

CRC 102-A
NOTES ON FLOW DIAGRAM

The CRC 102-A is a general purpose computer combining a magnetic
memory, electronic arithmetic units, and electro-mechanical input-
output devices, Computations are made by use of coded programs
entered into the main memory in the same manner as the initial data
that is to be operated on, There are twenty-five arithmetic,
logical, and input-output commands with a mean total time of 60
milliseconds per arithmetic or logical command. Each command is
identified by special binary coding which select certain wien os

blocks of the arithmetic unit.

The main memory has a capacity of 102); words (where a word means a
number or a command), Each word is contained in a "cell" each of
which is numbered from 0000 to 1777 octally consecutively, There is,
in addition, a register of eight cells which is used as a buffer
register for input-output devices and for a quick access memory
during computation. Each cell consists of a word time of 2 binary
bits. For convenience these };2 bits are broken down in the computer
basic timing into 1) octal digits, All numbers to be operated on
must be in the octal notation and consist of a two digit sign and
overflow position at the high order end of the word followed by the
number of twelve digits magnitudes” A command consists of a two '

digit instruction followed by three four-digit addresses of the cells
of the numbers to be operated on, These four-digit addresses are
titled from left (MSD) to right (LSD) my mo, and m3.

Numbers may be entered in the decimal form as well as in octal but
it is necessary to convert them by a subroutine during computation
to standard binary notation before they may be used in the arithmetic
unit of the computer, Decimal numbers consist of a sign digit and
nine decimal digits for magnitude, All numbers are considered as
binary fractions with the binary point to the left between the sign
and the magnitude of the number, With this fixed point convention
any operation which results in a number greater than unity will
result in an overflow which will stop the computer unless an overflow
is anticipated and the computer is instructed to ignore or correct
the overflow.

The filling of the initial numbers and instructions may be accomplished
manually on a Flexowriter or by the use of Flexowriter paper tape.
During compute additional data can be filled from the Flexowriter
paper tape unit, magnetic tape units or from an IBM Summary Punche
The contents of any cell on command may be printed out on the Flexo-
writer, perforate in tape on the Flexowriter, read out into magnetic
tapes or punched in IBM Summary Punches,

All operations performed in the 102-A whether fill, arithmetic,
logical, or input-output, make use of four one word recirculating
memories, E, F, G, and H, ten arithmetic flip-flops A, through Ajo,
one control. flip-flop, K, and five channel selector flip~flops,
through Le, All recording on the magnetic memory is controlled by
two record flip-flops R, and Ro. One eight word buffer register J
is provided for input-output or for a quick access memory, Each
one word register has associated flip-flops which allow for the
logical shift of the binary number either right or left,
% We will use "digit" for octal digit; "bit" for binary digit.

: igh MOF TOE rigs
LOWED (ICH SEL MM, WAS CUD SPT (12)SCTORa, Was ~~

A oyseem:113) aoe WAS SECTOR as (/41 2H 50. bs wie japg Ls) METOR Me WASCH EL my Volt F CMO SLE uy axe papas! -
WAS SECTORMz (11) Cf To was Otho

. AR AT 3PianBoAeS
WAS "a = », AGOSate MLE Se ex BRR] Le |e

Mo's, 3 FO: ?

B46 se Be a
es 6

tm ta ex st

6

Alphd

reta
ms

75

= Ls|
J

yes

Cd Ice
sé SET P| SET JOusity

at
Ff

734 735 737
Es ial coe (é) >)

214

EZ
70 Pe
C#

vw \ Ss 4 1s os of o-
400 401 402 403 404 #10 4/6 417 aD
ts rt wt és &l bo

6

437| ‘440| 44/ {442 443| [444 445 46 1447sR] rda ” ” “ uv u a”

0243003B

= 2 =

All addresses are located by means of a permanently recorded address
channel M, on the main memory, Digit and pulse positions are deter-
mined by a digit counter and a pulse counter respectively. These
are driven by a master clock recorded on the drum and count pulses
Po through Py and octal digits Oy through 013°

In the design of the logical networks of the 102A a rather unique
system has been developed. In this system a minimum number of
logical components has been chosen so that when properly inter-
connected by the logical diode nets they will carry out the most
complex operation which the computer is designed to perform, By
properly assigning tasks to these elements they may be made to
execute any of the operations required. Since while solving one
programmed instruction each of these components must do many varied
tasks, they must be controlled in a logical sequence during the time
the computation takes place, The controlling device is called the
program counter, The program counter determines which of a series
of operations the computer is performing at any given time, This
program counter is entirely an operational wnit of the computer and
the operator has no programmed access to it. In the 102=A an arith=
metic, logical, or an operational command is broken up into a seq-=
uence of many individual operations each of which takes place in a
period of time called one-word time (2 bit or pulse times.) During
each word time the logical units are used as directed by the con=
figuration of the program counter to perform the particular operation
of the sequence. :

Using this design method it is then possible to indicate the sequence
of operations which are performed automatically by the computer during
the execution of any single command by means of a flow chart. Each
different use of the logical units is called an operational block,
Each block is given the number which correspons to digits of the
program counter configuration which calls for the performance of the
operations designated in that block,

The sequence of the operations performed for any one given command
depends on whether the program counter counts in order from one
octal number to the next, or whether it skips to any other nonsequen-
tial number, This process of counting or skipping is controlled by
the K flip-flop which if false indicates the program counter should
add one to its value and in the next word time perform the next
operation as indicated by the network logic. If the K flip-flop is
true at the end of a word time the program counter is set up to a
new octal number as indicated by the logic of the block that it is
in, and performs a different operation, The function of each of the
operational blocks shown on the flow diagram is described in the
operations chart prepared for use with the flow diagram, The operations
chart indicates the use of all of the logical components used in each
operational block.

In the following explanations of various command and routines used
in the 102-A all commands will begin at block O and will proceed
through each operational block until the execution of the command
is completed, The basic use of all of the logical units will be
indicated and where necessary explanations will be added. In

lS “a

arithmetic and logical programs the E, F, and G registers contain
the numbers to be operated on or the results at the end of the
operation. The H register is used to locate the numbers or commands
and hold the instructions,

The address of the command to be performed is called the "Control
Number", When beginning a computation it is necessary to indicate
the address or control number of the first command to be used. The
first command can be located in any cell but the following commands
should be filled in the immediately following cells in order (except
for conditional transfers), This is because the computer, after
locating the address of the command given by the control number,
adds one to the control number to be ready for the next command.
In this manner once the initial aidress of the first command is
entered the computer will proceed with all of the filled commands
in sequence until the last instruction has been carried out, at
which time it will halt. The computer has the ability to modify
its own commands and so it is not always true that commands must
be filled in consecutively numbered cells. Non-sequential skipping
occurs in the use of Test Magnitude, Test Algebraically and Test
for Overflow and Test Switch Commands (See section on programming).

The control number is always entered in mo of the one-word register
H. This address is then looked up and the command contained in that
cell is transferred to H. At the same time a one is added to the
control number in m> of H, and H is transferred to the one=word reg=
ister G. The number whose address is now contained in m, of H is
now found and put into the one-word register E, The number whose
address is in of H is found and put into the one word register
F, The word in G is now transferred back from G, to H, This is
to clear the G register and make it available for use during comp-
utation, The H register now contains the command (operation to be
performed), the address of the number in E, the new control number
in mp and the address of the cell in which the results of the
operation are to be placed (or the optional control number in the
case of the "Test" commands) in m3. The command in the two most
significant digits of H is then tested to determine the logical
operation block in which computation should begin, The command for
any operation is in 0j9 013 of the instruction word, The proper
block to start computation is found by testing 09 0)3 of H. If H
is all 1's, then the correct block has been reached and K is left
true for a skip-out. If not, K is set false and one is added to
the command number, and is again tested. This continues until the
break-away block is reached, The command numbers are coded up so
that H will be 011111 at the proper block.

A brief description and operation of each operational block for
arithmetical and logical programs follows, All operations are
carried out by standard binary methods for addition, subtraction, and .

multiplication, Division is accomplished by a modification of standard
techniques. A number (X) with parenthesis around it indicates an
operational block, Any capitalized character such as A? indicates
a flip-flop, m numbers, i, e., m refers to the address. (m1) means

the contents of the cell whose address is my.

a

The first step in any operation is to fill the initial data into
the machine. As stated previously, this can be dene in several wiys
but in this case we will consider manual input on the Ilexowriter,

If any key on the Flexowriter is stuck, flip-flops A, through Ag are
set up to conform to the binary code of the digit’ enturcd or a con
figuration representing the control function to be performed, ‘The
computer then tests A, = Ag in each succeeding operational block as
indicated in the following explanations to determine which operation
is to be performed. To fill in either sequences of commands or
numbers it is necessary to enter the address of the first one in
octal as follows: Select octal number system by pressing the "0"
keye This sets the control flip-flop K false, Ay and Ag true,
and allows the program counter to count out of (0) to (3),

(3) Test for a "O" or a "D" (octal or decimal digits to be entered),
skip to (13)

(3) Set Ag false for octal, true for decimal. Skip to (0)
(40) Reset Ay through Ag and skip to (0)

Fill address of first register to be filled. As each character of
the address is filled, A, through 43, if octal or Aj, if decimal, is
set up to correspond to the true binary code, Ag is set false
indicating a character, (Ar is set true for a control symbol, such
as a "D" or "O"), Set K false in (0) and count to (1)

(1) Test As. If false, skip to (11)

(41) Fill Ay —* A3 into E, shifting E 3 bits left; skip to (40)

(40) Reset Ay — Ags skip to (0)

As each digit is entered, it shifts the proceeding one to the left
in E,

(0) Enter dash, which indicates the previous number was an address,
Count to (h)

(4) Test for dash; skip to (h))

(4) Read E into Hs; skip to (0) —> (0)

Select the number system the data is to be entered under, Once a
number system is selected, it is preserved until changed. The
system chosen is indicated by a light on the control console,

(0) Enter "D" if following number is not in octals count to (3)

(3) Test for "D" or "0"; skip to (43)

(43) Set Ag true for "D", and false for "0"; skip to (1,0) ———? (0)

Proceed to fill in data

Type in instruction or number (operation or sign first) usine blocks
(1) ——» (1) —+ (0) —s (0). After complete word is entered, press
tab, which sets up AcAj A3Ao4y', and causes a skip fron (5) 2.85).
Set up Ly -——»L, to m3 of H or address filled in Step 1. (L-—>
selec thiennbt,) Count to (16) ani search for m, sector, “If L
is true, then sector is on main drum and at coincidence between imo

(permanently recorded sector coding) and Ho, turn Ry true and count
to (7), where E is recorded in M, (If Ly was true, then E would
record in J, the buffer register, using Roe) Turn Ry off. Count
to (50).

(50) Add one to m3 of H, Set K true; skip to (40)—>(0).

After filling alll commands and information, enter address of first
command (in octal) in mo of E, transfer to H (dash) and press start

This counts (a) —>%6) where L-——-»L, are set up as chamel
selectors for control number in mp2°of H; count to (7), find sector
or word coincidence with M, and m of H. When found set K false
and count to (10)

(10) Add one to mo of H (control #) and transfer H to G. Read into
H instruction from Mif Le is false or from J if Le is true. Test
3 during 9 and 0, time for an overflow from the previous command.
If an overflow had occurred and the command is not TO (test for over-
flow) or SL (shift logically) set K true and skip to (3) for
printout and halt. If K is left false, count to (1~). H now contains
instructiong§ and address‘of numbers

,v
G2) Set Lgl, to channel of m3 count to (a)

13
;y (%) Coincidence with M, and Ho mj; count to (a)

ig
\2 (2) Read m to E; count to (9) .

/s
,4 (2B) Set Lg ——> Ly to channel m2; count to (%)

76
)§ (3) Coincidence with M, and Hy m3 count to on

)6 \(3f) Read my to F and m, of G into H; eeunt—te—(at)

(#%) Clear A, through Ay and test H for a pulse in P. at
there is a pulse (indicating a standard arithmetic Operation)
set K false and count to (20), If K is left true, skip to
(1,00) for input-output commands.

~ eth? Hl
ae a)

_-ABB—(Conmand 35)

Add (im) to (iy) and put results in (m3)

(20) Set K true; add 1 to I (cownand) and count to (21)
(011 101 to 011 110 (35 + 1 is 36)|

=

(21) Set K true; add one (011 110 to 011 111). Count to (22)

(22) Set K true; remains true through P, 0, because command number
has reached number 37. (indicates breakaway) Skip to (122)

(122) Set K false (E holds a command if 0 5 Py or 013 Po, Py is a le
This turns K on; skip to 126). If eacep. count to (123); set
A, true if E is =3 set Ay true if Fis -

(123) Set K true if (E) or (F) is - (0,5 P,) and skip to (102); if
not, count to (12))

(102) Complements negative number E or F as indicated by A, or Ao

(12h) Add (E) to (F) sum in (E). Enter sign and overflow into E,
Set A7 true if overflow at 0)3 P2, If K is true, or (Ay Ag +
A,' Ap") is true before0,3 Py, skip out to (13))), This
indicates a true number, te not (A complement), count to (125)

(125) Complement E, set K true at 033 skip to (13))

(134) Set Lg-—> Iq (channel selector) to mj of H, set A, and K false;
count to (135)

(135) Find coincidence between M, and Lg-—>Iy. Turn Ry true when
sector is found. Count to (136)

(136) Read E to M, If Ajo is false, set K true, set Ry false; skip
to (6). (Ajo is true if two words are to be recorded)

If the number. is a command, block (126) would complement F if nece
essary and count to (127)

(127) Add E to F sum in E but retain sign digits of E as sign of
result and count to (13))

SUBFRACT (Command 36)

Subtract (mp) from (m,) put results in (m3)

Count to (21) ending with K trues; skip to (121)

(121) Reverse sign of F set K false; count to (122)

(122) Test for number or command and repeat operations as in ADD.

TEST MAGNITUDE (Command 3);)

Compare magnitudes of (m,) and (mo). If (m,) is greater than (mo)
take next command from (m3); if not, take next command in order.
Count to block (23); skip to (63) yi

oonf
(63) Compare E with F, and set A, true if (E) >(F) put marker

pulse in Po 0j5 of B; skip to (65)

ae <

(65) If Ay true, shift mz of H left into mp by following Ho with
A3— A); AS —Ho for word times, Shift E left 1 pulse
each word time. When Pp 015 marker reaches P) 03, turn K
false; count to (66), If A, false, do not shift Ho and set
K false; count to (66)

(66) Set K true; skip to (6)

TEST-ALGEBRAICALLY (Command 33)

Compare (m,) and (mo). If (m2) is more positive than (m3), take
next command from (m 3) » if not, take next command in order,

(23) Skip to (6))

(6h) Test E and F for magnitude and sign, if E is more positive
_. turn A, true and skip to (65)

(65) Same as above

‘TEST FOR-OVERFLOW (Command 37)

Test (m). If it contains an overflow pulse take the next conmand
from (m3), if not, take next command in order,

(20) Skip to (60)

(60) Test Py Oo of E for overflow pulse, If there, turn Ay true,
put marker in Wy Pp 019; skip to (65)

(65) Same as above

EXTRACT (Command 32)

Extract from (m,) the binary digits which are in the same position
asthe "ones" in (m,) and insert them in the same positions of (m3).
Do not otherwise change (m3)

(25) Skip to (75)

(75) Set Lg—>Iq up to channel locations of m3 in H; count to (76)

(76) Find sector of m3 and turn K false; count to (77)

(77) Read m3 into G; count to (100)

(100) Eo follows itself if Fo is true, Eo follows Gp if Fo is false,
i. e., put bits of E into G when F has ones, with the result
ending up in G, rod; Cae

}

(134) Locate channel of m3 an! proceed as in ADD routine

ee

SCALE FACTOR (Command 31)

Shift (mg) left until a binary one is in the MSBD of the magnitude.
Subtract from (m1) the number of shifts necessary. Put (mj) into
(m3) and put (mg) into cell following (m3)

(26) Skip to (107) E contains (m,); F contains (mg). |
(107) Transfer F into G, set K false and A1Q true; count to (110)

(110) Test for pulse in Po 03] of G, if pulse, set K true and skip
to (123). Set A otrue, A, false; count to (111) if no pulse

(111) A, follow Gg, G follow Ay and shifts left one, add one to F
and make negative using Ao, set K true to skip out and reset
to false at end of word; skip to (110)

(110) Repeat as above until a pulse in Po 0); of G or Po Op of F
(signifying that F was all zeros), then skip out 0123)

(123) Proceed as in ADD, (this subtracts number of shifts in F from
(m,) in E) except at block (136)

(136) Records E [(m,) less number shifts in (m3) Transfer G—E,
Count to (137)

(137) aa7se E into (m3 +1). This records shifted data. Skip out
to (6

SHIFT MAGNITUDE (Command 30)

Shift (m,) left or right as indicated by (mp). The number of binary
shifts is the magnitude of (m9). If (m)) is + shift left. If (m2)
is = shift right. Put results in (m3)

(27) Skip to (132)

(132) Set Ay true if F is -, set A, false, Subtract 1 from F, set
K false first pulse in F, Look at A, to see if overflow
occurred (Record in Pg 0,5 E) Count’ to (133); skip to (13h)
if no ones in Fo

‘
(133) If Ao is false, shift E left following A, which follows Ege

If Ag is true, shift E right following E), (Do not shift sign
or command), If E overflows on a shift left, sign A3 on.
Skip to (132)

(132) Keep shift and reduce F till no pulse in F, then skip to (13))

(13h) Same as in ADD routine

«t.

SHIFT -LOGICALLY— (Command 27)

Shift as above but shift entire length of (m)

(30) Skip to (130)

(130) Repeat as in (132)
\3]

(332) Repeat as in (133), except shift whole number including
wae “3St gt &

MULTIPLY DOUBLE LENGTH (Command 26)
MULTIPLY ROUND-OFF (Command 25)

Multiply (m,) by (m2). Put least significant part of product in
(m3), the most significant in next cell after (m3)

The multiplicand is in E and the multiplier in F, The product will
be formed in & and at each successive addition, the LSBD will be
shifted out of G and into E until at end of 36 shifts; the most
significant part of product will be in G, and least in E,

(31) Skip to (171)

(171) Set K false and A, true for double precision; count to (172)
10

(172) Put sign of E in Hie F in Ag clear G, put 3 in 049 of H,
test ra of F (use), to set up Ay) for first addition; count
to (173

(173) Shift G right, storing LBD in A3. If Ay true, add F to G,
if false, do not. Use Ao for carry flip-flop, Shift E right
using E and put shifted out BD in Aj. Subtract one from
012 013 of H. Test H for pulse, set K true; skip to (173)
and repeat four times, At end of fourth time, no pulse in
H, K false; count to (17) and put 011111 in 0j9 033 of H,

(17)) Repeat as in (173), except subtract’32 times from H 01033
until all 0, then count to (175)

(175) Shift E and G left, put shifted off digit of G into aoa
into E at P2011. Put sign of product in E and G, Count to
(176) if Ayo true, then skip to (134) if A109 false count to (177)

(177) Round off G using Az ani put results in E, Set K true; skip
to (134)

DIVIDE DOUBLE P2ECISION (Command 2))
DIVIDE WITH ROUND OFF (Command 23)

Divide (mj) by (mp) and record the quotient rounded off in (m3).
In a normal divide operation the dividend is in the E register and
its magnitude is smaller than that of the divisor which is held in
the F register, The quotient then is less than unity and is generated

in the G register. If E is greater than F an overflow occurs which,
unless programmed for will cause the computer to halt computation.

Divide is accomplished by testing the magnitudes of E and F, If
E is smaller than F, E is shifted left (binary division begins
at the MSBD) and a O is recorded in the quotient register. Gis
then shifted left for the next generated quotient pulse. F is not
shifted. If E is larger than F, F is subtracted from E and the
result is recorded in E, A one is set in G. Both G and E are
shifted left. In either case the shifted E is compared with F to
determine whether the next operation should be a subtraction or note

In the 102-A five operations are carried on simultaneously during one
word time in divide, These are: Subtract F from E, shift E, record
pulse or absence of pulse in G, shift G, compare F with shifted E,

These operations are done in the following logical waye On command
to divide, count to block (3); skip to (11))

(113) For double precision set Arg true.

(11)) Compare E and F, Set Ay true if F greater than E, false if
E larger than F, Store sign of E in Ay, sign of F in Ag
until needed at end of divide. Set A7 false if E is equal
to or greater than F, (This indicates an overflow and will
be used laters) Put a marker pulse in Po 0, of G to indicate
the end of division. Set K false and count to (115)

(115) If Ay is true (F>E) do not subtract F from E and enter 0
into G, Shift E and G left, compare F with shifted E using
Age Eis shifted left through Ags Gis shifted left through
An, If A, is false (EXF) subtract F from E and shift
résults left comparing remainder with F, Record al in G

and shift left. At end of the word time test for marker in
G at Pp 043 to indicate end of division, If no pulse, set K
true and skip to beginning of block, In addition at end of
block set control flip-flop A, to configuration of Ag which
indicates whether E>or<F, Repeat block (115) subtracting
F from E if A, is false and shifting the results left, putting
alin G; shifting E left without subtracting if A, is true
and putting an 0 in G until the marker pulse originally set
in Pp 0, of Gis sensed at Po 0)3- ‘Then set K false and
count to (116

(116) Test for double precision (Aygo on). Set A3 true if MSBD in
Eis al for round-off purposes, Put the sign of the quotient
into G and sign of dividend (Aj) into E, If A7 was on record
an overflow pulse in G and E, If Ayg was true skip to (13h);
if false, count to (117)

(117) Round off the quotient by adding A, to G and putting results
in E, Set K true and skip to (i3i3

(13) Proceed as in the ADD routine for put-away.

edd

HALT Conmand-22

Count to block (35)

(35) Set K true and skip to (0)

NO COMMAND

If there is no command given, count to block (37)

(37) Set K true and skip to (3)

(43) Read G into E and clear G, (E now contains control number)
Put Po 019 pulse in F, (This marker signifies that after
first print-out return to (0)). Recirculate mj, and mo of H.
(Eliminating m3 of H prevents all but one word print out.)
Skip to (21)

(21) Proceed as in print to block (233)

(233) Test—for_error,__(Marker_pulse—in—P, Oy ~of-E.).. Set K true
fee 5

and skip to (0)

PRINT

Type out (m,) and next N cell as indicated in (m3) in the mode of
printing as indicated in (mo)

The address cells of the print command contain:

m, ® address of word to be printed
Mo = sign position contains mode of printing and che magnitude, (The

number of digits to be printed. 5
m3 = number of words to be printed after the one in m,

(35) Skip to (236)

(236) Test to see whether octal address are to be printed, indicated
by a P,0,5 in F which contains my of command, If no pulse,
skip to t810) for number printout. If pulse, set K false and
count to (237) for address and number printout,

(237) Put marker pulse P90] in G to indicate digit to be printed
and read H into FE, Count to (21,0)

(2h0) Set K and Ay false, Set octal digit to be printed in A, = A3.
Aj follows bs) (E,); Ay follows (Ay) Ee); A7 following Gg; and
A3 follows (Ag) the); Ag following A7. In this manner,” when
the marker pulse in G is sensed at the beginning of the digit
to be printed, the first binary bit is set in A), and A7 is set
true. With A7 true, th next bit is put in Ag, and Ag is set
true. Ag true puts next bit from Eg in Ay. Count to (21),

* See 102-A descriptive literature for various modes of print-out

hee

(241) Set up H for delay in next. block by filling 1's in P909
P]0}3. Set Ay = Ag in Flexowriter code from logic developed
from previous set up of Ay - Ay$ count to (2)2)

(22) Actuate the Flexowriter key corresponding to the code set up
in A, - Ag. Subtract one from 012 013 of H. If there is a
pulse in 0)9 013 of H, set K true and repeat block setting K
false at beginning of block. ‘This gives a 32 word delay
[to insure Flexowriter solenoid is ed before K is
left false. Then count to (2)3)

(243) Set Ac and Ag false, K true and repeat block until Flexowriter
signal sets K false, signifying end of print; count to (2)

(244) Test for last digit of address, The marker will be in Pog
if itis. If it isn't, count to (25)

(245) Set K true and shift G right one octal digit and skip to
-(2h0) to repeat printout

(244) If K set true, skip to (20h)

(20h) oe ~ Ag to Flexowriter code for space, Set K false, count
to (205)

(205) ne Hy Oy» 0,3 for 32 word delay in next block, count to
206

(206) Actuate Flexowriter to space as coded in A, = Ag and repeat
block until 0,5 0)3 of A is zero, as in block (22) and then
count to (2073

(207) Reset Ag and Ag false and wait in block for Flexowriter
ready signal. Then count to (210) (Address has now been printed)

(210) Set up ly = Le to find m, set K false and count to (211)

(211) Find sector of m,, and when found, count to block (212)

(212) Read M into E, test P90)3 of Fo for pulse which indicates
alphabetical print or not. (mp of command in F,) If not,
leave K false and count to (213)

(213) Test P90)3 of Fo for pulse indicating decimal or octal, If
no pulse, set K false for octal and count to (21) skip to
253 for decimal

(214) Put marker pulse in G, P9013

(215) Set up A, = Ay for octal digits, Aj, false, K false and proceed2 in
through blocks (216), (217), (220) as in blocks(2h0), @)1),
(22) and (23) previously. Count to (221)

(221) Test in F for last digit to be printed (F set up by code
pulses in mo of command), if not, count to (222), shift G

right, and skip to (215), If last digit printed, set K t-ue
and skip to (225)

ma: Sam

(225) Set K false, set A,- Ag to Flexowriter tab code and count to (226)

(226) Proceed through blocks (226), (227), (230), as in blocks (206),
(207) and (210); count to (231)

(231) Add 1 to my of H, making it the new address of the next word
to be printed out, subtract one from mz of He (mz being the
number of words to print out) K is uséd for adding and sub-
tracting. Count to (232)

(232) Test m3 for zero, If last word has not been printed (m3 = 0)
set K true and skip to (236). If yes, count to (233),

(233) Test PoOjo of F for an error. (There will be a pulse if coming
from (i3h)s any error causes a skip to (3))) If an error, set
K true and skip to (0) if not, count to (23))

(23h) Set K true and skip to (6) for next operation

Note: Octal-digits print routine prints out sign in octal notation

If the command had been to print a decimal digit (213) would skip
to (253). A subroutine must be used previous to printout command
to convert octal to binary~coded decimal,

(253) Put marker P, Oj of G for decimal printing. Set K false and
count to (sh)

(254) Set sign of decimal digit into A, = A) using A7 = Ag as in
block (240); count to (255)

(255) Set up A, = Ag in Flexowriter code for +, =, P, Ny and set
up delay pulses in H. Count to (256)

(256) Actuate Flexowriter and repeat for 32 word times, count to (257)

(257) Wait for Flexowriter, proceed signal and set As, Aés false;
count to (260)

(260) Shift G four pulses right, count to (261)

(261) Set up Ay = Ay as in (25h); count to (262)

(262) Set up A, = 46 in Flexowriter code for decimal digit and
proceed as in blocks (215) (221), testing in block (265)
for last digit and if yes, skipping to (225) and finishing
print routine,

If the command was to print alphabetical, it will be necessary to
set up A, - Ag to correspond to two octal digits, since it takes
two digits to represent one alphabetical character, Also it will
not be necessary to convert to the Flexowriter code since each pair
of octal digits will already have been programmed to represent tne

- lh -

proper code, First skip from (212) to (250)

(250) Put marker pulse in Pp 0), of G, Skip to (270)

(270) Set up Ay My from 0}; of E usingA7 = Ag as in previous
blocks. teat false a count to (241)

(271) Shift marker in G three pulses right. Count to (272)

(272) At Po Oo, set A), = AG to configuration of A, = A3 and set
up A, - Az to new digit (0,9). Set up H for delay in next
blocks count to (273)

(273) Proceed as in blocks (22) (276), If the last digit has
been printed, skip from (275) to (231), if not, skip from
(276) to (270)

