at the mail
prompt when you are in your mailbox.

For example, to set up the sales alias, you would type the following at the mail
prompt when you are reading your mail:

a salesjanejohnjimjoe biff

27

Electronic mail

Summary

28

To send mail
To read mail
To respond to mail
To use the editor while sending mail
To get help while sending mail
To get help while reading mail
To save a message to a file
To cancel a message you are sending
To look at message headers
To see the next screen of message
headers
To return to the previous screen of
message headers
To use the vi editor to compose a
message
To delete a message
To delete this message and display
the next
To recover messages deleted within
this session
To create an alias from within mail
To quit mail

For more information about

Using mail
All the mail commands and options

mail username
mail
r [m essagen umber]

-v
-?
?
s [messagenumber] filename

(Del) (Del)

h
z

z-

-v

d [messagenumber]

dp

u [messagenumbers]

a aliasnames usernames

q

See

Mail and Messaging Guide
mail (C)

Tutorial

Chapter 3

Directories and flles

In this chapter, you will learn how information on a UNIX system is organized
into directories and files. You will learn how to move from directory to direc
tory and how to list the files in a directory.

Before you begin, you should know how to log in to your sea system and
how to type commands at the prompt.

The examples in this chapter assume that you are running the Korn shell. If
you are not sure which shell you are running see "Identifying your shell"
(page 14). To start a temporary Korn shell type ksh and press (Enter).

Directories

Information held in a UNIX system is organized in files. Files, in turn, are
organized into directories. The directories themselves are organized into a
tree structure: that is, there is one common root from which there are
branches, from which there are more branches, and so on.

To go to a place on the computer, you need to know its pathname. The path
name tells the computer which directory you want to go to or look at.

An absolute pathname begins with the root directory and specifies every
directory on the way to the directory or file you want to work with. A relative
pathname tells the computer to go to a particular directory relative to the
directory where you are right now. Directories are separated by slashes (I) in
pathnames. The last word of a pathname is either a directory name or a
filename.

29

Directories and files

30

This is the pathname for the message of the day, the message that is displayed
when you log in to the computer:

letclmotd

This says "go to the root directory, 0, then go into etc, then go to motd." (DOS
users will notice that pathnames on the UNIX system are like pathnames on
DOS, only the slashes pOint the other way.)

1)
ul bini etcl dev! tmp!

motd

cd letc

To say "one directory up from here," use the shorthand " .. " (dot dot). The
shorthand for the directory you are in is "." (dot), although you rarely find
reason to type this.

Here is the pathname for letclmotd, but shown as a pathname relative to
lulsusannah:

. ./.letclmotd

This says "go up two directory levels (which takes you to the root directory),
then go into etc, then go to motd."

(I bin! etc! dev! tmp!

susannah!

cd . .I • .Iete

Tutorial

Directories and files

If we wanted to go into Tutorial, a directory below lui susannah, the relative
pathname would be Tutoria1.

Pathnames without a leading" I " are relative pathnames.

Your home directory

When you first log in to the computer, the operating system places you in
your home directory. Typically, this has a pathname like either of the follow
ing:

lusrlloginname
lulloginname

Here, loginname is your login name.

The shorthand for your home directory is $HOME. You will see this referred
to in the following sections.

Identifying your current directory

To find out the name of your current directory, type pwd (print working
directory) and press (Enter):

$ pwd
/u/susannah

Changing directories

To change to a new directory, type cd (change directory) and the pathname of
the directory you want to change to, then press (Enter):

$ pwd
/u/susannah
$ cd /usr/adm
$ pwd
/usr/adm

You tell cd which directory to change to by giving it an argument. You can
use either a relative or an absolute (starting with " / ") pathname as an argu
ment to cd.

31

Directories and files

32

If you type cd with no arguments, you go to your home directory:

$ pwd
jete
$ cd
$ pwd
/u/susannah

You can also change to your home directory by saying cd $HOME:

$ pwd
/usr/lib
$ cd $HOME
$ pwd
/u/susannah

Try moving around some directories now:

1. Type pwd and press (Enter) to see where you are starting from.

2. Next type cd letc to go to the ete directory, one directory down from root.
(The lete directory is where many system administration tools are stored.)

3. Type pwd and press (Enter) to check that you are in the right place.

4. Then type cd default; pwd and press (Enter). (See the "Q and A" section
below for an explanation of the use of " ; " between commands.)

5. Type cd lusrispool/lp/requests. You should see a message like
/usr / spool/ lp/requests: Permission denied. (lusr/spooJIJplrequests is a
directory the computer uses to store printer requests temporarily.)

6. Type pwd and press (Enter).

7. You type cd; pwd (Enter) to return to your home directory and check that
you are there.

$ pwd
/u/susannah
$ cd /etc
$ pwd
jete
$ cd default; pwd
jete/default
$ cd /usr/spool/lp/requests
/usr/spool/lp/requests: Permission denied
$ pwd
jete/default
$ cd; pwd
/u/susannah

Tutorial

Directories and files

Q: Why do I have to press (Enter) after every command?

A: The carriage return you type at the end of a command line tells the com
puter to process the command.

Q: What does the" ; " do between two commands?

A: The semicolon (;) is a command separator. It tells the computer that the
next word is the start of a separate command, instead of an argument for
the previous command.

$ cd; pwd

This says "change directory, print working directory."

$ cd pwd

This says "change to the directory named pWd."

Semicolons allow you to put more than one command on a line before you
press (Enter) to have all the commands processed.

Q: What does the message Permission denied mean?

A: The UNIX system uses file and directory permisSions to control who can
look at, and who can change, files. These permissions are discussed in
Chapter 7, "Protecting files and directories" (page 69). When you see the
message Permission denied it means the permissions on a directory are
set so you cannot go into the directory. This is frequently the case for sys
tem directories, such as /usr/spooJ/lp/requests, and for other people's home
directories.

Q: What happens if I misspell a directory name?

A: If you misspell a directory name, the computer may attempt to guess what
you meant. Type y to accept its guess and change to the directory, or n to
return to the prompt:

$ cd letv
ed fete? y
$ pwd
fete

33

Directories and files

Files

Now that you know how to move from directory to directory, the next step is
learning how to see what files are in a directory.

In your sea OpenServer system, the files that make up the operating system
are distributed in special directories called "storage sections" and many of
these files are then "symbolically linked" into their normal locations within
the filesystem. When a symbolic link is being used, the filename in a directory
listing will be followed by an arrow symbol and then the full pathname of
where the actual file is located. For example, the file letcimotd is actually
located in Ivar/optlK/SCOIUnixl5.0.0Caletcimotd. This will appear as:

motd -> /var/opt/K/SCO/Unix/5.0.0Ca/etc/motd

In order to resolve these links so you actually see the files and their attributes
and not the links you may want to use the -L option to the 1 command.

Listing the files in a directory

34

There are several different commands you can use to list files. All of these are
variations on the Is (list) command.

Two common ways of listing files are Is and le. Is lists files alphabetically in a
Single column down your screen:

$ ls lete
accton
adfmt
asktime
at.mvw
at.sys
atstart.sys
badtrk
brand
checklist

Tutorial

Directories and files

Ie (list columns) lists files in columns across your screen:

$ 1c letc
ace ton
adfmt

fd135ds9bootO logger
fd135ds18bootO login

opasswd
passwd

tpmd.perms
ttys

If (list files) is another variation on Is. If lists files in columns across your
screen, marking programs with a "* ", symbolic links with a "@" and direc
tories with a " / ":

$ 1£ letc
accton@
adfmt@

gettydefs@ mkinittab@
gettydefs.orig@ mknod@

siomake@
sioput@

If symbolic links are present in a directory, using the -L option as in the exam
ple below identifies the types of file being referred to by the link. The files
would look like this:

$ 1£ -L letc
accton*
adfmt*

gettydefs mkinittab*
gettydefs.orig mknod*

siomake*
sioput*

See Is(C) for more information about all the file listing commands.

Try listing the contents of Ibin, a directory where many UNIX commands live:

1. Type cd Ibin and press (Enter).

2. Type pwd and press (Enter) to check where you are.

3. List the directory by typing If -L and pressing (Enter). Your screen should
look something like the screen display below.

4. Type cd and press (Enter) to return to your home directory.

$ cd Ibin
$ pwd
Ibin
$ 1£ -L

adb*
ar*
arV*
as*
asm*
asx*

$ cd

dc*
dd*
df*
diff*
diff3 *
dircmp*

fsck*
getopt*
gets*
grep*
grpcheck*
hd*

mesg*
mkdir*
mv*
ncheck*
newgrp*
nice*

restor*
restore*
restorL*
restorS*
rm*
rmdir*

tee*
telinit*
test*
time*
tmp. spx. si
touch*

35

Directories and files

Hidden files

36

Files whose names begin with" ." (dot) are hidden from view in a normal
directory listing. Certain programs, such as mail and your shell, create
hidden files to avoid cluttering your home directory with unnecessary files.
You may want to create hidden files yourself, for example, to store personal
mail.

To see hidden files, you need to add the -a (all) option to the list command. To
see all the files in a directory, you can type Is -a, Ie -a, or If -a.

Try listing all the files in your home directory:

1. See if you are in your home directory by typing pwd and pressing (Enter).

2. If you are not in your home directory, type cd and press (Enter).

3. List all the files in your home directory by typing Is -a.

If you are using the Korn shell, you see something like this:

$ ls -a

.kshrc

.mailrc

.profile

.lastlogin

The first two files (" ." and " .. ") are placeholders that refer to the current
directory (the one you are in) and its parent directory (the one above it).
(Remember, the shortcut for going to the directory above where you are right
now is cd ..) You see" . " and" .. " in every directory where you list all the
files.

The .kshrc and .profile files are files that the Korn shell reads when you first log
in. These files control your environment: that is, they control the way you
work on a UNIX system. For more information, see Chapter 9, "Customizing
your environment" (page 87). (Bourne shell users see a file named .profile, and
C-shell users see a file named .login and a file named .cshrc; these are the files
those shells read at login.) The file .lastlogin keeps track of the last time you
logged in.

Tutorial

Directories and files

Usting more information about files

So far, you have seen how to list the names of files, and how to see whether
files are directories, programs, or regular files. You can use the -1 (long) option
to the Is command to see more information:

$ ls -1 -L lete
total 4566
-rwx------ 1 bin bin 10510 Mar 16 1993 aiolkinit
-rw-rw-r-- 1 root mem 48 Jun 17 08:34 arp_data
-rwx------ 2 bin bin 2966 Mar 15 1993 asktime
-rwx------ 2 bin bin 2966 Mar 15 1993 asktimerc
drwxrwx--x 4 auth auth 80 Mar 24 1993 auth
-r-x------ 1 bin auth 1706 Mar 15 1993 authckrc
-rwx--x--x 1 root root 128266 Mar 12 1993 automount
-rw-r--r-- 1 root root o Jun 17 08:34 advtab

1 is another way of saying Is -1. A long listing shows you, from left to right,
the file type, the permissions on the file, the number of links to the file, the
owner of the file, the group of the file, the size of the file in bytes, the date and
time the file was last modified, and the name of the file. If a file has not been
modified since last year, the year appears instead of the modification time.

File type Number of links Group

Permissions Owner

-rwxrwxrwx 1 perry techpubs
-rw-r-wr-x 1 perry unixdoc
drwxr-xr-x 2 perry techpubs

What you see in a long listing

Date of last
modification Filename

Size
in bytes

Time of last
modification

I I
648509 Jul 26 08:15 minutes

2256 Jul 25 10:23 agenda
48 Mar 02 18.51 bin

Most of this information is discussed in more detail in Chapter 7, "Protecting
files and directories" (page 69).

Try doing a long listing of the files in your home directory:

1. Type cd and press (Enter) to go to your home directory.

2. Type 1 and press (Enter) to see a long listing of the files.

37

Directories and files

Q: What if I list a directory and there are so many files that the files at the
beginning of the list run off the top of the screen before I have a chance to
read them?

A: You can use (Ctrl)S and (Ctrl)Q to stop and start scrolling output. When
you press (Ctrl)S, the screen stops scrolling. If you now press (Ctrl)Q
again, the screen resumes scrolling.

Narrowing the listing: using wildcards

38

You have seen in the examples in this chapter that sometimes a UNIX system
directory has so many files that listing the directory fills more than a screen. If
you have some idea of the files you are looking for, you can narrow your
search using wildcard characters:

$ cd tbin
$ 1c c*
cal
cat

cb
cc

chgrp chown cmchk comm
chmod chroot cmp copy

cp
cpio

csh
csplit

A wildcard character takes the place of another character or characters. They
are also known as metacharacters, because they have a meaning beyond that
of a single, regular, character. In the example above, the "*" is a meta
character, so the command reads: "list all files starting with a "c", followed
by any other character or characters." Metacharacters are interpreted by the
shell, rather than by commands.

Here are the filename metacharacters:

Metacharacter

*
?

[... J

Means

Any character or characters, including no characters at all

Any single character

Any enclosed character; specify a range with "-"; for
example, to match file. a, file.b or file.c, you could use
file. {a-c]

Tutorial

Directories and files

Here are some more examples:

$ cd letc
$ 1c [cde1*
checklist cron

cshrc
cshrc.bak

custom
ddate
debrand

devnm
divvy
dkinit

dmesg ext.perms
clri
cmos

default:
archive
archive-
backup
boot
boothd

$ cd letc

cc
cron
dumpdir
dumpsrv
filesys

$ 1c [c-e1*
checklist cron
clri cshrc

dsmd.perms
emulator

format lock micnet passwd
goodpw login- mkuser passwd-
idleout login mkuser- restor
imagen lpd msdos su
lang map chan netbackup tape

custom devnm dmesg
ddate divvy dsmd.perms

cmos cshrc.bak debrand dkinit emulator

default :
archive cc format lock micnet passwd
archive- cron goodpw login- mkuser passwd-
backup dumpdir idleout login mkuser- restor
boot dumpsrv imagen lpd msdos su
boothd filesys lang mapchan netbackup tape

tape.OO
tar
usemouse
xnet

ext.perms

tape.OO
tar
usemouse
xnet

Both the first and the second example list all the files in jete beginning with a
" c ", "d", or "e" and followed by any other characters, but the second
example uses a range [c-e] to do it.

$ 1 letc/q?
1: /etc/q? not found: No such file or directory (error 2)

In the third example, 1 /etc/q? does not produce a list of files because the com
puter is looking for a file in jete that begins with a "q " and has just one other
character following it; this does not match any of the files in jete. (C shell
users would see the message No rna tch.)

With the"?" metacharacter, you must type as many?s as there are letters in
the filename you want to match. For example, to search for a six-character
filename in jete directory which begins with" pa ", enter:

$ 1 letc/pa????
-r--r--r-- 1 root techpubs 2968 Jun 19 15:28 /etc/passwd

39

Directories and files

Try using a metacharacter to find the message of the day file:

1. Type ed lete and press (Enter).

2. Type 1 mo* and press (Enter) to see a long listing of all the files beginning
with "rna" in lete. (Your screen should look something like the following
screen display.) letclmotd is the message of the day file.

$ cd letc
$ 1 mo*
-rw-r--r--
-rwx--x--x
-rwx------
-rwx--x--x

1 root
2 root
1 root
1 root

sys
bin
bin
root

111 Nov 3 02:34 motd
27564 Jan 5 04:53 mount

1071 Nov 3 02:22 mountall
23180 Nov 3 02:32 mountd

Summary

40

To see what directory you are in
To change directories
To go to your home directory

To list files
To list files in columns
To list files and show type
To list all files, even hidden ones
To make a long listing of all files
beginning with "m"

For more information about

pwd, ed, and the Is family of
commands

pwd (print working directory)
edpathname
ed
ed$HOME
Is
Ie
If
Is -a

1 m* or Is -1 m*

See

pwd(C) , ed(C), and Is(C)

Tutorial

Chapter 4

Writing and editing

In this chapter, you will learn how to use the cat command to create a file, and
how to use the basic features of the powerful vi editor. You will also learn
how to print files, check on files that are printing, and cancel print requests.

Before you begin, you should know how to log in, and how to enter com
mands at the prompt. You should know what files and directories are, and
what metacharacters are and what they do. You should also know how to
start and stop screen scrolling with (Ctrl)Q and (Ctrl)S.

Putting text into a file

You can use the cat command to create a file quickly by typing cat > filename.
cat creates a file named filename, and puts the text you type into the file, until
you tell it you have finished by pressing (Ctrl)D. (The name cat is short for
concatenate, or join together; this is another thing the cat command can do.)

$ cat > todo
write staff report
review budget figures
return doug's call
<Ctrl)D

Using cat to write a file is like writing a mail message: you can backspace to
correct mistakes within a line, but you cannot backspace past the beginning of
the line you are on. The vi editor, discussed later in this chapter, lets you
correct mistakes anywhere in a file.

41

Writing and editing

Try writing a file with cat:

1. Type cd; pwd and press (Enter) to make sure you are in your home
directory.

2. Type cat> mytodo and press (Enter) to open up a file called mytodo. Every
thing you type now goes into mytodo, until you press (Ctrl)D.

3. Type in the text as shown in the following screen display. Remember to
press (Enter) to start each new line.

4. When you have finished typing the text, go to a new line and press (Ctrl)D.

5. Type I mytodo and press (Enter) to check that the file was created.

$ cd; pwd
/u/susannah
$ cat > mytodo
write status report
fill out timesheet
buy cat food
(Ctrl)D

$ 1 mytodo
-rw-rw---- 1 susannah techpubs

Q: What if I see a message like:
mytodo: Permission denied or
mytodo: cannot create?

52 Jun 24 12:12 mytodo

A: When you see a Permission denied or cannot create message, this means
you do not have permission to write in the directory where cat is trying to
create a file. (File and directory permissions are covered in Chapter 7,
"Protecting files and directories" (page 69).) Try changing to your home
directory by typing cd and pressing (Enter), then try opening up your new
file there.

Filenames

42

Filenames can be up to 256 characters long. You can use any characters you
like in a filename, except for the following metacharacters, which have a spe
cial meaning to the shell:

!?*"";I $<>() I {}[]-
It is a good idea to choose meaningful filenames to make it easier to
remember what the files contain.

Tutorial

Examples of legal filenames

qtrone
report. 127
annuaireporC1994

Examples of illegal filenames

qtr(one)
report 1127
annualreporC 1994

Writing and editing

Filenames only have to be unique within a directory. In other words, you can
have as many files named report as you like, as long as there is only one report
per directory.

Looking at files

You can also use the cat command to display files on the screen. cat sends the
whole file to the screen without splitting it into pages. If there are more lines
than can fit on the screen, you need to use (Ctrl)S to control the scrolling.

Try looking at the file you typed with cat:

1. Type cd and press (Enter) to go to your home directory.

2. Type cat mytodo and press (Enter). (You could have typed cat
$HOME/mytodo instead; this would display the file mytodo from anywhere
on the system.)

Using the vi editor

vi is the standard text editor on the UNIX system. vi is a text editor, not a
word processor. It has many powerful features for manipulating text (delet
ing, moving, searching, replacing, and so on), but it does not, for example,
allow you to change line spacing or make letters boldface or italic.

In this tutorial, you will be learning the basics of vi. A summary of vi com
mands appears at the back of this book. To appreciate fully the power of this
UNIX system tool, you should read Chapter 4, "Editing files" in the Operating
System User's Guide and look at vi (C) .

The name vi comes from the word "visual." Different from its predecessors ex
and ed, vi shows a full screen of the file at once. (ed and ex are similar to
edlin on DOS; you tell them what you want to do without actually seeing the
file in front of you.)

43

Writing and editing

vi works in two modes. When you first start vi, you are in command mode -
vi is waiting for you to give it a command. When you give the command i
(insert), you change into insert mode. From then on, what you type is inserted
into the file. To leave insert mode and return to command mode, press the
(Esc) key. To exit vi, give it the command :x (you need to press (Esc) first if you
are not in command mode). This saves the file if you made any changes.

Entering text

44

To create a new file in vi, type vi filename, where filename is the name you
want to call the new file. (You can edit any existing text file with vi by typing
vi and then the name of that file.)

-----.--/" I --~--l
When you press j, text / ~ When you press I. text is

is inserted to the left rn rn inserted at the beginning
of the cursor. •. of the current line.

/ ~

1--------=-------.,'-/ l r....--------=--~,-,/ l
- - -- ---.--- - - - - ---.---/ J ' / I '

Inserting text with i or I

When you press a, text
is appended to the right IlG]

of the cursor.

/

r
--,-,/ ------;.-----

Appending text with a or A

l r
---,,/ --l
----;,~---

Tutorial

Writing and editing

r --~---:.;~ -l
When you press 0, a new / ~ When you press 0, a new

line is opened beneath !Bl ~ line is opened above
the current line, and you ~ ~ the current line, and you

are placed in insert mo,/ ~ placed in insert mode.

r =--=="'2.~--=--l / 1 ' ------- r-----l --------
----~.~--/1'

Opening a line with 0 or 0

Try writing a file with vi:

1. Type cd and press (Enter) to go to your home directory.

2. Type vi weekrep and press (Enter). This opens up a file called weekrep and
puts you into the vi editor with a blank file in front of you. You can see
the name of the file at the bottom of the screen.

3. Type i to go into insert mode.

4. Type in the text shown in the following screen capture. Press (Enter) when
you want to begin a new line. Do not worry if you make mistakes; you
will learn how to correct these shortly.

5. When you have finished typing, press (Esc) to go to command mode.

6. In command mode, type: (colon). You should see a : prompt at the
bottom of the screen.

7. Type x and press (Enter) at the: prompt. When vi writes out the file, it
shows you the number of lines and the number of characters.

45

Writing and editing

Weekly Report

This week, I met with 5 of our 10 distributors.
Everyone is eager to see the next release of our software,
and they all expect to sell a lot of units in the coming quarter.

"weekrep" [New file]

Moving around in a file

46

Use the direction keys (arrow keys) to move one line up or down, or one char
acter right or left. You can also use h to move left, 1 to move right, k to move
up, andj to move down.

l

f
----,I/ -------.-/1' l f

--' .. ::._---
/1' l

Moving one word forward (w) or one word back (b)

Tutorial

Writing and editing

1
2

3 ----------
4 --------------

m 25 -- -- --- -- -- -

:se nu

Moving to a particular line

See Chapter 4, "Editing files" in the Operating System User's Guide for some
other ways to move around a file in vi.

Correcting mistakes

You can correct mistakes in vi by using the x key to delete the character under
the cursor.

You need to be in command mode (press (Esc») to use x to delete - otherwise,
you just end up with a lot of x's. After you have deleted the unwanted text,
insert the correct text by pressing i. Text is inserted to the left of the cursor.

Try editing the first line of weekrep:

1. Go to your home directory by typing cd and pressing (Enter).

2. Type vi weekrep and press (Enter) to open weekrep in vi.

3. Using the down arrow or the j key, go to the line starting with "This week

4. Using the right arrow or the space bar, move the cursor to 5 and press x.
The 5 disappears.

5. Using the right arrow or space bar, move the cursor to 10. Press x twice to
delete the 10. The line should now read "This week I met with of our
distributors. "

47

Writing and editing

48

6. Using the left arrow or the h key, move back to the space between "with"
and" of'. The cursor should be on the space between the two words.

7. Press i to insert, then type 6.

8. Press (Esc). The line should now read "This week I met with 6 of our
distributors."

9. Use the right arrow or the space bar to move the cursor to the space
between "our" and "distributors".

10. Press i and type 11. The line should now read "This week I met with 6 of
our 11 distributors."

11. Press (Esc) to go into command mode, then press : to get the : prompt at
the bottom of the screen.

12. Type x at the: prompt to save the file and exit vi.

Q: I am finding it hard to tell when I am in insert mode and when I am in
command mode - is there any way to make this easier?

A: If you are in vi, you can press (Esc) to go to command mode, type :, and
then type set showmode to set the showmode option. The showmode
option prints the mode you are in at the bottom of your screen whenever
you are in input (insert) mode. The mode it prints will be APPEND, CHANGE,

INSERT, OPEN, or REPLACE, depending on your current action.

If you always want to use the showmode option, create a file in your home
directory called .exrc that contains the following line:

set showmode

vi looks for the .exrc file each time it starts, so this is where you should put
frequently used vi options. For more information about vi options, see the
section on vi in Chapter 4, "Editing files" in the Operating System User's
Guide.

Q: Suppose I type a colon and then change my mind and decide I do not
want to use the : prompt?

A: Press (Del) to cancel the command and return to editing the file. Your
terminal may beep or flash at you; ignore it. You can also type (Esc) if you
have not typed a valid command, but, if you have typed a command and
you press (Esc), vi performs the command you typed.

Tutorial

Writing and editing

Q: Why does my terminal keep beeping (or flashing) at me?

A: vi sends a beep to your terminal (some terminals use a flash) in a number
of instances. Two common times vi beeps at you are when you press (Esc)
when you are already in command mode, and when you try to move
beyond the last text on a line.

When you first start using vi, your terminal beeps a lot. You can safely
ignore this.

Pri nti ng files

You can use the lp (lineprinter) command to print text files on your local
printer. To use lp, type lp, the name of the file, and press (Enter). The com
puter responds with the number of your print job and a copy of the file is sent
to the printer. This works with any kind of printer, not just a lineprinter.

Try printing the weekly report file you were editing:

1. Type cd and press (Enter) to go to your home directory.

2. Type lp weekrep and press (Enter) to print weekrep to your printer.

Printing several copies

Use the -n (number) option to lp to tell it the number of copies you want to
print. To use the -n option, type lp -nnumber filename where number is the
number of copies you want to print and filename is the name of the file.

For example, if you wanted to print two copies of your weekly report, you
would type lp -n2 weekrep

Checking on a print job

When a lot of people are trying to use the same printer at the same time, the
print queue can become very long. To see where your job falls in the queue,
use the lpstat (lineprinter status) command:

$ lpstat
tpubs_lw2-8155 root 2147 Jul 29 14:32 on tpubs_lw2
tpubs_lw2-8156 susannah 38884 Jul 29 14:33
tpubs-lw2-8157 susannah 40765 Jul 29 14:38
tpubs-lw2-8158 nigel 24399 Jul 29 14:39

lpstat shows all the currently queued print requests. The job ID for each
request is shown (for example, tpubs_Iw2-8155), with the login name of the

49

Writing and editing

user who issued the print command, the size of the print job in bytes, the date
and time of the request, and, if the file is actually on the printer at the time, a
message to this effect.

If there are several jobs in the queue, typing lpstat shows you all the jobs.

Canceling a print job

50

To cancel a print job, you need to know its job ID. You can find this out by
typing lpstat and pressing (Enter), as explained in the preceding section. To
cancel a print job, type cancel, the ID number of the job, and press (Enter).

Try sending a job to the printer and then canceling it:

1. Type lp /etc/passwd and press (Enter) to print the file /etcipasswd.

2. Type lpstat and press (Enter) to check the job ID number of your print job.
Write this down.

3. Cancel your print job by typing cancel, the job ID you have written down,
and press (Enter).

4. Type lpstat and press (Enter) to confirm that your job has disappeared
from the print queue.

Tutorial

Summary

To create a file with cat

To display a file
To pause/resume the screen scrolling
To start writing a file with the vi edi
tor
To insert text in vi
To return to command mode from
insert mode
To quit vi, saving any changes
To move around in vi

To delete a character in vi
To print a file
To print 2 copies of a file
To print a file in the background
To run any job in the background
To check the status of a print job
To cancel a print job

For more information about

cat
vi

Ip, Ipstat, cancel

Writing and editing

cat> filename
text
(Ctrl)D

cat filename

(Ctrl)S/ (Ctrl)Q

vi filename

i

(Esc)

:x
use the arrow keys or h for left,
lor (Space) for right, k for up,
andj for down
x

Ip filename

Ip -n2 filename

Ip filename &

commandline &

Ipstat [job_id]

canceljob_id

See

cat (C)
Chapter 4, "Editing files" in the
Operating System User's Guide
vi (C)
Ip(C), Ipstat(C), and cancel(C)

51

Writing and editing

52 Tutorial

Chapter 5

Managing flIes

In this chapter, you will learn more about files and directories. You will learn
how to use a paging program to read long files screen by screen, and you will
learn about two utilities to look at the very top and the very bottom of a file.
You will also learn how to make directories, how to remove directories, and
how to copy, move, and remove files.

Before you begin, you should know what a file is and what a directory is. You
should also know how to tell what directory you are in, how to change direc
tories, and how to list files.

More ways to look at files

In Chapter 3, "Directories and files" (page 29), you learned how to use the cat
command to display a file on the screen by typing cat file. cat simply sends
the whole file to the screen; you cannot choose how much of the file you want
to see at a time.

Reading a file one screen at a time

The more command displays a file one screen at a time. If the file fits on one
screen, more quits and you are returned to the prompt. If the file is more than
one screen long, more displays a prompt at the bottom of the screen showing
what percentage of the file you have already read. Press (Space) to see another
screen of the file. (You can use (Enter) to see another line of the file.) To quit
more without reading the whole file, type q.

53

Managing files

The more command lets you search for words in a file by typing a slash (/).
Type a "/", then type the word or words you want to search for at the /
prompt at the bottom of the screen. more skips to the next page of the file
where those words occur. more can only search forward; if the words you are
searching for come before where you currently are in the file, more cannot
find them.

Try reading through the file /etc/passwd (a file that stores a variety of inform
ation about users on the system) to find your login name:

1. Type more /etc/passwd and press (Enter). The first screen of the file will be
displayed.

2. Type /, then type your login name at the / prompt at the bottom of the
screen and press (Enter).

3. more skips to the page where it finds your login name. (This does not
work if you have already seen your login name on the screen because
more cannot search backward.)

4. If you still see a More prompt at the bottom of the screen, press q to quit
more.

Q: more seems much better than cat; is there any reason I should use cat
instead?

A: cat can be better than more in some instances. If you want to look at a
short file, cat is probably better because it does not waste time loading the
file into a buffer and then paging it out on the screen. Also, cat is more for
giving about what it displays. more cannot display files containing con
trol characters (it gives you the error message Not a text file), whereas
cat tries its best to display any file.

Reading just the first or last lines of a file

54

Sometimes it is useful to see just the first few, or last few, lines in a file. If you
want to see what is in a file without looking at the whole file, you may find
the head command useful. The tail command, which looks at the last few
lines, can be useful as well. For example, you could use tail to look at the
latest information in a log file, a file that is being constantly updated by some
program on the system.

To look at the first few lines of a file, type head filename, where filename is the
name of the file you want to look at, and then press (Enter). By default, head
shows you the first 10 lines of a file. You can change this by typing head
-number filename, where number is the number of lines you want to see.

Tutorial

Managing files

For example, if you want to see the first 15 lines of /etcipasswd, you could type:

head -15 letc/passwd

To look at the last few lines of a file, use the tail command. tail works the
same way as head: type tail and the filename to see the last 10 lines of that
file, or type tail -number filename to see the last number lines of the file.

Try using tail to look at the last five lines of your .profile or .login:

1. Type tail -5 $HOME/.profile and press (Enter).
(C shell users: type tail -5 $HOME/.login and press (Enter).)

2. tail displays the last five lines of your .profile (or .login).

% tail -5 $HOME/.login
setenv TERMCAP $term[2l # terminal data base

endif
unset term noglob
setenv PRINTER tpubs_lwl
setenv WPVER lyrix6

Making directories

default lyrix version

The mkdir command makes a directory on a UNIX system. To make a dir
ectory, change to the directory under which you want the new directory to
live. Then, type mkdir directory, where directory is the name you want to call
the new directory, and press (Enter). If you have permission to write in the
current directory, and there is no directory already named directory in the
current directory, the new directory is created.

The rules on naming directories are the same as the rules on naming files: do
not use a name longer than 256 characters, and do not use the filename meta
characters *, 7, [...]; otherwise, anything goes. A useful convention is to
always start directory names with a capital letter. This way, you can
differentiate between a file and a directory without doing a long listing (1).

You can make several directories at once by typing:

mkdir directoryl directory2 directory3

55

Managing files

Try creating a directory for memos and a directory for reports:

1. Type cd and press (Enter) to go to your home directory.

2. List the current directory (your home directory) by typing If and pressing
(Enter). Check that there are no files or directories named Memos or
Reports.

3. Type mkdir Memos Reports and press (Enter). This creates two new
directories, Memos and Reports.

4. Type If and press (Enter) to list your home directory again. The If com
mand shows the two new directories.

$ cd

$ 1£
$ mkdir Memos Reports
$ 1£
Memos/ Reports/

Removing directories

56

You can remove directories using the rmdir command. To remove a direc
tory, type rmdir and the name of the directory you want to remove.

rmdir only removes directories that are empty. You can remove directories,
subdirectories, and files all at once using options to the rm command, which
is discussed later in this chapter. See rm(C) for more information.

Try creating a directory and then removing it

1. Type cd and press (Enter) to go to your home directory.

2. Create a directory called Letters. (Type mkdir Letters and press (Enter).)

3. List the contents of the working directory (type If and press (Enter»), to
confirm that the Letters directory has been created.

4. Remove the Letters directory by typing rmdir Letters, then pressing (Enter).

5. List the directory (type If and press (Enter») to confirm that Letters has
disappeared.

Tutorial

Managing files

Copying files

The cp command copies files. To copy a file, type cp, the name of the file you
want to copy, and the name you want to call the copy, then press (Enter).
Unlike DOS, a UNIX system does not tell you that the copy succeeded, but it
shows you an error message if it did not. You can use a pathname (a direc
tory) for the name of the copy to put a copy of a file in a particular directory.
In this case, unless you specify otherwise, the copied file will be given the
same name as the original but in a different directory.

cp mydir/afile lImp

Try putting a copy of the message of the day file in your home directory:

1. Type cp letc/motd $HOME and press (Enter).

2. Check if the copy was successful by typing I $HOME/motd and pressing
(Enter). The computer shows you a copy of motd in your home directory if
the copy worked.

$ cp /etc/motd $HOME
$ 1 $HOME/motd
-rw-r--r-- 1 susannah techpubs 464 Jun 24 17:47 /u/sllsannah/motd

57

Managing files

Renaming files

58

To rename a file on a UNIX system, use the mv (move) command. You can
also use mv to "move" a file from one directory to another. To rename a file
using mv, type mv, the name of the file you want to rename, the new name
you want to call it, and press (Enter).

mv mydir/afile lImp

For example, if you want to rename the file mytodo as monday, type:

mv mytodo monday

If you want to move monday to the temporary directory /tmp, type:

mv monday Itmp

Try making a directory for to-do lists and moving the file mytodo into it. (If
you do not have the file mytodo from the writing and editing lessons in
Chapter 4, "Writing and editing" (page 41), use the cat command or the vi edi
tor to create a file called mytodo containing a to-do list. See Chapter 4, "Writ
ing and editing" (page 41) for instructions.)

1. If you are not already in your home directory, type cd and press (Enter).

2. Type mkdir Todos and press (Enter) to create a directory called Todos.

3. Move mytodo to the new directory by typing mv mytodo Todos and press
ing (Enter).

Tutorial

Managing files

4. Check the contents of the Todos directory by typing Is Todos and pressing
(Enter).

$ mkdir Todos
$ mv mytodo Todos
$ ls Todos
mytodo

Removing files

Removing files you no longer need is an important part of managing the way
you work on the computer. Any computer has a limited amount of disk
space, and, although the computer may have a very large hard disk, event
ually the disk begins to fill. To do your part in not adding to computer "litter,"
you should regularly remove files you no longer need.

To remove a file, type rm, the name of the file, and press (Enter). You can
quickly remove a directory and all the subdirectories below it with the com
mand rm -rf *. This command recursively removes everything in its path,
asking no questions as it goes. Be careful with it.

Try creating a file and then removing it:

1. Type cd and press (Enter) to go to your home directory.

2. Use the touch command to create a file. Type touch newfile and press
(Enter) to create a file 0 bytes long.

3. List the file by typing 1 newfile and pressing (Enter).

4. Remove newfile by typing rm newfile and pressing (Enter).

5. Check that you removed the file by typing 1 newfile and pressing (Enter).
The computer responds with newfile not found.

$ cd
$ touch newfi1e
$ 1 newfi1e
-rw-r--r-- 1 susannah techpubs
$ rm newfile
$ 1 newfile
newfile not found

o Jul 12 13:59 newfile

59

Managing files

Q: What if I see a message like f i 1 e: 600 mode?

A: If you try to remove a file on which you do not have write permission, rm
prints the filename followed by the permission mode of the file. This is the
rm command's way of asking you if you are sure you want to remove the
file. Type y to remove the file, or n to leave it as it is. For more informa
tion about permissions, see Chapter 7, "Protecting files and directories"
(page 69).

Summary

60

To see a file screen by screen
To see the first few lines of a file
To see the last few lines of a file
To make a directory
To remove an empty directory
To copy a file
To rename a file
To remove a file

For more information about

Looking at files screen by screen
Looking at the beginning of a file
Looking at the end of a file
Making directories
Removing directories
Copying files
Renaming files
Removing files

more filename

head filename

tail filename

mkdir dirname

rmdir dirname

cp filename another_filename

mv filename new_filename

rmfilename

See

more (C)
head (C)
tail (C)
mkdir(C)
rmdir(C)
cp(C)

mv(C)
rm(C)

Tutorial

Chapter 6

Cormnands revisited: pipes and
redirection

In this chapter, you will learn how to put the results of a command into a file,
how to use a file as input to a command, and how to put commands together
to form customized utilities. You will also learn how to join files together,
how to write information onto the end of a file, and how to put commands in
the background to use the computer to do more than one task at once.

Before you begin, you should know what files and directories are, and how to
create a file using cat or vi.

Putting the output of a command into a file

You have already seen one example of how to put the output of a command
into a file: cat> file

Here, cat opens a file and waits for you to type into it. The file is closed when
you press (Ctrl)D, the end-of-file (EOF) character. The greater-than sign is the
redirection symbol; it tells the computer you want the output of cat to go into
a file instead of the usual place. This is called "redirecting standard output,"
or simply "redirection."

You can use redirection with any command that prints information on the
screen. For example, you could redirect the output of Is into a file and then
print this file to get a printed directory listing.

61

Commands revisited: pipes and redirection

Try printing a long listing of the files in your home directory:

1. If you are not already in your home directory, go there by typing cd and
pressing (Enter).

2. List the files into a file called filelist type I > file list and press (Enter).

3. Send the file filelist to the printer by typing Ip file list and pressing (Enter).

The usual place the output of a command goes is known as standard output.
Standard output is usually your screen.

The usual place a command gets its input from is known as standard input.
Standard input is usually your keyboard. You will learn how to use a file as
standard input later in this chapter.

Standard output and standard input are sometimes referred to as "standard
out" and "standard in," or "stdout" and "stdin."

Using a file as input to a command

62

Just as you can redirect the output of a command, you can redirect the input
of a command. To tell a command to take input from a file, you type the com
mand, then a less-than sign «), then the file that you want it to use as input.
The file used for input is still there after the command is finished; it is only
read, it is not overwritten.

Suppose, for example, you wanted to mail a file called report to Doug you
could type mail doug < report

This tells the mail command to take its input from report. This is a very fast
way of mailing things because you never enter the interactive mail program,
you just send the file.

Try mailing yourself a copy of /usr/admlmessages, the file that stores system
startup messages, using input redirection:

1. Type mail loginname < /usr/adm/messages and press (Enter). (Substitute
your own login name for loginname.)

2. Confirm that the file was sent by typing mail and pressing (Enter). Read
your current messages; one of these contains the startup messages file.

3. Type q to quit mail.

Tutorial

Commands revisited: pipes and redirection

Q: If I use redirection to mail a file to someone without entering the mail pro
gram, is there any way I can get a subject header on the message?

A: You can get a subject header on the file by using the -s "subject" option to
mail. For example, to mail the file prognotes to Anne, you could type:

mail -8 "Program notes" anne < prognotes

This sends the file with the subject heading "Program notes." For more in
formation about mail options, see mail(C).

Joining files together

You can use the cat command to join files together without using an editor.
To do this, type cat, the names of the files you want to join together, and then
redirect the output into a new file. For example, if you want to join together
reportl, report2, and report3 into a file called allreps, you could type:

cat reportl report2 report3 > allreps

cat opens a file called a11reps and then writes each file, in order, into it. reportl
comes first in allreps, followed by report2 and then report3.

Be careful with cat, because you can unintentionally overwrite a file. For
example, type:

cat reportl report2 report3 > reportl

cat first opens a file called reportl, where it writes its input files. This
overwrites the existing reportl. When cat goes to write its arguments into the
file reportl that it has just opened, it finds reportl appears as input as well as
output and gives you the error message:

cat: input/output files 'reportl' identical

However, by now it is too late; the contents of reportl have been overwritten.

63

Commands revisited: pipes and redirection

Background processing

The ability to run commands in the background is one of the key benefits of
the UNIX system. You can set any command line running in the background
while you do something else at the prompt.

To set a command running in the background, type the command at the
prompt as usual, but type & (ampersand) after it, before you press (Enter).
This tells the UNIX system you want the command to run in the background,
so it immediately returns your prompt.

For example, if you have a lot of files to join together, or if the files are large,
you can put the command in the background:

cat bigfilel bigfile2 bigfile3 > bigfile&

When you put a command in the background, the computer responds with a
number that is the process ID of the command. See Chapter 5, "Controlling
processes" in the Operating System User's Guide for information about pro
cesses and process IDs.

Appending one file to another

64

You can use cat with redirection to append a file to another file. You do this
by using the append redirection symbol, "»". To append one file to the end
of another, type cat, the file you want to append, then », then the file you
want to append to, and press (Enter).

For example, to append a file called report2 to the end of reportl, type:

cat report2 > > report!

You can use the append symbol" » " with any command that writes output.
For example, you could append a directory listing to a file called log with:

Is» log

Try working through the folloWing cat tutorial:

1. If you are not already in your home directory, go there by typing cd and
pressing (Enter).

2. Use cat to create three files: reportl, report2, and report3.

Type cat> reportl and press (Enter). Type report 1 and press (Enter). Then,
type Keeping a cat is a serious responsibility and press (Enter). Now,
press (Ctrl)D.

Tutorial

Commands revisited: pipes and redirection

Create report2 by typing cat > report2 and pressing (Enter). Type report 2
and press (Enter). Then, type Cats need a balanced diet and press (Enter).
Now, press (Ctrl)D.

Create report3 by typing cat> report3 and pressing (Enter). Type report 3
and press (Enter). Then, type Responsible cat owners will neuter or spay
their pets and press (Enter). Now, press (Ctrl)D.

$ cat > reportl
report 1
Keeping a cat is a serious responsibility
(Ctrl)D
$ cat > report2
report 2
Cats need a balanced diet
(Ctrl)D
$ cat > report3
report 3
Responsible cat owners will neuter or spay their pets
(Ctrl)D

3. Now, put the three files together into a file called a11reps. Type cat reportl
report2 report3 > allreps and press (Enter).

4. Look at allreps by typing cat allreps and pressing (Enter).

5. Now try using the append symbol to put the files together in the reverse
order. Type cat report3 report2 > repsagain and press (Enter). Then type
cat reportl »repsagain.

6. Type cat repsagain and press (Enter) to see what happened.

$ cat reportl report2 report3 > allreps
cat all reps
report 1
Keeping a cat is a serious responsibility
report 2
Cats need a balanced diet
report 3
Responsible cat owners will neuter or spay their pets
$ cat report3 report2 > repsagain
$ cat reportl » repsagain
$ cat repsagain
report 3
Responsible cat owners will neuter or spay their pets
report 2
Cats need a balanced diet
report 1
Keeping a cat is a serious responsibility

65

Commands revisited: pipes and redirection

Using pipes to build your own utilities

66

You can use the pipe symbol (I) on a UNIX system to make the output of one
command the input of another. To do this, you type the command you want
to generate the input, a pipe symbol, the command you want to read the
input, and then press (Enter). You can use pipes to put together as many com
mands as you like.

grep engr Ip

(1111111111111111)

grep engr employees I sort lip

Earlier in this chapter, you learned how to print a directory listing by typing:

1> filelist
lp filelist

Doing this with a pipe is even faster:

1 filelist I lp

Another way of using a pipe is to put long output through the more com
mand.

1 fete I more

Tutorial

Commands revisited: pipes and redirection

Try using a pipeline to print a list of the files in your home directory:

1. If you are not already in your home directory, go there by typing cd and
pressing (Enter).

2. Type I I Ip and press (Enter) to send a long listing straight to the printer.

Summary

To put the output of a command into
a file
To use a file as input to a command
To join files together
To append one file to another

To send a file listing to the printer

For more information about

All the topics covered in this chapter

command_line> filename

command_line < filename

cat filel file2 file3 > newfile

cat file» logfile

I lip

See

Chapter 3, "Working with files and
directories" in the Operating System
User's Guide
csh(C) , ksh(C) , and sh(C)

67

Commands revisited: pipes and redirection

68 Tutorial

Chapter 7

Protecting files and directories

In this chapter, you will learn about user identification, group identification,
and permissions that the UNIX system uses to keep files secure. You will learn
how to read the information in a long listing, and how to change the owner,
the group, and the permissions of a file.

Before you begin, you should be familiar with files and directories. You
should know how to use the 1 command to get a long listing and you should
know how to use vi to edit a file.

Reading a long listing

In "Listing more information about files" (page 37), you learned how to use
the 1 command to create a long listing (remember to use the -L option to see
the files rather than the links):

$ ls -1 -L fete
total 4566
-rwx------ 1 bin bin 10510 Mar 16 1993 aiolkinit
-rw-rw-r-- 1 root mem 48 Jun 17 08:34 arp_data
-rwx------ 2 bin bin 2966 Mar 15 1993 asktime
-rwx------ 2 bin bin 2966 Mar 15 1993 asktimerc
drwxrwx--x 4 auth auth 80 Mar 24 1993 auth
-r-x------ 1 bin auth 1706 Mar 15 1993 authckrc
-rwx--x--x 1 root root 128266 Mar 12 1993 automount
-rw-r--r-- 1 root root o Jun 17 08:34 advtab

In a long listing you see the permissions, the number of links, the owner, the
group, the size in bytes, the modification date, and the name of the file. In this
section, we will be looking at the permissions, the owner, and the group.

69

Protecting files and directories

Permissions

70

The UNIX operating system stores a set of permissions with every file. These
permissions help to keep files secure on a multiuser system by determining
who can access a file or a directory, who can change a file, and who can run a
program.

permissions

owner group other

,.-A-t ~ ,.-A-t

-rwxrwxrwx

1
1
'-------- execute

'------------write

'---------- read

'------ file type

A file's permissions are shown in the first field of a long (1) listing. The per
missions field is made up of 10 places; think of this as 1 place + 3 places + 3
places + 3 places. For example:

-r--r--r-- 1 root techpubs 3026 Jul 03 09:40 /etc/passwd

Each place can contain a character indicating a particular permission. The
most common permissions are:

Permission

d
r
w
x

Meaning

Directory permission
Read permission
Write permission
Execute permission

Where it can occur

First place, before the 3 sets of 3
First place in each set of 3
Second place in each set of 3
Third place in each set of 3

If a place in a permission listing contains a hyphen (-) instead of a permission
character, it means that permission (read, write, or execute) does not apply to
that set of three.

Read permission lets you read a file, copy a file, print a file, change into a
directory, and so on.

Tutorial

Protecting files and directories

Write permission lets you modify a file, create a file in a directory, and remove
a file from a directory. (To remove a file with rm, you only need write permis
sion in the file's directory. You can then remove files on which you do not
have write permission, although rm will prompt you for confirmation before
it removes them.) Execute permission lets you run a compiled program or a
shell script. (A shell script is a text file of shell programming commands and
regular UNIX system commands that the shell executes one line at a time. For
more information about shell scripts, see Chapter 9, "Customizing your
environment".)

Directory permission is not really a permisSion at all; it simply indicates a file
that is a directory. (Internally, the UNIX system stores files and directories the
same way; it thinks of a directory as a special kind of file.)

Owner, group, other

The permissions field of a file is divided into 1 + 3 + 3 + 3 places to allow you
to set different permisSions for different users. The first place (1) is reserved
for file types such as "d" for directory and "-" for regular files. This is not
user-specific. Each of the following sets of three applies to a particular set of
users.

The first set of three permissions, after the place for d, applies to the owner of
the file, the user whose name appears in the third field of the long listing.

The second set of three permissions applies to the all users who are members
of the group of the file. (The group of a file is shown in the fourth field of a
long listing.)

The third set of three permissions applies to others; that is, to everyone who is
not the owner of the file, and is not a member of the group of a file.

These three sets of three permissions are known as owner, group, and other.

71

Protecting files and directories

72

Q: What is a group?

A: Just as every person who uses the computer has a login name, every per
son is also a member of a group. Groups, together with group permis
sions, allow people who need to use the same files to share those files
without sharing them with all other users.

For example, if you wrote a report that you wanted members of your
department to read, but not everyone else in the company, you could set
permissions like:

-rw-r----- 1 susannah techpubs 25 Jun 27 11:58 report

This would allow you to modify the file (the r and the w in the first set of
three), allow other members of your group (here, techpubs) to read the file
(the r in the second set of three), and prevent others from reading or modi
fying the file (the three hyphens in the third set of three). The first place
contains a hyphen because report is a file, not a directory.

Q: How can I tell what group I am in?

A: The id(e) command shows you your login name and your group. Type id
and press (Enter). You see something like:

$ id
uid=12846 (susannah) gid=1014 (techpubs)

The computer is showing you your login name and group information in
the way it thinks of them: as a UID (user identification), and a GID (group
identification). The UID is a numeric representation of your login name;
the GID is a numeric representation of your group. id shows the login
name and group name in parentheses following the UID and GID.

Tutorial

Protecting files and directories

Changing the group of a file

You can change the group of a file using the chgrp command if you are the
owner of that file. If you need to change the group of a file that you do not
own, you must ask the owner of the file to do this. You can also ask your sys
tem administrator, who can use the superuser (root) account to modify any
file.

To change the group of a file, type chgrp, the name of the new group, the
name of the file, and press (Enter). For example, to change the group of the file
report to a group called unixdoc, you could type:

$ 1 report
-rw-r----- 1 susannah techpubs
$ chgrp unixdoc report
$ 1 report
-rw-r----- 1 susannah unixdoc

Changing the owner of a file

25 Jun 27 11:58 report

25 Jun 27 11:58 report

You can use the chown (change owner) command to change the ownership of
a file that you own. As with chgrp, only the owner of a file or the superuser
(root) can change the ownership of that file.

To use chown, type chown, the login name of new owner of the file, the name
of the file you want to change, then press (Enter).

For example, to change the owner of the file report from the previous example,
you could type:

$ 1 report
-rw-r----- 1 susannah unixdoc
$ chown root report
$ 1 report
-rw-r----- 1 root unixdoc

25 Jun 27 11:58 report

25 Jun 27 11:58 report

73

Protecting files and directories

Changing the permissions on a file

74

To change the permissions on a file, you use the command chmod. (chmod
stands for "change mode;" a file's permissions are also known as its mode.)
As with chown, and chgrp, only the owner of a file or the superuser (root) can
change the permissions of a file.

To change the permissions on the file, type chmod, how you want to change
the permissions, the name of the file, then press (Enter).

To specify how you want to change permissions, you type a letter represent
ing which set of permissions you want to change, a symbol that tells whether
you want to add to, remove from, or overwrite the existing permissions, and a
letter representing which permission you want to work with.

For example, to change the permissions on the file report so that members of
the group techpubs can modify the file, you could type:

$ 1 report
-rw-r----- 1 susannah techpubs
$ chmod g+w report
$ 1 report
-rw-rw---- 1 susannah techpubs

25 Jun 27 11:58 report

25 Jun 27 11:58 report

The chmod command in the preceding example says "group plus write"; in
other words, add write permission to the existing permissions for group. If
you wanted to remove the group write permission, you could type:

$ 1 report
-rw-rw---- 1 susannah techpubs
$ chmod g-w report
$ 1 report
-rw-r----- 1 susannah techpubs

25 Jun 27 11:58 report

25 Jun 27 11:58 report

If you wanted to remove all permissions for group, you could type:

$ 1 report
-rw-rw---- 1 susannah techpubs
$ chmod g= report
$ 1 report
-rw------- 1 susannah techpubs

25 Jun 27 11:58 report

25 Jun 27 11:58 report

The equals sign in the second example says "overwrite all group permissions
with nothing"; in other words, remove all group permissions.

Tutorial

Protecting files and directories

You can think of how you specify permissions as an expression of the form:

chmod who [+ I-I =] permission tilename

Here, who tells which set of permissions you want to change; + , -, or = tells
whether you want to add, remove, or overwrite; permission is the permission
itself, and tilename is the name of the file.

Here are all the options for who:

Option

a
u
g
o

Meaning

All users; change all three sets of permissions at once
User; change the user, or owner, permissions
Group; change the group permissions
Others; change the other permissions

If you do not specify a who (for example, if you just said chmod +w), the
write permissions are changed for all three sets.

Try creating a report file and then changing the permissions, the ownership,
and the group it is in:

1. If you are not already in you home directory, type cd and press (Enter).
(The reason you type cd and press (Enter) at the beginning of each exercise
is to guarantee you are working in a directory where you have write per
mission.)

2. Create a file called test using cat. Type cat> test and press (Enter); then
type This is a test file (or whatever text you like); then press (Enter) to go
to a new line and press (Ctrl)D to close the file.

$ cd
$ cat > test
This is a test file
(Ctrl)D

3. List the file by typing I test and pressing (Enter).

4. Change the permissions on the file so that everyone can modify the file by
typing chmod +rw test and pressing (Enter).

5. Check what happened by typing 1 test and pressing (Enter).

6. Now, change the permissions back so only the owner of the file can
change it, by typing chmod o-w test and pressing (Enter), chmod g-w test
and pressing (Enter).

75

Protecting files and directories

7. List the file with I test and press (Enter).

8. Change the ownership of the file to root by typing chown root test and
pressing (Enter); then list the file with I test and press (Enter).

$ 1 test
-rw-rw---- 1 susannah techpubs
$ chmod +rw test
$ 1 test
-rw-rw-rw- 1 susannah techpubs
$ chmod o-w test
$ chmod g-w test
$ 1 test
-rw-r--r-- 1 susannah techpubs
$ chown root test
$ 1 test
-rw-r--r-- 1 root techpubs

20 Jun 27 15:40 test

20 Jun 27 15:40 test

20 Jun 27 15:40 test

20 Jun 27 15:40 test

9. Use the vi editor to open the file (vi test and (Enter»). You should see the
words" test" [Read only] at the bottom of your screen. This is because
you are no longer the owner of the file, so you only have read permission
on it. (If you were to make changes to the file, when you tried to save it,
you would see the error message File is read only; you would not be
able to save your changes.) Type:q to quit vi.

Summary

76

To change the group of a file
To change the owner of a file
To change the permissions on a file

For more information about

Long file listings
Changing the owner of a file
Changing the group of a file
Changing the permissions on a file

chgrp newgroupname filename

chown newowner filename

chmod [u I g 10] [+ I-I =] [r I w I x]
filename

See

Is (C)

chown(C)
chgrp(C)
chmod(C)

Tutorial

Chapter 8

Power tools

In this chapter, you will learn the basics of two of the most powerful UNIX
system tools: grep and find. You will also be introduced to a handful of other
UNIX utilities that may make working on the computer more productive,
more fun, or both.

Before you begin, you should feel comfortable with what you have learned so
far. You should know how to move from directory to directory, how to list
files, and how to read a long file listing. You should know how to use mail,
cat, and vi. You should know how to manage your files, and how to modify
their permissions.

Most importantly, you should be learning how to combine commands
together with pipes, and how to use redirection to take input from, or put out
put into, a file. The commands you will learn in this chapter are powerful on
their own, but they can be much more powerful when combined with some of
the commands you have already learned.

77

Power tools

Searching for a file

78

You can use the find command to find a file anywhere on the system.

$find I -name afile print
lu/mike/Books/NeN/afile
$

ff!¥llll\\\\~~
I I

find I -name afile -print

To use this command, type find, the name of the directory where you want it
to start looking, -name and the name of the file you want to find, -print, then
press (Enter). For example, to look for a file called rts starting in the directory
Jete, you could type:

$ find lete -name rts -print
/etc/perms/rts

The find command in the preceding example says, "Find a file named rts, and
print the pathname when you find it. Start looking in the directory Jete."

The find command starts from the directory you specify and looks through
every directory below it for files with names that .match the file you put after
-name. If find runs across directories where you do not have read permission,
it gives you an error message like find: cannot open directoryname. If you
are trying to find something starting from the root directory (I), which could
take some time, you may want to redirect the output to a file and put the
whole task in the background:

find / -name mytodo -print> foundfile &

The find command has many options in addition to what you have seen here.

Tutorial

Power tools

Using find, you can locate a file based on any of its attributes, for example, its
owner, its size, or the time it was last modified. You can also tell find to per
form a particular command when it finds a file; for example, you can have
find look for all files older than a certain date and remove them.

Because find produces output containing absolute pathnames of everything it
found, find can be a useful beginning of a pipeline anytime you need to gen
erate a lot of pathnames. For example, system administrators who use the
cpio(C) backup program use find to generate a list of files to be backed up,
and then they pipe the find output through cpio to do the actual backing up.
See find(C) for information about all the find options.

Searching for text within files

You can use the grep command to search through files for a particular pattern.

$.grep "foo"afile
My file is calledfoo.
$

dBmlll \ \'tt% ~
I I

grep -foo· afile

The name grep comes from the ed(C) command g/re/p, which means "globally
search for a regular expression and print it". The grep command looks
through the files you specify for lines containing the regular expression you
tell it to find.

79

Power tools

80

Regular expressions are a special kind of pattern that are used by many UNIX
system commands. You can use regular expressions with vi, as well as with
ed(C), a line editor; sed(C), a stream editor; expr(C) , an expression evaluator;
and awk(C) , a regular-expression-based programming language.

A discussion of regular expression syntax is beyond the scope of this book;
see ed(C) for all the details.

To use grep to search for words in a file, type grep, the word or words you
want to search for, the files you want to look in, and press (Enter). If you want
to look for more than one word, you need to put "double quotes" around the
words.

If you specify more than one file for grep to look in, grep tells you the name of
the file in which the word was found, and it shows you the line in which the
word appears. If you only specify one file to look in, grep does not tell you
the name of the file. If grep cannot find the word in the specified file or files, it
silently returns your prompt.

For example, to search for an entry in /etcipasswd, you could type:

$ grep susannah /etc/passwd
susannah:IHi3E6JQ.IJxU:12846:1014:Susannah Skyer:/u/susannah:/bin/sh

To look through all the files in the current directory for the words "cat food,"
you could type:

$ grep "cat food" *
mytodo:buy cat food

In the preceding example, "cat food" was found in the file mytodo, in the line
"buy cat food."

Tutorial

Power tools

You can use grep together with other commands to search for particular lines
of output. For example, to see all of the files owned by susannah in Itmp, you
could type:

$ 1 /tmp I grep susannah
-rw------- 1 susannah unixdoc 0 Jun 24 16:29 Ex05064
-rw------- 1 susannah techpubs 8192 Jun 27 16: 57 Ex29109
-rw-rw---- 1 susannah techpubs 3532 Jun 24 15:48 maila14986
-rw------- 1 susannah techpubs 2048 Jun 27 16: 55 Rx29109
-rw-rw---- 1 susannah techpubs 4960 Jun 24 13 : 32 unixmeet

There are a variety of options with the grep command, and there are also two
faster versions of grep, fgrep (fast grep) and egrep (expression grep), which
you can use in some instances. See grep (C) for more information.

Checking who is logged in

You can use the who command to find out who is logged in, where they are
logged in, and when they logged in. To use who, simply type who and press
(Enter):

$ who
backup tty01 Jun 28 07:56
perry tty002 Jun 28 09:14
there sma tty003 Jun 28 08:49
joseph tty004 Jun 28 11:20
liz tty005 Jun 28 09:02
cecile tty006 Jun 28 10:06
kate tty007 Jun 28 09:35
liane tty009 Jun 28 09:41
bridget ttyOll Jun 28 08:06
sarah tty001 Jun 28 08:06
nigel tty008 Jun 28 08:02
gudrun tty010 Jun 28 08:09
susannah tty013 Jun 28 09:14

The tty number that follows each person's login name tells which terminal
they logged in on. If people are logged in on several terminals at once, they
appear once per login in the who listing.

You can find out when someone logged in by searching for their login name
using grep:

$ who grep sarah
sarah tty001 Jun 28 08:06

81

Power tools

Finding out more information about a user

The finger command shows you more information about a user. To use
finger, type finger, the login name of the person you want to find out more in
formation about, and press (Enter).

For example:

$ finger sarah
Login name: sarah
Directory: /u/sarah
On since Jun 28 08:06:50 on ttyOOl
No plan

In real life: Sarah Connell
Shell: /usr/sco/bin/ksh
14 minutes Idle Time

The information finger shows you depends on how it has been set upon your
system. If you create a file called .plan in your home directory, the informa
tion in this file is shown when someone types finger and your login name:

$ cd $HOME
$ cat > .plan
To finish writing the tutorial and go on a long, long vacation
(Ctrl)D
$ finger susannah
Login name: susannah
Directory: /u/susannah
Not logged in.
Plan:

In real life: Susannah Skyer
Shell: /bin/ sh

To finish writing the tutorial and go on a long, long vacation

Finding out the time and date

82

The date command shows you the current time and date:

$ date
Mon Jun 27 14:19:48 BST 1994

Tutorial

Power tools

Seeing a calendar

You can see a calendar using the cal command. If you type cal and press
(Enter), you see a calendar for last month, this month, and next month, along
with the current time and date.

$ cal
Thu Jun 23 16:25:09 1994

May Jun Jul
S M Tu W Th F S S M Tu W Th F S S M Tu W Th F S

1 2 3 4 5 6 7 1 2 3 4 1 2
8 9 10 11 12 13 14 5 6 7 8 9 10 11 3 4 5 6 7 8 9

15 16 17 18 19 20 21 12 13 14 15 16 17 18 10 11 12 13 14 15 16
22 23 24 25 26 27 28 19 20 21 22 23 24 25 17 18 19 20 21 22 23
29 30 31 26 27 28 29 30 24 25 26 27 28 29 30

31

You can see a calendar for a particular month and year by typing cal, then the
month (or an abbreviation of it), then the year. For example, to see the calen
dar for August 1996, you could type:

$ cal Aug 1996
August 1996

S M Tu W Th F S

1 2 3
4 5 6 7 8 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

You must type the year in full; if you type cal Sept 96, you see the calendar for
September 96, not September 1996.

Remembering your appointments

You can use the calendar reminder service to send yourself mail reminders
about upcoming appointments. The calendar program looks for a file called
calendar in your home directory and then mails you the lines containing
today's or tomorrow's date.

83

Power tools

To use calendar, create a file called calendar in your home directory. Put each
appointment on a single line containing the date of the appointment in US
(month-day) format. For example:

$ cd
$ cat > calendar
7/4 Dave and Peter start work
7/5 UNIX Beta Committee meeting, 10 am
7/7 Meet Vip at the airport
(Ctrl)D

Then, to guarantee that the calendar program reads your calendar file each
time you log in, add the following line to the end of your .profile (C shell users:
add this line to your .login):

/usr/bin/calendar

For more information on customizing your .profile or .login see "Your environ
ment" (page 87) and Appendix D, "Sample shell startup files" in the Operating
System User's Guide.

Using a calculator

You can use the be program as an online calculator. (be is actually a program
ming language, similar to C, which is used for performing mathematical cal
culations.) To use be, type be and press (Enter) - this brings you into be. You
can now type any arithmetic expression, press (Enter), and be evaluates it for
you. When you are done using be, press (Ctrl)D to return to the prompt.

For example, to use be to add up your work hours, you could type:

$ bc
7+6.5+8+8.5+7
37.0
(Ctrl)D

Clearing the screen

84

The clear command clears your screen. Some people like to clear their screens
when they begin working on a new task, so they can start with a "clean slate."
You may also want to clear your screen if you step away from your desk for a
moment, although it is a better practice to log out.

Tutorial

Summary

To search for a file
To search for text within a file

To see who is logged in
To find out more information about a
user
To find out the time and date
To see a calendar
To be reminded of appointments

To use a calculator

To clear the screen

For more information about

Searching for files
Searching for text within files
Checking who is logged in
Finding out more information about
a user

Finding out the time and date
Seeing a calendar
Using the calendar reminder service
Using a calculator
Clearing the screen

Power tools

find / -name filename -print
grep "text" filename
who
finger username

date
cal

Create a calendar file in your home
directory
bc
calculator commands
(Ctrl)D

clear

See

find (C)
grep(C)
who (C)
finger (C)

date (C)
cal (C)

calendar (C)
bc(C)

clear (C)

85

Power tools

86 Tutorial

Chapter 9

Customizing your environment

In this chapter, you will learn how to tailor the way you work on the UNIX
system by editing the files the computer reads every time you log in.

Before you begin, you should have worked through the other chapters in this
book. You should know which shell you are using, and you should be able to
use vi to edit a file.

Your environment

The UNIX system uses the term "environment" to refer to all the settings that
influence the way you work on the computer.

You can define the following sort of information in your environment:

• Your prompt.

• What directories are searched in what order when the computer looks for
the commands you type.

• What permissions are assigned to the files you create.

• How often your shell looks for new mail.

• Where mail you have read is saved.

• What name you type to use a particular command.

How you set this information depends on which shell you are using.

87

Customizing your environment

Each shell has certain control files that it reads when you log in. For the
Bourne shell (sh) , the control file is called .profile. The Korn shell (ksh) has
both a .profile and a .kshre, and the C shell (csh) has a .login and a .eshre.

The difference between .profile and .kshre, and between .login and .eshre, is in
when the files are read. The .profile and the .login are only read when you log
in. However, the .re files, .kshre and .eshrc, are read each time you start a ksh or
csh. (You can start a shell from the command line by typing the name of the
shell just like you would type any command.)

These control files are shell scripts: "shell" because they are written in the
shell programming language; "scripts" because they are text files that are read
one line at a time, like a DOS batch file.

In shell scripts, you see commands you are already familiar with, as well as
programming constructs for looping, branching, and setting variables.

For listings and explanations of a typical .profile, .kshre, .login, and .eshre, see
Appendix D, "Sample shell startup files" in the Operating System User's Guide.

Changing your prompt

88

A prompt will appear after you have logged into your system. The UNIX sys
tem stores this prompt in a variable.

To change your prompt, you reset the value of the prompt variable.

In the Bourne and Korn shells, the prompt variable is called PSI (prompt
string 1). In the C shell, the prompt variable is called prompt.

All three shells have a secondary prompt as well as the main prompt. This
secondary prompt is shown when you type a command that makes the shell
expect further input.

For example, in the Bourne shell, the secondary prompt is ">" by default:

$ for i in *.tut
>

Here, you are saying to the shell "for every file (i represents every file) ending
in .tut ... " The shell gives you a secondary prompt because it needs more
information to complete your command.

Tutorial

Customizing your environment

In the Bourne and Korn shells, the secondary prompt is stored in the variable
PS2 (prompt string 2), which you can reset. You cannot reset the secondary
prompt in the C shell. To reset PS2 in sh or ksh, follow the instructions below,
substituting PS2 for PSI.

To reset your prompt in the Bourne or Korn shells, type PSl=value where
value is the value you want to assign to the prompt variable.

For example, to set your prompt to say "Yo", you would add the following line
to your .profile or .kshrc:

PS1=Yo

C-shell users would add the following line to their .login:

set prompt=Yo

Q: When I change my prompt, I lose the space between my prompt and
where the command line starts. How do I get this back?

A: To keep the space between the prompt and the command line, you need to
put a space after your new prompt. To get the shell to notice the space,
you need to enclose the whole prompt string in double quotes.

In ksh or sh, add the following line to your .profile:

PS1="Hello friend"

In csh, add the following line to your .login:

set prompt="Hello friend "

Q: How do I get my prompt to show the current directory, like on DOS?

A: In sh, add the following line to your .profile:

nd{) {cd$*; PS1="'pwd'";}

Now, use the command nd, which you just created, to change to a new
directory and display the directory as the prompt.

89

Customizing your environment

In ksh, add the following line to your .kshrc:

PS1='$PWD '

In csh, add the following lines to your .cshrc: (You do not need to add the
lines that start with #. These are comments.)

make a command doprompt that sets the prompt to the working directory
alias doprompt ' set prompt=" \ pwd \ ",
set the prompt the first time around
doprompt
alias the cd command to change directories and reset the prompt
alias cd 'chdir * I I doprompt'

Setting your path

90

Each command you type is actually a program that is stored somewhere on
the computer. When you type a command and press (Enter), your shell looks
through all the directories in your path until it finds a program with the same
name as the command you typed.

When you see a message like "not found", it means your shell could not
find the command in any of the directories listed in your path. If you see a
"not found II message for a command that you know exists, ask your system
administrator what directory the command lives in, then add that directory to
your path definition. In the meantime, you can type the full pathname of the
command, for example, lusrlhin/finger. When you use the full pathname of a
command, you tell the shell exactly where the command lives, so it does not
search through the directories in your path definition.

A typical path setting in a sh or ksh .profile might look like this:

PATH=/bin:/usr/bin:$HOME/bin:.

This says "set the path to look in the bin directory, then /usrlbin, then the bin
directory in the home directory, and finally, in the current directory."

The same path setting in csh .login would be:

set path=(/bin /usr/bin $HOME/bin .)

Tutorial

Customizing your environment

To add a directory to your path, simply edit the path statement in your .profile,
.login, .kshrc, or .cshrc to contain the new directory. For example, to add the
directory lusr/companylbin to your path in sh or ksh, you could change your
path statement to read:

PATH=/bin:/usr/bin:/usr/company/bin:$HOME/bin: .

Q: Why would I want to put a new directory in the middle of the path
definition instead of at the end?

A: You control the order in which directories are searched by the order you
put those directories in the path definition. In general, you want to put
nonstandard directories, like your company bin and your personal bin,
after the standard Ibin and lusrlbin. This is because most of the commands
you want to use are in these standard directories, so putting them at the
beginning of your path means your shell finds them more quickly.

Q: My path setting contains the PATH variable itself:

PATH=$PATH:$HOME/bin

What does this mean?

A: A path setting like this says "set the path to the current path, then add in
the bin in my home directory." When you log in, your shell first reads
definitions from the system-wide profile letciprofile. If your system has
been set up so that letciprofile contains path definitions, including $PATH in
your path definition ensures that your shell knows about any system-wide
path definitions.

Default file permissions

You have already seen how the UNIX system uses file and directory permis
sions to control who can access which files. So far, you have learned to
manipulate these permissions using symbolic mode, like:

chmod a+x newfile

This says, "Change the mode of newfile so all users have execute permission."
Before you learn how to control a file's default permissions, you need to
understand how to specify permisSions using absolute mode.

91

Customizing your environment

Changing permissions with absolute mode

92

When you specify permissions using absolute mode, you use a three-digit
octal number to specify the permissions for owner, group, and other.

For example, if you wanted to change the permissions on a file so that the
owner had read and write permission, members of the group had read per
mission, and no one else had any permissions, you could type:

chmod 640 tile

Here tile is the name of the file.

In the preceding example, 640 is an octal number representing file permis
sions. The 6 represents the permissions for owner, the 4 is the permissions for
group, and the 0 is the permissions for other. These digits are arrived at by
taking the binary value of each permission, read, write, or execute, and adding
them together to form one octal digit that represents the whole set (owner,
group, or other).

Here are the octal values for some common permission settings:

Permission Value

r 4
w 2
x 1

r+w 6
r+x 5

all permissions 7

To change a file's permissions to r--------, you could type:

chmod 400 tile

To change a file's permissions to rwxrwxr-x, you could type:

chmod 775 tile

As you can see, once you are used to changing permissions using absolute
mode, it can be a quicker method than symbolic mode.

Tutorial

Customizing your environment

Setting your file creation mask

To control the default permissions that are given to every new file you create,
you use the umask (user mask) command.

The umask command sets up a file creation mask. Setting a mask is the
opposite of setting the permissions themselves; when you set a mask, you are
telling the computer the permissions you do not want, rather than the permis
sions you do.

To set the default file permissions on new files you create to rw-r-----, you
could add the following line to your .profile or .login:

umask 137

This is the opposite of saying chmod 640. If you wanted to set a umask for
rw-rw----, it would be:

umask 117

A umask that allowed read and write permission for everyone would be:

umask 111

A umask that denied permissions to everyone except the owner of the file
would be:

umask 177

You can see your current umask by typing umask and pressing (Enter). If
umask is not explicitly set in one of your shell startup files, the computer
shows you a default umask.

You can change your umask at the command line by typing umask, then the
value you want your mask to have, then pressing (Enter). Keep changing your
umask and creating and listing files until you get the default permissions you
want.

Configuring mail

In this section you will learn how to control where your shell looks for mail
and when and how it tells you that new mail has arrived. These are options
you can control within your shell startup files. You can also set a variety of
mail options in mail's own startup file, .mailTe. For information about the
options you can set in .mailre, see mail(C).

93

Customizing your environment

94

Depending on the shell you are using, you can specify where mail is looked
for by setting the MAILPATH or the MAIL variable. Again, depending on your
shell, you can control how often you are notified of new mail by setting the
MAILCHECK or MAIL variable.

To tell your shell where to look for mail, set the appropriate variable to the
pathname where you receive your mail. (Generally, you receive mail in
lusr/spoolimaillloginname, where loginname is your login name. If you are
unsure about where you receive your mail, ask your system administrator.)
With sh and ksh, you can tell your shell how you want to be prompted for
new mail using this same variable setting.

To set your mail path and new mail message in sh, add the following line to
your .profile:

MAILPATH= pathname% message

Here pathname is the pathname and message is the message you want to be
prompted with. For example:

MAILPATH=/usr/spool/mail/susannah%Yo, you've got some new mail

To set your mail path in ksh, add the following line to your .profile or .kshrc:

MAILPATH=pathname?message

This is the same as with the Bourne shell, only you use a? to introduce the
message you want to see. If you leave out the message, sh prints you have
new mail and ksh prints You have new mail.

To set your mail path in csh, add the following line to your .login or .cshrc:

set MAILPATH=pathname

Here pathname is the path name from where you want your mail read. csh
prompts you with You have new mail when new mail arrives; you cannot
change this.

By default, each shell checks for mail every 10 minutes. You can change this
by specifying a new time in seconds. In sh or ksh, add the following line to
your .profile or .kshrc:

MAILCHECK=seconds

Here seconds is the number of seconds you want to go by before the shell
checks for new mail again. For example, if you want your ksh or sh shell to
check for mail every half hour:

MAILCHECK=1800

Tutorial

Customizing your environment

In csh, if you want to change how often the shell checks for mail, you need to
add the new number of seconds before the pathname in the MAIL variable. To
tell your csh to check for new mail every half hour:

set MAIL=(1800 /usr/spoo1/mai1/sllsannah)

Creating command aliases

A command alias is a command you type that stands for a longer, or harder
to-remember, command line. For example, if you are a DOS user, you might
create an alias called dir instead of trying to remember the Is command.

The way you create aliases depends on the shell you are using. In the Bourne
shell, you need to set up a shell function, while in the Korn shell and the C
shell, you can use the built-in alias command.

To set up an alias in sh, add the following lines to your .profile:

aliasname () { command
}

Here aliasname is the name you want to call the alias and command is the
command you want to alias. When you choose a name for your alias, be care
ful to choose a name that is not already the name of a UNIX command, other
wise, when you type the name of your alias, the UNIX system may think you
mean the command of the same name instead.

For example, to create an alias called dir in sh that shows you a file listing,
add the following lines to your .profile:

dir () { ls
}

You can make an alias that uses a filename as an argument, but you need to
tell your shell where to insert the filename. You can do this by using the
variable $1, which the shell reads as "insert the first argument here." For
example, if you want to create an alias in sh called print that runs a file
through the pr ("pretty print") command before sending it to the lineprinter,
you could set up the following function:

print () { pr $1 I 1p
}

To print a file using your new alias, you would type print file where me is the
name of the file you want printed.

95

Customizing your environment

96

Aliases in the Korn and C shells are introduced by the built-in shell command
alias. Aliases in the Korn shell have the following format:

alias aliasname= 'command'

So, the dir alias would be:

alias dir='ls'

And the print alias would be:

alias print='pr $1 I lp'

Aliases in the C shell have this format:

alias aliasname ' command'

The dir alias in csh would be:

alias dir 'ls'

And the print alias in csh would be:

alias print 'pr -n :* I lp'

Tutorial

Customizing your environment

Summary

Changes made using the following commands affect the current login session
only. If you want to change your prompt permanently, for example, you
should modify or add the prompt setting command in the appropriate startup
file for your shell.

To change your prompt:

To add a directory to
your path:

To change the default
file permissions:

To change where the
shell looks for mail and
the new mail message:

To change how often
your shell looks for new
mail:

To create a command
alias:

In sh or ksh:
PS 1 =newprompt
In csh:
set prompt=ne~rompt

In sh orksh:
PATH=$PATH: newdir
In csh:
set path= (/bin /usr /bin $HOME/bin newdir .)

umask permsmask

Insh:
MAl L PATH=pathname% message
Inksh:
MAILPATH=pathname?message
Incsh:
set MAILPATH=pathname
(You cannot change the new mail message in csh.)

Insh orksh:
MAILCHECK=seconds
Incsh:
set MAIL= (seconds pathname)

Insh:
aliasname () {command
}

Inksh:
alias aliasname=' command'
Incsh:
alias aliasname' command'

97

Customizing your environment

98

For more information about

File permissions
File creation mask
The files your shell reads
at startup
The Bourne shell

The Korn shell

The C shell

See

chmod(C)
umask(C)
Appendix D, "Sample shell startup files" in the
Operating System User's Guide
Chapter 11, "Automating frequent tasks" in the
Operating System User's Guide
sh(C)
Chapter 11, "Automating frequent tasks" in the
Operating System User's Guide
ksh(C)
Chapter 11, "Automating frequent tasks" in the
Operating System User's Guide
csh(C)

Tutorial

Appendix A

Going from DOS to UNIX

This appendix contains a table showing some common MS-DOS commands
and their UNIX system equivalents.

For more information about any of the UNIX system commands, consult the
Operating System User's Reference.

The commands listed in Table A-I, "Equivalent UNIX and DOS commands"
(page 100) are for working with UNIX system files. If you have DOS installed
on the same machine as your seD OpenServer system, you can access your
DOS files from within the UNIX system. For more information about accessing
DOS files from the seo OpenServer system, see Chapter 6, "Working with
DOS" in the Operating System User's Guide or doscmd(C).

99

Going from DOS to UNIX

Table A-1 Equivalent UNIX and DOS commands

DOS UNIX system
command What it does equivalent Notes

cd change directories cd (C)

cIs clear the screen clear(C)

copy copy files cp(C), Use cp to copy files, copy to
copy(C), copy directories, and tar to
tar (C) copy files or directories onto

floppy disks or tapes.

date display the sys- date(C), On the UNIX system, date
tern date and time cal (C) displays the date and the time.

cal displays the date, the time,
and a 3-month calendar.

del delete a file rm(C) Be careful when using rm with
wildcard characters, like rm *.

dir list the contents Is (C) There are a variety of options
of a directory to Is including Is -I to see a

long listing, Is -c to see a list-
ing in columns, and Is -fto see
a listing that indicates file
types.

diskcomp make a track-by- diskcmp(C)
track comparison
of two floppy
disks

diskcopy copy a source diskcp(C)
disk to a target
disk

edlin line editor ed(C), vi is a full-screen text editor
ex(C), with powerful search and
vi (C) replace functions. ed and ex

are predecessors of vi.

fe compare two files diff(C), diff compares two text files.
difl3(C), difl3 compares three text files.
cmp(C) Use emp to compare binary

files.

find find text within a grep(C) grep (global regular expres-
file sion parser) finds text within a

file. The UNIX system's find(C)
command finds files.

(Continued on next page)

100 Tutorial

Going from DOS to UNIX

Table A-1 Equivalent UNIX and DOS commands
(Continued)

DOS UNIX system
command What it does equivalent Notes

format format a disk format (C) See letc!defaultlfonnat for the
default drive to format. The
format command formats a
disk for use with UNIX system
files. Use dosformat (see
doscmd(C)) to format a DOS
disk.

mkdir make a directory mkrlir(C)

more display output more (C)
one screen at a
time

print print files in the Ip(C) Use lp 1ilename & to print in
background the background. You can run

any UNIX system command in
the background by adding &
(ampersand) to the end of the
command line.

ren rename a file mv(C)

rmdir remove an empty rmrlir(C) Use rm -r to remove a direc-
directory tory that is not empty.

sort sort data sort (C)

type display a text file cat (C) ,
more (C)

xcopy copy directories copy (C) , Use tar if you want to copy
tar(C) directories onto disk or tape.

101

Going from DOS to UNIX

102 Tutorial

Glossary

absolute mode
A method of changing file permissions using 3-digit octal numbers. For
example, to add group write permission on a file called report using absolute
mode, type chmod 664 report. Note that you must be root or the owner of the
file to change permissions on that file. You can also change permissions using
symbolic mode.

absolute pathname
A pathname for a file or directory that begins at the root directory. Every
absolute pathname begins with a slash character (I), which stands for the root
directory. See also pathname and relative pathname.

application
A computer program that performs a particular task. Word processing,
spreadsheet, and database programs are all applications. See also Applica
tions list.

Application folder
A sub list on the main Applications list, which usually includes a list of related
application programs. An Application folder can contain applications and
other application folders. See also Applications list.

Applications list
The list of available applications and application folders that is displayed on
the main SCQ Shell screen. See also application and Application folder.

argument
A word you type on the command line that is separated by a space from the
command itself. A command can have more than one argument. Arguments
tell a command how to you want it to work. For example, If -a; the -a option
tells the If file listing program that you want it to show all files. These types
of arguments are also known as options or flags. Arguments can also tell a
command what you want it to work on: for example, If -a Itmp/spell.out tells
If to list the file /tmp/spell.out if it exists.

ASCII
The American Standard Code for Information· Interchange is a standard way
of representing characters on many computer systems. The term "ASCII file"
is often used as a synonym for "plain text file," that is, a file without any
special formatting, which can be viewed using UNIX system utilities such as
cat(C), more(C), and vi(C).

103

Glossary

104

attribute
Attribute bits are set on a file to control which users have permission to read,
write, or execute it. See permissions.

Bourne shell
A UNIX system shell, named after its author, Steven R. Bourne. To start a
Bourne shell from the command line, type sh and press (Enter).

buffer
An area of computer memory used to store information temporarily before it
is written out to a more permanent location, like a file.

C shell
An alternative UNIX System V shell supplied with the seo OpenServer sys
tem. This shell, written by William Joy at the University of California at
Berkeley, is known for its interactive features, such as the ability to recall and
modify previous command lines. The C shell shell programming language
has a syntax like that of the C language, hence the name. C shell is the stan
dard shell on older versions of the Berkeley UNIX operating system found at
many universities. To start a C shell from the command line, type csh and
press (Enter).

command alias
An alternative name for a command. When you type the alias, the command
is substituted for the alias. Aliases are useful when you remember commands
by names other than their UNIX system names; for example, DOS users may
think of dir rather than Is when they want to list a directory. Aliases are also
useful for creating commands that perform several UNIX system commands
at once. See the Operating System User's Guide for more information.

command line
The instructions you type next to the shell prompt. Command lines can
contain commands, arguments, and filenames. You can enter more than one
command on a command line by joining commands with a pipe (I), or by
separating commands using the command separator (;). The shell executes
your command line when you press (Enter).

command separator
The semicolon (;) serves as a command separator on the UNIX system. If you
want to issue several commands on one line, separate the commands with
semicolons before you press (Enter). For example, type Is; pwd and press
(Enter) to list files and then print the working directory. Commands are
executed in sequence as separate processes.

current directory
See current working directory.

current working directory
The directory where you are currently located. Use the pwd(C) command
(print working directory) to see your current working directory. The current
working directory is taken as the starting point for all relative pathnames.
This directory is symbolically referred to as "." in directory listings.

device
Peripheral hardware attached to the computer such as a printer, modem, disk
or tape drive, terminal, and so on. Devices in the SCO OpenServer system are
controlled by device drivers which are linked into the kernel.

directory
Where the UNIX system stores files. Directories in the UNIX system are
arranged in an upside-down tree hierarchy, with the root (I) directory at the
top. All other directories branch out from the root directory. The UNIX sys
tem implements directories as normal files that store the names of the files
within them.

environment
The various settings that control the way you work on the UNIX system.
These settings are specific to the shell you use and can be modified from the
command line or by modifying shell control files. For example, the directories
the shell searches to find a command you type are set in the variable PATH,
which is part of your environment.

environment variable
Special variables that modify your login shell behavior. Typical examples are
PATH, which defines the directories in which the shell will search for files or
commands, and PROMPT which determines the on-screen shell prompt mes
sage. See also variable.

file
The basic unit of information on a UNIX filesystem. Regular files are usually
either text (ASCII) or executable programs. Other types of files exist on the
UNIX system such as directories, which store information about the files
within them; device files, which are used by the system to access a particular
device; and FIFO (First In First Out) pipe files, which are used to transfer data
between programs. The attributes of each file are stored in the file's inode.
See also directory.

file descriptor
A number associated with an open file; used to refer to the open file in 110
redirection operations.

group
A set of users who are identified with a particular group ID number on the
UNIX system. Typically, members of a group are coworkers in a department
or on a project. Each file on the UNIX system also has a group associated with
it; this group, along with the owner and the permissions controls who can
access and modify that file. You can see the group of a file by listing the file
with the I command. To find out your own group, use the id(C) command.

105

Glossary

106

home directory
The place in the filesystem where you can keep your personal files and sub
directories. When you log in, you are automatically placed in your home
directory. Typically, this will be /u/loginname or /usr/loginname, where log
inname is your login name. The shell's shorthand for the home directory is
" - ". See tilde expansion.

inode
The internal representation of a file, showing disk layout, owner, type (see
file), permissions, access and modification times, size and the number of links.
Each inode has a unique decimal identifier.

kernel
The central part of the UNIX operating system, which manages how memory
is used, how tasks are scheduled, how devices are accessed, and how file
information is stored and updated.

Kornshell
Written by David Korn, it is compatible with the Bourne shell, but provides a
much wider range of programming features. The Korn shell also offers
improved versions of many of the C shell's interactive features. To start a
Korn shell from the command line, type ksh and press (Enter). See also
Bourne shell and C shell.

link
A filename that points to another file. Links let you access a single file from
multiple directories without storing multiple copies of the file. If you make a
change to the content of a linked file, the change is reflected in each of the
links. All links point to an inode. See also symbolic link.

literal
A literal character or string is one that represents itself, that is, that can be
taken literally (as opposed to a pattern, that represents some other characters).
For a metacharacter to regain its literal value (for example, for * to mean an
asterisk and not "zero or more characters") it must be "quoted". See quoting
and wildcard.

login
The way you gain access to a UNIX system. To log in, you enter your login
name and password and the computer verifies these against its user account
records before allowing you access.

logout
What you do after you have finished working on a UNIX system. You can log
out by pressing (Ctrl)D, typing exit, or typing logout, depending on your shell.

login name
The name through which you gain access to the operating system. When you
are logging onto the computer, you must enter this login name, followed by a
password.

login shell
The shell that is automatically started for you when you log in. You can start
to work in other shells, but your login shell will always exist until you log out.

macro
A collection of instructions or keystrokes that may be invoked using a single
name or keystroke combination, used to automate regular and complex tasks.

mail alias
A single name used to send mail to several users at once. For example, many
users have aliases set up for mailing to the entire company, single depart
ments, or groups of individuals.

manual page
An entry in a UNIX reference manual. These entries can be accessed online
using the man(C) command. A letter in parentheses following a command or
filename refers to the reference manual section where the command or file is
documented. For example, the man(C) command is documented in section C,
Commands, of the Operating System User's Reference. They are also called
"man pages."

mask
A series of bit settings that "cover up" existing settings, only allowing some
settings to show through, while masking out others.

metacharacter
A special character that is replaced by matching character strings when inter
preted by the shell. Metacharacters, which define the form of a string, and
literal characters, which match only themselves, make up regular expressions.

multitasking
A system that can do several jobs at once.

multiuser
A system that can be used by more than one person at the same time.

named buffer
A buffer used to copy text between files in the vi(C) editor. vi clears unnamed
buffers when it switches files, but the contents of named buffers are preserved.

online
Accessible from your terminal screen.

107

Glossary

108

operating system
A group of programs that provide basic functionality on a computer. These
programs operate your computer hardware in response to commands like
copy and print, and form a set of functional building blocks upon which
other programs depend. An operating system also manages computer
resources such as peripheral devices like disk drives or printers attached to
the computer and resolves resource conflicts, as when two programs want to
use a disk drive at the same time.

owner
1. The user who created a file or directory. Only the owner and root can
change the permissions assigned to the file or directory.

2. One of the attributes of a file that, along with its group and permissions,
determine who can access and modify that file. You can see the owner of a file
by listing it with the 1 command. Use the chown(C) command to change the
owner of a file.

password
The string of characters you are prompted for after you type your login name
when you are logging in. Your password is the key that lets you into the UNIX
system; you should choose it wisely, keep it secret, and change it regularly.
Use the passwd(C) command to change your password.

path
The directory list through which your shell searches to find the commands
you type. Your path is stored in the shell variable PATH.

pathname
The name of a directory or a file, for example, /usr/spool/mail. Each component
of a pathname, as separated by slashes, is a directory, except for the last com
ponent of a pathname, which can be either a directory or a file. A single word
by itself, such as Tutorial, can be a pathname; this is a relative pathname for
the file or directory Tutorial from the current working directory. A single
slash, (I), is the pathname for the root directory. See also absolute pathname
and relative pathname.

permissions
The settings (also called properties or attributes) associated with each file or
directory that determine who can access or modify the file and directory. Use
the 1 command to list a file's permissions; use the chmod(C) (change mode)
command to change a file's permissions.

pipe
A way of joining commands on the command line so that the output of one
command provides the input for the next. To use a pipe on the command line,
join commands with the vertical bar symbol, (I). For example, to sort a file,
eliminate duplicate lines, and print it, you could type sort file I uniq IIp.

print job
A request you have made to the printer to print a file. Each print job has an ID
number that you can see using the lpstat(e) command. You can cancel a print
job by typing cancel and its job ID number, then pressing (Enter).

process ID

A number that uniquely identifies a running program on the UNIX system.
This is also known as the PID.

prompt
One or more characters or symbols that identify a line on which commands
can be entered, as in a UNIX or DOS window. "Prompt" also refers to the text
displayed when the computer displays a request for input or an instruction.
The default prompt can be replaced by setting the PSI environment variable.

quoting
A mechanism that is used to control the substitution of special characters.
Special characters enclosed in single quotes are not replaced by their meaning,
but remain embedded in the text when the quotes are stripped off. Double
quotes are used to prevent the expansion of all special characters except" $ ",
"\" and "'''.

regular expression
A notation for matching any sequence of characters. The notation is used to
describe the form of a sequence of characters, rather than the characters them
selves. Regular expressions consist of literal characters, which match only
themselves, and metacharacters.

relative pathname
A pathname that does not start with a slash (I); for example; Tutorial,
Reports/September, or . .Itmp. A relative pathname is searched for, starting from
the current working directory and may use the notation " .. " to indicate "one
directory up from the current working directory." See also absolute pathname
and pathname.

root
The top directory of a UNIX filesystem, represented as a slash (I). Also, the
login name of the superuser, a user who has the widest form of computer
privileges.

shell
A program that controls how the user interacts with the operating system.
Using such programs, you can write a shell script to automate work you do
regularly. The shells available with the seo OpenServer system include the
Korn shell, the Bourne shell, and the C shell.

109

Glossary

110

shell escape
A command you type from within an interactive program to escape to the
shell. In vi, you can type :!command to escape to the shell and execute
command. When command has finished executing, you are returned to the
editor. You can start a new shell this way with :!sh, for example. To exit this
subshell and return to the editor, press (Ctrl)D or type exit.

shell programming language
A programming language that is built into the shell. The Korn shell, the
Bourne shell, and the C shell all have slightly different programming lan
guages but all three shells offer basics such as variable creation, loops, and
conditional tests.

shell script
An executable text file written in a shell programming language. Scripts are
made up of shell programming commands mixed with regular UNIX system
commands. To run a shell script, you can change its permissions to make it an
executable file, or you can use it as the argument to a shell command line (for
example, sh script). The shell running the script will read it one line at a time
and perform the requested commands.

shell variable
A variable associated with a shell script.

standard error
The usual place where a program writes its error messages. By default, this is
the screen. Standard error can be redirected; to a file, for example. Also
known as stderr. .

standard input
The usual place from which a program takes its input. By default, this is the
keyboard. Standard input can be redirected; for example, you can use the
less-than symbol «) to instruct a program to take input from a file. Also
known as stdin, the standard input is identified by the file descriptor O.

standard output
The usual place where a program writes its output. By default, this is the
screen. Standard output can be redirected; for example, you can use a pipe
symbol (I) to instruct a program to write its output into a pipe, which will
then be read as input by the next program in the pipeline. Also known as
stdout, the standard output is identified by the file descriptor 1.

superuser
A user who has powerful special privileges needed to help administer and
maintain the system. The superuser logs in as root. Someone with the
superuser or root password can access and modify any file on the system.

symbolic link
A new name that refers to a directory or file that already exists. Use this name
to change to another directory without typing its full pathname. Unlike nor
mal links, symbolic links can cross filesystems and link to directories. See also
link.

symbolic mode
A method of changing file permissions using keyletters to specify which set of
permissions to change and how to change them. For example, to add group
write permission on a file called report using symbolic mode, you could type
chmod g+w report. Note that you must be the owner of a file or the
superuser to change permissions on that file. You can also change permis
sions using absolute mode.

system administrator
The person who looks after the day-to-day running of the computer and per
forms tasks such as setting up user accounts and making system backups.

terminal
Video display unit with a keyboard, a monitor, and sometimes a mouse. They
do not have any independent processing power themselves and they must be
connected to a computer before they can do any useful work.

terminal type
A name for the kind of terminal from which you are working. Typically, the
terminal type is an abbreviation of the make and model of the terminal, such
as wy60, which is the terminal type for a Wyse60. Your terminal type is stored
in the variable TERM.

tilde expansion
The ability of the shell to translate instances of the tilde character (-) into the
pathname of the user's home directory.

umask
A permissions mask that controls the permissions assigned to new files you
create. You can set your umask from the command line or in one of your shell
startup files.

user account
The records a UNIX system keeps for each user on the system.

variable
An object known to your shell that stores a particular value. The value of a
variable can be changed either from inside a program or from the command
line. Each shell variable controls a particular aspect of your working environ
ment on the UNIX system. For example, the variable PSI stores your primary
prompt string.

111

Glossary

112

wildcard
A character (such as "?" or " * ") that is substituted with another character or
a group of characters in text searches and similar operations. See also meta
character.

Index

A
absolute mode of changing permissions, 92
absolute pathname, 29
access. See permissions
alias, mail, 27
alias(C), 96
alternate mail files, 26
amount of file read in more, 53
ampersand (&), 22,64
ANSI terminal, 12
appending files (»), 64
appointment reminder service, 83
arrow keys in vi, 46
asterisk (*), 38
awk(C),80

B
background process, 9, 64
backspace key, 11
batch file, 88
bc(C),84
beeping, 49
Ibin, 35, 91
binary files, comparing (cmp) , 100
Bourne shell, 15,88

See also shell
logging out, 15
prompt, 15
startup files, 36, 88

byte size of file, 37

c
C shell, 15, 88

See also shell
logging out, 15
prompt, 15
startup files, 36

.cshrc,88

.login, 88
cal(C), 83, 100
calculator(C), 84
calendar(C),83

cancel(C), 50
canceling

colon (:) prompt, 48
mail message, 21
print job, 50

cannot create, 42
capital letters, 11
CapsLock key, 11
carbon copies, 20
carriage return, 14, 33, 42
cat: input/output files ... identical, 63
cat(C), 41,43,53,63,64

compared to more, 54
controlling scrolling (Control-S), 43

cc: prompt, 20
cd(C), 30,31, 100
changing

directories (cd), 30,31
group (chgrp), 73
modes in vi, 44
owner (chown) , 73
password (passwd), 13
permissions (chmorf), 74

absolute mode, 92
symbolic mode, 91

prompt, 15,88
to home directory, 32

characters
in directory name, 55
in filename, 42
in mail message, 22

checking
status of print job (lpstat), 49
who is logged in (who), 81

chgrp(C),73
chmod(C), 74,91
choosing a password, 13
chown(C) , 73
clearing the screen (clear), 84, 100
cls,100
cmp(C) , 100
colon prompt (:), 45

113

command

command
aliases, 95
background, 64
canceling, 17
interpreters, 14
line, 17
mode in vi, 44, 48
prompt, 14
separator, 33

command: not found, 16
comments, 90
company aliases, 27
comparing

binary files (cmp), 100
disks (diskcmp), 100
files (dift) , 100

computer-generated password, 13
concatenating files, 63
configuring mail, 93
Control

D, 16,41
S,38,43
U,17

control characters, displaying, 54
conventions

directory naming, 55
file naming, 42

copy (C) , 100
copying

disks (diskcp), 100
files (cp), 57
people on mail, 20
to disk or tape (tar), 100

correcting mistakes in vi, 47
cp(C), 57, 100
cpio(C), 79
creating

directory (mkdir), 55
file, 41, 59

csh(C). SeeC shell
.cshrc, 36, 88

D
d key in mail, 26
date, mail message arrived, 22
date (C) , 82, 100

file modified, 37
today's date, 82, 100

114

default
disk format. See /etc/default/format;
login message. /etc/motd

permissions, 93
system profile. See /etc/profile

del, 100
delete key, 17,21,22
deleting

directory, 56
file, 56, 59
mail message, 26

departmental aliases, 27
device, 7
diff3(C), 100
diff(C), 100
dir,95,100
direction keys in vi, 46
directory, 29

See also filenames
changing (cd), 31
current (.), 30, 31, 36, 89
home, 9, 31
identifying, 31
listing, 34, 37, 38, 69
login, 31
making (mkdir), 55
misspelling, 33
moving up one level (..),30
names, 55
owner, 71
parent, 30, 36
permissions, 33, 37, 42, 60,70

See also permissions
printing listing, 67
removing, 56
root, 29
searched for commands (path), 90

diskcmp(C) , 100
diskcomp, 100
diskcopy, 100
disks

comparing (diskcmp), 100
copying (diskcp), 100
copying files to (tar), 100
disk space, 59
formatting for DOS (dosformat), 101
formatting (format), 101

displaying
control characters, 54
file (cat), 43

DOS
batch file, 88
editor (edlin), 43
formatting disks for (dosformat), 101
pathnames, 30

dollar sign ($), 15
dosformat(C) , 101
dot (.),36
dot dot (..), 36
dp,26
duplicate filenames, 43

E
echo(C), 15
ed(C), 43,80,100
editing files, 43
editor

edlin, 43, 100
vi, 41, 43

edlin, 100
egrep(C),81
electronic mail (e-mail). See mail
end-of-file, EOF, character, 61
entering text in vi, 44
environment, 36, 87

Bourne shell, 88
C shell, 88
Korn shell, 88

erasing command line, 17
error correction in vi, 47
error messages

cannot create, 42
cat: input/output files ... identical, 63
command: not found, 16
Interrupt -- one more aborts message, 21
Login incorrect, 11
Login timed out, 11
No match, 39
not found, 16,39,90
Password change is forced for ... ,13
Permission denied, 33, 42
Waiting for login retry, 11

escape key, 44
/etc/default/format, 101
/etc/motd, 30,40
/ etc/ passwd, 54
/etc/profile,91
ex(C), 43, 100
execute permission, 70

exit, 15
exiting

mail,22
vi,44

expr(C) , 80
.exrc,48

F
fc(C) , 100
fgrep(C),81
file, permissions, See also permissions
filenames, 42

duplicate, 43
legal,42

files, 29
See also filenames; filesystems
appending (»),64
comparing

cmp, 100
diff, 100

copying, 57
creating, 41, 59
creation mask, 93
group, 37
hidden, 36
input to a command, 62
joining, 63
links, number of, 37
listing,34,37,38,69
log files, 54
modification date and time, 37
moving, 58
overwriting, 63
owner,37,71
permissions, 33, 37, 42, 60, 70
redirecting

input, 62
output, 61

removing, 56, 59
renaming, 58
saving mail in, 25
searching for, 78
size in bytes, 37
sorting, 10 1
viewing

cat, 43,53
more, 53

filesystems, 7
find(C), 78, 100

find(C)

115

finding

finding out
about a user (finger), 82
current directory (pwd), 31
group (ID), 72
shell (echo $SHELL), 15

finger(C}, 82
finish working. See logging out
first lines of a file, 54
flashing screen, 49
forgetting password, 14
format(C}, 101
forward slash (I), 29
forwarding mail, 26
frequency of checks for new mail, 94

G
GID (group identification), 72
greater-than sign (», 22,61
grep(C), 79, 100
group, 37, 71, 72

changing group of a file (chgrp), 73
changing permissions for (chmod), 75
finding out (ID), 72

H
hkey

in mail, 22
in vi, 46

head(C},54
headers on mail messages, 22
help, mail, 25
hidden files, 36
home directory, 9, 31, 32
HOME variable, 31
hyphen (-), 70

I
i key in vi, 45
ID,72
ID number of process, 64
identifying

directory, 31
shell,14

116

input
redirecting, 62
standard (stdin), 62

INPUT MODE, 48
insert mode (vi), 44
Interrupt -- one more to kill letter, 21
interrupt key. See delete key
invisible files, 36

J
j key in vi, 46
job numbers, 49
joining

commands with pipes, 66
files, 63

K
k key in vi, 46
kernel, 8
Korn shell, 15,88

See also shell
logging out, 15
prompt, 15
startup files, 36

.kshrc,88

.profile, 88
ksh(C). See Korn shell
.kshrc, 36, 88

L
I key in vi, 46
I (long listing), 37,69, 100
language, shell programming, 14
last lines of a file, 54
.lastlogin, 36
lc(C),34
length

of directory name, 55
of filename, 42

less-than sign «), 62
If(C} (list file types), 35
lines in mail message, 22
links, 37

listing
files

in columns (Ie), 34
long listing (1), 37,69, 100
show file types (1f), 35
show hidden files (Is -a), 36

mail headers, 22
log files, 54
logging in, 7, 9

login directory, 31
login name, 10
login prompt, 10
login shell, 9, 14
password prompt, 10
terminal logged in on, 81
who is logged in, 81

logging out, 7, 15
Bourne shell, 15
C shell, 15
Control-D, 16
exit, 15
Korn shell, 15
logout, 16

.login, 36, 88
Login incorrect, 11
Login timed out, 11
logout, 16
looking at a file

beginning (head), 54
cat, 53
end (tail), 54
more, 53

Ip(C),49
Ipstat(C) , 49
Is(C), 34, 100

M
machine-generated password, 13
mail

aliases, 27
canceling, 21
compose escapes, 25
configuring

MAIL variable, 93
MAILCHECK variable, 93
MAILPATH variable, 93
.mailrc,93

current message, 22
dkey, 26

messages

mail (continued)
date and time message arrived, 22
deleting a message (d), 26
exiting (q), 22
forwarding message (f), 26
h key, 22
headers, 22
help, 25
interrupting reading, 22
lines and characters in message, 22
long messages, 22
mail more than one person, 27
mailbox (mbox), 19,22
message number, 22
new, 21, 94
new lines, beginning, 20
noninteractive, 62, 63
prompts

ampersand (&), 22
Cc:, 20
question mark (7),22
Subject:, 19

rand R keys, 23
reading, 21
recovering, 26
reminder messages, 20
responding (r or R), 23
s key, 25
saving, 22, 25
sending, 19
subject line, 22
u key, 26
undeleting, 26
vi, using, 26
z key, 22

mail(C), -f option, 26
making directories (mkdir), 55
managing files, 53
match

any characters (*), 38
any single character (7), 38
range of characters ([]), 38

message
See also mail
number in mail, 22
of the day, 10,30,40

messages
No mail for ... , 21
Setting password for user, 13
You have mail, 21
You have new mail, 21, 94

117

metacharacters

messages (continued)
Your password has expired, 13

metacharacters, 38, 42
misspelling directories, 33
mistake correction in vi, 47
mkdir(e), 55, 101
modems, 19
month, calendar for current month (cal), 83
more (e) , 53, 101

compared to cat, 54
next screen of file, 53
searching for text, 54
slash (I) prompt, 54

moving
cursor in vi, 46
files, 58

MS-DOS. See DOS
multiple copies of a print job, 49
multitasking, 9
multiuser, 9
mv(e) , 58

N
naming conventions

directories, 55
files, 42

narrowing a file listing, 38
networks, 19
new lines in mail, 20
new mail, 21, 94
No mail for ... , 21
No match, 39
not found, 16, 90
number

of messages in mail, 22
of printed copies, 49
of process, 64

number sign (#),90

o
octal permissions, 92
operating system, 7
other, 71, 75
output

redirecting, 61
standard (stdout), 62

overwriting files, 63

118

owner, 37, 71
changing owner (chown), 73
changing permissions for (chmod), 75

p
parent directory (..), 30, 36
passwd(C) , 13
password, 10

changing, 10, 13
choosing, 13
computer-generated, 13
forgetting, 14
password file, 54
prompt, 10

Password change is forced for ... ,13
PATH variable, 90
pathname

absolute, 29
relative, 29

paths, 90
percent sign (%), 15
percentage of file read in more, 53
Permission denied, 33, 42
permissions, 33, 37, 42, 60, 70

changing (chmod), 74
absolute mode, 91
symbolic mode, 91

default permissions, 93
directory, 70
execute, 70
octal,92
read,70
write, 70

pipes, 66
.plan,82
pr,95
print, 101
printing (lp), 49

canceling a print job, 50
directory listing, 67
multiple copies, 49
pr alias, 95
print job, 49
print queue, 50
status (lpstat), 49

process
background, 64
ID number, 64

.profile, 36, 88

programming, shell, 14
programs, permission to execute, 71
prompt, 9

Cc:, 20
changing, 15,88
colon (:) prompt in vi, 45
dollar sign ($), 15
login prompt, 10
mail prompt (&), 22
password prompt, 10
percent sign (%), 15
showing current directory, 89
slash (I) prompt in more, 54
Subject:, 19
TERM,12
variables

prompt (csh), 88
PSI (ksh, sh), 88
PS2 (ksh, sh), 88

protecting files or directories. See
permissions

pwd(C) , 31

Q
question mark (7), 22, 25, 38
queued print jobs, 50
quitting

mail, 22
vi,44

R
rand R keys in mail, 23
.rc files, 88
read permission, 70
reading files

first or last lines, 54
one screen at a time, 53

reading mail, 21, 26
recovering mail, 26
redirecting

input, 62
output, 61

regular expressions, 80
relative pathname, 29
remembering appointments, 83

reminder
messages, 20
service, 83

removing
directories, 56, 59
files, 56, 59

ren, 101
renaming files, 58
replying to mail, 23
return key, 14,33,42
rm(C),56, 59,100
rmdir(C), 56, 101
root, 73
root directory, 29

s
s key in mail, 25
saving

in mail, 25
in vi, 44

screen
clearing (clear), 84
editor (vi), 43
scrolling control (Control-S), 38

scripts, shell, 14, 71, 88
scrolling, control, 38
searching

for files, 78, 100
for text, 54, 79

fast search (fgrep), 81
regular-expression-based search
(egrep),81

security. See permissions
sed(C),80
semicolon (;), 33
sending mail, 19
set showmode, 48
setting, path, 90
Setting password for user, 13
sh(C). See Bourne shell
shell,8

alias, 95
Bourne, 15
C,15
environment, 36, 87
functions, 95
identifying, 15
Korn,15
logging out, 15

shell

119

SHELL

shell (continued)
login, 9, 14
programming language, 14,88
scripts, 14,71,88,90
startup files, 36, 88

SHELL variable, 15
showmode option, 48
size of file in bytes, 37
slash (I), 29
sort(C), 101
sorting, 101
space, keeping space in prompt, 89
space bar, 53
square brackets ([]), 38
standard input (stdin), 62
standard output (stdout), 61,62
star (*), 38
start working. See logging in
startup messages, 62
status of print job (lpstat), 49
subject prompt, 19
superuser, 73
symbolic mode of changing permissions,
74,91

system profile, 91

T
tail(C),54
tape, copying files to (tar), 100
tar(C),100
TERM prompt, 12
terminal,9

beeping, 49
flashing, 49
tty number, 81

terminal type, 10, 12
ansi,12
setting, 12, 13
wy60, 12

text, search for, 79
text editor, vi, 43
tilde-question mark (-?), 25
tilde-v, 26
time, mail message arrived, 22
time (C)

file modified, 37
finding out, 82

touch(C), 59
tree structure, 29

120

tty number, 81
type, 101

u
u key in mail, 26
UID (user identification), 72
umask(C) , 93
undeleting mail messages, 26
uppercase letters, 11
user, more information about, 82
lusr/adm/messages, 62
lusr/bin,91
lusrispoolllp/requests, 33
lusrlspoollmail,94
UUCP (UNIX-to-UNIX Communications
Protocol), 19

v
variable, 15

$1,95
HOME,31
MAIL,93
MAILCHECK, 93
MAILPATH, 93
PATH,90
prompt, 88
PSI,88
PS2,88
SHELL,15

vi (visual editor), 41, 100
arrow (direction) keys, 46
colon (:) prompt, 45
command mode, 44
control file, .exrc, 48
correcting mistakes, 47
cursor, moving, 46
entering text, 44, 45
hkey,46
i key, 45
insert mode, 44
j key, 46
kkey,46
I key, 46
mail, using with, 26
printing, 49
quitting, 44
saving a file, 44
showmode option, 48

viewing a file
cat, 43, 53
head,54
more, 53
tail,54

w
Waiting for login retry, 11
who(C),81
wildcard characters, 38, 42
word processors, 43
write permission, 70
writing a file, 41
wy60, 12

x
:x,44
x key in vi, 47
xcopy,101

y
year in a file listing, 37
You have mail, 21
You have new mail, 21, 94
Your password has expired, 13

z
z key in mail, 22

z

121

z

122

1 May 1995

AU20002POOl

