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DSP AND DISC DRIVE
SUBSYSTEMS

- DIGITAL DATA STORAGE ISDSP

=s>- DIGITAL IN, DIGITAL OUT

- DRIVE EXTERNAL/INTERNAL INTERFACES ARE DIGITAL

CONTROLLED 8Y DRIVE pPROCESSOR

- EXCEPT THREE CLASSICALLY ANALOCG
INTERNAL SERVO SYSTEMS

= HEAL SERVO: TRACK SELK AND POIITION HOLRB
=» RECORDING (READ-WRITE) CHANNEL

=> DISC SPINDLE MOTCR SPEED SERVO

dim @



DSP HEAD TRACKING SERVO

HEAD-TRACK A;:ﬁfé';c'
P ION ™
OSITION (MISSING)

EMBEDDED
SERVO
(SAMPLER)

SO0 78 SECPon S ~Snaece DnivesS

>
ANALOG
L SERV%DSP »  POWER AMP
a (DRIVES ACTUATOR)
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DSP READ CHANNEL

PaRTI&C ngsPowss

| PRML SAMPLER
READ HEAD | | rquaLIZER |—»
SIGNAL FILTER __)g
JTMmsemPeesr/iec.
6 BIT VITERBI DECODE, ECC,
FLASH ADC —p| BIT DETECTOR, — USER DIGITAL
CLOCK, AGC DATA OUT

FasT

DieitTaL
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SPINDLE SPEED SERVO

MOTOR ANALOG MOTOR DRIVE
—™ SERVO
BACK EMF IC (CURRENT)
DRIVE
DIGITAL
PLL CONTROLLER

uwP
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POTENTIAL DSP ADVANTAGES

- BETTER DRIVE PERFORMANCE SPECS,

FROM TIGHTER WORST-CASE TOLERANCES TO
COMPONENTS, TIME, AND TEMPERATURE.

« OR LESS STRINGENT COMPONENT TOLERANCES.

- MORE DRIVE 1/0'S PER SECOND,

FROM OFFLOADING SERVO CONTROL FUNCTIONS
FROM DRIVE'S ptPROCESSOR

- ADAPTIVE CONTROL ALGORITHMS,

UTILIZING PERFORMANCE DATA,
OVERLAPPED WITH DATA ACCESSING
(NO OVERHEAD PENALTY)
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DSP ADVANTAGES (con't)

- MANUFACTURABILITY:
SELF CALIBRATION
SELF TEST/DIAGNOSIS

SELF TUNING FOR YIELD ENHANCEMENT

- DRIVE ERROR RECOVERY
FROM OPERATING SHOCK,
MIS-TRACKING,

MIS-READ

« LOWER SERVO POWER CONSUMPTION,
FROM OPTIMAL PLANT CONTROL MODELS
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READ/WRITE CHANNELS

» EXAMPLE: IBM'S DSP PRML CHANNELS
. CONVENTIONAL CHANNEL DIGITALELEMENTS
USER DIGITAL DATA INPUT
COMPUTE AND APPEND ERROR CORRECTION CODE
ENCODE (ENDAC)
(ANALOG WRITE-READ CHANNEL)
DECODE (ENDAC)
DETECT AND CORRECT BURST ERRORS

USER DIGITAL DATA OUTPUT
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READ/WRITE CHANNELS (con't)

CONVENTIONAL R/W CHANNEL ANALOGELEMENTS

WRITE DRIVER

WRITE CURRENT

WRITE PRECOMPENSATION

MAGNETIC RECORDING WRITE/READ PROCESS

READ PREAMP

READ EQUALIZATION AND NOISE FILTER
AGC CONTROL AND SETTING
BiT QUALIFIER (THRESHOLD LEVEL(S))
BIT TRANSITION DETECTOR
TIMING RECOVERY (PHASE LOCK LOOP)

DATA SEPARATION (TIMING SYNC)
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R/W CHANNEL
DSP POTENTIAL ADVANTAGES:

L]

CONVENTIONAL PEAK DETECTION CHANNELS
FACE INABILITY TO GET NE%§§§£}F}\Y(&%6 dB SNR,
AT HIGH MBITS/IN° AREAL DENSITIES

WSV moito Leel tox lHed ot 4, Ao TCK

[

-..ESPECIALLY 65 mm AND SMALLER DRIVES

TELE PrHowe

COMMUNICATIONS CHANNELS OPERATE AT 15-20 dB,
USING HEAVY ERROR CORRECTION (10* RAW BER)

o

IBM'S SOLUTION IS DSP PRML,
(PARTIAL RESPONSE MAXIMUM LIKELIHOOD)

PARTIAL RESPONSE EQUALIZATION
ALLOWS BITS TO BE PACKED CLOSER TOGETHER,
BY ALLOWING CONTROLLED INTERFERENCE.

A PENALTY IS THAT EQUALIZATION MUST BE PRECISE

=> USE DSP DIGITAL FILTER EQUALIZER

MERD 3% ACcrge T — TUNE 22 To <O w5y 7e Lo lf‘—/ﬂ/“/&}
Varnadlae«S,
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R/W CHANNEL DSP ADVANTAGES (con't)

- A SAMPLED VITERBI BIT DETECTOR IS OPTIMAL
=> A DIGITAL SIGNAL. PROCESSING METHOD

Pank LOCATIOM po7 COledaT

« CLOCKING AND AGC CAN ALSO BE DONE IN THE DSP

....(PR'S HIGH BIT DENSITY DESTROYS THE PEAKS USED
FOR CONVENTIONAL CLOCKING)

- DSP READ CHANNEL RESULTS IN:

HIGHER BPI, BY USING PARTIAL RESPONSE.

HIGHER TPI, SINCE VITERBI ALLOWS LOWER
PLAYBACK AMPLITUDES (NARROW TRACKS)

. => HIGHER AREAL DENSITY (MBITS/IN?)

IBM IS SAYING 15-30% FOR FIRST GENERATION
EVEN MORE LATER 150 m 8173 /" Dewsiry
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HEAD/TRACK SERVOS

SERVO INPUT: HEAD-TRACK POSITION:
INTEGER TRACK NUMBER (GRAY CODE),
PLUS FRACTIONAL TRACK ERROR

SERVO OUTPUTS:
ACCELERATION COMMAND (ACTUATOR CURRENT),
SEEK COMPLETE, SEEK ERROR, HEAD OFF TRACK

1/BeDe 0 ru.vo weoK — po -,u,\,,,x whitho Wairiig.

CONTINUOUS SERVO SIGNAL IN LARGER DRIVES

SAMPLED SERVO COMMON IN SMALL DRIVES (3-5 KHZ)

NOTE: SERVO SYSTEM SAMPLING OCCURS BEFORE ANY
ANTI-ALIASING FILTER POSSIBLE.
THIS CAN ALIAS HEAD FLEXURE 3-7 KHZ RESONANCE

H€e D /G rr e /@IOmRArCl

INTO SERVO PASSBAND. USa atoToH FICTER. + TIHTCS
o Thgceld ReTCudace Shlec . OF Lieq
MEANS RESONANCE MUST BE HELD WITHIN LIMITS, LT T

MINIMUM RESONANCE SPEC NO LONGER ENOUGH.
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PLANT MODEL ("OBSERVER")

« A POWERFUL CONCEPT FOR DSP

« CAN EFFECTIVELY ALLOW SAMPLED SERVO TO
APPROACH SEEK/SETTLE PERFORMANCE

OF A CONTINUOUS SERVO,
WITHOUT THE WASTED DISC SURFACE OVERHEAD,

AND MECH/THERMAL MISREGISTRY PENALTY.

« CAN REDUCE OFFTRACK DATA RISK
CAUSED BY MECHANICAL SHOCK/VIBRATION

(VALIDATE SERVO PES SAMPLES
AGAINST OBSERVER PREDICTION)
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DSP PLANT MODEL (con't)

« CONVENTIONAL LINEAR FREQUENCY DOMAIN ANALYSIS
MODELS SECOND ORDER PLANT MECHANICAL SYSTEM,
INCLUDING CRITICAL ARM-HEAD RESONANCES

- STATE VARIABLES ARE HEAD POSITION AND VELOCITY

- DSP TIME DOMAIN OBSERVER
PREDICTS PRESENT STATE.
MINIMIZES SERVO LAGS,
ALLOWS NONLINEAR ELEMENTS.
EXAMPLES:
ACTUATOR FORCE CONSTANT V.S. POSITION:

HEAD-ARM SETTLING TIME VARIATIONS
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DSP PLANT MODEL (con't)

- SERVO ERROR MODELS ALLOW SELF CAL/ADAPTATION:

1) ACTUATOR FORCE CONSTANT,
OVER TIME, TEMPERATURE, TRACK (NONLINEAR)
DRIVE CURRENT SATURATION (NONLINEAR)

2) ACTUATOR BIAS FORCE OVER TRACK POSITION
(FROM HEAD FLAT CABLE, WINDAGE) (LINEAR)

3) INDIVIDUAL HEAD THERMAL OFFSETS (LINEAR)

-« REPETITIVE RUNOUT ELIMINATION POSSIBLE

LINEAR FEEDFORWARD CONTROL,
BY RUNOUT-LEARNING DSP FILTER

« ADAPTIVE SEEK ALGORITHM:

MONITOR SEEK SETTLING TIME DURING DATA ACCESS
TO MINIMIZE TOTAL SEEK TIME AND OFFTRACK
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DISC SPINDLE SERVO

+ CONTROLS DISC SPIN MOTOR:

3-0 BRUSHLESS PERMANENT MAGNET MOTOR,
HAS NO FEEDBACK SENSORS (spsck UniTamon s srmece oniaes

Lingy7el Te 3600 LPH BY LiniTeg Sa7T e~

(NO HALL SENSORS) TOrOe % S oy ReGuin enrom T

- EXAMPLE DRIVE SPINDLE SERVO:

RPM IS PERFECTLY FREQUENCY LOCKED,
USING DISC POSITION PHASE LOCK LOOP.
POSITION NOISE SIGMA = 50 NSEC — ~ %o GaPe7 Ead oF retv...
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DISC SPINDLE SERVO (on't)

CONVENTIONAL DIGITAL SERVO ELEMENTS:

« A DIGITAL PHASE LOCK LOOP

« USES WRITE CLOCK CRYSTAL AS POSITION REFERENCE

« USES INPUT FEEDBACK SIGNAL FROM MOTOR BACK EMF
MEASURED OFF THE TWO UNDRIVEN PHASES:
THE TIMES WHEN THE PHASE VOLTAGES ARE EQUAL.
=> AN APERIODIC DIGITAL SAMPLED SIGNAL,

- GENERATES ANALOG COMMAND VOLTAGE
TO COMMAND MOTOR ACCELERATION PUMP UP/DOWN
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DISC SPINDLE SERVO con't)

CONVENTIONAL ANALOG SERVO ELEMENTS

START AND COMMUTATION LOGIC

ANALOG FEEDBACK STABILIZATION LOOP

]

INPUT IS DIGITAL PLL ACCELERATION COMMAND.

OUTPUT IS SPINDLE MOTOR COIL CURRENT,
FROM 3-@ ANALOG POWER DRIVERS.

INTERFACE TO DRIVE pP MINIMAL.
POSITION PHASE ERROR CAN BE INTERROGATED.
SPINDLE EXTERNAL SYNC SIGNAL (OPTIONAL)

IS THIS AN ERSATZ DSP?
..ITS SAMPLED, PARTLY DIGITAL
...BUT SAMPLING TIMES ARE APERIODIC,
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Discrete-time and Digital Signal Processing

David G. Messerschmitt

Discrete-time and digital signal processing are increasingly
prevalent, due to many factors. Increasingly, analog signal
processing is employed only at the very highest speeds where
digital solutions are not available. |

Objectives:

*What are the differences and similarities between discrete-time and continuous-
time? How do we convert between the two?

*What are the differences and similarities between digital and analog?

*What are the advantages and disadvantages of digital and discrete-time?




Electrical Engineering and
Computer Science

University of California at
Berkeley

Typical Configuration

Digital
~"—= AD | _ = D/A
Copdimasar { Signal Processing
" T e
P/ screde 7
Oversimplified!

Basic elements:
*Sampler to convert continuous-time to discrete-time

*Analog-to-digital converter to convert from analog to digital

CONST jpor )

T
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*Signal processing implemented in the digital and discrete-time domain

*Digital-to-analog converter to convert from digital to analog

Also required are anti-aliasing and reconstruction low-pass filters




Electrical Engineering and
Computer Science

University of California at
Berkeley

Page 3 of 20
112281
ome/slepianO/messer/COURSES/santaClars.fm

Comparison of Continuous- and Discrete-
Time Signals

Different time variables: x (¢) and x [n]

Both can be periodic:
x(t+T) = x(1)
ox[n+N] = x[n]

fd\/’u

Sinusoids exist (and are very important):

ex(t) = cos ((oOt)

ex[n] = cos (Xon)

Continuous-time (but not discrete-time) sinusoids are always
periodic:

27
*COS (0)0- (t+ao-)) = cos(mo't)

.cos(?»0~ (n+N)) = cos(?»o-n) for 7&0 =

27
K
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Why Discrete-Time Sinusoids are Not
Always Periodic

Represent sinusoid as real part of complex exponential eJ

jAqn
e 0

(1 )4
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A.n

or

Discrete-time vector moves in discrete steps, only retraces the
same points for specific values of 7»0




Discrete-Time Sinusoids Are Periodic in
Frequency

Electrical Engineering and
Computer Science

When we increase the frequency by 27, a discrete-time sinusoid
does not change:

-cos((7\.0+27t) .n) = cos (XO-n)

The interesting range of frequencies is an interval of length 27t
University of Caiifornia at .;"O € [“11'., 1C]

Berkeley
This is a form of frequency aliasing

For example, frequency 7»0 = 27 results in the same samples as

frequency 7\.0 = 0 (d.c.)

Page 5 of 20
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Some Examples of Frequency Aliasing

: 2 : \
Increasing 7»0 by 21 ((00 by _f) results in the same samples!

Sampling is not reversible: many input continuous-time signals
can result in the very same samples!

Normal response is to limit input frequencies to half the sampling

T
rate: |0)O| < T
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Some Examples of Frequency Aliasing

Several continuous-time waveforms have the same samples:

x,(kT) = xy(kT) = x,(kT)

xy(t)  x, M/nm

n [
However, there is only one waveform bandlimited to T with that

set of samples (the others all have higher frequency components)

Lin, TOo Bl 7/\( SArpg /(4/\(‘

/
MYGis7T rate - %4 SAnPlenyz
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Some Examples of Frequency Aliasing

Nee D B AWPle S S faso D For €6 »iac i poce o

<@

Original signal
- /ﬁ\
Y \‘:,_Rooonltrucud signal N o = ﬁ
,I P/Mplu ,/ \ ]
\
\\ '.‘ L)
k| / L
/ \ / \
/ \ U \
\ \, ,
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' )

2w,
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] \ / \ 'l \ / \
l' \ l \‘ 1 \ / \
g
\
! \ ,l \ ] “ [] )
! oy \l 4 Y \
! W/ \l (Y /
] / / / /
! </ o S/ .
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Digital Filters (LTI Systems)

L//'/Ed = 7_/'2'«6 /N%‘? 5T

__»H(jo) - &

. h(t)
JO—»
H (jw)
h[n]
Ay .
4 H (™

These functions H (jo) and H (ei )“) are known as the frequency
response, & (t) and h [n] are the impulse responses

Input complex exponentials of a given frequency result in output

complex exponential at the same frequency

Equivalent effect on sinusoids is an amplitude and phase shift

H (ei )”) is periodic in 27: Only range |A| < 7 is of interest
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Two Types of Implementable Digital Filters

Finite impulse response (FIR):

. M
ylnl = by x[n—k]
k=0
M
H( = Y b
k=0

Infinite impulse response (IIR):

M N

ylnl = ) by-xln-kl- Y a,-yln-k]
k= k=1

LeIMe

0

=
A
v>) ‘
Il
k

. e—ﬂ»k

Mz MMx °

Pl
I
=
Q
P
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Continuous-Time Filter Implemented in
Discrete Time

Sample, preceded by anti-alias lowpass filter:

x(t) -» LPF >/ > x[n]
nT

~la

Discrete-time filter:

x[n] — —» y[n]
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Continuous-Time Filter Implemented in

Reconstruct continuous-time signal:

Discrete Time (Con’t)

RIZCOns 7720 c 7*/{74 £

y [n] —

PAM

LPF
— ¥ (?)

~l 3

; - /i Y24
AN T e 7)4 C’é’/ cdar L

Cor /4”/71’7(4'0 oy

T Er L Boor—

= -
2T,

Pulse-amplitude generator produces sequence of pulses

Page 120f 20
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Lowpass filter reconstructs continuous-time signal by

interpolation

Within the bandwidth ’7—5, g (jo) = H (M)
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Quantization Distortion

sll— ap ™ pa [V

y[n] !

» x[n]

For K bit quantizer, there are oK quantization intervals, with

overload point at 2K=1. A with step-size A




Quantization Distortion is Often Modeled as
Additive White Noise

Electrical Engineering and
Computer Science

x[n] y [n]

University of California at
Berkeley e [n]

The successive samples of “quantization error’ are approximately
uncorrelated if the input signal is “random”

2
%—2-, or easily related to K and the overload point

In contrast to thermal noise, quantization distortion goes away
when the signal is absent!

Page 15 of 20
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Effect of Quantization Error

Added quantization noise at A/D converter: a price to be paid for
A/D conversion

*Control by adjusting precision (number of bits)

Roundoff errors in internal computations
*Control by adjusting precision of internal arithmetic, which is typically greater
than input/output
Overflow problems due to overload point of quantizer
*Limits dynamic range
*Scaling is big issue in fixed point arithmetic

*Floating point arithmetic increases the dynamic range dramatically

Change in filter frequency response due to quantization of
coefficients

*Coefficient quantization normally taken account of in filter design
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Some Advantages of Digital Systems

Highest-density IC technologies (based on DRAMs) are primarily
digital: poor or non-existent capacitors, etc.

Regenerative property of digital systems is extremely important
in storage and transmission applications (avoids the “multiple
generation problem’’ of analog)

Accuracy can be increased arbitrarily by increasing the precision
of the arithmetic

Accuracy is forever: no component drift or temperature
variations

Digital systems are deterministic: testing and fault detection are

-much easier

Design abstraction makes complexity easier to manage, reduces
designer skill level required (analog designers difficult to find)

*Programmable solutions

Much more complex algorithms are feasible




Design Abstraction in Digital Systems

Computer Sconce o Program
Instruction Set
Architecture
Register

Berkeley” | o Logic Element
Circuit
Device

Typically designers are split into three semi-independent groups:
logic/circuit/device, instruction set/architecture/register,
programmers

Much higher complexity designs become feasible

Page 18 0of 20
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Some Disadvantages of Digital Discrete-
Time Systems

In a continuous-time world, A/D/A conversion incurs an extra
cost

Quantization error is incurred at the A/D converter and internal
to the computations (although it can be controlled to whatever
extent necessary)

Highest-speed systems must be implemented in analog
*A/D converters and multipliers are typical bottlenecks
*Example: microwave RF

Design effort expended in finite precision issues (quantization,
dynamic range)

Synchronization is major issue, parmt»i’culaﬂﬂy; as the signal

propagation times increase in relation to the clock cycle
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Some Examples of DSP Commercial
Applications

Digital compact disk

Compressed digital television (NTSC, HDTYV)
Digital television receivers

Digital audio broadcast

Digital transmission and switching in telephony
Digital cellular telephone

Voiceband data modems

Compressed video conferencing
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Digital Filters

TOPICS

e Why Consider Digital Filters
* Filter Design Problem

® Digital Filter Design Tools

* Digital Filter Design Methods

®* Applications
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Digital Filters

1. WHY CONSIDER DIGITAL FILTERS

e Component tolerances (Accuracy)
® End-of-life component tolerances (Reproducibility)
* Implementation of Time-Varying Filters
Presettable filters
Adaptive filters
e Size
®* Power Dissipation

e Control of transient response

2 Digital Filters #<T  December 17, 1991



Digital Filters

Analog and Digital Components

L
(o o Ty r— 9 *- Te)
x (¥) €= RE 4(8)
(¢ ‘ > -0

K
)1
x (KT) - - y(kT)
L » Z —e— Z
<~
'K:s

A Second-order Bandpass Filter

3 Digital Filters HKT  December 17, 1991



Digital Filters

TOPICS

e Why Consider Digital Filters

® Filter Design Problem

® Digital Filter Design Tools
® Digital Filter Desigh Methods

e Applications
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Digital Filters

2. FILTER DESIGN PROBLEM

—— > FILTER }—>

Motivation
* Improve quality of the output signal:
Remove noise, interference, and distortion.
® Process or extract information from the input:

Estimation and prediction.

4 Digital Filters HKT December 17, 1991



Digital Filters

e Some notion of frequency discrimination is involved:

N Res bonse

1
I
|
|
1
!
1
!
1
!
!
]
.

BANNANNNY <
27777

\ Passband

Transition-Band

Stopband
¢ Linkage between time-domain and frequency-domain
behavior:
1 7
y(n) = EJ Y(w)dw

5 Digital Filters HKT/ December 17, 1991



Digital Filters

Analog and Digital Frequencies

e Sampling of the analog signal

x,(f) = A cos(Qt + 6)

produces

x(kT) = Acos(QkT + 8) A Acos(wk + 6)

e O rad/sec <= w=0T rad/sample
e Relationship between analog and digital frequencies:

>

Q: ©
v 2m /T
2 « 0 . o
217 '/Z.T I/.T
w 0 "ﬂ' ¢ o —
Y. o0 > . >~
2’7 HE ympec o‘s i

e When the Nyquist sampling theorem is satisfied, the
digital frequency is always less than r radians; that

IS

w=0T<n

6 Digital Filters HKT/ December 17, 1991



Digital Filters

TOPICS

e Why Consider Digital Filters

® Filter Design Problem

® Digital Filter Design Tools

¢ Digital Filter Design Methods

®* Applications
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Digital Filters

3. Filter Design Tools

® Restrict the allowed structures to:
Non-Recursive Filters

Recursive Filters

Non-Recursive Filters

® Output is formed by linearly combining a sequence

of inputs:

N
Yk = z AiX—i

i=—N

SN 7w NN

Samples: e Xego  Xepq o X Xp_qee
Multiply: ... X X X X...
Coefficients: ..a_, a_q ag ay
Sum: ‘\'%’D://l
Output. Yk

7 Digital Filters HKT/ December 17, 1991



Digital Filters

Example: a_,=08, a;=1, a;=0.6

Ki+1 | Xk X

Digital Filters HKT/ December 17, 1991



Digital Filters

Recursive Filters eI TR Sip o /gl OcTIT UplSeT I Bl

e Qutput is formed by linearly combining sequences of
inputs and previous outputs:

N M
Vi = 2 ajXy—j + Zb/}’k—/

j=

e OQutput at time k depends upon the previous outputs.
Therefore, initial conditions must be known before
the output due to the first input can be computed.

—¥

4
T |ozat craez
-

-

cpp 4#0T Be OFTCA 2<ep.
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Digital Filters

Unit Pulse Response

®* Response for a unit pulse input, defined as:

1 ,k=0

Xk = {O, otherwise

Nonrecursive Filters: VeRT STABLE | caom Re @PTFRMized

The unit pulse response is a finite sequence of
(2N + 1) terms. Such filters are, therefore, often

referred to as FINITE IMPULSE RESPONSE (FIR)
filters.

10 Digital Filters HK’T/ December 17, 1991



Digital Filters

Recursive Filters:

N M
i B Yy = Zaixk—-i + Zb/)’k—/
=0 =1

e Even though there are a finite nhumber of ays, the
second term can continue to generate an output
long after the first term is zero. Such filters are,
therefore, often referred to as INFINITE IMPULSE
RESPONSE (lIR) filters.

11 Digital Filters HKT/ December 17, 1991



Digital Filters

Properties

* Homogeneity and Superposition:

if X,=y, and s,=>r,
then ka + gSk=>fyk + ary

e Shift-invariance:

¢ Filters that admit homogeneity, superposition, and
shift-invariance are referred to as linear, time-
invariant (LTI) filters.

e Input-Output of such filters can be defined by the
discrete-time convolution:

00

Yic= z Xifty—j

j=—00

12 Digital Filters HKT/ December 17, 1991



Digital Filters

Structures

R o {hy } —— {h, J—

2m

{ COmVolVUtida o ¢ 2 Tenas )
V

h

c,k

e (Cascade: hcy= i hy 1ho

|=—o00
{hu}
Xy E I«
{hz,n}
_ —— -
he

e Parallel:  hpx=hix+ hax

13 Digital Filters \-\KT/ December 17, 1991



Digital Filters

Eigenfunctions

FILTER

® Def: a, is an eigenfunction of the digital filter iff the
application of a, produces the scaled output Aa,. A is
referred to as the eigenvalue. |

>\"<*’§%o<

J»@q

14 Digital Filters HKT/ December 17, 1991



Digital Filters

Eigenfunction 1:

ay = exp(jwk) = cos(wk) + j sin(wk)

produces an output

exp(/'wk)[ Z he Kl w']

|=—00

* Hw)= i he=“! is referred to as the frequency
respons'=e"<°)‘1r the digital filter. Note that h; uniquely
determines H(w).

* H(w) is, in general, complex, and may be written as
Hw) = | Hw) | e*®

Then, if the input is cos wk, the output is given by
| Hw) | cos(wk + ¢).
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Digital Filters

Eigenfunction 2:
k
ak =7

produces an output

* Hz = i hiz=" is referred to as the transfer function
of the digftal filter. Note that b, uniquely determines
H(z).

o Y(2)=H(2IX(2)

Y(&)= eov $+yz Y4 qs%-?*"'e -

U C-K)t: Z(oo‘ go 3, 31;33”’%
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Digital Filters

Z-transform and Frequency Responsé

° H(w) = H(Z) |z= exp(—jw) = ,_2 h/e_fwl

e Geometrical interpretation

LImZ

J

LA L Rez
Unit /‘K/ |- ROOTS FaLe 0uTS/De

Circle CinCle, FicTeh wite (e
UnstaBee .

e Frequency response for digital filters is periodic in
2.
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Digital Filters

An Example

Magnitude Response of Digital Filter
(Coefficients 1,2,1)

Magnitude (dB)

o ' ‘ ~

|

|
-120 | ‘ ! : b :

—8 —4-TT 0 v 4 8

Frequency (rad/sample)
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Digital Filters

Frequency Response of FIR and IIR Filters

* FIR Filters

® Recursive Filters

19 Digital Filters HKT/ December 17, 1991



Digital Filters

Cascade and Parallel Forms

® Cascade: Hc(w)= Hi(w)Hz(w)

H, ()
IXL..? Yy
H, @)
L J
Hp (w)

® Parallel:  Hp(w) = Hy(w) + Hx(w)

COMPLEX Nyppers — THNA Mune O . LV

20 Digital Filters HK1/ December 17, 1991



Digital Filters

TOPICS

®* Why Consider Digital Filters
® Filter Design Problem

¢ Digital Filter Design Tools

¢ Digital Filter Design Methods

®* Applications

Digital Filters HKT/ December 17, 1991



Digital Filters

4. Filter Design Methods

Fourier Series

D(w)
H(w)
/ NN —
=TT 0 T w
Error: E(w) = D(w) — H(w)
Squared — error: €= J | E(w) | dw

=17

. 1 (" juwk
minf = h, = o D(w)e’ "dw
—17
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Digital Filters

The hy sequence generates the smallest integral
squared-error than any other response.

Each Ay is computed independently; value of one
term does not affect the other.

Set ay = hk.

Truncation error is given by:

22
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Digital Filters

An Example

D (w)
A
i
- T T T W
2 2
hk=‘,7173'”("‘7'2£(‘)’ hy = 0.5
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Digital Filters

Frequency Response as a function of N

Magnitude Response of Digital Filters

L (N = 35,10)
N=3 N'éN 10

D(w) i
o 0.8 i
©
=
= 1
(@)
@)
=

o
'

o

Frequency (rad/sample)
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Digital Filters

Frequency Response as a function of N

Magnitude Response of Digital Filters
(N = 3,5,10) 6xren

0 ] , |
™-20F  zidp 0T ]
2 A

()} ~ puE 1™ _ 4 B
9 Tuutnior M=y
g i TL
o]
2 - -
—-60 .
| | | | )| |
0 1 2 3

Frequency (rad/sample)
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Digital Filters

Windowing
® Rectangular Window

Low—pass Filter Coefficients based on the Fourier Series Method

S s e T T T T T
|
|
0.4 | f -
;
X ; i
|
. 02} ' .
~ |
o’ |
< i \ -
0 floroloti‘o,t‘QQQ‘o’o‘%‘
~0.2 —_
0 S 10 15 20 25

¢ Other windowing functions are used to achieve more

desirable control of passband ripple and/or stopband
attenuation.

Ay AK

j— Wk
[

Winpow Fuwcrion Co&f
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Digital Filters

Commonly-used Windowing Functions

® Rectangular: ’”’Zf

w(k) = 1 i,
® Triangular: %)

k| j“
- — = Hi s/

w(k) = 1 T M=2N + 2

* Hann:
1 27k _ ‘ ?

w(k)_—2-(1+cos v ), M=2N+2 «| U .,

® Hamming:
2k '

w(k) = 0.54 + 0.46cos R M=2N + 2
* Blackman:

w(k) = 0.42 + 0.5cos -27\-';-/-{— + 0.08 cos%l-f- , M=2N+2
e Kaiser: |

| (R ___ "] / -Ngk< N
( Lo U%J L <(2N+D/7_> ID(@ A
W R) = 0 ; O'H’)U’\/C';SQ_
W‘ef\ev’e cO m
(3/2)
Io(%) = 1+ MZ:‘\[ YY\‘
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Digital Filters

4 DLP (w)
Filter Transformations
Uit 74%4.;1/«»«%
Low-pass h.p(k) ol ol @
A DBP (CQ)
__" 2wl
: R P
-0, 0 - de T -3
e Band-pass 2h; p(k) cos(wk)
2 Dpp (@)
T — 0
| el T
e High-pass ( —=1)khep(k)
S i Gru2) 1o @
e Notch h[_p'w1(k) + ( "‘1)khLP,n——-cu2
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Digital Filters

An Example

Magnitude Response of High—pass Digital Filter

I | 1 | 1

Magnitude
o o -
(o] (0] o
T T T
l
|
|
l
|
|
|
|
:
|
|
|

o
>
T

0 1 ‘ 2 3Tr
Frequency (rad/sample)

Low—pass Coefficients: 0.064 1.6E—17 —0.11 —1.6E—17 0.32 0.5 0.32 —1.6E—17 —0.11 1.6E-17 0.064
High—pass Coefficients: —0.064 1.6E—17 0.11 —1.6E-17 —0.32 0.5 —0.32 —1.6E—17 0.11 1.6E-17 —0.064
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Digital Filters

Time-Domain Design Method

_/_X‘_&___,_ ia&}? | Yx

* |nput sequence, X,, and the desired output sequence,
d, are known; the problem is to determine a..

® Define
a=[ a_y a_nyq - an]
d=[ dy d; .. d,],, p=2N+1

e Set-up p + 1 equations of the form

. : . - B
X_N X“'N"" € °o o XN g"N _—] chlo —\
SIS SPEI -:ml _ ‘
. ¢ - Z
. Qn ¢
L Xpon Xp-nny * Xp+n N —-dP -
T
A H o’ a

p—

o~
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Digital Filters

Use least-squares solution to the over-determined
system of equations to obtain

aopr = (H'H) " 'H'd

The above equation is of the form

—1
aopr=P ¢

30
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Digital Filters

Adaptive Filtering

dK
eK
X
K . @k} %
Application X d
System Known Output
Identification Data Signal
Equalization Distorted "Known”
Signal Data
Prediction Past Present
Input Input
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Digital Filters

Commonly-used Approach

* Minimize the mean-squared error between the
desired output, d, and a linear combination of the
input, x; that, is:

ELe’] = EL(d— y?] = EL(dh — ) a_)’]

i

® The above error criterion defines a convex surface
for the mean-squared error as a function of the tap
weights:

Eled]

in
TAP
-
COEFFICIENT
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Digital Filters

The adaptive filter starts with an initial guess on the

coefficients,a;, and progressively moves down the
well using:

In practice, the gradient of the instantaneous
squared-error is substituted for the mean squared-
error, resulting in the following adaptive algorithm
(most commonly referred to as the LMS algorithm):

8y = gy_q + 2BX

The LMS algorithm is the most commonly-used algo-
rithm in real-time adaptive filtering.
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Digital Filters

TOPICS

* Why Consider Digital Filters
® Filter Design Problem

® Digital Filter Design Tools

® Digital Filter Design Methods

® Applications
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Digital Filters

9. Applications in Digital Storage
¢ Recording Channel Identification
¢ Equalization
®* Timing and Gain Controll

¢ Digital servo

34 Digital Filters WKT/ December 17, 1991



Digital Filters

Recording Channel Identification

\/v‘w[‘l’.ﬁ_

e

[t
I ey

* |nput Sequence

" Write Current for a 63—bit PRBS Sequence
0.8 T T T '

i I I
e o I
0.4 |- -
-+
C
[¢D] — -
| -
| -
>
S oF -
5]
= n
= -
=
—0.4 | -
-0.8 L ! o
0 \ 200 400 600

Time
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Digital Filters

¢ Averaged Output Waveform
2 ! I I I 1

Output Signal
o

|
—

|
|

-2 1 1 1 ! ! !

0 200 400 600
Time
® |dentified Pulse Response

) I I I L 1 T 1 1 I

Amplitude

| ] | 1 1 | l | | |

0 20 40 60 80 100
Time
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Digital Filters

Equalization
l
Channe! Jesired
Pulse —EQUALIZER|—=""!
| —ulse
data ¢ /
Xk _Variable Filter Yi
DISK W, > oML

/ S \v—

(error) —\-_-'//i_ dk
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Digital Filters

6. SUMMARY

“Why consider digital filters:

Component tolerances (Accuracy)

End-of-life component tolerances (Reproducibility)
Implementation of Time-Varying Filters

Size

Power Dissipation

Control of transient response

Design abstraction

Pitfalls in digital filter design:

Relationship between analog and digital frequencies
Diréction of sample shifting

Aliasing

Finite precision and arithmetic

Step-size selection

38
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A/D AND D/A CONVERTERS IN HDD
SYSTEMS:

¢ Servo Channel Requirements/Solutions

— High Capacity Drives

— Small Size Drives

® Technology options for a possible read — channel
architecture.

B/LL HUNT
ANALOG DEVICES
DEC 97.




"DEDICATED V'S EMBEDDED SERVO"

Complete embedded servo front end for HDD

Trends in HDD servo electronics: a) New demodulator techniques

i) Embedded servo vs dedicated surface

Data \

/

o/

Servo

* 3 platters => 6 surfaces * 1 platter => 2 surfaces
use 5 for data, 1 for servo interleave data and servo

surfaces mechanically linked * no registration problems

continuous position f/back * sampled position f/back

*

*

DEC '91 16-Nov-91




GENERIC BLOCK DIAGRAM FOR CLASSICAL LARGE
CAPACITY/SMALL SIZE HDD’S

RAM

!

Buffer RAM
Controller

SPINDLE

Write Path

e}

Read

Data
Qualifier

|

Servo
Detector

System

SCSI/AT
Interface

Interface
e A————

Data sequencer,
Controller & ECC

pC or DSP
Interface

ADC

!

Power
Drivers

DAC
LINEAR/PWM

pC or DSP

DAC

LINEAR/PWM




"CAPACITY"

— a possible classification

HIGH CAPACITY: > 300 MBYTE

Size51/4"to31/2x 1"

Capacity 300 Mb — > 1Gb

Access time: 10 mSEC

Transfer rate: > 15 MB/S
“Improved Reliability (ELF)/(MTTF)

Reducing cost

SMALL SIZE < 100M BYTES
® Size31/2"t0o21/2"t0 1.8"
— @ Capacity 20to 100 mb-

® Low power

8 "Zero" power in power down mode
Lower supply voltage (smaller batteries) 3V
Improved Reliability (ELF)/(MTTF)
Reducing Cost




"LARGE" DRIVE:

system requirements

or

Power controIVVCM/Spindle Motors
For increasing capacity
— Anincrease in T.P.l.
— Anincrease in data transfer rate

Dedicated/Hybrid servo.

Reduced access time requires adaptive servo
control.

More measurement of system parameters
required.

More control of system parameters. |
Increased integration to reduce foot print.
Reduced costs.




3.5" DRIVES — 'LARGE’ CAPACITY

i

Buffer RAM
Controller System

SCSI/AT Intertface
- ————————
1 Interface

Data ) VENDEC Data sequencer,
Qualifier Controller & ECC

MC or DSP
Interface

Power

NPN/PNP VCM DAC & i
MOSFET \ 4 Predrivers
Embedded
Servo
Demodulator

Y

ADC |

ROM

Dedicated
Servo : SRR

. Demodulator| = = | Spindie

; - " i7 Controller
Power L 8 DAC
NPN/PNP 8 Predrivers
MOSFET




'LARGE’ DRIVE: TECHNOLOGY REQUIREMENTS

+ 5V/+12v operation (+ 12 V to drive motors) + 10%.

Increased T.P.IL. joVro3Y

— More resolution on VCM control (> 10 bits).
- M?re resolution on position sensing_( > 8 bits). _
Maximise Channel S/N Ratio Use ’Bias’ referenced

signals. |
Dedicated/Hybrid servo control:

Reduced Access Time

— Faster through — put through servo demod. channel.

— Faster ADC conversion time. equivalent.

— Faster processing uP/DSP.

— Adaptive control bandwidth; AGC, rectifier discharge rate..

Fast interface speed for high speed uP’s/DSP.

Integration to give smaller foot print.
— Multiple small pin count SMD’s (SOIC). -
— Single large pin count SMD’s (PQFP).
Functional integration:
Include power pre — drivers; loop control element; with VCM DAC.

[N



Typical 3.5*/5.25" Medium/High Performance HDD
300 MBytes

45,000 BPI

15 MB/S Transfer

15 mS Access Time

Write Path
-
Read
Path
| BEa—
L I I
! ' Pea ? |
! I | Detector
VCM ; Sl
I [
|
|

SPINDLE |
MOTOR

T

7

X

Buffer RAM
Controller System
I f
SCSI/AT nterface
—————
Interface
Data sequencer,
Controller & ECC
uC or DSP
Interface

FVICES ~



AD7774 FUNCTIONAL BLOCK DIAGRAM
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'SMALL’ SIZE

'~ SYSTEM REQUIREMENTS:

mReducing size 3 1/4to 2 1/2 t0 1.8".
m For increasing capacity to 80 mb.
— anincrease in T.P.l.
— an increase in data transfer rate.
m Single platter.
s Power save mode for portable PC’s (Laptop/notebooks).
= Low volume battery.

mLow — Low cost.

Y



'SMALL’ SIZE

Technology Requirements:

m Forreducedsizeto < 1.8"
— Component height reductlon
— Foot print reduction
Embedded servo technique — single platter.

Increased capacity by BPI/TPI increase, requiring more
bandwidth/resolution (> 10 bits).

~ Power save requires power down mode to < 1% normal.
Minimize normal power drain to maximize life of fixed size
battery.
5V only operation reducingto 3V + 10%.
Fast Interface speed for high speed uP’s/DSP.

Integration of additional functions.
— Power drivers/devices and control circuits for VCM.
— Servo demodulation spindle control functions.
SMD packaging SOIC/PQFP for small foot print.
TSOP/TPQFP for low (thin) packages.




Complete embedded servo front end for HDD
Demodulator channel block diagram

RAM
Buffer RAM
Controller System
SCSI/AT Interface
|l
R/W Interface
Amp Data sequencer,
Controller & ECC
uC or DSP
Interface
AD7773
| | i
| | Embedded
' I Servo : ROM
| VCM Demodulator
|
l EQ Power
SPINDLE | — 7 Tl Ampiitier
MOTOR P
ADSP21A9
|
|
I Power ,
~~~~~ Output  je—| SPIndle
Stage Controller

DEC '91 16-Nov-91




/ Complete embedded servo front end for HDD \

Seer Caerie)

Vee
— )
A\ S

CLIUN
—)
T AD7773
am
ADC

\/

i)

Vet

ADCREG4

Vg

CONTROL REGISTER

A0 ADORESS

. .£ DECODE "'7‘4'
BUS INTERFACE
CONTROL LOGKC

3 Wh o 0GND AGND AGND
DEC '91 16-Nov-981

— Embedded Servo Demod.

— BICMOS Technology

— 10 Bit Resolution DAC (VCM) + ADC

— Areadetect for increased noise immunity

— 'MOTEL’ Interface

— BV operation + 10%

— Power Down option

— On chip ref.

— Gated/Signal Sync’d mode (ZCD)

— Additional 8 bit DAC — for spindle control

— 5MHz signal input allowed

— 2.1 USEC conversion time per acquired burst.
— Software control # of bursts, # cycles/burst.
— 28 SOIC /32 pin TSOP




b;:::::::::::;. ; -
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T TR s 1 =
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A
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* CMOS ;’; i AN LI BEE]
*5V + 5%

* 8 CH 10 bit ADC 2.5 uSEC.

*Two 10 bit DAC'’s

* Area Detection

* PGA, software control

* Gated control of integration
* # bursts software control

*Voltage fault detection

* On chip ref.

* Motel Interface
* 44 SOIC

1



SMALL DRIVE

Further Integration : Options:

* Merge A/D and D/A function with DSP/uP

* Merge A/D & D/A function with
— VCM Power Control

— All Spindle Control Functions
— Programmable servo timing control

(Servo demod. merged with Read Channel
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2.5" Future Integration (1992)

4/5 Chips

80 MBytes

45,000 BPI

1S5S MB/S Transfer
19 mS Access Time

Write Path

Data
Qualifier}

S e — o— —— —

Buffer RAM
Controller

SCSI/AT
Interface

Data sequencer,
:| Controller & ECC

uC or DSP
Interface

Peak
Detector

2000000000000

VCM-DAC—
Linear/PWM

Spindle
Controller
& DAC
Linear/PWM

ANALOG
DEVICES®
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SMALL DRIVES

FUTURE:

® 3V Operation
Smaller motors

Lower power drive < 250 mA (included on chip)

N

CMOS

Single chip embedded servo?
Semiconductor Memories!!




ADC FOR PRML CHANNEL

" — TECHNOLOGY OPTIONS




PROPOSED ADC SPECIFICATION

Resolution:

Accuracy: Target
Sampling Rate:

Error Rate:

Input Bandwidth:

Input Signal Range:

"~ Input Capacitance

6 Bits

58 ENOB EFFEcTIVE MumEER oF RITS
72 MSPS

10E - 10

5.8 ENOB to 25 MHZ

5.0 ENOB to 50 MHZ (1.4 NyQuist)
1.5 Vpp differential

+/— 375 mV about 2.5V

5 PF Differential




Jitter
PSRR

Assumed Driving
Impedance:

Power Supply:
Power Dissipation

Temperature Range

Package

< 40PS
< 30db at 30 MHZ

100 ohms

5V + 10%
200 mW total

100 mW for comparators

0’to 70° C Ambient
0°to 125°C Junction Temp.

Surface Mount: (SOIC/PQFP)




KEY COMPARATOR SPEC’S DEDUCED
FROM ADC SPEC

Error Rate (ER).

Input signal bandwidth (B.W.).

Power dissipation (per comparator) (P.D.).

L.S.B. size/input signal range.




COMPARATOR EVALUATION

- Bipolar, CMOS, BICMOS circuits studied.

Relationships between technology/P d/ER/BW
established.




BIPOLAR RESULTS:

> 5 GHZ devices will meet 72 msps rate.
Power dissipation is marginal.
Dynamic range good.

> 100 MHZ input bandwidth possible.

Good tolerance of temp/supply variations.

Major problem with ECL to CMOS/TTL
conversion.

Can be extended to higher resolution.

NN



CMOS RESULTS:

Technology < 1u meets 72 Msps rate.
(No auto zero cycle).

Power dissipation just O.K.

Marginal on input bandwidth, sharp break — off.
Concern on dynamic range, comparator offset.
Solves the level shift problem.

More sensitive to temp/supply variations than
bipolar. |




BICMOS.:

Needs < 1u CMOS Technology.

Needs good bipolar device > 5GHz.
Meets power requirements.

Input bandwidth to > 100 MHZ possible.
Dynamic range O.K., due to low offset.

‘Good tolerance to supply/temp variations.

Possible to increase resolutions.

— Best Choice for Target Spec.




DAC’s FOR SMALL DRIVES OPERATING
AT 3V.

— What's the best architecture?
— Assume Fine Line CMOS technology

(a) Stnnq Dac:
— 2" Switches (256/1024)

— Poly Resistor string

— Guaranteed monotonic to
resolution

— 7/8 bits accurate

— Vout range; 0 to Vref

— Static output

— Needs high impedance load
— Not very fast
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(b) — Current Source DAC
(e.g. RAM DAC)

— Can be very fast

— Limited voltage output range (0 — 1.5V).

— 10 bits monotonicity possible
— 8/9 bits accurate

— Static output

— Could be calibrated.




() Switch Cap DAC

- C-2C architecture or variations there of

— Dynamic output for fixed input
code

— Needs post filtering

— Needs poly — poly caps. for 10
bits monotonicity

— Could be calibrated.







(d) (RMLM) DAC

— 10 bits in 100uSEC possible

— Dynamic output

— Needs post filtering

— Small size.




— Choice of architecture should consider complete function not
just D/A function i.e. follow on amplifiers; power drivers etc..

— Adjustment required to zero — out accumulated offsets in the
DAC/Driver chain.

— Use Calibration

But when can we calibrate??
Ref

Driver e
. DAC l/
LOAD

Cal Flag Cal Logic
| N
Ref

Cal Signal

DAC Code




ADC’S for Small Drives operating at 3V

— What'’s the best architecture?
— Assume fine line CMOS Technology
(a) QAR Technique:
— Efficient in area
— Low Power Consumption
— Limited in conversion speed
(1 uSEC at 8 bits, 3 uSEC at 10 bits)

— Use string DAC/Switch Cap. DAC/ Current Source DAC.
— Sampled data comparator design

— 9 bits no missed codes possible
— 7/8 bits accurate
— Could be calibrated.
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(b) Elash — Flash technique:

— Achieves faster conversion time (200/400 nSEC).

— Greater power consumption

— Larger in area
— 8 bits (4 + 4)/10 bits (5 + 5) resolution
— 7/8 bits accurate

— Sensitive to noise.
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— Choice of architecture should consider complete function
not just the A/D function, i.e. pre conditioning stages etc..

— With small signal span offsets become a problem.
— Use calibration

—when can we calibrate?

l Ref

Ain 1 O— \J \
Ain 20__ Mux ADC +/ %
inef T l :
Cal Reg o

T Cal Signal




(c) Eull Flash Technique:

— Very fast (50/100 nSEC)

— Power consumer

— large in area
— 8 bit resolution upper limit due to size

- — Sensitive to noise




MAGNETIC CHANNEL CHARACTERISTICS

EDGAR M. WILLIAMS
READ-RITE CORPORATION

O Recorded Magnetization Patterns

O Zig-Zag Transitions in Thin Films

O Mathematical Approximations of Transitions
O Estimation of the Transition Parameter

O Write Field Gradient Limits on Transitions
O Writing at High Transition Densities

O Time-Domain Asymmetry and Overwrite

O Readback Pulses and Transition Shape

O Readback Pulse Shape and Head Geometry
O Pulse Interference and Amplitude Spectra

O Pulse Shape Influence on Complex Data Patterns
O Pulse Shape Influence on Peak Shift

O Head and Medium Noises

O Influence of Noise and Interference on Error Rate
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OBSERVATION OF RECORDED MAGNETIZATION PATTERNS

BY ELECTRON HOLOGRAPHY

K. Yoshida, T. Okuwaki, N. Osakabe, H. Tanabe
Y. Horiuchi, T.Matsuda, K.Shinagawa
A. Tonomura and H. Fujiwara.

Empty

1pm
—t

_*_

Co film

G,
) ':(\wf}.
Y e

Magnetized | Transition” |
area region

(a)
Magnetic lines
éf/__-°1 stray field
R ",' ri _,F Empty
7 space

Co tfilm

Fig. 5. Recorded magnetizstion pattern on a Co
film (£ilm thickness=43nm, ccercivitvs=
27kA/m, saturation induction=:i.1T).

A bit length is SuLm. (@) Lorentz micro-
graph. (b) Interiference micreosrapn.
A ‘\-MP
F - -~ — - 7
|
>
0 4 | X
Mr v s Lewgtn
- £ : = V\ﬁ

Trams o~ PANW\L+W

A~
- T

space

l’Magnetization

(a)
\ I

)
il

Film

(b))
Fig. 6. Calculated interference image.
(a) Presumed magnetization distribution.
(b) Calculated interference image using
the model of (a).
€ 1.4}
ot
T 1.2"
-
2
He
Zz
o 0.8f ( "';’
= S’
& s
2 0.6 ° Uns )
<
a
= 04f
0.2 o
0 1 1 ! 1 .| 1 {
O 02 04 06 08 10 12 14
6-Mr
—_ m
o e (vm)
Fig. 7. Transition léngth as a function of M _/H

r ¢



IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-22, NO. 5, SEPTEMBER 1986 (P%q _34'3

EN

Zigzag Tranpsition Profiles, Noise, and Correlation Statistics

in Highly Oriented Longitudinal Film Media

by
T. C. Armoldussen

H. C. Tong

International Business Machines Corporation
General Products Division
San Jose, California
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WRITING FIELD VS POSITION
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Transition Parameter (micron)

Transition Parameter vs Coercivity
Write Gradient and Medium-limited
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WRITING AT HIGH TRANSITION DENSITIES
O Partial erasure of previously written transitions
(sometimes called "non-linear writing effects").

O Writing occurs near the trailing edge of the gap.

O Gap edge saturation exacerbates partial erasure effects
(writing field spreads and write gradient decreases).

O Transition Density

Density = 1/(T,;, x Velocity)

O Partial erasure of previous transition is likely if

Density = 2/G (G = gap length)

=~
|

or T,.= G/(2 x Velocity)

O Simple Example:

Velocity = 6 meters/sec (236 in/sec)
G = 040 um

For T,., = 33 nsec, partial erasure may occur.

O Effective gap length increases when writing with excessive

write current. ,:575 4
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AND TANH

ISOLATED PULSES FOR ATAN
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Volt

[zolated Pulses vs Time
169 F1/6/FZ: TFH and Ferrite Geosetries

i =i PP Teieteienteiaiieeiens PP T S T P L RTTRES TP

S I — S— SR W S S— -

2 ... ...................... ...................... .............. LS e D
: : : \ : -= 3838w ~ : _J PLUSO = G2 NSec

5 (R

i TR N i
t --= 1888/1000 we:

- ‘ AN
)

183 _,2 ...................... S i .................... :"mu"m_“m"iuf?ézé;77%%%K4«2$ﬁ“i_—

- : : :
- A L Pa -
f ? —5—~%5;;;2;;; .............................................. i

S e S T R

(X 1E-2)
USE HYPesr Bo=
V= 1/200 ""’{Seb TAnGCF AT FaMl Mibelis
T AAC Tl GanT~



Normal ized Slgnal vs Linear Density
Poles: 4.35; 3; 1.5 um
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Normalized Signal vs Density
(Thin, Thick, Asymmetric Poles)

O
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— P1/P2 = 2/2 micron - P1/P2 = 4/4 micron —— P1/P2 = 2/4 micron
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