
COLLECTED READINGS
ON A

DATABASE COMPUTER (DBC)

David K. Hsiao
Editor

1979

The Ohio State University

COLLECTED READINGS ON A DATABASE COMPUTER CDBC)

EDITED BY

DAVID K. HSIAO
DEPARTMENT OF COMPUTER AND

I N F 0 R M A T I 0 N S C I E N C E

T H E 0 H I 0 S T A T E U N I V E R S I T Y

C 0 L U M B U S , 0 H I 0 43210

MARCH 1979

LmTENTS

FOREWORD by Borgerson ix

FOREWOJW by Haynes x

l'HJ•:.FACJo: by Champlrw and llwfao xi

ACKNOWLlmGEMENT xiii

PART 1 - The Architecture of DBC

Reprint 1 - "Data Base Computers - A Step Towards Data Utilities," by Baum and Hsiao, IEEE Transactions
on Computers, C-25, No. 12, December, 1976, 6 pages.

Abstract and Index Terms
I. INTRODUCTION
II. PAST DATABASE COMPUTER ACTIVITIES
III. THE FUTURE OF DATABASE COMPUTERS
REFERENCES

Reprint 2 - "Concepts and Capabilities of a Database Computer," by Banerjee, Baum, and Hsiao, ACM
Transactions on Database Systems (TODS), 3, No. 4, December, 1978, 38 pages.

Abstract, Key Words and Phrases, CR Categories
1. PROBLEMS AND SOLUTIONS

1.1 The Problems of Database System Software
A. Name-Mapping Complexity
B. Performance Bottlenecks
C, Data Security Overhead
D. Add-on Approach to Security

1.2 The Problems of Building Database Machine Hardware
A. The Need for Distant Technology
B. Incomplete Hardware Designs

1.3 Problem Solving Concepts
A. Partitioned Content-Addressable Memories
B. Structure and Mass Memories
C. Area Pointers
D. Functional Specialization
E. Look-aside Buffering
F. An Integral Data Security Mechanism
G. Performance Enhancement by Clustering Techniques
H. Emerging and Existing Technology

1.4 Approaches to Database Machine Design
2. THE FUNCTIONAL CHARACTERISTICS OF THE DBC

2.1 A Back-End Machine
2.2 The Functional Model

A. Queries - The Symbolic Data Names Used by the DBC
B. Security Specifications - The Protection of Data
C. Command Execution - The Processing of Access Requests

2.3 The Need for Front-end Support
3. THEORY OF OPERATION

3.1 The Data Model
A. Storage Structure
B. The Clustering Process
c. The Security Process

3.2 The Basic DBC Operations
3.2.1 The Role of Security Enforcement
3.2.2 Name-Mapping and System Components
3.2.3 The Operation of the SM, SMIP, and DBCCP

A. Structure Memory (SM)
B. Structure Memory Information Processor (SMIP)

I II

1
2
3
5

7
8

9

10

11

12

14

15
16
18

19
20
22
25

27
29
30
31

c. Mass Memory (MM)
D. Database Command and Control Processor (DBCCP)

4. THE TECHNOLOGY OF THE DBC
5. CONCLUDING REMARKS
APPENDIX: AN ILLUSTRATION OF THE SECURITY AND CLUSTERING MECHANISMS

(1) A Sample Relational Database
A. Data Adjacency Requirements
B. Basic Security Requirements
c. The DBC Representation of the Sample Relational Database

(2) New Users and Their Access Privileges
(3) The Process of Creating a Database in the DBC
(4) Access Privileges of the User U
(5) Executing the Requests of User U

ACKNOWLEDGEMENTS
REFERENCES

32

33
35

36
37

38

39
40
43

Reprint 3 - "DBC - A Database Computer for Very Large Databases," by Banerjee, Hsiao, and Kannan, IEEE
Transactions on Computers, C-28, No. 6, 1979 (to appear in June 1979), 16 pages.

ABSTRACT
1. BASIC DESIGN GOALS 45
2. AN OVERVIEW OF THE DBC ARCHITECTURE 46
3. DESIGN CONSIDERATIONS OF THE ON-LINE MASS MEMORY 48

3.1 The Use of Moving-Head Disks
3.2 The Tracks-in-Parallel Read-out Capability
3.3 The Dynamically Associated Logic-per-Track Approach
3.4 The Content-Addressable Capability

4. THE OVERALL ORGANIZATION OF THE MASS MEMORY 49
4.1 Two Modes of Operation 50
4.2 The Need for Search Space Reduction 51

4.2.1 The Clustering Mechanism
4.2.2 The Maintenance of Indices

5. DESIGN CONSIDERATIONS OF THE STRUCTURE MEMORY
5.1 Pre- and Post-Checking for Access Control
5.2 The Notion of Security Atoms 52
5.3 The Structure Information
5.4 The Performance Requirement and Choices of Technology

6. THE OVERALL ORGANIZATION OF THE STRUCTURE MEMORY 53
6.1 The Notion of Bucket and Parallel Array of Memory Unit-Processor Pairs
6.2 The Use of Emerging Technologies 54
6.3 The Look-Aside Buffer

7. THE FIVE OTHER COMPONENTS OF THE DATABASE COMPUTER
7,1 The Keyword Transformation Unit
7.2 The Structure Memory Information Processor 55
7.3 The Index Translation Unit 56
7.4 The Security Filter Processor
7.5 The Database Command and Control Processor 57

8. CONCLUDING REMARKS 58
8.1 A Raw Estimate of the Hardware Performance
8.2 Hardware Performance and Limitations
8. 3 Performance Evaluation of the DBC in Supporting the Existing Applications 59
8. 4 Future Work

ACKNOWLEDGEMENTS
REFERENCES 60

Reprint 4 - "Data Network - A Computer Network of General-purpose Front-end Computers and Special
purpose Back-end Data Base Machines," by Banerjee and Hsiao, Proceedings of the Inter
national Symposium on Computer Network Protocols, February, 1978, 12 pages.

ABSTRACT
1. MOTIVATION AND REQUIREMENTS
2. THE NETWORK ENVIRONMENT

2.1 Centralized Data Networks
2.2 Distributed Data Networks

3. DATA MANAGEMENT PROTOCOLS
3.1 Im Attribute-Based Data Model
3.2 Protocol Primitives
3.3 Preparatory Requests
3.4 Retrieval Requests
3.5 Data Manipulation and Update Requests

4. A CASE FOR PERFORMANCE
4.1 The Information Management System (IMS)

IV

63
64

65

66
67
68

69
70

i

I
I

4.2 Representing an IMS Database in the Attribute-Based Model
4.3 Translation of DL/l Calls into Data Management Protocols
4.4 DBC Architecture
4.5 DBC Performance in a Network Environment

5. CONCLUDING REMARKS
REFERENCES

PART II - DBC's Capability in Supporting Existing Database Management Application

Reprin.t 5 - "Database Transformation, Query Translation and Performance Analysis of a New Database
Computer in Supporting Hierarchical Database Management," by Banerjee, Hsiao and Ng,
(unpublished).

ABSTRACT
1. MACHINE ELEMENTS

1.1 Hardware Capabilities of DBC
1.2 Data Structure

2. A HIERARCHICAL DATABASE MANAGEMENT SYSTEM (IMS)
3. DATABASE TRANSFORMATION

3.1 The Notion of Symbolic Identifier
3.2 The Conversion of IMS Segments
3.3 The Clustering of the New Database

4. QUERY TRANSLATION
4.1 Illustrating the DBC Execution of DL/l Calls
4.2 Data Structures Used for the Execution of Dl/l Calls
4.3 Algorithms for the Execution of DL/l Calls
4.4 A Case of Optimization

5. PERFORMANCE ANALYSIS
5.1 Storage Analysis

A. Database Storage Requirement in DBC Environment
B. Database Storage Requirement in GPC Environment
c. Database Storage Ratio

5.2 Time Analysis of Transaction Execution
A. Unit of Measurement
B. Physical Data Organization
c. Estimating Tree Breadth and Cylinder Capacity
D. Classification and Analysis of Transactions
E. Performance Gains
F. Database Updates

6. CONCLUDING REMARKS
ACKNOWLEDGEMENTS
REFERENCES

71

72
73

75

76
77

78

79

80

81
82

83

84

85

88

89

Reprint 6 - "The Use of a Database Machine for Supporting Relational Databases," by Banerjee and Hsiao,
Proceedings of che 5th Annual Workshop on Computer Architecture for Non-Numeric Processing,
August, 1978, 8 pages.

ABSTRACT
Introduction
The Operating Environment - Front-End Computer and DBC

The DBC Data Model
DBC Commands

The Relational Data Model
Representing A Relational Database
Translation of SEQUEL Queries
A Brief Look at Performance
Concluding Remarks
References

Reprint 7 - "Performance Study of a Database Machine in Supporting Relational Databases," by Banerjee
and Hsiao, Proceedings of the 4th International Conference on Very Large Data Bases,
September, 1978, 11 pages

ABSTRACT

91

92

93
94

96
97

INTRODUCTION 99
A BRIEF LOOK AT THE DATABASE COMPUTER CREATING A RELATIONAL DATABASE SUPPORTING A DATA
SUBLANGUAGE PERFORMANCE ANALYSIS

Raw Database Storage Requirement
A. In the GPC Environment
B. In the DBC Environment

Index Storage Requirements
A. In the GPC Environment

v

103
104

B. In the DrlC Environment
Query Execution Time

Option 1
Option 2
Option 3
Option 4
Option 5
Option 6
Option 7

CONCLUDING REMARKS
REFERENCES

Reprint 8 - "A Methodology for Supporting Existing CODASYL Databases with New Database Machines," by
Banerjee and Hsiao, Proceedings of the ACM '78 Conference, December, 1978, 12 pages.

Abstract and Keywords

106
107

109

1. Background 111
2. The Database Computer (DBC) 112

2.1 A Brief Look at the DBC Organization
2.2 Data Representation

3. The CODASYL Databases
3.1 Data Definition Facilities
3.2 Data Manipulation Facilities

4. Database Transformation
4.1 Representation of a Record
4.2 The Notion and Assignment of L - numbers
4.3 Representation of Set Types
4.4 Type - D Keywords and Clustering
4.5 Directory Storage Requirement

5. Query Translation
5.1 Organization of the Database Interface (DBI)
5. 2 The Set Information Table
5.3 Retrieving Entire Set Occurrences
5.4 Traversing Set Types
5.5 Retrieving a Record or a Group of Records
5.6 Relative Performance

6. Concluding Remarks
Refernces

PART III - An Implementation of DBC

Reprint 9 - "A Design and Implementation of a Data Base Computer", by Bray, Freeman and Jordan
(unpublished)

1. Introduction
2. Previous Approaches
3. Sperry UNIVAC Approach
4. Data Base Computer Design

4.1. Architecture
4.2. DBC Operation

5. Data Base Computer Status
6. Conclusion
7. References

VI

113

114

115
116

117

118
119

120
121

123

124

125
126
12 7

TO MY FORMER AND PRESENT RESEARCH ASSOCIATES
AND ASSISTANTS ON DBC WORK

Vil

FOREWORD

In a gross sense, direct user manipulation of data may be considered
analogous to programming directly on an instruction processor, file manipu
lation may be compared with programming in assembly language, and the use of
a data base management system may be likened to programming in a high-level
language (HLL). The development of the instruction processors of contempor
ary information processing systems has been directed more toward the effi
cient execution of programs written in the most widely used high-level lan
guages than toward the efficient manipulation of information as described,
stored, and maintained by current data base management systems (DBMS).

The tailoring of the architectures of most computers toward HLL execu
tion has paralleled the development and usage of high-level languages. Just
as fifteen years ago there were still debates as to whether most programs
should be written in a HLL, today we occasionally hear debates as to whether
file systems should give way to DBMS. The answer regarding DBMS is as clear
to this observer now as was the answer regarding HLL in the early 60's, so
we must take steps to handle DBMS requirements in a more efficient manner.

Some features have been added to all modern instruction-processor arch
itectures to aid in manipulating data, but all major systems remain ineffi
cient for the task of supporting a data base management system. The proces
sor architecture needed for executing user programs written in a high-level
language, and for supporting a complex operating system, is not the same as
the architecture needed for supporting a DBMS. The problem is becoming even
more acute with the advent of new DBMS models. One possible solution is to
create an architecture which is efficient for both DBMS manipulation and
high-level language execution. Because of significant differences in re
quirements for these two environments, the obstacles to creating such an
architecture are great--a fact attested to by the lack of any such architec
tures in existence today.

An alternative solution is to recognize that the differences between the
requirements for HLL execution and DBMS manipulation are so great that the way
to achieve the best overall efficiency is to use a different architecture for
each task. This approach has been taken by several research teams over the
last few years, and significant results have been achieved. The scheme
generally proposed is to attach to an existing system a back-end processor
with an architecture tailored to data base manipulations. This technique
appears to have a lot of inherent merit. The significant time lag in the
development of DBMS as compared with HLL is the main reason contemporary ar
chitectures are much more efficient at handling the latter. It is likely
that had the development of data base management systems preceded the devel
opment of high-level languages, we would now be considering a scheme to at
tach to an existing system a front-end processor with an architecture tail
ored to high-level language execution.

One of the leaders of the investigations into architectures for effi
ciently manipulating data base management systems has been Professor David
Hsiao of Ohio State University. Professor Hsiao has collected this set of
nine papers on the general approach to data base computers which he has so
successfully pioneered. I recommend the reading of these papers as an excel
lent tutorial on the subject of data base computers and as a reference source
for further readings on other approaches to this topic.

IX

B.R. Borgerson, Director
Research and Technical Planning
Sperry Univac

FOREWORD

Conventional database packages cannot meet the needs of many systems
currently nearing completion. Electronic data processing hardware has been
decreasing in cost, size and power requirements at a rate of a factor of two
every two to three years. In command, control, communication and intelli
gence systems, the growing capability of digital hardware has made possible
greatly expanded data acquisition and processing systems. Although these
systems, in themselves are well designed, the increased availability of data
is highly desirable. Unfortunately, the combined effect of increasing quan
tities of data results in longer access times, reduced data security, and
increasingly complex problems in data correlation. Conventional database
structures w.ould be drowned in the deluge of data from new Navy systems.

The Office of Naval Research anticipated the above problems, and in 1973
began supporting basic research efforts directed toward the design of methods
to implement very large databases which would access data rapidly, securely,
and which could give the database system designer a very high-level view of
the data. To be practical, the Navy required that this database system be
implementable from hardware which would be available commercially in the
near-term time frame. Finally, it was essential that existing application
software written for relational, hierarchical, network or CODASYL type data
base structures should be transportable to the Data Base Machine without ma
jor rewriting.

The specific approach to the above problem which appeared most promising
was to design a separate back-end database computer optimized for access to
very large databases. The resulting machine, the Database Computer (DBC)
uses a synergistic combination of cleverly chosen hardware to achieve the
design goals. These structures are described in the various parts of this
book.

By the end of 1977, the fundamental structure of the DBC has been spe
cified and analyzed in detail. The primary rem;iining question was whether
such a machine could actually be built, and whether it could meet the practi
cal requirements of a production component of a large system. Questions such
as cost, difficulty of maintenance, recovery in the event of hardware failure,
and operations in an update-intensive environment, have eventually to be an
swered.

In an attempc to encourage some computer manufacturers to address the a
bove questions and to prototype the results of the ONR funded basic research,
Professor Hsiao visited many companies, described the Database Computer (DBC)
and offered his assistance in getting such an effort off the ground.

It appears that Sperry-Univac has responded to this suggestion, and is
now in the process of implementing a prototype machine. The Office of Naval
Research is pleased at this transfer of technology from basic research to a
prototype which will be available to solve the Navy's critical probl_ems deal
ing with ever-increasing amounts of data.

Leonard Haynes,
Office of Naval Research

x

PREFACE

The issuance of this collection of reprints is indicative of a successful story. The
success involves many people and organizations, ranges over a number of years and covers var
ious localities. The one thing that threads through time, places and individuals towards the
success is the notion of database computer.

It is the database computer notion that causes a federal research funding agency (in
this case, the Office of Naval Research) to support initially a typical university (i.e., the
Ohio State University) for pursuing basic research and study of database computer and to en
courage subsequently a major computer industry (Sperry-UNIVAC) for active pursuit of the in
strumentation of and prototype work on a database computer.

In 1975, when the research was first started, there were one professor (Dr. David K.
Hsiao) and one student (Mr. Richard I. Baum) on the project. By 1979, the database computer
research has produced three Ph.D.'s and one M.S. Dr. Baum has since joined IBM Poughkeepsie
Lab, Dr Krishnamurthi Kannan is with IBM Thomas J. Watson Research Center and Mr. Fred Ng is
with Bell Laboratories. Dr. Jayanta Banerjee received his Ph.D degree just this month. At
the present time, the OSU research team consists of, again, a professor (Dr. David K. Hsiao)
and a student (Mr. Jaishankar Menon). On the other hand, since 1978 there has been a large
fusion of researchers from UNIVAC (Mr. Olin Bray, Dr. John Jordan, and Dr. Harvey Freeman)
and a technical supervisor (Dr. George A. Champine). In addition, we have an energetic spon
sor from ONR (Dr. Leonard Haynes) and a high-level manager from UNIVAC (Dr. Barry Borgerso~).
The amount of traffic among Washington, D.C. (ONR), Philadelphia (UNIVAC headquarters), Minn
eapolis (UNIVAC Advanced System Group), and Columbus (OSU) is heavy.

Despite the large number of people and organizations involved and despite the difficulty
of logistics and the passing of time, the database computer notion has been crystalized, con
ceptual and functional designs of a database computer known as DBC have been advanced and a
prototype implementation of a DBC-like database computer has been proposed. In all likeli
hood, a plan for prototype construction and experimentation is to follow immediately.

The collection of nine reprints is divided into three parts. In the first reprint of
Part I, the arguments for a hardware architectural solution to database management are artic
ulated. Both the conceptual and functional designs of the database computer (DBC) are ad
vanced in the second and third reprints. In making the advances, it is pointed out that a
viable database computer may have to eliminate the use of staging and memory hierarchies, to
provide high-volume and low-cost content-addressable online database store and to utilize
concurrently structural information about the database. It also argues for and proposes a
design of a well-integrated hardware security mechanism for access control and a clustering
mechanism for performance enhancement. In the last reprint of Part I, the use of database
computers as back-end machines in a distributed computer network environment is envisioned.

In Part II, there are three sets of papers -- one for each type of database management
system software, namely, the hierarchical (e.g., IBM IMS), relational (e.g., IBM System R)
and the CODASYL (e.g., UNIVAC DMS 1100). The reprints attempt to show analytically the two
most important factors involved in the replacement of existing system software with the new
hardware machine. First, is the database computer a sufficiently high-level machine so that
much of the existing databa.;e management system software can be replaced by the arrival of
the database computer? The answer to this question is affirmative. Second, are there diffi
culties and penalties in transforming the existing databases and applications to the new ma
chine? Transformation of existing databases in conventional format into the new storage for
mat presents no problem; it is only a one-time overhead. Applications, on the other hand,
need not be converted or reprogrammed at all. Although there may be no net savings in stor
age for the transformed database, the machine performance in the execution of typical trans
actions for the existing applications can be one or more orders of magnitude of improvement.
These improvements are evident in hierarchical, relational and CODASYL types of database
management.

In Part III, there is one paper. This paper represents the present thinking of a proto
type design and configuration of a DBC-like database computer. The aim of the design is to
come up with a prototype which can be constructed and completed in nine months. For the
prototype machine, a number of experimentations are planned.

This collection of reprints does not deal with the use of DBC for new applications. It
also does not provide a closer discussion of the design of the security mechanism, clustering
mechanism and post-processing mechanism (such as the joint operation). A number of technical
reports are being issued on these topics: they are available upon request. At this point of
our endeavor, the collection is mainly aimed to serve as an orderly introduction to the DBC
work. We would also like to use the issuance of the collection as a first testimonial to a
successful story on DBC work.

G.A. C.
D.K.H.

XI

ACKNOWLEDGEMENT

This copy of reprints is not made or distributed for direct commercial advantage.

Its sole purpose is to place scatteredly published and unpublished papers on DBC writ

ten in different time periods by many people into a coherent collection for an orderly

introduction to and comprehensive understanding of the DBC work,

The permission to copy reprints 1 through 9 is granted by the first author of

each reprint, The permission to copy reprint 4 is also granted by the publisher, A.

Danthine of the University of Liege and is gratefully acknowledged herein,

XIII

PART I

THE ARCHITECTURE OF DBC

1254 IEEE THANSAl'TIONS ON ('OMl'l lTEHS, \'01.. <. ~!i. NO. 12, DE< 'EMlrnH Hl76

Database Computers-A Step Towards Data Utilities

RICHARD I. BAUM AND DAVID K. HSIAO, MEMHER. IEEE

Abstract--The concept of the data utility as a database system
capable of supporting a data model, a large-scale on-line store, and
concurrent user access has emerged in recent years. New tech
nology can make the notion of database computers-a specialized
hardware system for database use-a viable one. A summary of
previous activities and a discussion of the state of the art.of database
computers is given. An attempt is made to suggest guidelines fo1·
futurr database computer architecture research.

Index Terms-Computer architecture, data models, database
t"omputers, database engineering.

I. INTHODl 'CTION

I N RECENT years, the concept of data utility began
to emerge. A data utility is a centralized, integrated

database system which provides shared, concurrent access
with security and integrity for a large number of on-line
users. The acceptance of this concept was perhaps
prompted by the following factors.

1) Major advances in memory and processor technology
now make the on-line storage, access, and management of
large databases(> ion bytes) feasible.

2) There is an acute need to build integrated data stores
for many applications to eliminate unnecessary data re
dundancy, to facilitate data sharing, to maintain the in
tegrity and consistency of the data, and to control access
to the data.

:H There is a better understanding of how to develop
database systems which provide interfaces having a high
degree of independence from the physical structure of the
database and the underlying hardware.

Database systems enabling users' application programs
and users' ''views" of the database to be immune from
changes to the physical structure of the database are said
to be data independent. The logical data structures and
operations which provide such data independence are
called a data model. To minimize the number and types
of "mapping" information and operations which relate the
logical structures of the data model to the physical struc
tures of the database, the system designers attempt to
make the physical database structure "close" in some sense
to the logical database structure. A major benefit of a data
model is that it provides a unified way to specify access to,
and control of, the database. Once a query language is

Manuscript received April 12, 1976; revised June 28, 1976. The work
reported herein was supported by the Office of Naval Research under
Contract N00014-75-C-0573.

H. I. Haum was with the Department of Computer and Information
Science, Ohio State Universitv, Columbus, OH 43210. He is now with
IBM, Poughkeepsie, NY. ·

D. K. Hsiao is with the Department of Computer and Information
Science, Ohio State University, Columbus, OH 43210.

defined for accessing the database, it can be extended in
a natural way to allow specification of security and integ
rity constraints (1), [8], (15], (19), [39]. A security constraint
identifies which kind of accesses and manipulations may
not be performed by one or more users on certain data el
ements. An integrity constraint indicates how the logical
consistency of the database is to be maintained during user
access operations.

A data utility must have the characteristics of a public
utility. It must be able to support shared, concurrent access
while enforcing the security and integrity constraints
specified by its users. It must have adequate capacity to
handle the needs of its users and it must be reliable, cost
effective, and responsive. To be a data utility, a database
system must therefore meet these requirements.

1) lt must provide adequate storage capacity. A con
temporary large database system must support an on-line
database of 1-10 billion bytes in fast access (i.e., nonar
chival) storage devices.

2) It must support a high-level data model and an ap
propriate query and access control language.

3) It must support shared, concurrent access with ade
quate response time and with security and integrity en
forcement.

4) It must be highly reliable.
Software-implemented database systems for conven

tional computers can ususally meet the first and second
requirements without difficulty. The third and fourth
requirements are difficult for conventional database sys
tems to meet. Many of the problems of conventional da
tabase systems are due, in large part. to the requirement
for mapping information and operations. Name mapping
operations convert symbolic data names represented by
a query into storage addresses where the data named by
the query can be found. Since the query language is made
of expressions of predicates, it is usually far more powerful
than the addressing scheme implemented by the hardware.
More involved mapping algorithms are therefore needed.
Name mapping algorithms must be highly optimized if
they are to perform well. In particular, these algorithms
must minimize their secondary storage access require
ments for the named data. To accomplish this most name
mapping algorithms use very complex auxiliary data
structures to aid their operation. These auxiliary data
structures are also stored in secondary storage. The com
plexity of name mapping algorithms coupled with their
requirements for secondary storage accesses can compro
mise both the performance and software reliability of the
system .

.1

2
l'()we>rf'ul data securit\' and data integrit:• facilities are

a H'vere 1wrfurmance hindrance in contemporary systl'ms.
The most powerful data security and data integrity
mechanisms allow specifications to be written in the query
language of the system. To perform access operations it is
therefore necessary to perform multiple name mapping
operations--one for determining the required data and
se\·eral for determining the data being affected by these
curit\· and integrity constraints. The repetitive use of name
mapping algorithms to carry out security and integrity has
increased considerably the performance penalty of present
systems. This is one reason why data security and data
inl<·grit\,· facilities are mostly primitive or nonexisting in
cont <'mporan:systems.

Specialized database computers can be developed to
on·n·ome tht' problems discussed above. To do this, it is
('kart hat such ;1 rnmputer must be designed with two ke:>·
goals in mind: first, the provision of an addressing scheme
which inherently simplifies the name mapping problem
and thus simplifies the algorithms needed for name map
ping. Second, the provision of hardware which speeds up
some or all aspects of name mapping algorithms. An era
when it will be possible to seriously consider the design and
cone;! ruction of database computers is upon us. This era
is heralded by three important developments: first, the
availability of new hardware technology; second. a better
knowledge oft he algorithms required to realize database
s\·stems: third. an understanding of data models for da
tabase systems. New technologies will allow dedicated,
functionally specialized components to be built for data
base systems. Once database algorithms and users' needs
in terms of dat;i models are understood it will be possible
to detPrmine with sornP confidence where the limitations
ol ('on\·ent ional hardware lie and to overcome these limi
t al ions with npw hardware architectures. The impact of
ll<'W l<'chnology on database computer architectures will
he> dis\·ussPd in the last section.

JI. ,.PAST DATABASE COMPUTER ACTIVITIES

It was recognized quite early that name mapping would
be a problem in a data retrieval system and that some form
of content addressing would be desirable to ameliorate the
problem. This led to the pioneering work in associative
memories [32]. The early work in database system hard
ware tended to be very device oriented; that is, the designs
were centered around a single hardware compon.ent.
Typically, these early machines were composed of a con
ventional CPU coupled to a memory hierarchy that had
an associative memory or associative process at one end
of the hierarchy [6], [13], [14], (26], [28]. The associative
memories employed by these systems were not originally
designed with database systems in mind (e.g., the designs
lacked an overall data model) and so these designs gener
ally had to make the database application fit the associa
tive memory devices instead of designing an entirely new
;;ystem to meet the application. Because of the inherent
problems of memory hierarchy management these early

s\·stt•ms could not offer much improvement .over database
systems implemented with conventional hardware.

After the appearance of the above devices it was recog
nized that much larger associative memories would be
necessary to build large-scale database computers. To do
this, Slotnick introduced the idea of the logic-head-per
track rotating storage [36]. Such a device could be used to
realize a much larger--albeit much slower-associative
memory than those used previously. Slotnick's idea was
adopted in varying forms by Parker [33], Parhami (31], and
Minsky (27]. This work also emphaslzed the hardware
properties of the devices rather than how they could be
used to support data models for database systems.

As database systems matured it became clear that as
sociative memories for database management applications
would have to support a much more elaborate form of data
structures than did earlier devices. The CASSM project
I 11 J, I I 8j, I :l8 J was an attempt to build a logic-head-per
t rack system capable of handling very general data
srructures such as hierarchies. This was the first associative
memory hardware project to recognize the need for the
data structures required for database systems and to de·
sign a device from the outset to support them. A general
limitation of logic-head· per-track designs is the high cost
of their fixed-head disk storage and associated logic.
Ne\'ertheless, the utilization of associative membries to
minimize name-mapping complexity on database systems
was an encouraging one.

To amid the problems of expensive fixed-head disks,
others have tried to build specialized components to aug
ment conventional systems by performing one or more
particular database system functions. Most of the work in
this ar<'a has concentrated on directory memories [S], [12]
and on hardware to process directory data [20]. Although
the din·ct ory plays an important role in reducing name
rnapping complexity, this work, like the early work in as
sociative memories, devoted most of its effort to the design
of the hardware component rather than to the construction
of an overall computer to meet the requirements of data
base systems. Today's database computer designers have
a much larger body of database system knowledge at their
disposal than did their predecessors. As a result, it is pos
sible for today's designers to grasp the problems of data
base systems and to then fabricate systems specifically for
solving database system problems.

The rotating associative relational storage (RARES)
design [25] is aimed at providing a high performance
content-addressable memory for the realization of a rela
tional database [9]. The RARES hardware operates in
conjunction with a query optimizer such as SQUIRAL [37]
to support a relational query language. Physically, RARES
is connected to a CPU and buffer memory by a high speed
channel. RARES uses a head-per-track rotating disk in
which relational tuples (i.e., records) are stored orthogo
nally across tracks in "bands." A search module is associ
ated with each band to perform access operations on the
tuples in the band. The band organization greatly reduces
the complexity of sending relational tuples to the CPU for

pr!1\'es:-;ing. Thi:-; i:-; just onP example of how !{:\!{ES was
«arl'fulh laid 011t to f'a<"ilitate the opPration of other ('Olll

po1wnt" .. \not ht'r example uf this is its abilit.v to maintain
relati"nal t llples in sort order or to rapidly sort tupks on
a d!imain I i.e .. on a record attrihllte) to focilitatt' <'Prtain
kinds !ii s('arch operations. Due to its head-per-track ar
chill·!·111n" H:\HES is practical onlv for databasps smaller
than lW h\·tes in size.

The rutating associative processor (RAP) [:30j wao; al:-;o
desigtwd h1r a relational database. This system is wr~·
similar\!; (':\SSM and is designed to run as a stand-aione
,;\·stem. The machine has a high-level "assembh· language"
that i:-; used to write RAP programs which execute rela
tional queries. l 1nlike RARES, RAP was not designed with
an optimizer in mind. Like RARES and CASSM. the da
ta has!:' handled by RAP is at most 10~ bytes in size.

The liatabase computer 1DBC) is composed of fun('
tionalh· :-;pec:ialized components [3], [J] to realize an at
t rihute hased database [21], [22]. Unlike earlier designs
this !lne was explicith· aimed at supporting large-scale
databases and at prO\·iding hardware support for securitv
enforn·rnent. The DBC contains specialized components
for th(• st()rage of directory information. for the proceso;ing
(d r!iwcton· information. for the storage of the datahasP.
:ind f"r s('('mitv enl'or<·ement. Tlw first thn•p of t lws('
nirnp"lll'!lls Wl'rl' ditlt•r(•nl forms of a hl!)('k-orit·ntPd.
<'!11ttL·111 addressable memory. Thi:-; machine used hard
ware rnntent addressability to facilitate not only high
speed retrieval of data hut also to allow fast updating of the
database. The DBC actually stored the database in mod
ified m()\·ing-head disks whose cylinders were individually
content addressable. This may account for its ability to
handle wn· large databases. The design also included an
integrated component to enforce security specifications
given in the query language of the system.

:\trend may be apparent in the way successive database
computers were designed. As database system knowledge
increases. s\·stems become less device oriented and more
functionally specialized towards supporting a specific data
model. Furthermore. it seemed that a database computer
would require more than just one functi()nally· specialized
component. An implication of this trend is that database
computer designers must be experts in both data models
and hardware system architecture. In the next section, a
projection of the future of database computer research is
attempted.

III. THE Fl:n·RE CJF DATABASE Co:v1Pl.'TERS

A description of the likely advances in memory and
device technology over the next decade and a discussion
of the implications of this technology on database com
puter arc bi tec:ture is given here.

Device technology advances will occur primarily in three
areas: processors, semiconductor random-access memory
(RAMl, and all-electronic bulk memories. The cost-to
performance ratio of CPU's will decline rapidly over the

twxt tt•11 .\·('ars. l .11w co;.;t ('Pl:\ with t lw 1wrl'or111a1H·t·
rnpahilit i1·s of toda\'\ nwdium-prin·d mi1ti('omp11t('r:-; wiil
prnlwhl\· lw a\·ailahlP for a ft·w lrnndred dollars in fi\P
.war:-; and perhaps tnll('h le;.;s hv t lw mid i DrlO"; [;\;-)j. Tlw
cost of semiconductor RAM svstems will also drop drns
ti('ally'. When 64K-hit H.AM ('hips get into full production
(pnbaps. hy the early 19rl0's) the pri('e of main mpm11n·
should decline to about 0.():2 .. ()_()4 cent;; per bit i:2·1]. The:;p
low cost ('PU's and memory svstems ·;..;ill make it quite
feasible t(\ dedicate processors to specific database func
tiors. The low cost of these systems will completely obviate
the need to keep their utilization high and thus the\· can
be dedicated to tasks which are intermittent in nature.

All-electronic: systems will replace fixed-head disks in
the l 980's. These systems will probably use magnetic:
bubble memories [7], [10], electron beam memories [2~l],
or semiconductor memories [24]. These all-electronic: re
placements for fixed-head disks will offer a one or two
order of magnitude improvement in access time over ro
tating devices and could also be less costly. Electron heam
memories are onh· feasible in large sizes and they could
provide c:1pacities of 108 -lffJ bytes. Magnetic bubble
memories are feao;ible in large or small sizes. They· can
therefore he ust>d to replace fixed-head disks !with c:i

pacitit>s of 10'~ lO" h:-;tt·s) and to implenwnt logic-per-trn('k
d('\'i!'('S in !'onjunct ion with microprocPssors. Tlw cost of

the latter kind of memorv would be somewhat higher than
the cost of a direct fixed- head disk replacement due to the
need for a ~arge number of microprocessors and a more
complex hussing structure. Semiconductor systems could
he used to build stores of 10~ -l08 bytes in the 1980's. Such
memories could thus provide a fixed-head replacement
with moderate capacities and very high performance.
:\Ioving-he 0 rl disks will continue to he the mainstay of
database bulk storage. Density improvements shouid allow
at least l()!' bytes per drive in the 198Cl's [16], [17]. Thus,
s\·stems with 10 1"-10 11 bytes of disk storage would he
possihie. \'ery large on-line archival systems will also be
available: such systems will have very slow access times
(around 1 () s I hut will have capacities perhaps exceeding
I{) 1 ~· hvt PS.

The design of a database ('omputer is strongl_v influenced
hy the available technology. To take advantage of the de
vice technolog~' developments discussed above a number
of guidelines for database computer architects are now
given. Future database computer designs will be influenced
by these observations: first, the high speed on-line bulk
storage of the system will be moving-head disk storage and
consequently disk accesses must be minimized for high
system performance. Second, the low cost of processing
power makes it quite feasible to use many independent
functionallv specialized components in the system to im
prove throughput.

The implications of moving-head disks on database
computer architectures are wide-ranging and significant.
To reduce disk accesses two things must be accomplished:

3

4 llAl':\J ,ANI> HSIAO: l>ATAHASE COMPllTEHS

Size 101 - 108 bytes
Technology Magnetic bubbles. Electronic beam or
Semiconductor RAM

Structure Memory
~---------------------------,

I
I
I

Electronic
Memory

Electronic
Memory

Electronic
Memory

Processor

Processor

Processor

Controtler

I
I
I
I
I
I
I
I

L---------------------- -----~

Size 10"-1d' bytes.
Technology· Moving· head disks with high density content -
addressable cylinders

Database Store
r----------------------------~

I
I
I

Processor

Disk
Memory

Disk
Memory

Disk
Memory

~---- --------------------------J

To Archival and
Bock-up Sloroqe

1257

Functionally Specialized Processors for Various Database Systems
Operations Such as Query fnte.rpretotion and Optimization,
Structure Memory Processing, Security and Integrity Enforcement
and Update

Size- > 1o'2 bytes
Technology: optical
storage or magnetic
tape coupled with
mechanical access
mechanisms

Fig. I. Future database machine.

first, the amount of mapping information, such as pointers,
on the disk storage should he made as small as possible. In
this way, disk accesses will, for the most part, he executed
to retrieve useful data rather than to retrieve intermediate
information that is never needed by the user. Second, the
need for clustering the contents of the database is great.
A good clustering technique will place data that are likely
to be simultaneously accessed, physically close together
on the disk (say, in the same cylinders).

The need for clustering and the need to segregate the
database from its mapping information may suggest sev
eral architectural principles for database computer arch
itectures. Since mapping information would be accessed
frequently to process queries, this information should be
kept in a fast, functionally specialized "structure memory."
This memory would be implemented with one of the all
electronic fixed-head disk replacements mentioned earlier.
To facilitate clustering the amount of information obtained
by each disk access should be as large as possible. This
suggests that all disk 1/0 be carried out in a parallel-by
track mode for each cylinder accessed. Furthermore, use
of several evenly spaced read/write heads per surface on
the access arm could reduce arm movement latency [29]
and, perhaps, allow data from several cylinders to partic
ipate simultaneously in an 1/0 operation. Because of the
high data transfer rates of the structure memory and of
disks with parallel-by-track I/O, it would be very desirable

to provide localized, functionally specialized data search
and manipulation logic for each.memory device. This
strategy would allow parallel operation of all memory
search operations and avoid the need for a shared high
speed centralized processor and very high-speed data
busses. The availability of low cost processors and RAM
memory systems will make this design strategy quite rea
sonable.

Other functionally specialized components will be
needed in a database computer. For example, processing
elements could be designed to handle operations such as
the relational "join operator" [9], [34], to sort information
for storage or for processing, to process mapping infor
mation retrieved from the structure memory, and to en
force security and integrity specifications.

A promising strategy to minimize the need for mapping
information and to gain other benefits as well is to provide
a degree of hardware content addressability in the memory
components. Such hardware can significantly aid update
operations, as was shown in [3], and it also allows a closer
correspondence between the logical and physical database
structures [30].

The availability of large semiconductor memory systems
can be of great benefit to a database computer designer.
Such memories would allow a large amount of information
about a user transaction to be kept in a readily available
place. This could be an aid to rollback and recovery

1258

schemes [2] and to query processing operations that re
quire a large intermediate work space. Specialized pro
cessors to handle various aspects of update (e.g., locking,
deadlock detection, and recovery) are also reasonable.

We ronclude with a general description of the likPl:v·
structure of a foturP database computer. The databasp
computpr (Fig. 1) would contain a hierarchy of memory
where each level contains the mapping information re
quired to efficiently access the next higher level as well as
actual database information. Each level would consist of
one or more functionally specialized memory units with
localized search and manipulation capabilities. In addition,
other specialized processors would be provided to handle
query processing, update, security, and the user interface.
To design such a computer three major problems must be
overcome b:.• future database system research.

1) How can mapping information be effectively segre
gated from the database and localized in a much faster
structure memory? If all of the mapping information
cannot be placed in the structure memory then how can
they be clustered on the disk and be staged into the
structure memory?

2) How can a database he clustered to minimize disk
accesses? This will require a study of how users typically
interact with a database by way of a data model.

:~) How can a database system be decomposed into
largel:> independent components capable of parallel op
eration and what is the nature of each of these compo
nents'1

When these three issues are resolved, the path towards
building a high performance and economically feasible
database computer will be clear and the concept of data
utilit:-.· will become a reality.

REFERENCES

[l J \I. \II. Astrahan and D. C. Chamberlin. "Implementation t)f a
strnctured english query language," Commun. Ass. Comput. ,\!m·h ..
ml. I i'i. pp. ;,ilO-.fi88. Oct. 197.'>.

[~J \1. \1. Astrahan et al .. "S~·stPm R: A relatiomil approach to databast·
managPmPnt.'' ACM Trans. Database Sys°tems, vol. 1. pp. l ·-~'"
Sept. 1 ~l~G.

J:lJ H. I. Batun. ··The architectural design of a secure database man
agHnent s~·stem." Comput. and Inf. Sci. Res. Center. Ohio State
l 'niv .. c,,Jumhus, Tech. Rep. !OSU-CISRC-TR-7.'i-ill.

141 R. I. Hawn and D. K. Hsiao. "A data secure computer architecture.'·
in lh!! l'apers (()i'vf}'('!JN 76. Feb. 1976.

J:iJ I'. H. Berra and A. K. Singhania, ·'A multiple associative memor~·
organization for pipelining a directorv of a very large data basP ...
in Iii!! l'11pers COMl'CIJN 76, Feb. 1976, pp. 109-11:!.

itiJ I'. H. Berra. ··some problems in associative processor application"
to databasP management," in Proc. 197-4 AFIJ>S .Vnt. Compul.
Cun(. ml. 4:l, 1974, pp. 1-·.~.

J7J A. H. Bobeck. P. I. Hon~·hard, and .J. E. (;eusic, "Magnetic buh
hlPs ··An emerging new memory technology ... Proc. IEEE. vol. ti:J.
pp. 1176 119.'i. Aug. l 97fi.

181 D. Chamberlin .. J. N. (~ra,-. and I. L. Traiger. "Views, authorization
anci locking in a relational database system." in Proc. 1975 AF/I'S
,\Int ('umpul. Con{.. Ma,· 197.S.

J9[E. F ('odd. "A relational model of data for large shared data banks.'·
1'11mmun. Ass. Com put. Jfach., vol. l:l. pp. :l77-:l87 .. June 1970.

I IOJ M;. Cohen and H. Chang, "The frontier of magnetic bubble
tPchrwlogy," Prue. IEEE. ml. G:l. pp. 119!}-J :!Of). Aug. 19/f>.

J~:EE TH . .\:-;S,\C'TIONS ON C'OMl't 'TEHS, IJEC 'E\IBEH 1916 5
J 11] (;.I'. ('opeland. C .. J. Lipm·ski. and S. Y. W. Su, "The architPcture

ofCASSM: A cellular s,·ste; .• .-:or non-numeric proceS>;ing." in /'roe.
Fir.,/ Annu. S.\Flfl. ('ompul. Arch/tee-lure, Dec. 191:l. pp. l:!l
1:!8.

I I '.!j <:. F. Coulouris .. J. \II. Evans. and H. W. \!litchPll. "Towa1 cb rnntc•nt
addrPs.,ing in datahasc•s.'' (·,,mfJlll .. /., \·ol. I''· pp. !I!'> !lil. Ft•h.
IHI~.

[I:q ('. H. lkFion•and l'. B. Bc•rr:1. ":\data 111anagt·nwnt >\·stc•111 utili1.i11g
an asStwiatin• lllPlllOrv." in /'nw. l.'17'.'i .·IF/I'S :\ut. C'11111put. (',,11[.
vol. ·I:!. 197:l. pp. I ill I ~.'i.

11-t[.J. A. llugan et al .. "A study of thP utilitv of associative menwry
proces>«>rs." in f'roc. llsl AC.".1 fl.lat. ('1111/. 19Gfi. pp. :l47--:l6tl.

J lGJ .J. N. (~ra~-. R. A. Lorie. and<;. R'. Putzolu. "Cranularit~· of locks in
a sharP<I database." in Pro1·. Int. C'unf. \'f'n Lan«· /Jntaha.w•s.
Framingham. MA. Sept. 1975.

116] .J.M. Harker and C. Hsu, "Magnetic disks for hulk storage- past
· and future." in AF/ }'S ('rm[. Prue , vol. -!0. 1912. pp. 94.~· 9.S'1.

JI 1] K. E. H:mghton. ''An ovpr,·iew of disk storagP ,~·stems." l'rrw. I Ef;E.
vol. li:l. pp. 1148-11:>~. Aug. 197:-).

I l 8J L. ll. 1-lt·al~-. K. L. !lot~-. and C:. ,J. Lipovski, ··']'hp architecturp of a
t•ontPxt :iddrPssed -.;pgment sequential st11ragp," in 1.972 F11/l .fui11t
Comput. C'unf.. AFlf'S Cun{. Prue .. vol.-ll. Montvale. N.J: AFIPS
Press. J 912. pp. 691-101.

J19] G.D. Ht>ld, M. Stonebraker. and E. Wong, "INGRES-A relational
database managPment s~·stem," in Prue 197';) AF/PS !lint. Cumput.
Con[.. \lay 197.'i.

J:W] L. A. Hollaar. "A list merging processor for information retrieval
s~·stem<' pn•sented at the \\'orkshop on Architecture for '.\ion
Numerical Proce,.:sing, Dallas. TX. Oct. I !17·1.

J21 J D. K. Hsiao. Svs/ems l'r"i<rarmning ('unc1·pts uf I Jpauting and
[Jatahu."' Svslems. HPading. \lA: Addison-WPslt·~·. I~17:i. eh. fl.

l22J IJ. K. Hsiao and F. Har.try, ··A formal s.vstpm for informal ion re
triPval from filPs.·· ('um mun. :\s.s. ('11mput. Mach., vol. I :l. Fdi. I !l/11:
CorrigPnda. l'ummu11. Ass. C111np11t .. \111ch .. vol. l:l. Mar. 1970.

J2:lj W. <'.Hughes C'l a/., "A spmiconductor nonvolatile Plectron-beam
accPssc·d mass memor~-. .. !'rue. I 1~·F1:;, vol. G:l, pp. I 2:lll· 1240. Aug.
1 ~)7:-l.

J24 J ll. A. H .. dges. "A re,·i<·w and projection of "emiconductor compo
nents for digital storage." /'roe. I f,EE, vol. G:l. pp. l l:l6--l 141. Aug.
1970.

J2'1J S. C. Lin. D. C. P. Smith. and .J. \1. Smith. "The design of a rotating
associati\'P memory for relatinnal datahase applications." AC.H
Trans. /latahase Systems, vol. I. pp. fi:l-75, Mar. 197().

[~GJ H. H. Linde. K (;ates. and T. l'eng, "Associative pro('essor appli
cations to rt>al time data management." in /'rue. JR7:i AFll'S .\'at.
Cum[!ul. ('unf., vol. 4:2. 197:l, pp. 187-1%.

J:!7] N. Min,;k~'. "Rotating storage devices as partially associative
memories," in 1972 Fail Joint Com put. Cun{.. AF/PS Con{. !,roe.,
vol. -l 1. \llontvale . .\'.): AFIPS Press, 197'.2, pp. :'i81 fi9f).

J28] H. \lloulder. "An implementation of a data management svstem on
an associatiw processor.'' in Proc. 1978 AF!f'S .Vat. Com put. Cun{.,
vol. 4:2. i 97:l. pp. l 71 i 71-1.

i~~ll H. H. \!111\·any. "Engineering design ofa disk storage facilitv with
data modules." /HM .f. Hes. /Jecelupmenl. vol. 18. Nov. I914.

J:mj E. A. Ozkarahan. S. A. Schuster. and K. C. Smith:"HAP A"'o
ciat ive pron•ssor for databasp management." in AF/I'S Cun{. ['rue ..
vo!. ·H. 1 !17;">. pp. :l79 :l8il.

J:l! J H. l'arh:imi. "A highly parallel computer s:-;stem for information
retrie,·;d." in 197:! Fa/I .Joint Computer Con{.. AF/PS Conf. l'roc ..
vol. 41. 'vlontvale, N.J: AFil'S Press, HJ72. pp. G81-n90.

J:l:!] . " . .\'8ociatiw memories and processors: An overvipw and -.e-
lectt·d bihliograph.v." Proc. Ir:EE, ml. GI. pp. 7~:2 /:ltl .. J111w
197:L

l:l:l[.J. L. ParkPr. "A logic per track retriPrnl svstem." in /'nw !Fil'
Cun!fr. i .'i'i /. Amsterdam. The NPtherlands: North- Holland. I !1~].
Ta4- l-lti-T..\-1- I ;,o.

J:l4J .J. B. Rothnie. "Evaluating inter-('.litr:-· retrieval expressions in a
relation"! database management ,,·stem.'' in /'rue. /.97.5 AF!l'S .\'ut
(',,mput l'onf. Mav !H7f>.

1:i;;J H. Schmid. "Monolithic processors.'' C'umput. /Jesi!fn, pp. Sil (J;),

Oct. l!l~I.
J:l()J ll. L. ~1,,1 nick, "Logic per track de,·ices." in Adrnnces in Compu t1·rs.

,·ol. ill. F. Alt. Ed. '\iew York: Academic. 1970. pp. ~91 .~flfi.

6 EEE TRANSACTIONS ON COMPUTERS, VOL. C-25, NO. 12, DECEMBER 1976 1259

[37]

[:l8]

J.M. Smith and P. Y. Chang, "Optimizing the performance of a
relational algebra database interface," Commun. Ass. Comput.
Mach .. vol. 18, pp. 568-579, Oct. 1975.
S. Y. W. Su and G. J. Lipovski, "CASSM: A cellular system for very
large databases," in Proc. Int. Conf. Very Large Databases, Sept.
1975, pp. 456-472.
M. Stonebraker, "Implementation of integrity constraints and views
hy query modification," in Proc. 197.5 SIGMOD Workshop on
Management of Data, San .Jose, CA, May 1975.

Richard I. Baum received the B.S. degree
with distinction in engineering physics from
Cornell University, Ithaca, NY, in 1971, and
the M.S. and Ph.D. degrees in computer and in
formation science from Ohio State University,
Columbus, in 1974 and 1975, respectively.

From October 1971 to September 1972 he
held a Fellowship at Ohio State University.
From October 1972 to May 1976 he was a Re
search Associate at Ohio State University, dur
ing which time he developed new architectural

models for secure database systems culminating in his Ph.D. dissertation
in the same area. He is currently involved in the architectural design of
computers at IBM, Poughkeepsie, NY.

Dr. Baum is a member of the Association for Computing Machinery
and the IEEE Computer Society.

David K. Hsiao {M'68) received the Ph.D. de
gree in computer and information sciences
from the University of Pennsylvania, Philadel
phia, in 1968.

He has previously conducted research at the
Honeywell Information Sciences Research
Center, and taught at the Moore School of
Electrical Engineering, University of Pennsyl
vania. In the Fall of 1975 he was a Visiting Pro
fessor of Management at the Sloan School of
the Massachusetts Institute of Technology. He

is presently a Faculty Associate at the IBM Research Laboratory, San
Jose, CA, and an Associate Professor of Computer and Information
Science at Ohio State University, Columbus. He has published widely
in the area of database systems design and engineering and is the author
of a recent textbook, Systems Programming~Concepts of Operating
and DatabaseSystems {Reading, MA: Addison-Wesley). Currently, he
serves as the Editor of the ACM Transactions on Database Systems
(TODS) and is the Chairman of the Technical Committee on Database
Engineering of the IEEE Computer Society.

Conc~pts and Capabilities of a Database
Computer

JAYANTA BANERJEE and DAVID K. HSIAO
The Ohio State University

RICHARD I. BAUM
IBM Poughkeepsie Laboratory

The concepts and capabiHties of a database computer (DBC) are given in this paper. The proposed
design overcomes many of the traditional problems of database system software and is one of the first
to describe a complete data-secure computer capable of handling large databases.

This paper begins by characterizing the major problems facing today's database system designers.
These problems are intrinsically related to the nature of conventional hardware and can only be
solved by introducing new architectural concepts. Several such concepts are brought to bear in the
later sections of this paper. These architectural principles have a major impact upon the design of the
system and so they are discussed in some detail. A key aspect of these principles is that they can be
implemented with near-term technology. The rest of the paper is devoted to the functional charac
teristics and the theory of operation of the DBC. The theory of operation is based on a series of
abstract models of the components and data structures employed by the DBC. These models are used
to illustrate how the DBC performs access operations, manages data structures and security specifi
cations, and enforces security requirements. Short Algol-like algorithms are used to show how these
operations are carried out. This part of the paper concludes with a high-level description of the DBC
organization. The actual details of the DBC hardware are quite involved and so their presentation is
not the subject of this paper.

A sample database is included in the Appendix to illustrate the working of the security and
clustering mechanisms of the DBC.

Key Words and Phrases: database computers, content-addressable memory, structure memory, mass
memory, keywords, security, clustering, performance
CR Categories: 6.22, 4.33

1 . PROBLEMS AND SOLUTIONS

A number of major problems have been faced by database designers for a long
time. These problems are of a very general nature and have frequently plagued
builders of both hardware and software database systems. This section of the
paper contains a discussion of these problems and of the architectural principles
adopted in the DBC design which solve them.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
The work reported herein was performed at the Ohio State University, Columbus, OH.
Authors' addresses: J. Banerjee and D. K. Hsiao, Department of Computer and Information Science,
The Ohio State University, Columbus, OH 43210; R. I. Baum, IBM Poughkeepsie Lab, P.O. Box 390,
Poughkeepsie, NY 12602.
© 1978 ACM 0362-5915/78/1200-0347$00.75

ACM Transactions on Databa.ee Systems, Vol. 3, No. 4, December 1978, Pagea 347-384.

7

8

348 Banerjee, Baum. and Hsiao

1 .1 The Problems of Database System Software .
A. Name-Mapping Complexity

The complexity of database system software is due, in large part, to the
requirement for name-mapping operations. Name-mapping operations convert
symbolic data names, called a query, into memory addresses which identify where
the data named by the query can be found. Since the language which is used to
name data is usually far more powerful than the addressing scheme implemented
by the hardware, it is normally necessary to have rather involved name-mapping
algorithms. Name-mapping algorithms must be highly optimized if they are to
perform well. In particular, these algorithms must minimize their secondary
storage access requirements. To accomplish this, most name-mapping algorithms
use very complex auxiliary data structures to guide their operation.

To illustrate these problems consider the difficulties of the following typical
name-mapping scenario. First, the query is used to access a "directory." The
directory contains information which allows the algorithm to determine the
approximate location of the requested data (this information thus potentially
reduces the number of secondary storage accesses required by the algorithm).
The information retrieved from the directory is then processed in some manner
to yield secondary storage addresses. Finally, the secondary storage is accessed
and the data are located. This software name-mapping algorithm requires auxil
iary data structure in both the directory and the secondary storage. These
auxiliary data structures, which include elements such as pointers, allow rapid
retrieval of data from the secondary storage and the directory. All of these
auxiliary data structures must be properly maintained. This last requirement is
the underlying cause for the great difficulty that most contemporary systems
have in executing update operations. Update operations make changes to auxiliary
structures and so they are frequently very time-consuming. A classic example is
the process of modifying a network of address pointers.

B. Performance Bottlenecks
Database system software normally consists of several distinct functional parts

which perform specific tasks. For example, separate software modules which
perform query parsing, directory access, directory processing, data retrieval and
update, and data security are usually found in contemporary database manage
ment systems. To have a well-balanced system with high throughput it is
necessary for these modules to have diverse performance capabilities. Such
diverse capabilities are difficult to achieve when all these software modules are
implemented on the same underlying hardware. When such performance capa
bilities cannot be met because of inherent hardware constraints, the system
develops bottlenecks and its performance is consequently degraded. Contempo
rary database management systems are usually plagued by many such bottle
necks.

C. Data Security Overhead
Powerful data security facilities are generally a performance hindrance on

contemporary systems. The most powerful data security mechanisms allow
security specifications to be written in the query language of the system. To
ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Concepts and Capabilities of a Database Computer 349

authenticate access operations it is therefore necessary to perform multiple name
mapping operations-one for determining the requested data and several for
determining the data being affected by the security specifications. The use of
name-mapping algorithms to carry out security enforcement is generally too
much of a performance burden to be seriously considered in present systems.

D. Add-On Approach to Security
Security capabilities are frequently just an "add-on" to present systems. This

kind of design philosphy opens the way to not only performance difficulties but
also to questionable reliability. With the high degree of complexity of current
systems it is extremely difficult to add on a security mechanism which will
guarantee that all "backdoors" are, in fact, closed.

1.2 The Problems of Building Database Machine Hardware

A. The Need for Distant Technology
Attempts to build database machine hardware have been made before (10, 11,

25, 26, 28]. These efforts have been plagued by a number of critical drawbacks.
The most serious shortcoming in these systems has been their reliance on
monolithic fully associative memories. Such memories are not feasible for sup
porting a large online database (i.e., at least 109 bytes) unless we are ready to wait
for a major advancement in technology.

B. Incomplete Hardware Designs
Many hardware design attempts [6, 10, 13, 21, 24, 27] have led to machines that

could not perform all of the functions necessary to support a viable database
management system. In particular, some of them can support just one database
management function in hardware such as directory processing or data retrieval;
others cannot adequately support such critical functions as the update function.
Previous hardware design approaches have almost always lacked a data security
capability-such an omission makes the use of computers in a data sharing
environment very questionable indeed. A viable database machine must support
all database management functions equally well.

1 .3 Problem Solving Concepts

To overcome the problems described above a number of key design concepts
were used in the DBC. These design concepts include both architectural principles
and design philosophy.

A. Partitioned Content-Addressable Memories
The use of hard-.vare content addressing can significantly reduce the need for

name-mapping data structures. Content-addressable memories eliminate the need
for knowing the actual location of a data item. In such a memory the notion of
"actual location" is nonexistent; instead, data are accessed by specifying their
content. This kind of access gives us a very important capability: data items may
be moved about without any need to modify name-mapping data structures. This
is because few, if any, n::ime-mapping data structures are needed in a content
addressable memory. This characteristic greatly facilitates update operations.

A fully associative memory large t>nough to hold a complete database is not yet

ACM Transactions on Database Systems. Vol. 3, No. 4, December 1978.

9

10

350 Banerjee, Baum, and Hsiao

feasible. However, a storage system consisting of many blocks (called partitions)
of memory each of which is content-addressable is quite feasible. We call this
memory concept a partitioned content-addressable memory (PCAM). It is pos
sible to build PCAM' s of widely varying performance characteristics. In particular,
it is possible to design the access speed and capacity of a PCAM to meet a
particular performance requirement. This flexibility allows us to design these
PCAM's for use in the ·proposed DBC architecture with very different speeds and
capacities. As will be seen later, a PCAM of gigabyte capacity is feasible with
current technology.

B. Structure and Mass Memories
Since PCAM's are block-oriented, it is necessary to have some name-mapping

data structures in the system. Our goal, of course, is to minimize their use as
much as possible. This leads to the architectural concept of the structure memory.
A DBC employing this concept has two memories. The mass memory contains
the information making up the database and is by far the larger of the two
memories. The mass memory contains only update invariant name-mapping
data structures. Once an update invariant data structure is created for a data
item it need never be modified so long as that data item continues to exist
anywhere in the database. The data structures in conventional mass storage are
not update invariant; they must be modified whenever the location of a data item
changes. The structure memory contains all of the nonupdate invariant name
mapping information necessary to locate data in the mass memory. To access the
database the system first accesses the structure memory, obtains mapping infor·
mation, processes it and then accesses the mass memory.

The proposed DBC employs the structure memory concept. Both the mass
memory and the structure memory are PCAM's. They, of course, have very
different functional characteristics.

C. Area Pointers
To simplify the name-mapping data structures that are still required by the

DBC, a concept called the area pointer is used. An area pointer indicates the
PCAM partition in which a data item may be found by employing content
addressing. Unlike the location pointers used in contemporary systems, area
pointers need not be modified when data items are moved around within a
partition.

Conventional mass memories do not support the area pointer concept. Our
mass memory, on the other hand, is a PCAM and so area pointer support comes
naturally. Area pointers are stored in and managed by the structure memory.

D. Functional Specialization
The DBC contains a number of components with considerably different proc

essing speed and memory capacity requirements. The mass storage and structure
memory are examples of two such components. To keep any component from
becoming a bottleneck we employ the architectural concept of functional spe
cialization. 1 In a functionally specialized system, the components are individually

1 This term was suggested to us by E. Feustel.

ACM Transactions on Database Systems. Vol. 3, No. 4. December 1978.

Concepts and Capabilities of a Database Computer 351

designed to be optimally adapted to their function. The processing power and
memory capacity of each component is determined by its role in the system.
Because all major components are specialized (i.e., functionally separate from
other components), estimation of their required processing power and memory
capacity is much easier. In the proposed DBC each of the major components is
a physically separate hardware component. This approach allows us to build a
relatively well-balanced system and to avoid bottlenecks by providing each
component with the right amount of processing' power and memory capacity.

The proposed DBC has seven major functionally specialized components; the
keyword transformation unit (KXU), the structure memory (SM), the mass
memory (MM), the structure memory information processor (SMIP), the index
translation unit (IXU), the database command and control processor (DBCCP),
and the security filter processor (SFP). These seven components are the heart of
a database computer that is able to support gigabyte database capacities while
providing full retrieval, update, and security capabilities.

E. Look-Aside Buffering
When an update operation occurs it is sometimes necessary to modify name

mapping data structures. To insure the correct execution of the queries which
follow the update, the execution of queries is normally postponed until the update
operation and all of its related changes to data structures are complete. This is
because the data involved in an update operation could very well be the data the
next operation depends on. Thus update operations can become bottlenecks in
contemporary systems.

In the DBC, changes to name-mapping data structures induced by an update
operation will be very few in number because the partitions in the mass memory
are large, making the number of different indices small. Nevertheless, even these
changes in the structure memory require some time. To reduce the wait-time of
other more frequent commands, a fast look-aside buffer is used. The changes
(consequent of the update commands) are recorded in this buffer and are referred
to by all subsequent commands until the necessary changes are permanently
recorded in the structure memory. The permanent updates to the structure
memory are postponed until the system reaches a relatively slack period. In this
way, queries following an update operation do not have to wait for the permanent
effects of that update operation to be actually recorded before they are executed.

F. An Integral Data Security Mechanism
At the outset the security mechanism was made an integral part of the DBC

design. This design philosophy not only allows us to construct a system that has
no "backdoors" but also insures that all access requests are, in fact, controlled by
the DBC's security mechanism. We achieved this by designing the security
mechanism first and then designing the rest of the system around it. The DBC
supports a security specification language that is the same as the DBC's query
language.

Security in the DBC is provided in terms of two distinct protection mechanisms.
The first mechanism, based on the security atom concept [23], requires some
form of cooperation from the creator of the database. This mechanism achieves
enforcement in a rapid and elegant manner and is incorpc;rated in the database

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

11

12

352 Banerjee, Baum, and Hsiao

command and control processor (DBCCP). The second enforcement mechanism
allows the database creator wide latitude in the manner in which he can specify
security-related information. Since it generally requires more (and different)
processing than the first, the second mechanism is idcorporated in a functionally
specialized component, the security filter processor (SFP). Such an architecture
tends to lead to good performance while ensuring that security is not compro
mised.

G. Performance Enhancement by Clustering Techniques
A powerful clustering technique has been incorporated in the DBC, which

allows the creator of the database to optimize access times. The,. placement of
every record into the DBC can be controlled (in terms of its properties) by the
creator of the database in such a way that retrieval of records with similar
properties may be accomplished with minimal access delays.

H. Emerging and Existing Technology
A database computer for the near future should take maximum advantage of

the emerging technology. This design philosophy is especially important in an
era of rapidly developing technology such as the present one. The significant
developments expected in the area of high-speed secondary storage (semiconduc
tors: CCD's and dense RAM's, magnetic bubbles and electron beam memories)
and low-cost processing power (microprocessors) dictate a major rethinking of
conventional machine architectures.

For example, an all-electronic storage component may replace the fixed-head
disk as the fastest seco~dary storage device in the system. Since these all
electronic fixed-head disk replacements will offer at least an order of magnitude
improvement in access time, they will allow powerful data organizations as well
as a significant increase in the throughput of certain database system components.
Low-cost random access memory will allow the widespread use of very large data
buffers and independent, functionally specialized memories throughout the sys
tem. Low-cost microprocessors coupled with low-cost moving-head disks with
tracks-in-parallel read-out modification will allow high-volume processing with
content-addressable capabilities.

1 .4 Approaches to Database Machine Design

With regard to the basic database functions of searching, retrieving, and
updating of data, it is possible to identify three different approaches toward a
hardware solution. The first is the logic-per-track approach where the entire
database is stored in the tracks of a fixed-head disk device and enough processing
logic is incorporated into the device so that all the tracks can be simultaneously
content-addressed and processed. The second approach is the high-speed proces
sor approach. The database is still stored in a relatively inexpensive secondary
memory (such as moving-head disks) and only a portion of the database is staged
into a high-speed parallel processing device. Processors with parallel processing
capability are used to carry out a variety of database management operations on
the information resident in the device. Finally, there is the back-end 'machine'
approach where the operating system is relieved from the data management
responsibilities and the database management is carried out by a dedicated

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Concepts and Capabilities of a Database Computer 353

general-p'urpose computer with appropriate software which also manages the 1/0
devices for the database.

The context-addressed segment sequential memory (CASSM) [28] and the
rotating associative relational store (RARES) [21) are examples of database
machines designed with the logic-per-track approach. CASSM is based on a
cellular architecture. It consists of an array of cells with the provision for
communication between adjacent cells. Each cell is made up of a segment (which
is a track of a head-per-track device), a pair of physically separated read-\\Tite
heads, and an arithmetic unit. Data structures, such as trees, graphs, and tables
may be mapped to the database store. The instruction set is p0werful enough to
allow for context-search of tree-like data structures.

In RARES, proposals were made to manage relational databases. A relational
tuple (i.e., record) is stored across a band of tracks instead of on a single track.
Logic is associated with each band of tracks rather than with each track.

The disadvantage of the logic-per-track approach is that it is not cost-effective
to implement large databases on logic-per-track devices. Even though RARES
only requires a head-per-track and logic-per-band device, it is still quite expensive
to support large databases on such devices. Furthermore, there is a definite
synchronization problem when a single unit of data is read (written) by more
than one read (write) mechanism.

An example of the high-speed processor approach is the relational associative
processor (RAP) [26). RAP, a machine based on the relational model of data,
makes use of a relatively small number of parallel processing cells for storing the
active relations (files) or the active portions of one or more relations (subfiles).
The main database is still stored in conventional online secondary memory. The
primary disadvantage of this approach is that certain relational operations such
as the equality join, as well as sequences of operations referring to a large number
of relations, will require frequent staging of data to the processor. Suggestions
were made to use a CCD-implemented RAP as a logic-per-track device for
database store, since RAP is similar to CASSM in architectural design. However,
CCD-implemented RAP as a main database store is only viable for very small
databases. Another example of high-speed processor approach is the use of an
array processor such as ST ARAN as a staging device for database management
[11].

The third database machine approach is that of a back-end 'machine'. The
idea of a back-end machine for performing specialized data management tasks
was originated in [8). In this approach, the operating system and user applications
are resident in a front-end, general-purpose computer, while the database and
the data management software reside in the back-end, general-purpose computer
and its storage devices. The importance of this approach is that data management
tasks are logically, as well as physically, separated from other activities such as
compilation and assembly. This provides for a greater reliability in database
management and a more flexible sharing of the centralized database.

The Datacomputer (22) is another example of the back-end machine approach.
The Datacomputer is a large-scale data management software running on a
medium-size computer such as PDP-10. The Datacomputer provides facilities for
data sharing of a centralized database among dissimilar front-end computers in
a network environment.

ACM Transactions on Database Systems, Vol. 3, No. 4, Decem!Mlr 1978.

13

14

354 Banerjee, Baum, and Hsiao

The disadvantage of both the Datacomputer and the hack-end 'machine' of [8]
is that they are conventional computers performing data management tasks by
software means. Therefore, the difficulties of name-mapping and data updating
still remain an integral part of these machines. Consequently, the performance of
these software-laden systems remains low.

The database computer (OBC) is an example of the third design approach with
the difference that the back-end machine is almost entirely devoid of software
and has specialized hardware for data management. It can support a very large
online database, say of 1010 bytes in size. The economy of such a large content
addressable storage is due to a PCAM (partitioned content-addressable memory)
organization of the database store. The DBC, therefore, does not require staging
of data between levels of memories of various speeds. Further advantages of the
DBC accrue from a high-level query language for interface with the front-end
computer, and from a content-based security mechanism for access control.

2. THE FUNCTIONAL CHARACTERISTICS OF THE DBC

The DBC must communicate with external systems and so a DBC interface must
be defined. The functional characteristics of the DBC provide such an interface.
The DBC functional characteristics define the data management and security
features supported by the DBC and show how commands are sent to and executed
by it.

2.1 A Back-End Machine

The DBC is not a general-purpose computer and does not have a typical
operating system. Instead, it is a separate machine dedicated to database opera
tions. Other computers and systems communicate with the DBC by using DBC
access commands and by sending or receiving database information. The decision
to design the DBC as a back-end machine to support database operations in a
general-purpose computer system is a consequence of applying the concept of
functional specialization. A number of advantages accrue from this decision [8).
First, the DBC is not constrained to be used with any particular kind of general
purpose computer system. Second, more than one system can share a DBC. In
this way, the back-end DBC can serve many front-end computer systems. Third,
several DBC's can become a part of a general-purpose computer system to
facilitate distributed database applications [3]. This interconnection could be
done with a geographically distributed communications network. Finally, all DBC
access channels can be identified and controlled. This is necessary to insure that
no "backdoors" into or out of the DBC exist (see Figure 1).

We shall collectively call all of the systems which communicate with the DBC
the program execution system (PES). We aggregate all these systems into one
conceptual entity so that it will be easier to describe the operation of the DBC.

2.2 The Functional Model

The DBC proposed here implements the attribute-based model. This model
has been extensively studied and is particularly well-suited to supporting contem
porary database functions (14, 15, 23).

ACM Transactions on Database 8ysterns, Vol. 3. No. 4, December 1~7~.

Concepts and Capabilities of a Database Computer 355

A Geflerol-Purpose Computer System

User Request ---.j
~ Applications Programs

EJ········ .
..... I . I . . I Operating System . .

a······· I
.1

r

Database Management
System

(a) A Conventional PES Environment

The Some General-Purpose Computer System

User Request
Applicat1ans Programs

Front-end

(b) The New DSC Environment
Fig. I. The relationship of a database computer with its front-end computer

A. Queries-The Symbolic Data Names Fsed by the DBC
Our definition of a database starts with two terms: a set AT of "attributes" and

a set VA of "values". These are left undefined to allow the broadest possible
interpretation. We shall denote a member of AT by at and a member of VA by
v.

A record R is a subset of the cartesian product AT x VA. To simplify the
notation we will assume without loss of generality that all attributes in a record
are distinct. Thus R is a set of ordered pairs of the form

ACM Transactions on Database Systems, Vol. 3, No. 4. December 1978.

15

16

356 Banerjee, Baum, and Hsiao

(an attribute, a value).

Rec~rds are physically stored in the mass memory. The set of all records in the
mass memory is called a database (DB). The database may be partitioned into
subsets called files. To distinguish among several files, each file is given a unique
name F, called its file name.

The keywords of a record are those attribute-value pairs which characterize
the record. In practice it is useful to consider only succinct keywords. We shall
denote a keyword by the notation K.

A keyword predicate P (K) is true for a keyword K if K satisfies the condition
specified by P. The most commonly used keyword predicate is the equality
predicate E (K) which is true for K when K is the same as a certain keyword, say,
K'. For this special case, we shall denote the keyword predicate by simply K'.
Another common keyword predicate is the less-than predicate LTa1(K). This
predicate is true for K when the attribute of K is at and the value of at is less
than some value, say, v. This keyword predicate shall be denoted by (at < v).
This predicate can be easily generaliZed to handle other relational operators such

as '>', '""'· '2:', and 's'.
A keyword predicate is true for a record R if some keyword Kin R satisfies the

keyword predicate. A query is a proposition given by a Boolean expression of
keyword predicates. A query is true for R if this proposition holds for the
keywords in R; such a record is said to satisfy the query. The set of all records in
the database (or in a file of DB) that satisfy a query Q will be called its response
set and will be denoted by Q(DB) (or Q(F)). Every query is written in disjunctive
normal form

Q' vQ2 v ... v Qk

where each Q; of the query has the form

P1; A P2; A ... A Pn;

and each P/ is a keyword predicate. Some examples of queries follow. The query
K 1 A K 2 is true for R when K 1 and K 2 are both in R. The query K 1 A (Salary
< 10,000) is true for R when K 1 is in R and there is a keyword in R whose
attribute is Salary and whose value is less than 10,000. More elaborate queries
can be formed if they are in disjunctive normal form.

B. Security Specifications-The Protection of Data
A database access or simply an access is the DBC operation which transfers

information to or extracts information from the database. Examples of accesses
are retrieve, insert, and delete. Let ACC denote the set of names of all the
accesses available in the DBC. Let a member of ACC be represented by a and a
subset of A CC by A.

A security specification is a relation

S: DB- 2Acc where 2Acc is the power set of ACC.

Thus for a record R in DB, the security specification S (R) = A indicates which
subset A of accesses is permitted on R.

A file sanction or simply a sanction is defined as the couple (Q, A) where Q

ACM Transactions on Database Systems, Vol. 3, No. 4, December 19i8.

Concepts and Capabilities of a Database Computer 357

is a query,' and A is a subset of ACC. A sanction (Q, A) induces a security
specification S.FSQ,A over records R of the database such that

S.FS A(R) ={A, if R satisfi:s Q.
Q. ACC, otherwise.

Thus a sanction indicates that only the accesses in A may be performed on the
records satisfying Q. When R does not satisfy Q. all accesses may be performed
on it. In this case, we say that no sanctions of (Q, A) are applicable to R. The
sanction is a very powerful type of security specification, since it allows the full
power of the query language (i.e., Q) to be used to specify records to be protected.

Consider a file named F and a set of sanctions T where

T= {(Q,,A,), (Q2,A2), .. ., (Qm,Am)}.

A database capability (F, T) induces a security specification S.DC F. r over the
records of F such that

m
S.DCF.r(R) = n S.FSQ,.A,(R)

•-1
where Risa record of F. In words, S.DCF.r(R) is the set of all accesses granted
for R by one or more file sanctions in T and not denied by any sanction T.
Security specifications are therefore stored in the DBC as database capabilities.
The database capabilities specify exactly when access operations are allowed on
records. The DBC maintains a database capability for each active user of every
file.

For example, consider the database capability having the file sanctions, T =
{ (Q" Ai), (Q 2, A 2)} . Suppose Q 1 and Qz specify overlapping sets of records as
shown in Figure 2. Then the records in the intersection of Q1 and Q2 have the
access privileges A 1 n A 2 associated with them.

Accesses in A 1 ore
permitted on
these records

Accesses in A2 ore
permitted on
these records

Records
Satisfying

o,

Only Accesses in
(A 1 n A 2) ore per
mitted to the records
in the shaded area.

Records
Satisfying

02

Fig. 2. The security specification induced by { (Q,. A,), (Q". Az))

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

17

18

358 Banerjee, Baum, and Hsiao

C. Command Execution-The Processing of Access Requests
An access command has the form (U, (F, Q), a> or the form (U, (F, R), a).

U represents the name of the user issuing the command, a is an access, (F, Q)
represents the response set Q(F) on which the access is to be performed, and (F,
R) represents a record R of F that is to be used in the access. Before an access is
executed, file F must be protected from unauthorized access by the user U. This
is accomplished by first employing U to locate the appropriate database capability
(F, T). Then for the command (U, (F, Q), a), the access a is performed on each
record R of Q(F) for which S.DCF.r(R) contains a. For the command (U, (F,
R), a), the access a is performed on R if a is in S.DCF.r(R). If any data need be
sent to the user as a result of the access command, it is sent to the front-end
program execution system (PES) to be routed to that user.

2.3 The Need for Front-End Support

Before a user issues any access commands for a file, the database capability
specifying the user's access rights to that file is sent to the DBC by the PES. An
access command is rejected by the DBC unless the appropriate database capa
bility is found. It is the responsibility of the PES to send the correct database
capabilities to the DBC and to authorize the use of access operations to users by
constructing appropriate database capabilities. In this way our DBC design does
not impose any restriction on the nature of the PES's S(Curity mechanisms or on
the authorization policies it supports.

3. THEORY OF OPERATION

A model which describes the basic components of the DBC and how these
components interact to realize the DBC's functional characteristics is now given.
In the presentation we do not emphasize the intricacies of hardware design.
Instead, we describe the operation of the components at a conceptual level. We
have shown in (16, 19, 20] how these components can actually be implemented
with existing and emerging technology.

The theory of operation is presented in two sections. In the first section a data
model is developed. In the next section we show how the data model described
above is realized by the DBC with the aid of functionally specialized components.

3.1 The Data Model

The need for auxiliary data structures arises from the fact that the mass
memory is not fully associative. Therefore, a technique to minimize mass memory
accesses is required to insure high performance. We shall employ a PCAM-based
mass memory. The mass memory's content-addressability allows it to contain
only update-invariant mapping structures. The data model will allow us to
determine the nature of the information to be kept in the structure memory.

When a PCAM partition is used to store records, record placement within the
partition does not affect the system's performance. When a set of records is not
placed in the same partition, the system's performance can be affected since
multiple PCA::\-1 accesses may be required to retrieve the records. To address this
problem a database is normally partitioned into groups of records that need to be

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Concepts and Capabilities of a Database Computer 359

stored physically close to each other. The exact nature of "closeness" is dependent
on the properties of the memory. For example, on a disk with movable read/
write heads, records could be considered close if they are stored in the same
cylinder. This seems reasonable since the cost of initially accessing a cylinder of
the disk is usually much greater than the cost of immediately following subsequent
accesses to tracks of the same cylinder. The underlying reason for this is the
requirement for mechanical motion to access a new cylinder. In our data model
we shall consider records to be close when they are stored in the same partition
of the PCAM mass memory. To distinguish partitions in the mass memory PCAM
from those in other PCAM's, we shall call each of these partitions a minimal
access unit (MAU).

There are many reasons for placing one record close to another record. A basic
reason, related to performance, is the likelihood that these records will be accessed
simultaneously. There are other reasons for grouping records. For example,
compartmentalization of records for security reasons is one. Precisely what
features of these records allow the designer to deduce a particular record grouping
does not concern us at this time. Our goal as builders of generalized hardware to
support a database system is not to choose a specific way to partition the database
but instead to provide a general mechanism with which many possible groupings
may be realized. Such a mechanism will be presented shortly.

A. Storage Structure
Let there be L MAU's in the mass memory and let L be called the minimal

access unit count. All L MAU's are of fixed size. We denote the minimal access
unit size by I MAU j. Associated with the database DB is the set of records
denoted by M(DB) and defined as {R:R is in DB}.

If the set M (DB) is further partitioned into L subsets and each of these subsets
represents the records which are placed in an MAC, then the union of the subsets
is called a database configuration of M(DB). The size of a record, i.e., the
number of bits needed to represent it in memory, is denoted by IR I. A database
configuration is valid if each subset X of M (DB) satisfies the constraint

(R~ IRI) s !MAUI.

In other words, a database configuration is valid if all of the records of M (DB) fit
into MAU's of the mass memory. A valid database configuration results in a
memory map which describes how the records are placed in the mass memory.

Each MAU is represented by a unique name called the minimal access unit
number (MAU number), denoted by f, where 0 sf< L. Let Mr represent the
contents of the MAU numbered f.

The DB storage structure is defined as the ordered sequence

(Mo,Mi. .. . , ML-d.

This sequence represents the distribution of records in the MAU's.
Let F be a file whose records contain just m different keywords denoted by Ki.

K2, .. . , Km. To keep track of the MAU's in which records containing the keyword
K, are to be found, we form the set D(F, K;) defined as

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

19

20

360 Banerjee, Baum, and Hsiao

{fl R is in F and K; is in R and REMr}.

D(F, K,) is called a directory entry and each element f of D(F, K,) is called an
index term. In words, D(F, K;) is the set of MAU numbers of MAU's which
contain one or more records with the keyword K;.

The directory of file Fis defined as the set DIR(F) defined as

{D(F, K1), D(F, Kz), .. . , D(F, Km)}.

The directory of a file represents the structural information needed to access the
mass storage. We shall see how it is used shortly.

As mentioned earlier, the DBC allows the creator of a file to enhance perform
ance by allowing records of the file to be identified as a cluster and qy accessing
such records with minimal access delay. Let us motivate the concept of clustering
and the resulting performance improvement by a simple example. Let a file F (to
be placed in the DBC) have n records of which we choose four records for our
discussion. These four are shown in Figure 3a.

In Figure 3b we have shown an arbitrary placement of records in the two
MAU's that have been made available in the database for the file F. Now, if a
query for retrieval is received in the form "Retrieve records which satisfy the
conjunction (K1 /\ K3)," then the DBC has to make two MAU accesses. However,
if the records are placed in the MAU's grouped according to the occurrence of
keywords (K1, Kz, and K3) in a record, then the resulting configuration will be as
shown in Figure 3c. Such a configuration will result in the retrieval of all records
which satisfy the given query in a single access to the mass memory.

The above discussion implies two things: First, the creator of the file has an
idea of the type of queries that will be made on the file. Second, the DBC provides
him with a mechanism for effectively conveying that knowledge to the DBC.
While we, as system designers, cannot predict how much knowledge a creator
may have of his file usage, we must ensure that he is provided with an easy yet
powerful mechanism to utilize that knowledge to his best advantage. The mech
anism that we have adopted and shall describe here is intended for such purpose.

A more elaborate illustration of the clustering and security mechanisms of the
DBC is included in the Appendix. In studying the following sections on clustering
and security processes, the reader may refer to the Appendix for clarification and
demonstration.

B. The Clustering Process
A file is associated (by the file creator) with a single primary clustering

attribute and one or more secondary clustering attributes. The latter attributes
are specified in an order of importance. In case a record for insertion has more
than one secondary clustering attribute, then the most important one is consid
ered during the clustering process. On the other hand, if a record for insertion has
no secondary clustering attribute then a null secondary clustering attribute is
assumed for clustering purposes.

A keyword whose attribute is the primary (secondary) clustering attribute is
called a primary (secondary) clustering keyword. Each primary clustering key
word, during file creation time, is associated with a maximum space requirement
(in terms of the number of MAU's) which indicates the estimated amount of

ACM Transactions on Database Systems, Vol. 3. No. 4, December 1978.

Concepts and Capabilities of a Database Computer 361

RECORDi ~l-K_, __ ~l ___ K_i_._ ______________________________________ _

RECORD 2 ~'-K-·--~l ___ K_3_._ ______________________________________ _

RECORD 3 '~-K-·--~'---K-3-~---
RECORD n K, K3

Fig. 3a. Records belonging to a file

MAU 1 MAU 2

I K,, K, I
Fig. 3b. An arbitrary assignment of records to MAU's

MAU 1 MAU 2

I K,, K2 I K,, KJ I

I K2I K3 I K,I K3 I
Fig. 3c. An assignment of records to MAU's which results in a minimum number of accesses for

certain queries

storage required in the mass memory for all records having this keyword. The
estimate is only approximate, but better performance is obtained if the estimate
closely reflects the actual maximum storage requirement.

A cluster c is defined as the set of records each of which contains exactly the
same primary and secondary clustering keywords. Notice that for every record,
only one secondary clustering keyword (the most important one) is considered.
Each cluster is identified by a unique number called the cluster identifier.

When loading into the database a record with primary clustering keyword K
and cluster identifier c, an attempt is made to place the record in the same MAU
(or one of the MAU's) as is occupied by other records of the cluster c. In case
there exist no other records in the database belonging to cluster c or if all MAU's
so far used by the cluster are nearly full, then it is first checked whether the
number n of MAU's currently used by records with primary clustering keyword

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

21

22

362 Banerjee, Baum, and Hsiao

K is less than the corresponding estimated number n k provided by the file creator.
If n?: nk, then an attempt is made to place the given record in one of the MAU's
already being used by records with keyword K. If n < nk, then the given record
is loaded in one of the relatively empty MAU's allocated to the file in which the
record belongs. In the entire process stated above, whenever there is a choice
among a number of MAU's, the most empty MAU is chosen for loading the
record. The reason for such a decision is that, in the long run, with such a choice,
the dusters may be expected to stay physically together even after many updates
to the database. However, there is a provision for database reorganization if
clusters tend to disperse within the mass memory.

To support the record clustering operation, a cluster table C keeps track of the
clusters and MAU's to which those records belong that have the same primary
clustering keyword. Each entry in cluster table C is a quadruple

(F, K, c, {)

where Fis a file name, K is a primary clustering keyword of the file, c is a cluster
with primary clustering keyword K, and {is an MAU in which there is at least
one record of cluster c. Notice that even though a cluster should normally be
totally accommodated in a single MAU, the cluster table allows for the event
that a cluster is distributed among more than one MAU.

With every file Fis associated a MAU space table L"' with entries of the form

({, l)

where f is an MAU allocated to file F and l is the space available in that MAU.
Given a record to be loaded in the database, it is possible to determine an MAU

for loading the record, by making use of the tables C and L F· Let F be the file to
which the record belongs, let K be the record's primary clustering keyword, Cr its
cluster identifier, and gr its length. Let n 11 be the estimated number of MAU's
required by records with keyword K. The algorithm given in Figure 4 will now
determine the number m of MAU in which the given record may be loaded.

In the algorithm, h represents the amount of space remaining in the MAU
chosen for consideration. In line 1, w represents the set of MAU's that are
currently being used by the cluster Cr. If this set is not empty (i.e., I w I~ 0), then
an attempt is made in line 4 to place the record in one of the MAU's in w. If that
is not possible, then it determines in line 7 the set w' of MAU's used by records
with the primary clustering keyword K. If the number of MAU's in w' is at least
as large as the estimated number nk (as checked in line 8), then an attempt is
made to select an MAU from w'. If that attempt fails, then, in line 11, an MAU
is selected from all the MAU's allocated to the file.

C. The Security Process
We now show how the DBC can group records for security purposes. Certain

attributes of a file may be designated as security attributes by the creator of the
file. A security keyword is a keyword whose attribute is a security attribute. Each
record belonging to a file with security attributes contains a set of security
keywords (possibly empty). This set defines a security atom. A record is said to
belong to a security atom if and only if its security keywords define the security
ACM Transactions on Database System.<, Vol. :J, No. 4. December 1978.

Concepts and Capabilities of a Database Computer 363

Input: 1. primary clustering keyword K
2. cl!1ster identifier c,
3. file identifier F
4. record length g,
5. estimated number n.; of MAU's required by records with keyword K.

Output: MAU number min which the given record may be loaded.

0. begin
1. w !!! (fl(F, K, c,, (JE CJ
2. h ""0 .

3. if I w I ,.& 0 then
4. (m, h) ""max2 l{(f, [)! f E wand (f, [)ELF})
5. if I w I = 0 or h :S g, then do
6. begin
7. w' = (fj(F, K. C, n E Cand cis any cluster id}
8. if I w' I 2: n.; then
9. (m, h)"' max2 ({((, l)!fE w' and (f, l) ELF))

10. if I w' I < n_. or h :5: g, then
11. (m, h) • max2 ((({. l) I({. l) EL,))
12. end
13. end

Note: 1. For any set a, I a I denotes the number of elements in a.
2. The function max2 operates on a nonempty set a ~f pairs and determines the tuple whose

second component is the maximum among the second components of all the tuples of a.
Fig. 4. An algorithm to select an MAU for a record

atom in question. The concept of security atoms is due to [23]. In Figures 5a and
5b, we illustrate this concept by means of an example (5].

In Figure 5a, we notice that there are three different security keywords K4, K5,
K6 and there are eighteen different records. Assuming that the attributes of K4,
K5, and K6 are all different, there is a theoretical possibility of having 23 = 8
different security atoms, since there are 23 different combinations of the security
keywords. In Figure 5b, however, we notice that the eighteen given records are
partitioned into only six security atoms, on the basis of the combination of
security keywords that they contain. Notice that security atom 5 corresponds to
the null combination of security keywords.

We observe that security atoms are disjoint sets (i.e., a record belongs to one
and only one security atom). This is because each security atom represents a
unique combination of security keywords, and any given record can have only
one of these combinations of keywords. We further observe that a query made up
of security keywords alone will apply to all records of an atom or to none at all.
Therefore, if file sanctions are restricted to having queries made up only of
security keywords, then it is clear that each file sanction will be applicable to a
group of complete security atoms, instead of only to a set of unrelated records. A
database capability will now induce a security specification over entire atoms of
a file F. That is, every security atom is associated with an access privilege set,
thus establishing an atomic access privilege list (AAPLl for every user.

Assuming a user query consists of conjunctions which have at least one
predicate that corresponds to a directory keyword, for every directory keyword

ACM Transaction.• on Database Systems. Vol. 3, No. 4. December 19i8.

23

24
364 Banerjee, Baum, and Hsiao

(K4, K6}
(K2, K3, KS, K6}
(K2,.K3, K4}
(Kl, Jci, KS}
{K5}
(K4,KS, K6}

(Kl, K3,K5, K6}
{K2. K3, K4, KS, K6}
{Kl,K3,K4,K6}
{Ka.KS}
(Kl, K2, K4, K5, K6}
(K2, KS}

{Kl, K4, K6}
(K2, K4}
(K3, K5, K6}
{Kl,K2,K4}
(Kl,K2}
(Kl, K3}

Fig. Sa. Records (only keywords in the records are shown) to be partitioned into security atoms.
Keywords K4, KS, K6 are security keywords

Security Atom 0

(K4, K6}
(Kl,K3,K4,K6}
{Kl,K4, K6}

Security Atom 3

{K2, KS}
{K3, KS}
{Kl,K3,KS}
{K5}

Security Atom 1

(Kl, K2, K4}
{K2, K3, K4}
{K2, K4}

Security Atom 4

{K2,K3, K4, KS,K6}
(K4,K5,K6}
{Kl,K2,K4, KS,K6}

Security atoms and their corresponding security keywords:

Security atom 0 {K4, K6}
Security atom 1 (K4}
Security atom 2 (K5, K6}

Security atom 3 (K5}
Security atom 4 (K4, K5, K6}
Security atom 5 { }

Security Atom 2

(K2,K3, i(5, K6)
{Kl, K3,K5,K6}
(K3, K5, K6}

Security Atom 5

{Kl, K2}
(Kl,K3}

Fig. 5b. The security atoms of the records of Figure 5a

K, the index tenns include not only the MAU numbers, but also the identifiers of
the security atoms that contain the records with keyword K.

Pursuing the example given in Figure 5, the. directory entries are shown in
Figure 6a, where only the security atom numl-ers are included in the index terms.
We have assumed that K2, K3, K4, K5, and K6 are directory keywords. Let us
further assume that for a given user, the database capability is such that we get
the atomic access privilege list of Figure 6b.

Given a request for access a2 on all records containing keywords Kl and K4,
the directory is examined for keyword K4. Only atoms 0, l, and 4 contain K4, as
shown in Figure 6a. Looking now at the atomic access privilege list of Figure 6b,
it is determined that access a2 is not allowed on atoms 0 and 4, but is allowed on
atom 1. Therefore, in response to the user's request, only atom 1 is accessed.

A complete example of the security and clustering mechanisms applied to a
very small but i:ealistic database is given in the Appendix.

It may be argued that a creator may wish to protect his records at the
subatomic level or in a manner which affects portions of different atoms. In such
cases, full search of the file sanctions is necessary to determine which of the file
sanctions are applicable to an access request. Thus the ,data model supports two
protection mechanisms. The first is geared towards reducing security costs to a
minimum, while the other aims at providing maximum flexibility to the user. For
the sake of convenience, we shall refer to the protection mechanism based on

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Concepts and Capabilities of a Database Computer

Directory Keyword

K2
K3
K4
K5
K6

Security Atom Numbers

l, 2, 3, 4, 5
0, l, 2,3,4, 5
0, 1,4
2, 3, 4
0, 2, 4

Fig. 6a. Directory entries showing only the security atom numbers .a'S index tenns

Security Atom Number

0
1
2
3
4
5

Access Rights

al
al, a2
a3
al, a2, a3
al
al,a2,a3,a4,a5

Fig. 6b. Atomic access privilege list of a given user

365

security atoms as Type A protection mechanisms. The other protection mecha
nism based on full file sanctions search will be called a Type B protection
mechanism.

From the above discussions, we conclude that the data model specifies two
steps by which a record may be evaluated for placement. First, the MAU where
the record is to be placed is determined based on the following: the clustering
attributes specified by the file creator, the existing clusters in the database, and
the clustering keywords of the given record. Secondly, the security atom (if the
creator has chosen to specify file sanction in terms of security keywords) to which
a record belongs is determined by the set of security keywords appearing in the
record.

3.2 The Basic DBC Operations

The basic DBC operations are security enforcement, record insertion, record
retrieval, and record deletion. We first give a brief description of these operations
and relate them to their supporting components. Then we show in some depth
the data structures and algorithms involved in the operations.

3.2.1 The Role of Security Enforcement

The security filter processor (SFP) and the database command and control
processor (DBCCP) jointly maintain the database capabilities for the active users
of the system. In order for them to correctly enforce a security policy, the proper
database capabilities must be provided by the program execution system (PES).
A table is kept for each user U with the database capabilities for each active file
F. Let each table entry have the form:

(F, {(Q1, A1), (Q2, Az), .. . , (Qn, An)})

where each Q, is a query, each A; is an access set, and the set of couples is a
database capability.

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

25

26 '

366 Banerjee, Baum, and Hsiao

Commands of the form

(U, (F, Q), a) and (U, (F, R), a)

pass through the SFP or the DBCCP depending on the type of protection
mechanism chosen by the user. If the creator has chosen Type A protection
mechanism, the DBCCP converts the file sanctions into an atomic access privilege
list (AAPL). The AAPL has the form

(U, F, {(SANi. APDi), (SAN2, APD2), ... , (SANP, APDp)})

where SAN; is the name of the ith security atom of the file F and APD, is the
access privilege set associated with SAN; for the user U. In forming the AAPL,
the DBCCP makes use of all the DBC components except the mass memory
(MM) and security filter processor (SFP). If the creator of the file has chosen
Type B protection mechanism, the SFP takes over the maintenance and usage of
the file sanctions. In contrast to Type A protection mechanism, Type B requires
the access of all records satisfying a query and then the checking of every record,
one at a time, for security violation. Type A mechanism is, therefore, less time
consuming and should be the preferred type of security enforcement mechanism.

Records are sent into the DBC by way of commands of the form

(U, (F, R), "insert").

When such a command is received by the DBCCP, the record to be inserted is
checked for security clearance with the aid of the AAPL (Type A protection
mechanism) or the file sanctions. If the result of the check indicates that the
record may be inserted, then the DBCCP proceeds with the actual insertion
process.

When a command (U, (F, Q), "retrieve") is received by the DBCCP, the query
Q undergoes a similar check. If the check is successful, the mass memory is
instructed to retrieve the relevant records which form the response set Q(F).
Each record in the set Q(F) is tagged with the user identification and file name
(F, U, R). If the user has specified Type B protection mechanism, then the
retrieved records are subjected to a security check by the security filter processor
(SFP) before the records are passed on to the front-end PES. This is because the
records may contain keywords (in addition to and including those that are
required to satisfy the query Q) which satisfy the query parts of file sanctions.
The access privilege sets of such file sanctions then become applicable to the
records. As a result, some of the retrieved records may not be passed onto the
user. Such a drop in precision is part of the price a user pays for the wide latitude
the system provides in specifying security information.

To execute the command (U, (F, Q), "delete") the query Q is put through a
similar check. If the access "delete" is not granted, the command is rejected. If
the access is granted, the mass memory is instructed to proceed with the access.
In case of Type B protection mechanism, as each record is accessed, it is sent to
the SFP for a check against the set of file sanctions. The rationale for this check
is the same as the one given for the "retrieve" command. If the check is successful,
the mass memory proceeds to delete the record from the database; otherwise, the
record is not deleted.
ACM Transactions on Database Systems, Vol. 3, No. 4. December 1978.

Concepts and Capabilities of a Database Computer 367

3.2.2 Name-Mapping and the System Components

The retrieve and delete commands both employ the query Q as a parameter.
The subsequent processing of Q required for the execution of these commands
has the greatest effect in determining the architectural components of the system.
We shall now provide an introduction to these components.

A query Q in these commands is in a disjunctive normal form as follows:

. (P1 1 /\ ... /\ P~ 1) V ... V (Pim/\ ... /\ P':J

where P/ are keyword predicates. The ith conjunction of this query is denoted by
Qi. To form the response set Q(F), the mass memory must be given at least two
arguments: a query Q and an MAU number f. Given these arguments the mass
memory will locate all records in Mr that satisfy the query Q. We had earlier seen
that each of the index terms in the directory entry of a keyword defines an MAU
number f In the discussion in Section 3.1 on the security atom concept, it became
apparent that the index terms must carry information not only about MAU
numbers, but also about security atom numbers. Thus an augmented directory
entry for a keyword K of file F is defined as

D(F, K) = {(f, s) I 3 R 3 REMr, Re security atoms, and Ke R}.

The pair (f, s) will be called an augmented index term. In cases where the user
has chosen Type B protection mechanism, the security atom concept is not
applicable and the second member of an augmented index term is null. In future
discussions, by index terms we will always mean augmented index terms.

In order to protect the security of the database, it is necessary that the response
set Q(F) of a query Q should include only those records that not only satisfy Q
but also belong to the security atoms on which the required access is allowed to
the user. Therefore, the mass memory (MM) must be sent the query Q and a list
of index terms (f, s) of which the first component determines an MAC in which
one or more records satisfying Q may reside, and the second component indicates
to the mass memory (MM) that such records may be accessed if they belong to
security atom s. For each unique value f of the first component of the above
index terms, the mass memory makes one access to MAU numbered f and finds
those records satisfying Q and belonging to one of the security atoms that appear
as the second component of the index terms for f

To obtain the (f, s) pairs for a conjunction Qi, all index terms for keywords
satisfying each P/ of the conjunction must be found. Once found, a set intersection
operation is performed over the index terms. The resulting index terms are those
whose keywords will make the conjunction Qi true. These index terms are then
used as arguments to retrieve records from the mass memory.

An algorithm which forms the response set Q(F) is given in Figure 7. In line 5
of this algorithm, the index terms are fetched from all directory entries (D (F, K))
whose keyword K satisfies P/ and are placed in a set w (j). In lines 3-6, one set
w (j) is formed for each keyword predicate P/ in Qi. Then in line 7 these sets are
intersected to give the set (J(i). Line 7 carries out an intersection operation since
the keyword predicates of Q' are ANDed together. In lines 1-8, a set O(i) is
formed for each conjunction ({. In line 9, it is ensured that the set to be serit to
the mass memory (MM) contains only those security atoms that are accessible

ACM Tranaactiona on Database Systenls. Vol. 3, No. 4, December 1978.

27

28

368 Banerjee, Baum, and Hsiao

0. begin
1. For i • 1, 2, ... , m do
2. begin
3. For j • l, 2, .•• , n; do
... begin
5. "'U> • {(/, s>I K satisfies P/ and (/, s) £ D(F, Kl}
6. end
7. B(i) • n%i.1 i.J(k)

8. end
9. l: • {(Q•, f, s) I({, s) £ B' (k) and given access is allowed on atom s}

10. Q(F) • Ucq>.f.•kX {R IR£ M,, R satisfies Q• and R is in atoms}
11. end;

Fig. 7. A name mapping algorithm

by the user. (This job of determining the accessible atoms is done by the control
processor DBCCP.) In line 10, the response set is finally formed by the mass
memory (MM). In this algorithm, assumption is made that the attributes of all
the predicates in the query Qare directory attributes (those attributes on which
directory entries are maintained). This is not always the case, but it is required
that the attribute of at least one predicate of each conjunction should be a
directory attribute. This constraint is easy to maintain (as demonstrated in
[l, 2]) since the attributes of security keywords and clustering keywords are also
directory attributes. In any case, the query Q may be modified to Q' by deleting
all predicates whose attributes are not directory attributes. The modified query
Q' may now be used in lines 0·--8 of the algorithm (during directory search) and
the original query Q may be used in lines 9 and 10 when the actual response set
is being determined.

This algorithm shows how the data structures defined in the data model are
used for name-mapping. The content-addressability employed by the DBC will,
in fact, allow the actual realization of the data structures to be just as simple as
those illustrated here.

This algorithm shows us what the structure memory must do. The structure
memory must store directory entries and be able to accept a keyword predicate
Pi and retrieve all index terms for all keywords which satisfy Pi (as in line 5).
Clearly, the structure memory will also have to be able to add, delete, and modify
directory entries as well. It also shows us the nature of the structure memory
information processing, namely, set manipulation (line 7). These observations
help us outline the architecture of the DBC. The DBC contains at least five
functionally specialized components: the database command and control proces
sor (DBCCP), the security filter processor (SFP), the mass memory (MM), the
structure memory (SM), and the structure memory information processor

· (SMIP). The DBCCP is responsible for translating DBMS commands into lower
level commands for the mass memory and coordinating the actions of the other
components. The MM contains the database, the SM stores the directory entries,
and the SMIP is a set operation processor. The organization of these components
to a first order detail is shown in Figure 8. Two other components, namely the
index translation unit (IXU) and the keyword transformation unit (KXU) (20),
are needed from the point of view of an efficient physical realization of the DBC.

ACM Tranaactiona on Database Systems, Vol. 3, No. 4, December 1978.

Concepts and Capabilities of a Database Computer 369

-- Information Path
Control Path

SMIP ------- SM

DBCCP Dato Bose
I Command a

I Control
I Processor

I
KXU Keyword I

I Tronsformot1on

I Unit

SM: Structure
Memory

SMIP: Sturture
From PES Memory

Information
To PES Processor

I IXU: Index

I Translation

I Unit
I MM: Moss

I \
Memory

I
\

SFP: Security
I Filter

I \ Processor
I \

PES: Program I \
I \ Execution

I \ System
I

SFP MM

Fig. 8. The architecture of the DBC

3.2.3 The Operation of the SM, SMIP, MM, and DBCCP

The theory of operation continues with an exposition of the operating principles
of the structure memory, structure memory information processor (SMIP), the
mass memory, and the database command and control processor (DBCCP). The
carefully tailored functional characteristics of these components allow them to
readily carry out the DBC algorithms. The description of the components that

ACM Transactions on Database System.i., Vol. 3, No. 4, December 1978.

29

30

370 Banerjee, Baum, and Hsiao

follows is conceptual in nature; the actual hardware organization used to realize
them 'is given in [16, 19, 20].

A. Structure Memory (SM)
The SM is the repository of the directories of the files in the DB. Each index

term({, s) of D(F, K) is stored in the SM as the tuple (F, K, f, s). The contents
of the SM may therefore be viewed as a set (known as structural memory basis
SMB) of such tuples defining the directories of all files.

The SM retrieve command has the form SM<retrieve, (F, P)) where Fis a file
name and P is a keyword predicate. The command is carried out by constructing
a set containing all index terms of each directory entry D(F, K) whose keyword
K satisfies P. Formally, the SM executes the command SM (retrieve, (F, P)) by
outputting the set

{({, s) I (F, K, f, s) £ SMB and K satisfies P}.

The insert command has the form SM (insert, (F, K, f, s)) and is executed by
adding({, s) to the set D(F, K). In other words, the insert command is executed
by replacing SMB with SMB U (F, K, f, s).

The delete command has the form SM (delete, (F, K, f, s)) and is executed by
removing (f, s) from D(F, K). Formally, the deletion command is executed by
replacing SMB with SMB-(F, K, f, s).

To model its operations the SM can be viewed as a PCAM with M content
addressable blocks. The SM partitions the set SMB into N subsets, designated
SMBi, 0 s i < N, where N s M. Each subset is stored in one or more blocks of
the PCAM.

The retrieve command is executed by first applying to predicate P a hash
function which maps it into an integer j where 0 ~ j < N. Then the set SMB1 is
searched by accessing the appropriate block(s) of the PCAM to locate and
retrieve the tuples (F, K, f, s) whose keyword K satisfies P.

Insert and delete commands are executed by applying to K a hash function
which maps it into an integer j. The tuple (F, K, f, s) is then added to or removed
from the subset SMB1 by accessing the appropriate block of the PCAM.

The nature of the hash function will strongly influence the kinds of keyword
predicates that may be used by the system. This issue along with a description of
how the sets SMB1 are stored in the PCAM and how the SM and its PCAM are
realized are addressed in [20].

Consideration is now given to the fact that the SM is a two-level system
containing a directory entry storage and a look-aside buffer (LKA). We now
extend the aforementioned operations to the two-level SM. Let the directory
entry storage be represented by the set SMB defined above. The time required
to update this set (i.e., add or delete an element) is fairly long compared to the
time required to update, say, a fast access semiconductor RAM. The look-aside
buffer allows SM update operations to appear as though they were executed
immediately.

The look-aside buffer may be conceptually represented by an ordered set of
SM update commands

command1 , command2, ... , commandk
ACM Transaction.~ on Database Systems, Vol. 3, No. 4, December 1978.

Concepts and Capabilities of a Database Computer 371

where command, precedes commandi+1 in time. The look-aside buffer has two
functions: i't acts as a command queue for the SM and it contains the information
which allows the SM to appear updated. The look-aside buffer (LKA) would be
realized with high-speed random access memory and so its access time would be
much less than that of the directory entry storage.

Whenever an update command is received by the SM it is placed in LKA. If an
insert (delete) command negates the effect of a previous delete (insert) command
then the insert (delete) command is not added to LKA and the negated delete
(insert) command is removed from LKA.

To execute a retrieval command, the two-level SM first examines LKA for
commands which add index term ({, s) to directory entry D (F, K) whose keyword
K satisfies P. All index terms so found are output. Then the set SMB is searched
for additional index terms. When an index term ({, s) of a directory entry D (F,
K) whose K satisfies P is retrieved from SMB it is checked in the following way:
If there is a command in LKA to delete (f, s), then that index term is not output
from SM.

B. Structure Memory Information Processor (SMIP)
The SMIP is a processor for set manipulation. Set manipulation operations are

performed by maintaining an intermediate set in the SMIP while the argument
sets which modify it are passed through the SMIP. The SMIP's intermediate set
is designated SW and consists of couples (m, d) called SMIP data units. The
first part m of the couple is called the key and the second part d is called the
data. Operations are performed on SW by identifying a S.!'-.1IP data unit and by
performing an operation on it. There are two kinds of S~IIP comman<ls. The first
kind of SMIP command is represented by SMIP < m, g) where m is a key and g
is a manipulation function. The manipulation function can do two things: first, it
can specify how the data part of a SMIP data unit Im, d) with key m should be
modified; and second, it can specify what should be done if no SMIP data unit
with key m is in SW. When no SMIP data unit with key m is found and no action
is specified by g then SMIP takes no action. The second kind of SMIP command
has the form SMIP (g) where g specifies an action that is to occur.

To illustrate the set manipulation functions, let us show how the SMIP can be
used to perform an N-set intersection. Let Xi represent one of these N sets and
let x,1 represent an element of X. The algorithm which perfonns the intersection
is shown in Figure 9.
0. begin
1. For each element x11 of X1 do
2. begin
3. execute the command SMIP<x1I> "create (x11, l)">
4. end
5. For i = 2, 3, .. ., N do
6. begin
7. For each element x,1 of X, do
8. begin
9. execute SMIP<:c;I> "replace (x,1o d) with (x,1, d + l)">

10. end
11. end
12. Execute the SMIP<"retrieve the key m from all (m,d) where d = N''>
13. end

Fig. 9. An N-set intersection algorithm using the SMIP

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

31

3'2

372 Banerjee, Baum, and Hsiao

In lines 1-4 of the algorithm a SMIP data unit of the form (x1,, 1) is created for
each ;lement of X1. In steps 5-11 each element of the sets X2, X3, ... , Xn is
examined and whenever a matching SMIP data unit is found its data part is
incremented by 1. When these steps are completed, SW contains SMIP data units
which indicate in how many of the sets X; each element of X1 appears. Those
elements appearing in all sets make up the set X1, ... , Xn. In line 12 all such
elements are retrieved from the SMIP.

The SMIP is also realized with a PCAM. To model ~he operation of the SMIP,
a PCAM with M content-addressable blocks is used. The SMIP partitions the set
SW into N subsets designated SWB; where N :s M. Each subset is stored in one
or more blocks of the PCAM.

The command SMIP (m, g) is executed by applying to m a hash function
which maps it into an integer j where 0 :s j < N. Then SWB1 is searched for a
SMIP data unit with the key m. If it is found, g is applied to its data part. If no
SMIP data unit is found, then any other action that g specifies is carried out on
SWB,. The command SMIP (g > is executed by ordering each block of the SMIP
PCAM to perform the operation specified by g.

C. Mass Memory (MM)
The MM is the repository of the database itself. The storage is organized as a

partitioned content-addressable memory with enough processors to simultane
ously content-address each partition. To access records in the database, queries,
MAU numbers, and security atom identifiers are provided to the MM. These
addresses and identifiers are provided by the structure memory, the structure
memory information processor, and the index translation unit after processing a
given query Q.

Mass memory commands have three forms. The first form, MM (a, Q, {, s},
specifies an access type a, a query Q, an MAU number f, and a security atom
identifier s. This form of access request is used for records with Type A security
specification. The MM executes the command by perfomting access a on the
records in MAU numbered f satisfying query Q and belonging to atom s. (The
atom number being a part of each record, it is easy to check if a record belongs
to a given atom.) The second form, MM (a, U, F, Q, {),specifies an access type
a, a user U, a file F, a query Q, and an MAU number f. This form of access
request is used for records with Type B security specification. The MM executes
the command by first performing access a on the records in MAU f satisfying
query Q, and then sending these records to the security filter processor (SFP).
The SFP performs Type B security check on these records and returns to the
control processor (DBCCP) only those records that are allowed to be accessed by
the given user. Finally, to insert a record R into the MAU f, a command of the
form MM ('insert', U, R, f> is sent to the MM.

D. Database Command and Control Processor (DBCCP)
The DBCCP regulates the operation of the entire system. Its basic function is

to receive commands from the front-end program execution system (PES),
execute these commands by properly using the various components of the DBC,
and sending response data back to the PES. The DBCCP ensures that all
commands move smoothly through the system in the form of a pipeline, so that

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Concepts and Capabilities of a Database Computer 373

all the DBC ~omponents can be executing specific functions for different com
mands at any instant of time.

The DBCCP maintains a number of table memories. Among these tables are
the cluster table C, the MAU space table LF for every file F and the database
capabilities of the active users. Using these tables, the DBCCP performs some
important functions such as clustering of the records (algorithm in Figure 4) and
computation of the atomic access prhilege lists of the active users. The latter
computation is done only once for each combination of file and user.

Complete details of the functions of the various DBC components as well as
the detailed algorithms for the execution of the DBC commands may be found in
[16, 19, 20).

4. THE TECHNOLOGY OF THE DBC

The database command and control processor (DBCCP), the security filter
processor (SFP), and the index translation unit (IXU) are conventional processors
that would be specially microprogrammed for their tasks. The structure memory
(SM) can also be built with available technology, but the more powerful SM
organizations must employ emerging technology.

The SM is most dependent on technological developments. Its PCAM (parti
tioned content-addressable memory) could be built today by using a fixed-head
disk as the storage medium. Each block of the PCAM would be stored on one or
more tracks of the disk. The memory would be accessed by reading and searching
the track(s) representing a block. This organization would have two limitations:
First, the block access time would be relatively slow (.5 msec or greater); this is a
potential system bottleneck. Second, the PCAM would consist of many relatively
small blocks and so only equality predicates could be readily handled by the SM.
This is because the small block size implies small hash table buckets which, in
tum, implies that the hash function must be used for exact-match searches. This
is because inequality searches would cause access to a large number of small
blocks.

The rapid development of electronic bulk memory technologies (CCD's, RAM's
(12], magnetic bubbles [7, 9], and electron beam memories [18]) may make an all
electronic fixed-head disk replacement available very soon. This would allow the
construction of a much faster PCAM-based SM which would not be a bottleneck.
An "electronic-disk" PCAM would still. however, have many small blocks and so
would suffer from the same keyword predicate limitations as a fixed-head disk
PCAM.

The availability of cheap and very powerful microprocessors opens the way to
a very powerful PCAM organization. This PCAM consists of a small number of
very large content-addres5able blocks and is realized by a large number of
microprocessor-memory pairs as shown in Figure 10. This kind of PCAM would
be capable of supporting a much greater variety of keyword predicates. This is
because all keywords of a given attribute could probably be stored in a singl0
PCAM block and so any predicate could be applied to all keywords of that
attribute with a single access. In [16], we proposed three design alternatives for
the PCAM organization of SM. The design based on magnetic bubbles is of

ACM Transactions on Database Systems, Vo!. 3, No. 4, December 1978.

33

34

37 4 Banerjee, Baum, and Hsiao

major-rpinor loop variation and the design based on charge-coupled devices is of
line-addressable RAM organization. Both of these are good for SM of 10; - 108

bytes in size. For larger SM of 109 bytes, the design based on an electron-beam
addressed memory system is given.

The structure memory information processor (SMIP) (see Figure 11) is pri
marily a processing element and is consequently not limited by memory technol
ogy. The small amount of memory required by this component can be realized
with current technology. The SMIP achieves very high speed by using many
processor-memory pairs to execute operations in parallel. The SMIP is feasible
with today's technology and could become quite ine~pensive in the future as
RAM's and microprocessors become cheaper.

The mass memory (see Figure 12) uses a moving-head disk to realize a PCAM.
Each cylinder of the disk represents one PCAM block. For high performance, all
of the data on a cylinder is accessed in parallel, and is searched in a single disk
revolution. The mass memory therefore uses multiple read/write assembly reg
isters and a set of fast processing units (the number of units is equal to the
number of tracks of a cylinder). This requires modification and improvements of
current technology. A detailed description of the logical and physical structure of
the mass memory is given in [19].

Memories

1 2 N

1 2 N

!1 I 2 I N

Each memory consists of
N sectors

Processor

Processor

SM
Controller

To se8J'ch the ith pBl'tition of the
PCAM all processors se8J'ch the ith
sector of their memory in p8l'allel.

Fig. 10. The SJ'chitecture of the structure memory

Partition
Processor 1

Partition
Processor 2

Partition
Processor N

SMIP
Controller

Each partition of the SMIP PCAM is realized
by a sep8l'ate processing element. All partitions
may be processed in p8l'allel.

Fig. 11. The architecture of the SMIP

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Concepts and Capabilities of a Database Computer 375

Trock Information Disk
Processing Units

Processor---~~-

Fig. 12. The architecture of the MM

5. CONCLUDING REMARKS

The emergence of large data bases and complex software for the conventional
database management systems has prompted the search for hardware solutions
for database management. It is expected that database machines can contribute
to a considerable improvement in reliability and performance of the existing
database management systems [4].

This paper lays down the conceptual framework for the design of such a
machine, called the DBC. The DBC design allows for a number of functionally
specialized modules which can all work concurrently. A large degree of parallelism
is provided within each module (including the mass memory) by employing a set
of processors to simultaneously perform a content-search operation and by
providing tracks-in-parallel read-out. Yet, the number of such processors is kept
low by having a PCAM (partitioned content-addressable memory) design for the
. major DBC memory components, namely the mass memory (MM) and the
structure memory (SM).

The DBC directly implements the attribute-based data model and a very
powerful query language based on Boolean expressions of keyword predicates,
The DBC, thereby, provides a natural way of expressing database management
needs.

Since the mass memory of the DBC is made up of content-addressable
partitions called minimal access units (or MAU's), it is necessary that the more
frequent requests to the DBC be answered with the fewest possible MAU
accesses. This is made possible by the application of the data clustering mecha
nism. A file creator is allowed to use his knowledge of the characteristics of the
records and the frequency of the various types of requests, in determining a set
of clustering attributes. Since MAU's are normally very large (at least a disk
cylinder), few files will ever require a storage of more than 100 to 1000 MAU's.
Two levels of clustering, therefore, in the form of a primary clustering attribute
and a secondary clustering attribute should be more than adequate for all

ACM Transa<:tions on Database Systems, Vu!. 3, No. 4, December 1978.

35

36

376 Banerjee, Baum, and Hsiao

PUJ"ROSes. Effective application of this clustering mechanism has already been
made in the simulation of network [l] and relational [2] databases.

The DBC also provides a content-based security enforcement mechansim.
Each file is logically partitioned into a number of security atoms, which are
defined in terms of security keywords. A database capability is then defined for
every user of the file. The database capability of a user consists of a set of file
sanctions, which, in turn, consist of pairs of the form (query, access privilege set).
Using the database capability of a user, the DBC can determine the user's atomic
access privilege list. This is done once for every user of the file. Later, during file
access, it is easy to determine for each query given by a user what atoms the
query might refer to. The user is then allowed the requested access to only those
atoms that are permitted by his atomic access privilege list.

Detailed specifications of the data and instruction formats of the database
computer and its components, the structure, speeds, and capacities of the com
ponents and the technology required to build the machine are given in (16, 19,
20). It is our belief that the architectural principles used in the DBC do not
require distant technology and so can be realized in the near future. Preliminary
studies on how the DBC should support higher level data models such as the
hierarchical, network, and relational have been completed [l, 2, 17]. In all these
studies it has been observed that compared to a conventional system supporting
a particular data model, the DBC shows a much improved performance. In fact,
a general conclusion may be drawn from these studies that even though the mass
memory requirement of the DBC is comparable to or slightly greater than that
of a conventional system, the directory storage requirement as well as the query
execution time (or time to execute a database transaction) of the DBC are one or
more orders of magnitude less than those of a conventional system.

APPENDIX: AN ILLUSTRATION OF THE SECURITY AND CLUSTERING
MECHANISMS

We shall illustrate here, with an example, the manner in which records are
clustered. We also illustrate how the same records are grouped into security
atoms in order to protect them from unauthorized access. Even though the DBC
allows range specifications (instead of only simple keywords) as directory entries
and as security and clustering descriptors, we shall consider, for simplicity, only
simple keywords for such purposes. Further, the Type A protection mechanism
being the more important and interesting one, our example will assume the use
of the Type A protection mechanism alone. The reader may be forewarned that
the sample database being necessarily small, the security atoms and clusters will
be quite small. What we hope to achieve, however, is to provide the reader with
a clearer utilization of the concepts presented earlier in this paper.

(1) A Sample Relational Database

We consider for illustration a relational database with two relations EMP(ENO,
NAME, DNO, JOB, PNO), and DEPT(DNO, MGR, FLOOR), where the column
names, i.e., attributes of each relation, are enclosed in parentheses. Every em
ployee record, i.e., a row in relation EMP, consists of an employee number ENO,

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Concepts and Capabilities of a Database Computer 377

an employer NAME, a department number DNO, a JOB designation, and a
project number 'PNO. Every department record, i.e., a row in relation DEPT,
consists of a department number DNO, a manager name MGR, and the FLOOR
in which the department is located.

A. Data Adjacency Requirements-Based on the frequency of various types
of user requests, it has been determined that all records of a single relation are to
be kept physically close to one another. Furthermore, secondary clustering may
be done in terms of the JOB and DNO attributes. Records of the two relations
are to be placed in a single file F. We assume that the file creator has specified
the expected storage requirement for EMP relation to be 4 MAU's and for DEPT
relation 2 MAU's. In order to keep the discussion simple, it is assumed that an
MAU can accommodate up to five records (instead of some realistic size, such as
500,000 bytes).

B. Basic Security Requirements-It has been determined that all records
belonging to an engineer or manager, to project number IO or 20, or to department
100 are security sensitive.

C. The DBC Representation of the Sample Relational Database-The rela
tional database is given in Figure 13. In representing a relation in the DBC
database, a relational tuple is converted to a set of DBC keywords, i.e., attribute
value pairs, and a special keyword is created for the relation name. For example,

EMP Relation
ENO NAME ONO JOB PNO

Rl. 1 HAYES 100 MGR 10
R2. 2 NAY AK 100 ENGG 20
R3. 3 ROSEN 100 ENGG 20
R4. 4 KERNS 100 TECH 10
R5. 5 GROVE 100 SEC 10
R6. 6 PERRY 100 SEC 20
R7. 7 GHOSH 200 MGR 30
RS. 8 SLOAN 200 ENGG 30
R9. 9 PARDO 300 MGR 30

RlO. 10 PRICE 300 TECH 20
Rll. 11 WHITE 300 TECH 30
Rl2. 12 KLINE 300 SEC 30
R13. 13 HSIAO 400 MGR 40
R14. 14 PRATT 400 ENGG 40
R15. 15 BOONE 400 SEC 40

DEPT Relation

. DNO MGR FLOOR

Rl6. 100 HAYES
Rl7. 100 NKOMO 2
RIB. 200 GHOSH 1
Rl9. 200 GHOSH 2
R20. 300 PARDO
R21. 400 HSIAO 1
R22. 400 HSIAO 2

Fig. 13. A sample relational database

ACM Transactions on Database Systems. Vol. 3. No. 4, December 1978.

37

38

378 Banerjee, Baum, and Hsiao

the first tuple in the EMP relation is represented as a DBC record:

(<RELATION, EMP>, <ENO, l>, <NAME, HAYES>,
<DNO, 100>, <JOB, MGR>, <PNO, 10>).

For the purpose of later reference we call the tuples and equivalent DBC records
as Rl, R2, R3, etc.

(2) New Users and Their Access Privileges

Considering a specific user U of the database, it is necessary that he be allowed
no access to the employee records belonging to a manager, only 'read' access to
all records with DNO=lOO and PN0=20, and only 'read-and-modify' access to all
records with JOB=ENGG.

(3) The Process of Creating a Database in the DSC

The given records, in the form of attribute-value pairs, are loaded into the mass
memory (MM). This process starts with the front-end program execution system
(PES) specifying the names of the files to be created, their clustering attributes,
storage requirements, and their security keywords and other directory keywords.
The database command and control processor (DBCCP) keeps track of them by
means of an attribute table.

The records are then supplied by the PES, one at a time, to the DBCCP. The
DBCCP determines, for each record, the security atom and cluster in which it
belongs and the MAU in which the record should be placed. The record is then
physically placed in the MAU determined. While the record is being loaded in
the mass memory (MM), the DBCCP updates the directory in the structure
memory (SM). A new entry is created in the directory for every directory keyword
appearing in the record in consideration.

For this example, the processes are summarized in the following paragraphs:
(A) Determining the Security Atom for a Record-The combination of se

curity keywords in the given record uniquely determines the security atom in
which it should belong. Any new security atom generated during the loading
process is assigned a unique security atom identification (id). The security
keywords for the given file are <JOB, MGR>, <JOB, ENGG>, <PNO, 10>,
<PNO, 20>, and <DNO, 100>. The security atoms created for the database are
shown in Figure 14.

(B) Determining the Cluster id of a Record-The combination of the primary
clustering keyword and the most important secondary clustering keyword
uniquely determine the number of the cluster in which the record should belong.
For the given file, the primary clustering attribute is RELATION and the
secondary clustering attributes, in order of importance, are JOB and DNO. The
clusters created for the database are shown in Figure 15.

(C) Assigning an MAU to a Record-Every record is stored in an MAU
determined by the cluster to which it belongs and the current space availability
in the MAU's. In the example, the space requirements of the primary clustering
keywords <RELATION. EMP> and <RELATION, DEPT> are 4 MAC's and
2 MAU's, respectively. The MAU number for each record, loaded in the order

ACM Transactions on Database Systems. Vol. 3, No. 4, December 1978.

Concepts and Capabilities of a Database Computer 379

A

The security keywords given are (JOB, MGR), (JOB, ENGG), (PNO, 10), (PNO, 20) and (DNO,
100).

Security Atom id

Al
A2
A3
A4
A5
A6
A7
A8
A9

Security Keywords in Atom

(DNO, 100),
(DNO, 100),
(DNO, 100),
(DNO, 100),
(JOB, MGR)
<JOB, ENGG)
(PNO, 20)

(DNO, 100)

<JOB, MGR>,
(JOB, ENGG),
(PNO, 10)
<PNO, 20)

Notice that atom A8 corresponds to the null combination of security keywords.
Fig. 14. Security atoms formed by the records of Figure 13

<PNO, 10)
(PNO, 20)

RI, R2, R3, etc., is determined by means of the algorithm of Figure 4. After
creation of the database, therefore, the MAU map appears as shown in Figure 16.

(D) Creating the Keyword Directory-The security and clustering keywords
are specified to be the only directory keywords for the given file. For each
directory keyword in a record, an entry is made in the structure memory (SM).
The index term of the entry is of the form (f, s) where f is the number of the
MAU in which the record is stored ands is the security atom to which the record
belongs. The keyword directory created for the sample database is shown in
Figure 17.

(4) Access Privileges of the User U

Consider now the security requirements of the particular user U. His database
capability consists of the following file sanctions:

((JOB=MGR), no-access)
(((DN0=100) /\ (PN0=20)), read-only)
((JOB=ENGG), read-and-modify)

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

39

40

380 Banerjee, Baum, and Hsiao

primary cluster or first-level
cluster due to the primary clus
tering keyword< RELATION, EMP>

primary cluster due to the
primary clustering keyword
<RELATION, DEPT >

Cluster id

Cl
C2
C3
C4
cs
C6
C7
cs

Clustering Keywords

(RELATION, EMP),
(RELATION, EMP>.
(RELATION, EMP>,
(RELATION, EMP),
(RELATION, DEPT),
(RELATION, DEPT),
<RELATION, DEPT),
(RELATION, DEPT),

(JOB, MGR>
(JOB, ENGG>
(JOB, TECH>
<JOB, SEC>
{DNO, 100)
(DNO, 200)
<DNO, 300)
<DNO, 400)

It has been given that the primary clustering attribute is RELATION and the secondary clustering
attributes are JOB and DNO.

Fig. 15. Clusters formed by the records of Figure 13

The user has all access rights on records that do not violate any of the file
sanctions. Using the security atom definitions and the database capability of the
user, the DBCCP creates an atomic access privilege list for the user according to
the discussion in Section 3.1. This is done before he starts accessing the file. The
atomic access privilege list of the user is shown in Figure 18. The atom definitions
(i.e., the list of security keywords of the atom) are also included in the list, so that
the reader can make convenient reference. The user's file sanctions are also
reproduced in the figure.

(5) Executing the Requests of User U

We finally consider the role of the various data structures, such as the atomic
access privilege list and the keyword directory, in the retrieval of records from
the database. Three typical access requests, made by user U, will illustrate this
process.
Example 1: Modify the project number of all secretaries to 20.

This is an example of a request where the physical clustering of
the records becomes very useful for efficient execution of the
request. The request requires that all records be first retrieved that
satisfy the query

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

Concepts and Capabilities of a Database Computer 381

((RELATION= EMP) /\(JOB= SEC)).

• Since both the predicates of the query correspond to directory
keywords, the index terms for each predicate are easily determined
by referencing the directory (Figure 17). The two sets of index
terms are now intersected by the structure memory information

\An MAU Number
'...Ml M2 M3 M4 M5 MG

Rl
R7
R9
R13 [!] R5

RG
R12
R15

Fig. 16. MAU map of file F

Rl8
R19
R21
R22

Keyword Index Terms

<RELATION, EMP>. (Ml.Al), (Ml,A5), (M2,A2), (M2,A6), IM3,A3), (M3,A7),
(M3,A8), (M4,A3), (M4,A4), (M4,A8)

<RELATION, DEPT> (M5,A8), (M5,A9), (M6,A8)

<JOB.MGR>
<JOB,ENGG>
<JOB, TECH>
<JOB, SEC>

<DN0, 100>
<DN0,200>
<DN0,300>
<DN0,400>

<PN0,10>
<PNO, 20>

(Ml.Al), (Ml.AS)
(M2,A2), (M2,A6)
(M3,A3), (M3,A7), (M3,A8)
(M4,A3), (M4,A4), (M4,A8)

(Ml.Al), (M2,A2), (M3,A3), (M4,A3), (M4,A4), (M5,A9)
(Ml,A5), (M2,A6), (M6,A8)
(Ml,A5), (M3,A7), (M3,A8), (M4,A8), (M5,A8)
(Ml,A5), (M2,A6), (M4,A8), (M6,A8)

(MI,Al), (M3,A3), (M4,A3)
(M2,A2), (M3,A7), (M4,A4)

Fig. 17. Keyword directory of file F

File sanctions of user U

((JOB=MGR), no-access)
(((DNO=lOO) /\ (PN0=20)), read-only)
((JOB=ENGG), read-and-modify)

Atomic access privilege list of user U

Security Atom Security Keywords

<DNO, 100>, <JOB, MGR>, <PNO, 10>
<DNO, 100>, <JOB, ENGG>, <PNO, 20>
<ONO, 100>, <PNO, 10>
<DNO, 100>', <PNO, 20>
<JOB, MGR>
<JOB. ENGG>
<PN0,20>

Accesses Authorized

no-access
read-and-modify
all accesses
read-only
no-access
read-and-modify
all accesses
all accesses

Al
A2
A3
A4
A5
A6
A7
AB
A9 <DNO, 100> all accesses

Fig. 18. File sanctions and atomic access privilege list of user U

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

41

42

382 Banerjee, Baum, and Hsiao

processor (SMIP) to produce the following index terms. The inter
section algorithm implemented in the SMIP is list~d in Figure 9.

(M4, A3), (M4, A4), (M4, A8).

Notice, as an aside, that even though there are many records
satisfying the query, only one MAU, namely M4, contains all of
them. This is because of clustering by the RELATION and JOB
attributes. Coming back to the problem, we notice that three atoms
A3, A4, and A8 need to be accessed. However, looking at the atomic
access privilege list (Figure 18), it is determined that the user is
allowed the 'modify' access only on atoms A3 and A8. Hence, the
index terms sent to the mass memory (together with the query)
are:

(M4,A3) and (M4,A8).

After the response set is delivered by the mass memory, the records
may be modified and reinserted in the database.

Example 2: Read the records of all employees in project 10.
This is an example of a request where the response set is not
clustered. The request requires that all records be retrieved that
satisfy the query

((RELATION= EMP) /\ (PNO = 10)).

Once again, since both predicates correspond to directory key
words, two sets of index terms are retrieved from the directory and
intersected to produce the list:

(Ml, Al), (M3, A3), (M4, A3).

Since 'read' access is not allowed on atom Al, only the following
index terms are sent to the mass memory (together with the query):

(M3, A3) and (M4, A3).

Example 3: Find the employee record of KERNS.
This is an example of a request where only the first-level clustering,
by attribute RELATION, can be used. The request requires that
all records be retrieved that satisfy the query:

((RELATION= EMP) /\(NAME= KERNS)).

The second predicate does not correspond to a directory keyword,
hence only the first one is used for directory search. The index
terms for <RELATION, EMP> are found, and after removing the
terms with atoms that are not permitted for 'read' access, the
following index terms (together with the query) are sent to the
MM:

(M2, A2), (M2, A6), (M3, A3), (M3, A7), (M3, A8), (M4, A3),
(M4, A4), (M4, A8).

ACM Tran1iactions on Database Systems, Vol. 3, No. 4, December 1978.

Concepts and Capabilities of a Database Computer 383

ACKNOWLEDGMENTS

The work reported here is the result of a research initiated by D. K. Hsiao,
contributed first by R. I. Baum, expanded by K. Kannan, and continued by .J.
Banerjee under the supervision of D. K. Hsiao. The entire work was conducted
at The Ohio State Cniversity and supported by The Office of Naval Research
through contract N00014-75-C-0573. The authors would like to thank K. Kannan
for his contribution to the database computer project. A major portion of this
paper is derived from a project report [5] available also through NTIS under AD
A034154. The authors would also like to thank the referees whose comments and
suggestions helped to improve the manuscript considerably. Thanks also are due
D. Kuck who as the editor devoted coruiderable patience and care in handling
the manuscript.

REFERENCES

1. BANERJEE, J., HSIAO, D.K., AND KERR. D.S. DBC software requirements for supporting network
databases. Tech. Rep. OSU-CISRC-TR-77-4, Ohio State U., Columbus, Ohio. June 1977; also
available in BANERJEE, J., AND HSIAO, D. K. A methodology for supporting existing CODASYL
database with new database machines. Proc. ACM 78 Conf., Washington. D. C., Dec. 1978.

2. BANERJEE, J., HSIAO, D.K., AND KERR, D.S. DBC software requiremeats for supporting relational
databases. Tech. Rep. OSU-CISRC-TR-77-7, Ohio State U .. Columbus. Ohio, Sept: 1977; also
available in two papers by J. Banerjee and D.K. Hsiao: The use of a database computer for
supporting relational databases. Proc. Fourth Comptr. Architecture Workshop for Non-Numerical
Processing, Syracuse, N.Y., Aug. 1978, and Performance study of a database machine in supporting
relational databases, Proc. Fourth Int. Conf. Very Large Data Bases. Berlin, Germany, Sept. 1978.

3. BANERJEE, J., HSIAO, D.K., AND NG, F.K. Data network-a computer network of general-purpose
front-end computers and special-purpose backend database machines. Proc. Int. Syrop. on
Comptr. Network Protocols, A. Danthine, Ed., Liege, Belgium, Feb. 1978, pp. D6-l-D6-12.

4. BAtiM, R.l., AND HSIAO, D.K. Database computers-a step towards data utilities. IEEE Trans.
Comptrs. C-25, 12 (Dec. 1976), 1254-1259.

5. BAUM, R.l., HSIAO, D.K., AND KANNAN, K. The architecture of a database computer, Pt. I:
Concepts & capabilities. Tech. Rep. OSU-CISRC-TR-76-1, Ohio State U., Columbus, Ohio, Sept.
1976.

6. BERRA, P.B., AND SINGHANIA, A.K. A multiple associative memory organization for pipelining a
directory to a very large data base. Dig. of Papers COMPCON 76, Washington, D.C., pp. 109-112.

7. BOBECK, A.H., BoNYHARD, P.l., AND GEus1c, J.E. Magnetic bubbles-an emerging new memory
technology. Proc. IEEE 63, 8 (Aug. 1975), 1176-1195.

8. CANADAY, R.H., HARRISON, R.D., IVIE, E.L .. RYDER, J.L., AND WEHR, L.A. A back-end computer
for data management. Comm. ACM 17, 10 (Oct. 1974), 575-582.

9. COHEN, M.S., AND CHANG, H. The frontier of magnetic bubble technology. Proc. IEEE 63, 8
(Aug. 1975), 1196-1206.

10. COULOURIS, G.F., EVANS, J.M., AND MITCHELL, R.W. Towards content addressing in data bases.
Comptr. J. 15, 2 (Feb. 1972), 95-98.

11. DEFIORE, C.R., AND BERRA, P.B. A data management system utilizing an associative memory.
Proc. AFIPS 1973 NCC, Vol. 42, AFIPS Press, Montvale, N.J., pp. 181-185.

12. HODGES, D.A. A review and projection of semiconductor components for digital storage. Proc.
IEEE 63, 8 (Aug. 1975), 1136-1147.

13. HoLLAAR. L.A. A list merging processor for information retrieval systems. Presented at Workshop
on Architecture for Non-Numerical Processing, Dallas, Tex., Oct. 1974.

14. HSIAO, D.K. Systems Programming-Concepts of Operating and Data Base Systems. Addison
Wesley, Reading, Mass., 1975, chap. 6.

15. HSIAO, D.K., AND HARARY, F. A formal system for information retrieval from files. Comm. ACM
13, 4 (April 1970), 266. Corrigenda. Comm. ACM 13, 6 (June 1970).

16. HSIAO, D.K., KANNAN, K., AND KERR, D.S. Structure memory designs for a database computer.
Proc. ACM 77 Con{., Seattle, Wash., Oct. 1977, pp. 343-350.

ACM Transactions on Database Systems, Vol. 3, No. 4, December 1978.

43

44

384 Banerjee, Baum, and Hsiao

17. HSIAO, D.K., KERR, D.S., AND NG, F.K. DBC software requirements for supporting hierarchical
databases. Tech. Rep. OSU-CISRC-TR-77-1, Ohio State U., Columbus, Ohio, April 1977.

18. HUGHES, W.C., et al. A semiconductor nonvolatile electron-beam accessed mass memory. Proc.
IEEE 63, 8 (Aug. 1975), 1230-1240.

19. KANNAN, K. The design of a mass memory for a database computer. Proc. Fifth Annual Symp.
Comptr. Architecture, Palo Alto, Calif., April 1978, pp. 44-50.

20. KANNAN, K., HsIAo, D.K., AND KERR, D.S. A microprogrammed keyword transformation unit for
a database computer. Proc. Tenth Annual Workshop Microprogramming, Niagra Falls, N.Y., Oct.
1977, pp. 71-79.

21. LIN, C.S., SMITH, D.C.P., AND SMITH, J.M. The design of a rotating associative memory for
relational database applications. ACM Trans. Database Syst. I, 1 (March 1976), 53-65.

22. MARILL, T., AND STERN, D. The datacomputer-a network data utility. Proc. AFIPS 1975 NCC,
Vol. 44, AFIPS Press, Montvale, N.J., pp. 389-395.

23. McCAULEY, Ill, E.J. Highly secure attribute-based file organization. Proc. Second USA-Japan
Comptr. Conf., Aug. 1975, pp. 497-501.

24. MINSKY, N. Rotating storage devices as partially associative memories. Proc. AFIPS 1972 FJCC,
Vol. 41, AFIPS Press, Montvale, N.J., pp. 587-596.

25. MOULDER, R. An implementation of a data management system on an associative processor. Proc.
AFIPS 1973 NCC, Vol. 42, AFIPS Pres.s, Montvale, N.J., pp. 171-176.

26. 0ZKARAHAN, E.A., SCHUSTER, S.A., AND SMITH, K.C. RAP-associative processor for data base
management. Proc. AFIPS 1975 NCC, Vol. 44, AFIPS Press, Montvale, N.J., pp. 379-388.

27. STELLHORN, W.H. A specialized computer for information retrieval. Rep. No. R-74-637, Dept.
Comptr. Sci., U. of Illinois, Urbana, Ill., Oct. 1974.

28. Su, S.Y.W., AND LIPOVSKI, G.J. CASSM: A cellular system for very large data bases. Proc. Int.
Conf. Very Large Data Bases, Sept. 1975, pp. 456-472.

Received July 1977; revised April 1978; rerevised August 1978

ACM Transactions on Database Systems, Vol. 3. No. 4, Decemb~r 19:'.3.

DBC A DATABASE COMPUTER FOR VERY LARGE DATABASES

Jayanta Banerjee and David K. Hsiao
The Ohio State University

Krishnamurthi Kannan
IBM Thomas J. Watson Research Center

ABSTRACT
Design considerations of a database computer

are presented in this paper. The overall archi
tecture of the computer as well as the organi
zation of its individual components are discussed.
Several key concepts which are vital to database
management are incorporated in the design and
organization of the components. The concepts of
tracks-in-parallel read-out and logic-per-some
track processing are provided in an on-line data
base store for the purpose of achieving high-volume
content-addressability. The use of auxiliary
information about the database for access pre
cision and control has resulted in the design of
a structure memory, an array of content-addressable
memory and processor pairs for large collections
of indices. The choice of technologies for the
implementation of these components are considered
in terms of their cost and performance. Modified
moving-head disk technology is chosen in order to
support the very large on-line database store.
Emerging technologies such as magnetic bubles
and CCDs are chosen for the structure memory on
the basis of their matching performance with the
on-line database store and their capability for
parallel-in-blocks-and-serial-within-block
processing. Five other important components are
also discussed in the paper. Thei~ role in the
database computer and relationship with the struc
ture memory and on-line database store are
delineated.

The database computer is meant to be a back
end machine which interfaces with the front-end
general-purpose computers. To this end, the paper

. attempts to show that the database computer provides
a very high-level instruction repertoire for
interfacing with the front-end, a set of elaborate
security mechanisms, and an effective cluster
mechanism. These built-in capabilities tend to

.allow the database computer to support existing
and new database applications with better through-
put and higher security.

1. BASIC DESIGN GOALS
Database machines are special-purpose computers

which may have been prompted [l] in recent years
by the following factors:

(1) The change of data-processing-oriented
information management to database-management
oriented information management -- The traditional
data processing is essentially a closed-shop
operation which is supported and managed by computer
professionals. The user of information must
interface with the computer professionals for
problem solving and decision making. Essentially,

45

the computer professional's attempt to understand
the problems and needs of the user, devise
programs to solve the problems, run the programs
for the user, and return the results to the user.
This entire cycle is repeated many times until the
information needs of the user are met. Modern
database management is not meant to be a closed
shop operation. Instead, it allows multiple users
to have access to a shared database. Although
computer professionals are still needed to support
and manage t'he facility, they are primarily in
volved in the design and creation of the shareable
database, development of high-level data languages
and software aids for the ease of user-data-
base interactions, and incorporation of effective
access control measure and reliable security
provisions so that access to sensitive information
can be regulated and protected. This multi
access operation requires considerable new soft
ware development and hardware support.

This change also requires that the off-
line mode of operations be replaced by an on-line
one. In other words, the software must be
capable of supporting on-line databases and inter
acting with the user in real-time.

(2) The availability and variety of memory
and processor technology -- Typically, the soft
ware-laden database management system has been
large in size and complex in structure which not

· only overtaxes the hosting hardware but also
overshadows the hosting operating system.
Excluding the database, they are still large
relative to the hosting operating systems and
thereby utilize considerable main memory and
auxiliary storage as the operating systems do •
It is therefore not surprising that attempts have
been made to remove the so~tware-laden database
management system from the general-purpose
computer and replace it with a specialized
machine [3,4,6,7,8]. In addition, we have at
present, a wide choice of emerging technology such
as charge-coupled devices, magnetic bubles,
electron beam addressable memories, .dynamic
RAMs and modifiable moving-head disks [17,18,20].
It may thus be possible to design and configure a
special-purpose computer which can perform data
base management tasks cost-effectively. By
eliminating much of its software, the database
management system can perhaps now interface with
the host computer and the host operating system
more reliably with better response time and
throughput.

The database computer (DBC) [9,10,11] to be
discussed in this paper is an attempt to incor
porate as much specialized hardware for data

46

management as possible. As a back-end machine, the
DBC attempts to achieve high performance and low
cost. There are five basic goals in the design of
the database computer (DBC). The first goal is
to design it with the capability of handling

a very large on-line database of lOlO bytes or
beyond, since special-purpose machines are not
likely to be cost-effective for small databases.
The second goal is to build the database computer
now. This implies that only emerging technology
and modifications of the existing technology may
be considered for the hardware design. No
reliance is to be placed on distant technology.
The third goal is that the DBC must compete
favorably with existing software-laden database
management systems (which are run on general-purpose
computers) in terms of system throughput and cost of
database storage. The fourth goal is to design
at the outset a security mechanism as an integral
part of the DBC, since a modern database must have
security and control for sharing and protection.
The final goal is that the DBC, working as a
back-end computer, must provide a repertoire of
very high-level commands to interface with the
front-end computers and support different types
of database management applications (in particular,
those applications utilizing the hierarchical
[12], CODASYL [13] and relational [5] data models).
As we progress through the remaining sections in
this paper, we will attempt to show how the DBC
design meets the first four goals. We will not
elaborate on the DBC design in meeting the fifth
goal. This study is voluminous [14,15,16] and
is being published elsewhere.

2. AN OVERVIEW OF THE DBC ARCHITECTURE
Figure 1 is a complete diagram of the major

DBC components. The DBC acts as a back-end

' ' ' ' '
Doto loop

' ' '

SM

' ' '

-- Information Poth
---- Control Poth

DBCCP: Data Bose
Command S
Control
Processor

KXU: Keyword
Transformation
Unit

SM: Structure
Memory

SMIP: Sturture
Memory
Information
Processor

IXU: Index
Translation
Unit

MM: Moss
Memory

SFP: Securily
Filter
Processor

PES: Program
Execution
System

~P MM

FIGURE 1. Architecture of the DBC

machine to one or more front-end general-purpose
computers, which are jointly referred to as the
program execution system (PES). Users' programs
reside in the PES, and are executed by the PES
using the DBC as one of its various resources.
The PES communicates with the DBC by way of DBC
commands and ,the DBC responds either by returning
a group of records or parts of such records (i.e.,
the response set), or by indicating successful
or unsuccessful execution of a command.

The DBC makes use of two loops of processors
and memories in executing the commands. The
data loop, which consists of the database command
and control processor (DBCCP), mass memory (MM),
and security filter processor (SFP), is used for
storing and accessing the database, for post
processing of retrieved records and for enforcing
field-level security (known as the type B
control), The structure loop, which consists of
the database command and control processor (DBCCP),
keyword transformation unit (KXU), structure
memory (SM), structure memory information pro
cessor (SMIP) and index translation unit (IXU),
is used for limiting the mass memory search space
(through the deter.mination of cylinder numbers),
for determining the authorized records for accesses
(known as the type A control) and for clustering
records received for insertion into the database.

The DBC design exploits both existing and
emerging tech~ologies. The on-line mass memory
(MM) is made from moving-head disks, perhaps the
least expensive of all large-capacity on-line
storage devices. The disks, however, are modified
to allow parallel read-out of an entire cylinder
in one revolution time, instead of one track at
a time. The parallel readout capability of the
DBC provides rapid access to a relatively large
block of data. This data can now be content
addressed simultaneously by a set of track
information processors (TIPs) in the same revolu
tion. It seems adequate that access is limited
to one or a few cylinders, since single user
transactions seldom refer to data beyond mega
bytes in size. As long as data is not physically
scattered, sweeping of a large number of disk
cylinders can be avoided. The physical dispersion
of related data is prevented by a built-in
clustering mechanism in the database command and
control processor (DBCCP) which uses information
provided by the creators of the database via
the program execution system (PES).

The DBC needs the use of some structural
information about the database. Without the help
of such information, every request would require
all the cylinders (that constitute the database)
to be accessed whether there is any clustering
or not. Furthermore, pre-processing of the user's
access authorization in determining well-compart
mentalized data aggregates for security purpose
may not be possible (known as type A control).
Although both the access and security-related
information are likely to be at most 1% of the
size of the database [14,15,16], they are still
quite large since the database itself is of

10 10 bytes. Furthermore, since there may be a
number of accesses to the information for
every access to the database, it must be possible
to access them very fast. Therefore, the

structure memory (SM), which is the repository of
all structural information, has to provide
a large capacity and good access speed. Such a
performance can be achieved through the use of
emerging technology, such as charge-coupled devices
or magnetic bubble memory devices.

The DBC is the first database machine with
security mechanisms being incorporated in it at the
outset. Generality in security enforcement is
allowed through the record-at-a-time post-checking
for field-level security in the security filter
processor (SFP) and the more efficiently imple
mented security control for compartmentalizing
records of the same security specifications. Post
processing of records and data items constitute
some other functions provided by the SFP.

Other components such as the structure memory
information processor (SMIP), the index translation
unit (IXU) and the keyword transformation unit
(KXU) are functionally specialized in the DBC.
They are pipelined and multiprocessed by the data
base connnand and control processor (DBCCP) for
concurrency that enhances the overall performance
of the DBC. The DBCCP is therefore charged with
the synchronization and control of all the DBC
components, so that they can work concurrently on
one or more commands. The variable-length
commands are sent to the DBCCP by the front-end
program execution system (PES). The DBCCP
interfaces with the PES by receiving commands and
returning appropriate responses, such as sets of
records, diagnostic messages, etc. Other functions
of the DBCCP include the clustering of records
during insertion, pre-processing of the record-level
(type A) and field-level (type B) security
specifications, coordinating the task of security
checking during database accesses, instructing the
SFP to post-check the response set for the field
level (type B) control, and performing certain
essential bookkeeping chores.

Without belaboring the terminology and details
of the various components which will be provided in
later sections, let us first gain an overview of
the flow of command execution of the DBC. The
database stored in the mass memory (MM) is made of
records. Every record consists of a record body,
a set of attribute-value pairs (known as keywords),
and a number representing the record set (known
as security atom) of which all the records
satisfy the same security specifications. The set
of all security atoms makes a logical partition
of the database such that all records belonging to
an atom are protected in an identical manner with
respect to a given user. Since the database
resides on many cylinders and one cylinder is
searched at a time, keyword indices are maintained
in the structure memory (SM). For a keyword K,
an entry of the structure memory consists of a list
of index terms of the form (f,s), where the cylin
der f and security atom s contain records with
keyword K.

Given the boolean conjunctions of keyword
predicates (known as query conjunctions), as
part of an input command, the database command
and control processor (DBCCP) considers each query
conjunction in turn. For each predicate of the
conjunction, the KXU uses the attribute of the
predicate and the file name to determine the
whereabouts (in the structure memory) of the

keywords that satisfy the predicate. The
aggregates of all index terms for the keywords
satisfying a predicate in a query conjunction

47

are retrieved from the structure memory and
transmitted to the structure memory information
processor (SMIP). The SMIP, then, intersects the
aggregates of index terms. There are as many
aggregates as there are predicates in the query
conjunction. After the intersection, the resultant
set of index terms are further filtered by the
DBCCP. The DBCCP deletes all those index terms
that have numbers of the atoms to which the user
(i.e., the issuer of the query conjunction) does
not have the authorized access right. This final
set of index terms, together with the complete
query conjunction, are now sent to the mass memory
for content search. Output from the mass
memory may be post-processed by the SFP before
routing to the front-end PES.

As depicted in Figure 2, there are two classes
of input commands recognized by the DBCCP: access
commands and preparatory commands. (For a complete
repertoire of DBC commands, see [14].) Access
connnands are those that require accesses to the

Database Command and Control Processor (OBCCP)

Acceu Commond w11h
Type 9 Pro1ect1on

FIGURE 2. Execution of Commands Received from a
Front-end Computer

mass memory. Preparatory commands, on the other
hand, convey information about the database such
as the names and attributes of files to be
created, characteristics of the attributes, space
requirement of files and security specifications.
Each access command is executed in a pipelined
fashion by the various components of the DBC.
The DBCCP coordinates the operation of the other
components and keeps track of the status of the
commands that are currently being executed. The
information received in the preparatory commands
are organized in a random access memory of the
DBCCP. This information is referenced frequently
during the execution of access commands.

Records to be inserted in the database are
physically clustered by the DBCCP according to

48

their primary and secondary clustering attributes.
We will return to Figures 1 and 2 in later sections
when we discuss the individual components of the
DBC.

Both the clustering and security mechanisms
are illustrated by way of an example in the appen
dix of [9). In that appendix, the execution of a
number of queries through major stages of the DBC
is also illustrated. The reader may refer to [9]
for a more theoretical discussion on DBC concepts.

3. DESIGN CONSIDERATIONS OF THE ON-LINE MASS
MEMORY
The design of the mass memory (MM) is heavily

dictated by the storage and processor technologies,
database size and processing characteristics. Let
us consider each of these factors in the sequel.

3.1 The Use of Moving-Head Disks
A survey of the current and emerging tech

nologies indicates that the various on-line memory
technologies may be divided into three major
classes, on the basis of their cost and performance.
At the higher end of the cost-performance
spectrum, there are the magnetic core, MOS and
bipolar technologies. In the middle, there are
the fixed-head disk technology and its potential
replacements, namely, the charge-coupled devices
(CCDs), dynamic RAMs, magnetic bubbles and
electron beam addressable memories (EBAMs).
In terms of low cost per bit and high storage
capacity, however, there is no known and emerging
technology in sight that can compete with the
moving-head disk technology which occupies the
lower end of the cost-performance spectrum. Thus,
moving head disks seem to be the only alternative
for large on-line database store. We have thus
chosen moving-head disks for the DBC mass memory.

Once the technology is chosen, we then ask
what kind of modifications of the moving-head
disk is necessary in order to support database
management. The performance gain due to such
modifications must be cost-and-performance-effec
tive so that the cost-performance projection of the
modified disks will not exceed either the fixed
head disk or its replacements.

Typical database management operations re
quire the processing of 90-95% of related data for
the purpose of producing 5-10% of useful inf orma
tion (known as the 90-10 rule). It is desirable
that the mass memory should process the related
data rapidly so that the results can be obtained
without being delayed by the sheer volume of the
related data. This calls for high-volume read
out and processing capabilities.

3.2 The Tracks-in-Parallel Read-Out Capability
Conventional moving-head disks, as well as

fixed-head disks, allow the read-out of only one
track per disk revolution. By modifying the read
out mechanism of moving-head disks, the mass
memory can read, instead of one track per disk
revolution, all the tracks of a cylinder in the
same revolution. This modification is called
tracks-in-parallel read-out. Such modification is
known, at the time of this writing, to be feasible
and relatively low in cost [17), since some of the
read/write electronics are already a part of the
moving-head disks. Modifications are necessary
so that all the read/write heads can be triggered

to read simultaneously and that the data buses
are enlarged for acconnnodating the increased
data rate.

3.3 The Dynamically Associated Logic-per-Track
Approach
With the moving-head disks modified for

high-volume read-out, the mass memory must now
provide high-volume processing. The ~memory
information processor (MMIP) obtains and processes
an entire cylinder of information in one disk
rotation time. Since the rotation speed of the
disks is relatively slow, it is possible to process
information 'on the fly'. Processing on the fly
is possible because every track of the cylinder
is actually processed by a separate processing
unit called a track information processor (TIP)
having some amount of buffer space. For instance,
considering a disk rotation speed of 3,000 revo
lutions per minute and a track capacity of 30,000
bytes, we require a processing speed (for compari
son-type operations) of no more than 1.5 Mbytes
per second from each track information processor.
This is within the present state of the art of
microprocessor technology. Furthermore, if there
are forty tracks in a cylinder, then there will be
forty TIPs in·the MMIP. The MMIP is time-shared
among all the cylinders of the mass memory.

3.4 The Content-Addressable Capability
In data management, processing means content

addressable search, retrieval and update. With
the mass memory modified for high-volume readout
and with the high-performance processors, we now
illustrate how the mass memory (MM) performs
content-addressing. For this discussion, we must.
introduce some notions and terminology.

The DBC accepts and stores a database as a
collection of records. Each record consists of a
record body and a set of variable-length attribute
value pairs, where the attribute may represent the
type, quality, or characteristic of the value.
The record body is composed of a (possibly empty)
string of characters which are ignored by the
DBC for search purposes. For logical reasons,
all the attributes in a record are required to be
distinct. An example of a record is shown below:

(<RELATION,EMP>,<JOB,MGR>,<DEPT,TOY>,<SALARY,l5000>)

The record consists of.four attribute-value pairs.
The value of the attribute JOB, for instance, is
MGR. Attribute-value pairs are called, for short,
keywords. They obviously characterize records and
may be used as 'keys' in a search operation.

The DBC interfaces with th~ front-end
computers by accepting a large repertoire of
high-level database management commands [14), by
delivering collections of records as response ~·
and by indicating successful or unsuccessful
execution of the commands in messages. Some of the
commands, called record access commands, may be
used for specifying a collection of records in the
database and for carrying out an intended opera
tion on these records, such as retrieval,
deletion and modification. Other commands may
be used for database loading, record insertion,
initialization, etc.

An important feature of the DBC record access
conunands is that they allow natural expressions
for specifying a record collection. A record

collection may be specified in terms of a keyword
predicate, or simply, predicate, which is a triple
consisting of an attribute, a relational operator
(such as, =, f. >, 2:_, .::_, <) and a value. For
example, the predicate

(SALARY > 10000)

may be used to indicate all records that have
SALARY as one of the at~ributes, the value of that
attribute being greater than 10,000.

A record collection may also be specified in
terms of a conjunction of predicates called the
~ conjunction. An example of a query
conjunction is

(SALARY_::_ 25000) A (JOB f MGR) A (RELATION= EMP).

Carefully planned physical layouts of the
record are used in the DBC to eliminate unnecessary
disk revolutions and to reduce the cost and size
of the TIPs' buffers. Each attribute is first
encoded by the DBC, so that it has a unique
numerical identifier. The attribute-value pairs
(keywords) in a record as shown in Figure 3a are
now arranged in an ascending order of the attribute
identifiers. The cluster number and the security
atom number of a record, seen in the record layout
of Figure 3a, will be discussed later in this
paper. The layout of a query conjunction is
depicted in Figure 3b.

Cluster Number

Security Atom Identifier

Number k of Keywords in Records

oi. Fixed-Length Attribute Identifier of the i-th Keyword of the Record

v, : Variable-Length Value with Length Indicator of the i-th Keyword

(o) The Forrnot of a Record R in the Moss Memory

Number m of Predicates in the Conjunction

---i Pred1cote I--
o; : Fixed-Length Attribute Identifier of the i-th Predicate of the Conjunction

r; : Relotionol Operotor of the i-th Predicote

vi : Vorioble-Length Value with Length Indicator of the i-th Predicate

o1so2 so3 $ · · · s om·

(b) The Format of a Query Conjunction

FIGURE 3. Internal Formats of Records and Query
Conjunctions

The predicates in a query conjunction, like the
keywords in a record, are arranged in an ascending
order based on the attribute identifiers. A query
conjunction is stored in a sequentially accessed
memory. The track information processor (TIP) reads
a record from the track as a part of one data
stream and the query conjunction from the

49

sequentially-accessed buffer as another data
stream and carries out a simple bit-by-bit
comparison of the two streams. Whenever there is
a match between an attribute identifier in the
record and an attribute identifier in the con
junction, the TIP then compares the value parts
Lo determ.ine if the Cllrrl'H\H>ndlng predleate l.s
satisfied. If the attribute identifier in the
record is less than the attribute identifier in
the conjunction, then the TIP skips over the
corresponding value to the next attribute
identifier of the same record. If the attribute
identifier in the record is greater than the one
in the conjunction, then the TIP skips the
entire record. The above logic is repeated
until either all predicates in the conjunction
are satisfied or the record does not satisfy
the conjunction. The scheme just described
will result in a simple serial-by-bit comparison.

A conjunction Q, after it is broadcasted by
the mass memory controller, is.stored in each of
the TIPs. All the track information processors
(TIPs) simultaneously evaluate the query con
junction against their corresponding incoming
record streams. For example, the first TIP
searches the records of the first track of the
cylinder. At the same time, the i-th TIP searched
all the records in the i-th track of the same
cylinder. In one disk revolution, all tracks of
an entire cylinder are thus searched in parallel
by the TIPs.

4. THE OVERALL ORGANIZATION OF THE MASS MEMORY
The overall organization of the mass memory

is shown in Figure 4. The database resides in

DOC: Disk Drive Controller

TIP: Trock Information Processor

t = # of tracks per cylinder

9

Moss
Memory

Controller
(MMC)

loutput for
I Post- Processing

- _J

m = #of disk drives per disk drive control !er

n = #of disk drive controllers for the entire database

FIGURE 4. The Mass Memory Organization

so

data volumes mounted on moving-head disks drives.
A volume is composed of 200-400 cylinders. Data
transfer to/from a cylinder is achieved by acti
vating all the read/write heads of the access
mechanism concurrently.

Although other attempts [3] have taken advan
tage of the fact that the read and write heads on a
track could be positioned a short distance .from
each other, we do not favor such an arrangement.
This is because, at high track densities (1000
tracks per inch or higher), the required mechanical
tolerances for sustaining separate read and write
heads may well deprive the disk technology of much
of the cost-ef f ectivenes~ brought about by the
higher densities [18]. In this design, a
combined read/write mechanism is assumed. The
implication of such a decision is that a disk device
in the mass memory can either be read from or
written into at a given time. Reading and writing
cannot be performed simultaneously.

The set of disk drives is partitioned into
groups of 8-16 drives for access and control
purposes. Each group of disk drives is controlled
by a disk drive controller (DDC). A drive selector
determines at any instant a particular disk drive
controller, which, in turn, determines a disk drive
from/to which data is being transferred. The
drive selector also routes data in parallel to/
from all the track information processors (TIPs)
that consitute the mass memory information proces
sor (MMIP). Finally, there is a mass memory
controller (MMC) to receive requests, broadcast
query conjunctions and commands to the track
information processors, and control the operations
of the mass memory information processor, the d~ive
selector and the disk drive controllers. Data is
transferred between the mass memory controller
(MMC) and the track information processors (TIPs)
via the I-0 bus.

Recall that, in this design, a single cylinder
is content-addressed at a time. Therefore, assum
ing that there are t tracks to a disk cylinder,
a data transfer path consists of a 1-bit line from
each of the t tracks of a cylinder belonging to a
particular disk drive, t 1-bit lines from the
corresponding disk drive controller and all the t
1-bit lines from the drive selector to the indi
vidual track information processors. The above
approach provides for a simple design of the disk
drive controllers. In fact, t 1-bit registers are
all that is needed in each disk drive controller for
buffering the data between the drive selector and
a selected disk drive.

Although a bit- (or byte-) length buffer in
each TIP is sufficient for the evaluation of a
query conjunction, a record-length random access
buffer is provided in each TIP. This is necessary
for performing update as well as for holding on to
a record during the query evaluation process. If
a record satisfies the qeury conjunction, then it
may be transferred to the mass memory controller
(MMC). During insertion, a record received from
the MMC is held in the record-length buffer before
being written into the track. During updates, a
record is modified in the buffer only if it
satisfies a selection criterion (i.e., query
conjunction). The updated record is written back
in place during the next revolution, as long as it
does not increase in size. If the record does

increase in size, then the original record is
tagged for deletion in the next revolution. The
updated record is then sent from the TIP buffer to
the MMC for insertion. (Since record insertion
involves clustering, it is dealt with in more
detail later in this paper.) We note that if
no more tjian one recorp from each track of the
content-addressable cylinder requires update, the
the process is usually completed in two disk
revolutions. If some track has more than one
record for update, then more revolutions will
be required. To approach an update speed of
two disk revolutions per cylinder, it may be
desirable to incrll!ase the buffer size in each
TIP, perhaps to a multiple of the record length.

4.1 Two Modes of Operation
The mass memory operates in two basic modes

the normal mode and the compaction mode. In the
normal mode, input requests are decoded by the
mass memory controller (MMC) and are queued
according to the cylinders referenced by the
requests. For each cylinder for which a queue of
requests exists, the MMC asks the appropriate
disk drive controller (if free) to position the
read/write heads to the cylinder. When the cylin
der is thus accessed, the MMC sends the requests
one at a time to the mass memory information
processor (MMIP). While the track information
processors (T!Ps) of the MMIP are executing the
requests, the MMC can ask the disk drive' controllers
to position, the read/write mechanisms to other
cylinders for which there are non-empty queues.
Thus the access time with respect to a cylinder is
at least partly overlapped by useful work per
formed by the MMIP. The extent of overlap is
determined by such factors as the average number
of different cylinders for which there are non
empty queues.

Records which are identified by a delete
counnand under the normal mode are tagged by the
track information processors (TIPs) for later
removal during the compaction mode. Since
reading and writing are not done simultaneously,
the record deletion process involves two disk
revolutions per cylinder. During the first
revolution, each TIP creates a bit-map of tag
bits (there is a bit position in the bit-map
for each record position in a track). The bit
maps are created by the TIPs and inserted in the
beginning of the tracks during the second
revolution. When the mass memory controller is
ordered to reclaim· the space occupied by tagged
record, it enters the compaction mode. During
this mode, cylinders with tagged records (this
information being maintained by the mass memory
controller using a bit-map, with one bit for each
cylinder) are-read into the mass memory via the
TIPs. The mass memory controller then sends back
to the TIPs only the untagged records.

There are two reasons for handling deletions
in this manner. First, if reclamation of space
were to be attempted in the normal mode, one of
two undesirable things will occur: (1) we will
have to provide a track-size buffer with each TIP
resulting in low utilization of the buffer during
retrieval, (2) we will have to reclaim space in
segments of the track, each segment size being
equal to the size of a TIP buffer. In the

latter case, the number of revolutions required to
'sweep' the entire track for reclamation will be a
multiple of the ratio of the track size to the
TIP buffer size. During the normal mode of opera
tion, a single delete operation could hold up
retrievals for several revolutions. This is
undesirable. On the other hand, we might expect
during the course of a 24-hour day, periods of
light load. Such periods usually result in low
utilization of system resources. By operating
the mass memory in the compaction mode during
these intervals of light load, we may be able to
achieve a more equitable distribution of load on
the mass memory.

4.2 The Need for Search Space Reduction
Despite all the improvements that can be made

to the moving-head disk technology, there is still
one fundamental limitatio~ of the technology --
the time delay in repositioning the read/write
heads from one content-addressable cylinder to
another. This delay is particularly acute if the
number of cylinders to be addressed is large.
There are two factors which may cause the
unnecessary search of a large number of cylinders:
(1) the database creator inadvertently scatters
his records over a large number of cylinders, thus,
requiring the mass memory (MM) to 'sweep' through
all those cylinders, (2) for a given query
conjunction, the MM does not have any knowledge of
those records which may satisfy the query conjunc
tion. If, on the other hand, it knows which
cylinders may contain the desired records, then
the MM can restrict its content-addressable search
to just those cylinders, instead of the entire
cylinder space.

4.2.1 The Clustering Mechanism
To eliminate problem (1), the database computer

(DBC) provides a clustering mechanism in the
database command and control processor (DBCCP).
With the clustering mechanism, the DBC allows
physical grouping of records, that are likely to
be retrieved and updated together, into as few
content-addressable cylinders of the MM as possible.
The DBC provides two levels of clustering: first,
by a primary clustering attribute and second, by a
secondary clustering attribute. Clustering
attributes are supplied by the front-end system
(PES) based on a knowledge of the access pattern.
In other words, clustering attributes are chosen
on the basis of the frequency of access of various
record collections. This choice may be straight
forward, as demonstrated in [14,15,16).

The DBC attempts to store all records with
the same value for the primary clustering attribute
into as few cylinders as possible. Therefore,
given a query conjunction inolving a primary
clustering attribute, the search space is limited
to a very few cylinders, even if there is no
further knowledge about the database. For exa~ple,
in the DBC implementation of a relational database,
each record (corresponding to a relational tuple)
contains a keyword <RELATION,relation-name> where
RELATION is an attribute and relation-name is the
relation to which the record (tuple) belongs. If
RELATION is declared as a primary clustering
attribute, then every single-relation query can be
executed by searching adjacently only as few
cylinders as are required to store the entire

51

relation.
At the second level of clustering, the

secondary clustering attribute provides a further
degree of search precision. In fact, since the
cylinder size is very large (say, 1/2 megabyte),
the two levels of clustering should allow most
queries to be executed in only one cylinder
access. A more detailed example of the clustering
process is included in [9].

4.2.2 The Maintenance of Indices
To address problem (2), the database computer

(DBC) maintains some auxiliary information about
the database in a separate component known as the
structure memory ('SM). Indices are maintained. in
the SM on selected attributes of the records and
their value ranges. Clustering attributes are
likely candidates for indices, since most queries
are e.xpected to refer to these attributes.
Furthermore, 'each query conjunction is recommended
to include at least the primary clustering attri
bute.

An index term for a selected attribute-value
(range) pair consists of, among other items, the
cylinder number of the cylinder containing at
least one record having the selected attribute
value pair. For a query conjunction, it is now
feasible to consult the SM for the purpose of
obtaining just those cylinder numbers of the index
terms whose attribute-value (range) pairs satisfy
the query conjunction.

5. DESIGN CONSIDERATIONS OF THE STRUCTURE MEMORY
The structure memory (SM) is the repository

of auxiliary information about database. This
information is concerned with search precision and
access control. For improving search precision,
the SM is employed by the database computer (DBC)
to determine the mass memory cylinders that need
be content-addressed. For access control, the
SM is again used by the DBC to determine whether
an access ope£ation is an authorized one and
whether access is permitted to the records
involved. The use of cylinder numbers as a part
of the index term for search precision has been
discussed in the previous section. In the follow
ing section, we will concentrate on the discussion
of the access control feature of the SM.

5.1 Pre- and Post-Checking for Access Control
The DBC provides two types of access control.

Access requests with the ~]! control are
slower to execute, because such requests require
.post-checking of every retrieved record for field
level security clearance. This type of security
enforcement is performed by a special processor
known as the security filter processor (SFP)
which also does some other post-processing of
records retrieved from the mass memory (see
Section 7). Further, these requests may result
in access imprecision since some of the retrieved
records may have to be discarded by the SFP due
to security violation. The~~ control, on the
other hand, requires no post-checking of records.
It works solely on the basis of the access control
related information stored in the structure memory
(SM) and in the database command and control
processor (DBCCP). During database creation time,
the access-control related information are
extracted from the new records and stored in the

52

structure memory. The effect is that of pre
checking of records. Thus, at query execution time,
security clearance may be made even before records
are actually retrieved from the mass memory.
Since the type A control incurs no access impre
cision, it should be used regularly. However, to
use type A control, the database creator must
understand the notion of security ~ and be
willing to designate certain keywords of his records
as security keywords. With the security atoms and
keywords, the DBC can then construct access
control-related information and place the informa
tion in the SM and DBCCP for subsequent use.

5.2 The Notion of Security Atom
A security keyword of a record is a keyword

of the record which is designated by the database
creator to reflect his security requirements. All
records having the same canonical expression of
security keywords form a record set called a
security ~· The advantageous properties of
the security atom [21] are as follows:

(1) Security atoms represent disjoint
record sets, i.e., a record belongs to
one and only one security atom.

(2) The database can be partitioned into
security atoms, with all records in an
atom having the same security attributes.

(3) With proper choice of security attri
butes, the partitioning (i.e., the sizes
of security atoms) can be made from
very fine to very coarse, depending on
the security requirements.

(4) U~ually the total number of security
atoms in the database is much smaller
than the total number of records in the
database.

(5) For any arbitrary query conjunction made
up of security keywords, the records of
a security atom will have the following
exclusive property: Either all or
none of the records of the security
atom will satisfy the query conjunc
tion.

For this type of access control, a user of
the database is always provided with a database
capability. Each element of the capability
consists of a query conjunction (made up of secur
ity keywords) and a set of access rights. A
security atom expression may satisfy a number of
query conjunctions in the ·database capability.
The access rights on a security atom for the user
is therefore the intersection of the sets of
access rights corresponding to the query conjunc
tions that are satisfied by the atom expression.
Consequently, for each user, a list can be created
indicating the access rights on each security atom.
This list is called the atomic~ privilege
list of the user. Using this list, the database
computer can now process a user request by first
determining whether there is any atom expression
that satisfies the request. If there is such an
expression, then the access requested by the user
is compared with the access rights assigned to the
atom. If the requested access is an authorized
one, then access to the atom (i.e., record set)
is permitted. Subsequently, the record set is
accessed by the mass memory (MM). A detailed

illustration of the security atom concept for
access contro~ is included in [9].

5.3 The Structure Information
For every keyword designated for indexing,

there is an entry in the structure memory (SM)
consisting of the keyword itself and a list of
index terms. An index term.is composed of a
cylinder number f and-a security atom numbers.
An index term (f,s) for a keyword K, therefore,
indicates that there exists one or more records
containing the keyword K that are residing in the
cylinder f of the mass memory (MM), ·and that are
belonging to the security atom s.

For type A control, the query conjunction of
a user is processed as follows: For each predicate
with an indexed attribute, the structure memory
(SM) determines all those keywords which
satisfy the predicate. Cor~esponding to each of
the satisfying keywords, a set of index terms
is retrieved. The sets of index terms for all
such predicates are then intersected (.by the
structure memory information processor to be
discussed in Section 7). The result of the inter
section is a list L of index terms for the given
query conjunction.

This list L of index terms is compared (by
the database command and control processor
(DBCCP)) against the user's atomic access privilege
list to determine the final list L'. The list L'
includes only those (f,s)~pairs of L where the
required access is permitted on the security atom
s. The list L' together with the query conjunction
and the requested access are now forwarded to the
mass memory (MM).

As we stated earlier, the mass memory
stores a record as variable-length attribute
value pairs, together with a record bo~y. For the
purpose of identifying the security atom to
which it belongs, each record is also tagged with
the security atom number as depicted earlier in
Figure 3a. Given a query conjunction Q and a list
L' of index terms (f,s), the mass memory' can then
narrow its content-addressable search to those
cylinders whose numbers appear in L'. For each
unique cylinder number fin L', the mass memory
will access cylinder f, disregard those records
that are not tagged with one of the corresponding
security atom numbers s, and output only those that
satisfy the conjunction.

5.4 The Performance Requirement and Choice of
Technology
Typically, indices for conventional databases

range from 1% to 10% of the size of the database
[22]. In the DBC, the database needs to be
indexed to the· level of cylinders (instead of,
tracks, pages and offsets within pages as in con
ventional systems). The total number of index
terms for the database is therefore smaller. In
fact, the size.of ~he indices in the SM should not
exceed 1% of the size of the database. This has
been verified for realistic applications on the
DBC [14,15,16]. Therefore, the capacity require-

10 ment of the SM.for a 10 -byte database is at most
8 10 bytes.

Another important feature required in the SM
is that it should provide sufficient search and
retrieval speed, so that query conjunctions may

be processed at a rate conunensurate with that of the
mass memory. While the mass memory is working on
the current request, the structure memory can
work on the next request, Normally, a query
conjunction contains no more than two predicates
of index attributes, as seen in [14,lS,16]. If
each of these predicates is satisfied by S to 10
keywords, then at most 10 or 20 sets of index
terms need be referenced per query conjunction.
Consequently, for accessing a set of index terms,
the structure memory requires a speed of 1 to' 2
milliseconds, since all the 10 or 20 sets of index
terms must be accessed in 20 milliseconds, which
corresponds to the time required for one disk
revolution.

The above performance requirement can be met
at a relatively low cost by using one of the
emerging technologies such as the bubble memories
and charge-coupled devices (CCDs). According to
a recent survey [20], CCDs can access a random
block in 100 µsec and their costs are projected
to be SO millicents per bit. Bubble memories can
also access random blocks, but in 1 msec and their
costs are coming down to 10 or 20 millicents per
bit. At the system level, the cost of CCD
memories is about 2SO millicents per bit while
the cost of bubble memories may be 30 to SO
millicents per bit. Since the block-oriented
bubble memories provide the required access speed
at a lower cost than CCDs; they are a very good
choice for the structure memory technology.
Electron beam addressable memories (EBAMs)
have also been studied in [10] for their appli
cability in structure memory design. Although
such memories are expected to provide the lowest
cost per bit (about 10 to 20 millicents per bit),
the reliability of these memories is still un
certain. Furthermore, to absorb the high cost of
their complex circuitry, EBAMs are cost-effective
only for very large memories. In our implementation
of the DBC, either bubble memories or CCDs is the
present choice for the structure memory design.

6. THE OVERALL ORGANIZATION OF THE S1RUCTURE
MEMORY
From our discussion in Section 5.4, it is

apparent that the structure memory should provide
for a high search speed at a low cost. With the
total size of the structure memory being of the
order of lOOM bytes, the speed requirement
implies that the memory must be content-addressable
and that the content-search operation should be
carried out by multiple processing elements.
The structure memory may, therefore, be split up
into a number of sections (later called memory
units) and each section may be assigned to a
separate processor.

The structure memory is made up of a segmented
sequential memory (e.g., CCDs or bubbles).
Hence, any search on such a memory can be carried
out no sooner than the data transfer time of a
single physical segment. The larger the number of
segments to be serially searched, the longer will
be the total search time. It is, therefore,
reasonable to try and assign a separate processor
to each physical segment. Unfortunately, a
segment is normally quite small, say up to 2K bytes,
while the entire structure memory size is up to
lOOM bytes. Consequently, the above assignment

53

would call for an extremely large number of
processing elements. On the other hand, it would
be cost affective (1) to utilize a small number of
processors, (2) to assign a number of segments
(later called memory modules) to each processor
and (3) to provide a mechanism to identify
a single segment (if possible) for search by
each processor in response to an index search
request. The structure memory organization
presented below adheres to these guidelines.

The structure memory is organized as an
array of memory unit-processor pairs which are
managed by a controller. A memory unit, in turn,
is composed of a $et of memory modules. All
memory modules are of the same fixed size. A
processor can address any memory module within its
memory unit, and then content-address the entire
module. Furthermore, the structure memory
controller can trigger all the processors to
content-address their corresponding modules simul
taneously.

6.1 The Notion of Bucket and Parallel Array of
Memory Unit-Processor Pairs
Whenever possible, searching of the structure

memory on the basis of a given keyword should be
restricted to at most one module from each
memory unit. To achieve this goal, all keywords
and their index terms corresponding to a
particular attribute (and lying within a given
value range) will constitute a bucket. Each
bucket is physically distributed among the various
memory units in order that it may be searched in
parallel by all the processors. Ideally a bucket
is placed in n modules, one from each of the n
different memory units.

Unfortunately, buckets are not necessarily
equal in size. Therefore, a mechanism needs to be
provided for dynamically varying the amount of
physical space that is to be assigned to each
bucket. The above structure memory organization
with small module size allows for such variability
of bucket size. Each bucket may be placed in
one or more modules (as many as necessary} evenly
distributed among different memory units. The
concept is illustrated in Figure S, where the
'shaded' modules contain a single bucket.

' ' ' '
' ' '
' '
' I

!

1

/Bucket Memory System

r - - -- - - - ------'-----------------------,

' :

' '
L- - - -- - - - - - - - - -- - - - -- -- - - - - - - ------- .J

Note: Shaded Modules Constitute a Single Physical Bucket.

FIGURE S. Organization of the Structure Memory

54

The bucket to which a keyword and its index
terms belong is determined by a separate component
of the DBC, called the keyword transformation
unit (KXU) which we will discuss in Section 7. One
of the functions of the structure memory is to
map a bucket name into the memory modules
allocated to the' bucket. For this purpose, the
controller has a small random access memory in
which it records a bucket name and stores the
corresponding module numbers. Thus, given a
bucket name, all the processors can work
simultaneously on the modules which contain the
bucket.

6.2 The Use of Emerging Technologies
The processors of the bucket memory system

must be sufficiently fast so that the data in
each memory module can be processed on the fly.
Shift register memories, made of bubble memories
or CCDs, commonly have a module size of 2K
bytes. For an access time of 1 msec, each
processor must, therefore, be able to process
data (with comparison-type operations) at the
rate of 0.5 µsec per byte. This speed should be
easily achievable with realtively powerful
microprocessors (or a few of them working in
parallel as a single processing element). If
module size is larger, then data may be processed
in a buffered mode, with each processing element
having a random access store equal in size to a

· module of the bucket memory.

6.3 The Look-Aside .Buffer
The look-aside buffer is used for enhancing

the performance of the structure memory. During
normal operations of the database, the retrieval
of information from the structure memory is likely
to be more frequent than the update of information
in the structure memory, especially because
update operations are also preceded by search
and retrieval. However, it is conceivable that
during short intervals of time, a large number
of updates may have to be carried out. Such an
event may adversely affect the average retrieval
rate. The use of a look-aside buffer, implemented
with fast random-access memory, is aimed at
alleviating such a degradation in structure
memory performance.

When an update request is received by the
structure memory, it is temporarily placed in
the look-aside buffer. The information in the
bucket memory is not i111II1ediately updated. The
contents of the look-aside buffer, therefore,
represent pending updates which are yet to be
permanently recorded in the bucket memory system.
Execution of the requests in the buffer is delayed
until either of the following two conditions
occurs: (1) the loading of the buffer reaches
a certain threshold value; (2) the structure
memory encounters a slack period with no new
requests awaiting execution.

Execution of a retrieval request, then, is
carried out in the following manner. Given a
keyword K, the processors are simultaneously
activated to determine the set of index terms of
K stored in the bucket memory. The structure
memory controller then adds to this set, if
necessary, extra index terms as a consequence of
the insert requests stored in the look-aside
buffer that affect K. Similarly, delete requests

stored in the look-aside buffer may cause the
deletion of some index terms from the final set of
index terms prepared for output.

In summary, the complete structure memory
organization is also shown in Figure 5. It
consists of a bucket memory system, a structure
memory controller and a look-aside buffer. Input
requests are received by the structure memory
controller either in the form of keywords for
subsequent search for their index terms, or in the
form of keyword-index term pairs for intended
update. Output from the structure memory
consists of one or more sets of index terms for
further processing. Thus, the responsibility of
the structure memory controller consists of
maintaining the bucket-to-module maps, controlling
the bucket memory system, maintaining the look
aside buffer, taking input requests from the data
base command and control processor (DBCCP) and
transferring index terms to another DBC component,
namely, the structure memory information processor
(SMIP) (to be discussed in Section 7). In response
to requests for keyword search, the structure
memory controller activates the processors and
then broadcasts the keyword to them for the
required content-search of inde~ terms.

7. THE FIVE OTHER COMPONENTS OF THE DATABASE
COMPUTER
We have so far discussed the organization of

the mass memory (MM), and the structure memory (SM).
But from time to time we have made reference to
the fact that some other components are also
necessary. In particular, we have referred
to the database command and control processor
(DBCCP), the security filter processor (SFP), the
keyword transformation unit (KXU), the structure
memory information processor (SMIP) and the index
translation unit (IXU). In referring to Figure 1,
we note that the structure loop, which consists
of the KXU, SM, SMIP, IXU, and DBCCP, is used for
limiting the mass memory search space, for deter
mining the security atoms allowed for accesses
with the type A control, and for clustering records
received for insertion into the database.

7.1 The Keyword Transformation Unit
The keyword transformation unit (KXU).allows

the structure memory first to readily identify
the modules which contain the index terms of the
keywords by providing the associated bucket name,
and then to process index terms and keywords
rapidly since KXU transforms all information to be
stored in the structure memory into fixed-length
fields.

Each attribute in the database has a unique
identifier. Information about the various attri
butes, supplied by the program execution system
(PES), is sotred i.n a table of the KXU, called the
attribute information table. It includes for each
attribute the minimum and maximum values, the type
of these values (numeric, floating point, alpha
numeric, etc.) and the number of ranges into which
these values may be divided. For different attri
butes, different hash algorithms may be used to
hash the variable-length values into fixed-length
codes. These hash algorithms constitute a hash
algorithm library. We observe that in the above
process, a keyword, which is a variable-length

attribute-value pair, is transformed into a fixed
length triple (a,r,v) where a is the attribute
identifier, r is the range number in which the
value belongs, and v is the hash code of the value.
The pair (a,r) is the bucket~ of the keyword.
Due to hashing, the structure memory may not be
able to distinguish between values of two keywords
whose attribute and range number are identical.
However, this will not result in the retrieval
of unnecessary records by the mass memory since
the values of the keywords are used and stored
in the mass memory in their complete variable
length form.

The organization of the KXU is shown in
Figure 6. It consists of a quasi-random access

RAM
for

Attribute-Information

Table

1 [\

H'

< Data Bus

"' 11'

~ \!

KXU

Control

Processor

Quasi-RAM
far

Hash Algorithm

Library

1 [\

~I; _,,,
>

"

J"PUt

~

(Variable-Length K
Predicates, Attribut

eywords,
e

~
Information, and Ho sh
Algorithms)

Output
(Fi <ed-Length Keywords
or Logical Bucket Name l

FIGURE 6. Organization of the Keyword Transfor
mation Unit (KXU)

memory for storing the hash algorithm library; a
random access memory for storing the attribute
information table; and the KXU control processor
for performing keyword transformation and for
interfacing with the database command and control
processor and structure memory. An LSI bit-slice
microprocessor may be sufficient for the arith
metic capabilities required in the KXU control
processor.

7.2 The Structure Memory Information Processor
The structure memory ifnormation processor

(SMIP) performs intersection on the sets of
index terms delivered by the structure memory.
For an understanding of the operation of the SMIP,
let us consider a query conjunction Q,

Q =Pl A P2 A ••• A Pn'

where each Pi is a predicate. The database command

and control processor (DBCCP) makes use of the
structure memory and the SMIP to determine the
set of index terms to be sent to the mass memory.
After the SMIP memory is cleared, the first set of
index terms for keywords satisfying P1 , called the

argument set of P1 , is provided by the structure

memory and then stored in the SMIP memory. Each
of the stored index terms is initially associated
with a count of one, indicating the number of
predicates it has satisfied.

Next, the argument set of P2 is provided by

55

the structure memory and sent to the SMIP. The
associated count of an existing index term in the
SMIP memory is incremented by one if the index term
matches an index term of the arglllnent set of P2 .

The process for P2 is repeated for each of the

other predicates. At the end of this entire
process, the stored index terms, those whose counts
are n, represent a refined list applicable to the
evaluation of Q. This list of index terms is
then retrieved by the SMIP and forwarded to the
database command and control processor (DBCCP).
Subsequently, the list is checked by the DBCCP
for security clearance, before being transmitted
to the mass memory.

The most important part of the above procedure
is the determination of whether an index term
already exists in the SMIP memory. To perform this
task rapidly, the SMIP is implemented as a set of
MU-PE pairs, where MU is a memory unit and PE is a
~ssing element. Since the total number of
index terms stored in the SMIP memory is small
(in fact, this number is never more than the
largest number of index terms of a single attri
bute), the memory units (MUs) forming the SMIP
memory can be made from fast random access memory.
A 'double hashing' method may now be applied for
the set intersection operation. An index term
(f,s), may be treated as a single~ and hashed
into a number between 1 and m, where m is the
number of MU-PE pairs. The index term is thus
assigned to a MU-PE pair. Having received the
first argument set (that of P1), the SMIP con-

troller hashes each index term of this set and
thereby assigns it to an MU-PE pair. After
receiving an index term of the argument set of P1 ,

each PE uses a second hashing algorithm to deter
mine the address in its MU where the index term
is to be stored together with an associated count
of one. Thus, the first argument set is distri
buted among the m memory units. Index terms that
hash to the same address in an MU are chained
together within the MU itself. In case an MU
runs out of space, then a chain can be extended
into a less-filled MU.

The ith argument set (namely, that of Pi, for

i > 1) is treated as follows. Each index term of
this set is hashed (using the first algorithm) by
the SMIP controller and given to the PE to which
the term is hashed. All the PEs can be working
in parallel, yet searching for different index
terms (in contrast to the structure memory, where
all the processors search for the same keyword).
After receiving an index term, each PE applies on
it the second hashing algorithm to determine the
address in its MU which starts a chain of stored
index terms. If the given index term is found. in
this chain and its associated count is (i - 1),
then the count is incremented by one; otherwise,
no action is taken.

56

When all the argument sets have been processed
in this fashion, the stored index terms, having an
associated count of n, are output for further pro
cessing. The hardware organization of the SMIP is
shown in Figure 7. Each memory unit is a single

I
u

"'---"'a.
~
en

Input --Argument Sets
from Structure Memory

SMIP

Controller

Output-
Index Terms
for Further
Processing
m IXU

FIGURE 7. Organization of the Structure Memory
Information Processor (SMIP)

module of random access memory. The processing
elements are made of microprocessors and are
capable of doing comparison-type operations as
well as executing the second hashing algorithm.
The SMIP controller must be quite fast since it
executes the first hashing algorithm on all the
index terms of the argument sets. However, a very
simple but effective algorithm [10] may be used
for this purpose, so that the SMIP controller can
process index terms at the same rate as it
receives them. The common memory bus is used for
data transfer when an MU overflows and requires
space within another MU.

7.3 The Index Translation Unit
The index terms stored in the structure

memory (SM) and manipulated by the structure
memory information processor (SMIP) are actually
represented in an intermediate form. The purpose
of the index translation unit (IXU) is to trans
late them into a usable form for the mass
memory (MM). The other function of the IXU is
the assignment and release of cluster identifiers
and security atom names, on demand from the data
base command and control processor (DBCCP).

The DBC allows different users to create
files of the database. A user may create one or
more files. The creator of a file determines the
attributes of the file, the clustering needs and
the access rights of the users of the file. The
use of files with different primary clustering
attributes allows the database computer (DBC)
to support different types of data structures such
as hierarchical, relational and network data
models. Furthermore, it may allow different
security provisions to be assigned at the

file-level of the database.
There can be a large saving of storage in the

structure memory (SM) and in the structure memory
information processor (SMIP) if the index terms
are reduced in size. This is possible since
files are allowed to occupy only disjoint sets
of mass memory cylinders. In this case, for an
index term of a keyword of some file, i.nstead of
storing the absolute cylinder number, only a
relative number is stored with respect to
other cylinders.occupied by the same file. How
ever, since the~e relative numbers have to be
converted into absolute cylinder numbers before
being passed on to the mass memory (MM), a
cylinder address table is maintained by the IXU
for every file of the database.

For an estimate of the type of storage
savings that may be achieved, consider a large
database with 40,000 cylinders. An absolute
cylinder number then, is 16 bits long. If a file
is limited to at most 256 cylinders, then only 8
bits are sufficient for a relative cylinder
number. Therefore, a 50% saving can be achieved in
storing cylinder numbers in the structure memory (SM)
and structure memory information processor (SMIP).

In addition to cylinder address tables, the
IXU also maintains a cluster identifier bit ~
and a security atom ~ bit ~· These bit maps
are used to keep track of the allocation and
release of cluster identifiers and security atom
names.

Index terms from the structure memory infor
mation processor (SMIP) are received in a burst
mode and stored in a buffer made of sequential
access memory. These index terms are expanded by
the IXU control processor, one at a time, by
making use of the cylinder address table. The
expanded index terms are sent to the database
command and control processor (DBCCP). The IXU
also receives requests from the DBCCP for alloca
tion and release of cluster identifiers and secur
ity atom names. The bit maps are used for
answering such requests. The size of the bit
maps and cylinder address table of each file is
estimated to be less than lK bytes. Hence, a
small random access memory is used for storing
these information about the 'current' file.
However, because there may be hundreds of files
in the database, the information about the aggre
gate of all files is stored in a bulk memory.

7.4 The Security Filter Processor
The major function of the security filter

processor (SFP) is to enforce the field-level
(i.e., type B) security of the database. After
the records have been retrieved from the database
by the mass memory (MM) in response to a user
query conjunction, they are individually checked
for security clearance. The SFP is capable of
extracting (removing) specified attribute-
value pairs from the retrieved records and sends
only (none of) these keywords to the database
command and control processor (DBCCP).

It might appear that, unlike record retrieval
requests, record update and record deletion
requests may cause difficult problems if they
are to be checked for type B security. This
misconception is based on the notion that, once
in a while, original copies of deleted or modified

records whould have to be restored, if they have
violated the type B security. However, such a
problem never appears in the DBC. We recall that
record update and record deletion take place in
two distinct steps. Both of these operations
require that records be first selected on the basis
of a given criterion (query conjunction). This
is the selection phase (or read phase). The
retrieved records are post-checked for type B
clearance, and only those that are cleared may now
be modified or deleted from the database. This
completes the write phase and signals the end of
the update or deletion operation. In other words,
no deletion or modification of the original
database takes place prior to the post-checking
for the type B clearance. If there is an over
whelmingly large number of records to be updated
by the SFP due to field-level security control
and processing, the mass memory (MM) may neither
send the next 'batch' of records, if any, to the
SFP, nor write newly modified records back to
MM, since the SFP is still busy. In this case,
the MM misses a disk revolution and attempts to
either send the retrieved records or write the
modified records in the next revolution. There
is no outstanding problem. The lesson to learn is
that large amounts of updates due to the type B
control will take longer time. However, typical
updates follow the 90-10 rule (see Section 3.1),
i.e., only 5-10% of data requires to be written
back to the MM. Therefore, contention for the MM
is typically not present.

The organization of the SFP is shown in
Figure 8. Input to the SFP consists of records

Input

(Records from

Access
Authorization

Unit

Security
Specifications

Storage

Input

(Commands and Security
Specifications from DBCCP)

SFP

Controller

Output to DBCCP (Records
or Port ions There of l and
Output to MM (Records
Cleared by Type B Control

for Update)

Random

Access
Memory

Post

Processing

Unit

Field

Extraction

Unit

FIGURE 8. Organization of the Security Filter
Processor (SFP)

retrieved from the mass memory (MM), and connnands
the type B security specification from the
database command and control processor (DBCCP).
Input records that form the response set of a
query conjunction are stored by the SFP in a
random access memory and, thus, are accessed by-

all the processing units of the SFP. The type B
security specifications are stored in a quasi
random access·storage. Whenever needed, the
specifications are stored in a quasi-random
access storage. Whenever needed, the specifica
tions for a user are loaded by the access
authorization unit for the type B security check
ing. Records that do not qualify for access are
deleted from the random access memory. The
post-processing unit performs set function (such
as maximum and average) on the response set of a
query conjunction. The records in their entirety
or certain portions of the records, extracted
by the field-extraction unit, are sent back to

57

the database command and control processor (DBCCP).
Each of the three processing units is implemented
as pairs of circulating memory and processing
element. Thus, each of these units can carry
out fast comparison-type operations simultaneously
on a number of records, thereby providing rapid
response to the user request.

7.5 The Database Command and Control Processor
The database command and control processor

(DBCCP) provides the control of the entire
system as discussed in Section 2 in referring to
Figures 1 and 2. In addition, the DBCCP performs
clustering. Records to be inserted in the data
base are physically clustered by the DBCCP
according to their primary and secondary cluster
ing attributes. In doing the clustering, the
DBCCP maintains a cylinder space table, indicating
the space available in each mass memory cylinder,
and a cluster information table, showing, first,
the definition of each cluster in terms of the
keywords with primary and secondary clustering
attributes and, secondly, the numbers of the
cylinders currently occupied by the cluster.
These tables, together with the PES-supplied
estimates on the space requirement of the files,
support the clustering mechanism of the DBCCP.

Whenever a record is to be inserted in the
database, its cluster number is first determined
by reference to the cluster information table.
The corresponding cylinder numbers found in this
table represent candidate cylinders in which the
new record may be inserted. The space vacancy
of the candidate cylinders is reflected in the
cylinder space table. Once a cylinder is
determined, it is accessed by the mass memory.
The detailed space availability data of each
track is found in the header information of the
track. The DBCCP then selects a track with the
maximum amount of available space. The header
for that track is updated and the new record is
stored in the track. A detailed algorithm for
cylinder selection is presented in [9].

For the type A access control, the DBCCP
performs the following: For each query conjunc
tion in an access command, a set of index terms
are received from the structure memory via the
structrure memory information processor (SMIP) and
the index translation unit (IXU) in a pipelined
fashion. These index terms carry information on
the security atoms to which the records satisfying
the query conjunction may belong. Accordingly,
only those idnex terms are sent to the mass memory
whose atoms are authorized for access. The
DBCCP checks the access authorization by using

58

atomic access privilege lists which show, for every
user, the access rights on each atom of a file.
Such a list is prepared by the DBCCP on a one-
time basis for every user of a file. Finally,
the mass memory does its share in security
checking by accessing the records that not only
satisfy the given query conjunction, but are also
tagged with the numbers of the atoms authorized for
access. For the type B security, checks on any
access are done solely by the security filter
processor (SFP). In performing this operation, the
SFP makes use of the security specifications
supplied on a one-time basis by the DBCCP.

In Figure 2, we have sketched the path in the
DBC data loop through which commands and data flow.
Access commands are security-checked in the
DBCCP unless they have the type B security require
ment. Insert commands result in activating the
record clustering mechanism of the DBCCP.

The DBCCP can be implemented on a moderately
powerful minicomputer with sufficient random
access memory to store the information on the
characteristics of only the active files and active
users. Other information may be stored in a
conventional disk. The minicomputer should pre
ferably be microprogrammable, so that the various
functions of the DBCCP may be directly implemented
in firmware.

Although it is in charge of a number of
different tasks, the DBCCP performs only a
limited number of tasks during the processing of
a single command. If a command, on the average,
requires access to one or two content-addressable
cylinders in the mass memory, then the DBCCP
should be able to handle a command within the
time it takes for one or two disk revoluations
(i.e., 20-40 msec). By using a minicomputer
and implementing the various tasks in firmware,
it is anticipated that the DBCCP will be able to
cope with the above performance requirement.

8. CONCLUDING REMARKS
Since a large number of common database

management functions are implemented in hardware,
the DBC is expected to perform appreciably better
than the computers that provide these functions
by software means. High cost of and long delay
in software security enforcement may also be
absorbed by the hardware. In addition, it should
be performance-and-cost-effective to support
very large databases in an on-line and inter
active mode, since the DBC's database is stored
in relatively low-cost and simply modified moving
head disks. The mass memory information processor
(MMIP), if need arises, may be expanded to
simultaneously handle disk cylinders each of which
is from a separate disk drive. In this expansion,
it is only necessary that the number of track
information processors (TIPs) in the MMIP be
increased accordingly, i.e., one set of TIPs for
each drive. Although the mass memory is expanded
into even larger content-addressable blocks
(each block being made up of several cylinders),
the need for a structure memory is still there,
since no two blocks may be accessed concurrently.
However, as the size of these blocks grows, the
need for clustering and the amount of indexing
decrease. Thus, the structure memory may

decrease in size, Another benefit may occur
if there are a multiplicity of MMIPs where each
MMIP handles a separate query conjunction, thereby
allowing user queries to be multiprocessed.

8.1 A Raw Estimate of the Hardware Performance*
A rather gross first-order analysis of the

DBC hardware may proceed as follows: The mass
memory logic is designed to process an entire
cylinder in one revolution. Because a cylinder
generally consists of between 20 and 40 tracks,
and because conventional disk systems process one
track at a time, we can expect a performance
improvement factor of between 20 and 40 over
conventional disk systems. Furthermore, since
the structure loop can be processing a
current request while the mass memory is processing
a previous one, a performance improvement factor
of 2 can be expected over conventional systems
which process or store both the indices and data
base at the same time or on the same storage
medium. In addition, the high degree of pipe
lining of the DBC components and the clear
delineation of front-end general-purpose
processing from back-end special-purpose database
management may allow a performance improvement
factor of 2. Thus, the DBC is likely to have a
hardware processing power which is (20,or 40,
x 2 x 2 =) 80 to 160 times that of conventional
software-based systems.

8.2 Hardware Performance and Limitations
Several simulation experiments [21] have been

carried out to determine the response times to
query conjunctions, and possible bottlenecks in
the DBC hardware. In the simulation study,
record retrieval requests to the DBC were assumed
to represent 50% of all requests. Since the DBC
is designed primarily to respond to the retrieval
requests rapdily and the update requests
adequately, this low retrieval percentage was
expected to be a worst-case performance measure.
Retrieval requests as well as update requests may
require the use of query conjunctions. A jE!:_
in the simulation model consists of a single
query conjunction and its associated access
operation.

A request is processed, first, in the struc
ture loop of the DBC, and then in the data loop.
When a job, i.e., a query conjunction, is
scheduled, for processing by the structure loop,
its predicates are first translated by the
keyword transformation unit (KXU), index terms
for keywords satisfying the predicates are then
retrieved from the structure memory (SM) and
intersected in the structure memory information
processor (SMIP), and finally, the resulting
index terms are translated by the index transla
tion unit (IXU). In the data loop, a job is
associated with a cylinder number.

The results of the simulation are as follows.
Assuming that the SMIP and the !XU can match the
processing speed of the structure memory (SM) and
that the KXU provides a fixed processing delay,

* This estimate was suggested to us by Gordon
Bell during a presentation of DBC architecture
at DEC by one of the authors.

the response time to requests in the structure
loop increases rather rapidly as the access time
of the structure memory increases. For instance,
for a KXU processing delay of 1 msec, the response
time is about 35 msec when the structure memory
access time is 1 msec. The response time increases
to about 120 msec when the structure memory access
time is 2 msec and KXU delay is 1 msec. The
structure memory reaches 90% or greater utilization
with a 2 msec access time. The response times
given above are measured for requests that are
composed of 50% retrieval requests with query
conjunctions being made up of an average of 4
predicates of indexed attributes. The response time
is improved by 10 to 20% when a look-aside buffer
is used.

The data loop is slightly slower because of
the assumption that the disk revolution time is
20 msec and a processing time of 15 msec is
required by the security filter processor (SFP).
Jobs arriving at the mass memory may be placed in
one of several queues based on the cylinder to be
accessed. Good performance can be achieved by
executing in sequence all those jobs that are
queued up to the same cylinder. In general, the
wait time of jobs improves rapidly until the
number of queues reaches 4 or 5, and there is
very little .improvement beyond that point. Due
to a limited buff er space in the track information
processors (TIPs) and a limited capacity of the
bus carrying information from the TIPs to the mass
memory controller and beyond, it is not always
possible to execute a job in one disk revolution
time even if it refers to a single cylinder.
However, jobs requiring the read-out of complete
cylinders are very rare. Therefore, the average
number of disk revolutions per job (i.e., query
conjunction) remains very close to 1.

8.3 Performance Evaluation of the DBC in Supporting
the Existing Applications
We have also investigated the manner in which

the DBC supports hierarchical (12], CODASYL [13],
and relational (SJ databases. An existing database
may be supported on the DBC by converting the
database to conform to the DBC representation of
data. This one-time conversion is known as data
base transformation. We do not require the user
to reprogram his database management applications.
Instead, we provide an interface which in real
time translates the database management calls
issued by the application programs into DBC
commands. Because DBC commands constitute a
high-level data language which closely resembles
many high-level data languages and calls of
contemporary systems, the translation is straight
forward and the interface requires minimal soft
ware. Such a process is known as query translation.
Both the tasks of database transformation and
query translation are charged to a software package
called the DBC interface which resides in the
front-end computer system. Thus, the interface,
together with the database computer, replaces a
full-scale software database management system
and its conventional disk storage. However, it
does not replace the application programs written
for the database and run in the general-purpose
front-end computers.

It has been estimated (14,15 1 16] that in
supporting these applications on the DBC, the
database transformation may result in a database
storage requirement as much as 1.5 or 2 times
that in a conventional system. This excess
storage requirement, however, is adequately

59

offset by one or more orders of magnitude improve
ment in the execution time or user transactions.
Furthermore, the storage requirement for the
indices decreases by one or more orders of magni
tude. Finally, the size of the software (i.e.,
the DBC interface) is expected to be several orders
of magnitude smaller than conventional database
management software.

8.4 Future Work
Certain important problems such as recovery

from failure, concurrency control and integrity
validation are currently being delegated to soft
ware in the front-end system. Future research is
anticipated, therefore, in improving the DBC to
provide some hardware solutions to the afore
mentioned problems and relieve the front-end
system further from much of database software.
We would also like to investigate more thoroughly
the performance bottlenecks of the DBC, in
particular, the mass memory, the database command
and control processor and the security filter
processor due to their complexity in design
and elaborate usage. The anticipated security
cost in utilizing bo.th types A and B will be
studied. Preliminary analysis of DBC performance
and capability, however, tends to indicate that
the DBC may indeed perform very well in realizing
the conventional database management applications.
This leads us to believe that database machines
in general and the DBC in particular may become
viable special-purpose computers for very large
database management.

ACKNOWLEDGEMENT
The work reproted here is the result of a

research initiated by David K. Hsiao, contributed
first by Richard I. Baum, expanded by Krishnamurthi
Kannan, and continued by Jayanta Banerjee under
the supervision of David K. Hsiao. The entire
work is conducted at The Ohio State University
and supported by the Office of Naval Research
through contract N00014-75-C0573.

The authors would like to thank Richard I.
Baum for his contributions to the database computer
project. Portions of this paper are derived from
project reports available either through NTIS
under AD-A034154, AD-A035178 and AD-A036217, or
from The Ohio State University under OSU-CISRC
TR-76-1, OSU-CISRC-TR-76-2 and OSU-CISRC-TR-76-3.
These reports were issued in September, October,
and December of 1976, respectively, and co-authored
by either Richard Baum, David K. Hsiao and
Krishnamurthi Kannan, or David K. Hsiao and
Krishnamurthi Kannan.

Thanks are due to the referees' for comments
and suggestions which have helped in shortening
of the original draft. Thanks are also due to
Glen Langdon who, as the Guest Editor of this
issue, has handled the manuscript with care and
thoughtfulness, and David WanHua Hsiao.who typed
the manuscript over the weekend. Authors of this
paper are listed alphabetically.

60

REFERENCES
[l] Hsiao, D. K. and Madnick, S. E., "Database

Machine Architecture in the Context of
Information Technology Evalution," Pro
ceedings of the Third International--c;;;-
f erence on Very Large Data Bases, ACM, New
York, 1977, pp. 63-84.

[2] Baum, R. I. and Hsiao, D. K., "Database
Computers -- A Step Toward Data Utilities,"
IEEE Transactions on Computers, Vol. C-25,
No. 12, December 1976, pp. 1254-1259.

[3] Su, S. Y. W. and Lipovski, G. J., "CASSM:

[4]

[5]

[6]

[7]

[8]

(9]

(10]

A Cellular System for Very Large Data Bases,"
Proceedings of the First International
Conference on Very Large Data Bases, ACM,
New York, September 1975, pp. 456-472.

Lin, C. S., Smith, D. C. P. and Smith, J.
M., "The Design of a Rotating Associative
Memory for Relational Database Applications,"
ACM Transactions on Database Systems, Vol.
1, No. 1, March 1976, pp. 53-65.

Codd, E. F., "A Relational Model of Data
for Large Shared Data Banks," Connnunications
of the ACM, Vol. 13, No. 6, June 1970,
pp. 377-387.

Ozkarahan, E. A., Schuster, S. A. and
Smith, K. C., "RAP -- Associative Processor
for Data Base Management," AFIPS Conference
Proceedings, Vol. 44, 1975, pp. 379-388.

Ozkarahan, E. A. and Sevcik, K. C.,
"Analysis of Architectural Features for
Enhancing the Performance of a Database
Machine," ACM Transactions on Database
Systems, Vol. 2, No. 4, December 1977,
pp. 297-316.

Moulder, R., "An Implementation of a Data
Management System on an Assoicative
Processor," Proceedings of the AFIPS
National Computer Conference, Vol. 42,
1973, pp. 171-176.

Banerjee, J., Baum, R. I. and Hsiao, D. K.,
"Concepts and Capabilities of a Database
Computer" to appear in ACM Transactions on
Database Systems. Also available in,
Baum, R. I., Hsiao, D. K. and Kannan, K.,
"The Architecture of a Database Computer
-- Part I: Concepts and Capabilities,"
Technical Report OSU-CISRC-TR-76-1, The
Ohio State University, Columbus, Ohio,
September 1976.

Kannan, K., Hsiao, D. K. and Kerr, D. S.,
"A Microprogrannned Keyword Transformation
Unit for a Database Computer," Proceedings
of the Tenth Annual Workshop on Micro
progrannning, October 1977, Niagara Falls,
New York; and Hsiao, D. K., Kannan, K.,
Kerr, D. S., "Structure Memory Designs for
a Database Computer," Proceedings of ACM 77
Conference, October 1977, Seattle, Washing
ton; also available in Hsiao, D. K. and
Kannan, K., "The Architecture of a Database
Computer -- Part II: The Design of the
Structure Memory and its Related Processors,"
Technical Report OSU-CISRC-TR-76-2, The

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

Ohio State University, Columbus, Ohio,
October 1976.

Kannan, K., "The Design of a Mass Memory
for a Database Computer," Proceedings of
the Fifth Annual Symposium on Computer
Architecture, April 1978, Pal Alto,
California; also available in Hsiao, D.
K. and Kannan, K., "The Architecture
of a Database Computer -- Part III; The
Design ·Of the Mass Memory and its Related
Processors," Technical Report OSU-CISRC
TR-76-3, The Ohio State University,
Columbus, Ohio, December 1976.

IBM, Information Management System/
Virtual Storage {IMS/VS) Version 1, General
Information Manual, GH20-1260-4.

CODASYL Data Base Task Group Report, ACM,
New York, April 1971.

Banerjee, J., Hsiao, D. K., and Ng, F. K.,
"Data Network - A Computer Network of
General-Purpose Front-end Computers and
Special-Purpose Back-end Database Machines,"
Proceedings of International Symposium
on Computer Network Protocols, (Danthine,
A., Editor), Liege, Belgium, February 1978,
pp. D6-l to D6-12; also available in
Hsiao, D. K., Kerr, D. S., and Ng, F. K.,
"DBC Software Requirements for Supporting
Hierarchical Databases," Technical Report
OSU-CISRC-TR-77-1, The Ohio State
University, Columbus, Ohio, April 1977.

Banerjee, J., Hsiao, D. K., and Kerr, D.
S., "DBC Software Requirements for
Supporting Network Databases," Technical
Report OSU-CISRC-TR-77-4, The Ohio State
University, Columbus, Ohio, June 1977.

Banerjee, J. and Hsiao, D. K., "Performance
Evaluation of a Database Computer in
Supporting Relational Databases," Fourth
International Conference on Very Large
Data Bases, Berlin, Federal Republic of
Germany, September 13-15, 1978; and
Banerjee, J. and Hsiao, D. K., "The Use
of a 'Non-Relational' Database Machine
for Supporting Relational Databases,"
Fourth Workshop on Computer Architecture
for Non-numeric Processing, Syracuse, New
York, August 1-3, 1978; also available in
Banerjee, J. and Hsiao, D. K., "DBC
Software Requirements for Supporting Re
lational Databases," Technical Report
OSU-CISRC-TR-77-7, The Ohio State Univer
sity, Columbus, Ohio, November 1977.

PTD-9300 Parallel Transfer Disk Drive,
Ampex Corporation, Redwood City, Califor
nia. (A product announcement connnunicated
to the authors in May 1978.)

Hoagland, A. S., "Magnetic Recording
Storage," IEEE Transactions on Computers,
Vol. C-25, No. 12, December 1976, pp.
1283-1289.

McCauley, E. J. III, "Highly Secure
Attribute-Based File Organization,"
Proceedings of the Second USA-Japan

Computer Conference, August 1975, pp.
497-501.

(20] Altman, 1., "New Arrival in the Bulk
Storage Inventory," Electronics, Vol. 51,
No. 8, April 13, 1978, pp. 106-113.

(21] Hsiao, D. K. and Kannan, K., "Sirmlation
Studies of the Database Computer (DBC),"
Technical Report OSU-CISRC-TR-78-1, The
Ohio State University, Columbus, Ohio,
February 1978.

[22] Coulouris, G. F., et al., "Towards Content
Addressing in Data Bases," Computer Journal,
Vol. 15, No. 2, February 1972, pp. 95-98.

61

DATA NETWORK - A COMPUTER NETWORK OF
GENERAL-PURPOSE FRONT-END COMPUTERS AND

SPECIAL-PURPOSE BACK-END DATABASE MACHINES.*

Jayanta Banerjee and David K. Hsiao
Department of Computer and Information Science

The Ohio State University
Columbus, Ohio 43210

Fred K. Ng
Bell Telephone Laboratories
Naperville, Illinois 60540

USA
USA

Very large databases on intelligent database stores are resources which may be shared among a large
number of on-line users. Through a network of computers, they constitute a data utility providing shared,
concurrent access with security and integrity for multiple users. The intelligent database stores are
back-end database machines capable of performing a number of data management functions such as storage,
search, retrieval, update, access control, clustering. Every database store is associated with one or more
host computers in the computer network and is accessed via these front-end computers. In this paper we
first motivate the notion of data networks consisting of geographically distributed front-end computers and
back-end database machines. We next present the protocol necessary for communication between conventional
front-end computers and the specialized database machines. We then proceed to show how hardware support
of this protocol can greatly improve typical database management activities such as IBM's IMS found in
the front-end computers. Finally, we point out that for high-performance and high-volume database manage
ment systems, data networks using such intelligent database machines may be necessary.

1. MOTIVATION AND REQUIREMENTS
A data network is to provide high-volume and

high-performance on-line database management ac
tivities in a computer network environment. By
high-volume we mean that there are one or more
large databases in the network which are on the
order of, say, 1010 bytes. High performance for
on-line activities requires that the database
stores be capable of content search, rapid re
trieval, and efficient update. Such a computer
network can support database management applica
tions that cannot be found in conventional stand
alone database management systems. In addition
to its limited capacity and fixed locality, a
stand-alone database management system is always
designed and implemented for a particular data
model. On the other hand, in a data network of
many database stores, multiple views can be accom
modated by having some database stores to support
one view and other database stores to support
another view. With this support, the data net
work not only enables users to utilize distributed
databases with their individual views, but also
opens the opportunity for diverse groups of users
to access a very large and centralized database
where each group may view the database at a level
of abstraction most suitable to the group. Con
sequently, the novice users may interact with the
data network, for example, through a relational
view; the application programmers may develop
applications on the data network with a hierar
chical view; and the transaction analysts may

*The work reported herein was conducted at The Ohio
State University and supported by contract N00014-
75-C-0573 from the Office of Naval Research.

63

navigate the data network for transaction processing
via a CODASYL view. Such use of the data networks
is a step toward the goal of a data utility where a
database, like public utilities, can be used by a
wide spectrum of users for a large number of appli
cations.

To meet this goal, the database stores of the
data network must strive for facilities to provide
multiple views, great capacity, high performance,
low cost, good security, and high reliability. For
example, the designs of database machines such as
CASSM (1), DRC (2, 3, 4, 5), RAP (6), and RARES (7)
are aimed to"achieve some of the aforementioned re
quirements of the database stores. They may also
be used to alleviate certain other problems •associ
ated with distributed databases. Maintaining con
sistency in a redundant distributed database (8,9)
may be simplified with the use of database machines.
In addition, since database machines can directly
interpret high-level protocols, protocol standard
ization is greatly simplified, thus contributing to
the ease of use of a distributed database. In this
paper, we shall concentrate on the requirements of
a database machine to support multiple views in a
data network. We shall propose a database manage
ment protocol which is sufficiently primitive to
be implemented in a database machine for high per
formance and reliability, and which is rich enough
to support multiple data models with little soft
ware and security overhead. To study the cost
and performance of the protocol, we compare the
utilization of a popular type of database on a
conventional stand-alone computer system with the
utilization of the same database on a data net
work via the protocol. The result of the comparison
is gratifying -- indicating that the direction
towards data utility perhaps lies in the use of
data networks.

64 2. THE NETWORK ENVIRONMENT
A large on-line database, intended to be shared

by a network of computers, is supported on one or
more intelligent database stores, depending on
whether the da.tabase is centralized or distributed.
A database store consists of a physical database
and a back-end database machine (DBM) endowed with
the capabilities of multiple views (or data
models), a very lar2e on-line storage capacity
(of the order of 1010 bytes), high performance
attained through intelligent search, efficient up
date and automatic sorting mechanisms, low cost,
extensive security provisions and high reliability.
A user sitting on a terminal or running his pro
gram in batch will access the database via a con
ventional front-end computer (FEC) such as a
UNIVAC 1108, which connnunicates the data management
needs to a DBM. The latter does the actual oper
ations on the database. A minimal environment in
which a DBM will exist is depicted in Figure 1.

---~Request

- Response and Data

A Database
Machine A Database
(DBM)

Figure 1. Minimal Network Environment for a DBM

The FEC compiles and executes user programs with
the help of the DBM. The FEC directs all data
management connnands in the form of requests to
the DBM. The DBM responds to such a request by
conducting the activity (such as inserting a
record, retrieving records satisfying a query)
required by the request and sending a response
back to the FEC. The response may consist of
either control information, (such as a completion
signal), an error message, or any data collected
from the database (such as a group of records
satisfying the query, a set operation on these
records). The dialogue between an FEC and a DBM,
then, is carried out with a data management pro
tocol of requests and responses.

2.1 Centralized Data Networks
The minimal data network may be a simple net

work of two computers, a DBM and an FEC. A more
elaborate network may consist of a network of
FECs using a centralized database via a DBM. One
such configuration called a centralized data net
work is shown in Figure 2. The centralized data
base is managed by a single DBM. A user of the
database may log into one of the FECs, which in
terfaces with the DBM via data management proto
cols. The sharing of other computer facilities
is done via inter-FEC protocols (such as those in
(10)) which we shall not address in this paper.

2.2 Distributed Data Networks
Very often a database is distributed geograph

ically over a number of regions. To every com
puter in a network, only a portion of the database

.+---• Inter-FEC Protocols

- Data Management
(or FEC-DBM) Protocols

<====> Data Poth between the
DBM and Database

Figure 2. A Centralized Data Network

is locally available. The rest of the distributed
database will be accessible to such a computer
through its participation in the network. The
software design of one such system is demonstrated
in (11).

It is possible to extend the application of DBMs
further by placing them in charge of various por
tions of the database in a distributed data network.
There are various reasons for using DBMs in dis
tributed data networks:

(1) faster response time due to quicker search
and update .c~pabilities of a DBM.

(2) reduced software in the FECs since all data
manage~ent activities are handled by the
DBMs, and

(3) standardized high-level data management
protocols for any FEC-DBM connnunication.

In a distributed data network, the entire database
is usually organized to support a single logical
data model such as CODASYL (12), relational (13) or
hierarchical (14). The logical view of the data
base (in the form of a schema and one or more sub
schemas) and a physical map of the database may be
stored either in a central store accessible to all
FECs or in a local store in each FEC. An example
of a distributed data network is shown in Figure 3.

I
I
I
I
\
\

' \

---------... ,

..---• Inter-FEC Protocols

~ Doto Management
{or FEC-OBM) Protocols

~Doto Poth between the
DBM and Database

' \ \
\
\

I
/

I

\
\
I
I

I
I
I
I

I
I

....... , _________ ... -,,
Figure.3. A Distributed Data Network

We now categorize distributed data networks as
follows:

(1) networks with identical DBMs supporting
identical data models,

(2) networks with identical DBMs supporting
dissimilar data models,

(3) networks with dissimilar DBMs supporting
identical data models, and

(4) networks with dissimilar DBMs supporting
dissimilar data models.

The greatest generality occurs when a network con
sists of DBMs of different types and the data
bases are based on dissimilar data models. The
problem of dissimilar DBMs can be easily elimi
nated if we can design a general protocol that is
acceptable by every DBM. This will be our aim
in the next section where we use the features
required in all database machines to come up with
a standard protocol design.

The problem of dissimilar data models is, how
ever, more complex. Even if a specific program
is to be limited to accessing only those databases
that are represented by the same data model, it
will be nec7ssary to provide each FEC with a
variety of schemas and subschemas as well as
translators for the data languages of all the
different models. The problem is further com
pounded when a single user program wants to access
databases associated with a variety of data models,
There is no known attempt as yet to address this
problem. The problem is generally evaded by cre
ating only homogeneous distributed databases, i.e.,
those that are based on a single data model. The
protocol suggested in the next section is not a
complete solution to the problems arising from
dissimilar data models. However, it is rich
enough to allow the expression of data management
needs for any existing type of databases. This is
substantiated in Section 4, where a hierarchical
database management system is "simulated" with the
proposed data management protocol.

3. DATA MANAGEMENT PROTOCOLS
In an attempt to provide a standardized and

efficient means of connnunication between the DBMs
and FECs in a data network, we advance a complete
data management protocol that is implemntable by
a database machine. Let us first extract a few
salient features common to all machines with large
on-line database stores. The secondary storage is
made content-addressable in order to provide for
rapid search and update. However, in spite of
decreasing processing costs, it is doubtful
whether it will ever become cost-effective to build
a large secondary storage with monolithic associ
ative memory. On the other hand, it is viable to
partition the secondary storage into blocks where
each block is individually content-addressable and
where access is limited to a few blocks at a time.
Consequently, it is desirable to cluster similar
data into as few blocks as possible. Clustering
information as well as some other structure infor
mation about the database is stored in a separate
memory called the directory memory. The performance
of the directory memory must be sufficiently high
to minimize the number of accesses to the database
store and to keep pace with the database store
accesses. In addition, a database machine must
provide content-based security mechanisms, se~
operations on retrieved data, and intelligent up
date capability.

65
Relying on the provision of the above features

in a database machine, we shall now introduce a
general attribute-based data model which will be the
basis of the design of a data management protocol for
connnunication between front-end computers and back
end database machines.

3.1 An Attribute-Based Data Model
The data model represents a logical view of the

data as seen from a front-end computer (FEC) which
intends to interact with a database via a database
machine (DBM). This model may also represent the
physical organization of the data stored by the DBM.
There are four aspects associated with the data model:
data structure, query, clustering, and security. The
data structure is the way that information is re
presented so that there is a uniform way to access
and manipulate the information. Access and manip
ulation of information is done with the use of
queries. Clustering affects the way the data is
physically grouped into partitions; security controls
the way the data structure is protected from un
authorized access.

The database is composed of records where a
record R is a set of ordered pairs of the form:

<an attribute, a value>.
The database may be partitioned into subsets called
files, each with a unique file name.

A keyword K is an attribute-value pair which
characterizes the record. A keyword predicate is
a triple of the form <attribute, relational oper
ator, value>. A relational operator is an element
of the set {=,~,<,~.~.>}. A keyword <A,V> is said
to satisfy a keyword predicate <Ap, Op, Vp,> if and
only if A=Ap and V Op Vp, i.e., V and Vp are related
by the relational operator Op. A query conjunct is
a conjunction of keyword predicates. Finally, a
query is a Boolean expression consisting of dis
juncts of query conjuncts. An example of a query is

([DEPT='TOY']A[SALARY<lOOOO])v
([DEPT='BOOK']A[SALARY>50000]).

If the above query refers to a file of employees of
a department store, then it will be satisfied by
records of the employees working either in the toy
department and earning less than 10,000 or working
in the book department and making more than 50,000.
We note that this query consists of two query con
juncts each of which consists of two keyword predi
cates.

Queries are used not only to retrieve a set of
records from the database, but also to specify
security requirements and clustering conditions.
Security specifications are based on the actual
contents of the database. A database access or,
simply, an access is the name of an operation which
transfers information to or from the database.
Examples of accesses are retrieve, insert, and de
lete. For every user of the database, there exists
a database capability, which is simply a list of
file sanctions whose entries are of the form:

(F, IQ1, Ail. [Q2,A2],. .• ,[Qn,An])
where F is a file name, each Qi is a query and each
At is a set of accesses. The database capability
of a user determines the records he can access. For
example, for a user to be allowed to perform an ac
cess operation a on a record R of file F, the follow
ing condition m-U-st hold for every (Qi,Ai) in this
file sanction for F:

If R satisfies Qi tl!e!l !!_ E A.
Keywords appearing in the queries of a

tion are designated as security keywords.
file sanc
This type

66
of security specification is powerful and elegant.
With this specification, not only can security be
enforced in terms of record types or entire files,
but security can also be facilitated at a much
more detailed level based on the actual content of
the records in the database.

Since the secondary storage of a DBM is par
titioned into blocks and only one block is access
ible at a time, it may be convenient for the user
to have some control over the placement of records
in the physical storage. Such control is achieved
through clustering keywords. For each file, there
are certain keywords which are designated for
record placement purposes and are called cluster
ing keywords. The occurrence of some of these
keywords within a record defines a cluster. When
a record is to be inserted into the database, the
user can specify clustering conditions which enable
the DBM to determine the identity of the cluster
in which the record should belong. These con
ditions are queries consisting of clustering key
words.

The power of the clustering (security) mecha
nism is derived from the fact that it utilizes
the same query facility for clustering (protecting)
as is used for retrieving records. Security and
clustering keywords are instances of a general
class of keywords called Type-D keywords or direc
tory keywords. For every Type-D keyword specified
by the user, the DBM maintains an entry in its
directory menory associating the keyword with all
the content-addressable blocks in which records
containing this keyword appear.

3.2 Protocol Primitives
DBM-FEC communication is achieved through a data

management protocol used for making requests from
an FEC and responses from a DBM. Each of the FECs
in the network has a unique identification which
we shall refer to as the FEC-ID. Similarly, every
DBM in the network has a DBM-ID. Within a single
DBM, all the files have unique identification and
the FECs are aware of the file identification that
they might have to refer to. Each request sent
from a source (FEC) to a destination (DBM) is
distinguished from all other requests from the
same source by means of a request-id, R-ID. Thus,
the response data retrieved by the destination can
be identified by the source if the corresponding
R-ID is included in it. All requests received by
a DBM at any instant are queued and executed in
an order of importance that depends on the pri
ority associated with a request with respect to
the priority of other requests from the same
source, and the content-addressable blocks to be
accessed in executing the request. Since an FEC
has neither the control nor the knowledge of the
location of data in the secondary storage, it can
only ensure the correct order of execution of two
requests to the same DBM by doing either of the
following:

(1) Sending the second request only after
receiving the response to the first, or

(2) Assigning a higher priority to the first
request and then sending it before the
second. In an ARPA-like network, this en
sures the right ordering.

When the delay involved in the first approach is
intolerable, the second solution presents a very
good alternative.

The request-response (or request-reply) protocol
consists of the following two messages:

(1) Request: <FEC-ID, R-ID, R-CODE, priority,
user ID, argument set>

(2) Response: <FEC-ID, R-ID, E, result set>
The FEC-ID is the identification number of the source
of the request. R-ID, together with the FEC-ID,
uniquely identifies a request in the entire network.
The R-CODE is a coded version of the request name.
The priority of a service can be one of several
possible levels. The argument set includes, besides
other arguments, a file-ID indicating the file upon
which the request is to. be carried out. In the
response message, E is an error bit indicating
whether the request has been satisfactorily (correctly)
carried out or not.

Before we describe the requests recognized by a
DBM, let us first describe some elementary items that
may be used to build up a request. A query, as we have
seen earlier, consists of a disjunction of query con
juncts. A query conjunct, in turn, is made up of a
conjunction of keyword predicates. A keyword predi
cate is a triple of the form <attribute, relational
operator, value>. If each attribute in a file is
given a unique attribute number, then the format of
a keyword predicate is as shown in Figure 4. The for
mat of a keyword within records is the same as that
of a keyword predicate, except for the fact that
bits representing the relational operator (bits _3
through 7) are set to zero. The format of a query
conjunct is shown in Figure 5 and that of a record
in Figure 6, The format of a query in disjunctive
normal form is depicted in figure 7. A clustering
condition consists of a query that consists en-
tirely of clustering keyword predicates. The for-
mat of such a condition is shown in Figure 8. The
format of a file sanction as shown in Figure 9 is
made up of a query conjunct and an access descriptor
indicating the type of access allowed on the records
satisfying the query conjunct. The format of an
access descriptor is as depicted in Figure 10.
Finally, security keywords are identified by security
descriptors of the format shown in Figure 11. When
a range of values for a particular attribute must be
secured, the lower and upper bounds for that attri
bute must be specified in its security descriptor.

Value

's' Predicate Indicator

'S' Predicate Indicator

';,,' Predicate Indicator

Figure 4. Format of a Keyword Predicate (T)

#of Bytes #of
in Conjunct Predicates,n Tl T2 T3 T4

0 15 16 23

Figure 5. Format of a Query Conjunct (T1AT2A .• ATn)
rArgument

,-l..... Type= Record

OO I #of Bytes # of Key- K 1 K2 K Body of
in Record words, n n Record

0 7 8 23 24 31
Figure 6. Format of a Record with Keywords K1,K2···Kn

r Argument Type:
,J_, Query

002 #of Bytes #of Con- 01 02
in Argument juncts, k

0 78 23 24 31 32

Figure 7. Format of a Query

Argument Type: L Clustering Condition

003 #of Bytes #of Con- Q Q
in Argument juncts, k 1 2

0 7 8 23

Figure 8. Format of a Clustering Condition

rArgument Type:
J__, File Sanction

4 #of Bytes Access
OO in Sanction Descriptor

Conjunct of Security
Keyword Predicates

0 7 8 23 24 39 40

Figure 9. Format of a File Sanction Consisting
of a Conjunct of Security Keyword
Predicates and an Access Privilege.

:"':,
1
.::.,:'..:,: ~~I ~) l}eb~Query

~tr:~; by Potnter

Ref.rieve by Query with Pointer

Delete by Query

Oe!ete by Potnter

Insert

Note A'\' in 0 bit position indicates a right to perform the access,
while a '01 indicates a denial of the right

005 #of Bytes Security Attribute ID Lower Upper
1n Argument Descriptor I 0 Bound Bound

0 7 8 23 24 47L8 68-71 Nof used

Security Specificat1on ti For Security Keyword

Descriptor o For ~ecurity Range
Type Spec1ficotion

I For Specifying that
oil Keywords of fhe
Attribute ore to be
Considered Security
Keywords

Figure 11. Format of a Security Descriptor

3.3 Preparatory Requests
Requests recognized by a DBM may be categorized

as preparatory, retrieval and data manipulation
(update) requests. The preparatory requests are
used for file creation, security specification,
etc. They are described below:

67
(1) Open-database-file-for-creation (Figure 12):

This request is sent to the DBM before re
cords of the file are loaded into the data
base. It provides information on the number
of attributes the file is to have, the number
of secondary storage blocks that need to be
allocated initially, and the number of blocks
that may be allocated if the initial alloca
tion is insufficient.

(2) Load-attribute-information (Figure 13): This
request is used to provide a DBM with infor
mation on the attributes used for the file.

(3) Load-security-descriptor (Figure 14): The
security descriptors of a file are loaded by
this request.

(4) Close-database-file (Figure 15): This request
indicates that the file may be deactivated
i.e., to indicate that there will be no more
requests from the user on the file.

(5) Open-database-file-for-access (Figure 16):
Since the processing for creation of a
database file is different from that for ac
cessing a file, this separate request is
provided.

(6) Load-creation-capability-list (Figure 17):
This request is used to indicate to the DBM
the identity of the users who may issue the
open-database-file-for-creation request.

FEC- R- ID
10

0 78

R-Code Priority User ID Fi le ID Arg I Arg 2 Arg 3

15 16 20 21 23 24 39 40 5556 71 72 7980 87

Arg I Number of Attributes Needed (16 Bits)
Arg2. Number of Blocks Required Initially (8Bits)
Arg3 Addifional Blocks Required (8 Bits)
R- Code =01 8

Priority: 1-7 (Higher Priority Number Indicate the Request
for Faster Service)

Figure 12. Format of the Open-Database-File-for
Creation Request

f gc- R-ID R-Code Priority User ID File ID Attributes Information

0 7 8 15 16 20 21 23 24 39 40 55 56

R-Code =02 8

Figure 13. Format of the Load-Attribute-Information
Request

FEC- R-ID R-Code Priorify User ID File ID #of Securify Security
ID Descn tor, k Descrr tor I

0 7 8 15 16 20 21 23 24 39 40 55 56 63

R-Code = 038
~ . . . J Security

Descriptor k

Figure 14. Format of the Load-Security-Descriptor
Request

0

FEC
ID

R-ID R- Code Priority User ID Fi le ID

7 8 15 16 20 21 23 24 39 40

R-Code =048

55

Figure 15. Format of the Close-Database-File
Request

FEC- . . I · D Defaulf #of File File
ID R-ID R-Code Prrorlfy User D File I Access Sanctions Sancfion I

0 7 8 15 16 20 21 23 24 39 40 55 56 70 71 86

R-Code = 058

Figure 16.
Daiabase Capability

Format of the Open-Database-File-for
Access Request

68
FEC
!D

R-!D R-Code Priority System #of User !01 ID !Os, k - • • User !Ok

0 7 8 15 16 20 21 23

R-Code = 068

Figure 17. Format of the Load-Creation-Capability
List Request

3.4 Retrieval Requests
There are four requests that may be used to re

trieve records from the database. In some of these,
it is possible to specify whether the records
satisfying a query need be sorted or not, whether
a set operation should be performed on the records,
etc. Another request is reserved for the join
operation.

(1) Retrieve-by-query (Figure 18): In this, a
query made of keyword predicates in the
disjunctive normal form is used to identify
records desired by the user. Sorting of
the records can be specified, if necessary.
If a set operation is desired on a parti
cular field, then the appropriate function
(MAX, MIN, AVG, SUM, COUNT, NULL) may be
specified in bits 73-75. NULL is not ac
tually a set function. It only indicates
that set function is not desired, and in
that case no attribute should be included
for set function (bits 76-91). Bit 92
indicates whether only the set function
need be returned or the records as well.
If records are to be returned then either
each reocrd may be returned in its entirety
or only certain fields of it. This is
specified in bit 93.

(2) Retrieve-by-query-with-pointer (Figure 18):
This request is similar to the retrieve
by-query request except that the positions
(in the database) of the records satisfying
the query are also returned in the form of
pointers.

(3) Retrieve-by-pointer (Figure 19): This re
quest is used to retrieve a single record
when the location of the record is known.

(4) Retrieve-and-connect (Figure 20): With
this request, two groups of records are
retrieved using two different queries.
These records are then joined on two attri
butes using the same property (i.e., the
attribute names may be different but their
values are taken from the same domain).
For example, let three records retrieved by
query 1 be
(<A, VAl> <B, VBl> <C, VCl> <D, VDl>)
(<A, VA2> <V, VB2> <C, VC2>)
(<A, VA3> <B, VB3> <C, VC3> <D, VD3>)
and two records retrieved by query 2 be
(<E, VEl> <F, VFl>)
(<E, VE2> <F, VF2>).

If we now join on attributes C and E, and extract
fields B and D for query 1 and field F for query 2,
then the two new records returned are formed with
the following pairs:
(<B, VB2>,<F, VFl>) and (<B, VB3> <D, VD3>, <F,

VF2>)
where we have assumed that the values VC2 and VEl
are equal and the values VC3 and VE2 are also equal.
In Figure 20, all information relate~ to query 1 is
nwnbered 1, and all information associated with
query 2 is numbered 2.

Fields to be
eJdrocled or not I

ONLY or not l I

R·Code for Retrieve-by-Query= 078
R-Code for Retrieve- by-Query-with- Pointer= 108

Figure 18. Format of a Retrieve-by-Query Request
and Retrieve-by-Query-with-Pointer
Request

0

FE C
ID R-ID R-Code Priority User ID File ID Pointer

7 8 15 16 20 21 23 24 39 40 55

R-Code = 11 8

Figure 19. Format of a Retrieve-by-Pointer
Request

FEC
ID R-ID

0 1 a 15 16 20 21 23 24 39 40 55 56 71 72 87 88 103

#of Fields Fir's!
Ex1rocted n I Field

104 108 109 124

R-Code • 12 8

nl·th #of Fields First
Field Exfractedn2 Field

n 2-th Query Query
Field I 2

Figure 20., Format of a Retrieve-and-Connect
Request

3.5 Data Manipulation and Update Requests
There are six different requests reserved for

database loading (creation), record insertion,
record deletion, and record modification. We de
scribe these requests in turn:

(1) Load-record (Figure 21): During the creation
of a file, the user may not perform any
access operation except for loading records.
The clustering conditions included in this
request are used for physical clustering of
the records. No security check is made since
the load-record request follows the open
database-file-for-creation request which
causes security checking.

(2) Insert-record (Figure 21): This request is
used to add records to an existing file. It
undergoes a security check before the oper
ation is carried out. In the load-record
request, in contrast, the time required for
security checking is avoided, thus acceler
ating the database loading operation.

(3) Delete-by-query (Figure 22): This request
is very similar (in processing) to the re
trieve-by-query request. It uses a query
to identify those records that have to be
removed from the file.

(4) Delete-by-pointer (Figure 23): This is sim
ilar to the retrieve-by-pointer request and
is used to delete a specific record.

(5) Delete-file (Figure 24): Often a user may
wish to destroy an entire file. This ac
tion is provided by the delete-file request.
It not only releases the database areas or
blocks occupied by the file, but also the
directory memory space occupied by the key
word directory entries and auxiliary infor
mation kept by the DBM.

(6) Replace-record (Figure 25): In database
operations, it is frequently desired to up
date certain fields of a record and retain
only the updated version of the record.
Such a facility is provided for by the

FEC
ID

replace-record request. There are two
arguments to this request--a pointer to
the old record that is to be replaced and
the new record that is to replace the old
record. Internally, this request is di
vided into two parts--a delete-by-pointer
for the old record, and an insert-record
protocol for the new record.

R-ID R- Code p iorty User Fi le Clustering
r 1 ID ID Cond1t1ons

Record to be
In rt

0 78 15 16 20 21 23 24 39 40 55 56

R· Code for Load- Record Command= 138
R-Code for Insert -Record Command= 148

Figure 21. Format of a Load-Record Request
and Insert-Record Request

FE C
ID

0

R- ID R-Code Priority User ID Fi le ID Query

7 8 15 16 20 21 23 24 39 40 55

R-Code = 158

Figure 22. Format of a Delete-by-Query Request

FE C
ID

0

R-ID R-Code Priority User ID File ID Pointer

78 15 16 20 21 23 24 39 40 55

R-Code = 168

Figure 23. Format of a Delete-by-Pointer Request

0

FE C
ID

R-ID R-Code Priority User ID File ID Default Access
811 Pattern

7 8 15 16 20 21 23 24 39 40 55 56

R-Code = 178

Figure 24. Format of a Delete-File Request

0

FEC
ID

R-ID R-Code Priority UserID FileID Pointer Record

7 8 15 16 20 21 23 24 39 40 55

R-Code = 208

71

Figure 25. Format of a Replace-Record Request

3.6 DBM Response Messages
The data returned to the source FEC in response

to a request will first identify the request and
then include the results of the request. The for
mat of a DBM response to preparatory and update
requests is shown in Figure 26.

. f 0 Legal Request
1 Error Indicators 1._ 1 Illegal Request

, i"""5""c,_--,...., R---I-D-..,.1 E...:-,1 (E 8 it is Off)

0 7 8 15 16

Figure 26. Response to Preparatory and
Update Requests

The response only acknowledges to the source that
the request has been carried out. A retrieve-by
query request may cause a DBM to return a set func
tion or a number of records or both (Figure 27).

Figure 27. Response to a Retrieve-by-Query
Request

69
If a set function is to be returned then its attri
bute number and value are first included. The
records returned may only be partial records since
only certain keywords will be extracted, corres
ponding to the fields specified in the request.
The response to a retrieve-by-query-with-pointer
request (Figure 28) will be similar to that of a
retrieve-by-query request except that record point
ers will also be a part of the response. The re
trieve-by-pointer request causes the return of only
a single record (Figure 29). The response to a
retrieve-and-connect request includes several pairs
of records (Figure 30). The first part of a pair
is a record satisfying the first query of the request,
and the second part of the pair is a record satis
fying the second query. The records are only par
tial records since only those fields that are
specified in the request are extracted and included.
In case a request cannot be carried out due to an
illegal structure, an error message is returned, the
format of which is shown in Figure 31. The E-bit
is turned on.

~gc- R-ID E Attribute ¥~~~e e~~~~nction :e~~rdsn ~ecord ~ointer
0 7 8 15 17 32 33 34 35

16 IE 811 is Off)

Record Pointer
n

F:tgure 28. Response to a Retrieve-by-Query-with
Pointer Request

(E Bit is Off}

0 7 8 15 17
16

Figure 29. Response to a Retrieve-by-Pointer
Request

Record Pair Record Pair Record Poir

FEC- R-ID E #of Record Record Record Record
ID Recordsn Rll R21 Rl2 R22

Record Record
R In R2n

0 78 151617 2728 CEBitisOff)

Figure 30. Response
Re uest

to a Retrieve-and-Connect

0

FEC-
10

R-ID E Error
Code

7 8 15 17 22

(E Bit is On)

16 Figure 31. Format of an error message

4. A CASE FOR PERFORMANCE
In this section we first demonstrate how an ex

isting database management system software, such as
IBM's Information Management System (IMS) (14,15,16)
can be replaced with database machines that connnuni
cate with FECs using the suggested protocol. The
entire database is assumed to be represented by a
single data model, and the DBMs are assumed to be
capable of interpreting the data management protocol
of Section 3. Whenever an FEC requires the use of
the database in a data network, it first determines
the identity of the DBM with whom it should connnuni
cate. It then uses the data management protocol to
send a request to that DBM.

We conclude this section by considering a spe
cific database machine, the DBC, which directly
supports the above protocol. Additionally, we
analyze the performance of the DBC in the data net
work.

70
4.1 The Information Management System (IMS)

IMS is the one most important example of a hier
archical database management system~ .An IMS data
base consists of a number of hierarchically re
lated segments, each of which belongs to a segment
type. An example of an IMS database is shown in
Figure 32. The segment type A has three occur
rences. It is called the root segment type
Some relationships among the various segments
in our example are:

Al is the parent of Vl and Gl.
Hl, H2, and Il are children of Gl.
El and E2 as well as F2 and F3 are twins.
IMS application programs must traverse the seg

ments of the database in order to make retrievals.
The convention of traversing is from top to bottom
(parent to child), front to back (among twins),
and left to right (among children). The database
in Figure 32 would be traversed in the order of
Al, Bl, Cl, Dl, D2, D3, El, Fl, E2, F2, F3, Gl,
Hl, H2, Il, Jl, J2, A2, A3. Notice that the tra
versal order defines a next segment with respect
to a given segment. Finally, a hierarchical path
is a sequence of segment occurrences, one per leyel.
proceeding directly from a segment at one level to
a particular segment at a lower level, For example,
Al, Gl, Il, J2 is a hierarchical path.

An IMS user processes an IMS database with

Figure 32. Schematic Representation of an IMS
Database

application programs using Data Language/l (DL/l).
A DL/l call has the following format:

FUNCTION SEARCH-LIST
where FUNCTION is one of insert (ISRT), delete
(DLET), replace (REPL), or a form of get (GET), and
where SEARCH-LIST is a sequence of segment search
arguments (SSA), possibly one per level, which are
used to select a hierarchical path. 'The basic func
tion of the SEARCH-LIST is to narrow the field of
search. It has the form

SSAl SSA2 SSAn
where each segment search argument (SSA) is of the
form

<segment-type><Boolean expression>
with Boolean expression relating values of fields
of the given segment type. The Boolean expression
need not appear, in which case we say that the SSA
is unqualified; otherwise.it is qualified.

4.2 Representing an IMS Database in the Attribute
Based Model

An FEC can represent an IMS database by viewing
every IMS segment as a record composed of keywords.
A record is as defined in the attribute-based
model of Section 3. A DBM may be unrestricted in
its way of representing data, but it is equipped
with a mechanism to interpret the data management
protocols (of Section 3) expressed in the attri
bute-based model. Thus, an FECs view of a data
base can be supported by a DBM.

Address-dependent pointers are totally dis
carded from records of the attribute-based model
(or simply, records) and enough information is
stored in the form of keywords to show the re
lationship among various segments. An IMS seg
ment includes a sequence field whenever it is
necessary to indicate the ordering among twin
segments. Since each segment becomes a record and
no address-dependent pointers are included, we
assign a symbolic identifier to each segment,
identifying it uniquely from all other segments
in the database. The symbolic identifier of a
segment S is a group of fields consisting of
(1) the symbolic identifier of the parent of s, and
(2) the sequence field of S, The only ambiguity
that may occur is when the sequence fields of
different types of segments have the same field
name. This can easily be resolved by qualifying
the field name with the segment type.

The creation of a record from an IMS segment
is done by forming keywords as follows (17):

(1) For each field in the segment, form a key
word using the field name as the attribute
and the field value as the value.

(2) Form a keyword of the form <TYPE, segtype>
where TYPE is a literal and segtype is the
type of the segment in consideration.

(3) For each sequence field in the symbolic
identifier of the segment, form a keyword
using the field name as the attribute and
the field value as the value.

For example, for the logical data structure of an
IMS database shown in Figure 33, the attribute
templates of the five types of records corres
ponding to the five segment types are shown in
Figure 34. Qualified field names such as
PREREQ.COURSE# are used to resolve ambiguity
among field names.

The pattern of access of the records should
determine the clustering policy, Clustering is
desirable because the secondary storage blocks

Course

*course# Title Description

Prereq Offering
*course# Title *Date Format

TEACH ER .,,s ... T..,u_D_E;;.;N~T.i.... __ _

*EMP# Nome *EMP# Nome Grode

Sequence Field is Marked with*
Figure 33. The Logical Data Structure of an IMS

Database

Type= Prereq

~=
Prereq Course#=

Title=

Type= Teacher

~=
Date=

Teacher Emp# =

Name

Type Course
Course#=
Tit le=
Oescr1 pt ion=

Type= Offering

~=
Date=

Location=
Format=

Type= Student
Course#=

Dale=

Student Emp#=

Name=

Grade=

Symbolic lndent1f1er 1s Underlined

Figure 34. The Attribute Templates of DBC
Records for the Segments of
Figure 33

are individually content-addressable. Since the
traversal of an IMS database is usually along a
hierarchical path, the clustering policy is to first
cluster the records which represent all the IMS
root segments and then cluster the records which
represent all dependent segments.

4.3 Translation of DL/l Calls into Data Management
Protocols

The FECs interface with the users by executing
their application_programs that use DL/l calls.
These calls are first translated into DBM requests
using the suggested protocol, and sent to the
appropriate DBM via the communication lines, For
each user, an FEC maintains a user area called the
interface system buffer (ISB) since this area pro
vides the interface between the user and the data
base. The information obtained in the course of
executing a DL/l call is maintained in the ISB and
consists of records which are retrieved from the
database in the execution of the DL/l call.

We shall briefly illustrate the translation
of a get-unique (GU) call. Consider the IMS data
base of Figure 33 to which the following call is
addressed:

GU COURSE (TITLE='MATH')
OFFERING (LOCATION ='STOCKHOLM')
STUDENT (GRADE='A')

This DL/l call is intended to determine the first
student in the database (along the hierarchical
path) who has obtained an A-grade in the Math
course offered at Stockholm,

Now we shall illustrate how the content of the
ISB is established during the execution of the
above GU call.

(1) Starting with the first SSA in the call,
i.e., COURSE (TITLE='MATH'), the COURSE
segments which satisfy the qualification
TITLE='MATH' are retrieved from the DBM and
put into the ISB. These segments are re
trieved by a retrieve-by-query request with
the query being (TYPE=COURSE A TITLE='MATH').
The segments are sorted by the DBM according
to the values of their sequence fields,

71
(2) The first COURSE segment in the ISB is taken

as the current COURSE segment.
(3) The OFFERING segments, children of the cur

rent COURSE segment, are then retrieved with
the qualification (LOCATION ='STOCKHOLM') and
stored in the ISB in the order defined by
their sequence field. If the symbolic
identifier of the current COURSE segment
were (COURSE#=M5), then the query created for
this retrieval would be (TYPE =OFFERING A
COURSE#=MS A LOCATION='STOCKHOLM').

(4) If no segment can be retrieved in step 3,
then the next COURSE segment in the ISB is
established as the current COURSE segment
and step 3 is repeated.

(5) Supposing some OFFERING segments are retrieved
and stored in the ISB, the first OFFERING
segment in the ISB is taken as the current
OFFERING segment.

(6) A process similar to step 3 and step 4 is
performed to retrieve the first segment with
qualification (GRADE='A')

(7) The first of the retrieved STUDENT segments
is sent to the user.

In creating the IMS database it is necessary
to execute the following data management requests:
open-database-file-for-creation, load-attribute
information, load-security-descriptor, load-creation
capability-list and load-record. Before and after
the files are accessed the open-database-file-for
access and close-database-file requests are used.
The execution of the GET calls require the use of
retrieve-by-query and retrieve-by-query-with-pointer
requests. The ISRT call requires the use of insert
record request, and the DLET call requires the use
of delete-by-query request. The REPL call can use
either the replace-record request or a sequence of
three requests retrieve-by-query, delete-by-query,
and insert-record. Although the retreive-and
connect request Rnd the set functions are not re
quired in s~pporting hierarchical databases, they
can fruitfully be employed in simulating other data
models such as relational.

We shall now provide a brief description of a
specific database machine, the DBC, and show how
hardware support of the data management protocol
greatly enhances the performance of data management
activities in a network environment.

4.4 DBC Architecture
The Database Computer (DBC) [2,3,4,5] has an

architecture that satisfies most of the require
ments of a database machine. The DBC provides for
the entire database an on-line secondary storage
known as the mass memory (MM) which is parti
tioned into blocks and each block is called a
minimal access unit (MAU), The MAUs are individ
ually content-addressable and only one MAU is ac
cessed at a time. The MM is built on modified
disk units, each cylinder being an MAU. Since a
typical disk cylinder can store up to 106 bytes,
a 1010 byte database can be accommodated in 10,000
content-addressable MAUs.

Another major component of the ~BC is a process
or called the database command and control process
or (DBCCP). When a request from an FEC is sent to
the DBC, the DBCCP decodes it, determines the MAUs
to be searched in order to satisfy the request,
issues appropriate orders to the MM and transfers
the response data back to the FEC.

72
The directory memory of the DBC is known as

the structure memory (SM) which stores an entry for
every Type-D keyword identifying the MAUs in which
records containing this keyword appear. Special
ized information is maintained for those Type-D
keywords that also serve as security or clustering
keywords. The SM, like the MM, is also content
addressable with lower capacity and higher process
ing speed. Typically, direct.ories are of the or
der of 1% to 10% of the7databage• Therefore, the
SM has a capacity of 10 to 10 bytes. The re
lationship among SM, MM, and DBCCP is depicted in
Figure 35.

Too Front-end
Computer
(eg Univac 1108)

Figure 35.

Structure Memory
8 Reloted Processors

Command and
~=~>!Control

Processor

Moss Memory
8 Related Processors

Note: See
Reference
(3)

Basic Architecture of the DBC

The processors associated with the MM have the
capability of returning a group of records (satis
fying a query) in a sorted order, say, sorted by a
given attribute. The processors can also carry out
certain set operations. In particular, they can
take a group of records and determine the minimum
(MIN), maximum (MAX), sum (SUM), and average (AVG)
of the various values of a given attribute con
sidering all the records in the group. The number
of records satisfying a query (COUNT) can be
counted by hardware. Furthermore, any specific
combination of fields of a record may be returned
(on request) to the user, rather than the record in
its entirety.

4.5 DBC Performance in a Network Environment
Hardware support of the data management protocol

greatly increases the speed of database activities.
The DBC is an example of a database machine that
interprets and executes FEC requests in a direct
manner. We , therefore, find a considerable im
provement in performance when IMS is supported on
a DBC-FEC environment rather than a regular IMS
environment (conventional computers and software).
A simple but moderately large database will be
considered as a sample database to demonstrate
this improved performance in terms of the number
of physical.block transfers required to process
user transactions.

The IMS database used in our example is shown
in Figure 36. We assume that it has 1,000 root
segments and the length of each segment is 200
bytes (including pointers, etc.). Each root seg
ment has 30 children (i.e., OFFERING segment oc
currences) of length 100 bytes each. Each OFFER
ING segment has 50 children (i.e., STUDENT segment
occurrences) of length 100 bytes each. The entire
IMS database is linearized according to its trav
ersal sequence and segments are loaded in this order

Course Length (bytes) Occurrences
Course# Title Description 200 1000

Offering

Format 100 30 (per course)

Student

EMP# Nome Grode 100 50 (per offering)

Figure 36, A Sample Database

into the blocks of the data file. For instance, the
first m segments in the sequence are stored in the
first block of the data file. The next m segment
will be stored in the second block, and so on. A
COURSE segment and all of its dependent segments
consists of 153,200 (=200 + 30 x 100 + 50 x 30 x
100) bytes. Assuming a block size of 4K bytes,
which is a favorable page size, this course infor
mation will spread across 39 (+153,200/4000) blocks.

The case studies used in the comparison of DBC
and IMS environments involve a variety of processing
situations including retr.ieval of a specific segment,
retrieval of a number of segments, sequential trav
ersal of the entire database, and addition of seg
ments to and deletion of segments from the IMS data
base. The comparison is based on the number of disk
accesses required by IMS and by the DBC.
Case 1: To retrieve a specific STUDENT segment

GU COURSE
OFFERING
STUDENT

(COURSE#=CIS211)
(DATE=730105)
(EMPl/=1684)

In the IMS environment: We will consider the best
case and the worst case. If the STUDENT segment
which satisfies the call is the first STUDENT seg
ment in the IMS database record, then the number of
disk accesses can be calculated as follows:

(1) One disk access to the index for the root
segment (assuming that the ,index is small)
to locate the block containing the root
(i.e., COURSE) segment.

(2) One disk access to retrieve the block con-
taining the root segment.

Since the required STUDENT segment is stored in the
same block as the root segment, no more database ac
cesses are required. Hence the total number of disk
accesses. is two.

If the STUDENT segment which satisfies the call
is the last STUDENT segment in the IMS database re
cord, then the number of disk accesses can be cal
culated as follows:

(1) One disk access to the index to locate the
block containing the root segment.

(2) 30 more disk accesses to traverse from the
first OFFERING segment to the last using the
twin pointers (since there are 30 OFFERING
segments and since we may assume that each of
them is located in a different block, there
will be 30 disk accesses. The justification
of assuming different blocks is as follows.
On the average, there are 50 students per of
fering, each STUDENT segment requiring 100
bytes. Thus, the average physical distance
in bytes between two adjacent OFFERING seg
ments is 5Kbytes, which is larger than a
page. We may, therefore, expect at least
one disk access per OFFERING segment).

(3) One disk access to traverse from the last
OFFERING segment to the last STUDENT segment
(since the OFFERING segment and its last
STUDENT segment are located in different
blocks).

Hence, the total Js 32 disk accesses.
In the DBC environment: The number of disk ac

cesses is calculated as follows:
(1) One disk access to retrieve the root segment.
(2) One disk access to retrieve the OFFERING

segment.
(3) One disk access to retrieve the STUDENT seg

ment.
The total is 3 disk accesses.

The remaining four are analyzed (17) in a manner
similar to Case 1. The result of the case studies
is tabulated in Figure 37,
Case 2: To retrieve a number of STUDENT segments

LOOP

GU COURSE (COURSE#=CIS211)

GN

GO

OFFERING
STUDENT
COURSE
OFFERING
STUDENT

TO LOOP

(LOCATION=LONDON)
(GRADE= I BI)
(COURSE#=CIS211)
(LOCATION= LONDON)
(GRADE= I BI)

Case 3: To sequentially traverse the entire IMS
database
GU COURSE

LOOP: GN
GO TO LOOP

Case 4: To insert a new STUDENT segment
ISRT COURSE (COURSE#=CIS211)

OFFERING (DATE=730105)
STUDENT

Case 5: To delete a COURSE segment
GHU COURSE (COURSE#=CIS211)

DLET

Environments

Case Study IMS DBC-FEC

I To retrieve a min 2 3
specific segment max 32 3

-··----- ---t-----1 ------,
2 To retrieve a min 31 2

number of segments
1 max 1 40 32
med 36 17

----.. -----1
3 To traverse I

the entire database 39000] 31000

4 To insert a min 3 I

segment ,,ma~"[33 2
me l 18 3

5 To delete a I segment 40
l

2

Note .. med"= (min+ mox)/2

Figure 37. Summary of Performance ·comparisons

In the above analysis, the number of database
accesses has been considered for performance mea
surement. It is a reliable measure since it is
anticipated that for all large databases secondary
storage will be one or more orders of magnitude
slower than primary memory. With such a measure,
the use of a DBC in a network environment consid
erably enhances database performance in handling
hierarchical databases. In a similar study, it
has been demonstrated (18) that the same data
management protocol can support database manage-

73
ment systems of the CODASYL type (12), Tt has been
shown that in supporting CODASYL databases, a per
formance improvement of at least an order of magni
tude r:m he expected when using DBCs in a network
environment in 1 fl'll of software systems running on
conventional general-purpose computers.

5. CONCLUDING REMARKS
We have proposed in this paper the use of data

networks, consisting of conventional computers and
specialized database m:.chine.s. to manage large on
line centralized and distributed databases. To this
end, we have advanced a high-level data management
protocol. The protocol is not tied to any particu
lar database machine. It, in fact, reflects a goal
that should be pursued in the hardware design of
any database machine. This was the case when a
specific database machine, the DBC, was designed
to function in a network environment. Furthermore,
the protocol is powerful enough to support a variety
of user views (data models) of the database.

In this paper, we have also studied through an
example the performance of database machines that
are capaale of interpreting the proposed protocol
by direct hardware means. The result of the per
formance study is encouraging. It points at a
fruitful pursuit for hardware and network solutions
as alternatives for better database management.

REFERENCES
[l] Su, S.Y .W. and G. J. Lipovski, "CASSM: A

Cellular System for Very Large Databases,"
Proc. International Conference on Very Large
Data Bases, Sept. 1975, pp. 456-472.

[2] Hsiao, D.K. and K. Kannan, "The Architecture
of a Database Computer-A Summary," Proc. of
the 3rd ACM Workshop on Computer Architecture
for Non-Numeric Computation, Syracuse, May
16-17' 1977.

[3] Baum, R.I., D.K. Hsiao, and K, Kannan, "The
Architecture of a Database Computer-Part I:
Concepts and Capabilities," The Ohio State
University, Tech. Rep. No. OSU-CISRC-TR-76-1,
Sept. 1976,
Hsiao, D, K. and K. Kannan, "The Archi tee ture
of a Database Computer-Part II: The Design of
Structure Memory and its Related Processors,"
The Ohio State University, Tech. Rep, No. OSU
CISRC-TR-76-2, Oct. 1976, and
Hsiao, D.K. and K. Kannan,"The Architecture
of a Database Computer-Part III: The Design
of the Mass Memory and its Related Processors,"
The Ohio State University, Tech. Rep. No. OSU
CISRC-TR-76-3, Dec. 1976.

[4] Hsiao, D.K. and S.E. Madnick, "Data Base Mach
ine Architectures in the Context of Informa
tion Technology Evaluation," Proc. of the 3rd
International Conference on Very Large Data
Bases, ACM, New York, 1977,

[5] Hsiao, D.K., K. Kannan, and D.S. Kerr, "Struc
tural Memory Designs for a Database Computer,"
Proc. National ACM Conference, ACM, New York
1977.

[6] Ozkarahan, E.A., S.A. Schuster, and K.C. Smith,
"RAP-An Associative Processor for Database
Management," Proc. National Computer Confer
ence, AFIPS, 1975, pp. 379-387 •

[7] Lin, C.S,, D.C.P. Smith, and J.M. Smith, "The
Design of a Rotating Associative Memory for
Relational Database Application," ACM Trans
actions on Database Systems, 1, 1, March,
1976, pp. 53-65.

74
[8] Rothnie, J.B. and N. Goodman, "A Study of Up

dating in a Redundant Distributed Database
Environment," Tech. Rep. No. CCA-77-01, Com
puter Corporation of America, Cambridge,
Mass., February 15, 1977.

[9] Rothnie, J.B. and N. Goodman, "An Overview
of the Preliminary Design of SDD-1: A Sys
tem for Distributed Databases," Proc. of the
2nd Berkeley Workshop on Distributed Data
Management and Computer Networks, Berkeley,
Calif., May 25-27, 1977, pp. 39-57.

[10] Crocker, S.D., J.F. Heafner, R.M. Metcalfe
and J.B. Postel, "Function-oriented Proto
cols for the ARPA Computer Network," Proc.
of the 1972 SJCC, AFIPS, 40, 1972, pp. 271-
279.

[11) Chang, E., "A Distributed Medical Data Base,
Network Software Design," Computer Networks,
1, 1, June, 1976, pp. 33-38.

[12) CODASYL Data Base Task Group Report, April,
1971, ACM, New York.

[13) Codd, E.F., "A Relational Model of Data for
Large Shared Data Banks," Comm. ACM, 13, 6,
June, 1970, pp. 377-387.

[14) IBM, Information Management System/Virtual
Storage (IMS/VS), Version 1, General Infor
mation Manual, GH 20-1260-4.

[15) IBM, Information Management System/Virtual
Storage (IMS/VS), Version 1, Application
Programming Reference Manual, SH 20-9026-4.

[16] IBM, Information Management System/Virtual
Storage (IMS/VS), Version 1, System Program
ming Reference Manual, SH 20-9027-4.

[17] Hsiao, D.K., D.S. Kerr, and F.K. Ng, "DBC
Software Requirements for Supporting Hier
archical Databases," The Ohio State Univer
sity, Tech. Rep. No. OSU-CISRC-TR-77-1,
April, 1977.

[18) Banerjee, J., D.K. Hsiao, and D.S. Kerr,
"DBC Software Requirements for Supporting
Network Database," The Ohio State Univer
sity,Tech. Rep. No. OSU-CISRC-TR-77-4, June,
1977.

PART I I

DBC's CAPABILITY IN SUPPORTING

EXISTING DATABASE MANAGEMENT APPLICATION

DATABASE TRANSFORMATION, QUERY TRANSLAT[()N AND PERFORMANCE ANALYSlS
OF A NEW DATABASE COMPUTER IN

SUPPORTING HIERARCHICAL DATABASE MANAGEMENT

JAYANTA BANERJEE AND DAVID K. HSIAO
THE OHIO STATE UNIVERSITY

FRED K. NG
BELL LABORATORIES

Database computers are special-purpose storage
and processing devices which are intended to
relieve the database management (software) systems
running on the general-purpose computers and
provide improved storage and processing capabilities
(via hardware) for the existing and new database
application. However, to support existing database
applications, two steps must be followed. First,
the existing database must be transformed into the
storage format of the new database computer. This
one-time transformation, known as database trans
formation, is required to preserve the semantics
of the database and to take advantage of the
advanced hardware features of the new computer.
Second, the database sublanguage used in the
existing application programs must be supported
in real-time by the new database computer so that
application programs may be executed in the new
environment without the need of program conversion.
Such real-time translation of sub-language calls
to the instructions of the new database computer,
known as ~ translation, must be straightforward
with minimal software support.

In this paper, we present a methodology to
carry out database transformation and query trans
lation for a prevailing type of database management,
known as hierarchical database applications. In
addition, we present an analysis of the storage
requirement of the transformed database and trans
action execution time of the translated sub-language
calls. Although the new database computer's
storage requirement is comparable to that of a
conventional implementation, the execution time of
typical transactions in the new database computer
is considerably better -- a factor of one or two
magnitudes of improvement is possible.

It is hoped that both the methodology and the
analysis can be employed not only for a comparative
performance study of hierarchical database manage
ment on conventional general-purpose computers vs.
new special-purpose devices, but also, with some
extension, for study of other types of database
management, such as CODASYL and relational, on the
new database computers.

1. MACHINE ELEMENTS
Although this paper deals with the capability

of a database computer, known as DBC [1,2], in
supporting existing hierarchical database manage
ment application, there are some basic features of
DBC which can also be found in many proposed and
experimental database machines [3]. These features
play an important role in the study of the storage

75

requirement and performance gain of the new
computer. Let us introduce them briefly.

1.1 Hardware Capabilities of DBC
For the on-line database store, DBC utilizes

modified moving-head disks., This modification
includes the capability for tracks-in-parallel
readout and content-addressability. By tracks
in-parallel readout [4] it is meant that all the
tracks (usually 20 of them) of a cylinder can be
read in one revolution, once the access mechanism
is positioned at the cylinder. Content-address
ability is achieved by local processing units
(usually 20 of them) which accept database
management instruction (say, a search-retrieve
instruction), compare the instruction parameters
(in the form of predicates) with the incoming
data streams from the tracks and output the
answer. The key concepts of the content
addressability of the database store are that
the processing is done locally at the disk .
controller and that search, retrieval and update
of records are based on predicates (a more
complete discussion is given in Section 1.2).
A simple expression of three predicates, namely,
an equality predicate, an inequality predicate,
and a less-than predicate is depicted below:

(Name= HSIAO) AND (Location'# MICHIGAN) AND (Salary <
50000)

The above expression includes the logical AND of
attribute values where values are either capital
ized or numerals, and relational operators
precede the values and follow the attributes.

More complex instruc ti·on parameters involving
both logical AND (i.e., conjunction of attri-
bute values) and logical OR (disjunction of attri
bute values) are possible.

The database store, known as the mass memory,
is of a single conjunction and multiple data
stream (SCMD) architecture. Records from the
tracks of a cylinder form separate data streams
which are content-addressed by the corresponding
processing units in a bit-by-bit serial fashion
against the same conjunction in one disk revolu
tion time. This is depicted in Figure 1.

To content-address the entire cylinder
space of the database is not only unnecessary but
also undesirable, since the disk access mechanism
moves slowly. In order to confine the content
addressing into those.few cyli~ders which may have
records satisfying the conjunction, the database
store is aided with separate components of DBC
known as the structure memory and structure memory
information processor. For an attribute value

76

!11••+!HSA10!ANDIL!Ht1 .. ptM1CH1IAN)AHls.1orr SsooooJ
fj

N-• Lf!!llTH LoutiOR OHIO S•!!!I_ SOOOO

• co11j111ctlot1 -..._,,

l111.-l.IHu1olANo!L.0Ht1011 l!ilM1cH1eAN)A110!1e11n ISsooool
e

FIGURE 1. A Single Conjunction and Multiple Data
Stream Architecture (SCMD)

(or attribute value range) the structure memory
maintains the cylinder numbers of the cylinders
whose records contain the attribute value. The
structure memory entries are termed indices.
When several attribute values are involved in a
conjunction, the indices found in the structure
memory for the conjunction must be intersected
by the structure memory information processor.
Thus, only cylinder numbers of the cylinders whose
records contain all the attribute values of the
conjunction will~ given to the database store for
content-addressing. In this way, the number of
cylinders involved in content-addressing will be
drastically reduced. The structure memory is made
of either charge-coupled devices (CCDs) or bubble
domain memories (BDMs). The structure memory, like
the mass memory, is content-addressable, but has
much smaller capacity (1% of mass memory size)
and higher speed (20 times faster block access rate).

The DBC control processor is in charge of
interfacing with the front-end host computer. Given
an instruction from the front-end, the DBC
control processor parses the instruction parameter,
determines (by activating the structure memory and
structure memory information processor) the
cylinders to be searched in order to satisfy the
parameter, issues appropriate orders to the mass
memory, and transfers response data back to the
front-end system. The control processor also
coordinates other activities of DBC, including
data clustering. An overview of these components
of DBC is illustrated in Figure 2. We note that
the application programs are still resident in a
front-end general-purpose host computer. The
operating system of the host computer is relieved
of data management tasks, since the database is
handled by the back-end DBC. Data management calls
are now directed by the operating system to the
database interface (DBI), which is a small software
package keeping account of these calls, translating
them into DBC instructions and forwarding the
instructions to DBC for execution. DBC also
performs some post processing of relevant data for
security and sequencing purposes.

1.2 Data Structures
Data is stored and manipulated in DBC as

collections of records. Each record can represent
an entity of the physical world and a number of

Front-Md GeHrol - P11rpOH
Computer Sr•••• r-----------1

••. g., 1811 5701168}

Application
ProgrHI 4 ltd- tnd Speciol-PurpoH

Cotnput" Sr1teM .------- ------,
I ·'····· DBCI I
I Structure Structur. I
I Memory Memory I
I lntorinatlon tCCD1or1110.) I
I PtottHOf I
I I
I I

t:T~--;-:--:-Ti-~Co~m~mo~M~•~~-....J I
I
I
I

.---~---.,

I
head di1kt with I
tract11-ln-porall1I I

I readout and I I con~~;)addre11Gbl- I
..._ __________ !]

FIGURE 2. An Overview of the New Database Environ
ment

records can be grouped into files on the basis of
ownership, security and proximity. A record
consists of a record body and a set of variable
length attribute values, where the attribute may
represent the type, quality or characteristic of
the value. The record body is composed of a
(possibly empty) string of characters which are
not used for content-addressing purposes by the
mass memory. For logical reasons, all the attri
butes in a record are required to be distinct. An
example of a record is shown below:

(<Type, EMP>, <Job, MGR>, <Dept, TOY>).

The record consists of three attribute values,
The value of the attribute Job~ for instance, is
MGR. Attribute values are also called keywords
which characterize records and may be used as
'keys' in content-addressing. Keywords for which
directory entries are maintained in the structure
memory are called type-D keywords.

DBC interfaces with front-end host systems by
accepting a large repertoire of high-level data
base management instructions, by delivering collec
tions of records as response sets, and by indica
ting successful or unsuccessful execution of the
instructions. Some of the instructions, called
record access commands, may be used for specifying
a-coiTection of records in the database and for
carrying out an intended operation on these records,
such as retrieval, deletion and modificatiqn.
Other instructions may be used for database load
ing, record insertion, initialization, etc.

An important feature of record access
commands is that they allow natural expressions
for specifying a record collection. A record
collection may be specified in terms of a keyword
predicate, or simply, a predicate, which is a
triple consisting of an attribute, a relational
operator (such as, =, +, >, >, <, <) and a value.
For instance, (Salary > 10000) is a predicate. A

record collection may also be specified in terms of
a conjunction of predicates, called a~~
junction. Finally, a record collection may be
specified in terms of a disjunction of query con
junctions, called a qu~.

Certain attributes of a file may be designated
by the file creator as clustering attributes.
Correspondingly, keywords having clustering attri
butes are called clustering keywords. If a query
makes use of clustering attributes, the query can
be satisfied in as few disk revolutions as there
are query conjunctions within the query.

2. A HIERARCHICAL DATABASE MANAGEMENT SYSTEM (IMS)
In order to study our approach more specifi

cally, we shall concentrate on a typical hierarchi
cal database management system, the Information
Management System (IMS) [5-8], which is perhaps
one of the most widely used. In this section, we
shall provide a very brief summary of the basic
features of IMS.

An IMS database consists of a number of
hierarchically related segment occurrences (or
simply, ~nts), each of which belongs to a
segment .!.Y.P.!:_. In the example of Figure 3, segme·~t

type A, the root segment type, has three occurrences.
All others are dependent segment types, each
having a unique parent segment type and zero or
more child segment types. Some relationships
among~various segments in our example are:

Al is the parent of Bl and Gl.
Hl, H2, Il are children of Gl.
Jl and J2 are twins.
Hl, H2, Il, Jl~are descendants or

dependents of Gl.

Successive levels are numbered such that a root
segment is at level 1. All segment occurrences
are made of one or more fields.

An IMS database is tra:Versed in the order
parent to child, front to back smong twins and left
to right among children. The traversal sequence for
the database of Figure 3 is (Al, Bl, Cl, Dl, D2,
D3, El, Fl, E2, F2, F3, Gl, Hl, H2, 11, Jl,
J2, A2, A3). Notice that the traversal sequence
defines a next segment with respect to a given
segment. /\hierarchical path is a sequence of
segments, one per level, starting at the root,
e.g., (Al, Gl, Il, J2).

An IMS user processes an IMS database with
application programs using Data Language/l (DL/l).
A DL/l call has the following format:

FUNCTION search-list

where FUNCTION is one of insert (ISRT), delete
(DLET), replace (REPL) and get (GET) calls, and
where search-list is a sequence of segment search
arguments (SSAs), at most one per level, which are
used to select a hierarchical path. Each segment
search argument is of the form

<segment-type><Boolean expression>

with Boolean expression relating values of fields
of given segment type.

After each retrieval or insertion operation,
a segment is "established" in the traversal
sequence of the IMS database. For a retrieval
operation, this segment refers to the segment just
retrieved; for an insertion operation, this segment

FIGURE 3. Schematic Representation of an IMS
Database

77

refers to the segment just inserted. Such a
segment in the traversal sequence is termed the
current position in the database. The hierarchical
path leading from the root segment to the current
position in the database consists of many segments.
Each of these segments is called the segment on
which position is established at that level.
~~-There are several forms of the get call,
each of which returns a single segment. A get
unique (GU) call retrieves a specific segment at
level n by starting at the root segment type,
finding the first segment at each level i satis
fying SSA., and finally retrieving the segment
satisfyin~ the last SSA. A ~et-next (GN) call
starts the search at the current position in the
database and proceeds along the traversal sequence
satisfying the SSAs and retrieving the segment
satisfying the last SSA. A get-next-within-parent
(GNP) call restricts the search to descendants of
a specific parent segment. Thus IMS also maintains
a parent position which is set at the last segment
that was retrieved by a GU or GN call. The parent
position remains constant for successive GNP calls.

3. DATABASE TRANSFORMATION
An existing database may be supported on DBC

by converting the database to conform to the DBC
data structure. This one-time conversion is known
as database transformation. Existing database
management applications need not be reprogrammed.
Instead, the database interface (DBI) software
residing in the front-end host computer will trans
late in real-time the data management calls into
DBC instructions. This process is known as~
translation and will be the subject of our dis
cussion in the next section.

78

An IMS database can be structured by consid
ering every IMS segment as a DBC record (or, simply,
a record) composed of keywords. Address-dependent
pointers of the segments are replaced in the
records by keywords that are not dependent on
physical location.

3.1 The Notion of Symbolic Identifier
An IMS segment includes a seqeunce field when

ever it is necessary to indicate the order among
the twin segments. Since each segment becomes a
record and no address-dependent pointers are
allowed, we assign a symbolic indentifier to each
segment, identifying it uniquely from all other
segments in the database. The symbolic identifier
of a segment S is a group of fields consisting of
(1) the symbolic identifier of the parent of S, and
(2) the sequence field of S. Since the sequence
fields of different segment types may use the
same field name, we may qualify the field name
with the segment type.

3.2 The Conversion of IMS Segments
The creation of a record from an IMS segment

can now be accomplished by forming keywords as
follows:

(1) For each field in the segment, form a
keyword using the field name as the
attribute and the field value as the
value.

(2) Form a keyword of the form <Type, SEGTYPE>
where Type is a literal and SEGTYPE is
the segment type in consideration.

(3) For each sequence field in the symbolic
identifier of the segment, form a
keyword using the field name as the
attribute and the field value as the
value.

For example, for an IMS database shown in Figure 4,
the attribute templates of the five collections of
records corresponding to the five segment types
are shown in Figure 5. Qualified field names such
as Prereq.Course# are used to distinguish the same
field names, i.e., Course/I, among different segment
types.

Course

Prereq Offering
•coune # Title •Dote

Teacher

•Emp # Name Name Grade

sequence field 11 marked with •

FIGURE 4. The Logical Data Structure of an IMS
Database

Type • Prtrwq

C~urse # •
PNreg . CourH # •
Title•

Type• Courae

£211.r..!L!. •
Tlt11 •

D11crlpn •

Type • Teacher
Course#.
~
Teacher, Emp # •
Name•

1ymbollc lndentlfler 11 underlined

Type • Offuln1
Cour11 # •
Dciie-:-
LOcii'tlon,.
Format•

Type• Student
Course#•
~
Student.Emp #•
Nome•
Grode•

FIGURE 5. The Attribute Templates of DBC Records
for the Segments of Figure 4

3.3 The Clustering of the New Database
The access pattern of the segments should be

used to determine the clustering policy in DBC.
Since the traversal of an IMS database is usually
along a hierarchical path, one clustering policy
is to first cluster the records which represent
all the IMS root segments and then cluster the
records which represent all dependent segments.
An application of this policy is illustrated in
Figure 6. An advantage of using this policy is
that if several root segments are to be accessed
collectively, a single cylinder access will
retrieve them all. Furthermore, since for a given
root segment the average size of all the segments
in a hierarchical path is usually smaller than the
size of a cylinder, it is possible to cluster all
the dependent segments of the root segment in the
same cylinder.

,..--
/
I
I

-... \
\
\

I I
I
I
I
I
I
I

I
I
I
I
I
I
I
I \ ' __________ .,,,, --------- _______ .,,,

a cluster/

FIGURE 6. An' Application of the Clustering Policy

For the clustering policy, an IMS database is
therefore created on DBC with two kinds of clusters,
one cluster containing only the converted root
segments and the other kind of cluster contain,ing
the rest of the converted segments. The only
clustering attribute for the first cluster is Type.
This assures that all the converted root segments

form a single cluster, since they all have the
same clustering keyword. If the sequence field
of the root segment is called Seq, then the only
clustering attribute for the second kind of cluster
is Seq. Thus, there are as many clusters as there
are unique sequence field values in the root seg
ments (see Figure 6 again). The clustering keywords
also constitute the only type-D keywords.

Since there is a one-to-one correspondence
between an IMS segment and its converted form,
i.e., an equivalent DBC record, we shall refer to
them in the sequel without confusion with either
terminology.

4. QUERY TRANSLATION
The database interface (DBI), residing in the

front-end host computer, translates DL/l calls
into DBC instructions and maintains a buffer, called
the interface system buffer (ISB) (or, simply,
buffer), for storing information retrieved from the
database. Unlike the IMS where DL/l is allowed to
specify only one segment at a time for retrieval and
update and to select the segment by traversing
many intermediate segments which precede it, DBC
can content-address a group of records that satisfy
a given condition and retrieve the records at the
same time. At any moment, the buffer may contain
the segments which form the hierarchical path to
the current position of t~e database.

4.1 Illustrating the DBC Execution of DL/l Calls
We shall illustrate how the information in the

buffer is maintained and used by showing the manner
in which get-unique (CU) and get-next(CN) calls are
executed by the database interface (DBI). Refer
ring back to the IMS database of Figure 3,
suppose the DL/l call to be processed is:

GU Course
Offering
Student

(Title = 'HATH')
(Location = 'STOCKHOLM')
(Grade = 'A')

This call asks for the first Student segment of the
database which satisfies the predicate Grade = 'A',
and has a parent segment Offering (with Location
'STOCKHOLM'), whose parent, in turn, is a Course
segment (with Title= 'HATH'). The call is pro
cessed by DBI and executed by DBC as follows:

(1) Starting with the first segment search
argument (SSA1) in the call, i.e., Course (Title
'HATH'), the Course segments which satisfy the
predicate Title = 'HATH' are retrieved from DBC and
placed in the buffer. These segments are retrieved
by DBC using the query formulated by DBI ((Type =
COURSE) /\ (Title = HATH)) and are sorted by DBC
according to the values of their sequence field,
i.e., by the attribute Course#.

(2) If no Course segment exists in the buffer,
then the DL/l call is unsuccessful. Otherwise,
the first Course segment in the buffer is designa
ted as the current Course segment.

(3) The Offering segments are then retrieved
with the predicate Location = 'STOCKHOLM' and
stored in the buffer, sorted by their sequence
field, i.e., by the attribute Date. If these
quence field of the current Course segment is
(Course#, C), then the DBC query used for this
retrieval is ((Type • OFFERING) /\ (Course# = C)
/\(Location= STOCKHOLM)).

(4) If no Offering segment exists in the

79

buffer, then the current Course segment is removed
from the buffer and control is transferred to Step
2. Otherwise, the first Offering segment in the
buffer is designated as the current Offering seg
ment.

(5) The Student segments are then retrieved
with the predicate Grade = 'A' and stored in the
buffer, sorted by their sequence field, i.e., by
the attribute Emp#. If the sequence field of
the current Course segment is (Course#, C) and
that of the current Offering segment is (Date, D),
then the DBC query used for this retrieval is
((Type= STUDENT) /\ (Course#= C) /\ (Date= D) /\
(Grade= A)).

(6) If no Student segment exists in the
buffer, then the current Offering segment is
removed from the buff er and control is transferred
to Step 4. Otherwise, the first Student segment
in the buff er is designated as the current Student
segment.

(7) The DL/l call is successful and the
current Student segment is returned.

The content of the buffer at the end of
execution of the DL/l call may look like the one
shown in Figure 7. It should be noted at this
point that the content of the buffer established
by the above GU call may be used to process the

X {Tht ut of Couru uomemll,
[l] m ... ~~ starting with tht current
I \

'. Count u9m1nt x, which 1othfy
/ "'-.. the prtdlcoll Title ='MATH'.

I \
\

I Y ' {The ut or Offerln9 Hgmenh 1 mm''' 0k----..._~--. starting with the currtnt Ofhrino

1 "'- ----- uoment y, which 1otllfy the

I "-., predtcate Locotlon ='STOCKHOLM'

/ "-"'- and art tht children of x.

I '· ,

m [I] m ... w.._____ .which 10,tl~fy the predicate
I Z "..... {The ut of Student ugmtnft

-------- Grode'= A and an the
1childnn of y. The current
Student HQmtnt i• z.

FIGURE 7. The Content of the Interface System
Buffer (ISB)

next DL/l call, for example, to retrieve the next
student who has an A grade in a mathematics course
offered in Stockholm. This is illustrated by the
following get-next (GN) call:

GN Course
Offering
Student

(Title= 'HATH')
(Location = 'STOCKHOLM')
(Grade = 'A')

In this case, the relevant segment may already be
present in the buffer. The current Student seg
ment is removed from the buffer and control is
transferred to Step 6 of the procedure given for
the GU call.

On the other hand, if the GN call is

GN Course
Offering
Student

(Title = 'HATH')
(Location = 'STOCKHOLM')
(Grade = 'B')

then only a portion of the buffer information may
be used, namely, the existing Course and Offering
segments only. However, it is necessary that the

next Student segment returned should not precede
the current Student segment in the traversal
sequence. Hence, if the sequence field of the
current Student segment is (Emp#, E), that of the
current Offering segment is (Date, D) and that of
the current Course segment is (Course#, C), then
the following DBC query is used for retrieval of
the next set .. of Student segments:

((Type = STUDENT) A (Course# = C) A (Date = D) A
(Emp# _:::. E) A (Grade = B))

The previously existing Student segments of the
buffer are removed, and control is transferred to
Step 6 of the procedure given for the GU call.

Finally, if the GN call is

GN Course (Title= 'HISTORY')
Offering
Student

then no currently existing segments of the buff er
are useful. Hence, new sets of segments must be
retrieved, one set for each level.

4.2 Data Structures Used for the Execution of
DL/l Calls
The information in the interface system buffer

(ISB) is managed by making use of two tables:
the ~ information table (SIT) and the hierarchy
table (HT). The two tables also maintain all
'currency' information about the database, so that
DL/l calls may be properly executed.

The status information table (SIT) has as
many entries at any moment as there are levels in
the hierarchical path from the root segment to the
current position of the database. The first entry
corresponds to the first level (i.e., root segment
level), the second entry corresponds to the second
level, and so on. Each entry in SIT consists of
four fields: Seg, Count, Addr, and Qual. The
meaning of the i-th entry of SIT is as follows:

of
HT
of

SIT.Seg(i) (coded) name of the segment type
of the i-th level of the hier
archical path (including the
current position of the data
base);

SIT.Count(i) number of segments in buffer of
the above segment type;

SIT.Addr(i) address in buffer of the first
of the above segments;

SIT.Qual(i) the segment search argument
(SSAi) corresponding to the
above segment type.

The hierarchy table (HT) has the same number
entries as there are in SIT. Each entry in
consists of two fields: F and V. The meaning
the i-th entry of HT is as follows:

HT.F(i) sequence field name of the current
position (segment) in level i.

HT.V(i) sequence field value of .the current
position (segment) in level i.

Even though the names and values of the above
sequence fields are also available in the segments
occupying the interface system buffer, it is con
venient to have them together in the form of a
single table.

4.3 Algorithms for the Execution of DL/l Calls
A QL/l call, as we have noted earlier, has

the following format:

FUNCTION

s
n

where each si is a (coded) segment-type name. All
segment types are assumed to be coded such that
the code for a segment type A is less than the
code for a segment type B, if A precedes B in the
IMS traversal sequence. Each q is a Boolean
expression of predicates, possitly null. To
demonstrate how DL/l functions are handled in DBC,
we shall provide the algorithms used for executing
the two most important functions, namely, get
unique (GU) and get-next (GN).

First, let us consider Algorithm GU, which
translates GU calls and causes DBC to execute the
equivalent instructions. In referring to Figure
8, we note that root segments satisfying q1 are
retrieved in the first step. Segments in all other

Algorithm GU

This algorithm executes the following DL/1 call:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

GU

s
n

(Retrieve root segments into buffer and update SIT, HT)
i + 1
~(((Type .. s 1) A q1), sort attribute f 1 , buffer

address a, count c)
if c'"' a then return ('failure', -)
SIT(l) (s 1 , c, a, q1)
let (f 1 , v1J be the sequence field of the segment in

adaress a
HT(!) • (f 1 , v 1)

(All segments retrieved?)
i ..,_ i + 1
if i > n then go to Step 6

(Retrieve segments at i-th level)
~(((Type .. sf) A (£ 1 = v~ "'·•••"' (£ 1_1 • v 1_1) fl

if c ;/ 0 q.£~;n s;~t t~ ~~!:u~e f 1 , uffer address a, coi.iilt c)

(Retract one level and try again)
i ..,_ i - 1
if i .. o then return ('failure', -)
(si, c, a, qi) +- SIT(i)
c +- c - 1
if c = o then go to Step 4
~(buffer address a)

(update SIT, HT)
SIT(i) + (s , c, a, qi)
let (f i, v 11 be the sequence field of the segment in

adaress a
HT(i) + (£ 1 , v1)
go to Step 2

(Operation successful)
number of entries in SIT or HT + n
current position of database + n
parent position + n
return (1 success', buffer address a)

FIGURE 8. The Algorithm GU

levels are retrieved in Step 3. The preferred
treatment accorded to the root segments is due to
the fact that they belong to a cluster different
from all other segment types. If no segment is
retrieved in some level i, then another segment
in the previous level (i-1) has to be considered.
This is done in Step 4.

In general, Algorithm GU returns (to the
application program) a status of 'failure' if no
segment is found that satisfies the GU call. If
the call is successfully executed, then the buffer
address of the required segment is returned. The
status information table (SIT) and the hierarchy
table (HT) are used in the execution of the DL/l
call.

In Algorithm GU, two procedures are used:
retrieve and reset. The retrieve procedure has
four parameters: a DBC query Q, a sort attribute
f, a buffer address and a DBC record count. The
procedure sends a search-retrieve (sr) coDllI!and to
DBC for the purpose of content-addressing all
segments (i.e., DBC records) that satisfy the
query Q. DBC is also asked to sort these segments
by attribute f before transmitting them to the data
base interface (DBI). This is accomplished by the
Security Filter Processor (see Figure 2 again).
The sorted segments are stored in the buffer.
Finally, the retrieve procedure returns the
address of the first of the sorted segments and
the count of these segments to the calling algor
ithm.

The reset procedure, given a buffer address,
removes from the buffer the segment stored in that
address, thereby releasing the space occupied by
the segment. The procedure also assigns to the
address variable the address of the segment (if any)
that is next to the removed segment. Thus, the
address variable now refers to the first of the
remaining segments (in the buffer) of the same
type.

Algorithm CN translates GN calls and causes
DBC to retrieve segments only if necessary. Most
of the time, the required segment may already be
available in the buffer, since DBC tends to retrieve
segments in bulk. Referring to Steps 1 through 3
in Figure 9, a number t is determined such that
s. and q. are the same as those of the previous
Dt/l calI, for 1 .:5.. i .:5_ t. However, st+l or qt+l
are not the same as those of the previous
call. Thus, all segments in the buffer that
correspond to level (t+l) or beyond (up to level
m, which is the number of entries in SIT or HT)
have no further use. Space occupied by those
segments (if any) are released by the procedure
clear-buffer. In case t = 0, then the entire
search-list is different from the previous one.
Other conditions are checked in Steps 5 through 9.
Steps 10 through 16 are almost identical to the
steps in Algorithm GU.

4.4 A Case of Optimization
It may be noted that in executing certain

types of transactions, a number of unnecessary
accesses may be avoided, if we further optimize
Algorithms GU and G~. Consider, for example, the
following transaction which retrieves all student
records obtaining grade A in history:

Algorithm GN

This algorithm executes the following DL/1 call:

GN

•2

s
n

81

(~~~=i~~;h n~h~s ~d (~o~e~~ s~:m::~u:p~h!~ !~~e!o!~ ~~~ha q~e~:e:t q~:!!f!c~~ion
less than the code for a segtaen t name B if A precedes B in the traversal se
quence. m is the number of entries in SIT or HT.

Step 1.

Step 2.

Step 3,

Step 4.

Step S.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Step 111,

Step 15,

Step 16,

Loop

(Find t {~ch .. t~;~.~~=l~~~~t~~n5 ~~~h~e~I~~~ef(;)i; t

bu! not for 1 "' t + 1)
t • 0

t ~ t + l
if t ... n or t > m then go to Step 3
(ft, vt) ~ !lT(t)
if st .. SIT,SEg(t) and qt = SIT.Qual(t) then go to Step 2

t ~ t - l
clear-buffer (t + 1, m)

(No buffer information is,useful?)
if t "' 0 then go to Step 10

(Perhaps the necessary segment is in the buffer? 1 ::: t,
but is t = n ~ m?)

if t = n then set i + t + 1 and go to Step 14

(Entire buffer information is useful? 1 '.'.:: t and m < n,
but is t g m?)

if t = m then set i + t + 1 and go to Step 12

(1 ~ t < m < n)
if st+l < SIT.Seg(t+l) then return (1 failure 1 , -)

if st+l ~t!~\~eg(t+l) then set i + t + 1 and go to

il+\\\m < n, st+l = SIT.Seg(t+l), qt+l rf SIT.Qual(t+l))

~ (((Type= •1) , (fl• vt) '·· ··' (f/rl = vi-~) ,
~~ic~u~~) c~ qi), sort at ribute f 1 , u fer ad ress

go to Step 13

(Retrieve root segments into buffer and update SIT, HT)
~(((Type"' s 1) f\ (f 1 > v 1) 11 q 1), sort attribute f 1 ,

buffer address a 1 count c)
if c"' o then return ('failure', -)
SIT(l) + (sl, c, a, q1)
let (f1 , v1J be the sequence field of the segment in address a
HT(l) +· (f1 , v1)

(All segments retrieved?)
i +· i + l
if 1 > n then go to Step 16

(Retrieve segments at i-th level)
~ (((Type= si) /I (f! • v 1) A •••• 11 (fi-l ..

:~a~!s: :~) ~o:~\) tribute f 1 , buffer

if c .;. o then go to Step 15

(Retract one level and try again)
i + i - 1
ii i = o then return (1failure', -)

~si'cc~ ~· q1) + SIT(i)

if c = o then go to Step 14
~ (buffer address a)

(Update SIT, HT)
SIT(i) • (s 1 , c, a, q.)
let (fi, v1J be the s~quence field of the segment in

adOress a
HT(i) + (fi' vi)
go to Step 11

(Operation successful)
number of entries in SIT or HT + n
current position of database + n
parent position + n
return ('success', buffer address a)

FIGURE 9. The Algorithm GN

GU Course (Title 'HISTORY')
Offering
Student (Grade 'A')

GN Course (Title 'HISTORY')
Offering
Student (Grade 'A')
Go to Loop

In the method previously outlined, one database
access is necessary to retrieve all root segments
satisfying Title = 'HISTORY' (assuming that the

cluster of root segments occupies a single cylinder).
Let us assume that n1 root segments are retrieved.
For each root segment, an access is made to
retrieve all its children of type Offering
(assuming that the cluster of the dependent
Offering segments of a root segment is no larger
than a cylinder). If there are n2 Offering
segments per root segment, then a total of n1 n2
accesses are required for the Student segmencs.
Thus, the total number of accesses will be (1 +
n1 + n1 n2). On the other hand, if we retrieve
all root segments satisfying Title= 'HISTORY',
and then retrieve all Student segments that are
descendants of these root segments by using DBC
queries in the form:

((Type = STUDENT) A (Course# = x) A (Grade =A)

where x is a sequence field value of a root segment,
then the total number of accesses will be only
(1 + n1). This is a large saving in accesses, due
to the fact that one or more intermediate segment
types (in this case, Offering) have no predicate
and, therefore, need not be accessed.

Thus, in case there are no expressions
associated with intermediate segment types (i.e.,
excluding the root segment type and the target
segment type), these segment types need not be
accessed. Modified versions of Algorithms GU
and GN may be written to achieve the above opti
mization.

The algorithms for the execution of all other
DL/l functions have the same underlying philosophy
as that of Algorithms GU and GN. Algorithms for
the GNP, lSRT, DLET, REPL and the various get
hold calls are, therefore, not discussed in this
paper.

5. PERFORMANCE ANALYSIS
An IMS database supported on DBC (in the

manner indicated in Sections 3 and 4) can be shown
to perform appreciably better than the same data
base supported on a conventional general-purpose
computer. The performance may be measured in terms
of the storage needed to acconunodate the database
and the time required to execute typical trans
actions. The enhancement in performance is mainly
due to the content-addressability and tracks-in
parallel read-out mechanism of the DBC database
store, i.e., the mass memory (MM). For example,
while a conventional computer may require many
database accesses to locate, via address-dependent
pointers, the segments satisfying a given DL/l
transaction, MM has the capability of content
searching the database, thereby locating the
segments and transferring them simultaneously to
the front-end computer. Other gains are possible.
Due to the very large size of the content~address
able blocks of the mass memory, the indices kept on
the structure memory (SM) are fewer than the ones
kept in the directory of a conventional system,
since the former contains only cylinder numbers and
the latter must include also track, page and record
numbers. In addition, index processing in DBC
is done at the structure memory information pro
cessor (SMIP) which does not involve the host
computer. In the conventional environment, the
indices must be brought from the secondary storage
to the main computer for processing. The concur
rency achieved in DBC, where index processing is

overlapped with database processing as depicted in
Figure 2, is difficult to realize in a conventional
environment.

In this section, we shall present an analysis
of the performance of DBC as compared to that of a
conventional computer in supporting hierarchical
(e.g., IMS) databases. We shall call the environ
ment consisting of DBC and a front-end host
computer the DBC environment. The environment
consisting of' a general-purpose computer acting
alone with a database management system will be
called the GPC environment.

Because-<;"£ the enormous number of factors
involved in the analysis of a database management
system, it is necessary to reduce the number of
parameters to a manageable few. The reduction,
however, must not distort the characteristics of
the real systems. In this study, the following
set of parameters stands for the average values
of the variables in a real system:

N total number of IMS root segments in an IMS
database;

L depth of an IMS database, i.e., the average
number of levels;

m average fanout or number of child segment
types of a segment type;

y average number of twin occurrences of a
child segment type;

p length of an address pointer in the GPC
environment;

k average length of a DBC keyword or a field
(including sequence field);

d average number of fields (including the
sequence field) in each segment.

In our analysis we shall also use the following
variables and notations:

r = ratio between the keyword length and
address pointer length, i.e., k/p;

n = number of segments satisfying certain DL/l
transactions;

Md DBC database storage requirement;

GPC database storage requirement;

Mg/Md, called the database storage ratio;

transaction execution time in DBC environ
ment;
transaction execution time in GPC environ
ment;
Tg/Td, called the transaction execution

time ratio. -----
5.1 Storage Analysis

Storage is required for the indices, the data
base definition, the buffers, the database manage
ment system software and the database store. If
we ignore all secondary indices that may be main
tained in the GPC environment, then the index
storage requirements are about the same in the two
environments. In fact, the primary index main
tained in the GPC environment has almost the same
number of entries as there are type-D keywords in
the DEC environment. There is only one type-D
keyword, namely, (Type, ROOT-SEGTYPE), for the
root segments. If there are t unique sequence
field values in the set of all root segments, then
there are only t type-D keywords for the rest of

the segments. Correspondingly, in the GPC environ
ment, there are t entries in the primary index.

The database definition is independent of the
computer on which the database management is
provided. The storage requirements for the data
base definition, in the two cases, therefore, are
identical.

In the GPC environment, there is an input/
output buff er for the storage of a few pages of
segments. In the DBC environment, on the other
hand, the interface system buffer (ISB) is used
for accommodating segments whose contents are
known and, therefore, can be used for future DL/1
calls. There should be enough buffer space in the
ISB to accommodate a set of twin segments from
each level of the database. This can occasionally
amount to a few hundred segments. However, the
main memory requirement of ISB for such a large
number of segments is compensated by the freed-up
memory due to the removal of the conventional
database management system software (e.g., IMS).

Furthermore, the main memory requirements for
the database management system software are not
difficult to estimate. It is possible to find out
the size of the software for any given IMS imple
mentation in a GPC environment. On the other
hand, the database interface (DBI), whose algor
ithms are depicted in Figures 8 and 9, is expected
to have a considerably smaller size than the
conventional IMS software.

By far the largest investment in storage is
the storage for the database. We shall, therefore,
make a relatively thorough analysis of the database
storage requirement.

A. Database Storage Requirement in DBC Environ
ment
The use of symbolic identifiers increases

the storage required to represent an IMS segment
as a DBC record. At each level of a hierarchical
data structure, the number of additional keywords
stored in a DBC record equals the number of keywords
in the symbolic identifier of the parent, i.e., zero
at the root level, one at the second level, and
(i-1) at the i-th level. A DBC record will require
some more space for each of the d fields. (We are
using the notation given in the beginning of
Section 5.) Thus, a record at the i-th level will
require ((i-l)k + dk) units of space, where k is
the average length of a keyword or field. The
total number of dependent segments at level i of a
parent segment is mi-lyi-1, where m is the average
fanout and y is the average number of twins. If
in all there are L levels and N root segments,
then the DBC database storage requirement Md
in the mass memory is shown to be:

L i-1 i-1
Md = N l: m y ((i-l)k+dk)

i=l

= Nk
L

i(my)i + Nk(d-1)
L i

i: i: (my) my i=l my i=l

= Nk
L+l L(my)L+l (my-(my)

my 2 1-my)
(1-my)

+ Nk
L+l

(d-l)my-(my)
my 1-my

Nk (1-(m)'.)L - L(my)L + (d-1) (1-(my)L)).
1-my 1-my

83

B. Database Storage Requirement in GPC Environ
ment
To estimate the database storage requirement

in the GPC environment, consider an IMS heirarchical
database implementation, called the child/twin
pointer representation. The child/twin pointer
provides minimal traversal paths to an IMS database.
Each segment has the following pointers to its
"relatives":

(1) A pointer to the first child segment of
each type. ---

(2) A pointer the last child segment of
each type. --

(3) A forward pointer the next twin.
(lf) A backward pointer to the previous twin.
(5) A pointer to the parent segment.

If there are m child segment types of this
segment, then there are (2m + 3) pointers. The
space requirement for a single segment is, there
fore, ((2m + 3)p + dk). Thus, the GPC database
storage requirement M is as follows:

g

M
g

L ' 1 . 1
N l: mi- yi- ((2m + 3)p + dk)
i=l

N L i
-(2mp + 3p + dk) ~ (my)
my i=l

L+l
= B_(2mp + 3p + dk) my-(my)

my 1-my

= ~1N (2mp + 3p + dk)(l-(my) 1)
-my

C. Database Storage Ratio
Let us first consider the ratio Md/Mg'

Md (L
k (-1- -~ + (d-1))

Mg = 2mp + 3p + dk 1-my l-(my)L

Since (my)>> 1 in most cases (i.e., the multi
plicity of fanouts and twins), we approximate the
above ratio as

Md k
~ = 2mp + 3p + dk (L + d - l)

g

Finally, we have the database ratio R which is
the inverse of the above approximatioN.

R
m

M
= __g_ = 2mp + 3p + dk

Md k(L + d - 1)

We note incidentally that, in this ratio, the
numerator is the length of a segment in GPC
environment and the denominator is the length of
a DBC record corresponding to an external (terminal
or leaf) segment. This points to the fact that
there are as many DBC records as there are IMS
segments, and that the external segments being
numerous play a more important role in storage

84

estimation than the internal segments.
Substituting r for the ratio k/p, we may

relate the database storage ratio to the ratio
between the storage requirements for keywords and
their replacement, i.e., the pointers.

R m
2m + 3 + dr
r(L + d - 1)

In Figure 10, we have tabulated the values of R for
typical values of L, m, r and d. Most IMS data~ases
have few levels, hence L is varied from 2 to 6.

I 1.50
2 1.83

2.17
2.r.o

5 2.!l!I

1.30
1.50
1.70
1,90
2.10

16
1,17 1.09
1.28 1.15
1.39 1.21

32 2
i,o:; t.os
l.08 1.25
1.11 1.42

t.:;o l.2fi 1.H 1,:Jtt
1.f;j 1.32 1.17 1.1;;

1.05
1.1:;
1.25
1.3!">
I. 1.·,

1.03
l. OM
l.H
1.19
1.25

1.01
1.0-1
1.07
1.10
1.13

32
1.01
1. o~
I.04
1.05
1,07

2 " 8 16 32

:::: --::;;-:::: --:-::: ~
1.04 l.03 1.01 1,01 1.00
1.13 1.0!! 1.0-1 l,02 l.Ol
1,21 1.13 1.07 1,04 1.02

lfi 32 8 16 32 l H 16 :l2

I 1.13 I.Oii l.05 1.03 1.01 0.Ml
2 l.3R 1.2!; I.It, l.CIB 1,01 0,91

J.1:3 1.42 1,2:; 1,14 1,07 I.~

l.!IN l.M 1.35 1,19 1,10 1,19
2, l:l l. 7.'.i I. 4~> 1. 2!"1 I. 13 I. 31

0,IHI 0.92 0.9fi 0.9M 0,fiH
0.9fi 0.98 0.99 0.99 0.72
l.04 1,03 1.01 1,01 0,78
1.13 1,0!1 1.04 1.02 0.10
1.21 1.13 1,0; 1.0-1 0,91

0. 77 0. ~fi o. 92 0.96
O,tH 0,H9 0.94 0.97
0,Hr; 0.91 0,93 0,97
0,90 0.94 0,97 0.9M
0.9-1 0,9h 0,98 0.99

I 0.!10 O.!l:l
2 I. J(I 1.07

1.:m 1.21

0.11;, 0.97 0.!19 O,K• 0.'15 0.Hl
0."2 0,H!I
0. >!9 0. !1:1

l. o~, I. O!I 1. 10 O. i:i

J.11 J.08 I.Ill O,M;1
l,:iU I,~, 1.23 1.13 1.07 0.9;; U, !II• 0. !IH

;, 1.70 1."•0 t.:l:! 1.IH 1.IO l.O!', I.OJ 1.0:!

1 0.7!"> 0.81
2 o.92 0.1H

l.os 1.m;
1.2;, 1.19

:. 1.42 t.:n

o.aa
0.91i
1.04
1.13
l.21

r=2

I O.fi1 0.72 0.81
0. 79 o.o3 O.IH!
0.93 0,94 O.!lh
1.07 i.01; 1.04

!i 1.21 l.17 1.12

Hi 32
o.92 o.9ti o .. H o.s6 o.n
0.98 0.99 0.fi3 0.72 0.Hl
1. 03 l. 01 0. 71 0. 71:1 o. ~•i
1. OH 1. Ol O. 79 0. >;J 0. 90
1.13 I. 07 0. ~b 0. 91 0.94

lb 32 >j

o. !ltl o. 93 0.16 0. 58 o. 71
0. 93 o. 96 o. ~.4 0. 1;4 o. 7.i

0.98 0.99 0,1a 0.1;9 0.79
1.02 1.01 O.t;H 0.7:; 0."3
I. 07 1. 04 o. 7:; o. ~1

lf, 32 2 l H }Ii 32
0. fll O. 9f> O.:=;f" 0. f>I, 0. 71" 0. HH 0,9.
0, 93 O. !Ui 0. ~>H 0, 70 O. >!I O. >;j) 0,!14
0.96 0,9>! O,f,3 0.73 U,H3 0.90 0.95
0,!l!I 0.9!1 O,Cj 0.77 O.'IS O.!ll O.!I"•
l.OI 1.(11 0,7!1 0,HU II.HM 0.!1:1 o.1u;

Iii 32
0,'<6 0,92 O.H
0, tl9 0, 94 0. JM
O.!H 0.95 0 .. ;2
O.!H 0,97 O •. ifi

0.96 0.91! 0.1;0

OJV' o.n- o.a3
O.fil O,H O.IU
O.fi4 0.76 O.!lli
0.67 0,78 0.H7
0.70 O.HO O.HH

32
0.9
0.91
0.92
0.93
0.93

16 32 Iii 32
o.s2 o.9o o.3b o.;;1 o.u o.w o.q
O.t1~1 0.91 O.U 0_.i4 0.lill 0.80 0.89
0. H7 0.93 0. ~.) 0. ,){ (), 70 0. H2 0.90
0.0 0.94 o.~ O.bO 0.72 O.tl3 o.~

0.92 0.95 0,:;2 0.74 O.H4 0.91

H = Gl'C database storage requirement
m DOC databaS(' storage requlrvmt'nl

FIGURE 10. Database Storage Ratio (Rm)

The fanout m is varied from 1 to 5, the number d of
fields per segment is varied from 2 to 32 in
multiples of 2, and the ratio r of keyword (field)
length to pointer length is varied from 2 to 8 in
multiples of 2. It may be noted from Figure 10
that the storage ratio varies from 0.38 to 2.83.
The larger the number of levels, the larger is
the storage requirement in the DBC environment
while the larger the fanout, the larger is the
storage requirement in the GPC environment. In
general, however, the storage ratio is reasonably
close to 1, so that we may assume that, for a
typical database, the storage requirements in the
two environments are almost identical.

5.2 Time Analysis of Transaction Execution
DBC performance may be measured in terms of

the execution time of tyipcal database transactions.
The time analysis of transactions is. more complex.
It involves, first, the database structure and,
then, the transaction itself. We shall, therefore,
provide a reasonable, but not necessarily
exhaustive, classification of transactions and
use the parameterized logical database structures
to complete our analysis.

A. Unit of Measure
In the GPC environment, transaction execution

time consists of the processing time in CPU and
time to access the index and database storage.
Processing time in CPU is usually very small
compared to either index storage or database
storage access time, and therefore, may be ignored.
Indices may be relatively smaller than the database
and may be stored on a device (say, fixed-
head disk) that is faster than the database
store (moving-head disks). Furthermore, for most
transactions, there may be fewer accesses to the
index device than the accesses to the database.
Hence, we shall ignore the accesses to index
storage as well. This simplification can only
exaggerate the performance of the conventional
system and minimize the performance of DBC.

In the 'DBC environment, transaction execu
tion time consists of the processing time in the
front-end host computer, time for accessing the
structure memory, structure memory information
processor and mass memory, and time for sorting
the twin segments. Tpe front-end processing time
is again overlooked. Because the accesses to the
structure memory and structure memory information
processor are overlapped with the accesses to
the mass memory for different transactions and
sorting is done by the fast security filter
processor which also overlaps its operations
with those of other components, the only time of
significance is the access time to the mass
memory for the database.

The transaction execution time, in either
environment, therefore, may be measured in terms
of the number of accesses to the database. It
should be emphasized that one access to the DBC
database is sufficient to content-search an entire
disk cylinder, while one access to the GPC data
base is required to retrieve or store a single
~· However, in order to be considerably
partial to the GPC en~ironment, we have proposed
a more powerful page access in the final
analysis.

B. Physical Data Organization
In our analysis, we assume that an IMS data

base is implemented in the GPC environment with
the HIDAM (hierarchical indexed direct access
method) or HDAM (hierarchical direct access
method). They allow direct, rather than
sequential access of data, thereby offering rapid
access to any root segments. The DBC performance
can thus be compared with, perhaps, the best
possible GPC performance.

In either the HIDAM or the HDAM, the logical
adjacency of segments that are descendants of a
root segment is often reflected by physical
adjacency as well. In fact, whenever possible,
a root segment and all its descendants are stored

contiguously within a set of adjacent pages,
Updates to the database may sometimes prevent this
contiguity, thereby forcing an increased number
of database accesses to be made for some retrieval
requests. We shall, however, preclude such de
gradation of IMS.

In the DBC environment, as we may recall,
all root segments are clustered into as few
cylinders as possible. All descendant segments
of each root segment are also clustered, so that
they may occupy as few cylinders as possible.

C. Estimating Tree Breadth and Cylinder Capacity
Because of the way that segments are physi

cally stored via HIDAM or HDAM, it is very often
the case that all twin segments at the lowest
(leaf or terminal) level.may be retrieved with a
single page access (e.g., all the relevant pages
are from the same track). But the twins at higher
levels (including the root level) are generally
scattered so that one page access is required for
every twin. We shall, therefore, assume for the
sake of the GPC environment that all the twins
at the lowest level (i.e., all leaf segments having
the same parent) occupy a single page on the
average. But this implies that, depending on the
tree breadth (namely, m•y, where m is the fanout
and y is the average number of twins), the segment
size will vary, since all m•y segments occupy a
page. Accordingly, the cylinder capacity (in
terms of segments) will vary as well. By varying
the average size of a root segment and all its
descendants from a fraction of a cylinder to, at
most, a few cylinders, we can therefore estimate
various tree breadths in this study.

The average number of levels in most practical
databases is low, perhaps, two, three, or four;
hence it is reasonable to assume a depth of
three for the database. However, similar analyses
can be carried out for databases with different
depths.

If all the m•y children of a segment are to
occupy a single page, then

Si• ze = page size segment my

If all the descendant segments of a root segment,
excluding the root, are to occupy a cylinder, then

cylinder size
2 2 my +my

segment size

since there are m•y segments in level 2 and m2y2
segments in level 3. Equating the two segment
sizes and estimating a ratio of at least 50 for
cylinder size to page size, we find that the tree
breadth is 49, i.e., m•y = 49. (A disk cylinder
has a capacity of about 500,000 bytes, so the ratio
of cylinder size to page size is 50, even if the
page size is as high as 10,000 bytes.) We thus
find a way to estimate the tree breadth; in our
final results, we shall vary m•y from 20 to 320.

Given a specific value for tree breadth (m•y),
we compute the number of segments per cylinder as

cylinder capacity cylinder size
segment size

cylinder size.m = 50 my.
page size y

85

D. Classification and Analysis of Transactions
We classify transactions involving retrieval

requests into seven important categories and
analyze the times T and T required to execute
these transactions ~n the epc and DBC environments,
respectively. No secondary indices are used, but
their presence will not distort the analysis by
any appreciable amount. As is ordinarily the
case, root segments have unique sequence field
values. The retrieval requests are made for the
lowest level segments (of a three-level database),
but the analyses for higher levels are simple
extensions of the one provided.

Each transaction type is first specified in
terms of a requirement. An example of such a
transaction is then provided, using the database
of Figure 4. Finally, a general format is given
of the transaction type, and the execution time
is analyzed. In the general format, s1 , s 2, and s 3
are segment types in the first, second and third
levels respectively. q2 and q3 are qualifications
for the second and third level segments, respec
tively. q1 and qf are qualifications for root
(first level) segments, but while qf includes a
predicate involving the sequence field, q1 does
not.

Transaction Type 1
Requirement: (1)

(2)

Find a single segment satisfying
a given condition
An expression involving the
sequence field is given at root
level

Example: Find the student with employee number
50, taking a CIS 211 course in Columbus.
We note that course numbers are
sequenced.

GU Course
Offering
Student

Course/I
Location
Empl!

General Format: GU

CIS 211
COLUMBUS
50

GPC time analysis: One page access is needed to
find the address of the required root segment,
either via index (in HIDAM) or by hashing (in
HDAM). At the second level, it may be expected
that half the s 2-type segments (that are twins,
and children of the above root segment) have to
be searched before getting the one satisfying
q2 . There are y twins, hence y/2 accesses are
required, s~nce the second l~vel twins are physi
cally scattered. At the third level, once again,
y/2 twins may have to be searched before getting
the right one. But they are stored contiguously,
hence only one access is required. Thus,

Tg = 1 + f + 1.

DBC time analysis: Since there are N root segments
(clustered together) and because there are (50 my)
segments per cylinder,

N
50my

86

cylinder accesses are required to fetch the re
quired root segment by content-searching the

2 2 database. Since there are (m y + my) descendant
segments per root segment and they are clustered

m2 y2 + my .!!!X....±..1.
together, they occupy SOmy = 50

.!!!X....±..1. cylinders. Hence, 50 accesses are required to

find each of the necessary second and third level
segments. However, cylinder sizes are large,

so that these numbers may represent small frac
tions even though at least one access is always
required at each leve1. Therefore, we take the
ceiling (smallest integer greater than a given
real number) of these numbers. Thus,

T = r_!L1 + r.!!!l±!.1 + r~1 d SOmy SO , . 50

Transaction Type 2
Requirement: (1)

(2)

Find a single segment satis
fying a given condition
Any expression at the root
level does not involve the
sequence field

Example: Find the student with employee number
50, taking a mathematics course in
Columbus.

GU Course
Offering
Student

Title
Location
Empfl

General Format: GU

MATH
COLUMBUS
so

GPC time analysis: Since q1 does not involve an
indexed (or hashed) field, an average of half the
root segments must be searched before finding the
right one. y/2 accesses are needed at the second
level and one access at the third level as in
transaction type 1. Thus,

T =B.+X.+1
g 2 2

DBC time analysis: Same as in transaction type 1.

Transaction Type 3
Requirement: (1)

(2)

Find all segments satisfying
a given condition
An expression involving the
sequence field is given at
the root level

Example: Find all students who failed in some
graduate course in CIS (i.e., CIS 600
and beyond) offered in Columbus.

GU Course Course/I ~ CIS 600
Offering Location COLUMBUS
Student Grade = F

Loop GN Course Course/I > CIS 600
Offering Location COLUMBUS
Student Grade "' F

GO TO Loop

General Format:. GU sl qf

s2 q2

S3 q3

Loop GN sl qf

s2 q2

S3 q3
GO TO Loop

GPC time analysis: Assuming that the given condi
tion is satisfied by n third level segments
scattered evenly among the root segments and their
descendants, then n root segments will have to be
accessed. For each of these root segments, all y
of its children (twins) need to be searched until
one is found that satisfies the second level
qualification. All children of this second
level segment may be retrieved with one access to
the database, since these twins are contiguously
located. One of these third level twins satisfies
the given condition.

T = n(l + y + 1)
g

DBC time analysis: The necessary n root segments
are retrieved in

N
SO my

accesses. ~ so accesses are required to retreive

the second level segments that are children of
each of the root segments. Since there is one
s 2-type segment that is a child of one of the
retrieved root segments and satisfies q2 , a

~ total of n 50 accesses are required for the

n second level segments. An identical number of
accesses are also required for the third level

segments. Td = r S~yl+ n r m%1 l + n r m§-01 l
Transaction Type 4
Requirement: (1)

(2)

Find all segments satisfying
a given condition
An expression at the root level
does not involve the sequence
field

Example: Find all students who failed in some
mathematics course offered in Columbus.

GU Course
Offering
Student

Loop GN Course
Offering
Student

GO TO Loop

Title
Location
Grade

Title
Location
Grade

MATH
COLUMBUS
F

MATH
COLUMBUS
F

General Format: GU

Loop GN s1 q1

s2 q2

s3 q3
TO TO Loop

GPC time analysis: Assuming that the given condi
tion is satisfied by n third level segments evenly
scattered, the analysis is the same as the one for
transaction type 3, except that all N of the root
segments must be searched anyway, since the
qualification q1 does not involve the sequence
field.

T N + n(y + 1)
g

DBC time analysis: Same as in transaction type 3.

T =
d

N 50my + n ~ 50
+ n

my+l
50

Transaction Type 5
~equirement: (1) Find all segments satisfying a

given condition
(2)

(3)

An expression involving the
sequence field is given at the
root.level
No expression is given at any
intermediate level

Example: Find all students who failed in some
graduate course in CIS.

GU Course Course# .'.'... CIS 600
Offering
Student Grade = F

Loop GN Course Course It > CIS 600
Offering
Student Grade = F

GO TO Loop

General Format: GU sl qf

s2

s3 q3

Loop GN s qf
1

s2

s3 q3
GO TO Loop

GPC time analysis: Assuming that the given condi-
tion is satisfied by n third level segments
scattered evenly, n root segments will have to be

87

accessed. For each of these root segments, all y
of its children are retrieved. For each of these
second level segments, all y of its children are
retrieved in one access. One out of these y third
level twins satisfies the given condition.

T = n(l + y + y)
g

DBC time analysis: Since there is no expression
at the second level, no access is required for
second level segments.

Td = r5o:y l + n rm;~ll
Transaction Type 6
Requirement: (1)

(2)

(3)

Find all segments satisfying
a given condition
An expression at the root level
does not involve the sequence
field
No expression is given at any
intermediate level

Example: Find all students who failed a mathe-
matics course.

GU Course
Offering
Student

Title MATH

Grade F

Loop GN Course
Offering
Student

GO TO Loop

Title • MATH

Grade F

General Format: GU sl ql

s2

s3 q3

Loop GN sl ql

s2

s3
GO TO Loop

GPC time analysis: Assuming that the given condi
tion is satisfied by n third level segments evenly
scattered, the analysis is the same as the one
for transaction type 5, except that all N of the
root segments must be searched anyway, since the
qualification q1 does not involve the sequence
field.

T
g N + n(y + y)

DBC time analysis:

Transaction Type 7
Requirement: (1)

(2)

Same as in transaction type 5.

Find all segments satisfying a
given condition
No expression is given at any
level, except, perhaps, the
lowest level

Example: Find all students who obtained an A
grade in some course.

88

GU Course
Offering
Student Graue A

Loop GN Course
Offering
Student Grade A

GO TO Loop

General Format: GU sl

s2

s3 q3

Loop GN sl

s2

s3
GO TO Loop

GPC time analysis: All root segments, all s -
type segments and ~11 s 3-type segments are t~ be
accessed.

T = N(l + y + y)
g

DBC time analysis: All root segments are to be
accessed, and for eachroot segment, all its
descendant s 3-type segments are to be accessed.

Td = fs~y l + Nf m~~11
E. Performance Gains

The ratio Rt of transaction execution times

has been tabulated in Figure 11 for typical values
of the parameters m, y, N and n. The average
fanout m, representing the number of different
types of child segments of any given segment, has
been fixed at 2. The average number y of twins
has been varied from 10 to 160, in multiples of
2. The number of root segments has been varied
from 100 to 10,000. For transaction types 3
through 6, the number n of segments satisfying
a given condition is considered between 4 and 64.

For transaction type 1, the ratio R = T /Td
t g

is normally a small number. For smaller numbers
N of root segments, R does not appreciably vary
with y, since both T tand Td tend to increase
proportionately withgy. This is because the
time to access the root segments in DBC environ
ment is small whenever N is small. For larger
values of N, T increases proportionately with y
but Td does nBt. Hence Rt increases almost
proportionately with y.

Similar reasoning can be applied for all the
other transaction types. We shall, however, make
some more general statements about the results.
For transaction type 1, the GPC and DBC environ
ments are not very different in terms of perfor
mance, because only a single segment satisfies the
given condition and because GPC has the advantage
of using its primary index. For transaction type
2, even though only a single segment is to be
retrieved, GPC performs poorly since its primary
index cannot be of any help, but DBC performs as
well as before. Since GPC has the help of the
primary index while executing type 3 and type 5

~o

"'

' ••. oo

:1:,, 7~
H.2~

H. 3H
9.li\I

9.9t
ll.l<

3~~.oo

18J.l9
29J.09
161.33
99.M9

9,33

'" 10.r,9 in.~•

10,JO Hl.1M lO. 19
10.u

" ..
1.57),19 5.57
9.'il W:i3 10.59

10.03 10.38

" " " i42.29 139.89 77.57
279.35 151.67

55.69 33.n

'" " " 12,92 16.00 18.16
31.21

3!!.H9
39.63 39.94

45,t6

~~H. 92 25~. 33 152. 43
-~Oh. "7 lot, ~!i 1~2. 03
~U.29 IH1,fli

llti.31

FIGURE 11. Transaction Execution Time Ratio (Rt)

transactions, DBC performs only about an order of
magnitude better than GPC in such cases. DBC
works far better in the case of transaction type
5 as compared to transaction type 3, because
segments of intermediate levels need not be
accessed in the type 5 transactions. A similar
conunent applies when comparing transaction types
6 and 4. DBC performs one, two, and even three
orders of magnitude better than GPC in the
execution of type 4 and type 6 transactions. This
is because multiple segments have to be retrieved

without the aid of indices. For transactions of
type 7, almost the entire database (i.e., all
segments of a single type of each level) has to
be searched sequentially. Thus, in such a case,
the gain of DBC over GPC is proportional to the
cylinder size of DBC over the size of GPC. Over
all, DBC performance is about one or two orders
of magnitudes better than GPC performance.

F. Database Updates
So far, we have not considered the perfor

mance of DBC in carrying out database updates such
as deletion of a group of related segments from
the database or insertion of a new segment into
the database. For all updates, IMS requires the
position of a target segment to be first determined.
The deletion and insertion calls in DL/l, there
fore, have similar formats and processing require
ments as the get calls, DBC also can treat the
deletion and insertion calls in the same manner
as it treats the get calls. In general, there
fore, DBC inserts a single segment into the
database almost as quickly as it can find a
single segment. Similarly, DBC can delete a set

of segments satisfying a given condition as quickly
as it can find all such segments, using the
content-search capability. Consequently, DBC
does update operations as well as it does
retrieval operations.

6. CONCLUDING REMARKS
We have presented in this paper a methodology

for supporting hierarchical database management on
a special-purpose computer (lJBC) that can content
search one whole disk cylinder in a single disk
revolution. Address-dependent pointers are
removed from database segments and replaced by
symbolic identifiers that not only preserve all re
lationships determined by the pointers but also
facilitate content-addressing. Thus, a basically
sequential database can now be stored in DBC with
considerable more flexibility. In order to lJUlke
full use of the power of DBC, such as its data
clustering mechanism, segments are clustered in a
manner that takes advantage of the way the segments
are normally accessed. We have also shown how the
more important data sublanguage (DL/l) calls may be
handled on DBC by using a single database access to
search a set of twin segments instead of only one
such segment.

Finally, an analysis of the database storage
requirement and transaction execution time is
presented. While the storage requirement in the
new DBC environment is comparable to that in a
conventional environment, there is a very large
(one or two orders of magnitude) improvement in
transaction execution time. The classification
of transactions for this study captures a major
portion of all possible transactions, although
not exhaustive. The emphasis of this study is
that DBC in particular, and database machines in
general, can replace an existing hierarchical
database management system software and conven
tional disk storage, and support the existing
applications with very good performance.

Similar studies of DBC in supporting data
base application for relational databases can be
found in [9,10] and for CODASYL databases in [11].
These studies are aimed at assessing DBC's
capability to support multiple database applica
tions and to develop general methodologies for
database transformation and query translation.

ACKNOWLEDGEMENT
The entire work reported herein is conducted

at The Ohio State University and supported by the
Off ice of Naval Research through contract
N00014-75-C0573. Portions of this paper are
derived from a project report available either
through NTIS under AD #A039038, or from The Ohio
State University under OSU-CISRC-TR-77-1. This
report was issued in April, 1977, and co-authored
by David K. Hsiao, Douglas S. Kerr and Fred K. Ng.

REFERENCES

[l] Banerjee, J., Baum, R. I. and Hsiao, D. K.,
"Concepts and Capabilities of a Database
Computer," ACM Transactions on Database
Systems, Vol. 3, No. 4 (Dec. 1978), pp.
347-384.

89

[2] Banerjee, J., Hsiao, D. K., and Kannan, K.,
"DBC - A Database Computer for Very Large Data
bases," to appear in IEEE Transactions on Computers.

[3] Baum, R. I. and Hsiao, D. K., "Database
Computers -- A Step Toward Data Utilities,"
IEEE Transactions on Computers, Vol. C-25,
No. 12 (Dec. 1976), pp. 1254-1259.

[4] Ampex (9-track) Parallel Transfer Disk Drive
(DM-PTD9), Product Announcement, November
1977.

[5] IBM, Information Management System/Virtual
Storage (IMS/VS) Version 1, General
Information Manual, GH20-1260-4.

[6] IBM, Information Management System/Virtual
Storage (IMS/VS) Version 1, Application
Progrannning Reference Manual, SH20-9026-4.

[7] IBM, Information Management System/Virtual
Storage (IMS/VS) Version 1, System/Applica
tion Design Guide, GH20-9025-4.

[8] IBM, Information Management System/Virtual
Storage (IMS/VS) Version 1, System
Progrannning Reference Manual, SH20-9027-4.

[9] Banerjee, J. and Hsiao, D. K., "The Use of
a Database Machine for Supporting Relational
Databases," Proceedings of the Fourth
Workshop on Computer Architecture for Non
numeric Processing, Syracuse, New York,
August 1-3, 1978.

[10] Banerjee, J. and Hsiao, D. K., "Performance
Evaluation of a Database Computer in
Supporting Relational Databases," Proceedings
of the Fourth International Conference on
Very Large Data Bases, Berlin, Federal
Republic of Germany, Sept. 13-15, 1978.

[11] Banerjee, J. and Hsiao, D. K., "A Method
ology for Supporting Existing CODASYL Data
bases with New Database Machines,"
Proceedings of the ACM '78 Conference,
Washington, D. C., Dec. 4-6, 1978.

THE USE OF A DATABASE MACHINE FOR
SUPPORTING RELATIONAL DATABASES*

Jayanta Banerjee and David K. Hsiao

Department of Computer and Information Science
The Ohio State University

Columbus, Ohio 43210

Abstract

One of the goals in the design of database
machines of the future is their generality. In
addition to being capable of carrying out the com
mon database management functions with high reli
ability and performance, some of these machines are
intended to support more than one data model. A
specific database machine, known as the DBC, is in
tended to support several existing data models.
Although the DBC supports many data models, we sin
gle out the relational data model for this discus
sion. In particular, we have tried to concentrate
mainly on the subject of database representation
and query translation of System R-like database
management systems. Some estimates of the storage
requirements and performance gains are given in
this paper. However, due to limited space, the de
tailed analysis is shown elsewhere in [22].

Introduction

Advances in technology and database research
have prompted considerable attention to the design
and implementation of database machines [1,2,3,4].
With the design of a number of database machines
either completed or underway [5,6,7,8], there are
reasons to believe that the prototype construction
of database machines is indeed viable. These ma
chines will perform the basic database management
functions with improved reliability and performance
as compared to those obtained with software means.

One of the most difficult design decisions
that confronts the database machine designer is the
type of data structure which should be built into
the machines. On the one hand, the designer would
like to build into the machine a very elaborate
and complex data structure so that it is sophis
ticated enough to emulate the high level data mod
els such as the relational and CODASYL models,
making the need of software support for such models
superfluous. On the other hand, the designer would
like to build into the machine a very simple and
elegant data structure so that its straightforward
implementation can lead to a machine with high per
formance and reliability. Such dichotomy is the,
main focus of the paper.

*The work reported herein was conducted at The Ohio
State University and supported by contract N00014-
75-C-0573 from the Office of Naval Research.

91

In this p~per, we shall consider a specific
database machine known as the DBC which is capable
of supporting multiple data models [S,9,10,11,12].
However, the built-in data structure of the data
base machine is rather simple and straightforward.
We would like to show how the data models, say,
the relational data model [13,14], are supported on
this machine. We would also mention its perfor
mance and its storage requirements for relational
databases. It is estimated that the DBC storage
requirements may not result in any saving over the
conventional computer system. However, the DBC
performance may be considerably better than what is
achievable on a conventional computer system. In
the absence of a large-scale commercial relational
database management system, System R [15] has been
used for the study, The relational language used,
therefore, is SEQUEL 2 [16], which we shall refer
to simply as SEQUEL. The study of the database
machine in supporting other models such as hier
archical and CODASYL has been documented elsewhere
[17,18]. Due to the limited length of this paper,
we shall not present these findings here.

The Operating Environment -
Front-End Computer and DBC

As a special-purpose computer, the DBC is in
tended to be used as a back-end machine to a front
end conventional computer. The front-end computer
supports all application programs, the operating
system and a specialized package called the RDBI
(Relational Database Interface). The basic organ
ization of the front-end and back-end computer is
depicted in Figure 1.

A user who does not want to make use of the
database may simply interact with the operating
system of the front-end computer to execute his
program. A database user, on the other hand, calls
upon the services of the RDBI in order to access
the relational database which is stored in the DBC.
The user programs that access the database may
either be written in the stand-alone version of
SEQUEL or in a host programming language which em
beds SEQUEL as a data sublanguage. In either case,
the SEQUEL statements are identified by the oper-
a ting system (perhaps, with the aid of a precom
piler) and transmitted to the RDBI. The RDBI will
then execute the statement by sending appropriate
commands to the DBC, collecting the DBC responses
in its buffer, and sending the final results back
to the operating system.

92

r------------------------1

Application Programs

Operating System

User
(on-line
or batch) I

I
I
I
I
I
I
I
I
I

Relational Database '11ili•C•o•m•m•a•n•ds••
Interface (RDBI) r and

Responses

L------------------------~
Front-End Computer (e.g., IBM 370)

,------------------------------------,
I I
I I
I I
1 Structure Memory 1

: Processors i
' (Refer to [11]) Structure i

Memory :

I
I
I
I
I

Command and Control
Processor
(Refer to [12])

Mass Memory
Processors
(Refer to[l2] l

(charge- i
coupled I
devices) i

Mass
Memory
(modified
moving

Database head disks)

I
I

I Store
L------------------------------------

Back-End Computer (DBC)

Figure 1. The Basic Relationship of the
Front-end and Back-end Computers

The DBC stores the database in an on-line mass
memory, which is made of modified moving-head ~~
disks. The tracks of a disk cylinder can be ac
cessed and content-addressed simultaneously within
a single disk revolution. Access is limited, how
ever, to only one cylinder per drive at a time.
Since the number of content-addressable processors
is as few as the number of tracks in a given cyl
inder, the cost reduced in this organization as
compared to cost incurred in database machines that
associatively address all the cells (e.g., cylin
ders) may become the single most important factor
that makes the DBC possible for very large database
stores of the order of 1010 bytes. As content
addressable processors, they function simultan
eously to search an entire cylinder for records
that satisfy a given set of predicates.

Since the on-line mass memory is not a mono
lithic associative memory, it is important to re
strict any database search to as few cylinders as
possible. A directory of the database including
other structural information of the database (such
as security-related information) is, therefore,
maintained in a content-addressable memory called
the structure memory. The size of this memory is
about 1% of the mass memory and is about 20 times
faster. Charge-coupled devices (CCDs) are a very
cost-effective choice for constructing this memory,
as observed in (9,11].

Another major component of the DBC is a con
troller called the database command and control
processor. When a command from the RDBI is sent to
the DBC, this controller will decode it, enforce
access control by consulting the structure memory,
determine the cylinders to be searched with the aid
of the structure memory, issue appropriate orders
to the mass memory, post-process retrieved data,
and transfer the data to/from the RDBI. Although
the DBC is well documented elsewhere, this brief
outline will be sufficient for our subsequent dis
cussion.

The DBC Data Model

A database in the DBC is a collection of rec
ords. A record, in turn, is made up of an ordered
set of data items called attribute-value pairs. An
attribute-value pair is a member of the product
set AT x VA, where AT is a set of "attributes" and
VA is a set of "values". Within a record, the
attribute part of every attribute-value pair is
distinct. The attribute-value pairs that charac
terize a record (or a group of records) by distin
guishing the record (or the group) from all others
are called keywords.

A relational operator is an element of the set
{=,#,<,~,~.>}. A triple of the form <attribute,
relational operator, value> is called a keyword
predicate. A keyword <A,V> is said to satisfy a
keyword predicate <Ap,Op,Vp> if and only if A=Ap
and V Op Vp, i.e., V and Vp are related by the
operator Op. A~ is a Boolean expression of
keyword predicates in disjunctive normal form.
Thus, a query is a disjunction of query conjuncts,
which are conjunctions of keyword predicates. A
record satisfies a query if it satisfies at least
one query conjunct in the query. The set of all
records that satisfy a query is called the response
set of the query.

As an example of the types of queries that may
be recognized by the DBC, consider the following:

((DEPT=' TOY '] & [SALARY< 10000]) V
([DEPT='BOOK']&[SALARY>SOOOO]).

If the above query refers to employee records of a
department store, then it will be satisfied by
records of the employees working either in the toy
department and earning less than 10,000, or working
in the book department and making more than 50,000.

Queries are used not only to retrieve a set
of records among all the records in a database but
also to specify protection requirements and clus
tering conditions,

DBC Commands

While the DBC is provided with a repertoire

of access and preparatory commands, we shall re
strict ourselves here only to a simplified descrip
tion of the retrieve command (and some of its
various forms). This is because in this paper we
intend only to illustrate how relational query
facilities (or retrieval facilities) are handled
in a database managed by the DBC. A description of
other relational facilities (such as data control
and data manipulation facilities) and their imple
mentation on the DBC will be found in (19]. A de
tailed description of the DBC commands may be found
in (12,20].

A retrieve command has the following two sim
plified forms, where the square brackets are used
as metasymbols to indicate zero or one occurrence
of. the expression inside them:
Form 1
~RIEVE: [set-function([attribute-1]) [ONLY]]

([(UNIQUE)] attribute-list) (query)
[SORT BY attribute-2]

The command requires that the database be first
searched to find all records that satisfy the given
query. Of the response set, the values will be re
tained if their attributes appear in the attribute
list (which assumes a '*' if all values, i.e.,
entire records, are desired). In case the UNIQUE
option is specified, then all partial records are
discarded. These retrieved records are ordered by
attribute-2. The DBC can perform by hardware a
number of set functions such as AVG (which computes
the average value of the elements in a set), MAX,
MIN and SUM (which compute the maximum, minimum
and sum, respectively, of the elements•in a set).
In the retrieve command, attribute-1 refers to the
attribute-value pair of each retrieved record,
whose attribute part is the same as attribute-1.
The set function is performed on all these attri
bute-value pairs. In case the set function is
COUNT, then attribute-1 may be null, in which case
the number of retrieved records is counted. The
ONLY option is used if the response set of the com
mand is to consist of the set function alone in
stead of records. Attribute-1 and attribute-2 are
both required to appear in attribute-list.
Form 2
~RIEVE:(attribute-list-1) (query-1)

CONNECT ON (attribute-l,attribute-2)
(attribute-list-2) (query-2)

Tl1is command specifies that the set A of records
that satisfy query-1 and the set B of records that
satisfy query-2 be retrieved. The attribute-value
pairs corresponding to attributes in attribute-list
-1 are extracted from records of se't A to form a
set Al of partial records. Similarly, the attri
bute-value pairs of attribute-list-2 are extracted
from records of set B to form the set Bl. An
equality join is now made of the two sets of
records Al and Bl to create the final response set.
The connecting attributes of the join operation
are attribute-1 of set Al and attribute-2 of set
Bl. Any record of the response set has three
parts: attribute-value pairs corresponding to
attribute-list-1 (except attribute-1), attribute
value pair corresponding to attribute-1 and
attribute-value pairs corresponding to attribute
list-2 (except attribute-2). Note that it is neces
sary that attribute-1 be one of the attributes in
attribute-list-1 and attribute-2 be one of the
attributes in attribute-list-2.

93

The Relational Data Model

We shall provide here a very brief look at the
relational model and the data sublanguage SEQUEL.
Conceptually, a relation is a table in which each
column corresponds to a distinct attribute and each
row corresponds to a distinct entity or tuple.
Each tuple is distinct in the sense that no two
tuples in a relation have identical values for all
attributes. A relation or table in a relational
database exists in a normalized form, which means
that every column of the table represents a simple
attribute and is not itself another relation.
Other improvements on the normal form are described
in [21].

A comprehensive relational database management
system which includes provisions such as simple but
flexible user views, data definition, data manip
ulation and query capabilities, as well as conven
ient access support, system recovery and integrity
enforcement can be found in System R [15]. System
R provides user interface through a data sublan
guage called SEQUEL [16]. Although the complete
collection of System R facilities is available
through SEQUEL, we shall concentrate in this paper
mostly on the query capabilities, which constitute
the most basic operations of the SEQUEL language.
A discussion on how the other facilities of SEQUEL
are handled in the DBC will be found in (19].

A sample database, extracted from (16], is de
picted in Figure 2. It consists of four normalized
relations, The EMP relation describes a set of
employees, giving the employee number, name, de
partment number, job title, manager's employee
number, salary and commission for each employee,
The DEPT relation gives the department number, name
and location of each department. The USAGE re
lation describes the parts which are used by the
various departments. The SUPPLY relation describes
the supplier companies from which the various parts
may be obtained. We shall make extensive reference
to this sample database in all our J~ter examples.

Relation

EMP
DEPT
USAGE
SUPPLY

Attributes

EMPNO,NAME,DNO,JOB,MGR,SAL,COMM
DNO,DNAME,LOC
DNO,PART
SUPPLIER,PART

Figure 2. A Sample Database

We conclude this section with a short example
on the use of· the query facilities of SEQUEL. For
example, to find the names of employees in Dept.
100, one may write

SELECT NAME
FROM EMP
WHERE DNO=lOO

The SELECT clause lists the attributes to be re
turned. If the entire tuple is desired, then one
may write SELECT *· The WHERE clause may contain
any collection of predicates which compare values
of attributes of a tuple to constant values (e.g.,
DNO=lOO) or compare values of two attributes. of a
tuple with each other (e.g., SAL<COMM). The pred
icates may be connected by AND and OR, and paren
theses may be used to establish precedence. In our
later example queries, extracted from [16], we
shall demonstrate the other varieties of query

facilities in SEQUEL and how these queries are
supported by the DBC.

Representing A Relational Database

Each tuple of a relation is stored in the DBC
as a single DBC record. Not surprisingly, this
record format closely resembles the logical struc
ture of the tuple. While a tuple is normally seen
as a sequence of values, where the position of each
value identifies the underlying column, it is not
sufficient in the DBC to store the values alone for
each record. To allow for overlap among the indiv
idual domains (of the columns) and because the DBC
ignores the absolute positions of the keywords in a
record, it is necessary to store the column names
as well, within the keywords. Therefore, whenever
a tuple is to be stored in the database, the RDBI
(relational database interface) creates a DBC
record which consists of only keywords. One key-

i.iord is created, as shown below, for every column
of the relation

<column-name, value>
where the attribute part of the keyword is the name
of the column (in a coded form).

In order that the DBC may recognize a tuple
of one relation from that of another, an extra key
word, as shown below, is added to each DBC record:

<RELATION, relation-name>
where the value of the keyword is the name of the
relation to which the tuple belongs.

Thus, any t:uple of the DEPT relation of Figure
2 is represented in the DBC by means of a reocrd
with the following attribute-value pairs:

<RELATION, DEPT:>
<DNO, department-number>
<DNAME, department-name>
<LOC, department-location>

If any one of the columns does not have a corres
ponding value in some tuple, then it is not neces
sary to create (or store) an attribute-value pair
for that column. Thus, every DBC record represent
ing a DEPT tuple will have an attribute-value pair
for DNO (if this column always takes a non-null
value), but it may not have such a pair for LOG
(if the department is newly planned and is yet to
come into existence).

To improve database performance, the DBC rec
ords are primarily clustered according to the key
word with attribute RELATION. That is, all those
DBC records that correspond to the tuples of a
relation are clustered together. Secondary clus
ters are formed based on database definition, such
as clustering links and clustering images [15].

Translation of SEQUEi, Queries

Once the database is created on the DBC by
appropriate representation of the relational data
base, all the normal data management functions may
then be carried out by the DBC. Every SEQUEL
query received by the RDBI is translated into a
sequence of DBC commands, some of which may depend
on the results of previous commands within the
sequence. In each of the following examples, the
statement of a problem is first made, then a SEQUEL
statement is written to solve the problem and

finally this SEQUEL statement is translated into a
sequence of one or more DBC commands. The database
referenced is the one shown earlier in Figure 2.
Example 1: The following SEQUEL statement and DBC
command will find the names of employees in Dept.
so.

SEQUEL:
SELECT NA.."IE
FROM EMP
WHERE DNO=SO

DBC Command:
RETRIEVE: (NAME) ((RELATION='EMP')&(DNO=SO))

Example 2: To list the names of employees in de
partments 25, 47 and 53, the following statement
may be used.

SEQUEL:
SELECT NAME
FROM EMP
WHERE DNO IN (25,47,53)

DBC Command:
RETRIEVE: (NAME) (((RELATION='EMP')&(DN0=25))

v((RELATION='EMP')&(DN0=47))
v((RELATION='EMP')&(DN0=53)))

Example 3: Consider listing the names of employees
who work for departments in Evanston. This type of
transaction requires access to two different re
lations and is, therefore, expressed in SEQUEL by
means of a nested SELECT statement. The inner part
of the nesting returns the collection of DNO values
of the departments located in Evanston. The outer
part then proceeds as though it were given a set of
constants in lieu of the inner SELECT clause.

SEQUEL:
SELECT NAME
FROM EMP
WHERE DNO IN

SELECT DNO
FROM DEPT
WHERE LOC= 1 EVANSTON'

DBC Commands:
a. RETRIEVE: (DNO) ((RELATION= 1DEPT')&(LOC=

EVANSTON')), For each department number 'di'
retrieved by (a), the RDBI issues the DBC com
mand:

b. RETRIEVE:(NAME) (RELATION='EMP')&(DNO=
'di'))

Example 4: An important class of queries is exem
plified in the determination of average salary of
clerks. The built-in SEQUEL function AVG can
be used to accomplish this result. Other built-in
functions in the SEQUEL language are SUM, COUNT,
MAX and MIN.

SEQUEL:
SELECT AVG(SAL)
FROM EMP
WHERE JOB='CLERK'

DBC Command:
RETRIEVE: AVG(SAL) ONLY

(*) ((RELATION='EMP')&(JOB='CLERK 1))

Notice that the (*) in the DBC command indicates
that entire records must be retrieved before the
function AVG is performed. Of course, the same
effect could have been achieved by replacing the
(*) with (SAL), thereby avoiding the cost of
storing entire records in the DBC, The clause
ONLY ind:l.cates that only the value of the function
need be returned to the RDBI.
Example 5: The following statement determines the
count of all the different jobs held by employees

in Dept. SO.
SEQUEL:

SELECT COUNT(UNIQUE JOB)
FROM EMP
WHERE DNO=SO

DBC Connnand:
RETRIEVE: COUNT() ONLY

((UNIQUE) JOB) ((RELATION='EMP')&
(DNO=SO))

Example 6: Consider listing all the departments
and the average salary of each. This is an example
of a query in which a relation needs to be par
titioned into groups. A built-in function can then
be applied to each group.

SEQUEL:
SELECT DNO,AVG(SAL)
FROM EMP
GROUP BY DNO

DBC Commands:
a. RETRIEVE: ((UNIQUE) DNO) (RELATION='EMP')

For each department number 'di' retrieved by (a),
the RDBI issues a command:

b. RETRIEVE: AVG(SAL) ONLY
(*) ((RELATION='EMP')&(DNO='di'))

Example 7: Sometimes it may be desired to partition
a relation into groups and then to apply a pred
j_cate or a set of predicates which chooses only
some of the groups and disqualifies other. These
group-qualifying predicates are placed in a special
HAVING clause. A predicate in a HAVING clause may
compare an aggregate property (e.g., AVG(SAL)) of a
group to a constant or to another aggregate proper
ty of the same group. The followng SEQUEL state
ment may be used to list all those departments in
which the average employee salary is less than
10,000.

SEQUEL:
SELECT DNO
FROM EMP
GROUP BY DNO
HAVING AVG(SAL)<lOOOO

DBC Connnands:
a. RETRIEVE: ((UNIQUE) DNO) (RELATION='EMP')

For each department number 1 di' retrieved by (a)
the RDBI issues a command:

b. RETRIEVE: AVG(SAL) ONLY
(SAL) (RELATION='EMP')&(DNO=
'di'))

Since the DBC does not make comparisons on aggre
gate properties, the final selection of DNO based
on (AVG(SAL)<lOOOO) is done by software (i.e., by
the RDBI) in the front-end computer.
Example 8: Set comparison operators like =, +,
[IS] [NOT] IN, CONTAINS and DOES NOT CONTAIN are
allowed in a HAVING clause as illustrated by this
example, which lists the departments which have
employees with every possible job title.

SEQUEL:
SELECT DNO
FROM EMP
GROUP BY DNO
HAVING SET(JOB)=

SELECT JOB
FROM EMP

DBC Connnands:
a. RETRIEVE: ((UNIQUE) DNO) (RELATION='EMP')
b. RETRIEVE: ((UNIQUE) JOB) (RELATION='EMP')

SORT BY JOB
For every department number 'di' retrieved by (a),

issue the conunand:
c. RJ\TRTEVE: ((UNlQUE) JOB) ((REJJ\TION='EMP')&

(DN0= 1di'))
SORT BY JOB

For each department, the comparison of each of the
sets in (c) to the set in (b) is done by software
(i.e., by the RDBI).

95

Example 9: A join operation may be required to re
turn values selected from more than one relation.
The names of all employees and the locations where
they work may be listed by the query:

SEQUEL:
SELECT EMP.NAME,DEPT.LOC
FROM EMP,DEPT
WHERE EMP.DNO=DEPT.DNO

DBC Command:
RETRIEVE: (NAME,DNO) (RELATION='EMP')

CONNECT ON (DNO,DNO)
(LOC,DNO) (RELATION='DEPT')

Here, there are two attribute li.sts: (NAME,DNO}
for the first query and (LOC,DNO) for the second
query. The command is to connect (join) on the
two DNO attributes and return as response data
triples of the form (NAME,DNO,LOC), where NAME is
taken from the first attribute list, LOC is taken
from the second list, and DNO is connnon to both.
The RDBI now returns to the user only the pairs
(NAME,LOC) by deleting DNO from the triples re
turned by the DBC.
Example 10: In some circumstances, it is necessary
to join a relation with itself according to some
criterion. The relation name may then have to be
listed more than once and labeled, e.g., X and Y
may be two labels for a relation EMP. As an exam
ple, the following SEQUEL query will list the
employee's name and his manager's name for each
employee whose salary exceeds his manager's salary.

SEQUEL:
SELECT
FROM
WHERE
AND

X.NAME,Y.NAME
EMP X,EMP Y
X.MGR=Y.EMPNO
X. SAL>Y. SAL

DBC Connnands:
a. RETRIEVE: (MGR) (RELATION='EMP')

CONNECT ON (MGR,EMPNO)
(EMPNO) (RELATION='EMP')

The only difference between this command and the
command for Example 9 is that only one attribute
is returned, instead of X.NAME and Y,NAME as well.
This is because the AND clause has still got to be
considered. Notice that since a manager has at
least one employee (in general), a modified com
mand (a') would also have the same effect as (a),
yet taking less time to execute. However, (a') is
not general enough for all situations.

a'. RETRIEVE: ((UNIQUE) MGR) (RELATION='EMP')
For each manager number 'mi' returned by (a), do
the following: Send a command

b. RETRIEVE: (NAME' SAL) ((RELATION= I EMP ') &
(EMPNO= 'mi'))

and for each (nj,sk) pair returned by (b), send a
connnand

c. RETRIEVE: (NAME) ((RELATION= 1 EMP 1)&(MGR~'mi')
&(SAL>sk))

Notice that the name retrieved by (c) is an em
ployee name, and that returned by (b) is the cor
responding manager's name.

Steps (b) and (c) have been written in such a
way that for every manager, the DBC accesses all

96

his employees at the same time. These two steps
could otherwise have been written such that for
every employee, the DBC accesses all his managers
at the same time. But, of course, every employee
has a single manager. Therefore, the way we have
written the commands is better than its alternative,
since fewer number of accesses is required in the
former case. The decision is made on the basis of
the fact that there are fewer unique values of MGR
than there are of EMPNO.
Example 11: SEQUEL permits a label to be used to
qualify attribute names outside the block in which
the label is defined. The following query uses
this feature in listing the suppliers who supply
all the parts used by Dept. 50.

SEQUEL:
SELECT SUPPLIER
FROM SUPPLY X
WHERE

(SELECT PART
FROM SUPPLY
WHERE SUPPLIER=X.SUPPLIER)

CONTAINS
(SELECT PART

FROM USAGE
WHERE DN0=50)

DBC Command:
a. RETRIEVE: ((UNIQUE) SUPPLIER) (RELATION=

'SUPPLY')
b, RETRIEVE: (PART) ((RELATION= 1 USAGE 1)&(DNO=

50))
Since the block after CONTAINS has a comparison
involving a constant, it needs to be executed only
once. This is done by command (b) given above. For
each supplier 'si' retrieved by (a), a DBC command

c. RETRIEVE: (PART) ((RELATION='SUPPLY')&
(SUPPLIER='si'))

is sent, and the sets retrieved by (b) and (c) are
compared by software.

The same query could have been made in SEQUEL
by means of GROUP BY and the special function SET,
as given below:

SELECT SUPPLIER
FROM SUPPLY
GROUP BY SUPPLIER
HAVING SET(PART) CONTAINS

SELECT PART
FROM USAGE
WHERE DN0=50

The DBC commands would be the same as before.

A Brief Look at Performance

Because of the parallelism involved in the
operations performed by the DBC, it should be
intuitively clear that user transactions will run
faster on the DBC than on a conventional computer.
The speed is further enhanced by the fact that a
sequence of software operations can be replaced
completely by a single DBC command. For example,
in order to find all the records satisfying a con
junct of predicates, a conventional syste.m will
first determine (in some manner, e.g., via an in
dex) the eligible records. It will then retrieve
these records and compare each of them against
the given predicates. In the DBC, on the other
hand, not only are all the eligible records re
trieved in parallel, but it is also true that this

set of retrieved records is exactly the required
response set. The reason is simply that records
are compared against the given predicates simultan
eously with their retrieval, thereby rendering un
necessary any subsequent software refinement of the
retrieved set.

In the rest of this section we shall consider
for study the mass storage requirement, directory
storage requirement and the execution time of
queries. Rather than a complete detailed analysis,
what we provid,e here is more of a motivation for
understanding the difference in performance between
the DBC and conventional computer systems. A de
tailed analysis is presented in [19] and published
in [22].

For every tuple stored in a conventional sys
tem, the DBC stores a record in its mass memory.
While a stored tuple consists of pointers (at least
one for each link [15]) and the values for each
column of a relation, a DBC record consists of
keywords. Within a DBC record, each keyword is
made up of a coded attribute as well as a value.
In addition, there are one or two special keywords,
such as <RELATION, relation-name>, but there are no
pointers. If the average length of a value is
about double (or more) the size of a cod.ed attri
bute (which is quite normal), then .the DBC mass
storage requirement is usually no more than double
that of a conventional system, even if no links are
defined on the relation. On the other hand, if
there are many links, then the DBC storage require
ment can actually be somewhat less than that of a
conventional system.

With regard to directory storage, it must be
pointed out that in the DBC implementation of a
relational database, directories are maintained for
the relation names and for one clustering attribute
per relation. Since the DBC records are primarily
clustered by relation name, the size of each entry
in the directory for relation names will be quite
small. The clustering attribute chosen.for a re
lation is not one of the original attributes but a
totally new one. Based on the clustering images
and the clustering links, this clustering attribute
is allowed to take on as many values as the number
of cylinders required to store the entire relation.
This is because individual cylinders are content
addressable; so there is no need to keep track of
records of a relation within individual cylinders.
Furthermore, due to the large size of the cylinders
only a few of them will be used for accommodating
a relation. For every record of a relation, then,
a value is computed (based on its original attri
bute that appears in the clustering image or link)
for the clustering attribute. The record is then
stored "close" to other records of the same re
lation that have a matching value for the cluster-.
ing attribute. Sibce the possible number of values
of a clustering attribute is very small, the cor~
responding directories will also be small.

On the other hand, in a conventional system,
a multi-page index is maintained for every image
of a relation in the form of a modified B-tree [15)
Since index entries address pages which are much
smaller than cylinders in size, there will be many
more index entries per image than the value entries
for the DBC clustering attribute. It has been
estimated in our analysis [19] that even if there
is only one image per relation, directory·storage

requirement in this system (for usual relations,
say, consisting of 1,000 to 100,000 tuples, each of
size 50 to 1,000 bytes) is 10 to 100 times the
amount required by the DBC.

Query execution time is normally very much
(about 10 to 100 times) faster on the DBC. The
reasons are the following: (1) In one secondary
storage access, the DBC can content-search an en
tire cylinder instead of scanning only a single
page. Since a normal page size is close to 4,000
bytes, while a cylinder can accommodate as many as
400,000 bytes, it is not unreasonable to expect one
or two orders of magnitude increase in speed when
the DBC is used; (2) The records retrieved by the
DBC are normally the records required in the re
sponse set of the query. This compares with the
fact that in a conventional system, many of the
tuples within a retrieved page will not be immed
iately required and will, therefore, be wasted;
(3) The clustering policy used in the DBC implemen
tation, which we have not discussed in detail,
tries to optimize the search policy, without incur
ring an inordinately large storage overhead.

Concluding Remarks

In the limited space available for this paper,
it was not possible to discuss a complete DBC im
plementation of the relational data model. We ha~e
tried to describe mainly the database representation
problem and the qeury translation aspects. Details
on the record clustering problem and its relation
to the clustering links and clustering images have
not been included. The data control facilities of
System R may be implemented on the DBC in a conven
tional manner. Taking advantage of the hardware
security mechanisms of the DBC, however, an extra
degree of flexibility can be attained in solving the
security problem [19]. Finally, listed below are
the results of a performance analysis [19], which
we have broadly overviewed in our last section:

[l]

[2]

[3]

(1) For a relational database, the mass memory
of the DBC requires typically up to two
times more storage than a conventional sys
tem.

(2) The storage used within the DBC structure
memory is typically one or two orders of
magnitude less in size than that required
for storing indexes in a conventional system.

(3) The execution time required for the common
SEQUEL queries (simple one-relation or two
relation queries) is normally one or two
orders of magnitude faster when the DBC is
used.

References

Baum, R.I. and Hsiao, D.K., "Database Computers
- A Step Towards Data Utilities," IEEE Trans.
on Computers, C25, 12, Dec. 1976, pp. 1254-
1259.
Hsiao, D.K., "Data Base Computer - Why and How"
Data Base Engineering, IEEE Computer Society,
1,2, June 1977, pp. 4-7.
Lowenthal, E. I., "A Survey: The Application
of Data Base Management Computers in Di5tri
buted Systems," Proc. Third Int. Conf. on Very
Large Data Bases, ACM, New York, 1977, pp. 85

97

-92.
[4] Hsiao, D. K. and Madnick, S. E., "Database

Machine Architecture in the Context of Infor
mation Technology Evolution," Proc. Third Int.
Conf. £!1.. Very Large Data Bases, ACM, New York,
1977, pp. 63-84.

[S] Hsiao, D. K. and Kannan, K., "The Architecture
of a Database Computer - A Summary," Proc.
Third Workshop on Computer Architecture for
Non-Numerical Processing, Syracuse, New York,
May 17-18, 1977.

[6] Ozkarahan, E. A., Schuster, S. A. and Sevcik,
K. C., "Performance Evaluation of a Relational
Associative Processor," ACM Trans. on Data
base Systems, 2, 2, June----r977, pp. 175-195.

[7] Lin, C. S., Smith D. C. P. and Smith J., "The
Design of a Rotating Associative Array Memory
for a Relational Database Management Applica
tion," ACM Trans. on Database Systems, 1, 1,
March 1976,---pp:-53-65.

[8] Copeland, G. P., Lipovsky, G. J. and Su, S. Y.
W., "The Architecture of CASSM" A Cellular
System for Non-Numeric Processing," Proc.
First Annual ~ £!1.. Computer Architecture,
Dec. 1973, pp. 121-128.

[9] Hsiao, D. K., Kannan, K. and Kerr, D. S.,
"Structural Memory Designs for a Database
Computer," Proc. Nat. ACM Conf., ACM, New
York, 1977.

[10] Baum, R. I., Hsiao, D. K. and Kannan, K.,
"The Architecture of a Database Computer -
Part I: Concepts and Capabilities," The Ohio
State University, Tech. Rep. No. OSU-CISRC
TR-76-1, Sept. 1976.

[11] Hsiao, D. K. and Kannan, K., "The Architecture
of a Database Computer - Part II: The Design
of Structure Memory and Related Processors,"
The Ohio State University, Tech. Rep. No.
OSU-CISRC-TR-76-2, Oct. 1976.

[12] Hsiao, D. K. and Kannan, K., "The Architecture
of a Database Computer - Part III: The Design
of the Mass Memory and Its Related Components:'
The Ohio State University, Tech. Rep. No.
OSU-CISRC-TR-76-3, Dec. 1976.

[13] Codd, E. F., "A Relational Model of Data for
Large Shared Data Banks," Comm. of the ACM,
13, 6, June 1970, pp. 377-387.

[14) Codd, E. F., "Further Normalization of the
Data Base Relational Model," in Courant
Computer Science Symp. 6: Data Base Systems,
Prentice-Hall, Englewood Cliffs, N.J.,
May 1971, pp. 65-98.

[15] Astrahan, M. M., et al., "System R: Rela
tional Approach to Database Management," ACM
Trans. on Database Systems, 1, 2, June 1976;""
pp. 97-137.

[16] Chamberlin, D. D., et al., "SEQUEL 2: A
Unified Approach to Data Definition, Manipu
lation and Control," IBM Rep. No. RJ1798
(#26096), IBM Thomas J. Watson Research
Center, N. Y., June 1976.

[17) Hsiao, D. K., Kerr, D. S. and Ng, F. K., "DBC
Software Requirements for Supporting Hierarch
ical Databases," The Ohio State University,
Tech. Rep. No. OSU-CISRC-TR-77-1, April 1977.

[18] Banerjee, J., Hsiao, D. K. and Kerr, D. S.,
"DBC Software Requirements for Supporting
Network Databases," The Ohio State University,
Tech. Rep. No. OSU-CISRC-TR-77-4, June 1977.

98.

[19] Banerjee, J. and Hsiao, D. K., "DBC Software
Requirements for Supporting Relational Data
bases," The Ohio State University, Tech. Rep.
No. OSU-CISRC-TR-77-7, Nov. 1977.

[20] Banerjee, J., Hsiao, D. K. and Ng, F. K.,
"Data Network - A Computer Network of General
Purpose Front-End Computers and Special
Purpose Back-End Database Machines,"~
on Computer Network Protocols, Liege,
Belgium, 13-15, Feb. 1978.

[21] Date, C. J., An Introduction to Database
Systems, Second Ed., Addition-Wesley, Reading
Massachusetts, 1977.

[22] Banerjee, J, and Hsiao, D. K., "Performance
Study of a Database Machine in Supporting
Relational Databases," Accepted for publica
tion in the Proceedings of the 4th Interna
~ Conference' on Very Large Databases,
Berlin, Federal Republic of Germany, Sept.
1978.

PERFORMANCE STUDY OF A DATABASE MACHINE
IN SUPPORTING RELATIONAL DATABASES*

,Jayanta Banerjee & David K. Hsiao

Department of Computer and Information Science
The Ohio State University

Columbus, Ohio 43210 U.S.A.

ABSTRACT

Database machines are special-purpose devices
that are expected to perform the common data man
agement operations efficiently. In this paper, we
attempt to show how a relational database can be
supported on a specific database machine, known as
the database computer (DBC), with good performance.

The DBC employs modified moving-head disks for
database storage. To achieve high-volumed access
ing, the read-out mechanisms of the moving-head
disks are made into tracks-in-parallel. To provide
content-addressable search, the disk controller is
incorporated with a set of microprocessors, corres
ponding to the tracks of a cylinder. In this way,
not only can an entire cylinder of data be accessed
in one disk revolution, but relevant data which
satisfies the user request can also be found and
output in the same revolution.

To minimize the number of cylinders involved
in a database access, some structural information
about the database is maintained in a block
oriented content-addressable memory made of charge
coupled devices (CCDs). Furthermore, clustering
and security mechanisms are a part of the hardware
features provided by the DBC.

With cylinder-oriented content-addressable
database store, block-oriented content-addressable
structure memory and several functionally special
ized components, the DBC can achieve one or two
orders of magnitude of performance improvement over
the conventional computer in database management.
Also, a possible twofold increase in database
storage requirement as compared to a conventional
implementation is adequately offset by one or more
orders of magnitude reduction in storage for struc
tural information.

The purpose of this paper is to analyze these
performance issues. By using the DBC for support
ing relational databases, the size of the relation
al software is considerably reduced. Specifically,
the query optimizer of conventional systems is now
rendered unnecessary. In comparison with a con
ventional implementation of a relational system,
the DBC has been found to contribute larger per
formance gains. These gains are tabulated in the
paper. All these tend to demonstrate that the DBC
in particular and database machines in general can
indeed contribute to an appreciable improvement in
database management.

*The work herein was conducted at The Ohio State
University and supported by contract N00014-75-C-
0573 from the Office of Naval Research. ·

INTRODUCTION

Supported on a database machine, a relational
database management system can exhibit a perfor
mance that is considerably superior to that which
can be achieved on a conventional computer. In
this paper, we concentrate on an analysis of the
performance gain of such a syotem when implemented
on the database machine instead of the conventional
computer. The database machine under consideration
is called the database computer (DBC), which has
been motivated, designed and documented in [1-6].
With sufficient built-in generality, the DBC can
support a number of existing data models and data
base management systems. The study of the DBC in
supporting hierarchical, CODASYL, and relational
systems has been conducted and documented in [7],
[8], and [9], respectively. In this paper we con
cern ourselves only with the DBC's performance in
supporting the relational system. Thus, the
material presented in this paper is extracted from
[9].

In the following sections, we begin by taking
a brief look at the DBC architecture and capability.
We then proceed on to study in brief the implemen
tation of a relational database management system
on the DBC. Finally, we analyze the performance of
this implementation. For reasons of specificity,
we have chosen the relational database management
system, System R, and its data sublanguage, SEQUEL,
for our study [10], [11]. The analysis is of a
comparative nature, since we evaluate the perfor
mance of the DBC relative to the implementation of
System R. Both the database storage requirement
and directory storage requirement are separately
investigated. The analysis of query execution time
is similar in flavour to that of [10]. The overall
analysis is considerably different from the one
carried out for RAP (12], since the DBC makes use
of indices and data clustering, while RAP does not.

A BRIEF LOOK AT THE DATABASE COMPUTER

A record in the DBC consists of a set of
ordered pairs, <attribute, value>, some of which
are designated as keywords. The attribute usually
names a property whereas the value identifies a
specific instance of an attribute. A keyword
predicate is a triple of the form:

<attribute, relational operator, value>
where the relational operator is one of the set
{=, #, <, ~. ~. >}. A keyword <A, V> is said to
satisfy a keyword predicate <A , O , V > if and

p p p

100

only if A= Ap and V Op VP' i.e., V and Vp are rela
ted by the operator Op. A group of records with
similar properties may be specified by means of a
~ which is a Boolean expression of keyword
predicates in disjunctive normal form. Thus, a
query is a disjunction of conjuncts known as ~
conjuncts, which are simply conjunctions of keyword
predicates. The set of all records that satisfy a
qncry is the response set of the query. When given
a query, the DBC is capable of retrieving all
records of the database that satisfy the query,
i.e., the response set of the query.

As an example of the types of queries that may
be processed by the DBC, consider the following
user request for records:

((DEPT 'TOY'] A [SALARY< 10000]) V

([DEPT= 'BOOK'] A (SALARY> 50000]).

If the above query refers to a file of employees of
a department store, then the DBC will retrieve rec
ords of the employees working either in the toy
department and earning less than 10,000 or working
in the book depa-rtment and making more than 50,000.

Schematically, the DBC architecture consists
of two loops of memories and processors, namely,
the structure loop and the data loop as depicted
in Figure 1.

---- Information Path
- - - - -- Control Path

MM Moss
Memory

SFP Security
Filter
Processor

FES Front
End
System

Structure

Loop

I
I

I
I

I

I
I

I

SM

Fib'1trc I The 1\r(_'hih_•cturc ol DBC.

DBCCP Dato Base
Command a
Control
Processor

KXU Keyword
Tronsformot1on
Unit

SM Structure
Memory
Structue
Memory
I nformot1on
Processor
I ndeK
Translation
Unit

The structure loop is composed of four components:
the keyword transformation unit, the structure
memory, the structure memory information processor
and the index translation unit. The keyword trans
formation unit converts keywords into their inter
nal representations. The primary function of the
structure memory is to retrieve and update struc
tural information of the database. This function

must be performed at a rate collllllensurate with that
of database operations performed by the components
of the data loop. The concept of a partitioned
content-addressable memory (PCAM) consisting of a
set of processor-memory unit pairs, is used to im
plement the structure memory with the above· prop
erties. Powerful PCAM organizations are possible
using emerging technologies. To this end, three
design alternatives using three different tech
nologies were examined. They are magnetic bubble
memories and charge-coupled devices (CCDs) for the
medium capacity (107 - 108 bytes) and electron beam
addressable memories for the large capacity (109
bytes).

The structure memory information processor is
responsible for performing set intersections on
structural information retrieved by the structure
memory. The concept of PCAMs is once again uti
lized to perform rapid intersection. The index
translation unit is intended to decode the
structural information output by the structure
memory information processor.

The four components are designed to operate
concurrently. The predicates of the user request
are sent to the keyword transformation unit at
regular intervals by the database command and con
trol processor. The output of tl1e keyword trans
formation unit which consists of coded keywords
satisfying the predicates is sent to the structure
memory which retrieves index terms for the keyword
predicates and sends them to the structure memory
information processor. The resultant output is
interpreted by the index translation unit and
sent to the database command and control processor.
This organization of processors results in pipe
lining the processing functions of the structural
loop components.

The data loop consists of two components, the
mass memory and the security filter processor. The
mass memory is the repository of the database and
has a capacity of 1010 bytes. The design of the
mass memory is based on the PCAM concept, In the
mass memory, a partition of the PCAM is a cylinder
of a moving-head disk unit. The cylinder is made
content-addressable by incorporating track inf or
mation processors(one for each track of a cylinder)
for concurrent processing of the tracks .of a cyl
inder. 'Furthermore, the disk read/write mechanism
is modified to allow parallel readout of all the
tracks of a cylinder. The cost of this modifica
tion is considerably lower than that of a mono
lithic associative memory implemented with fixed
head disks, CCDs, bubble memory devices or electron
beam addressable memories. Such disks may soon be
available from the Ampex Corporation (13].

By far the most powerful operation of the mass
memory is the search and retrieve operation. The
mass memory is capable of searching for and re
trieving records which satisfy queries made up of
keyword predicates. Because the records in the
mass memory are addressable by content and carry
no conventional pointers, they need no updating as
long as the records exist in the database. This is
true even if the security specifications (known as
file sanctions) of the database change frequently.

The security filter processor provides the
type B security enforcement and sorting/merging.
The type B security enforcement mechanism is

provided for thoses users who do not take advantage
of the type A security mechanism based on the
concept of security atoms. The type A security
mechanism incurs less security overhead. However,
it needs the user's cooperation. First, the user
must understand the security atom concept; then,
the user must convey the security requirements in
terms.of security attributes of his data records.
Keywords whose attributes appear in the security
requirements are called security keywords. (A
security atom is therefore a set of records all of
which have the same set of security keywords).
On the other hand, the type B security mechanism
does not require such user cooperation. Neverthe
less, posterior checking of response data against
full file sanctions is an expensive undertaking.
The sort mechanism enables the response data to
be ordered by values of certain attributes and
the merging mechanism allows new records to be
formed from the response set. These are usually the
ways that the user application programs would like
to receive the records in the front-end computer
system.

The database command and control processor
regulates the operations of both the structure and
data loops and interfaces with the front-end
computer system. It processes all DBC commands
received from the front-end computer system,
schedules the execution of the commands on the
basis of the command type and priority, enforces
security on a selective basis, clusters records
to be stored in the DBC, and routes the response
data to the front-end computer system.

By indicating a property that is connuon to a
group of records, the user may specify the group
of records to be physically clustered in the mass
memory. Without going into the details of the
clustering process, it may suffice to say that
this property is provided by the user in the form
clustering attributes. Keywords whose attributes
are clustering attributes are called clustering
keywords. A cluster is therefore a set of records
all of which have the same set of clustering
keywords.

Each entry in the structure memory is a pair
(K, K-list) where K is a keyword and K-list is a
sequence of triples (f,c,s) where f is a cylinder
number, c a cluster identifier, and s a security
atom identifier. Thus, a structure memory entry
identifies for all the records containing the key
word, the cylinders in which they reside, the
clusters they belong to, and the security atoms
with which they classify.

CREATING A RELATIONAL DATABASE

One way to represent a relational database on
the DBC is to transform every relational tuple into
a DBC record. Let us consider a relation as a
table with a number of columns. For a tuple
(v, v, .•. , v) of a relation R (c1 , c2 , .•• , Cn)
wh~re ~ach C. i~ a column name and each v. is a
value corres~onding to column Ci' a DBC r~cord is
created with the following keywords:

<RELATION, R>
<Cl, vl>
<C2, v2>

where the first keyword has a special attribute
RELATION.

101

Clustering of tuples in System R requires the
specification of access paths, called images and
links, to be maintained on the stored relations.
An image defines an ordering of the tuples of a
relation with respect to one or more column values.
It is therefore possible to retrieve tuples of a
relation in different orders by keying on different
column values. In System R, at most one image of
a relation may have the clustering property; i.e.,
the tuples which are close to each other in the
ordering of that image are stored physically near
each other in the database. Tuples of one relation
are linked to tuples of another relation because
they have certain matching column values. Like
images, links are used to establish orders a~ong
tuples of different relations. However, a link
may also be declared to have a clustering property,
in which case, the linked tuples will be kept
close to each other.

The DBC has no use for images and links that
are not designated for clustering purposes. It
does not need to maintain either logical or
physical ordering of DBC records. Essentially,
every DBC record is content-addressable via key
words. Because of the high-volumned readout via
tracks-in-parallel and the ability of the security
filter processor to perform sort and merge of

'records, the DBC is concerned only with the number
of accesses to cylinders.

Clustering of the DBC records always starts
with a relation name. We first attempt to store
all those DBC records that belong to the same
relation in as few cylinders as possible. The
reason for clustering by relation name is simply
that all SEQUEL queries involve one or more rela
tions. Therefore, by clustering primarily by
relation name, it will always be ensured that the
DBC will satisfy any given one-relation query by
accessing no other cylinders than those required
to store the records of the relation.

Secondary clustering of records is based on
the clustering images and links. If there is a
clustering image defined on a set of column names
of a relation, then the value space of these column
names is divided into rN partitions, where N is an
estimate of the number of cylinders occupied by
the relation and r is a positive integer factor,
say, 2. Based on the values of its clustering
column names, every record is then allocated a
single number, called the cluster number, from the
range 1 through rN. A keyword is then formed for
the record as shown below:

<CLUSTER, allocated-cluster-number>

This keyword is included as part of the record and
is used at the secondary level of clustering. In
this way, records whose column values are close to
each other will be placed in the same partition,
i.e., cluster. Furthermore, it is unlikely that a

l(J2

cluster will be stored in more than one cylinder
because there are more clusters than cylinders.

In case a clustering link is defined on rela
tions, a hashing method is used for determining
the cluster number. The details of this process is
available in [9] and will not be inlcuded here due
to space limitation of this paper.

SUPPORTING A DATA SUBLANGUAGE

The DBC is a back-end machine executing
commands given by a front-end computer. User data
management requests are translated to DBC commands
by the software in the front-end computer. The
software package is termed the Relational Database
Interface (RDBI). Specifically, the RDBI intercepts
user requests written in the SEQUEL data sublanguage
[11], translates them into a series of DBC commands,
and routes the commands to the DBC. Furthermore,
the RDBI handles the response set forwarded from the
DBC and passed along to the user application
programs. The relationship of the DBC, RDBI and
user requests are depicted in Figure 2b.

A General ·Purpose Computer System

User Request -~

B >
a

cl Applications Programs

I
: I Operating System

I

t

DBMS

(a) A Conventional GPC Environment
Figure 2. The relationship of a Database Computer with its Host Computer.

The Some Genera I· Purpose Computer System
User Request -

Front-end

(b) The New DBC Environment

As an example of the translation process, we
shall consider a sample relation EMP (EMPNO, NAME,
DNO, JOB, MGR, SAL), where the parentheses enclose
the list of column names of the relation EMP. Each
employee record has an employee number, employee
name, department number, job designation, manager
name and salary. A SEQUEL request to find the
names of employees in department 100 is as follows:

SELECT
FROM
WHERE

NAME
EMP
DNO = 100

This statement is translated by the RDBI into a
single DBC command as follows:

Retrieve: (NAME)((RELATION = 'EMP') A (DNO = 100)).

The command causes the keyword with attribute NAME
to be output from every DBC record that satisfies
the predicate conjunct ((RELATION = 'EMP') A (DNO =
100)). Assuming clustering by relation EMP, the
DBC requires one access to the mass memory and com
pletes this command in one disk revolution time.

Consider again that there exists in the data
base another relation DEPT (DNO, DNAME, LOC). Each
department record consists of the department number,
department name and location. A SEQUEL request
given as follows will then list the names of
employees who work for departments in Columbus:

SELECT
FROM
WHERE

NAME
EMP
DNO IN
SELECT DNO
FROM DEPT
WHERE LOC 'COLUMBUS'

This stateme;1t is translated by the RDBI into a
series of DBC commands. A command, as follows, is
first sent to extract the department numbers from
all DBC records containing keywords <RELATION,
DEPT> and <LOC, COLUMBUS>.

RETRIEVE: (DNO)((RELATION = 'DEPT')A (LOC= 'COLUMBUS'))

For every keyword <DNO, d1> retrieved in the first
step, another command is issued, as shown below, to
retrieve the department names from all DBC records
containing keywords <RELATION, EMP> and <DNO, di>.

RETRIEVE: (NAME)((RELATION = 'EMP') A (DNO = 'di'))

If there are n departments in Columbus, then, with
clustering by department numbers, the DBC can sat
isfy the given user request in as few as (n + 1)
accesses to the mass memory. A case-by-case study
of translating SEQUEL statements to DBC commands
can be found in [9] and is not elaborated here.

PERFORMANCE ANALYSIS

We now attempt to conduct an analytical study
of the DBC performance and to compare it against
that of a conventional computer where a relational
database management system (in particular, System
R) is being supported. We shall call the environ
ment consisting of the DBC, the Relational Data
base Interface (RDBI) and the front-end computer
as the DBC environment (see Figure 2b again).
A conventional system, on the other hand, consists
of a general-purpose computer (GPC) which houses
the database management system software (System R
in this case) and executes user transactions by
reading (writing) record from (to) conventional
secondary storage devices. We shall call such an
environment a GPC environment (see Figure 2a again).
The analysis includes a study of the raw database
storage requirement, the index storage requirement,
and the execution time of simple queries.

The values assumed for the various parameters
in this analysis are usually quite realistic. For
e>4mple, the page size in a conventional system is
between lK bytes and 4K bytes. We have assumed
a page size of 4,000 bytes. A disk with 20
surfaces and 30,000 bytes/track will have a

capacity of 500,000 bytes/cylinder. We have
assumed a cylinder capacity of 500,000 bytes.
Pointers are normally about 4 bytes long. The
average length of the value parts of keywords has
been assumed to be 4 bytes. This is because most
search keys are either numerical (4-byte integers
or floating-point numbers) or they are short alpha
numberic strings, Attribute identifiers, cluster
identifiers and cylinder numbers are normally less
than 4 bytes long, sin3z 4 bytes or 32 bits can
represent as many as 2 such numbers in each
case. In general, the choice of values for the
different parameters have been so made that they
may only favour the GPC environment rather than the
DBC environment.

Raw Database Storage Requirement

The mass memory of the DBC stores the data
base records. Correspondingly, the secondary
storage of a conventional relational system
stores the tuples. Here we estimate the storage
requirements. The following definitions are used:

n

d

t

Q,

The relation cardinality (the number of
tuples in the relation);

The degree of a relation (the number of
columns);

The length of a tuple identifier, TID,
in number of bytes;

The number of links defined on a relation;
The average length in bytes of the value
of the i-th column of a relation; and

The average length in bytes of the i-th
column name of a relation.

A. In the GPC Environment - In a conventional
implementation of System R, every physical tuple
consists of an ordered list of values (of length
~v.) and a pointer (TID of length t) for every link
tlefined on the relation to which the tuple belongs.
Thus, the raw database storage requirement M , for
a given relation, is g

M = n{Iv. + t~).
g a :i.

In case, v1 = v, for every i, we have

M = n(vd + U).
g

B. In the DBC Environment - If the degree of the
relation is d, a DBC record is composed of d
attribute-value pairs where the length of an
attribute is a. and length of a value is v .• A
record also co~tains a special keyword witfi attri
bute RELATION to identify the relation to which
it belongs. In addition, if a clustering link or a
clustering image has been defined on the relation,
then another special keyword with the attribute
CLUSTER is also included in the record. Thus, the
mass storage requirement Md' for any given relation
of n records, is

where the two special keywords are numbered
(d+l)-th and (d+2)-th, respectively. The DBC
assigns a fixed-length code to each attribute.
Therefore ai = a for every i, and

Md= ndJ2vi + na(d+2).

Further, if, for every i, vi = v, we have

Md= n(v+a)(d+2).

103

We now define the ~ database storage ratio
R as the ratio of the raw database storage
r~quirements in the GPC environment to that in the
DBC environment. Therefore, if vi = v for every
i, we have

R = N /M = (vd + t~)/((v+a)(d+2)). m g d

In Figure 3, we have tabulated the mass
storage ratio R for cases where the tuple identi
fiers are of 4 ~ytes (t=4), the average length of

p' " Jo

!"'
p

fl,:!-. o,:io o.:•.:1 0, :11;
!

11 •. ·,11 a. ·10 11, .·,o 0 •. -.11

'" ';'", o. 'j(l O.lii fl.Iii

O,!HJ 0, ~:l ll,7!l

I
l,011 O , !J : I

i 1.lli

(J) \"°"'..!, t=-1, a=~.

• ':1
_;,I

o. ::·· TU.Jo l1 •. 10 o. "
o,.,n 0, ,,,, 11.: 0, Iii

0,1;:: 0.11 .• ll,lii Cl,lil-!

ll.'i:i n. Ti 0.1.-,

0.8:l 0.82

O.il!l

(lii) \'=fi, t=4, a::::2.

£ = Ttie num!x•r o(links n(a r<'!ntion
d = Ttie deg-rL•e of a rel~_>.tion

o. l:!

11,:;n

IJ,."i.'<

II.Ii/

o.;.·,

(l,'<l

Jo

0, f,;!

0,117

o. 71

0.7.-,

o. 79

O.H:l

v "'Ttic.• a\'l•rag<.' ll·ngth in bytes of tht! valut'H
t = The length of the Till in bytes

a =The avpragi.• kngth in bytt•s of attribute eixll•s

JU

0.:1:1 11.lll 11.-111 n.-1 0.:-,1;

i
o, .·,o

I
0, .·,:: o. :,1;' 0,.)7 Cl.Iii

_I
O,lij

I

0,!i/ o. r., I O,li'j O,!ii

o.-..o
I

11,71' o. ifi 0,7'.!

I
11.-.!I o. "h o. ,..,

I
rl.!l.) fl,..,:l

(ii) V"'4, t"'4, a=2.

" p ' JU
'

0
ll.JO

o. 1' o. ,;\ 11 •.• 1 11,1.1·

o.:.o P. ;,4; 11.1:0 \) • 1;: ~ (l,7ll

I 0.1.n n,1;1 n.1,7 H, li1~ 0. 7:l

0,7'.! 0.'i:l 0.7-1 n, 77

o • ..-n 0,110 0,HO

0.l;fi 0.'"'3

(iv) v=8, t-4, a"'2.

~otl!: The more is th<.· numlxT nf the.• links Cl); the hetter is raw database storage ratio for DBC.

Figure 3. Haw Database storage ratio Rm of conventional Disk Devices and DBC
:\Jass Memory.

the attribute codes is of 2 bytes (a=2) and various
v and d. Since the number of attributes in a file
is small, a length of 2 bytes for attribute code,
a., should be sufficient. The average length, v,
of the value part of an attribute-value pair is
varied in steps of 2, from 2 to 8. Since the
number, 2, of links defined on a relation is not
likely to exceed the number of attributes, d,
(unless an attribute appears in a number of links,
each connecting two relations), we may assume for
practical purposes that ~ < d. Thus, we notice
from Figure 3 that R is usually less than one~
Furthermore, since tWe number of links defined on
a relation is usually one or more, the value of
Rm is likely to be greater than 0.5. That is,

0.5 < R < 1.0 - m -

We, therefore, conclude that the raw database

104

storage requirement in a DBC environment may be
greater than (and even double of) the storage
requirement in a GPC environment.

Index Storage Requirements

Additional storage is required for the defini
tion and for the indices of the database. The
database definition consists of the characteristics
of every relation (such as relation name, degree,
attribute names and types), the names and defini
tions of links and images, and the definition of
triggers and assertions. It constitutes the
conceptual view of the database. Because the
definition is stored in the front-end computer, it
is independent of the database machine on which
the database is being created. We shall, there
fore, make no further attempt to estimate the
storage requirement for the views.

More important is the amount of storage
occupied by the indices. The size and structure
of the indices varies from one realization of the
database to another, depending on the computer which
supports the database. This is particularly true
when one computer uses conventional location
addressed secondary storage and the other employs
partitioned content-addressable memories. We
shall now analyze the index storage requirement in
the two different environments.

A. In the GPC Environment - For each image, System
R maintains a multi-page index structure in the
form of a B-tree [14]. Every value of the under
lying column names or combined column names is
represented in the index, thereby making it
possible to determine the address of every tuple
satisfying an equality predicate based on these
names and name combinations. In System R, the
tuples are not stored in the B-trees; instead, the
TIDs pointing to the tuples are stored. The B
trees in System R are defined as follows. Each
page is a node within the tree and contains an
ordered sequence of index entries. For each non
leaf node, an entry consists of a pair (sort value,
pointer). The pointer addresses another page in
the same structure which may be either a leaf
page or another non-leaf page. In either case,
the target page contains entries for sort values
less than or equal to the given one. For the
leaf nodes, an entry is a combination of sort
values along with an ascending list of TIDs for
tuples having exactly those sort values. The
leaf pages are chained in a doubly-linked list, so
that sequential access can be supported from leaf
to leaf.

To compute the storage requirement per image
we use the following nomenclature:

n the relation cardinality (the number of
tuples in the relation);

w the length of an internal pointer, in
bytes;

t the length of a TID, in bytes;
v the average length in bytes of a value

of the column name on which the image
is defined. We assume that the image
involves a single column name, since
this is the most connnon case;

s the order of the B-tree, which is the

maximum number of pointers from any node.
The order depends on page size, on
average key length v, and on the length
w of an internal pointer;

i the image cardinality (the number of
distinct sort values in the image); and

b = page size in bytes.
g

We begin by computing the expected minimum
number of leaf nodes in the B-tree, We then
compute the order s of the B-tree. Next we compute
the minimum number of non-leaf nodes, thereby
completing the storage analysis.

Since the average number of TIDs per sort
value is n/i, we may expect

(b - 2w)/ (v + (n/i) t)
g

sort values per leaf-node (see Figure 4). Hence,
the minimum number of leaves E is given by

E = fi(v+(n/i)t)/(b - 2w)l = f(iv + nt)/(b - 2w)l. . g g
k (subscrlpted) stand8 ror a sort valul', t (subs1·rlµft>d) for a TID, and p (subscripted)
for tht" add1·t•ss of a non- lt•af nndl'.

(a) ~'trudun· of a kal" .1rnll~ in 1hl' B-ln'l'. Jl1i is a lmckward pointt•r tn till' l't'l'l'l'ding
kaf i:u~P; and Pr is a ror\\:in! poinkr !1, tla· 1wxt !t·af 1.11qi;l'.

\k----: -(bg-w)

(b) titruc.·tun· nf a nnn-k•af nO(lp' in the B-trt'l'.

Figure 4, Nodes In a B-tree.

The order s of the B-tree, which is the maxi
mum number of pointer fields in each non-leaf node,
is given by

s = L(b· - w)/(v·+ w)J + 1.
g

Given the values of s and E, it is not difficult to
show that the minimum number of non-leaf nodes is

I= fE/sl + fE/s2 l + ..• + fE/sul
u u+l u .:._ E(s - l)/{s - s)

where u = flog El is the minimum level of the B-tre~
In most practi~al situations, the fan-out is large.
Therefore, even &f the depth u of the tree is small
(say, 2 or 3), s >> 1. Hence,

I - E/{s - 1).

Finally, the minimum storage requirement per
image D , is the sum of the pages for non-leaf nodes
and thegleaves:

D = (E +I) pages= E(s/(s-l))b bytes. g g

B. In the DBC Enviornment - Even though the RDBI
maintains no directorie.s corresponding to the

images and links defined on relations, some minimal
directories are, in fact, maintained in the struc
ture memory of the DBC. We will now try to esti
mate the size of such directories.

To begin with, we may recall that there are
entries for only two classes of keywords: those
with attribute RELATION and those with attribute
CLUSTER. Since these keywords are also defined
to be clustering keywords, the DBC assigns a
unique cluster number to all records having the
same two keywords <RELATION, r-name> and <CLUSTER,
c-num>. Thus, a cluster in the DBC consists of the
set of records S such that two records Rl and R2
are in S if and only if both <RELATION, r-namel>
and <CLUSTER, c-numl> are in Rl, both <RELATION,
r-name2> and <CLUSTER, c-num2> are in R2 where
r-namel = r-name2 and c-numl • c-num2.

A directory in the structure memory of the
DBC is of the form

<keyword, (indexl, index2, ••• , indexh)>

where each index, in turn, takes the form
(cylinder#, cluster#, security atom #1). We
shall not consider the security atom #. We use the
following nomenclature:

a = the length of a (coded) attribute name
in bytes;

v The average length in bytes of the value
part of the keywords with attributes
RELATION and CLUSTER; this length is
expected to be smaller than the average
length (denoted earlier also as v)
of the value parts of a relational tuple,
but we assume them to be same;

q The average length, in bytes, of a
DBC records;

bd The size of a disk cylinder, in bytes;
c The number of clusters of a relation

(usually of the order of the number of
cylinders required to store the relatiori);

m The length of a cylinder # in bytes;
k The length of a cluster # in bytes; and
j The average number of cylinders spanned by

a cluster, i.e., the average number of
cylinders in which there is at least one
record belonging to the cluster.

r = The ratio of the number of clusters of a
relation to the number of cylinders
occupied by the relation.

The number of different index terms (cylinder
#, cluster #) for a relation is simply equal to
cj. Since, for any given relation, there is only
one directory keyword with attribute RELATION,
the corresponding directory must have all the index
terms for the relation. On the other hand, there
are up to c directory keywords with attribute
CLUSTER, and each of the corresponding entries has
an average of j index terms. Thus, the directory
memory requirements for a relation is given by

Dd = storage for the entry with keyword
whose attribute is RELATION + storage
for all entries with keywords whose
attribute is CLUSTER

=((a+v) + cj (m+k)) + c((a+v) + j (m+k))
=(c+l)x(a+v) + 2cj(m+k),

We observe that the directory memory.require
ment per relation, Dd, of the DBC is independent

105

of the total number of images defined on a rela
tion. This contrasts with the fact that in a
GPC environment the storage requirement per rela
tion is the sum total of the storage requirements
for all images on a relation. If .there are L
images on a relation and each image requires the
same space D , then the directory memory require
ment per rel§tion, in the GPC enviornment, is
LD • We define the directory storage ratio Rd as
th~ ratio of the index storage requirement in the
GPC environment to that in the DBC environment.
If there are L images per relation and every image
is of equal size, we then have

Rd = LD/Dd

In the computation of D , the value of j,
which is the number of cylinaers spanned by a
cluster, is a dependent parameter. · It depends on
the cluster size, cylinder size, loading factor of
the database and the storage pattern. Through a
number of simulation experiments, it was determined
that in·most practical situations, the value of j
falls between 1 and 2.

The directory storage ratio Rd may now be
computed. We assume that there is only one image
per relation, i.e., L = 1. The values used for
the various parameters are: a = 2 bytes, j = 2,
v = k = m • t • w • 4 bytes, the page size b =
4000 bytes, r = 5, the cylinder size bd = 50§,000
bytes, the relation cardinality n is taken from the
set UOOO, 2000, 5000, 1000.0, 20000, 50000, 100000},
the ratio n/i is taken from the set {l, 2, 5, 10,
20, 50, 100} and the length q of a DBC record is
taken from the set {50, 100, 200, 500, 1000, 2000}.

Using the fact that the number of cylinders
required for a relation is fnq/bdl and the fact
that c, the number of clusters of the relation,
is r times the aforementioned number, we can now
compute the directory storage ratio Rd. These
calculations are tabulated in Figure 5. Observe

iOO/\ :?24.!I
lOOQO 429. ~

~ ' 1;1.:1

1000 bl.:t

'"" .'iOOO IU.Z
10000 10\l.9
20000
50000 l0!'.4

100000 105.9

lh:!.I•
]f,f,,l

' (0.'•

q ~ 1000 byt<>S

"' w ~o ' ' ; '" 40.'f \0,9 :ll.2 20, ~ 20, ~ 20. ~
hl.3 i;J.:I •·1.3 1~. 7 lr..7

rn2. 7 122.7 122.7 ~MO ~.1. l H.7 12.~

13;,_o 12l.•i 111.2 10000 22.1 13.7
tM. ~ 120.~ ll.i.I 109.9 13.2

JI\.;, 109.3 12.9 II.~

11.7

q ~ 200 bJ,te• q ~ 2000 l>)·tes

; '" '" '" ~ ' ' .; '" ~o. s 10.9 10.~ 10.9 J.i,7 Ill,.; 10.3 10.S
!il.3 1n.:1 2000 13.1 '-' '-'
72.7 lj2.~ (;,3

62.~ .H,!> \0000 11.l "·' G.3
60.t :i7. ~ 55.2 20-000 10.~ .., H.fi

~~.o 'i.1.7 h.1

'·'

Fipw ii. Hln><'IC1ry stol"llgt'r.ltio l\jforsingle ima~per relatlnQ.

" ~o

20. ~ 20.8
rn.7

12.r; 12. ~ 12.6
1\.6 11.6 11.6
11.li 11.1 11.J
ll,2 11.0

10.9

'" " "' 10.5 10.5 10.5
u '·' 6.3
5.8

" 5,5

'-' 5,1 ...

that other parameters remaining unchanged, after
the number of records, n, has reached a high enough
value, further increase in n does not have much
effect, since both D and Dd tend to increase
proprotionately withglarge n. Further, we observe
that as DBC record length increases, fewer and
fewer records are accommodated in a cylinder,
thereby increasing the number of index terms anj
hence the storage ratio Rd.

We notice that for a reasonable record length
between 100 and 1000 bytes, the DBC directory
memory requirement lies between 0.05% and 10% of
that of a conventional system. Furthermore, if
there are more than one image per relation (which
is often the case), then the directory memory
requirement in a GPC environment increases pro
portionately with the number of images. The
DBC directory memory requirement, in contrast,
remains steady.

Query Execution Time

Query execution time is rerhaps the single
most important measure of performance of a data
base management system. For SEQUEL statements
being handled in a conventional GPC environment,
the system first parses the statements and then
uses an optimizer to determine a good access
strategy from among a number of possible access
strategies. In addition to the parsing and
optimization times, the execution time of a query
consists mainly of

(1) the time to access a number of index
pages and search their contents to
determine a list of eligible TIDs,

(2) the time to access a number of data
pages in order to fetch the eligible
tuples, and

(3) the CPU time to determine the final
response set form the list of
eligible tuples.

For a given query, a single predicate of a predi
cate conjunct in the query may be used for deter
mining the eligible TIDs. After the corresponding
tuples are retrieved, they are placed in the final
response set only if they satisfy all the other
predicates in.the predicate conjunct. In a
DBC environment, the execution time of a query
consists mainly of

(1) hardware search time of the structure
memory to determine the eligible
cylinders, and

(2) the time to search each eligible
cylinder for records· satisfying a
predicate conjunct.

We make the following practical assumptions for the
analysis:

(1) For every cylinder accessed by the DBC,
we include an extra processing time
for the structure memory to determine
the index terms and compute the
cylinder numbers. Therefore, a
constant factor K (>l) will be used to
multiply the number of accesses to the
mass memory, thereby accounting for
query processing time in the structure

memory.
(2) Binary search of the index pages in a

GPC environment takes a negligible
amount of time compared to the time to
acces each page.

(3) The time to access an index page, the
time to access a data page in the GPC
environment and the time to access a
cylinder of the DBC are all equal to the
latency time plus rotation time needed
to access a disk cylinder.

In the ensuing discussion, we consider a
common type of queries, namely, the single-relation
queries. The analysis for the more complex two
relation queries may be found in [9] and are not
considered in this paper. We may point out, how
ever, that the advantages in using the DBC for
such complex queries are similar in magnitude as
for the single-relation queries. The following
analysis is in the style of [10], and the time to
execute a query is determined in terms of the
number of accesses to the physical blocks.

A single-relation query is exemplified by the
following SEQUEL statement which lists the names
and salaries of programmers who earn more than
$10,000:

SELECT
FROM
WHERE
AND

NAME,SAL
EMP
JOB 'PROGRAMMER'
SAL > 10000

This is an example of a query with a single predi
cate conjunct. In general, a query may be a dis
junction of X predicate conjuncts. The query may
then be treated as X queries each with a single
predicate conjunct. We, therefore, only restrict
ourselves to queries with a single predicate
conjunct. Furthermore, the predicates are assumed
to be involved with simple comparisons of a
field with a value so that they can be matched with
an image. More complicated predicates, such as
EMP X.MGR = EMP Y.EMPNO, cannot be matched by an
image. Finally, since the consideration of links
involves a straightforward extension of the
analysis given below, we will consider images only.

The following notations are introduced to
simplify the ensuing discussion:

n
p
h

i
K

f

B
g

the relation cardinality;
the number of predicates in the query;
the coefficient of CPU time (l/h is the
number of tuple comparisons which are
considered equivalent in cost to one
page access);

the image cardinality;
the coefficient of DBC's structure memory
processing time, the time required to
determine index terms (K>l);

the number of index-page accesses per.
index search in the GPC environment
(For a given storage device and given
key length, it is a function of the
relation cardinality n and the image
cardinality i. Normally, it has a value
lying between 2 and 4);

the average number of tuples (of a rela
tion) per data page (subscript g refers
to the GPC environment);

the average number of records per DBC

cylinder (subscript d refers to the
DBC environment); and

the average number of cylinders spanned
by a cluster in the DBC.

The optimizer in System R has the option to
select an access strategy among a variety of
choices. The most important of these are listed
below. In each case, the execution-time ratio R
may be determined by computing the ratio of the t
time T required to execute a query in the GPC
enviroftment to the time Td required in the DBC
environment.

Option 1. The attribute of a given predicate is
identical to the column name for which a cluster
ing image has been created. Furthermore, the
predicate is an equality predicate.

Since the expected number of tuples that
satisfy the predicate is n/i, the expected number
of data pages to be accessed in the GPC environ
ment is fn/(iB)l. Since each of the retrieved
tuples must noe be compared against the other
(p-1) predicates, the total time required in the
GPC environment is

II/O time for
_, data pages

T fn/(iB)l
g g +

I
CPU time l
(p-l)hn/i +

I/O time for~
the indices

f

T may actually be somewhat less because some of
tfte retrieved tuples may have to be eliminated
from further consideration by the successive com
parison with other predicates. Furthermore, since
the number of tuples retrieved, which is n/i, is
expected to be very small, we may even neglect the
CPU time required for comparing predicates. There
fore, T is simplified to

g
T = fn/(iB)l + f.

g g

In the DBC environment, whenever the equality
predicate matches a clustering image, only one
cluster need be searched. Therefore,

where the factor K accounts for the structure
memory processing time. Finally, the execution
time ratio is

Option 2. The column name for which a clustering
image is in existence matches the attribute of a
predicate which is not an equality predicate.
Assuming that half the tuples of the relation
satisfy the predicate, the expected times are

T = fn/(2B)1 + (p-l)hn/2 + f g g

and

Option 3. A non-clustering image is available.
The column name for which the image has been
created matches the attribute of an equality
predicate. If this image is used in a GPC environ
ment, then one page access will be required for
each of the n/i expected tuples that satisfy the

predicate. Without the advantage of secondary
clustering information (in the query), the DBC
has to access the entire relation. Therefore,

and

T = fn/il + (p-l)hn/i + f
g

107

Option 4, A non-clustering image is available for
the attibute of a non-equality predicate. If
this image is used in the GPC environment, then

and

T = fn/21 + (p-l)hn/2 + f g

Option 5. A clustering image is used. The
column name for which the clustering image exists
matches no attribute of any predicate. Even
though no attribute of the given predicate matches
any column names on which images are formed, we
pick a clustering image for accessing the tuples
(because these tuples are next to each other).
In this case, all the tuples must be examined
in the GPC environment. Therefore,

T = fn/B 1 + phn + f g g

and

Option 6. A non-clustering image is used which
matches no attribute of any predicate. Since, we
may justifiably assume that every relation has a
clustering image (or clustering link), this choice
will actually never have to be made in a GPC
environment. In any case, if the choice were
indeed to be made, then

and

T
g

n + phn + f

OptionJ'._. Suppose there are p .::'._ 1 equality
predicates and p > 1 non-equality predicates each
of which has a m~tching image, then the (p + p)
images may be searched. A TID list is gen~ratefr
for each predicate. These lists may be sorted
separately and then intersected to determine the
final TID list to be searched. We then have,

T (n/(iPe2Pn) + (p +)f
g e pn ·

We have neglected the predicate comparison time,
since the final list 9f TIDs will be very small;
we have also neglected the time to sort the TID
lists, which may be appreciable if the lists are
long. Notice that when p > 2, the first term in
T (i.e., the number of t~ples which satisfy all
of the p equality predicates) is likely to be
quite sm~ll. In such a case, we may write

T = {p + p)f.
g e n

In the DBC environment, we have

Td = jK, if an equality predicate matches
a clustering image; and

103

Td = fnK/Bdl' otherwise.

In Figure 6, we have tabulated the values of
execution time ratio R for each of the seven
options mentioned abov~. We have used the follow
ing figures: K = 1.2, f = 3, p = -2, h = 0.0001,
j = 2, B /B = SO,-B is taken from the set
{3, 20, 100~ 500}, t~e ratio n/i is taken from the
set {l, 2, S, 10, SO, 100}, n is taken from the
set {1000, SOOO, 20000, 100000} and (pe + pn) is
taken from the set {2, 3}.

The assumption of Bd/B = 50 requires a little
explanation. A disk cylind@r normally consists of
20 to 40 tracks. The track size to page size
ratio in a conventional system usually varies
from 1 to 5. Finally, the size of a DBC record
varies from 1 to 2 times the size of the corres
ponding tuple of a conventional system. Taking
these factors into consideration, we have arrived
at a reasonable figure of SO for the ratio Bd/B •

We observe a number of important facts fro~
the tables in Figure 6. Whenever there is an
equality predicate matching an image (e.g.,
Options 1 and 3), very few pages need to be
searched in the GPC environment, because of the
choice of large image cardinalities. Therefore,
in these cases the index search time f dominates
the query execution time T • In Option 1, the DBC
has to search only one clu§ter because the
equality predicate matches a clustering image. In
Option 3, however, the DBC has to content-search
the entire relation. So, for very large relations
and very large records, the GPC environment is
clearly more favorable in Option 3. Similar
reasoning holds for Option 7 if the clustering
image does not match even one of the equality
predicates. In all other cases, the DBC performs
one or more orders of magnitude better than a
conventicnal system. In short, the DBC works much
better than a conventional system, whenever ~
one of the following holds:

(1) The record size is small, say SO to
200 bytes.

(2) The relation is of small or medium size,
say less than 20,000 tuples.

(3) Many records (say, greater than 50) are
satisfied by an equality predicate, so
that many records have to be retrieved
by either system.

(4) The image cardinality is medium, say,
n/i > 100, which is typical for large
relations. This observation actually
follows from (3).

(S) A given query does not have any
equality predicate that matches an
image.

The GPC environment, in contrast, works out as
good or better than the DBC only when all the
following conditions hold:

(1) The relation is large, say greater than
20,000 tuples.

(2) The records are large, say SOO bytes or
larger.

(3) ·The query has an equality predicate that
matches an image.

(4) The cardinality of the above image is
very large, say n/i > 10.

Option I Option :I \\ht'l't• n·i 1110

~ 20 lllll ~ I ~.ou " :!:111 1000 ,"1000 :!:i0\10
I t."7 l,1;; 1,li7 l,li7 IOOH W.liO :.1 •. \1 1n:1.01 10:1. 01

I.Vi l.1i7 I.Vi I.Ho .-ioon l,:!\l 17.17 :il.:il lll:i.Ol
l.•>7 I.Iii 1,(;7 I.Vi '.!OOOU 1.07 l.2!l 20,liO 10:1.01

10 2.us 1,1;7 1,li7 I.rli 100000 0.21 O. ~Ii .J.2!1 20,liO
~.() ~I, 12 2, :10 l,1i7 l,tii

100 !1 •. -ili :1.:1:1 1.117 1.117

01itlon I

Option 2

~ ~ :. 20 100 500
250 1000 :moo 25000

1000 100,fil :!ril.52 :'i03.05 aoa.o:; lOOO :u.3:> 2>i. or. li,05 I. Q~,
5000 101.:H H7.3~ 12.12.1:1 5000 H.9-1 -t2,i.) 21', 25 H,2:i 2:;0-1.2.1

20000 41. 75 -t2. 00 3-t.lii 24.00
20000 l0L~2 -111i. HI'\ 2001.00 10005,00

100000 41. 70 H.82 42.33 3!i.OO
100000 104.19 4lfi. 74 20M"3, 71 10001,>!0

Option 3 where n/i = 1
Option:)

~ 2.;o 1000 3000 2'>000 ~ 20 100 soo
1000 0,'10 2.00 4.00 ·i.00

1000. -10.fi4 21.,HO 13.20 5,20

5000 0, 17 O,fi7 2,00 4.00
3000 41. '1:1 42.33 27.00 1-1.00

20000 0.04 O. li 0,HO 4,00
:wooo tl.75 U,9(i .u. rn -17.00

100000 0.01 0.03 0.17 0,80
100000 U,72 .u. ~7 ,12,li3 H,fiO

Option 3 where n/I = 2 OiXlon fi

~ 250 1000 .·1000 25000 ~ 230 1000 :)000 25000
1000 1.00 2,50 ;,, 00 :),00 1000 200.1;.i :)Ql,fiO 1003,20 1003. 20
5000 o. 21 0.83 2,30 3.00 i>OOO 20.'l,50 834.00 2502. 00 500LOO

20000 O.O;i 0,21 1.00 ;1,QO 20000 201-l,H ijJJ.<i:i ,1001. rn 20007 .oo
lboOOO 0.01 0.04 0,21 1,00 100000 20!i,3H 833. 33 HH7,li3 20004,liO

Option 3 where n/i = 5
Option 7, where Pe 1- Pn = 2, no !'lustering Image

~ 2!lf) 1000 5000 25000

~ 1000 1,fiO 4.00 N,00 H,00
5000 o.:i:i 1.33 LOO >!,00 2:i0 1000 :1000 25000

20000 Q,\)H o.:JJ l,li{l 'l,00 1000 1. 20 :J,00 li,00 Ii.OD
100000 0,\12 0.07 0,33 l,liO :moo 0.2f"i 1,(10 :i,00 fi,(10

:!0000 o.oc 0.2:, I, ~O 1:.no
1001100 0,01 n.o;. n. :!f1 l,!!O

Opllml :I Wht't't• n/i '10

~ 250 1000 5000 25000
Option 7, where Pe t Pn = 3, no clustering image

1000 2.liO 6.50 13.00 13.00

~ 5000 0.54 2,17 6. 50 13.00
20000 0.14 0,54 2. (j.Q 13.00 250 1000 5000 25000

100000 0,03 O. ll o. 54 2,60 1000 1,BO 4.50 9,00 9.00
5000 0.38 1,50 4.50 9,00

20000 0.09 0.38 l.80 9.00
Oi*ion 3 where n/i = 50 100000 0,02 0.08 0.38 1,80

~ 250 1000 5000 25000
1000 10.60 26, 50 53.01 53.01
5000 2,21 8,83 26. 50 53,01

20000 0.55 2. 21 10,60 53.01
100000 0, 11 0,44 2,21 10. 60

Note: ff the clustering image matches an equality predicate of the query'
in Option 7, then Rt ls a constant 2, l>O when
Pe + Pn = 2 and Rt Is 3, 75 when

Pc+ Pn"' 3.

Figure 6, Execution time ratio Rt for single-relation queries.

It may be mentioned that a relational database
management system like System R will expend a
considerable amount of resources in storing and
executing the query optimizer. Furthermore, as a
large software package, the optimizer requires a
considerable amount of CPU time for execution. In
a DBC environment, this software is unnecessary.
A simple examination of a SEQUEL query indicates
whether one of its predicates matches the cluster
ing image (or link) of the associated relation.
If such an image {or link) is available, then the
RDBI prepares a DBC query that includes a predicate
with the attribute CLUSTER. Thus, elaborate query
optimization in the GPC environment is replaced by
a simple decision in the DBC environment.

Execution of update requests by the DBC is not
as efficient as the execution of retrieval requests.
Insertions and modifications are normally requested
a record at a time. Therefore, the savings
achieved by using the DBC is possibly a few
accesses to the indices (images or links) that may
need to be updated in a conventional system. This
is because there are usually fewer attributes on
which directories are maintained in the DBC.
Furthermore, directory accesses are at least
partially overlapped with mass memory accesses.
Deletions, however, may be requested in terms of
groups of records. For example, it may be
required to delete from the database all records
belonging to DNO = 100 Such requests are
executed by the DBC's mass memory with as good a
performance as is achieved for retrieval requests.
Corresponding updates to the structure memory may
be done in a relatively slack (low-activity) period
by making use of a look-aside buffer [4]. Overall,
the performance of the DBC is adequate in the
execution of update requests. But the gains are
accentuated in a retrieval-intensive operating
environment with, say, more than 50% of all
requests being retrieval requests.

CONCLUDING REMARKS

A performance analysis was done in this paper
in which we have compared the storage requirements
and query execution times of a relational system
being supported on a conventional computer versus
the same system being supported on the DBC. It
has been observed that while the mass memory
requirement in the DBC is usually between one and
two times the requirement in a conventional
system, there is a tremendous saving in index
storage and very large reductions in the execution
time of queries when a DBC is being used. Speci
fically, the usual directory memory requirement
and query execution times are likely to be one or
more orders of magnitude better than those of a
conventional system. The reason for this per
formance enhancement lies in the very large block
size of the DBC's on-line mass memory, the content
addressability of each block, and the clustering of
DBC records primarily by relation names.

Because of the very large block size,
directories are small. Every mass memory access
allows the DBC to inspect a very large number of
re'cords. Because of the content-addressability of
each block, the response set of a query is usually
the same set of records returned by the mass
memory. Therefore, no additional CPU time is
needed to compare the retrieved records against
other predicates that form the same query.
Clustering of all records belonging to any given
relation ensures that any single-relation query,
whatever its composition, will require at most as
many mass memory accesses as there are blocks
occupied by the relation.

Further speed gains, which do not show up in
the analysis, may follow. They are due to the
various other functional features of the DBC such
as hardware sorting, automatic memory management,
and hardware to compute the common set-functions
such as average, maximum, minimum and sum. All
these seem to indicate that a very favorable

109

level of performance can be achieved with the use
of database machines.

[l]

[2]

[3]

[4]

[SJ

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

REFERENCES

Baum, R. I. and Hsiao, D. K., "Database
Computers - A Step Towards Data Utilities",
IEEE Transactions on Computers, C-25, 12,
December 1976. -
Hsiao, D. K. and Kannan, K., "The Architecture
of a Database Computer - A Summary", Proc.
Third Workshop on Computer Architecture for
NOri:=Ilumerical P;;;cessing, Syracuse, N.Y.,
May 17-18, 1977.
Baum, R. I., Hsiao, D. K. and Kannan, K., "The
Architecture of a Database Computer - Part I:
Concepts and Capabilities", Tech. Rep. No.
OSU-CISRC-TR-76-1, Sept. 1976, The Ohio State
University, (ADAO 34154).
Hsiao, D. K., Kannan, K. and Kerr, D. S.,
"Structure Memory Designs for a Database
Computer", Proc. Nat. ACM Conf., ACM, N.Y.,
1977. Also available as (ADAO 35178).
Kannan, K., Hsiao, D. K., and Kerr, D. S.,
"A Microprogrammed Keyword Transformation
Unit for a Database Computer", Proc. Tenth
Annual Workshop on Microprogramming, New
York, October 1977.
Kannan, K., "The Design of a Mass Memory for
a Database Computer", Proceedings of the 5th
Annual Symposium on Computer Architecture,
Palo Alto, Calif., April 1978. Also available
as (ADAO 36217).
Hsiao, D. K., Kerr, D. S., and Ng, F. K •.•
"DBC Software Requirements for Supporting
Hierarchical Databases", Tech. Rep. No.
OSU-CISRC-TR-77-1, April 1977, The Ohio State
University (ADAO 39038).
Banerjee, J., Hsiao, D. K., and Kerr, D. S.,
"DBC Software Requirements for Supporting
Network Databases", Tech. Rep. No. OSU-CISRC
TR-77-4, June 1977, The Ohio State University,
(ADAO 41651).
Banerjee, J, and Hsiao, D. K., "DBC Software
Requirements for Supporting Relational Data
bases", Tech. Rep. No. OSU-CISRC-TR-77-7,
November 1977, The Ohio State University,
(ADAO 49180).
Astrahan, M. M., et al., "System R: Rela
tional Approach to Database Management",
ACM Trans. £!!Database Systems, 1, 2, June
1976, 97-137.
Chamberlin, D. D., et al., "SEQUEL 2: A
Unified Approach to Data Definition, Manipu~
lation, and Cotnrol", IBM Journal of Research
and Development, 20, 6, November 1976,
560-575.
Ozkarahan, E. A., Schuster, S. A. and Sevick,
K. C., "Performance Evaluation of a Relational
Associative Processor", ACM Trans. on Database
Systems, 2, 2, June 1977-:1"75-195. -
Ampex Corporation, "DM-PTD Parallel Transfer
Drive Engineering SPecifcation", Dwg. No.
3308829-01, Issue 2, Sept. 1977.
Bayer, R., Mccreight, E., "Optimization and
Maintenance of Large Ordered Indexes",
ACTA Informatica, 1, 3, 1972, 173-189.

A METHODOLOGY FOR SUPPORTING EXISTING CODASYL DATABASES
WITH NEW DATABASE MACHINES*

Jayanta Banerjee and David K. Hsiao

Department of Computer and Information Science
The Ohio State University

Columbus, Ohio 43210

In this paper, an attempt is made to show that conventional database management
system software, in particular those of CODASYL type, can be effectively replaced by
database machines with good performance. The replacement of CODASYL system software
involves two main steps: (1) In order to preserve the notions of CODASYL records,
sets, areas, and others, we need a methodology for .9!1tabase transformatio_n_ so that an
existing CODASYL database may be transformed into suitable formats for storing and
retrieving in the database machine. (2) For the purpose of allowing existing appli
cation programs written in a CODASYL data sublanguage to store, retrieve and manipu
late CODASYL data in the new environment without reprogramming, we need to be able
to translate the data sublanguage calls dynamically into the commands of the database
machine. Such process is termed query translation.

In this paper, a database transformation methodology and a query translation
process are presented which ensure that the content-addressability and parallel
read-out capability of the database machine are used to advantage. The machine in
consideration is known as the database computer (DBC) and is also briefly reviewed.
DBC is one of the 'typical' new back-end machines for database management which
utilize the emerging hardware and the modification of existing hardware for performance
gain and capacity increase.

Key words: CODASYL data model; database machines; database management systems;
database transformation; DBC; network data model; query translation; relative
performance.

1. Background

Conventional computers are not specifically
designed for database management tasks; they re
quire large and complex software to carry out such
tasks. Consequently, both the performance and

ill

reliability of the computer system suffer consider
ably. Large databases of the future are likely to
be managed by special-purpose database machines,
instead of by conventional database management
software running on general-purpose computers
[l), [2]. Database machines which are made of
specialized hardware for database management tasks
may contribute to appreciable performance improve
ment and system reliability, since the conventional
database management software is mostly eliminated
and its underlying hardware is being relieved for
more conventional tasks. In addition, the elimina
tion of the conventional database management soft
ware and relief of the conventional hardware
coupled with the recent advances and price

;,The work reported herein is supported by the
Office of Naval Research through contract N00014-
75-C-0573.

l12

n•clui't ions in memory and processor technologies may
al low spel'ial-purpose database machines to compete
with conventional snftwnrP nnd hardwnre cost
eFfectivc,ly.

Database machines are characterized by their
capabi 1 i ty of providing very large on-line database
stores (say, 1010 bytes and beyond), high-volume
processing (so that even for a small amount of re
sults a large amount of related data can be pro.,
cessed readily), and block-oriented content
addressability (where data are searched, retrieved
and updated by content in response to predicates).
DBC is a database machine with the aforementioned
basic characteristics. For very large storage
capacity, DBC utilizes moving-head disks. To
achieve high-volume processing, the moving-head
disks are modified to allow parallel read-out of
all the tracks of a cylinder in one disk revolution.
To provide content-addressability, the disk con
troJ lers are modified to incorporate micropro
cessors, one for each track of a cylinder. Further
nrure, both the parallel reading of the tracks of a
cylinder and content-addressing of the tracks of
the same cylinder can be accomplished in one disk
revolution time. DBC also employs new and existing
technologies for other components. The use of
charge-coupled devices (CCDs) or bubble-domain
memories for a structure memory is such an
instnnce. The structure memory maintains indices
and security-related information about the database.
With this in formation in the structure memory, DBC
can restrict the content-addressable search for and
high-volume processing of the authorized data to a
few cylinders, instead of the entire database store.

For a detailed exposition of DBC concepts as
well as DBC architecture and design, the reader
may refer to [3), [4], [SJ, [6), [7]. In this
paper, we will briefly discuss those components of
the DBC which are necessary in the study of the
DBC' s capability in supporting CODASYL databases.

2. The Database Computer (DBC)

DBC is a back-end database machine for very
large on-line databases. As illustrated in Figure
1, database application programs are still resid
ing in a front-end general-purpose computer. The
operating system of the front-end computer con
tinues to coordinate the execution of these pro
grams. However, the traditional database manage
ment system is absent from the front-end computer
and is replaced by an interface. Data management
calls are now relegated by the operating system to
the interface, known as DBI, which is a small soft
ware package keeping account of these calls, trans
lating these calls to DBC commands, and routing
these commands to DBC. The discussion of the
interface will be expounded in Section 5. Finally,
the database is stored in DBC, instead of tradi
tional secondary storage such as disks.

2.1. A Brief Look at the DBC Organization

DBC stores its entire database in an on-line
secondary storage known as the mass memory (MM) as
depicted in Figure 1. The mass memory is made of
moving-head disks modified to provide tracks-in
parnl lel read-out and has enough logic to content
address any cylinder in one disk revolution time.

Front-End Computer
System(eq, IBM 370)

Appl1cot1on

Programs

Operating

System

Bock-End Oota Moctune (e q. OBC)

SM
Controller

DSC Command
and Control

Processor

MM
Controller

~--m

~---en

L() l"j'~rr1m

Figure 1. Basic Organization and Operating
Environment of DBC

Since the mass memory has logic to content
address only one cylinder at a time, it is neces
sary that some directories be maintained of the
information content of the database. These direc
tories are expected to be much smaller than con
ventional indices because (1) an address in these
directories is a cylinder number, rather than a
tuple consisting of cylinder number, track number,
page number, and record offset; (2) very few direc
tory entries need be maintained, since cylinders
are very large (O.SMbytes per cylinder) compared to
tracks or pages; and (3) proper clustering of data
can place related data in very few cylinders. DBC
provides a hardware clustering mechanism for such
purpose. The directories, as well as security
related information (which we shall not discuss in
this paper), are stored in the structure memory
made of either CCDs or bubble-domain memories. The
structure memory (SM), like the mass memory, is
also block content-addressable. However, it has
smaller capacity (1% of mass memory size), smaller
blocks (up to SK bytes per block), and higher
speed (20 times faster than the block access rate
of the mass memory).

The DBC command and control processor is in
charge of communicating with the software interface
of the front-end system. The interface translates
a database management call to one or more DBC
commands. Given a command from the front-end, the
DBC command and control processor decodes it,
determines the cylinders to be searched in order to
satisfy it by referencing the structure memory,
issues appropriate orders to the mass memory, and
transfers response data back to the front-end
system. The DBC command and control processor also
coordinates all activities of DBC, including data
clustering.

2.2. Data Representation

Data is stored and manipulated in DBC as
collections of records. A record consists of a
record body and-;,~of variable-length attribute
value pairs, where the attribute may represent the
type, quality or characteristic of the value. The
record body is composed of a (possibly empty)
string of characters which are not used for search
purposes. For logical reasons, all the attributes
in a record are required to be distinct. An
example of a record is shown below:

(<TYPE, EMP>, <JOB, MGR>, <DEPT, TOY>, <FLOOR, 4>).

This record consists of four attribute-value
pairs. The value of the attribute JOB, for in
stance, is MGR. Attribute-value pairs are called
keywords, since they characterize records and may
be used as 'keys' in a search op·eration. Keywords
for which directory entries are maintained in the
structure memory are called type-D keywords. Re
cords can be grouped into files on the basis of
ownership, security and other purposes.

DBC interfaces with front-end systems by
accepting a large repertoire of high-level data
base management commands, by delivering collections
of records or portions of records as responses, and
by indicating successful or unsuccessful execution
of the commands. Some of the commands, called
record access commands, may be used for specifying
a collection of records in the database and for
carrying out an intended operation on these re
cords, such as retrieval, deletion and modifica
tion. Other commands may be used for database
loading, record insertion, initialization, etc.

An important feature of record access
commands is that they allow natural expressions
for specifying a record collection. A record
collection may be specified in terms of a keyword
predicate, or simply, a predicate, which is a
triple consisting of an attribute, a relational
operator (such as, =, i, >, ~. <, S) and a value.
For instance, (SALARY > 10000) is a predicate. A
record collection may also be specified in terms
of a conjunction of predicates, called a~
conjunction. Finally, a record collection may be
specified in terms of a disjunction of query con
junctions, called a~·

Certain attributes of a file may be designat
ed by the file creator as clustering attributes.
Correspondingly, keywords having clustering attri
butes are called clustering keywords. By cluster
ing the data, a query can be satisfied in as few
disk revolutions as there are query conjunctions
of the query.

3. The CODASYL Databases

The CODASYL databases are of the network type
as documented originally in the DBTG report (8].
In this section, we shall extract some of the im
portant data definition and manipulation facilities
specified in the DBTG report for discussion.

3.1. Data Definition Facilities

The CODASYL record is similar to a COBOL re
cord. A record type (or record name) is defined as

ill

a collection of hierarchically related data item
names or field names. The hierarchy of field
names is specified by a _temp~'lte. Any ~1_ecurren_c~

of the record type_, or simply a reco_!"~, will have
specific values for these data items. Thus, a
record type or record name is a generic name for
all the record occurrences that have the same tem
plate.

Relationships between records are indicated
through set types. A set type consists of a sin
gle record type called the owner record type and
one or more other record types called the member
record types. Record occurrences of the owner
record type are termed owners and of the member
record types members. Thus, a set type asserts
the existence of associations between records of
heterogeneous types in the database. This allows
the designer to interrelate diverse record types
and to associate various entities in the database
into a network-like model of real-world database
management problems. It should be emphasized at
this point that the owner record of a set type is
prohibited from being one of the member records of
the same set type.

As in a record type, a set type also has
occurrences. Each occurrence of a set type must
contain one occurrence of the owner record type
and a number of occurrences of each of its member
record types. All the occurrences of a set type
are pairwise disjoint. In other words, a record
occurrence cannot appear in two different occur
rences of the same set type.

The database may be divided into logical sub~
divisions called areas. Each record occurrence is
placed in only one area. This subdivision may be
done on the basis of frequency of record access,
security requirement and physical clustering needs.
When a record occurrence is first stored in the
database, it is assigned a database key. A data
base key is a unique identifier of a record occur
rence. Thus, instead of physical addresses, data
base keys may be used as pointers. For each
application program (also referred to as a run
unit) a table of currency status indicators must
be maintained. These indicators are actually data
base keys identifying for each of the following
the most recently accessed record occurrence:

(1) current record occurrence of the run-unit,
(2) current record occurrence of each area,
(3) current record occurrence of each set

type, and
(4) current record occurrence of each record

type.

Most data manipulation statements refer to the
current record occurrence of the run-unit. Others
are with respect to the current record occurrence
of an area, set or record type. Insertion of a
member record occurrence into a set type often re
quires the selection of a set occurrence, which
may be the current set occurrence.

The location mode of a record type determines
the DBTG strategy to be used for initial record
placement in the database when a new record occur
rence is being stored. The location mode of a re
cord is said to be direct when the user is allowed
the facility of specifying the database' key for

114

each record occurrence stored in the database. The
record occurrence may then be placed in an area and
location determined by the database key. If the
location mode is defined to be calc, then the data
base key for a record occurrenc~ is computed by a
procedure that uses some combination of data items
within the record as arguments. The data items are
ea l IE·cl _c:E]J:_J<~. The location mode ()f a record
may also be declared to be via a set (type) in
which the record type is a member record type. In
this case, the CODASYL system first selects an
occurrence of that set type based on its set occur
rence selection criterion. It then uses the order
ing policy of the set type to determine the logical
position of the record within the set type. Final
ly, it places the record occurrence in such a posi
tion that adjacent record occurrences within a set
occurrence are phys.ically "close" or clustered.

The order in which member records are insert
ed in a set occurrence may be either in a sorted
order or in an order dependent on the time sequence
in which they are inserted and the position of the
current record in the set. A member record may be
inserted first (or last) meaning that its position
in the se~next (or prior) to the owner record
of the current set occurrence. If the ordering of
a set is declared to be next (or prior), then any
member record occurrence will be inserted in a
position next (or prior) to the logical position of
the current record of the set type. Finally, a set
type can be ordered by some data items.

A CODASYL system may be asked to select a set
occurrence among all the occurrences of a set type.
Automatic set occurrence selection is necessary
when the system is required to find a set occur
rence in which a member record occurrence is to be
inserted or found. Therefore, there is a set
occurrence selection method defined for each mem
ber record type and one for the owner record type.

3.2. Data Manipulation Facilities

The user writes his programs using a general
purpose language that hosts the CODASYL data ma
nipulation language (DML). DML facilitates oper
ations on set types, usually by 'navigating'
through their set occurrences. The starting point
of most DML statements is the current record of
the run-unit. Others can be based on the current
record occurrence of a set type, area or record
type. A find statement may be used in order to
establish a record occurrence as the current re
cord of the run-unit and also optionally as the
current record of an area, record type or set
type. The delete statement may be used to delete
the current record occurrence of the run-unit and
to delete also the mandatory members of all set
types in which the deleted record is an owner.
The ~ statement retrieves the current record of
the run-unit and places it in the user working area.
A store statement is used in order to place a new
record occurrence in the database. To manually in
sert record occurrences into set types, the insert
statement is employed; and any optional member re
cord occurrence may be removed from a set type by
using the remove statement. To modify the values
of data items in a record occurrence, the modify
statement is used, which may also change the
mL•mbership of the record occurrence from one set
occurrence to another (of the same set type).

4. Database Transformation

An existing CODASYL database may be supported
on DBC by converting the database to conform to
the DBC representation of data. This one-time con
version is known as database transformation.
Existing database mariagement applications need not
be reprogrammed. Instead, a database interface
software (DBI) residing in the front-end computer
will translate in real-time the data management
calls into DBC commands. This process is known as
query translation. Database transformation is the
subject of our discussion in this section and
query translation will be the subject of our dis
cussion in the next section.

In representing a CODASYL database on DBC,
our first goal is to preserve the original infor
mation such that all operations previously per
formed on the CODASYL database may still be per
formed on the DBC database with the same effect.
Our second goal is to achieve performance gain by
taking advantage of the DBC hardware content
addressability, parallel read-out and clustering
capabilities. A CODASYL database is usually
accompanied by a collection of indexes. An index
is maintained for each search key declared in the
schema. We, however, intend to represent the en
tire database with very few indexes. This will be
possible due to the content-addressability of DBC.
Secondly, any record in DBC must contain as key
words all information on which a user may choose to
conduct a search. Thirdly, we would like to
locate a record without navigating through a
sequence of other records .and this implies the
elimination of pointers within records. Under the
above guidelines, let us take up the problem of
representing a CODASYL database.

4.1. Representation of.a Record

A CODASYL record occurrence is transformed in
to a DBC record by using attribute-value pairs,
i.e., keywords. Since a record type is structured
as a hierarchical configuration of data items, a
keyword may be created for each elementary data
item. Given al record occurrence with specific
values for the individual data items, a keyword of
the following format is created for each elementary
data item and is made a part of the corresponding
DBC record:

<ITEM.data-item-name, data-item-value>

where ITEM is a literal. If the names of the
elementary data items are not unique, then they are
qualified by the names of data items at higher
levels. For example, consider a record type w.ith
the following structural definition:

RECORD NAME IS R

02 A

03 B

04 C PIC 9(2)

04 D PIG 9(2)

03 E PIC X(5)

02 C PIC X(5)

For each record occurrence of this type, the cor
responding DBC record includes the keywords:

<ITEM.B.C, value-of-B.C>
<ITEM.D, value-of-D>
<ITEM.E, value-of-E>
<ITEM.R.C, value-or-R.C>.

Storing data items as keywords of attribute
value pairs increases the storage requirement
since the data item names of the CODASYL record
occurrence are now stored as attributes in every
DBC: rt'l·ord. Howt•ver, in the DBC: imp lernentation,
tht• data item narnl•s will he coded. Furthermore, nD
pointers wi 11 be embedded in the DBC records due to
WlC's content-addressability.

There is a tremendous advantage in storing
data i tern values as keywords of ·at tribute-value
pairs. Since they are not type-D keywords, there
is no storage overhead for directory maintenance.
Yet a random search can be efficiently conducted
by DBC for records containing arbitrarily specified
data item values. Conversely, to conduct a random
search on arbitrary data items, a conventional
CODASYL system will require an index on every data
item. In the absence of such an index an exhaus
tive search of the database will be necessary.

The fact that a record occurrence belongs to a
particular record type is indicated by means of the
keyword

<TYPE, record-type>.

Thus DBC records can be content-searched on
equality predicates based on record type. Sirni
L1rly, tht• fnct that a record occurrence is
ass lgned an area is represented .in the DBC record
by the keyword

<AREA, area-name>.

This allows the notion of logical area to be sup
ported, even though the records may not be physi
cally grouped into areas.

The database key for a record occurrence may
be generated by the system or it may be determined
by the run-unit. The manner in which a database
key is to be generated for occurrences of a specif
ic record type is governed by the location mode of
the record type. Once the database key has been
determined, a keyword of the following form will be
included in the DBC record:

<DBKEY, database-key>.

4.2. The Notion and Assignment of L-nurnbers

In CODASYL implementation, a database key gen
erated on the basis of location mode identifies a
physical address. This leads to a degree of data
dependence which we intend to overcome in the DBC
implementation. Instead of allowing a database key
to represent a physical address, DBC can maintain
database keys in the structure memory. Every data
base key <DBKEY, database-key> could be declared as
a type-D keyword. Thus, given a database key, DBC
can determine the cylinder number of its corre
sponding record. However, an abnormally large

1J5

amount of storage would be required, since there
will be a directory entry for every record in the
database.

We, therefore, introduce at this point the
concept of L-nurnbers. An !:::-number is a logical
number assigned to every record occurrence in the
database. It will not be used to identify a record
but rather to aid DBC in locating the cylinder
housing the record. We shall later note that both
record type and L-nurnber will be used in locating
records in DBC. An L-number will actually act as
a ry_c_o_r_d __ typ_e __ _p_!!_r_t_i t inn _ __ll_ll!_TIJ:>_0_r_. Al 1 record occur
rences of a particular record type will he placed
in disjoint partitions. Every such partition can
be identified by a record type and an L-nurnber.

The assignment of L-nurnbers is as follows.
Let there be n cylinders and r record types in the
database. Thus all occurrences of each record type
can be accommodated in m (=n/r) cylinders on the
average. We therefore need to assign rn L-nurnbers
uniformly among all the occurrences of each record
type. We can thereby hope that all occurrences of
a given record type and having a given L-nurnber
will fit into a single cylinder. However, because
of the variability of the number of occurrences per
record type, we shall use mp L-nurnbers (1,2, ... rnp)
where p > 1. Possibly P=4 or 5, which is a design
decision.

If the location mode is direct, then the data
base key of a record occurrence is hashed in order
to determine its L-nurnber from the range 1 through
mp. If the location mode is calc, then the calc
keys are hashed to an L-nurnber. Finally, if the
location mode of a record is via a set, then the
npproprintc set occurrence is first determined by
using the set occurrence selection procedure for
the given set type. Once the set occurrence is
determined, the L-number of the owner of this set
occurrence is known. We then assign this L-
nurnber to the record occurrence in consideration.

Once the L-nurnber of a record occurrence to be
stored has been assigned, the following keyword is
included in that record occurrence:

<L-NUMBER, L-number>

where L-nurnber is the one determined for the
record occurrence. This keyword will be used both
as a type-D keyword and a clustering keyword. Thus
all records of a particular type with identical L
nurnbers will likely be stored in the same cylinder.
Furthermore, since the possible number of L-nurnbers
is small (only mp of them), the size of the
directory and, therefore, the structure memory
storage requirement, will also be small.

If, during the execution of a run-unit, a
record occurrence is to be retrieved based on its
location mode (direct or calc), then the L-number
will first be calculated using the same hashing
procedure that was used for storing the record
occurrence. A DBC retrieval command will then be
sent. The command will include the predicate
(L-NUMBER = L-nurnber) as part of the query. When
location mode is via a set, the L-number only
serves the purpose of clustering the records in a
set occurrence; the location mode of such a record

116
is nol ust'd for n•tri.evnl purposes.

1,,]. Rqiresl'ntat inn of SPt TypPs

A set type, as we have observed, consists of
one owner record type and· one or more member
record types. A set occurrence will be identified
hy an occurrence of its owner record and it may
consist of an arbitrary number of member record
occurrences. It is important to remember that all
occurrences of a given set are pairwise disjoint
implying that no tenarit (owner or member) may
exist in two occurrences of the same set type. We
shall now illustrate how the member records of a
set type are represented in DBC and how their
logical positions are indicated,

(a) Set Membership

Since a member record occurrence belonging to
a set occurrence is also identified by an owner
record occurrence, we assume that the record
occurrence r is a member of the set type called
set-type and that the corresponding set occurrence
is identified by owner-database-key, which is the
database key of the owner record occurrence. We
then include in r the keyword

<SET.set-type, owner-database-key>

in order to identify the set occurrence in which
it is a member. For each set in which r is a
member, a keyword of this form will be included in
r.

Although the database key of the owner record
occurrence uniquely identifies a set occurrence it
is not enough to store only that in a member re~ord
occurrence. This is due to performance reasons.
Given a member record occurrence, we shall often be
required to locate its owner in a given set, and
this cannot always be done from a knowledge of the
database key alone. We also need to know the 1-
number (record type partition number) of the owner
record occurrence. Assume, once again, that a
record occurrence r is a member of the set type
called set-type and that the owner of the corre
sponding se·t occurrence has an 1-number termed
owner-L-number. We then include in r the follow
ing keyword;

<OWNER-1-NUMBER.set-type, owner-1-number>.

A record type may also be declared to be the
owner record type of an arbitrary number of set
types. For each set type of which a record occur
rence r is an owner, we include in r the keyword

<SET.set-type, OWNER>

where set-type is the name of the set type.

(b) Set Ordering

In the CODASYL system, the logical position
of a member record within a set occurrence may
also be considered to be of significance. The
member records may be ordered in two different
ways. The ordering may be based on the order of
insertion of a new entry into a set type and also
on the current record of the set type. In the
second method, the ordering is based on certain

sort keys of the rn~nber rl'cords.

ln case the set ordering of n given set type
is to be determi.ned by the order of insertion of
record~ (such as when order is declared to be
NEXT, PRIOR, FIRST or LAST), then a sequence num
ber may be assigned to the member records of each
set occurrence. The sequence number s. of the·
i-th member is such that s. < s foril <- i' < n-1]_ i+l - - '
where n is the total number of members in the set
occurrence. The assignment of sequence members is
fairly straightforward, as shown in [9]. It may
only be required to examine the sequence numbers
of the two records adjacent to the record to be
inserted for determining its sequence number.
Once the sequence number of a record within an
occurrence of a given set type is decided the
number is stored as a keyword of the reco;d in the
form:

<SET-POSITION.set-type, sequence-number>.

In case a set occurrence is to be sorted by
some data items, then no special keyword need be
included to represent the order. By using the
hardware sorting module of DBC, records of the set
occurrence may be sorted on their way to the
front-end computer.

4.4. Type-D Keywords and Clustering

The choice of type-D keywords is always based
on the type of keywords that appear in a query.
Every query conjunction should have at least one
predicate that consists of a type-D keyword. If
this condition is not satisfied, then the query
can be answered only by exhaustively searching
every disk cylinder of the mass memory. With the
requirements of data manipulation in mind we have
decided on type-D keywords as all those that have
one of the following attributes:

(1) TYPE
(2) AREA
(3) 1-NUMBER.

Some type-D keywords will also be made
clustering keywords. We will primarily be inter
ested in clustering set occurrences, since set
traversal is the most important operation in a net
work databai;e.

(a) Clustering Method I

We may cluster by 1-numbers, because all mem
bers of a set occurre'nce have the same 1-number if
the location mode of the member records have been
declared to be via that set. Thus an entire set
occurrence will be accommodated in as few cylin
ders as possible.

(b) Clustering Method II

A second clustering method is to cluster pri
marily by record type and secondarily by 1-number.
Thus all occurrences of the same record type will
be placed in as few cylinders as possible. For
example, if a record type R has 10,000 occurrences
and each cylinder can accommodate 2,000 of them,
then it is conceivable that only 5 cylinders will

contain all the occurrances of R. Clustering sec
ondly by L-number will normally ensure that all
occurrences of R that have the same L-number will
he placed in the same cylinder.

(c) Choice of a Clustering Method

Till' I ir»l llll•lli"d Is 11s1.•f11l wl1<'ll 111;111y rt'!'IJl«I
types are located via a single set type S. In that
case, an occurrence of S is likely to be placed in
a single cylinder because all the members of that
set occurrence have the same L-number. The second
method will place an occurrence of S in possibly n
cylinders if there are n different member record
types.

On the other hand, if a record type R has a
location mode direct or calc and is declared to be
a member of a set type S, then the second method is
far better. In the first method, a set occurrence
of S is likely to be scattered over many cylinders,
a number not much smaller than the number of
records in that set occurrence. In the second
method, a set occurrence of S will spread over
approximately m cylinders, where mis the number of
cylinders required to contain all the occurrences
of record type R, and this number is likely to be
much smaller than the number of member records in a
set occurrence.

Tn conclusion, we shall use the second
clustering method. We note that conventional
lmplementations of CODASYL databases do not
cluster by record type, because the database keys
are user-specified when the location mode is
direct. Thus, traversing a set type S, whose mem
bers do not have a location mode via S, will re
quire many more accesses in a conventional CODASYL
database system than in DBC.

4.5. Directory Storage Requirement

Directory entries are stored in the DBC
structure memory for every type-D keyword. Our
choice of type-D keywords is directed towards ef fi
cient processing of data manipulation operations
and also towards minimizing the directory memory
requirement'. What follows now is a gross analysis
of the directory storage requirement for a CODASYL
database. As we shall see, this requirement is
indeed small.

Let the database consist of r record types, a
areas and n cylinders. Let m = n/r. We shall then
use mp L-numbers where p is a small number greater
than 1. Let us further assume, for simplicity,
that each type-D keyword requires four bytes of
storage and each cylinder number can be repre
sented in two bytes.

Each directory entry will consist of a type-D
keyword and one or more cylinder numbers. Since we
cluster records by their types, all records of a
given type will be accommodated in n/r cylinders on
the average. Since we cluster secondarily by L
numbers, all records with a given L-number will be
spread over r cylinders (because all record occur
rences of the same type and same L-number will
possibly be clustered within a single cylinder).
If record types do not, in general, span more than
a single area, then we may expect r/a record types
to be assigned to each area. Therefore, each area

ll7

will be spreRd over (n/r).(r/a) = n/a cylinders.
Thus, undc'r the above assumption, records are
automatically clustered by area as well.

W<· tnbulatc lwlow thL' lnL'lll(lry requi.remcnt ror
storing the directories in the structure memory.

"-~- - --· - - .
Type of No. of No. of Tota.I directory
keyword such cylin- memory requirement

keywords der re- (in bytes)
in the ferences
di rec-
tor:Y_

TYPE r n/r r(4 + 2n/r)

AREA a n/a a(4 + 2n/ a)

L-NUMBER npjr r (~/r) (4 + 2r)

Thus, the to~al directory memory requirement is

(4r + 2n) + (4a + 2n) + (4np/r + 2np)

2(2a + 2r + 2n + 2np/r + np) bytes.

As an example, if the database con.sis ts of
10,000 cylinders, 10 areas and 100 record types
and if p is chosen to be 5, then the directory
memory requirement is approximately 143,000 bytes.
This is an extremely small fraction of the database
size. In fact, if ihe cylinder size is 106 bytes,
then the directory memory size is less than 0.01
percent of the size of the database.

5. Query Translation

Even though CODASYL operations work on a
single record at a time, it is still possible to
take ad,·antage of DBC' s content-addressability and
parallel read-out capability by simultaneously
accessing all records having the same property
(such as, all records belonging to the same set
occurrence). Since user transactions tend to
request groups of related records (notwithstanding
the use of single-record commands), the DBC capa
bilities account for a large saving in the number
of database accesses.

User programs issue CODASYL data manipulation
language (DML) statements, which are routed to the
database interface (DBI). The DBI, in turn, trans
lates the DML statements into equivalent DBC
commands for execution by DRC.

5.1. Organization of the Database Interface (DBI)

The overall organization of the DBI is de
picted in Figure 2. The DML statements issued by
a user program are passed on to the DBI which con
sists of a DML translator, a system buffer manager,
a system buffer (ISB) and several auxiliary data
structures. The DML translator (DMLT) translates
DML statements into DBC commands and monitors the
execution of these commands by DBC. The system
buffer manager (SBM) does the buffer storage
management in the front-end computer. Auxiliary
data structures, the set information table (SIT)
and the area information tables (AIT) serve to
improve the system performance. The motivation
for and the organization of SIT will be discussed
later. The current-pointer (C-P) is th~ buffer

118

address of the current record occurrence of the
run-unit.

Ex.1st mg
Software

New
Software

I DBI I

DBI
SBM
DBC
C-P

Users
Programs

or
Run-Units

Buffer
Area

IJSBI

(a Front-End Computer)

Database Interface Module
System Buffer Manager

The Database Computer
Current- Pointer (pointer to the
current record of the run~unit)

0 Proqrom Module

D Tobie or Buffer

- ---~ lnformot1onFlow

-~~-,--!
Commands

DSC

DSC

Records

(a Back-End)
Computer

OMLT: DML Translotor
CIT Currency Indicator Table

SIT Set Information Tobie
ISB: Interface System Buffer
AIT: Area 1r.;ormat1on Tables

Figure 2. The Database Interface, DBI

One record occurrence of each record type can
be made available to the user in an area called
the user working area (UWA). The UWA has just
enough space to accommodate an occurrence of each
record type. The portion of the UWA reserved for a
given record type is commonly referred to as the
UWA for that record type. The user can directly
manipulate any data in his UWA. To fetch a record
from the database, the user issues a get call. It
is intercepted and processed by the DBI; an
appropriate record occurrence is then placed in
the ffi.JA by the DBI.

The current records (of run-unit, set types,
etc.) are established by the run-unit using DML
find statements. The DBI stores currency informa
tion in the currency indicator table (CIT). The
information maintained in the CIT consists of:

(1) For each area:
a) area name
b) record type of the current record of

the area
c) L-number of the current record of the

area
d) database key of the current record of

the area.

(2) For the run-unit:
a) record type of the current record of

the run-unit
b) L-number of the current record of the

run-unit
c) database key of the current record of

the run-unit.

(3) For each record type:
a) record type
b) L-number of its current occurrence
c) database key of its current occurrence.

(4) For each set type:
a) set type
b) information about the current record

of the set type
i) whether current record is a

member or the owner
ii) record type of current record

iii) L-number of current record
iv) database key of current record
v) position information about

current record
vi) owner record type

vii) L-number of the owner
viii) database key of the owner

5.2. The Set Information Table

A great majority of the time, the user appli
cation program of a conventional CODASYL system
may be traversing one or more set occurrences.
Typically, a run-unit may traverse through set
types in a hierarchical order as illustrated in
Figure 3, where each of three different set types
have only one member record type. More specif
ically, the set type SETX with owner type A and
member type B has currently three set occurrences
labe 1 ed Xl, X2, and X3 in the database. SETY has
only two occurrences and SETZ has three. The user
application program may perform the following
travL•rsal routine. The set occurrence X2 is
obtained directly by locating the owner record
occurrence a2. X2 is now completely traversed by
accessing every member bi in X2 and by traversing
every occurrence Yj of SETY in which bi is an
owner. While traversing an occurrence of SETY, in
turn, every member ck in that occurrence is
accessed and every occurrence Zm of SETZ in which
ck is an owner is also travers~d. Thus the
traversal order is the following sequence of set
occurrences: X2, Yl, Zl, Z2, Y2, Z3. In imple
menting this traversal sequence we will have in
the buffer complete set occurrences, at most one
of each set type. The buffer will have set occur
rences as shown below at different stages of
processing:

Stage 1. X2 process b6, b7
Stage 2. X2, Yl process cl
Stage 3. X2, Yl, Zl process dl, d2, d3, d4
Stage 4. X2, Yl process c2, c3, c4
Stage· 5. X2, Yl, Z2 process dS, d6
Stage 6. X2, Yl process cS
Stage 7. X2 process b8
Stage 8. X2, Y2 process c6, c7
Stage 9. X2, Y2, Z3 process d7, d8, d9
Stage 10. X2, Y2 process c8, c9, clO
Stage 11. X2 process b9

XI

X2

X3

YI

Y2

ZI

Z2

Z3

~ ::::
SETX: Owner Type A, Member Type B

b7

~
b8

SETY: Owner TypeB,Member Type C

~ + VV1
c7

~
SETZ: Owner Type C, Member Type 0

Figure 3, Example of Set Traversal

To traverse a set occurrence, the application
program must name it the current set occurrence.
Thus at stage 5 of the above buffer configuration,
X2, Yl and Z2 are the current set occurrences of
SETX, SETY and SETZ, respectively.

The set information table (SIT) is used in
order to keep track of the buffer (ISB) informa
tion related to set occurrences. Accesses to the
database can thereby be saved if any necessary
record is already existent in the buffer storage.
The SIT will have an entry for every set type in
the database, to indicate whether its current set
occurrence resides in the buffer or not. An entry
of the SIT consists of the following:

(1) Set type
(2) Pointer to owner of current set

occurrence -- null if current set
occurrence is not in the buffer

(3) Pointer to current record of the
set -- null if current set
occurrence is not in the buffer

(4) Record type of member record -
valid only if all occurrences of
a single member record type (and
no other) of the current set
occurrence is in the buffer

(5) Number of member records in the
set occurrence as stored in the
buffer.

The pointers are buffer addresses, where
entire set occurrences are stored in consecutive

ll9

locations. The member records are ordered nnd the
logicctl adjacency is reflected in physical
adjacency. In cnse physical adjacency cannot be
maintained, pointers (links) are employed. If the
current occurrence of a set' type is in the buffer,
then its owner rerord contains information on its
clatah;isc' key and 1.-numhvr. Tlw fourth item of :in
entry in the SET is useful, when n user is inter
ested in traversing the occurrences of only a
particular member record type in a set occurrence;
but it is not concerned with the other member
record types. In this case, the DBI will retrieve
only that part of the set occurrence which consists
of member records of the specified type, thus pre
venting a wastage of buffer space and the time re
quired to order unnecessary records.

5.3. Retrieving Entire Set Occurrences

If an entire set occurrence is needed, a
general procedure to retrieve the set occurrence
is given below. The identification of the set
occurrence (owner-type, owner-db-key, owner-L
number) is provided to the routine. The given set
type is S.

(1) Let R1 , R2 , ... , Rn be the member record

types of S whose location modes are via
set type S. Any occurrence of these
record types will have an L-number which
is the same as that of its owner. Let
Rn+l, ... , Rm be the other member record

types of set type S.
(2) The required set occurrence is now

retrieved as follows.
(i) For each record type Ri' 1 Si 2 n,

issue the following command to DBC
"retrieve all records that satisfy
<TYPE=R.> A <L-NUMBER=owner-L
number>1A <SET.S=owner=db-key>".
(This usually requires one database
access for each record type, due to
clustering by record type and L
number.)

(ii) For each record type Ri, n+l S i < m,

issue the command "retrieve all
records that satisfy
<TYPE=Ri> A <SET.S=owner-db-key>".

(This may require more than one
access, since secondary clustering
information can not be used.)

In the above procedure, the entire set occur
rence is retrieved, except the owner record occur
ren~e. Normally, the owner record occurrence will
already be present in the buffer. If it is
necessary to retrieve the owner record occurrence
as well, then issue an extra command to DBC to
"retrieve the record satisfying

<TYPE=owner-type> A <L-NUMBER=owner-L-number>

A <DBKEY=owner-db-key>".

5.4. Traversing Set Types

Conventionally, a set type is traversed by
executing a sequence of DML find statements of the
form

120

FIND NEXT (or PRIOR, or LAST, etc.) RECORD
OF SET set-name.

Statements of this type retrieve the database key
of the next or prior record with respect to the
current record of the specified set, or they
retrieve the n-th record (which may be first or
last or any position) of the current set occur
rence of the specified set. Another version of
this find statement also indicates a member record
type (e.g., find the tenth record of type R in the
current set occurrence of set type S).

Because of the set information table (SIT)
and because of the fact that we may retrieve
entire set occurrences into the buffer, set tra
versal by using a succession of find statements of
the above type will mostly involve sending a
record from the buffer to the user application pro
gram in the new database interface (DBI) environ
ment. Only when the required set occurrence is not
already in the buffer, must a command be sent to
DBC to retrieve that set occurrence.

To execute a find statement for traversal of
set type S, the following procedure may be invoked:

(1) From the currency indicator table (CIT)
determine the owner record occurrence of
the current record occurrence of S. Let
it be identified by

(owner-type, owner-L-number, owner-db-key).

(2) Use the pointer in the SIT to determine if
the current set occurrence is in the
buffer.

(3) If the current set occurrence is in the
buffer, then go to step 5; otherwise,
fetch that set occurrence.

(4) Update the SIT to indicate the fact that
the current set occurrence is now in the
buffer.

(S) Find the new current record of the set.
It is already in the buffer.

(6) Update the currency indicator table (CIT).

S.S. Retrieving a Record or a Group of Records

The user application program may have one or
more DML find statements in order to select a

,record or a group of records with some given pro
perty. The simplest type of find statement is the
one in which the user specifies a record type R and
a database key D. In this case the location mode
of the record is direct. Retrieval of such a
record can be done by using the query <TYPE=R> A
<DBKEY=D>. However, records are clustered also by
their L-numbers. Hence the above query may re
quire a search of more cylinders than actually are
required, although record type is an attribute of a
type-D keyword. We, therefore, compute 'the L
number L of the record occurrence from its data
base key by hashing, as described. The revised
query, then, is <TYPE=R> A <DBKEY=D> 1\ <L-NUMBER=L>.

Another find statement requires locating the
owner record occurrence of type R in set type S,
the occurrence of which is determined by the cur
rent record of a set X (or of a record type R1 or

of an area A or of the run-unit). The following

steps may be performed to find the required owner
record S.

(1) From the CIT entry for set X (or record
type R1 , or area A'or run-unit), extract

the L-number L, the database key D and
record type R2 of the current record.

(2) Issue a command to the DBC to "retrieve
the record satisfying the query

<TYPE=R2> A <L-NUMBER=L> A <DBKEY=D>".

This retrieves the current record occur
rence r of set X.

(3) From record r, extract the keyword with
attribute SET.S, whose value is, say,
owner-db-key. Also extract the keyword
with attribute OWNER-L-NUMBER.S, whose
value is, say, owner-L-number.

(4) The required owner record occurrence of S
is now retrieved by using the query

<TYPE=R> A <L-NUMBER=owner-L-number> A

<DBKEY=owner-db-key>.

Another type of find statement locates an
occurrence of record type R, whose location mode is
calc. The data items dl, ... , dn specified in the
location mode clause are initialized by the run
unit and stored in the user working area (UWA).
The user may retrieve all occurrences of type R
that have the same values for the data items dl,
d2, ... , dn by executing a sequence of find state
ments of this type, but qualified by the next
duplicate-within clause; for example,

FIND NEXT DUPLICATE WITHIN RECORD TYPE R.

Such a sequence of find statements can be
very easily executed, and, in fact, in only a
single access to the database. By hashing the
data items dl, .•• , dn, determine an L-number L.
Now issue a retrieval command to DBC based ·on the
query

<TYPE=R> A <L-NUMBER=L>

A <RECORD.dl=value-of-dl> A

A <RECORD.dn=value-of-dn>.

All the required records have the same values for
L-number and the specified data items. Thus, they
are all retrieved simultaneously. Only a single
access will be required because of clustering
based on record type and L-numbers.

Finally, we shall consider a find statement
in which a set name S and the values of certain
data items dl, ••. , dn are specified for a record
type R. An occurrence of S is selected based on
either the current record of the set or the set
occurrence selection criterion for S. A member
record occurrence of type R is now to be located
that has given values for data items dl, •.• , dn.
To execute such a statement, an occurrence s of
set S is first selected. Let this occurrence be
identified by the owner record with L-number L and
database key D. The required member record occur
rence in this set occurrence is found by using one
of the two following queries depending on whether

the location mode of R is via the set S:

(i) If the location mode of R is via S, then
the L-numher of the required member
record occurrence is the same as that of
its own(er. Therefore, use the query

<TYPE=!\> /I <L-NUMBER=L> /I <SET.S=D>

/I <RECORD.dl=value-of-dl> ii

/I <RECORD.dn=value-of-dn>.

(ii) Otherwfae, the L-number of the member
record occurrence is not known, so, use
the query

<TYPE=R> /I <SET.S=D>

/I <RECORD.dl=value-of-dl> ii

/I <RECORD.dn=value-of-dn>.

Th{s query will, in fact, retrieve all records of
the set occurrence s that contain the specified
data items. Thus any subsequent find statement
requesting duplicates can be executed without
further references to the database.

5.6. Relative Performance

The DBC implementation of a CODASYL database
contributes to a large gain in performance over a
conventional in~lementation. Because of the limi
tat.ion of space, we shall provide only a first
order estimation. For more thorough analysis of
the performance issue, the reader may refer to the
methodology presented in [10], [11]. In terms of
the number of database accesses required to
execute a user transaction, the DBC performance
gains are due to the following:

(1) A disk cylinder, which is at least 40
times as big as a page of a conventional
system, can be content-searched by DBC in
a single revolution.

(2) The clustering policy of DEC allows all
occurrences of a record type to be placed
together. In other words, the member
records of a set occurrence are no longer
scattered over many physical blocks;
instead, they actually lie close to one
another.

In locating a single record based on its data
base key (if location mode is direct) and based on
its calc keys (if location mode is calc), DBC per
forms at least as well as a conventional system
because of the policy of determining L-numbers
based on location mode. Since the record type and
L-number of the target record will be known, DBC
will usually require only one access to the
database.

More frequent, however, is the operation of
searching a record based on its participation in
set types. To find an arbitrary member record
satisfying a given predicate, a conventional
system will have to go through n/2 other member
records, on the average, if the corresponding set
occurrence has n member records. This calls for
approximately n/2 page accesses if the set occur
rence is not clustered (i.e., the location mode of
the member records is not via that set). It will

121

require about n/(2p) page accesses if the set
occurrence is clustered and a page can accommodate
p records.

ln DBC, however, thJ same search for a
recorcl among n member records of a set occurrence
wi 11 req11ire approximntcly m/c cylinder accesses
if t Ill' SL't <H'currL'rH'l' is not t' l t1stPrl•d, .:-1n<l about
n/ c cy I inder ncccHscs i r Litt' set occurrence is
clustered. Here, m is the total number of occur
rences of the member record type and c is the
cylinder size in terms of records. In the second
case, the members of the given set occurrence have
the same L-number. Since these records are
clustered by record type and L-number which are
both known, only n/c accesses will be necessary.

Since the page size p is at least 40 times
smaller than the cylinder size, DBC will perform
about 40 times better when n is large and the set
occurrence is clustered. If the set occurrence is
not clustered, then DEC will perform 10 to 100
times better for reasonable values of n, m and c.

A very frequent operation on a CODASYL data
hase is the traversal of set types. The user
normally navigates through the database via set
types. Quite frequently, the system may also have
to go through set types, for example, to carry out
an update. It is easy to observe that DBC per
forms as well in traversing a set type as it does
in locating a member record within a set type.

\-le have not mentioned in this paper how DBC
performs updates. The algorithms for database up
date will be found in [9]. All updates are pre
ceded by a database search, which is conducted
very efficiently by DBC. In the actual update
operation, DBC performs many times better than a
conventional system if the update calls for auto
matic set traversal.

6. Concluding Remarks

We have presented in this paper a methodology
for the implementation of a CODASYL database on a
database computer, DBC. Since DBC can content
search one cylinder at a time and the CODASYL
database is clustered, most access requests can be
satisfied in as few cylinder accesses as possible.
The parallel read-out capability of DEC is used
for accessing entire set occurrences or groups of
related records. Since the information content of
these records is partially known to DEC, they can
be effectively used in carrying out future DML
requests.

A first-order estimation indicates that the
performance of DBC is one or two orders of magni
tude higher than conventional systems. This is
due to the effective use of DEC hardware and
choice of proper data clustering strategy. Thus,
DBC can be used in supporting a CODASYL database
and replacing the conventional CODASYL data
management system with improved performance.

References

1. Baum, R. I., and Hsiao, D.K., "Database Com
puters - A Step Toward Data Utilities," IEEE
Transactions on Computer, Vol. C-25, No. 12,
Dec. 1976, pp. 1254-1259.

122

2. Hsiao, D.K., and Madnick, S.E., "Data Base
Machine Architecture in the Context of Infor
mation Technology Evolution," Proceedings of
the Third International Conference on Very
Large Data Bases, Japan, Oct. 1977.
(Available from either ACM or IEEE Computer
Society.)

3. Banerjee, J., Baum, R.I., and Hsiao, D.K.,
''Concepts and Capabilities of a Database ·
Computer," ACM Transactions on Database
Systems, (to appear) Vol. 4, No. 1, March
1979.

4. Hsiao, D.K., and Kannan, K., "The Architecture
of a Database Computer - A Summary," Proc. of
the 3rd Workshop on Computer Architecture for
Non-Numeric Computation, Syrac.use, May 16-17,
1977. (Available from ACM.)

5. Kannan, K., Hsiao, D.K., and Kerr, D.S., "A
Microprogrammed Keyword Transformation Unit
for a Database Computer," Proceedings of the
Tenth Annual Workshop on Microprogramming,
Oct. 1977, Niagara Falls, New York, pp. 71-79.

6. Hsiao, D.K., Kannan, K., and Kerr, D.S.,
"Structure Memory Designs for a Database
Computer," Proceedings of ACM '77 Conference,
Oct. 1977, Seattle, Washington, pp. 343-350.

7. Kannan, K., "The Design of a Mass Memory for
a Database Computer," Proceedings of the
Fifth Annual Symposium on Computer Architec
ture, April 1978, Palo Alto, California,
PP,-44-51. (Available from IEEE Computer
Society.)

8. CODASYL Data Base Task Group Report, April
1971, ACM, New York.

9. Banerjee, J., Hsiao, D.K., and Kerr, D.S.,
"DBC Software Requirements for Supporting
Network Databases," Technical Report OSU
CISRC-TR-77-4, The Ohio State University,
Columbus, Ohio, June 1977.

10. Banerjee, J., and Hsiao, D.K., "The Use of a
Database Machine for Supporting Relational
Databases," Proceedings of the Fourth Work
shop on Computer Architecture for Non-Numeric
Processinw, Syracuse, New York, August 1-3,
1978.

11. Banerjee, J., and Hsiao, D.K., "Performance
Evaluation of a Database Computer in Support
ing Relational Databases," Proceedings of the
Fourth International Conference on Very Large
Data Bases, Berlin, Germany, Sept. 13-15,
1978.

P A R T I I I

AN IMPLEMENTATION OF DBC

EVOLUTION OF A DATA BASE COMPUTER

O.H. Bray, H.A. Freeman, and J.R. Jordan
Sperry Univac

St. Paul, Minnesota 55165

1. INTRODUCTION

Data Base Management (Software) Systems (DBMS's) have as
their basic objective the improvement of an organization's
control and utilization of its data resources. This goal is met
by improving the availability, integrity, and security of the data
base. With current computer systems, however, trade-offs
must be made among the various DBMS objectives. Basically,
the trade-off decision is between performance and
functionality. Regarding performance, both response time and
throughput are critical and must meet the users' requirements.
Functionality covers :wailability, integrity, and security.
Unfortunately, increased functionality is obtained only at the
expense of performance. With data inaependence, far
example, the DBMS translates the data automatically from its
stored form ta the form that the user expects. The result is
that the system is easier to use, allowing the data to be
restructured and modified without having to change the
application programs. This automatic data translation,
however, requires additional processing time and storage, thus
directly affecting both response time and throughput. From
another perspective, however, this performance versus
functional;ty trade-off is simply the question of machine
efficiency versus people efficiency. Considering the dramatic
decreases in hardware costs as opposed ta the rapid
increases in personnel casts, the direction of this trade-off is
apparent.

One means of using hardware to improve the performance of
current Data Base Management (Software) Systems while
rifferiny increased functionality to reduce labor costs is with a
data base computer (hardware) system. Using such new
technologies as LSI, VLSI, microprocessors, magnetic bubble
memories, and charge-coupled devices, data base computers
are well-suited to the information °torage and processing
needs of the 1980's. In addition to offering improved
performance, these special purpose computers free the
general purpose host's resources for other tasks, provide a
hardware assist to the security problem, and offer a more
effective way of sharing data in a network.

Sperry Univac is investigating various ways of improving Data
Base Management System performance and has several
research efforts in this area. This paper describes the results
of one of these research efforts.

2. PREVIOUS APPROACHES

Two different approaches to a data base computer system
have been proposed and implemented to date. The first is to
off-load the DBMS from the host onto a general-purpose
minicomputer. Although construction of this type of system
has proven feasible, the performance benefits are not
realized. 1 The main reason for this lack of performance
improvement is due to the use of conventional sequential
processors to perform data management functions without
any hardware assists.

J23

The second approach is to use specialized devices to perform
part or all of the data management tasks. ICL has the only
announced product to date in this area with their Content
Addressable File Store (CAFS). 2 ICL combined a minicomputer
with special selection logic to offer high speed selection of
records based on content. CAFS is an outgrowth of the three
basic specialized proces:;or approaches, CASSM 3 , RAP4. and
the DBC5 .

Of the three basic data base computer architectures, DBC
appeared the most attractive from a commercial computer
company's point of view. CASSM is based on a disk
technology that apparently will be obsolete in the 1980's.
Also, in requiring read and write heads for every !rack,
CASSM would be very expensive in supporting large data
bases. RAP also appears viable for only very small data bases.
Also RAP may require an extensive amount of staging which
may be a severe bottleneck. In addition to attempting to
avoid these problems, DBC is the only data base computer
that claims to support CODASYL as well as Relational DBMS's
Since all of Sperry Univac's current data base management
users have a CODASYL implementation 6, this is an extremely
attrac:ive feature.

3 CURRENT APPROACH

In order to confirm the benefits of the DBC approach and to
determi;ie what the functional requirements of a data base
computer should actually be, an application investigation and
analysis effort was first undertaken A sample of the
designers and users of data base applications was polled and
the responses to specific questions were recorded. The
application areas covered ranged from the transaction only,
fast response time, simple access method airline reservations
applications to the heavily batch-oriented subscriptions
processin\} applications. The results of the survey and the
subsequent analysis proved to be quite useful in establishing a
set of requirements for a data base computer. 7 It showed that
DBC's proposal to cluster data in large blocks corresponding
to a cylinder on a moving-head disk would be most efficient
for most applications. It brought out the fact that most
applications do not limit the number of people allowed to
update. Finally, the survey showed that many of Sperry
Univac's DBMS users would have data bases in the 10 to 50
billion byte range in the 1980's.

With the data base computer system requirements formulated,
the DBC design was then revised and extended. The basic
approach of accelerating both retrieval of the directory
information and the data remained the same. Parallel transfer
of large blocks of data which are then processed in parallel on
a content-addressable basis is the key to this design. To this
capability. interprocessor communication was added to allow
far the "full" relational Join and for complete sorts. Also, a
solid state associative processing element was invented in
order to identify unique search key and sort field values
Described in the followinq section, the resulting design
appears to offer significant performance improvement at a

relatively modest cost.

124

4. DATA BASE COMPUTER DESIGN

4.1. ARCHITECTURE

The architecture of the extended Data Base Computer is
shown in Figure 1. In the original DBC design, two loops
were used for processing commands or queries. The data
loop elements accessed and stored the data base and
post-processed retrieved records. The structure loop
elements determined the authorized records for accesses and
clustered records to be inserted in the data base. Since the
functionality of both the data and structure loops utilizes the
same parallel processing techniques, this design incorporates
both of these functions into a single structure.

The Data Base Computer design has six major components:

1. Data Base Computer Controller (DBCC).

2. Processing Elements (PE's),

3. Memory Modules (M's),

4. Key Processor (KP).

5. Parallel Transfer Disk Controller (PTDC), and

6. Parallel Transfer Disks (PTD's).

These components and their interconnection are described in
the following paragraphs.

Implemented in the form of a minicomputer, the Data Base
Computer Controller accepts commands from the host. They
are either data manipulation-level commands from a
CODASYL based DBMS or high-level query type commands of

Host

K~ D~
Processor Controller

PE1

PEz

PE a

a relational nature such as Sequel8 or QLP9 commands. The
commands are then processed by the DBCC and an
appropriate set of parameters and commands is generated for
PE's, KP, and/or PTDC operations.

The data base and directory information resides on a series of
Parallel Transfer Disks. The Parallel Transfer Disk Controller
handles the transfer of information between the drives and the
buffers (M's). The PTDC provides the usual error correction,
defect processing, and other features commonly found on disk
controllers today. Both the Parallel Disks and the Controller
do not involve any technological breakthroughs to achieve
parallel transfers. Ampex Corp. has modified one of their
9300 series 300 megabyte disks to offer the transfer of up to
9 disk tracks in parallel. 10

Information from the appropriate Parallel Transfer Disk tracks
is transferred simultaneously (i.e., in one disk rotation time)
into the associated buffers (i.e .. Memory Modules). A given
Memory Module has two banks to allow overlap of input and
output operations. Each one is connected so as to serve two
Processing Elements. The Memory Modules are sized to
contain four disk track's worth of data and at least one half of
a disk track's worth of directory or "structured memory"-type
of information. For the Ampex PTO with 20 KB per track, the
M's would each contain 96 KB of random access memory.

After the Memory Modules have been loaded with a track's
worth of data, the Processing Elements (microprocessors) start
operating on the data asynchronously performing the required
functions. The odd numbered PE's and the even numbered
PE's are connected respectively together via a busing
mechanism. This interconnection of Processing Elements and
their connection to adjacent Memory Modules permits all of
the operations described in the next subsection. Data

M1

Parallel
Transfer

Mz Disk
Controller Parallel

Transfer
Disks

Ma

Mg

Figure 1. Data Base Computer Architecture

obtained from these operations is subsequently passed back
to the host or sent out to the disks.

The Key Processor (KP) is an unique element that is used to
accelerate certain data base operations by providing a
temporary partitioning of a file over an attribute value space.
As shown in Figure 2, the Key Processor consists of five major
components:

1. Control logic,

2. Search Elements (SE's),

3. Memory Modules (M's),

4. Insertion logic, and

5. Interface logic.

Control

Insertion

Mode
Execution

Interface

Figure 2. Key Processor

The Key Processor has been designed to use conventional
RAM chips in segmenting a list of search arguments by a
parallel binary search and insertion technique. When a
request from a PE arrives for the KP, the argument, x, is sent
to each SE. If the argument is already in an SE's Memory
Module, a positive response is sent to the Control logic. If a
negative response (no response) is received, the Control logic
selects a Memory Module anci initiates the insertion of x into
M using the Insertion logic.

Four modes of operation are programmed into KP in order to
perform the requested task for the Processing Elements.
These include:

1. Presence: The KP responds positively to the
requesting PE if the presented argument
is already in the KP. If the argument is
not there. it will then be inserted.

2. Entry Number: The KP assigns arrival numbers
to each unique entry and when
requested, returns the entry number to
the requesting PE.

125

3. Count: A counter associated with an argument

4. Value:

already in the KP is incremented by one.

The counter or data value of a certain
argument is returned to the requestor.

The use of these operations in functions performed by DBC is
given in the next subsection.

4.2. DBC OPERATION

In general, all of the components in DBC operate
synergistically to perform the functions described in this
subsection.

SEARCH. A cylinder slice at a time is loaded from a particular
PTO into the Memory Modules. Initiated by DBCC, all of the
PE'S search their respective M's for the records that meet the
search criteria. Using microprocessors for PE's and buffering
the information in the Memory Modules allows for search
arguments of arbitrary boolean complexity. The records that
are found that qualify are either sent to the DBCC or moved to
a different portion of the M for further processing. A diagram
of the elements involved in the search operation is shown in
Figure 3. Typically, a track's worth of information is loaded
into A,, qualifying records in need of further processing are
moved to B;, and records to be output to disks are moved to
c,.

Key Processor DBCC

1/0

Figure 3. Search

PROJECTION. This operation involves selecting only a portion
of the qualifying records. If Projection with the elimination of
duplicates is desir~d. the Key Processor in Figure 3 is
involved. In this case, the argument string of the qualifying
record is presented to KP which is operating in the Presence
mode. If the argument string is already in KP, the record is a
duplicate and discarded. Otherwise, the new string is stored
in KP and the record is prepared for output to the host or disk.

FULL JOIN. In the Full Join, a record from a relation (or file) A
is concatenated with a record from a relation (or file) B if they
have the same value of a common attribute. The Full Join is
performed in several steps. First, for each record in A, the
particular PE transmits the argument string to the Key
Processor which is operating in the Entry Number mode.
When a number, k, is returned by KP, the record is then added
to list number k in the requesting PE's Memory Module.
Second. after all of the records in A have been treated, the
records in B are processed. In this step, each of the argument
strings from the records in B are sent to KP which is now
operating in the Value mode. If the particular argument string
of the record is not in KP, the record is discarded. Otherwise,
the list number, k, containing the appropriate records to be
concatenated, is reported. The requesting PE then
concatenates the record from B with all of the records from A

]26

in its memory on list k to form a new set of records A' and
then outputs them (See Figure 41. The Full Join is still not
complete, however, at this point. The record from B also has
to be concatenated with all of the records in its adjacent
memory as well as to all of the other memories. The other
memories are reached by broadcasting the record from B to
all of its connected PE's which in turn concatenate the record
with the appropriate records from A in their own and their
adjacent memory. Thus the record from B is "joined" to all of
the records that match in all of the Memory Modules. When
all of the records from B have been processed in this manner,
the Full Join operation has been completed.

[Key Processor J
PEj l_

PEi+1 l.

PEi+2 J

Figure 4. Join

• •
L,

Aj~'i-1
Bi

C·___.___..
........,

Ai+~A'i+1
Bi+1

.___fit1_
.......,

- • • •

Ai+Z--A'i+2

Bi+...2.
Ci+2

IMPLICIT JOIN. The Implicit or Half Join selects records from
a relation (or filel A that have a common domain with records
in relation (or filel B. No concatenation is required and,
therefore, is a simpler operation than the Full Join. During the
first phase of the Implicit Join, the unique argument strings of
file A are stored in the Key Processor. In the second phase,
argument strings or values from file B are checked by KP
operating in the Presence mode. All matches with values in
KP will result in the output of records from B. Records from B
that do not have a corresponding value in the KP are simply
discarded. It should be noted that communication between
PE's is not required for this join functio11.

ADDITION. In order to add a record to a file or a tuple to a
relation, the DBCC first selects a cylinder slice which is then
loaded into the memories M's. Then on ~ space available
basis, a particular PE is chosen to insert the record into its
"track".

UPDATE. If the records from a particular file are fixed length,
the individual records can be modified in place and then
written back to the disk. For variable length records, the
changes are made to the records in one segment of the
Memory Modules as -they are copied into another segment.
When a track's worth of records has been collected in the
new segment, they are then written back to the disk.

SORT. The sorting operation is shown in Figure 5. Each PE
first does a standard sort/merge of th" contents of its own
Memory. This is followed by a merge of the contents of the
lower portion of its memory with the upper portion of its
adjacent memory. These two operations are alternated until
the file is completely sorted.

DELETION. For this operation, records are read from the
Memory Modules one at a time and tested by the PE's.
Records not to be deleted are then copied to the output. The
Key Processor can also be used in this operation. In this case.

• .
• • • •

PEi-1
IE

0 L{~B Mi-1

~:f~B PE; Mi

PEi+1
0 HLB

Mi+1
E L H

• H •
0: Sort/Merge own records

E: Sort/Merge own and neighbors' records

Figure 5. Sort

the search keys of the records to be deleted are stored in KP
and tests against them are made .

More complex operations such as Divide or Set Intersection.
involving multiple Joins or Projections, a;e also possible. In
performing joins or projections, the situation may arise wtiere
the memory space in the Key Processor becomes full. If this
should occur. each PE continues to process its segment until
the end but will place each record that does not fit in KP on
an overflow list. When all the PE's have completed this
operation. the KP's memory space is cleared and the overflow
records are processed. For those cases where the key value or
attribute string is too large to fit into KP. the value is hashed
to a value that will fit. KP in this case, is put in the Entry
Number mode and the number is reported back to the
requestor. The actual value is then placed on the list
corresponding to the number that KP returns. In subsequent
operations when the actual value is needed, the appropriate
list is traversed to obtain this value. Thus, Key Processor can
also be used as a hashing aid.

5. DATA BASE COMPUTER STATUS

The Data Base Computer described in the previous section
performs all of the functions required to support a CODASYL
or Relational Data Base Management System. In addition to
the functionality offered, users of these systems require the
capability to rollback the data base to a previous commit point
anu to recover from errors and system failures. These
rollback and recovery features are currently being designed to
be incorporated into DBC. Techniques similar to those used in
current DBMS's appear appropriate here. 11 An audit trail tape
may be connected to the DBC Controller to hold copies of the
data to be changed and the changes requested.

Although corrupted data will always occur due to user or
program errors, the effects of hardware failures can be
reduced through the use of fault tolerant techniques. Since
DBC is constructed from sets of identical hardware modules,
additional modules can be added as spares and switched into
operation when a failure in an existing module is detected.
One such "failure tolerant" configuration is shown in Figure 6.
In this case, any number of spare PE's and M's may be added
and interconnected as shown. To ensure that there is no
single point of failure in this system, DBCC. PTDC, and the
interconnecting buses would all have to be replicated.

Another research effort now in progress is directed toward
determining the types of configurations and situations in
which the Data Base Computer would be used. For large
scale host systems (1100's, 370's, etc.I. DBC would probably

Key
Processor

PEg

I I
I I
I I

L:i PES1

I

Host

DBC
Controller

Parallel
Transfer

Disk
Controller Parallel

Transfer
Disks

127

Figure 6. Failure Tolerant Configuration

be constructed as previously descrilied in this paper. l'l order
to reduce the cost of DBC for use with minicomputer hosts,
the Controller portion may be implemented as software in the
host. For an end-user facility, communication hardware may
be added. In any case, the modularity of DBC lends itself to
incorporation over a wide range of system configurations.

Currently, a second round of research effort is occurring.
Modifications that may be necessary to support the previously
discussed extensions are being investigated. Components,
such as microprocessors for the PE's and random access
memory chips for the M's, are being selected. The software
structure and DBC operation algorithms are being prepared.
Finally a performance model is being constructed to simulate
the operation of OBC to confirm the analytic calculations of
from one to two orders of magnitude performance
improvement over current DBMS's operating on general
purpose computers.

6. CONCLUSION

Initial investigc.tion found that the original Data Base
Computer approach5 to be most appealing in light of Sperry
Univac's need to support existing customers' data bases and
applications while at the same time offeriny them
cost/performance improvement and additional capabilities.
Analyzing current users applications and projecting their

future needs resulted in a set of functional requirements for a
data base computer. Applying these requirements to the
proposed design5 resulted in a revised architecture that
offered the benefits sought at a price and level of complexity
that is extremely attractive. Improvements to the design to aid
in recovery operations and the performance modeling should
be complete by the time this paper is published. The result
should be a special purpose computer that will significantly
improve the users ability to mange the ever growing body of
data chJracteristic of our modern technological society

1. Leavitt, D.. "Two-Year Project Pays Off 'Back-End'
DBMS Succeeds," Computerworld, Feb 20, 1978, p. 1.

2. Verity, J., "Data Base Growth Spurs Back-End Unit
Evolution," Electronic News, Mar. 20, 1978, p. 36.

3. Su, S. Y. W. & G. J Lipovski, "CASSM: A Cellular
System for Very Large Data Bases," Proceedings
International Conference on Very Large Data Bases,
Sept. 1975, pp. 456-472.

4. Ozkarahan, E. A., S. A. Schuster, & K. C. Smith, "RAP -
Associative Processor for Data Base Management,"

J28

AF/PS Conference Proceedings, Vol. 44, 1975 NCC,
June 1975, pp. 379-388.

5. Banerjee, J. & D. K. Hsiao, "DSC - A Database
Computer for Very Large Databases: IEEE Transactions
on Computers. C-28, No. 6, June 1979.

6. Sperry Univac, Data Management System (OMS 1 IOOJ
UP-7907 Rev. 3, 1977.

7. Bray, 0. H., & H. A. Freeman, "Data Usage and the Data
Base Processor." Proceedings ACM '78. Dec. 1978, pp.
234-240.

8. Chamberlin, D. D., & R. F. Boyce, "SEQUEL: A Structured
English Query Language," Proceedings ACM Workshop

on Data Description, Access, and Control 1974, pp.
249-264.

9. Sperry Univac, Query Language Processor (QLP 1100J
UP-8231 Rev. 1, 1977.

10. Ampex Corp., PTD-930x Parallel Transfer Drive. Product
Description 3308829-01, Oct. 1978.

11. Sperry Univac. Data Management System (OMS 1100)
System Support Functions, UP-7909 Rev. 4, 1978.

