Micro Scanner Commands
User’s Guide

For the Sentry PLUS™ System

NATIONAL
NCS Publications Number 202 151 957 COMPUTER
Price: $20.00 SYSTEMS

Copyright, 1983
by
National Computer Systems, Inc.
Minneapolis, Minnesota

All rights reserved. No part of this book may be
reproduced in any form or by any means, without
permission in writing from the publisher.

PREFACE

Micro Scanner Commands are de-
signed to function with a Sentry
3000™ scanner and an IBM PC or XT
with a minimum of 128K memory, .
one asynchronous port, and DOS
1.1 or 2.0.

This guide to Micro Scanner Com-
mands describes the various com-
mands and how to incorporate them
into application programming.
Other user manuals relating to
the Sentry™ 3000 scanner are:

NCS
Title Part Number
Operator's Guide 202 151 981

The Operator's Guide provides in-
formation on the Sentry™ 3000
scanner parts, how to operate the
various programs, and error mes-
sages and recovery procedure.

Installation and 202-151-999
Maintenance Guide

The Installation and Maintenance
Guide provides information on how
to install, maintain, and repair
the Sentry™ 3000 scanner.

Host Programmer's 202 151 973
Guide

The Host Programmer's Guide pro-
vides information on how to con-
figure the scanner to enable
communications with the host
computer. It also describes the
scanner records and explains the
functions that must be performed
by the host program. The Host
Programmer's Guide is intended
for programming without scanner
commands.

ii

iii

TABLE OF
CONTENTS

Introductiono...ooo...o.'o.ooo..‘..o'iv

1: SYSTEM SETUP.cecccccccscsccsnsccesl=1
Read Techniquesecscecsesceccsceeasl=3
Mark DiscriminatioNeecccceccccceesl=7
Scanning the FOrmsS.ecececceccecscece1=9
Host Programmingeeceececcececsccecsel=13

2: CONFIGURING THE SCANNERc ®se0 0000 02-1
Coding the Sheet.ccececececscses=3
Configuration...........-.......2-7

3: SCANNER COMMANDS.eeeeccccoccseee3—1
Section Formatecessecccccecsseees3=3
Controlling Scanner Operations..3-7
Reconfiguring the Scanner.eeee..3=-9
Adjusting Scanner Read Level...3-13
Identifying the Formeeceeccesesee3=15
Scanning the FOrMececeeccecscccee3=21
Resolving the GridSeeecccceccseee3=25
Sending Data to the Scanner....3-41
Receiving Aux Device Dataee....3=-45

4: HOST PROGRAM.....‘......"......4-1
Program Structurleecececccccoccesed=3

5: SAMPLE PROGRAM.ceccoococcccccceed=1
Program Listing (Compiled
BaSiC)eeesessssccssccocscnsseeed=3
Program ExplanatioNeeccecccccccees5=4
Interpretive Basic Listingeesee.5=9

6: PROGRAM ERROR CODESOOOOOOCQCI.CO6-1

APPENDIX A: FORM PARAMETER
WORKSHEET...QQOOOOQOOOA-1

APPENDIX B: TEST PROGRAM:cececceseceseeB=1
Compiled Basic Test Programee....B=3
Interpretive Basic Test

ProgramecesccecesecsccccccsossseB=19
Pascal Test Programeeeecssecsees«B=23

APPENDIX C: PASCAL SCANDECL,.PAS
FILE..-......oo.ooooooc-1

APPENDIX D: LINKING COMMANDS TO
APPLICATION PROGRAM...D-1

INTRODUCTION

This manual is presented in six
sections and four appendices.

The first section provides an
introduction to scanner read
technology and scanner commands.
Section Two describes how to
configure the scanner to ensure
proper communications protocol.
Section Three provides an over-
view of each command. Section
Four describes host programming
with scanner commands. Section
Five lists and describes a sample
program that incorporates scanner
commands. Section Six describes
program parameter error codes.
Appendix A is a form parameter
worksheet. Appendix B is a list-
ing and explanation of a test
"program to use on your system
initially. Appendix C lists the
Pascal SCANDECL.PAS file, refer-
enced by each Pascal application
program. Appendix D describes
how to link Scanner Commands to
an application program.

iv

1=1

SCANNING
OVERVIEW

IntroductioNeceeccccccscccecesl=2
Read Technique.ceceecccccscessl=3
Mark DiscriminatioNeececececeecees1=7
Scanning the FOrmS.ecccccecsces1=9
Host Programmingeececcccccseceesl1=13

INTRODUCTION

The Sentry 3000 scanner is an
optical mark reader which trans-
lates marks on forms into infor-
mation a computer can understand.
Scanner commands allow the user
to incorporate input from the
scanner into application program-
ming with a minimum of effort.

This section briefly describes

how the scanner reads marks and
scans forms, and how to use the
scanner in a host program.

1=-2

#

READ TECHNIQUE

OVERVIEW: READ TECHNIQUE

The scanner scans sheets and trans-
mits a series of read levels to the
host computer. The following para-
graphs describe how the read levels
are generated and how they comprise
an image of the sheet.

EXPLANATION: READ TECHNIQUE

The Sentry™ 3000 scanner detects
marks on forms using the "read head"
which is a collection of 48 1light
sources above the form and 48 photo-
cells below the form. Each of the 48
light sources beams light through the
form and each photocell records the
amount of light that passes through
the form. In this way, the scanner
reads both sides of the form at one
pass through the scanner. This is
called "transmitted light read.”

TRANSMITTED LIGHT READ

LIGHT
SOURCE

PAPER
(CROSS-
SECTION)

PHOTO-
CELL

/N

1=-3

READ TECHNIQUE

GUIDE
EDGE

FORM FEATURES

]

[

Timing
Track

lllll'll'llllll

NCS® EIGHT-LEVEL READ

EXPLANATION: TIMING MARKS

Special features of the form called
*timing marks" cue the scanner's read
head to read across the form. The
column of timing marks is called the
"timing track." The timing track is
read by the photocell closest to the
front of the scanner. This is why
forms must always be fed into the
scanner with the timing track on the
left side ("guide edge") of the form.

EXPLANATION: READ LEVELS

A read level is an ASCII-coded char-
acter (0,1,2,3,4,5,6, or 7) which in-
dicates the amount of light blocked at
one position on the form. If no mark
is present on the form in a particular
position, the scanner will report a
read level of 0 or 1. When a dark
mark made with a No. 2 lead pencil is
scanned, a value of 6 or 7 is assigned.
Smudges and erasures will be reported
by values of 1,2, or 3. Light marks
will be reported as 4 or 5.

Each time the read head encounters a

timing mark as the form passes through
the scanner, 47 read levels plus one

special value are stored in the scan-
ner's buffer. The 47 read levels cor=-
respond to the 47 positions across an ;
8-1/2 inch form. The 48th value is K

READ TECHNIQUE

EXPLANATION: READ LEVELS (cont.)

the number of times that the 1line
was scanned as the form passed un-
der the read head.

The first read level from the form
corresponds to the position on the
form that is closest to the first
timing mark on the leading edge of
the form. The second value corre-
sponds to the second possible re-
sponse position away from the first
timing mark, the third value to the
third possible position, and so on.

Each time a new timing mark is read,
48 more values are added to the scan-
ner's buffer for that form.

When the whole form has been read

then the record can be transmitted
to the host computer for processing.

CONSIDERATIONS: MARK READING

048 values are assigned even when
the form is not 8-1/2" (47 response
positions) wide.

READ TECHNIQUE

1-6

MARK DISCRIMINATION

OVERVIEW: MARK DISCRIMINATION

The process by which the host program
determines which marks on the form
are intended resonses is called mark
discrimination.

EXPLANATION: RESOLVING GRIDS

After the record of read levels is
passed to the scanner, data from
grids must be resolved. A single
response must be selected from each
grid item.

EXPLANATION: MARK DISCRIMINATION

After determining read levels the
GRID command discriminates intended
marks from erasures and smudges. The
read levels of the responses in one
item are compared and the darkest
mark is selected as the intended re-
sponse. However, if more than one
mark is found, the read levels must
be at least two read levels apart for
the darkest mark to be selected as
the chosen response. If read levels
are not at least two levels apart,
the response is deemed a "multiple"
and an asterisk is placed in the ap-
propriate position in the variable
gridstr.

SAMPLE GRID

(23]
w

S
o

w
~

Ow POw Ow Ow

Or Or Or O

CDE ABCDE

OO® 410G

CDE ABCDE

@O HBOCOOGE ITEM
CDE ABCDE

@O 49000606 |__ RESPONSE
CDE A POSITION
OO HOEYBO®G

5

1. 10
1

7
2.]0 0800
234

MARK DISCRIMINATION

7 5<——————READ LEVEL
0
4

L
23 ~<—POSITION

e7 - 5 = 2 levels apart

eposition 2 is intended

response
6<—————READ LEVEL

5-«——POSITION

e7 - 6 = 1 level apart
emultiple mark

1-7

MARK DISCRIMINATION

Consideration: Mark Threshold

While NCS recommends using a read
level of 4 as the mark threshold, it
is possible for the host program to
establish a different threshold. One
technique for determining the thresh-
old is to take an average of the read
levels on the bias bar (the bar of
colored ink that extends the full
width of the form). This average is
the read level of paper and ink. To
determine the mark threshold, add 3
or 4 to the bias bar average.

a

SCANNING THE FORMS

OVERVIEW: SCANNING THE FORMS

The features of the form determine
the direction in which forms are fed
into the scanner. Using the input
tray, the operator feeds forms into
the scanner one at a time. With the
automatic-feed hopper, the scanner
automatically picks forms one at a
time from a stack of forms.

EXPLANATION: DIRECTION OF SCANNING

Two features of the form determine
the direction that forms are fed into
the scanner:

eTiming Track
eSkunk Marks

The timing track is made up of small
black rectangles called timing marks.
The side of the form with the timing
track is placed along the gquide rail
of the input hopper as it is fed into
the scanner. This edge is called the
"guide edge".

Skunk marks are small black marks
printed across from the first timing
mark of a form to identify it. The
edge with the skunk marks is the edge
of the form that goes into the scan-
ner first. This is called the
"leading edge."

DIRECTION OF SCANNING

f S(uxMﬂks " LEADING EDGE '

GUIDE
EDGE

N O O O T

Timing
Track

AT
SCANNING THE FORMS g

EXPLANATION: USING THE INPUT TRAY

USING THE INPUT TRAY When operating the scanner using the
input tray, the operator manually
slides forms forward into the scanner
one at a time.

EXPLANATION: USING THE AUTO-FEED N

FEEDING SHEETS AUTOMATICALLY Using the automatic-feed input hopper
option, the operator prepares a uni-
form stack of up to 50 forms with the
timing track on the left, places it in
the automatic-feed input hopper against
the guide rail, and lines the sheet
guide up against the stack of forms.
The stack is pushed forward until the
green light on the hopper cover comes
on. If the stack is pushed in too far,
the light changes to red. To position
the stack properly, pull it back until
the light is green again. When the
green light is on, the operator press-
es START. One by one the scanner picks
forms from the top of the stack.

The READY light on the operator panel

will go out when the auto-feed hopper

becomes empty. (Pressing START when

the READY light is on and sheets are

present will also make the READY

light go out.) <X“

SCANNING THE FORMS

EXPLANATION: USING THE AUTO-FEED (cont.)

The READY light on the operator panel
will go out when the auto-feed hopper
becomes empty. (Pressing START when
the READY light is on and sheets are
present will also make the READY
light go out.)

1-11

SCANNING THE FORMS

R

HOST PROGRAMMING

OVERVIEW: HOST PROGRAMMING

The scanner is used as an input de-
vice for the host program. The scan-
ner reads forms and transfers data
from forms to the host computer (IBM
PC or XT). The host program must be
able to control the operation of the
scanner, the host and auxiliary
devices, such as another microcom-
puter or printer. Although Scanner
Commands aid in the transfer and
editing of data, the host program
must still process the data.

EXPLANATION: SCANNER COMMANDS

Scanner Commands are subroutines on
disk which can be referenced by ap-
plication programs to do data editing
and provide system control, such as:

eTransfer control from the scan-
ner to an auxiliary device or
back to the scanner

eAlter communications protocol of
the IBM serial interface card to
communicate successfully

eAlter the read level for cor-
rect reading of especially
light or dark, smudged forms

eIldentify forms

eScan forms and pass mark read
levels to the application program

eoResolve marks on forms into use-
able data

oTransmit and receive data to
and from the host and auxiliary
devices

1-13

HOST PROGRAMMING

EXPLANATION: HOST PROGRAM

The host program must still determine
input and output of data (whether
through scanning, auxiliary devices,
or from within the program), data
manipulation, and incorporation of
scanner commands. For a detailed de-
scription of host programming, refer
to Section Four.

C

CONFIGURING THE SCANNER

Introduction......-..........2-—2
Coding the Sheet.............2-3
Configurationoo000000000000002-7

INTRODUCTION

This section describes how to
configure the scanner so that it
can communicate with the micro-
computer. It also describes how
to define the scanner's menu.

CODING THE SHEET

OVERVIEW: CODING THE SHEET

The scanner's protocol is programmed
into the scanner by coding and scan-
ning the 3000 Asynchronous Communi-
cations Configurator Sheet. This
process is called "configuration"
and is described in Section One of
the Installation and Maintenance
Guide.

The grids on the Configurator Sheet
must be filled out so that the pro-
tocol of the scanner matches that of
the IBM PC or XT and aux device. A
list of the codes that should be con-
figured and a completed Asynchronous
Communications Configurator Sheet --
as it must be completed for use with
Micro Scanner Commands -- is found
on the next two pages. The grid
title and the necessary code to en-
ter in the grid is printed directly
across from the coded sheet. (For a
definition of grid titles and a com-
plete description of communications
protocol, refer to the Host Program-
mer's Guide.)

ASYNC CONFIGURATOR SHEET

!
i
]

[ERRARERRRRNRRT

SHONH3 NOILVENOIINDD ISNVD AV WHO4 40 ¥OVE NO HO SVIBY 03QVHS NI SHVW AVELS] NOILNVD

CODING THE SHEET

GRID CODE
INITIATE CODE 11,CPU
POSITIVE RESPONSE 11
RELEASE DOCUMENT 12
NEGATIVE RESPONSE 1A
SELECT AUX PORT 13
SELECT SCANNER FROM HOST 14
SELECT SCANNER FROM AUX oD
STOP SCANNER OE
PRINT POSITION 31
PRINT DATA CODE 32
AUX PORT DATA CODE 19
DIGIT DATA CODE 07
END OF INFO 04
CHECK SUM 8

START OF RECORD
END OF RECORD
END OF DOCUMENT
COMPRESS

RECORD LENGTH
CHECK CHARACTER

leave blank

0oDOA

leave blank

15

leave blank
leave blank

AUX PORT ECHO YES
PARITY ODD
STOP BITS 2
CHARACTER BIT LENGTH 7
BAUD RATE 9600

MANDATORY VALUES

CONSIDERATION: USER-CHANGEABLE VALUES

The codes for parity, st

op bits,

character
have been
cate that
values.

bit length, and baud rate
specially marked to indi-
the user may change these

The codes listed in the code
column match the protocol of the host.

When using an auxiliary device, all
three devices (the scanner, the IBM
PC, and the aux device) should be
configured to match protocol.

2=-4

B4 e D4 D D D D B DX DD R X XX

USER CHANGEABLE

Mo XX

CODING THE SHEET

=l NCS Trans-Optic MB830-18360-321

SENTRY 3000™ ASYNCHRONOUS COMMUNICATIONS
CONFIGURATOR SHEET
START OF RECORD END OF RECORD T COMPRESS|

[TTTTI (glp[@Al T [T T T T T | [/15]
@@@@@@@@@@@@ 000l EEEE® ©@© 0JO)
0]0] 0]0] 010] 010] 010} 010] ¥ (0]C] U10] GI0! 010] OICG O10] 10]0] { JO
(©]6] 616 8] 816 818! 810] B (C10) Vi8] Al B]0) 610] 616} @@ (O]
©]e] 010! o) O1b] bl6) 010] B (610) Ol6) Hl) Bl 016 010 010)] O
DOPEEPOPEP O] |®®EED®DEE O ® ®® ®®
OEOPEEEOEEEEE] |[®EEEEEEEEEB® ®E ®e
@ EEPEEPEEEEREB®] |@EEEE GO EE® ®® ®@
[010) 6]0) 0]6) 0]b) 016! 610} @O DD DD DD DD @ O@ [©]O)
D)l Ol O Of |@ (® ® ® ®

® (» g ®

(D) (0 A ®

(® (® O ®

© © c ©

® @ ° 0

®) (® € ®

Q Q G

RECORD
LENGTH

[11

|66

®OOO
(0JOI0]0)
OO0
(0JOJOJO]
(0JOJOIO]

0J0J0J0)
0J0]010)
OOOO®
(0JOIOIO]

SEE IMPORTANT lNSTHUCTlONS
ON BACK OF FORM

CHARACTER
BIT LENGTH

CHECK
CHARACTER

AUX PORT
ECHO

O re

(O PRINTABLE LRC

@ ves

IEIIIIIIIIIIIIIIIIIIIIlll

LT ST T T Y)

NCS P/N 202-181-908 ©Copyright 1981, 1982, 1983, Nati

All Rights Reserved

EASE NEGATIVE SELECT STOP PRINT F

"Cooe. | |nesponse n?,%bmm RESPONSE | | AUX PORT [sgm;gﬂ scannen | | Gllen | | osmon gg{,* gg;g gg{,g | FINFo
@) 17 1z /1A 13 A Jde B R e 14z A4
®@ ®©® ®© 15 00| [oo] [Pe| [@®| [@® °®

%0, 16 10} OO 610} oe| |oo| |eo| |0 OO

@0 @@ @@ ®@ @® 00| |oe| |00 |o® OO

0JO)] ®6 O [0]O] (JO] o® 010} [0JO) ®®

®® ®® ®® ®® ool |loo| |00 0o ©e

®® ®©® 510} 510} 00| |oo| |00 0o ©®

®® ®® ®® 0]0] ®©® ®©® ©® (010] (0O

610} QO QO QO 00| |oo| (@0 |oe G0}

0 ® ® ® ® ® ® @

s ® © B\ ® ® ® ®

® ® : ® ® 3 ® ® ®

5) 5 ® ® ® ® ® ®

: © © © ® ©) ©

® © ® L © ® © © ®

G ® ® ® ® G © ® ®©

® ® ® ® ® ® ® ®) ®)

MWMWW&MF%&WM@Q@@@Quu.O

&‘M“L‘u““-‘&‘&‘u‘&‘L““A\AL‘M&A&‘L‘\‘L‘NJMLAMM;“‘;‘;_M;‘MAAs“‘u“&‘&‘&‘k‘h“‘;‘-‘“&‘L‘““”M

2-5

.

CODING THE SHEET L

CONFIGURATION

OVERVIEW: CONFIGURATION

Once the Sentry 3000 Asynchronous
Communications Sheet has been filled
out, the sheet must be scanned and
the menu of system programs defined.

EXPLANATION: SCANNING THE SHEET

To scan the sheet, press and hold SEL
for 10 seconds until ".c" (calibra-
tion) is displayed on the operator
panel. Then, release and press SEL
within 3 seconds to display ".d"
(define). Press START within 3
seconds or you will have to repeat
this procedure.

Feed the Sentry 3000 Asynchronous
Communications Configurator Sheet
into the scanner. The sheet is fed
into the scanner with the timing
track (column of small black rec-
tangles) on the left side of the
sheet. Be sure the left edge is
completely against the guide rail of
the input tray.)

PROCEDURE SUMMARY

1.

Press and hold SEL for 10 sec-
onds until ".c" is displayed.

1ONS SCANNER

o O o 0

XmT CcTs READY ERROR X
& ke] DA
RECV co BUSY sTor

. L 7
2. Release and press SEL within 3
seconds to display ".4d".

{lcommunicaTIONS SCANNER

28 ik] [o))
RECV co BUSY STOP

3. Press START within 3 seconds

»

and feed the sheet. The sheet
must be fed into the scanner
as shown below.

DIRECTION INTO SCANNER

RN RN NN RN RN RN RN NN RN RN RN RN RN RN RRRRRRRRE

SNOLLYDINNININGD SNONONHONASY ~000C AMANIS

SHOHYI NOILVHNOIINOGD 3SNVD AVIN WHO4 40 HOVE NO HO SVIHV GIOVHS NI SHHVIN AVHLS| NOILNVD

2-7

CONFIGURATION

EXPLANATION: RECONFIGURATION

Configuration parameters may be
changed by marking and scanning a new
Sentry 3000 Asynchronous Communica-
tions Configurator Sheet. Any of the
user-changeable parameters may be
changed as long as they are consistent
with the requirements of the scanner,
the host computer, and all other sys-
tem components.

EXPLANATION: CONFIGURATION ERROR

ERROR GRID
MESSAGE WITH ERROR
.d00 Sheet not recognized
.do1 START OF RECORD
.d02 END OF RECORD
.do3 INITIATE CODE
.d04 INITIATE CODE (SCAN or CPU)
.d05 POSITIVE RESPONSE
.d06 RELEASE DOCUMENT
.d07 NEGATIVE RESPONSE
.do8 SELECT AUX PORT
.d09 SELECT SCANNER FROM HOST
.d0A SELECT SCANNER FROM AUX
.dO0b STOP SCANNER
.doc PRINT POSITION
.dod PRINT DATA
.dOE AUX PORT DATA
«d0F DIGIT DATA
.d10 END OF INFORMATION
.dil1 END OF DOCUMENT
.d12 COMPRESS
.d13 RECORD LENGTH
.d14 CHECK CHARACTER
.d15 AUX PORT ECHO
.d16 PARITY
.d17 STOP BITS
.d18 CHARACTER BIT LENGTH
.d19 BAUD RATE
.d1a CHECK SUM

MESSAGES

The list to the left shows the three-

digit error messages that will be dis-
played if the coding of the specified

grids is not correct. The error mes-

sage will be a repeating sequence of

the three digits. The message will be
displayed on the scanner's operator

panel when the feed bed motor stops e
and the ERROR light is 1lit.

If no error occurs when the sheet is
scanned, the first menu item (.C, .A,
or .S) will automatically be displayed
after the sheet is read.

CONFIGURATION

EXPLANATION: MENU DEFINITION

The ".d" (define) program also scans
the Menu Definition Sheet. The Menu
Definition Sheet determines the order
in which the scanner programs are
listed in the display. The scanner
programs are:

«C = Communications
S Scoring
<A Auxiliary Device

The sheet must be marked so that
there is one and only one mark in
the row labeled "1st."™ If a second
program is desired, then there must
also be one and only one mark in the
row labeled "2nd," etc. In the il-
lustration shown, the sheet has been
marked so that:

e.A = the first menu program
e.C the second menu program
e.S the third menu program

MENU DEFINITION SHEET

DIRECTIONS

Mark the programs you wish and the order you want them dispiayed on the menu. If scanning to
communications is the on iy program desired. mark the first respanse under .C and leave the other

S Trama-Ooes ME30- 14008321

is marked 30 that the auxilisry device program will be the first
. the scan program second. and the sconng program third.

3000
MENU
DEFINITION
SHEET

Camrroant, 1983 Rotianet Computor Srecemme. ine
i Aegate Avvorves s 202 180

O0000 ws

OO0OOQQ wr

SAMPLE MENU DEFINITION

O0@OO0 re
0000 @r=
O00@O0

.C=Scan to Communications
.A=Auxiliary Device
.S=Scoring Program

.1=First Option

.2=Second Option

)

CONFIGURATION

EXPLANATION: MENU DEFINITION (cont.)

. DIRECTION OF SCANNING t The procedure for scanning the sheet

: : . is the same as for the Configurator

- » Sheet. The orientation of the sheet

i as it is fed into the scanner is shown
3000 here. Be sure the left edge is com=-
MENU pletely against the guide rail of the

DEFINITION input tray.
SHEET

Once the sheet has been scanned suc-
oIRECTIONS cessfully, the display will show the
ST o G e epoe e 7 e letter specified as "1st" on the Menu
EXAIPLE: am on tne o, the acen progrem second. end ihe sconmg propram i Definition Sheet. Press SEL to dis-

- play the second item and press it

! again to display the third item (if

specified on the sheet).

© Copgnt. 1002 Metronet Computer Svatome. i
NS Trons-Ope 1820.14408.321 [y ey ncs 202.181 990

The error codes to the left show the
ERROR three-digit mesages that will be
MESSAGE ERROR displayed if the sheet was scanned

incorrectly, if the wrong sheet was
.d00 Sheet not recognized scanned, or if the grid was filled

out incorrectly. The error message
.d20 Grid coded incorrectly will be a repeating sequence of the
three digits. The message will be

displayed on the scanner's operator
panel when the feed bed motor stops
and the ERROR 1light is 1lit.

CONSIDERATIONS: MENU DEFINITION

eDo not define the menu to include

programs that will not be used. For

example, if the scanner will be used

for scoring only, define ".S" as the

first and only menu item. (The scan-

ner's scoring program is explained in @;;
detail in Section Two of the Operator's !
Guide.)

2-10

CONFIGURATION

CONSIDERATIONS: MENU DEFINITION (cont.)

oIf " ,A" (auxiliary device) is defined
to be the first program in the menu,
the communications link between the
host computer and the auxiliary device
will be activated automatically when
the scanner is powered ON.

oThe first program in the menu is

activated automatically when the scan-
ner is powered ON,

2-11

CONFIGURATION

2=-12

N

SCANNER
COMMANDS

IntroductionNeeeccecescecsscecesesld=2
Section Formatececcescecsscecsse3=3
Controlling Scanner

OperationSecececcecesccccoscseseld=7
Reconfiguring the Scanner......3-9
Adjusting Scanner Read Level..3-13
Identifying the FOormessecsecsse3=15
Scanning the FOrMescssscecssses3=21
Resolving the GridsSeceecesesses3=-25
Sending Data to Scanner.......3-41
Receiving Aux Device Data.....3-45

INTRODUCTION

The NCS Micro Scanner Commands
provide the user of a 3000 scan-
ner with the ability to incorpo-
rate data from forms into ap-
plication programs on a micro-
computer. By incorporating these
commands into the application
program, the user will be able to
operate the scanner, identify
documents read by the scanner,
and translate data from grids on
documents into strings of charac-
ters for use by the microcomputer.

The following commands will be
described in this section:

CONTROL (Controlling the Scanner)

SETUP (Reconfiguring Communica-
tions Protocol)

LEVEL (Adjusting Scanner Read
Level)

SKUNK (Identifying the Form)

SCAN (Scanning the Form)

GRID (Resolving the Grids)
TRANSMIT (Sending Data to System
Components)

RECV (Receiving Aux Device Data)

3=2

SCANNER COMMANDS

OVERVIEW: SECTION FORMAT

Each command is described in depth,
including an overview of the command,
instructions on how to call each com-
mand routine, definitions of parame-
ters, the result returned by the rou-
tine, and sample programming. For a
sample program incorporating many of
the commands, see Section Five. (All
of the sample programs at the end of
each command description in this sec-
tion will be done in Compiled Basic.)

EXPLANATION: VARIABLES, CALL FORMAT

In Basic, command parameters must be
initialized and then listed in paren-
theses within the CALL statement.

The designated variable names used in
this manual (Basic and Pascal) are
merely examples for illustration pur-
poses. Programmers may feel free to
substitute their own choosing. How-
every actual data cannot be passed

to the command routines. Data must
be. passed in variables.

In Pascal, only parameters which
pass specific values to a command
routine must be initialized.

CALL FORMAT - BASIC

20 DIM GRIDARG%(8)

30 FORA=20TO 7

40 READ GRIDARG%(A):NEXT A

50 EDSTAT%=0

60 GRIDSTR$=SPACES$(200)

70 CMDERR$=SPACES (200)

80 ARGPTR%=VARPTR (GRIDARG%(0))

90 CALL GRID% (ARGPTR%,GRIDSTRS,
EDSTAT% , CMDERRS)

100 DATA 2,0,1,10,1,5,5,0

CALL FORMAT - PASCAL

PASCAL:

VAR
DOCNUM, READTYPE: INTEGER;
CMDERR:MSCSTR;

DOCNUM:= 0;

READTYPE:= 2;

STATUS:= " ";

SCAN (DOC,READTYPE,CMDERR) ;

3=3

SCANNER COMMANDS

EXPLANATION: VARIABLES, CALL FORMAT

{cont.)
Basic
CALL FORMAT - BASIC The Basic CALL procedure sets up and
makes the command CALL. First, the
10 DIM GRIDARG(S8) micro performs house-cleaning of the
20 Y# = FRE(O)<— int. basic only string variable area with the 1line
30 FOR A = 0 TO 7 Y#=FRE(O0). (This statement is only
40 READ GRIDARG%(A):NEXT A necessary in Interpretive Basic when
50 EDSTAT%=0 using the GRID command.) Then the
60 GRIDSTR$=SPACES$(200) variables are initialized. The vari-
70 CMDERR $=SPACE$ (200) able CMDERR (which lists command error
80 ARGPTR%=VARPTR (GRIDARG%(0)) numbers) and GRIDSTR (which returns
90 CALL GRID (ARGPTR%,GRIDSTRS, grid data) are set to the maximum
EDSTAT%,CMDERRS) number of spaces which the programmer
100 DATA 2,0,1,10,1,5,5,0 expects to receive from the command
routine. Setting these variables to

200 spaces will easily ensure that
all the desired data can be passed
back to the application program. If
an array of values is passed to the
command routine, the array location
must be set in the line immediately
preceding the command CALL. The 1line
ARGPTR%=VARPTR (GRIDARG%(0)) sets
ARGPTR% to the location of the array
GRIDARG. Then the CALL is made. The
call passes the pointer to the array
rather than the array itself.

EXPLANATION: ERRORS

CMDERR RETURNS: Scanner Commands programming errors
are indicated in the variable CMDERR
@ - no error (command parameter error). CMDERR is
a string variable which must be passed
xxX = three-digit error number in the CALL statement to each command
routine. CMDERR should be declared in
XXX XXX XxXx, etc. - error string Pascal and set to spaces in Basic when
sent to the subroutine in the call

statement. Upon return to the appli-
cation program, the variable CMDERR
will contain the symbol @ (ASCII 64)
in the first character location,
indicating no error, or a three-digit
number indicating what error has

SCANNER COMMANDS

EXPLANATION: ERRORS (cont.)

occurred. If more than one error

is detected, the error numbers are
listed with a blank separating each
three~digit number. Error codes are
described in detail in Section Six
of this manual.

CAUTION: CMDERR

In Pascal programming, CMDERR need
only be declared before it is sent
to the first command routine. In
Basic, CMDERR must be initialized
before each command CALL.

CONSIDERATION: SCANNER OPERATIONS

The scanner's ".C" (communications)
program controls all operations of
the scanner while running a program
which utilizes scanner commands.
Although the scanner may utilize
other scanner programs during the
course of application programming,
Micro Scanner Commands reference
those programs. The user need only
be concerned that the program is
started with the scanner in the ".C"
program. (For descriptions of scan-
ner programs, refer to the Operator's
Guide.)

SCANNER COMMANDS

CONTROLLING SCANNER OPERATIONS:

CONTROL

OVERVIEW: CONTROL

The CONTROL command does exactly
what its name implies. It allows
the user to control the operation of
the scanner. The user can activate
an auxiliary device (deactivating
the scanner), reactivate the scan-
ner, stop the scanner, and release
documents which have been scanned.
The user is able to control the
scanner by inserting the CONTROL
command into the application pro-
gram in the following format.

EXPLANATION: CALL FORMAT

The application program calls the
CONTROL routine and must pass two
parameters:

eCtrlopt
eCmderr

One parameter is passed back to
the application program:

eoCmderr

Ctrlopt

Ctrlopt is a one-digit integer vari-
able (1,2,3, or 4) indicating which
scanner control option is selected.
The control options allow the user to
control the following operations:

(1) release a document from the scan-
ner, (2) stop the scanner, (3) select
(choose to operate) the auxiliary de-
vice, and (4) select (choose to oper-
ate). the scanner.

CALL FORMAT

BASIC:
CTRLOPT%=1
CMDERR$=SPACES (200)
CALL CONTROL%(CTRLOPT%,CMDERRS)

PASCAL:
VAR
CMDERR :MSCSTR;
CTRLOPT:INTEGER;
CTRLOPT:= 1;
CONTROL (CTRLOPT ,CMDERR) ;

CTRLOPT OPTIONS

- release document

- stop scanner

select auxiliary device
- select scanner

W -
!

CONTROLLING SCANNER OPERATIONS:

CONTROL

e
M

SAMPLE PROGRAMMING

80
90
100

120
500

CMDERRS$=SPACES (200)

CTRLOPT%=3

CALL CONTROLS% (CTRLOPTS%,
CMDERRS)

IF ASC(CMDERRS$)<>64 THEN GOTO

500
program main body...
CONTROL error section...

Cmderr

Cmderr is a string variable which re-
turns an error code to the application
program from the CONTROL routine.

CONSIDERATION: STOPPING THE SCANNER

If the program stops the scanner, the
operator must press START on the scan-
ner in order to return control back to
the program.

EXPLANATION: SAMPLE PROGRAMMING

This program section allows the host
to receive large amounts of data from
the auxiliary device by selecting CON-
TROL option 3 - auxiliary device.

Line 80 initializes CMDERRS$. Line 90 o
sets CTRLOPT% to 3, which selects the s
auxiliary device. Line 100 makes the

call to the CONTROL routine and control

is passed to the auxiliary device. If

the first character of CMDERR% is not

"@" (ASCII 64), a CALL error has been

made and a CONTROL error check is per-

formed in lines 500 and beyond. Lines

120, etc., comprise the program body.

RECONFIGURING THE COMMUNICATIONS

PROTOCOL:

SETUP

OVERVIEW: SETUP

The user must use the 3000 Asynchro-
nous Communications Configurator
Sheet to configure the scanner ini-
tially (see Section Two). The proto-
col used by the host (microcomputer)
to communicate with the scanner and
auxiliary device can be programmed by
using the SETUP command. The proto-
col of the host must match the proto-
col of the scanner and auxiliary
device if they are to communicate
successfully. Since different devi-
ces can operate at different speeds
and with different parameters, the
user should check the operations user
manual for each auxiliary device to
ensure that communications protocol
is correct. (For a more detailed
description of communications proto-
col parameters, refer to the Host
Programmer's Guide.)

The default values for communications
protocol are:

eBaud Rate = 9600
eParity = odd
eData Bits = 7
eStop Bits = 2
ePort Selection = 1

3=-9

RECONFIGURING THE COMMUNICATIONS PROTOCOL:

SETUP v

CALL FORMAT

EXPLANATION: CALL FORMAT

BASIC: The application program calls the
BAUD%=9600 SETUP routine and must pass six
PARITY$%=ASC('0') parameters:

DATABITS%=7

STOPBITS%=2 eBaud Rate

PORTSEL%=1 oParity

CMDERRS$=SPACES$ (200) eData Bits

CALL SETUP% (BAUD%,PARITY%,DATA~ eStop Bits
BITS%,STOPBITS%,PORTSEL%, ePort Selection (Portsel)
CMDERRS) - oCmderr

PASCAL:

VAR One parameter is passed back to the
BAUD,PARITY,DATABITS, STOPBITS, application program:
PORTSEL: INTEGER;
CMDERR:MSCSTR; oCmderr
BAUD:= 9600;
PARITY:= ORD('0!');
DATABITS:= 7;
STOPBITS:= 2;
PORTSEL:= 1;
SETUP (BAUD,PARITY,DATABITS,STOP- e
BITS, PORTSEL,CMDERR) ;
BAUD RATES Baud
110 The variable baud refers to the baud
300 rate, which is the rate of transmis-
600 sion in number of signal events per
1200 second. NCS defines baud rate as
2400 bits of binary data per second. The
4800 user must confiqure the host so that
9600 the baud rate matches that of the
scanner (when used).
Parity
PARITY Parity is the ASCII value of the one

ASCII Value

0 for odd parity 79
E for even parity 69
N for no parity 78

3-10

character constant specifying the type
of parity used. Each data character

- transmitted or received by the scan-

ner, host, or auxiliary device may be
accompanied by a parity bit which pro-

vides a means of insuring the integrity

of the character transmission. The

parity bit is attached to the upper l&i
end of the seven or eight bits that A
represent the character.

RECONFIGURING THE COMMUNICATIONS PROTOCOL: SETUP

Databits

The variable databits is an integer
constant indicating the number of bits
used to transmit a data character.
This number does NOT include the pari-
ty bit or stop bits and only applies
to data characters. The variable
databits may be either 7 or 8.

Stopbits

The variable stopbits is an integer
constant indicating the number of stop
bits used to terminate the transmis-
sion of each character. Valid values
for stop bits are 1 or 2.

Portsel

The variable portsel is an integer
variable indicating which serial port
is being used. The serial port will
generally be 1 unless there are two
asynchronous serial channels in-
stalled on the host computer. Then
portsel will be 1 or 2 depending on
the address of the channel being

used for the scanner.

Cmderr
Cmderr is a string variable which re-

turns an error code to the applica-
tion program from the SETUP routine.

DATABITS

7 for 7 bits in one character

8 for 8 bits in one character

STOPBITS

N =

J

RECONFIGURING THE COMMUNICATIONS PROTOCOL: SETUP !

#
%,

EXPLANATION: SAMPLE PROGRAMMING

SAMPLE PROGRAMMING This program section illustrates how
' to initialize variables and call the
50 BAUD%=9600 SETUP routine. Lines 50 through 100
60 PARITY%=ASC ('0') initialize the necessary parameters
70 DATABITS%= 7 (baud rate, parity, data bits, stop
80 STOPBITS%= 2 bits, and cmderr.) ILine 110 makes
90 PORTSEL%= 1 the SETUP routine call.

100 CMDERRS$ = SPACES$(200)

110 CALL SETUP%(BAUD%,PARITY%,
DATABITS%,STOPBITS%,
PORTSEL$%,CMDERRS)

ADJUSTING SCANNER READ LEVEL:

OVERVIEW: LEVEL

The scanner read level threshold is
initially set by the system at 4. All
marks at a read level of 4 and above
are considered valid marks; those be-
low 4 are not valid marks. The user
can adjust this up or down through the
use of the LEVEL command. This ad-
justment should only be used on small
batches of problem documents (such as
forms in which all marks have been
made too light). (Refer to Section
One for a description of how the scan-
ner "reads" forms and discriminates
between intended marks and erasures.)

EXPLANATION: CALL FORMAT

The application program calls the
LEVEL routine and must pass two pa=-
rameters:

e0ffset
oCmderr

One parameter is passed back to the
application program:

oCmderr
Offset

Offset is a one-digit variable (-2,
-1,0,1,0r 2). The read level is ini-
tially set by the system at 4. The
variable offset represents the amount
up or down the user adjusts the read
level for a specific batch of forms.
For example, if a user wants to scan
a batch of forms with extremely light
marks, the read level could be lowered
by two levels (OFFSET= =2) so that the
scanner would accept read levels of 2
and above as valid marks. Setting
offset to zero resets the read level
to its original value of 4.

CALL FORMAT

BASIC:
Y#=FRE (0)
OFFSET%=2
CMDERR$=SPACES (200)
CALL LEVELS%(OFFSET%,CMDERRS)
PASCAL:
VAR
CMDERR : MSCSTR;
OFFSET: INTEGER;
OFFSET:= 2
LEVEL (OFFSET, CMDERR) ;

OFFSET

read level threshold set at 4

to lower:
OFFSET

-1, =2

to raise:
OFFSET

1, 2

LEVEL

ADJUSTING SCANNER READ LEVEL: LEVEL

TO RESET LEVEL

BASIC:
OFFSET%= 0
CMDERR$= SPACES (200)
CALL LEVEL%(OFFSET%,CMDERRS)
PASCAL:
VAR
CMDERR : MSCSTR;
OFFSET: INTEGER;
OFFSET:= 0;
LEVEL (OFFSET,CMDERR);

SAMPLE PROGRAMMING

40 OFFSET% = 2
50 CMDERRS = SPACES$(200)
60 CALL LEVEL (OFFSET%,CMDERRS)
70 IF ASC(CMDERR%)<>64 THEN GOTO
400
80 form scanning and data
manipulation...
400 LEVEL error section...
500 OFFSET% = 0
510 CALL LEVEL (OFFSET%,STATUSS)

Cmderr

Cmderr is a string variable which re-
turns an error code to the application
program from the LEVEL routine when

an incorrect variable has been entered
in offset. If no errors occur, cmderr
will return the symbol @ and the cur-
rent value of the read level (as ad-
justed). For example, if the read level
were lowered by 1, cmderr would return
@3.

CONSIDERATION: READ LEVEL

Once the standard scanner read level
(set by system to 4) has been altered
and the affected forms have been
scanned, the read level must be reset
to read at its normal level. This is
done by setting offset to 0 and
calling the LEVEL routine.

EXPLANATION: SAMPLE PROGRAMMING

This program section raises the read
level threshold to scan a batch of
smudged forms. The read level is
raised so that only the darkest marks
(the intended responses) are read. The
offset value must be set and then the
LEVEL routine can be called.

Line 40 sets OFFSET% to 2 to raise the
read threshold level by 2 levels. Line
50 initializes CMDERRS$. Line 60 makes
the call to the LEVEL routine. If

"@" (ASCII 64) does not appear in the
first character of CMDERRS, a call
error has been made and the LEVEL call
error check is made in lines 400, etc.
Otherwise, forms are scanned and the
program manhipulates the data (line

80, etc.).

Lines 500 and 510 reset the read level
threshold to its normal 1level.

e

IDENTIFYING THE FORM

OVERVIEW: SKUNK FORM FEATURES

The SKUNK command allows the user to
define forms which will be scanned Skunk Marks LEADING EDGE
using the SCAN command. This is done A
using the marks, called "skunk marks",
that are located at the leading edge
of the form. Each form will have a
different configuration of skunk GUIDE
marks. Therefore, scanner commands EDGE
can verify if the form is the one it
expects by matching the unique skunk
mark configuration.

4

The form definitions are saved by
Micro Scanner Commands in an inter-
nal table. Then the form definitions
are used by the SCAN command to en-
sure that the correct form is being
read and that the form is being
scanned properly. For example, if a
form is defined in the SKUNK command
and a different form is scanned in
the SCAN command, an error code will.
be passed back to the application
program. Also, if a form is scanned
backwards, the SKUNK definition will
not be matched and an error code will

Timing
Track

be passed back to the application
program. The values in the SKUNK
command are also used by the GRID
command for validity checks on form
parameters.

IDENTIFYING THE FORM: SKUNK N
CALL FORMAT EXPLANATION: CALL FORMAT
BASIC: The application program calls the
DOCNUM%=3 SKUNK routine and must pass six pa-
CELLS%=47 rameters:
TRACKS%=99
NUMMARKS%=2 eDocnum
MARKS%(0)=2 eCells
MARKS%(1)=4 eTracks
CMDERR$=SPACES$(200) eNummarks
MARKPTR%=VARPTR (MARKS%(0)) eMarks
CALL SKUNK$%(DOCNUM%,CELLS%, TRACKS%, oCmderr
NUMMARKS% ,MARKTPR%,CMDERRS)
PASCAL: ’ One parameter is returned to the ap-
VAR plication program:
DOCNUM, CELLS, TRACKS , NUMMARKS:
INTEGER; eoCmderr
MARKS:SKARAY;
CMDERR:MSCSTR; Docnum
DOCNUM:= 3;
CELLS:= 47; Docnum is a number from 1 to 99 which]
TRACKS:= 99; is assigned to a specific form. A (K\
NUMMARKS:= 2; maximum of ninety-nine form defini- e
MARKS[0]:= 2; tions can be stored in the skunk
MARKS[1]:= 4; table at any one time,
CMDERR:= " ";
SKUNK (DOCNUM, CELLS , TRACKS , NUMMARKS,
MARKS, CMDERR) ;
CELLS/TRACKS Cells
T =O000000 Cells is a one- or two-digit variable
{ =QOQOOQOO which specifies the number of response
[=O000000 positions running horizontally across
TIMING _}_%,,:8888888 a form from the timing marks to the
TRACK=" ' 3OO outside edge. Cells cannot be less
[=mQOQ00000 than 1 or greater than 47.
I =QOO0O0000
| =OQOOOO00O Tracks
{ =QO000000 -
I =Q000Q0Q Tracks is a one~ or two-digit variable
S~— which specifies the number of timing -
CELLS marks on the form. Timing marks are
the small black rectangular marks on
the left side of a form. These marks
signal the scanner to read across the »
form at that spot. Tracks cannot be ‘@L;

less than 1 or greater than 99.

The number of individual marks should
equal the value of nummarks. For ex-
ample, if nummarks = 7, indicating
that skunk marks occupy 7 positions,
there must be 7 mark values. Since
scanner commands do not directly
check for the possibility that an in-
correct number of marks are entered,
the application program should do
this.

In Basic, the pointer to the array

. marks is passed to the SKUNK routine.
The pointer must be set to the start-
ing location of the array. This must
be done immediately preceding the
SKUNK call.

IDENTIFYING THE FORM: SKUNK

Nummarks NUMMARKS
Nummarks is a one- or two-digit vari-
able identifying the number of skunk -
mark positions which are occupied on - 0 . T TIOL
a form. Skunk marks are black marks = |rEesscieiitiiEl,
which occupy response positions on - 000000088800 e
timing mark one of the document. Cau- - © P |2
tion: nummarks is not the number of I (CIOISIOIOICIOICIC) b
skunk marks on a form but the number ‘J:qu; Q;ICMQEQ-———
of skunk mark locations occupied on a
form. Although the accompanying ex-
ample contains two skunk marks, they NUMMARKS = 3
occupy three spaces. Therefore num-
marks = 3, Nummarks cannot be less
than 1 or greater than 47.
Marks() MARKS
Marks is an array of number values
indicating the location of occupied - N =
skunk mark positions. The first po- R o e e I
sition to the right of the timing SRS AL A A -1
mark is position 1, the second is - 000000888300 3
position 2, and so on. Only one - g T

o
position is required to be filled. el (CIOIOIOICIOIOIOICIS; >
Values can vary from 1 to 47. 1In | = S CI0IOL0) al
the example to the right, positions
2, 4, and 5 are filled. Therefore, MARKS (0) = 2
‘the array is as follows: Marks MARKS (1) = 4
(0)=2, Marks (1)=4, Marks(2)=5. MARKS (2) = 5

3-17

IDENTIFYING THE FORM: SKUNK

Cmderr
Cmderr is a string variable which re-
turns an error code to the application

program from the SKUNK routine.

CONSIDERATIONS: SKUNK

Documents must be defined using the
SKUNK command before the user can
process them. Skunk commands may be
issued for previously defined forms.
The latest definition will be used.

REMOVING A DOCUMENT EXPLANATION: TO REMOVE A DOCUMENT
BASIC: A programmer may wish to remove a
DIM MARKS%(48) document definition from the SKUNK
DOCNUM%=3 table if a defined form will no long-
CELLS%=-1 er be used or if a form has been in-
TRACKS=1 correctly defined. The accompanying
NUMMARKS %=1 example describes how to remove a
MARKS%(0) =1 document definition from the skunk
CMDERRS$=SPACES (200) table. In this example, the defini-
MARKPTR $=VARPTR (MARKS%(0)) tion of document 3 is removed. When
CALL SKUNKS% (DOCNUM%,CELLS%,TRACKSS%, removing a document from the skunk
NUMMARKS% ,MARKPTR %, CMDERRS) table, the variable docnum should
PASCAL: contain the number of the document to
VAR be removed. -Cells must be equal to -1,
DOCNUM, CELLS , TRACKS , NUMMARKS : The variables tracks, nummarks, and
INTEGER; marks may vary but they must have been
MARKS:SKARAY; initialized at some point in the pro-
CMDERR :MSCSTR; gram. Once the parameters have been
DOCNUM: = 3; initialized as described, the SKUNK
CELLS: = =1; command call is made.
TRACKS: = 1;
NUMMARKS: = 1;
MARKS[O]: = 1;
CMDERR: = " ";
SKUNK (DOCNUM,CELLS,TRACKS, .
NUMMARKS , MARKS , CMDERR) ;

IDENTIFYING THE FORM:

EXPLANATION: SAMPLE PROGRAMMING

This program section defines the form
to be scanned and stores the form
definition in the SKUNK table. Then
a form is scanned. If the form is the
correct form, the program can perform
the desired operations. If not, an
appropriate error message is printed.

Line 20 initializes CMDERRS.
30, 40 and 500 comprise READ
statements which read in the
ters of form number 7. Line
the pointer location for the array
MARKS. Line 60 calls the SKUNK rou-
tine and stores the definition of
form 7 in the skunk table.

Lines
and DATA
parame-
50 sets

Lines 70 through 100 initialize SCAN
parameters and call the SCAN routine.
The SCAN command allows the user to
scan forms and transmit data. First,
the SCAN parameters are initialized.
READTYPE$ = 2 means that a new form
will be scanned. DOC% is set to O.
Since the program is written in
Basic, CMDERRS must be reinitialized
for each command call. Line 100
calls the SCAN routine and the form
is scanned.

Line 110 ensures that the correct form
was scanned. The form scanned will
match a specific document in the skunk
table, if it exists. If a document
match is found in the skunk table, the
value passed back in DOC% will be the
number of the matching document. 1If
no match is found, the value returned
in DOC% will be 0. If the document
.number is 7, then the program can per-
form the necessary manipulations. .If
DOC% does not equal 7, line 110 di-
rects the program to line 200 which
prints out an error message.

SAMPLE PROGRAMMING

20
30

40

50
60

70
80
90
100

110
120
200
500

CMDERRS = SPACES$(200)

READ DOCNUM%,CELLS%, TRACKSS%,

NUMMARKS%

FOR A=0 TO 2:READ MARKS%(A):
NEXT A

MARKPTR% = VARPTR(MARKS%(0))

CALL SKUNK$%(DOCNUM%,CELLS$%,

TRACKS$% , NUMMARKS% ,MARKPTR %,

CMDERRS)

READTYPES = 2

DOC% = 0

CMDERR$ = SPACES(200)

CALL SCAN%(DOC%,READTYPES,

CMDERRS)

IF DOC%<> = 7 THEN GOTO 200
ELSE...
PRINT "WRONG FORM SCANNED"

DATA 7,47,63,3,1,2,7

SKUNK

A

IDENTIFYING THE FORM: SKUNK p

3-20

SCANNING THE FORM: SCAN

OVERVIEW: SCAN

The SCAN command is capable of two
useful functions: 1) It allows the
user to tell the scanner to scan a
sheet and pass the data from the
scanner to the microcomputer, 2) it
can also tell the scanner to retrans-
mit the current data record to the
microcomputer in the case of a com=-
munications problem. By using this
command in the application program,
the user has control over scanning
and record transmission.

EXPLANATION: CALL FORMAT

The application program calls the
SCAN routine and must pass three
parameters:

eDoc
®Readtype
eCmderr

Two parameters are passed back to
the application program:

eDoc
oCmderr

Doc

Doc is a number from 1 to 99 which is
returned by the SCAN routine. If a
document match is found in the SKUNK
table, the value passed back to the
application program in doc will be
the number of the matching document.
If no match is found, the value re-
turned in doc will be 0. The pro-
grammer must initialize doc to O be-
fore calling the SCAN routine.

CALL FORMAT

BASIC:
DOC%=0
READTYPE%=2
CMDERR$=SPACES (200)
CALL SCAN%(DOC%,READTYPE%,
CMDERRS)

PASCAL:
VAR ,
' DOC, READTYPE: INTEGER;
CMDERR : MSCSTR;
READTYPE:=2;
SCAN (DOC, READTYPE, CMDERR) ;

3-21

SCANNING THE FORM:

SCAN

CALLING OPTIONS

READTYPE =

2 - to request a new document

from the scanner

to request a retransmission
of the current record from
the scanner

SAMPLE PROGRAMMING

40
50
60
70
80

20

100
480
490
500
700

FOR A =1 TO 10
DOC% = 0
READTYPES = 2

CMDERRS$ = SPACES$(200)
CALL SCAN%(DOC%,READTYPES,
CMDERRS)

IF ASC (CMDERRS$)<>64 THEN GOTQ

500

program main bodye...
NEXT A

GOTO 700

SCAN error check...
END

3=22

Readtzge

Readtype is a numeric variable identi-
fying which calling option the user
chooses. The user can choose one of
two options: readtype = 2 to request

a new document from the scanner, in
which case a document will be scanned
and its record will be passed; or read-
type = 3 to request a retransmission of
the current record. A retransmission
should be requested only after receipt
of a defective transmission.

Cmderr

Cmderr is a string variable which re-
turns an error code to the application
program from the SCAN routine.

EXPLANATION: SAMPLE PROGRAMMING

This program section scans 10 forms
and ensures that the SCAN call is
made correctly.

Since 10 forms will be scanned, a loop
is set up to perform the scanning and
data manipulation operations (lines
40-480). Lines 50-70 initialize the
SCAN parameters. DOC% is initialized.
In order to select the scan a sheet
option, READTYPE% is set to 2. CMDERRS
is initialized.

The call to the SCAN routine is made
in line 80 and a form is scanned. If
the first character of CMDERRS is not
"@" (ASCII 64) upon return to the
application program, a call parame-
ter error has been made and the SCAN
error check is made beginning on 1line
500. Otherwise the program performs
the necessary data manipulations
(lines 100, etc.). Line 490 allows
for bypassing of the SCAN error sec-
tion if no call error has been made
and line 700 ends the program.

-

&

SCANNING THE FORM: SCAN

CONSIDERATIONS: SCAN

The SCAN command should not be uti-
lized unless the document being
scanned has been defined through the
SKUNK command. The SCAN command uti-
lizes data from the SKUNK form defi-
nitions. This is to ensure that the
correct forms are being scanned and
that forms are being scanned in the
proper manner (refer to Section Three,
SKUNK command). If the SCAN command
is used without a previous SKUNK com-
mand, a record will still be passed
to the microcomputer but an error code
will be returned to the application
program in the cmderr variable indi-
cating that an unrecognized document
was scanned (error code 507).

SCANNING THE FORM:

SCAN

3=-24

RESOLVING THE GRIDS: GRID
OVERVIEW: GRID
The GRID command is used to resolve SAMPLE GRID
an area (or grid) on a form into a
string of characters. The GRID com-
mand uses the standard NCS mark dis- ABCDE ABCDE
crimination techniques to resolve I0PEOOE 40RO
the data in a grid. Refer to Section ABCDE ABCDE]|
ITEM
One for a complete description of how 38?%@3%? 48(2?%63;
h
:1 eksginner.' Fea:.? forms and performs :10]01010)0) @@@@@ /RESPONSE
arx discrimination. ABCDE POSITION
OO 50@ OO
EXPLANATION: CALL FORMAT CALL FORMAT
The application program calls the BASIC:
GRID routine and must pass four pa- FOR A = 0 TO 7
rameters, one of which is an array READ GRIDARG(A):NEXT A
of values: EDSTAT% = O
CMDERRS = SPACES(200)
oGridarg GRIDSTRS = SPACES (200)
oGridstr ARGPTR% = VARPTR(GRIDARG%(0))
eEdstat CALL GRID%(ARGPTR%,GRIDSTRS,
eCmderr EDSTAT%,CMDERRS)
DATA 2,0,1,10,1,5,5,0
Three parameters are returned to the
PASCAL: .

application program:

oGridstr
eEdstat
eCmderr

VAR
GRIDARG:GRIDARA;
EDSTAT: INTEGER;
CMDERR,GRIDSTR:MSCSTR;
GRIDARG([O0]:= 2;
GRIDARG[1]:= O0;
GRIDARG[2]:= 1;
GRIDARG([3]:= 10;
GRIDARG[4]:= 1;
GRIDARG[5]:= 5;
GRIDARG[6]:= 5;
GRIDARG[7]:= O;
GRID (GRIDARG,GRIDSTR,EDSTAT,
CMDERR) ;

3=-25

RESOLVING THE GRIDS: GRID

RESOLVED GRID

SUE JONES - the data to be
resolved

NAME (Last. First, M 1)
< R e)
slole] [afoplels[[L[{111]]
[o)oXoX XoXeXoXoXoXoXoXoXoXoXoXeXoXoXoXe)
[OXCXOXOXONORONONOROXORONOROROXORONONONO)
(OXONXOXONOROROROROROROJORORONOROROXOROXO)
OOPVOOPOOOOOOOOOOOOOO
CXCXCROXOXORONOROROROROROXOXONCRONONOXO)
OP0OOOO0NOOOOOOOOO®O®®
ODOOOOOOPOOOOOOOOOOOO®O
PRPPRPEPRVEOVPPPEOE OO
OXCROCNCRORONORORONONORCRCRCONCROXORORC)
(0XOXOXOXOXOJOXOROXOJOROXOROROROXOXOXOXO)
(OJOROXOX JORONOROROXONOROXOXONORONONOXO]
OOOOOOONOOOOHOOOOOOOO®®
OOOOOHOOOHVOOOOOOOOOOO
® O M- e CRCICACRORORCRCRCXC)
Q) ®) W) (V) (M) Ld=

3-26

Gridstr

Gridstr is a string variable which
returns the result of the GRID opera-
tion to the application program.

Edstat

The GRID routine returns error numbers
that result from incorrect coding of
grids. The programmer must initialize
this variable to 0 within the applica-
tion program before calling the GRID
routine. If edstat = 128, an input
parameter error has been detected and
will be listed in the variable cmderr.
If no coding errors or parameter er-
rors occur, the value returned in
edstat will be less than 128. The
edstat error codes are described in
more detail later in this section.

Cmderr

Cmderr is a string variable which re-
turns a parameter error code to the
application program from the GRID
routine. If no errors occur, cmderr
will return the symbol @ in the first
character position and the number of
characters returned in gridstr. For
example if cmderr were @004, no pa-
rameter errors were detected and the
first four characters of gridstr con-
tained the result of the CALL.

Gridarg

Gridarg is an array of integers which
define the GRID to be resolved. They
include type, class, sx, ex, ix, sy,
ey, and iy.

In Basic, the pointer to the array
gridarg is passed to the GRID command
routine. The pointer must be set to
the starting location of the array.
This must be done immediately pre-
ceding the GRID call.

-

RESOLVING THE GRIDS: GRID

Gridarg(0)-Type: Type is a one-digit

variable defining the type of grid to
be resolved.

When type = 1 the grid type is Alpha-
numeric (space,A-Z,0-9,special char-
acters.) An alphanumeric grid can
contain up to 63 response positions
per item. If it is not necessary to
use all 63 spaces, truncation must

be made from the end, not the begin-
ning. If the special characters are
used, they are placed in this order:
[o<(+\&!$*);."'/’%_>?:#@'=" .

When type = 2 the grid type is Numer-
ic (0-9). The numeric grid may be
truncated at the end, but not at the
beginning.

GRID TYPES

1.

3.
4,
5.
6.
7.

Alphanumeric (space, A-Z, 0-9,
special characters)

Numeric (0-9)

One-Digit Response (1-9)
Two-Digit Response (01-99)
Binary

Binary Coded Decimal (0-9)
Litho-Code

GRID TYPE 1 - ALPHANUMERIC

@OE®EO®®O
OO0
OO0

GRID TYPE 2 - NUMERIC

SOCIAL SECURITY
NUMBER
0]0]0) 0]0, 0I0ICJO]
QOOIPOLOOO®
(©]ol0); e]o) ole]ele)
QORIOOO®B
OOOPOOO®O
(oJoJo]oJe/ele]e]o]
OREEEEPEOG
0]0]0] 0]0 010]0]0)
QORILOLOO®G
[0]o]o, 010 0]0]0]0)

RESOLVING THE GRIDS:

GRID

{4‘ N
N

13@ 18Q 1 finch)

O 5 linches)
. 4 (inches)

o s/a
O Other

Eee®

O No Response

O 1-1/a (inches)

O | Don't Know

GRID TYPE 3 -~ RESPONSE(1-9)

SPORTS INTERESTS
(Mark only one)

O badminton
O baseball
O basketbail
O boxing

O cycling
QO football
O golf

QO gymnastics
(O hockey

QO skating

Q soccer

@) swimming
Q tennis

GRID TYPE 4 - RESPONSE(01-99)

GRID TYPE 5 - BINARY

128
0O

256
o

3-28

Gridarg(0)-Type (éont.)

When type = 3 the grid type is a one
digit Response grid (1-9). Positions
in Response grids can be designated
with numeric or alpha characters, but
the output for both responses is nu-
meric. In both examples, if the third
position of the Response grid items
are filled in, the output would be a 3.
Therefore, it may be necessary for the
host program to translate the 1-9 re-
sponses into the intended responses.
The response grid may be truncated at
the end, but not at the beginning.

When type = 4, the grid type is a
two-digit Response grid (01-99).

Grid response positions can be desig-
nated as numeric or alpha characters
in any combination, but the output
will be in two-digit numeric charac-
ters. The grid may be truncated at e
the end, but not at the beginning.

When type = 5, the grid type is
Binary. While the Alphanumeric,
Numeric, and Response grids expect
only one response per item, Binary
grids expect zero or more responses
per item. Binary grids also differ
from the other grids in that respon-
ses do not represent successive num=-
bers (1,2,3,etc.) or letters (a,b,c, -
etc.), but instead represent succes-
sive powers of two (1,2,4,8), etc.).
Binary grids may contain a parity
bubble for odd parity. The parity
bubble must be placed at the high
end of the item. Binary grid items

RESOLVING THE GRIDS: GRID

Gridarg(0)-Type (cont.)
can contain up to 29 response posi-
tions (or 30 with parity). The maxi-
mum number of items in a binary grid
is 28. Binary grids cannot generate
blanks or multiples. If a response
position is left blank, zeros will be
generated.
The binary output chart will help you BINARY OUTPUT CHART
determine how many output characters Number of | Number of Maximum
to count for each item in a binary Responses Output Decimal
grid. Note that a parity bubble is Positions | Characters Value
not considered as a response position
when determining output characters. 1 to 3 1 7

4 to 6 2 63
The output of a Binary grid item is 7 to 9 3 511
the numeric total of the values of 10 to 13 4 8191
every bubble marked. In the accom- 14 to 16 5 65535
panying example, three binary posi- 17 to 19 6 524287
tions are marked. When each position 20 to 23 7 8,388,607
is added, the total value is 73. 24 to 26 8 67,108,863
(Since there are 9 response positions 27 to 29 9 536,870,911
and numeric values take 3 digits, the
returned gridstr will be 073.) CODING BINARY GRIDS
Binary grids are especially useful
for machine-coding large numbers in . 2 . . 6 32 s 128 256
small spaces. ®@ O o) e O O e O (0]

When type = 6 the grid type is Binary
Coded Decimal. Like the Binary grid,
response positions in a Decimal grid
represent values that are powers of
two. The values of all positions
marked in one item are added together
to generate a decimal number in the
output record. Decimal grids resolve
items of one to five response posi-
tions. If five positions are used,
the fifth position must be a parity
bubble for odd parity.

3-29

RESOLVING THE GRIDS: GRID

GRID TYPE 6 - BINARY CODED DECIMAL
NO PARITY
GIGIRICICIG,
OO
OOOOO®
olojelolo]
oJo] Jol JO,
001856

GRID TYPE 6 - BINARY CODED DECIMAL
PARITY

000000
6Y010) 1010,

OJoJol X
olololo)
0] _Jo] o,

©JOIC)

3 [CICIC)
1000

oo1

GRID TYPE 7 - LITHO-CODE

@OOOOOOOOOOOOOOOOOOOOOO@
NOT WRITE IN THIS A

3=30

Gridarg(0)-Type (cont.)

The accompanying example illustrates
a Decimal grid with five response
choices per item. If a Binary grid
type had been used on this grid, the
number in output would be 000001080506.
The Decimal class will strip leading
zeros so that the number in output
would be 001856. If this grid were
being used for ID numbers it would be
very useful since the user would not
want leading zeros displayed. To
code zeros in this grid type, simply
leave an item blank.

Caution: Decimal grids may not have
numbers coded that are greater than
9. If a number greater than 9 is
coded, an asterisk (*) will appear in
the output indicating an illegal re-
sponse and the multiple bit will be
set in the edstat variable.

When type = 7 the grid type is Litho-
code. Response positions in a Litho-
code grid also represent values that
are powers of two. This is a special
grid that is designed for mechanically
coding a serial number on documents.

A unique serial number is coded in the
grid on each form at the time the
forms are originally printed. The
litho-code grid is used to:

1. Number two halves of a form too
large to scan in one piece, so
that the information on each
half may be matched up at a
later time. An example of this
would be an 11" x 17" form which
is perforated in the middle for

' separation into two 8-1/2" x 11"
forms. Both 8-1/2" x 11" sides
would be printed with matching
Litho~-Code numbers.

RESOLVING THE GRIDS:

GRID

Gridarg(0)-Type (cont.)

2. Affix a scanner-readable control
number to a single page form for
distribution or processing con-
trol purposes.

Because the printing press has no
means of computing when parity bubbles
should be marked, resolution of 1litho
code class grids must not have a pari-
ty edit. However, no error will be
reported if a parity edit is used.
Litho code grids contain only one item
per grid.

Gridarg(1)-Class

The class variable of gridarg can be
0 through 7. A horizontal grid is
class 0. A vertical grid is class 1.
If the programmer is using binary
grids or binary coded decimal grids,
class = 2 or 3 will check to ensure
correct parity and return the check
in the edit variable. Classes 4
through 7 are the same as classes 0
through 3 except that they are linked
grids.

A grid is vertical if response posi-
tions run parallel to the timing track
and horizontal if response positions
run perpendicular to the timing track.

CLASS

Value

Horiz | Vert | Parity

Link

Njocvjulsiwin] -

td Lo e Ko

VERTICAL

3=-31

RESOLVING THE GRIDS: GRID

HORIZONTAL

12345

N

9
1000000

v O O ON
wQw Ow O
~0Ox O» 0O~
o Qv Quw Ow

NN ENENENN
~®= O~ ®-

LINKING EXAMPLES

1« =a b c d e
-0 © o o o}

1 2 3
[PU———— [S ———

segment ' segment segment.

2.-0 1885 o 1906 o 1923

-o 1896 o 1915 o 1931

-0 1897 o 1918

-0 1899 o 1919

e ————— T ——
single item

3=32

Gridarg(1)-Class (cont.)

Linking: Not all items are set in
uniform grids. Occasionally one
question may consist of several non-
uniform sets of responses, such as
the grid in example one.

Each of the uniform sets of responses
is resolved with a separate grid call.
However, since just one output is de-
sired for the item, there must be a
way of connecting the resolutions.
Linking connects the contents of two
or more item segments into one output.
It may be used with any grid type, but
is primarily used to link response
grids. Grids which use linking can
contain only one item.

Example two is a single item composed
of three distinct segments (in this
case, response strings.) Each re-
sponse string is resolved with an in-
dividual grid call. Grid call one
would resolve 1885-1899, Grid call
two would resolve 1906-1919; and grid
call three would resolve 1923-1931,

To link these strings together, a
special grid class must be used. Grid
classes 4 through 7 are really the
same as classes 0 through 3 except
that the 1linking provision is added.

A

N

RESOLVING THE GRIDS:

GRID

Linking (cont.)

To link one segment to the next, use
the appropriate grid class (with
linking) in each grid call until
reaching the last segment. Then make
the grid call using the appropriate
class without linking. This signals
the program that the last segment in
the item has been reached. At this
point the grid routine will return
the selected response in the grid-
string variable.

In the second grid example the first
grid class would be linked vertical
(class=5). This links the first seg-
ment to the next. The second grid
class would also be linked vertical
(class=5). This links the first and
second segments to the next. The
third grid class would be vertical
with no linking (class=1). This sig-
nals that there is no more linking
and the response (01-10) is returned
by the grid routine in the variable
gridstring.

Note: The same restrictions which
apply to all other grids also apply
to linked grids. Linked item seg-
ments must be of one type and item
lengths cannot exceed normal length
limits. For example, a linked two-
digit response grid (01-99) cannot
have more than 99 response positions.

Gridarg(2)-Sx: The variable sx
(start x) indicates the starting x
coordinate of the grid. To locate
this position, the programmer must
use an NCS Sheet Compile Ruler. Then
find sx by follaqwing this procedure.

1. Lay the ruler parallel to the
leading edge of the form (the
edge with the skunk marks)
using 6-to-the~inch scale.

LINKING EXAMPLES (cont.)

GRID CALLS - EXAMPLE 2

string 1 CALL GRID (...class =
5= linked vertical)
string 2 CALL GRID (...class =
5- linked vertical)
string 3 CALL GRID (...class =
1- vertical)
LOCATING X
X =2
l:j Y
EEEO_

3-33

RESOLVING THE GRIDS:

GRID

LOCATING START X AND END X

Gridarg(2)-Sx (cont.)

20 w0 w0

<0 <0 <0

=0 =0 =0

NO ~O ~O

-3 -0 ~@
O

N

START X (2)
ND X (1)

=H00OEE

mS VvV £ T !

=0000®1

mS vV € 7 U

=0000@!
S v £l

E\%ID X (8)
<O
=0
~N©
-®

-}

START X (5)

X SPACING

o

= JO

O

N
IREEN
o

@)

X SPACE

——~—
2 X SPACES
®)

|

3 X SPACES

LOCATING Y

"Y=8§

o

@OEO JNOEOOG
®OOO ROEOOG
COEO BOEOEO
POOO HOGOOO

ER' USE ONLY
COURSE
LSAMNE.Q«)('D.@(E)

OO® HOEOOO

2. Line up the timing mark on the
ruler with the timing mark on
the form.

3. The distance in x units from
the timing track to the first
response choice of the first
item is sx (Start x).

Gridarg(3)-Ex: The variable ex (end
x) indicates the ending x coordinate
of the grid. It is found through the
same procedure described in the sx
(start x) section, except the distance
in x units is to the last response of
the last item.

Gridarg(4)-Ix: The variable ix (in-

crement x) indicates the spacing be-
tween x response items. X-axis spac-
ing is fixed at six response positions
per inch. An NCS Sheet Compile Ruler
is used to measure these spaces. In
example one, the x spacing is one
since there are no spaces in between
X response items. In example two, the
X spacing is two since there is one
space in between x responses. In ex-
ample three, the x spacing is three
since there are two spaces in between
X responses.,

Gridarg(5)-Sy: The variable sy (start

y) indicates the starting y coordinate
of the grid. To locate this position,
the programmer must:

1. Mark every fifth timing mark for
reference.

2. Count down from the closest marked
timing mark to the timing mark
corresponding to the first re-
sponse position for sy (start y).

RESOLVING THE GRIDS: GRID

Gridarg(6)-Ey: The variable ey (end
y) indicates the ending y coordinate
of the grid. It is found through the
same procedure described in the sy
(start y) section, except the count
is to the timing mark corresponding
to the last response position for ey
(end y).

Gridarg(7)-Iy: The variable iy in-
crement y) indicates the spacing be-
tween y response items. In examples
one and two, the y spacing is one
since there is one space between y
response items. In example three,
there are two spaces between y re-
sponse items.

LOCATING START Y AND END Y

START Y (1)
o 12345
Timing Mark 1 =m ®000
- 12345
= 200000
. - 12345
Timing Mark 5 == 3000
- .
== END Y (5)
Timing Mark 1 == END Y (3)
-
- 0w w(O-—
- <O "O ”O
Timing Mark 5 == WORJORIO)
- N@ N@ N@
-)~ ~Q
8§ & 2
START Y (7)
Y SPACING
1. >1Y SPACE
- .
-
2. > Y SPACE
[
-l
-
-
2 Y SPACES

U)

3=-35

\ %.,/ '

3-36

RESOLVING THE GRIDS: GRID
Edstat
EDSTAT RETURNS: The GRID routine returns the vari-
able edstat -~ a decimal variable
VALUE BIT GRID CONDITION which can be divided into 7 bits.
1 0 at least 1 omit Edstat reports whether a grid has been
2 1 at least 1 multiple correctly filled out. Each bit de-
4 2 incomplete/multiple scribes a specific edit condition.
8 3 blank grid If the bit contains zero, the grid
16 4 not left justified condition for that location is not
32 5 not right justified present. If the bit contains one,
64 6 parity error (binary § the grid condition is present.
binary coded decimal)
128 7 call had parameter Bits 0-7 indicate special grid condi-
error tions.
OMIT A one in bit 0 indicates that at
least one item has been omitted. The
1. oeoo 4, e o0 o0 oO string of characters in the variable
2, oo0oo0e 5. ooo0oo gridstr will contain a blank at the
3. oooe 6. oo0oo0 e omitted location. "
MULTIPLE RESPONSE A one in bit 1 indicates a multiple
response, meaning that more than one
1« oe eo response has been chosen in at least
one item. The data string in gridstr
will contain an asterisk (*) at the
multiple location.
INCOMPLETE/MULTIPLE A one in bit 2 signals that the grid
has been left incomplete or that a
1. @eo0 o0 o0 5. oo eo ‘multiple response has occurred.
2., ooo0o0 6. o0 e®@o0oO Check bits 0 and 1 to see which situ-
3. oooo 7. oooe ation is present.
4., o0 o0 o0oO0 8. 0 ® @O
BLANK GRID A one in bit 3 signals that the grid
has been left entirely blank.
1. . 0oooo 4. oo0o0oO
2, ooo0oO 5. oo0oo0oO
3. 00 o0oO0 6. O O O O

RESOLVING THE GRIDS: GRID

Edstat (cont.)

A one in bit 4 signals that the grid
is not left justified, that is, the
grid is not complete to the left edge
of the grid. This condition is es-
pecially useful to know when using
name or address grids where that data
must be correctly filled out.

A one in bit 5 signals that the grid
is not right justified, that is, the
grid is not complete from where it
begins to the right edge of the grid.
This could be useful for an identifi-
cation number grid (like social se=-
curity number) where each number must
be completed.

Ones will also occur in bits 4 and 5
if a grid contains an omit within the
number or word.

A one in bit 6 indicates a parity er-
ror. In the accompanying example,

the second item is coded incorrectly.
Since parity is odd, there should be
an odd number of coded bubbles in
each item. Parity errors occur in
binary and binary coded decimal grids.

A one in bit 7 indicates an incorrect
parameter passed in the calling state-
ment. For example, in the programming
example on the left, a parameter error
will be returned in the cmderr vari-
able because valid sx positions run
from 1 to 47. 75 cannot be a valid
parameter.

NOT LEFT JUSTIFIED
IDENTIFICATION NUMBER

Sp|112|T

ERE

010]0]0J0J0J0JO)
0]0]0]0101010]0)]
olelolol 1610)

@@@@9:,@'p

NOT RIGHT JUSTIFIED

SOCIAL SECURITY
NUMBER

-
©®
O]
®
®
®
®
®

PIOJOIOIOIC] IO)

oJoJol IOIOIOIO] mau

PARITY ERROR

CeEPO®®

| JOICIC)
ol 1 Ic
OICICT
[I JOJo
OJol JO
©OICL IC

INCORRECT INPUT PARAMETER

BASIC:
SX = 75
GRIDARG%(3) = SX
ARGPTR% = VARPTR(GRIDARG%(0))
CALL GRID%(GRIDARG%,GRIDSTRS,
EDSTAT$%,CMDERRS)

PASCAL:
SX:= 75;
GRIDARG(3):= SX;
GRID (GRIDARG,GRIDSTR,
EDSTAT ,CMDERR) ;

3=-37

RESOLVING THE GRIDS: GRID

INTERPRETING EDSTAT

EDSTAT = 21
128 64 32 16 8 4 2 1 value

loJolofJ1]ol1]o]1] 0 or 1

7 6 5 4 3 2 1 0 position

O —

] !
Ol= aibh U

GRID CONDITION

IDENTIFICATION NUMBER

2111

©
®
@
®
®

PEROOOOO

olojololol Jolom
CEOEOOOK
O JOJOJOIOJO] SN
CEROEEOEIS

©®
©®
@

0
©e
0]0)
010
L 39,
0]O)
006
0JO)
QO

®

®
@@@. @@@
01010J0J0]0J00]0;
oJoJojojojo]e]o])

incomplete, with omit on left

EDSTAT - BINARY GRID

POSITION CONTAINS
0 always O
1 always O
2 1 when parity error
3 always 0 >
4 always O
5 always O
6 1 when parity error
7 1 when parameter error

EXAMPLE: INTERPRETING EDSTAT

Since edstat is returned as a decimal
number, the user must be able to divide
the number into its binary equivalent
to interpret the grid edit condition.
Each bit position (0-7) has a value
equal to a power of two. By taking
the edstat wvalue and subtracting each
greatest possible power of two until
reaching zero, the user can determine
which bits contain a one. The example
to the right accomplishes that task.
If the number returned in edstat is
21, the first value which is not
greater than 21 is 16 (position 4).

21 - 16 = 5. The next value not
greater than 5 is 4 (position 2).

5 -4=1, and 1 - 1 = 0 (position 0).

Therefore, positions 0, 2 and 4 con-
tain ones. The grid condition is
incomplete (position 2) with an omit
(position 0) occurring on the far
left (position 4).

EDSTAT: BINARY GRID

3-38

The variable edstat is interpreted
differently for binary grids. Posi-
tions 0,1,3,4, and 5 remain constant
while bits 2, and 6 signal parity
errors and bit 7 signals an error in

‘passing parameters.

RESOLVING THE GRIDS: GRID

EDSTAT: BINARY CODED DECIMAL GRID

The variable edstat is interpreted
differently for binary coded decimal
grids. Bits 0,3,4, and 5 remain
constant while bit 1 signals that an
item is coded > 9, bits 2 and 6 sig-
nal parity errors and bit 7 signals
an error in passing parameters.

CONSIDERATION: EDSTAT, CMDERR

The variable edstat contains errors
that result from incorrectly coding
the grids on forms. In the absence
of parameter errors, cmderr returns
the @ symbol. However, if edstat =
128, at least one parameter error
has been made and cmderr contains
the parameter error number(s). Pro-
gramming error numbers are described
in Section Six.

EXPLANATION: SAMPLE PROGRAMMING

This program section scans 25 forms
and resolves a name grid from each
form to compile a list of class mem=-
bers. The program section assumes
that the parameters for the SCAN call
have been defined previously. Line

20 prints a heading for the class
list. Lines 30 through 140 comprise

a loop which scans forms and resolves
name grids. The loop runs 25 times,
once for each student. Line 40 calls
the SCAN command and a form is
scanned. Lines 50 and 60 initialize
EDSTAT% and GRIDSTRS. Lines 80 and
150 read in parameters for the GRID
call through READ and DATA statements.
Line 90 initializes CMDERRS$. Line 100
sets the pointer to the start of the
GRIDARG array.

EDSTAT - BINARY CODED DECIMAL

o)
\ld\U‘lswa—'Og

CONTAINS

always O

1 when coded # > 9

1 when parity error
always O

always O

always O

1 when parity error

1 when parameter error

EDSTAT/CMDERR

if no parameter errors:

edstat=decimal number (0-127),

cmderr=@
if parameter errors:
.edstat=128 (indicating parameter

cmderr=parameter error number

numbers 1-127 indicate
grid edit conditions

error(s))

string

SAMPLE PROGRAMMING

20
30
40

50
60
70
80
20
100
110

120
130
140
150
200

PRINT "CLASS MEMBERS ARE:"

FOR B= 1 TO 25

CALL SCAN%(DOC%,READTYPE%,
CMDERRS)

EDSTATS = O

GRIDSTRS = SPACES$(200)

FOR A =0 TO 7

READ GRIDARG%(A):NEXT A

CMDERRS$ = SPACES(200)

ARGPTR% = VARPTR(GRIDARG%(0))

CALL GRID% (ARGPTR%,GRIDSTR%,
EDSTAT%,CMDERRS)

IF EDSTAT$ = 128 THEN GOTO 200

PRINT GRIDSTRS

NEXT B

DATA 1,0,10,28,1,5,27,1

error check section...

RESOLVING THE GRIDS:

GRID

EXPLANATION: SAMPLE PROGRAMMING

(cont.)

Line 110 calls the GRID routine which
resolves the name grid. If EDSTAT% =
128 (l1line 120), a parameter error has
occurred and the program is directed
to line 200 which is the start of the
program's parameter error check. If
EDSTAT% is not 128, no parameter er-
ror has occurred and the program
prints GRIDSTRS which contains the
name from the resolved grid (line
130). Line 140 directs the program
back to line 30 and the sequence is
repeated until all 25 names are read.

SENDING DATA TO SCANNER:

TRANSMIT

OVERVIEW: TRANSMIT

The TRANSMIT command allows data to
be transmitted to the following
destinations: the LED display, the
optional transport printer, or the
auxiliary port.

EXPLANATION: CALL FORMAT

The application program calls the
TRANSMIT routine and must pass four
parameters:

eDest
eOutstr
ePrntpos
eoCmderr

One parameter is passed back to the
application program:

eCmderr

Dest

Dest (destination) is a one=-digit
variable which indicates to which de-
vice output is to be directed. Dest
will be 0 for the scanner transport
printer, 1 for the scanner auxiliary
port, and 2 for the scanner LED dis-
play. The length of the data trans-
mitted is dependent on the device
being selected. The transport print-
er is limited to 99 characters.

There is a 254 character limit to the
auxiliary port and the LED display is
limited to one numeric character.

CALL FORMAT

BASIC:
DEST% = O
CMDERRS = SPACES$(200)
PRNTPOSS = 10

OUTSTR% = SPACES$(200)
CALL TRANSMIT%(DEST%,0UTSTRS,
PRNTPOS%,CMDERRS)

PASCAL:
VAR

CMDERR, OUTSTR:MSCSTR;
DEST, PRNTPOS : INTEGER;

DEST:= O;
PRNTPOS:= 10;
OUTSTR:= "ERROR";
TRANSMIT (DEST,OUTSTR, PRNTPOS,
CMDERR) ;
DEST
length
dest which of output
number device or prntpos
0 transport 99
printer
1 aux. port 254
2 LED display 1

SENDING DATA TO SCANNER: TRANSMIT

PRNTPOS

if DEST =

N - O

PRNTPOS is

01 to 99
0
1 to 15

3-42

Cmderr

Cmderr is a string variable which re-
turns an error code to the application
program from the TRANSMIT routine.

PrntEos

Prntpos is the name of a number vari-
able. If the destination is the trans-
port printer (DEST = 0) then prntpos
will be the desired starting print po-
sition (from 01 to 99). If the desti-
nation is the auxiliary port (DEST = 1)
then prntpos will be zero. If the de-
stination is the scanner display (DEST =
2) then prntpos will be the value the
programmer wants displayed (0-15).
Numbers 10-15 appear as A,b,C,4,E,

and F.

Outstr (\-&,/"

Outstr is a string variable containing
the data to be transmitted. First,
the user must decide which data to
transmit and then load that data into
outstr.,

SENDING DATA TO SCANNER:

TRANSMIT

EXPLANATION: SAMPLE PROGRAMMING

section utilizes both
the TRANSMIT and RECV commands. A
test grading center has been set up
with the microcomputer operator at
the host computer and an instructor
at a remote location with a display
monitor and keyboard attached to the
scanner's auxiliary port. This pro-
gram section describes the start of
the test grading procedure. The host
sends a message to the auxiliary port
asking if the scanner operator is
ready to begin scanning forms. The
host expects a response from the
scanner operator.

This program

Lines 40-60 initialize the TRANSMIT
parameters. The message which will
be sent to the aux port is entered in
OUTSTRS$. Line 80 makes the TRANSMIT
CALL and the message is sent. In
line 90, if CMDERRS does not contain
"@" (ASCII 64) the call has not been
made correctly and the program is
directed to line 200, the start of
the TRANSMIT error check.

If no errors occurred during the
TRANSMIT call, line 100 initializes
RECVSTRS. Then the RECV CALL is made
and the "Y" or "N" the scanner opera-
tor entered on the aux port keyboard
is received by the host (line 120).
In line 130, if CMDERRS$ does not con-
tain "@" (ASCII 64), an error has
been made in the call and the RECV
error check is started in line 300.
If "Y" is returned in RECVSTRS$, the
scanner operator is ready to begin
scanning forms and the scanning rou-
tine begins (line 400). If "N" is
returned in RECVSTRS$, the scanner
operator is not ready to begin scan-
ning forms and the program moves to
line 100 which waits for a response
of "Y" from the scanner operator.

SAMPLE PROGRAMMING

40
50
60
70
80

90

100
110
120
130

130
140
200
300
400

CMDERRS = SPACES$(200)

DEST% = 1

PRNTPOSS = 0

OUTSTRS$ ="ARE YOU READY?(Y/N)"

CALL TRANSMIT(DEST%,PRNTPOS%,
OUTSTRS ,CMDERRS)

IF ASC(CMDERRS)<>64 THEN GOTO

200

RECVSTRS = SPACES$(80)

CMDERRS = SPACES$(200)

CALL RECV(RECVSTRS,CMDERRS)

IF ASC(CMDERRS)<>64 THEN GOTO

300

IF RECVSTRS$="Y"THEN GOTO 400

IF RECVSTRS$<>"N"THEN GOTO 100

TRANSMIT error section...

RECV error section...

testing routine...

3-43

SENDING DATA TO SCANNER:

TRANSMIT

3=-44

RECEIVING AUX DEVICE DATA: RECV

OVERVIEW: RECV

The RECV command allows the host to
receive a data string of up to 254
characters from an auxiliary device.
The command is especially useful when
the user has reason to enter data via
an auxiliary keyboard rather than the
scanner. For example, if an instruc-
tor were scanning batches of test
forms for three different classes and
certain students did not complete the
class grid on the test form, the in-
structor could enter that data on the
keyboard.

EXPLANATION: CALL FORMAT

The application program calls the
RECV routine and must pass two pa-
rameters:

oRecvstr
eoCmderr

Two parameters are passed back to
the application program:

®Recvstr
oCmderr

Recvstr

Recvstr is the name of a string
variable which is received from the
auxiliary device. The operator en-
ters the string and presses the re-
turn key on the auxiliary device to
terminate the string. Up to 255
characters can be received by the
RECV CALL in Basic. In Pascal, the
limit is 254 characters. '

Cmderr

Cmderr is a string variable which re-
turns an error code to the application
program from the RECV routine.

CALL FORMAT

BASIC:
RECVSTRS = SPACES$(255)
CMDERRS = SPACES$(200)
CALL RECV%(RECVSTRS,CMDERRS)

PASCAL:
VAR
RECVSTR,CMDERR :MSCSTR;
RECV (RECVSTR,CMDERR);

RECEIVING AUX DEVICE DATA:

RECV

3-46

EXPLANATION: SAMPLE PROGRAMMING

A program section which illustrates
both the TRANSMIT and RECV command
appears in this section under Sending
Data to the Scanner, page 3-45.

HOST
PROGRAM

Introductioneececcecscccccceseed=2
Program Structureoo 000000 04"3

INTRODUCTION

Using the scanner as an input de-
vice necessitates changes in ap-
plication programming. Although
Scanner Commands simplify many
procedures, certain programming
steps must be initiated to allow
the programmer to use scanner com-
mands. This section describes the
structure of an application pro-
gram that uses Scanner Commands.

4-2

-

N

PROGRAM STRUCTURE

OVERVIEW: PROGRAM STRUCTURE

In general, all programs must accom-
plish three things. First, a means
must be provided for data input.
Second, the data must be manipulated
to achieve a desired result. Third,
the result must be presented (or
output) in a meaningful manner.

A program which uses data input from
scannable forms must accomplish cer-
tain other tasks including establish-
ing buffers and loading commands into
memory.

This section describes the general
format of an application program
which utilizes scanner commands.

EXPLANATION: LOADING OR ACCESSING
SCANNER COMMANDS

To utilize Micro Scanner Commands, the
programmer must insert special state~
ments within the application program.
These statements tell the microcomputer
to load scanner commands in memory.

The scanner commands then exist in a
portion of memory which is protected
from inadvertent overwriting.

Interpretive Basic

The first line of the Basic program
should define the beginning segment
of memory that the commands will be
loaded into. This location should be
set to &H1CD4. The following lines
load the commands into the location
defined in the first line.

PROGRAM SEQUENCE

Load or access commands

LOADING SCANNER COMMANDS
FOR INTERPRETIVE BASIC

DEF SEG =&H1CD4

BLOAD "COMNDS.BAS",0
SCAN%=PEEK(0Q) + 256*PEEK(1)
GRID%$=PEEK(2) + 256*PEEK(3)
SKUNK$=PEEK(4) + 256*PEEK(5)
CONTROL%=PEEK(6) + 256*PEEK(7)
SETUP%=PEEK(8) + 256*PEEK(9)
LEVEL%=PEEK(10) + 256*PEEK(11)
TRANSMIT$=PEEK(12) + 256*PEEK(13)
RECV%=PEEK(14) + 256*PEEK(15)

PROGRAM STRUCTURE

ACCESSING SCANNER COMMANDS

FOR PASCAL

(*$SINCLUDE: ' SCANDECL,PAS ! *)

PASCAL - VARIABLE TYPES

Variable Command Type
Cmderr all MSCSTR
Marks SKUNK SKARAY
Recvstr RECV MSCSTR
Outstr TRANSMIT MSCSTR
Gridarg GRID GRIDARA
All others ———— INTEGER

Where:

MSCSTR = LSTRING (254);

SKARAY = ARRAY[0..47] of integer;
GRIDARA = ARRAY[0..7] of integer;

Pascal

The commands can be easily accessed
by including one statement "(*$
INCLUDE: ! SCANDECL.PAS'*)", This
statement should immediately follow
the program heading line.

Compiled Basic

The commands are linked to the host
program and no special statements are
required in the host programe.

EXPLANATION: DECLARING VARIABLES

Pascal

In Pascal, variable types must be de-
clared and input before they are passed
to command routines. Most command rou-
tine variables are of type INTEGER.
However, the cmderr variable, which
passes back error messages or resolved
grid data to command routines, is a
special MSCSTR variable. The variable
marks, the array of skunk mark loca-
tions, is type SKARAY., The variables
recvstr and outstr, which transport
data to and from the host computer,

are of type MSCSTR. Gridarg, the ar-
ray containing parameters which de-
scribe a grid, is type GRIDARA., It is
not necessary to declare types MSCSTR,
SKARAY, or GRIDARA within the type de-
claration since these types are already
declared within the SCANDECL.PAS file
which is included in the host program.

Basic

No declaration section is necessary
in Basic since the variable type is
implicitly declared within the vari-
able name. All variables ending with
"g" are type integer. Those ending
with "$" are string variables.

N

PROGRAM STRUCTURE

EXPLANATION: FORM DEFINITIONS

After variables have been declared,
the forms to be used in the program
should be defined with the SKUNK com-
mand. All form definitions should be
listed in this area. This makes the
program more readable since all defi-
nitions are in one location. It also
saves progamming time since the pro-
grammer does not have to consider form
definitions throughout the program.

EXPLANATION: COMMUNICATIONS PROTOCOL

Before obtaining data from the scan-
ner or auxiliary device, the communi-
cations protocol should be checked to
ensure that the host and scanner (or
auxiliary device) can communicate suc-
cessfully. The host protocol must be
configured to match that of the scan-
ner or auxiliary device. The proto-
col can be programmed into the host
through the SETUP command.

EXPLANATION: INPUT DATA

The next step in an application pro-
gram is to input the data that a pro-
gram will work with.

In Basic, variables must be initial-
ized (that is, set to a value) before
they are sent to the command routines.
Parameters which are not used as input
to the command routines, but which
return values to the host program,
also need to be initialized at this
point. In Basic, the variable cmderr,
which returns error messages, should
be set to SPACES(200). - Recvstr, the
variable containing data sent to the
host by the auxiliary device in the
RECV command, should be set to
SPACES(255).

In Pascal, only variables which pass
values to the command routines need
to be set prior to the call.

PROGRAM SEQUENCE

Load or access commands

|

(Declare variable types
for Pascal program)

Establish form definitions

PROGRAM SEQUENCE

Load or access commands

(Declare variable types
for Pascal program)

Establish form definitions

|

Set communications protocol
of host

|

Input data

PROGRAM STRUCTURE

¢

4-6

EXPLANATION: INPUT DATA (cont.)

Data can be input in a variety of ways.
It can be entered by scanning forms
(using the SCAN command). It can be
entered through an auxiliary device
(using the RECV command). Or if data
is pre-determined (like heading infor-
mation), it can be entered from within
the program. (In Basic this would be
accomplished with READ and DATA state-
ments.)

CONSIDERATION: INPUT DATA

It is possible, during the course of
the SCAN, TRANSMIT, or RECV commands,
that the scanner will not transfer
control back to the program. This
could happen in the case of a commu-
nications error or when a sheet jams
and the scanner doesn't send an EOR
(end of record) signal. The operator e
can abort the routine by pressing the
'ESC' (escape) key on the host key-
board.

EXPLANATION: RESOLVE DATA

Once the SCAN command transfers data
from a form to the host, the data must
be resolved. That is, data for each
grid must be taken from the sheet buf-
fer and transferred from read levels
to data for use in the application
program. This is a simple process,
since the GRID command resolves grid
data one grid at a time.

PROGRAM STRUCTURE

EXPLANATION: VERIFY DATA

The application program must check
the validity of data input during
the program. Communications errors
can occur, in which case the program
should request retransmission of
data. (If this happens while enter-
ing data from the scanner, use the
SCAN command with option 3, retrans-
mit data.) Or if the entered data
is not what the program expects, an
error message should be displayed
with suggestions of how to correct
the error.

Parameter errors or errors due to
filling out a form incorrectly can be
determined by interpreting the vari-
able edstat. For a complete descrip-
tion of the edstat variable, refer to
Section Three, Resolving the Grids.

For example, a program is designed to
record pertinent data (such as com-
pany division, employee address,
health insurance number) for all
employees in a company. Since
employees are referenced by social
security number, it is essential that
the social security grid be complete.
The program section uses the GRID
command to resolve the social secur-
ity grid and checks for errors in
grid completion.

First the GRID call is made. Then,
if the edstat variable is less than
64, an error has been made in the
completion of the grid. (For an in-
terpretation of edstat, refer to Sec-

tion Three, Resolving the Grids.) An

operator message is provided in line
220 telling the operator to correct
the social security grid and rescan
the sheet.

PROGRAM SEQUENCE

Load or access commands

(Declare variable types
for Pascal program)

Establish form definitions

|

Set communications protocol
of host

Input data

Resolve data

I

Verify data

VERIFY DATA

210 CALL GRID%(ARGPTR%,GRIDSTRS,
EDSTAT%,CMDERRS)
220 IF EDSTAT% < 64 THEN
PRINT "SOCIAL SECURITY GRID
COMPLETION ERROR, CORRECT
ERROR, RESCAN SHEET"
ELSE...

PROGRAM STRUCTURE

Fom

PROGRAM SEQUENCE

Load or access commands

|

(Declare variable types
for Pascal program)

[

Establish form definitions

Set communications protocol
of host

|

Input data

Resolve data

Verify data

Main body - data manipulation

RESPONSE ITEM

Which sport do you enjoy most?

tennis
basketball
football
baseball
track

® 0 0O0O

4-8

EXPLANATION: DATA MANIPULATION

The manipulating of data to achieve
the desired program result is the
main body of the program. In both
Basic and Pascal, programmers can
use loops or subroutines to achieve
results.

EXPLANATION: TRANSLATION OF RESPONSE

GRIDS

Although the data returned in alpha
and numeric grids can be used without
making a translation, data from re-
sponse grids must often be translated.
For example, the response item to the
left would yield a 1, 2, 3, 4 or 5.
Since the response is returned as 5
by the GRID routine, it must be trans-
lated into "track."

PROGRAM STRUCTURE

EXPLANATION: OUTPUT DATA

After manipulations are complete, re-
sults must be output in some manner.
Data can be printed on forms (if your
scanner is equipped with a transport
printer), on a printer attached to
the microcomputer, or on the micro-
computer 5creen, etc. It is impor-
tant that output be meaningful. Out-
put is meaningful if headings are in-

cluded, lists, or comparisons made. |

The range of output style is unlimit- Set communications protocol
ed and greatly enhances the substance of host

and clarity of a program. |
CONSIDERATION: OPERATOR INSTRUCTIONS Input data

PROGRAM SEQUENCE

Load or access commands

f

(Declare variable types
for Pascal program)

Establish form definitions

One sign of a well written program is
the abundance of operator instructions.
Since the programmer is not always
aware of how knowledgeable the user is
about the system, operator instruc-
tions must be instructive and complete.
The programmer must be especially
careful when writing instructions re-
garding errors. For example, an error
takes place due to unacceptable data.
The data entered is negative and
should not be. The following message
would not be descriptive:

ERROR NOTED
A more meaningful message would be:
ERROR, NEGATIVE DATA NOT ALLOWED

An even more descriptive error mes-
sage would explain what error took
place and how to correct the error:

ERROk, NEGATIVE DATA NOT ALLOWED
REMOVE SHEET FROM SCANNER
RE-MARK SHEET AND RESCAN

Resolve data

|

Verify data

Main body - data manipulation

Translation of response grids

|

Output

PROGRAM STRUCTURE

4-10

.rtf\)

L

SAMPLE
PROGRAM

IntroductionNeecececcecesccesceceed=2
Program Listing (Compiled
BaSiC)oooooooooooco.ooc.0.005-3
Program ExplanatioNececececeee5=4
Interpretive Basic Listing...5=9

INTRODUCTION

NCS Micro Scanner Commands has
been designed to allow users of
microcomputers to incorporate
input data into programs from
scannable forms. The following
sample program has been written
to give programmers suggestions
on how to utilize scanner com-
mands in application programming.

R W

PROGRAM LISTING

OVERVIEW: PROGRAM FUNCTION

The sample program is designed to . COMPUTEST ANSWER SHEET
scan and report results of the Compu-
test Answer Sheet. The program makes
use of the SKUNK, SCAN, and GRID com- =g |
mands, which are generally used to-

b

-0 1 A
gether. It also uses the SETUP com- i@ggggggggg—#ﬁi / 8 :
mand to establish communications pro- olololeletelere) gt s Al
tocol. The program is coded in Com- =2000000000 3 : =
piled Basic and is accom =0000000000. & w
panied by a =-0000000000 2| | & |
. . ; I X
line by line explanation. Then the =-0e00000000 iz ; :3-1 !
=4 < p
R —_— lw '
Basic. Laclolelolololelololo] INEIE: BT I
asic =-0000000000[| | ffi -~ .

-

J T

EXPLANATION: PROGRAM L lclclelclolololelolelelelololelolcio]

L loleJejololololelelolololololelolOlo)
L lolelelelelelelolelelololololelololo)]
Before its explanation, the Compiled

Basic program is listed in one spot,

|

|

|

L cejelelelelolelelolololelololelololo N
i_clolclolclolelelolclolclolClClCIcIo N
: !

|

!

i

i
t
i
[
{
{
|
|
program is listed in Interpretive E =-E000000000
|
1
[
{
[
[
|
[
|
|

for convenience. ‘:! 32 - %2z o
- $3232
-i

'
€
€
€
£
€
1]
(24

L lolelelololololololelelelolelelololo)
L elolclelolololelelelelelolelelololo]
L lelolelolelolelelolclelalololClOlole
LaclelolelelelelelolelelolelolClole)

e “ICICICICICICICICICICICIRICICICICIC)

SiHL

2 3

JLHM
1ON

1111
vadv

e R EEE N Y R EE-EEE-
PUN S BTDEUOATDLDN DG DS

1
|
|
|
|
i
|
!
L lelelolclolololelelelelolololeloloIoNm
clelolelelololelolololelololelelolON |
=QO000ROOOROEREOORY |
L lelelelelelelelelolelelelolelclClOlc
L CICICIGICICIGICICICICICICICICIISIO NN,

5-3

E

PROGRAM LISTING-COMPILED BASIC el
JLIST
10 DEFINT A-Z 340 IF LEFTS$ (CMDERRS, 1)<>"@" THEN
20 DIM MARKS (2),GRIDARG (7) PRINT "SKUNK ERROR =";
30 OPEN "SCANREC" FOR OUTPUT AS #1 CMDERRS : STOP
40 CLS: PRINT TAB (20) "SAMPLE 350 REM***kkkkkkhkkhhkhkhkhkkhkhhkhhkhkhrhkd
PROGRAM FOR NCS/IBM SCANNER 360 LOCATE 20,20:PRINT "Feed sheet
COMMANDS" into scanner or press ESC";
50 REM**%kkhkhhhkkhhhhhhhrhkrrhrrrhrddhd 370 DOC = O
60 CTRLOPT=4 380 READTYPE = 2
70 CMDERRS$=SPACES$(20) 390 CMDERRS = SPACES$(20)
80 CALL CONTROL (CTRLOPT.CMDERRS) 400 CALL SCAN (DOC,READTYPE,CMDERRS)
90 IF LEFTS(CMDERRS,1)<>"@" THEN 410 IF LEFTS$(CMDERRS,3) ="504" THEN
PRINT "CONTROL ERROR - "; PRINT PROGRAM ENDED" :CLOSE:END
CMDERRS$: STOP 420 IF LEFTS$(CMDERRS, 1)<>"@" THEN
100 REM**kkkdhkhkhhkhhhhhhhhhhkhrhhhkhhk PRINT "SCAN ERROR =";
110 BAUD =9600 CMDERRS$: STOP
120 PARITY = ASC("O") 430 REM***kkkkkkhkkkhhkhhkhhkhkhhrkhhhrhdkh
130 DATABITS = 7 440 RESTORE 610
140 STOPBITS = 2 450 Ag=""
150 PORTSEL = 1 460 FOR I=1 TO 8 e
160 CMDERRS = SPACES (20) 470 FOR J=0 TO 7 .y
170 CALL SETUP (BAUD,PARITY,DATABITS, 480 READ GRIDARG(J))
STOPBITS,PORTSEL,CMDERRS) 490 NEXT J
180 IF LEFTS$(CMDERRS,1)<>"@" THEN 500 GRIDSTRS = SPACES(20)
PRINT "SETUP ERROR - "; 510 CMDERRS = SPACES(20)
CMDERRS$: STOP 520 EDSTAT = O
190 REM**kkkdkdkhkhhkkkkhhhkrhhkhhhrrrhd 530 ARGPTR = VARPTR(GRIDARG(0))
200 OFFSET = -1 540 CALL GRID(ARGPTR, GRIDSTRS,
210 CMDERRS = SPACES$(20) EDSTAT,CMDERRS)
220 CALL LEVEL (OFFSET,CMDERRS) 550 IF LEFTS$ (CMDERRS, 1)<>"@" THEN
230 IF LEFT$(CMDERRS, 1)<>"@" THEN PRINT "GRID ERROR =";
PRINT "LEVEL ERROR ="; CMDERRS : STOP
CMDERRS$: STOP 560 AS$=AS+GRIDSTRS
240 REM**kxkkkkkhkhkhkhkhhkhhhhhhhrhhtrhhk 570 NEXT I
250 DOCNUM = 1 580 PRINT #1,A$
260 CELLS = 18 590 LOCATE 5,1:PRINT AS
270 TRACKS = 39 600 GOTO 350
280 NUMMARKS = 2 610 DATA 2,0,10,1,1,3,12,1
290 MARKS (0) = 1 620 DATA 3,1,18,1,1,15,19,1
300 MARKS (1) = 7 630 DATA 3,1,18,1,1,25,29,1
310 CMDERRS$ = SPACES$(20) | 640 DATA 3,1,18,1,1,35,39,1
320 ARGPTR = VARPTR(MARKS(0)) 650 DATA 3,1,18,1,1,34,30,1
330 CALL SKUNK (DOCNUM,CELLS,TRACKS, 670 DATA 3,1,18,14,1,14,10,1
NUMMARKS,ARGPTR,CMDERRS) 680 DATA 3,1,18,14,1,7,3,1
& -

PROGRAM EXPLANATION

OVERVIEW: PROGRAM LAYOUT

The sample program is described in
this section. Program lines are
listed on one side of each page with
an explanation of each program line
on the opposite page. The program
is coded in Compiled Basic. Follow-
ing the program explanation, the
same program is coded in Interpre-
tive Basic and Pascal.

Lines 10 through 30 are declarative
lines. Line 10 defines variables
starting with the letters A-Z as
integers. Line 20 establishes the
arrays that will be used in the
program. MARKS is the array of
skunk mark locations and GRIDARG is
the array of grid parameters. Line
30 opens the disk file SCANREC for
output, used later.

Line 40 clears the screen and prints
a program heading.

Line 60 sets the control option
(CTRLOPT) to 4, which means that -the
scanner will be utilized. Line 70
initializes CMDERRS$, which is the
variable describing the command call
error status. Line 80 makes the
call to the CONTROL routine. Line
90 checks for errors. If the left-
most character in CMDERRS is not
"@", then an error has occurred and
the error number is printed and the
program stops. If the leftmost
character in CMDERRS is "@", the
program continues.

10 DEFINT A-Z
20 DIM MARKS (2),GRIDARG (7)
30 OPEN "SCANREC" FOR OUTPUT AS #1

40 CLS: PRINT TAB (20) "SAMPLE
PROGRAM FOR NCS/IBM SCANNER
COMMANDS™"™

60 CTRLOPT=4

70 CMDERRS$=SPACES(20) ,

80 CALL CONTROL (CTRLOPT,CMDERRS)

90 IF LEFTS(CMDERRS,1)<>"@" THEN
PRINT "CONTROL ERROR =";
CMDERRS$: STOP

5-~5

PROGRAM EXPLANATION

110
120
130
140
150
160
170

180

200
210
220
230

250
260
270
280
290
300
310
320
330

340

360

BAUD =9600

PARITY = ASC("0")

DATABITS = 7

STOPBITS 2

PORTSEL = 1

CMDERRS = SPACES$ (20)

CAll SETUP (BAUD,PARITY,DATABITS,
STOPBITS,PORTSEL,CMDERRS)

IF LEFT$(CMDERRS, 1)<>"@" THEN
PRINT "SETUP ERROR =";
CMDERRS$:STOP

OFFSET = -1

CMDERRS = SPACES(20)

CALL LEVEL (OFFSET,CMDERRS)
IF LEFTS$(CMDERRS, 1)<>"@" THEN
PRINT "LEVEL ERROR =";
CMDERRS$:STOP

DOCNUM = 1

CELLS = 18

TRACKS = 39

NUMMARKS = 2

MARKS [0] = 1

MARKS [1] = 7

CMDERR$ = SPACES(20)

ARGPTR = VARPTR(MARKS(0))
CALL SKUNK (DOCNUM, CELLS,
TRACKS, NUMMARKS, ARGPTR,
CMDERRS)

IF LEFTS(CMDERRS,1)<>"@" THEN
PRINT "SKUNK ERROR =";
CMDERRS$: STOP

LOCATE 20,20:PRINT "Feed sheet
into scanner or press ESC";

5-6

Lines 110 through 180 configure the
scanner. Lines 110-160 initialize
the SETUP variables. Line 170 makes
the call to the SETUP routine. Line
180 checks for SETUP errors.

Lines 200 through 230 lower the
scanner read level to accept light
marks on forms. Line 200 sets the
read level offset to -1 which will
lower the read level threshold from 4
to 3. Line 210 initializes CMDERRS.
Line 220 makes the call to the SETUP
routine. Line 230 checks for errors.

Lines 250 through 340 set up and make
the call to the SKUNK routine. Lines
250 through 320 initialize the
variables which describe the form to
be defined. Line 330 makes the call
to the SKUNK routine. Line 340
checks for call errors.

Line 360 prints the feed sheet message
onto the screen starting at line 20,
column 20.

A
N

PROGRAM EXPLANATION

Line 370 initializes DOC. Line 380
sets READTYPE to 2 which means a
form will be scanned and its record
passed to the micro. Line 390 ini-
tializes the error status variable,
CMDERRS$. Line 400 makes the call to
the SCAN routine. If the operator
pressed the escape key, error number
504 will be returned in CMDERRS$, line
410 will print "PROGRAM ENDED" and
the program will end. Line 420
checks for other call parameter er-
rors.

Line 440 allows data statements to
be read starting from line 610. AS,
the variable containing the returned
GRIDSTRING, is initialized in 1line
450.

Lines 460 through 570 comprise a
loop that reads the grids on the
Computest form and saves the
returned response strings in AS.
Line 460 starts the loop. The loop
will run 8 times, once for each grid
on the form. Lines 470 through 490
comprise a loop that reads in the
grid characteristics for each of the
8 grids. After the grid charac-
teristics are read in, lines 500 and
510 initializes GRIDSTRS$ (which
returns responses) and CMDERRS (the
error status variable). Line 520
initializes EDSTAT, the variable
which identifies edit errors due to
incorrect coding on forms. Lines
530 sets ARGPTR (the pointer to the
gridarg array) to the start of the
array. Line 540 makes the call to
the GRID routine. Line 550 checks
for parameter errors. Line 560 adds
the resolved grid data to the string
variable A$. Line 570 sends the
computer back to line 460 for the
next grid.

370
380
390
400
410

420

440
450

460
470
480
490
500
510
520
530
540

550

560
570

DOC = 0

READTYPE = 2

CMDERRS$ = SPACES$(20)

CALL SCAN (DOC,READTYPE,CMDERRS)
IF LEFTS$(CMDERRS,3) ="504" THEN
PRINT "PROGRAM ENDED" :CLOSE:END
IF LEFTS(CMDERRS,1)<>"@" THEN
PRINT "SCAN ERROR =";
CMDERRS : STOP

RESTORE 610
Ag=""

FOR I=1 TO 8
FOR J=0 TO 7
READ GRIDARG(J)

NEXT J

GRIDSTRS = SPACES$(20)

CMDERRS$ = SPACES(20)

EDSTAT = O

ARGPTR =. VARPTR (GRIDARG(0))

CALL GRID(ARGPTR, GRIDSTRS,
EDSTAT, CMDERRS)

IF LEFTS(CMDERRS,1)<>"@" THEN
PRINT "GRID ERROR =";
CMDERRS : STOP

A$=AS$+GRIDSTRS

NEXT I

AT
PROGRAM EXPLANATION

Line 580 prints the resolved data to
file #1. Line 590 prints the resolved
grid data string on the screen at
location 5,1. Line 590 directs the
computer back to line 350 which re-
starts the entire operation beginning
with scanning a sheet. Lines 610
through 680 are data statements cor-
responding to the read statement in
line 480.

5-8

580
590
600
610
620
630
640
650
660
670
680

PRINT #1,A$
LOCATE 5,1:PRINT A$

GOTO
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

350
2,0,
3,1,
3,1,
3,1,
3,1,
3
3
3

)

1,
91’
’1’

10,1,1,3,12,1
18,1,1,15,19,1
18,1,1,25,29,1
18,1,1,35,39,1
18,1,1,34,30,1
18,1,1,24,20,1
18,14,1,14,10,1
18,14,1,7,3,1

INTERPRETIVE BASIC

JLIST

10
15
20
30
40

50
60
70
80
90

100
110
120
130
140
150
160
170

180

190
200
210
220
230

240
250
260
270
280
290
300
310
320
330

DEFINT A-Z

GOSUB 1000

DIM MARKS (2),GRIDARG (7)

OPEN "SCANREC" FOR OUTPUT AS #1

CLS: PRINT TAB (20) "SAMPLE
PROGRAM FOR NCS/IBM SCANNER
COMMANDS"

REM*****************************

CTRLOPT=4

CMDERR$=SPACE$ (20)

CALL CONTROL (CTRLOPT,CMDERRS)

IF LEFTS(CMDERRS,1)<>"@" THEN
PRINT "CONTROL ERROR - ";
CMDERRS$: STOP

REM*****************************

BAUD =9600

PARITY = ASC("O")

DATABITS = 7

STOPBITS = 2

PORTSEL = 1

CMDERRS = SPACES (20)

CALL SETUP (BAUD,PARITY,DATABITS,

STOPBITS, PORTSEL, CMDERRS)

IF LEFTS$(CMDERRS, 1)<>"@" THEN
PRINT "SETUP ERROR - ";
CMDERRS : STOP

REM*****************************

OFFSET = -1

CMDERRS = SPACES$(20)

CALL LEVEL (OFFSET,CMDERRS)

IF LEFT$(CMDERRS,1)<>"@" THEN
PRINT "LEVEL ERROR -";
CMDERR$: STOP

REM*****************************

DOCNUM = 1

CELLS = 18

TRACKS = 39

NUMMARKS = 2

MARKS (0) = 1

MARKS (1) = 7

CMDERRS = SPACES$(20)

ARGPTR = VARPTR (MARKS(0))

CALL SKUNK (DOCNUM,CELLS, TRACKS,
NUMMARKS , ARGPTR , CMDERR $)

340

350
360

370
380
390
400
410

420

430
440
450
460
470
480
490
500
510
520
525
530
540

550

560
570
580
590
600
610

.620

630
640
650
670
680

IF LEFTS(CMDERRS,1)<>"@" THEN
PRINT "SKUNK ERROR -";
CMDERRS$:STOP

REM***kkkhkhkhhkhkkhkhhkhhkhhkhdkhhkhhhkhikk

LOCATE 20,20:PRINT "Feed sheet
into scanner or press ESC";

DOC = 0

READTYPE = 2

CMDERRS$ = SPACES(20)

CALL SCAN (DOC,READTYPE,CMDERRS)

IF LEFTS$(CMDERRS$,3) ="504" THEN
PRINT PROGRAM ENDED" :CLOSE:END

IF LEFTS(CMDERRS,1)<>"@" THEN

PRINT "SCAN ERROR =";

CMDERRS : STOP

REM**kkkthkhkhhkhhkhhkhhkhhkhkhhkhhkhhkhhdhk

RESTORE 610

Ag=nn

FOR I=1 TO 8

FOR J=0 TO 7

READ GRIDARG(J)
NEXT J
GRIDSTRS = SPACES(20)
CMDERRS = SPACES(20)

EDSTAT = O
Y#=FRE(0)
ARGPTR = VARPTR(GRIDARG(0))

CALL GRID(ARGPTR, GRIDSTRS,
EDSTAT , CMDERRS)

IF LEFTS(CMDERRS,1)<>"@" THEN
PRINT "GRID ERROR -";
CMDERRS : STOP

A$=AS$+GRIDSTRS

NEXT I

PRINT #1,A$

LOCATE 5,1:PRINT AS

GOTO 350

DATA 2,0,10,1,1,3,12,1
DATA 3,1,18,1,1,15,19,1
DATA 3,1,18,1,1,25,29,1

DATA 3,1,18,1,1,35,39,1
DATA 3,1,18,1,1,34,30,1
DATA 3,1,18,14,1,14,10,1
DATA 3,1,18,14,1,7,3,1

INTERPRETIVE BASIC

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100

DEFSEG = SH1D54

BLOAD "COMNDS.BAS",0

SCAN = PEEK(0)+256*PEEK(1)
GRID = PEEK(2)+256*PEEK(3)
SKUNK = PEEK(4)+256*PEEK(5)
CONTROL = PEEK(6)+256*PEEK(7)
SETUP = PEEK(8)+256*PEEK(9)
LEVEL = PEEK(10)+256*PEEK(11)
TRANSMIT = PEEK(12)+256*PEEK(13)
RECV = PEEK(14)+256*PEEK(15)
RETURN

£

L W

PROGRAM
ERROR
CODES

IntroductionN.ececececcccscssceeb=2
Errors'.....".....'...'..0‘.6-3

INTRODUCTION

The NCS Micro Scanner Commands
are designed to be easily in-
corporated into application pro-
gramming. To facilitate easy
use of the commands, NCS has
designed a set of meaningful
error codes for each command.
Error codes are divided into
eight different levels:

100 level - CONTROL Errors
200 level - SETUP Errors
300 level - GRID Errors
400 level - SKUNK Errors
500 level - SCAN Errors
600 level - LEVEL Errors
700 level - TRANSMIT Errors
800 level - RECV Errors

ERRORS

OVERVIEW: ERRORS

If an error occurs during the opera-
tion of Micro Scanner Commands, it
will be noted and passed back to the
application program in the cmderr
variable.

CONSIDERATIONS: ERRORS

Since programming error codes are
passed back to the application pro-
gram within the variable cmderr, the
programmer can determine the effect
of errors on the program. The pro-
grammer can choose to stop the pro-
gram in the case of a serious error.
Or, if an inconsequential error oc-
curs, the programmer can choose to
print out an error flag while con-
tinuing on in the program.

For a description of variable names

which are referred to in this error

section, see the appropriate command
in Section Three.

6-3

PROGRAMMING ERRORS:

CONTROL, SETUP

NUMBER PROBLEM EXPLANATION

101 Incorrect scanner Ctrlopt has been assigned an incorrect
control option number |' value. Ctrlopt cannot be less than 1 or
(<1 or >4) greater than 4.

102 Scanner device not The operator has pressed the ESC key and
ready to receive the scanner device is not ready to receive
transmission. the transmission. Check connections and

modem status. Then retransmit the data.

201 Incorrect speed indi- The baud variable (which describes the
cation (baud rate) baud rate) has been assigned an incorrect

value. Correct values are 110, 300, 600,
1200, 2400, 4800, and 9600.

202 Incorrect parity in- The parity variable has been assigned an

dication incorrect value. Correct values are the
ASCII values for O, E, and and N,

203 Incorrect number of The databits variable (which describes the

data bits indicated number of bits per character) has been as-
signed an incorrect value. Correct values
are 7 and 8

204 Incorrect number of The stopbits variable has been assigned an

stop bits indicated incorrect value. Correct values are 1 and
2.

205 Incorrect board The variable portsel has been assigned an

selection indicated incorrect value. Correct values for
portsel are 1 and 2.
206 Incorrect combination This error occurs if the user tries to set

of parameters

8 data bits, parity and 2 stop bits, which
is a total of 11 bits per character. The
maximum allowed is 10 bits per character.

6-4

B

PROGRAMMING ERRORS: GRID

NUMBER

PROBLEM

EXPLANATION

301

Incorrect type indi-
cation (Gridarg(0))

The grid type has been incorrectly defined
or an attempt was made to link two dif-
ferent types of grids. The variable type
cannot be less than 1 or greater than 7.
If this grid has been linked to another
grid, ensure that they are the same types.

302

Incorrect starting x
position (Gridarg(2))

The start x variable, sx, has been incor-
rectly defined. One of two conditions
exists:

1. The start x position is out of the
range indicated in the SKUNK command.
For example:

35
40

cells
start x

If there are 35 cells, start x must
be from 1 to 35.

2. The start x position was not defined
or start x was defined but was not
inserted into the GRID command call.

303

Incorrect ending x
position (Gridarg(3))

The end x variable, ex, has been incorrect-
ly defined. One of two conditions exists:

1. The end x position is out of the
range indicated in the SKUNK command.
For example:

37
41

]

cells
end x

If there are 37 cells, end x must
be from 1 to 37.

2. The end x position was not defined or
end x was defined but was not in-
serted into the GRID command.

PROGRAMMING ERRORS: GRID

NUMBER

PROBLEM

EXPLANATION

304

X spacing out of

range indicated in
SKUNK command (Gridarg
(4))

X Spacing is out of range given the defi-
nition of the variable cells in the SKUNK
table. For example:

cells = 43
spacing 47

Since there are only 43 cells, spacing
cannot be 47.

305

Incorrect starting y
position (Gridarg(5))

The start y variable, sy, has been incor-
rectly defined. One of two conditions
exists:

1. The start y position is out of the
range indicated in the SKUNK command.
For example:

tracks = 32
start y 34

If there are 32 timing marks, start y
must be from 1 to 32.

2. The start y position was not defined
or sy was defined but was never in-
serted into the GRID command call.

306

Incorrect ending y
position (Gridarg(6))

The end y variable, ey, has been incorrects
ly defined. One of two conditions exists:

1. The end y position is out of the
range indicated in the SKUNK command.
For example:

tracks = 30
end y = 37

If there are 30 timing marks, end y
must be from 1 to 30.

2. The end y position was not defined or
end y was defined but was not in-
serted into the GRID command.

-

PROGRAMMING ERRORS: GRID

NUMBER

PROBLEM

EXPLANATION

307

Y spacing out of

range indicated in
SKUNK command (Gridarg
(7))

Y spacing is out of range given the defi-
nition of the variable tracks in the SKUNK
table. For example:

30
31

tracks
spacing

Since tracks is only 30, spacing cannot be
31.

308

Spacing x is impos-
sible.

Given the starting and ending x coordi-
nates, the spacing between x response po-
sitions is incorrect. For example:

start x = 8
end x 15
spacing x

If the first x response position is 8, the
next will be 10, the next 12, the next 14,
etc. The last x response position could
not be an odd number.

309

Spacing y is impos-
sible.

Given the starting and ending y coordi-
nates, the spacing between y response po-
sitions is incorrect. For example:

start y =
end y
spacing y

15

If the first y response position is 7, the
next will be 10, the next 13, the next 16,
etc. End y could not be 15.

314

Class is out of range
(Gridarg(1))

Class cannot be less than 0 or greater than
7. Class describes whether the grid is
vertical, horizontal, check parity, or
linked grid.

PROGRAMMING ERRORS: GRID, SKUNK

NUMBER PROBLEM

EXPLANATION

321 Number responses per
item wrong for grid
type or number of
items exceeds maximum
allowed.

Given the grid type, the number of re-
ponses per item is wrong. For example, a
grid is deemed a numeric grid. However,
coordinates indicate that there are 36 re-
sponses per item. A numeric grid must con-
tain no more than 10 responses per item
(0=-9). The only grid types with 36 pos=-
sible responses per item are alphanumeric
grids and two-digit response grids. 1In
the case of binary grids, a maximum of 28
items is allowed per grid. A linked grid
can only resolve one item,

322 Number of items ex-
ceeded in linked grid,

More than one item was resolved in a grid
with a link class.

400 Document number out of
range (1-99)

The variable docnum is out of range.
Docnum cannot be less than 1 or greater
than 99.

401 Value for cells out
of range (1-47)

The variable cells, the highest X response
position, is out of range. Cells cannot
be less than 1 or greater than 47,

402 Value for number of
timing tracks out of
range (1-99)

The variable tracks, the number of timing
tracks on a form, is out of range. Tracks
cannot be less than 1 or greater than 99,

403 Number of SKUNK mark The variable nummarks, the number of SKUNK
positions out of rang mark positions occupied, is out of range.
(1-47) Nummarks cannot be less than 1 or greater
than 47.
404 A value for a skunk A value found in the array marks, a list

mark position is out
of range (1-47)

of the response positions occupied by skunk
marks, is out of range. The value for
marks cannot be less than 1 or greater
than 47.

6-8

£
\‘L/’

i

PROGRAMMING ERRORS: SKUNK, SCAN

NUMBER

PROBLEM

EXPLANATION

405

A value for a skunk
mark position is re-
peated

A value found in the array marks is re-
peated. For example, in the array marks
(1,2,7,7,15) the position 7 is repeated.
Since there is only one position 7, it
should be listed just once.

406

Two documents have
the same skunk marks

Two documents have the same skunk marks.
In other words, the programmer has defined
a document which is already defined with
another docnum. The first document defi-
nition will not be altered.

407

Number of Skunk
entries greater than
maximum allowed

More than the allotted 99 entries have
been entered into the skunk table.

504

Operator pressed the
"ESC" key

The operator pressed the "ESC" key while
the SCAN command was operating.

505

Invalid SCAN command
calling option

The SCAN command calling option found in
readtype is incorrect. The calling option
are:

o2 - request new document from scanner
o3 - request retransmission of current
record from scanner

507

Skunk marks do not
match any document
in skunk table.

A document image has been received and is
in the buffer but the skunk marks do not
match any document which has been defined
in the skunk table.

PROGRAMMING ERRORS: SCAN

NUMBER

PROBLEM

EXPLANATION

508

Document match made
but more or less data
than defined in SKUNK

Although the document is matched up with a
document definition in the skunk table
(via the defined skunk marks), there is
more or less data than defined in the
skunk command. For example, a document
could be matched through skunk marks, but
the sheet could become jammed and less than
a complete record would be transferred to
the host. In this case the number of
timing marks for the jammed sheet would
be more or less than the number of timing
marks defined in the SKUNK command.

509

Sheet buffer overflow

Data for more than 99 timing tracks x 48
cells were received. This could be a
hardware problem or the communications
protocol is incorrect.

510

Illegal compression
count received

When a record contains four or more identi-
fied characters in a row the data is com-
pressed as it is transmitted from the scan-
ner to the microcomputer. The compression
is not working correctly. This error oc-
curs when the communications protocol is
incorrect. The compression character code
on the configuration sheet should be
checked.

511

Sheet buffer overflow
while decompressing
sheet buffer

As data is being decompressed, the sheet

buffer overflows. This could be a hardward

problem or communications protocol could
be incorrect.

512:x

Communications
link error

x = 01 for overrun

error

x = 02 for parity
error

x = 04 for framing
error

One of the following communications errors
occurs: data is received too fast, parity
is in error, timing of reception is off.
These are all hardware problems. If this
error is a recurring problem, the communi-
cations protocol of the scanner does not
match that of the host. If the error oc-
curs occasionally it is an electrical
noise problem. Check the cable to see
that it does not lie next to heavy exten-

sion cords or near other office equipment.

s

PROGRAMMING ERRORS: LEVEL, TRANSMIT

NUMBER PROBLEM EXPLANATION
601 Incorrect offset The value of offset, the‘variable describ-
value ing the offset value, is incorrect. Off-
set should be from -2 to 2.
701 Incorrect device The number selected for dest (DEST%) is
number incorrect. Dest indicates the device to
which outputs is to be directed:
o0 = scanner transport printer
o1 = scanner auxiliary port
e2 = scanner LED display
The numbers 0, 1 and 2 are the only pos-
sible values for dest (DEST%).
702 Incorrect transport The start print position for the transport
printer start position printer is incorrect. Valid start print
(< 1 or > 99) positions are from 1 to 99.
703 Number of output char- One of two conditions exists:
acters > device 1limit
or value of output oThe number of output characters is beyond
characters does not the device limits. For example, if the
fall within range programmer wishes to output a string of
limit) 22 characters in length the programmer
would not choose the LED display. Since
the LED display is limited to one charac-
ter, 22 characters would be beyond the
LED display limits.
oThe value of the output character does
not fall within the range limit. For
example, the LED display can display only
1-9 and A-F. If the letter M were re-
ceived by the LED display, the error code
703 would be returned by cmderr.
704 Escape key pressed Operator pressed the Escape key. The

TRANSMIT command is terminated whether or
not any transmission has taken place.

This can be useful if the scanner and host
do not seem to be communicating.

6-11

PROGRAMMING ERRORS: RECV

NUMBER PROBLEM EXPLANATION
801 ESC key pressed The ESC key was pressed while the RECV
during RECV call routine was in operation.
802:x Communications error The data was not recognized as data or was

detected

x = 1 for overrun
error

x = 2 for parity
error

x = 3 for framing
error

received incorrectly. Check to ensure
that the communications cable is hooked
up correctly.

6-12

S

—

FORM PARAMETER WORKSHEET

APPENDIX A

Program Name:

SKUNK | Document No. No. Cells Tracks
DATA No. Skunk Marks Marks
GRID GRID
NO. | TYPE | CLASS | SX | EX| IX| SY | EY | IY NO. | TYPE | CLASS | SX| EX| IX| SY | EY | IY

} s
&

A
‘\“M/,

APPENDIX B

TEST
PROGRAM

TEST PROGRAM.cccceocccccaseesB=1
Introduction.ecececcccccceseeesB=2
Test Program.eeccecsceccscccceseeB=3
Compiled Basic Test
ProgrameecsceccscescccescsossceesB=13
Interpretive Basic Test
ProgrameccsceccccsccscecssscsesB=19
Pascal Test Programe.eececeesessB=23

INTRODUCTION

This appendix describes the scan-
ner commands sample testing pro-
gram and lists the program in
Compiled Basic, Interpretive
Basic, and Pascal.

C

TEST PROGRAM

OVERVIEW: TEST PROGRAM

A sample program is on the scanner commands diskette in an executable format
for testing scanner commands with actual data to ensure that parameters are
being correctly passed to command routines and returned to the host program.
The test routine is also useful in determining whether communications problems
exist. The test routine is easy to use since data can be entered via the

keyboard.

The test programs included on the diskette are the following versions:
Compiled Basic (CTESTER.EXE)
Interpretive Basic (ITESTER.BAS)

Pascal (PTESTER.BAS)

EXPLANATION: TEST PROGRAM

A run through of the program follows with illustrations of the micro screens
and instructions of how to proceed.

oTo utilize the testing program from the Basic Operating
System, enter one of the following:

B:CTESTER for Compiled Basic
B:PTESTER for Pascal
B:ITESTER for Interpretive Basic

eThen press the enter key.

1. CONTROL COMMAND 4. SKUNK COMMAND 7. TRANSMIT COMMAND

2. SETUP COMMAND 5. SCAN COMMAND 8. RECV COMMAND

3. GRID COMMAND 6. LEVEL COMMAND 9. DISP. SHEET OR SKUNK TABLE
10. QUIT

ENTER SELECTION (1..10) FROM ABOVE ?

TESTING PROGRAM MAIN MENU
.#Enter the number of the command you want to test (1..8) or
enter 9 to display the sheet buffer or skunk table. (Op-
tion 9 is only available in the Compiled Basic program.)

oThen press the enter key.

CAUTION: A record must be passed (through the SCAN command) before the
CONTROL, TRANSMIT, and RECV commands will be effective.

B-3

TEST PROGRAM

EXPLANATION: TEST PROGRAM (cont.)

Control Command

This message appears when CONTROL COMMAND is selected from the main menu:

TESTING CONTROL COMMAND

1. RELEASE DOCUMENT 3. SELECT AUX PORT
2. STOP SCANNER 4. SELECT SCANNER

ENTER SELECTION FROM ABOVE (1..4)
?

ePress the number of the desired option (1..4). Then press
the enter key.

ERROR STRING: ERROR STRING
@ 101

If the transmission has been made correctly, the message on the left will be
returned. The cmderr variable, which returns a parameter error string, con-
tains "@", indicating no error has been made.

If an error or errors have occurred, the message on the right will appear
listing parameter error numbers. These errors are explained in Section Six.

DO AGAIN (Y/N):?

After each command routine is tested, this message appears.

oIf the test is to be repeated, enter Y and press the
enter key. T s -

oIf the test is not to be repeated, enter N and press
the enter key. The system will return to the main
menu.

=

-

TEST PROGRAM

EXPLANATION: TEST PROGRAM (cont.)

Setup Command

This message appears when SETUP COMMAND is selected from the main menu:

TESTING SETUP COMMAND

ENTER BAUD RATE :?
ENTER PARITY ?
ENTER DATA BITS :?
ENTER STOPBITS :?
ENTER BOARD SELECT :?

eEnter the baud rate, parity, data bits, stop bits, and
board selection. Press the enter key after each entry.

Just as described in the CONTROL COMMAND selection, an "@" will be returned if
there are no parameter errors. If there are parameter errors, they will be
listed.

-GRID Command

This message appears when GRID COMMAND is selected from the main menu:

TESTING GRID COMMAND

INPUT TYPE ?
INPUT CLASS ?
INPUT SX ?
INPUT EX ?
INPUT IX ?
INPUT SY ?
INPUT EY ?
INPUT 1Y ?

eEnter the type, class, start x position, end x position, x
spacing, start y position, end y position, and spac1ng Ve
Press the enter key after each entry.

TEST PROGRAM

EXPLANATION: TEST PROGRAM (cont.)

GRID Command (cont.)

GRID STRING:
EDIT STATUS:
ERROR STRING:
@004

The system returns the grid string, then @ followed by the number of charac-
ters in the gridstring if no errors have occurred. If parameters errors occur,
EDIT STATUS will be 128 and ERROR STRING will list the parameter error numbers.

Note: Errors will occur if the GRID command is tested before entering the
document parameters under the SKUNK command. Make certain to test the

GRID command after defining forms via the SKUNK command.

SKUNK Command

This message appears when SKUNK COMMAND is selected from the main menu:

TESTING SKUNK COMMAND

INPUT DOC ?
INPUT CELLS ?
INPUT TRACKS?
INPUT MARKS ?
INPUT MARK LOCATION, 99 TO EXIT :?
INPUT MARK LOCATION, 99 TO EXIT :?

eEnter the document number, number of cells, number of timing
tracks, number of skunk marks, and locations of skunk marks.

Press the enter key after each entry.

eEnter the number 99 to indicate that all skunk mark locations
are listed. The system will keep asking for skunk mark loca-
tions until 99 is entered. :

As with the other commands, parameter errors are listed if they occur.

s

N

(

TEST PROGRAM

EXPLANATION: TEST PROGRAM (cont.)

SCAN Command

This message appears when SCAN COMMAND is selected from the main menu:

TESTING SCAN COMMAND

ENTER 2 FOR SCAN, 3 FOR RE-TRANSMIT :?

eEnter the number 2 for scan or 3 for re-transmit. (Remember
that a document must first be scanned before it can be re-
transmitted.) Then press the enter key.

1.D. NUMBER OF DOCUMENT SCANNED :
ERROR STRING:

The document I.D. number will be returned along with parameter errors, if they
occur.

Note: Again, this command should not be used unless the form to be scanned
has been defined with the SKUNK command.

LEVEL Command

This message appears when LEVEL COMMAND has been selected from the main menu:

TESTING LEVEL COMMAND

ENTER OFFSET TO READ LEVEL (-2..+2)

eEnter the number of the read level adjustment and press
the enter key.

ERROR STRING:
@5

Again, parameter errors are listed if they occur. If no parameter errors
occur, the adjusted read level will be returned in cmderr along with the @
symbol.

B=-7

TEST PROGRAM

EXPLANATION: TEST PROGRAM (cont.)

TRANSMIT Command

This message appears when TRANSMIT COMMAND is selected from the main menu:

TESTING TRANSMIT COMMAND

ENTER DESTINATION (0=PRINTER,1=AUXPORT,2=LED):?

eEnter the number indicating the data destination and
press the enter key.

ENTER VALUE (0..99) START PRINT POSITION :?
ENTER STRING TO TRANSMIT:?

oIf 0 (printer) is selected, enter the start print
position. Then press the enter key.

oThen enter the string to be transmitted. Press the
enter key to signal the end of the string. (Do not -
enter , or : in the Basic test program as either mark
is interpreted as a signal to end the string.)

ENTER STRING TO TRANSMIT:?

oIf 1 (auxport) is selected, enter the string to transmit.
Then press the enter key.

ENTER VALUE (0..15) TO BE DISPLAYED:?

oIf 2 (LED-scanner display panel) is selected, enter
the value to be displayed. Then press the enter key.

In all three cases, parameter errors will be listed if they occur.

TEST PROGRAM

EXPLANATION: TEST PROGRAM (cont.)

RECV Command

This message appears when RECV COMMAND is selected from the main menu:

TESTING RECV COMMAND

ENTER STRING AT AUX PORT TERMINAL AND PRESS
RETURN AT TERMINAL TO TERMINATE OR ESCAPE ON PC TO TERMINATE
INPUT STRING: -

eEnter the string at the aux port terminal. Press the
enter key to terminate the string.

If parameter errors occur, they will be listed.

DISPLAY SHEET OR SKUNK TABLE

The sheet buffer or skunk table can be displayed in the Compiled Basic Testing
Program. This message appears when DISPLAY SHEET OR SKUNK TABLE is selected

from the main menu:

DISPLAY SHEET BUFFER OR SKUNK TABLE
1. DISPLAY SHEET BUFFER

2. DISPLAY SKUNK TABLE

3. RETURN TO MAIN MENU

ENTER SELECTION FROM ABOVE (1..3): ?

DISPLAY MENU
eEnter the number of the desired option and press the enter key.

If option 1, DISPLAY SHEET BUFFER, is selected, this message appears:

DISPLAY SHEET BUFFER

ENTER DESIRED ROW (1..99) OF SHEET TO BE DISPLAYED: ?

eEnter the number of the row to start displaying at. Then press
the enter key. Eleven rows will be displayed at one time.

B-9

'
TEST PROGRAM %

EXPLANATION: TEST PROGRAM (cont.)

ROW LOCATION READ LEVELS
1 1 : 71700030066112722225575100000030000711131777004
2 49 00000600603222210000706066100040007671000506115
3 97 22222000600006700061114000000050001110660070605
4 145 00000000000010000010000000000406660070200307774
5 193 22222322222000500050077711100600101700300000404
6 241 00000000007000000061113166000700003020020500564
7 289 00010006070070111401000000000000000050000500075
8 337 77000000500060606001111000000000050000660000604
9 385 00066000021000000650000113100000700006000030005
10 433 070711111110000000001 11100000607000001216660005
1 481 00000000000000100000600606111604300000000006004

DO AGAIN ? (Y/N): ?

oTo display another set of rows, press Y and follow the same R
procedure. S

oTo get back to the display menu, press N and press the enter
key.

If option 2, DISPLAY SKUNK TABLE, is selected, this message appears:

DISPLAY SKUNK TABLE

ENTER DESIRED LOCATION IN TABLE (1..99): ?

eEnter the number of the entry to start displaying at. Then
press the enter key. Eleven entries will be displayed at
one time.

B-10

TEST PROGRAM

EXPLANATION: TEST PROGRAM (cont.)

ENTRY DOC CELLS TRACKS NMARKS MARKS 1..47

1 1 as 65 2 2 8 0 0 0 o0
2 2 48 65 3 8 24 0 0 0 0
3 3 a8 65 3 0 0 2 0 0 0
4 4 48 65 2 16 44 0 0 0 O
5 5 48 65 4 48 24 32 0 0 O
6 6 48 65 3 2 9% 0 0 0 0
7 7 48 65 3 8 0 32 0 0 8
8 8 48 65 2 0 0 0 1920 0
9 9 a8 65 1 % 0 0 0 0 0
10 10 48 65 4 20 48 0 0 0 o
1 1 48 65 2 0 o0 9% 0 0 0

DO AGAIN ? (Y/N) :
?

When programming with the SKUNK command, skunk mark locations are entered by
matching their X locations on the form. In the skunk buffer, the marks are
stored in a different manner. The following illustration and description
explains how skunk mark locations are represented in the skunk buffer:

Field 1 - Field 2 Field 3 Field 4 Field 5 Field 6

[o e — —

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

oD O L el O L O S IS D D AN oo
AR AARAAAARNARRNATAAANNARRRAAAAADARAAAAARARAAARAAAA A
's’8: 3 B B BB B 8 88 885 88 8 68 B8 8.8 8688 88 858 88 88 8. 8B BB B3B8 8 8 88 B8 8 B
iccccccegccceacccecgcciccccecceccecgcecceccccdccceccécecccccccecceccece
O>DDDDDDDDDDDDDDDODDDDDDDODDODDDDDODODODODDDDODDDIDDDDDO DD
E®)E EEEEEEEEGEEEETEEEEECEEEEEEEEEEEETEETETETETETETETEETEETEEEE
R e N T
G GiG G G GG GG G G G GG GGGG GGGG G GGGGGGGGGGGGGGGGGGGG GGG G G G
‘H HIH HIH H H H H HH A HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH H H
T O S T SO Y/ N R S K O TR O TR O T N Y SR T TN T Y S T T SN N DAY ST U N SO T S S S S R
[R S IE A VU A O A L B R T S N R S N RO N5 O TN A S ST S R R R e R S S R S S R
KKKKKKKKKEKKKKKKROKKKKKKKKKKKKKKKKKKKKHKKKKKKKKKKK K
o R

Notice that there are 47 péssible skunk mark locations on the form. The form
is physically divided into 6 fields. Each field contains 8 response positions
except field 6, which contains 7 response positions. Field 1 contains X loca-
tions 1-8; field 2 contains X location 9-16, etc.

B-11

TEST PROGRAM G

EXPLANATION: TEST PROGRAM (cont.)

Each field (1..6) contains 8 possible values. Position values are expressed in
powers of two. So positions 1 through 8 represent the values 1(20), 2(21),
4(22), 8(23), 16(24), 32(25), 64(26), and 128(27).

Field 1 Field 2
Positions | 1| 2| 3] 4 5 6 7 8 910 11|12} 13] 14] 15] 16
Values 112]418]16| 32| 64] 128 2 4 8| 16| 32] 641 128

—

The powers of 2 numbering sequence is repeated for each field so that the same
8 values are repeated for the 8 positions of field 2, field 3, field 4, field
5, and field 6.

When reviewing skunk mark locations in the skunk buffer, a value appears for
each of the 6 fields. For example:

_skunk marks
in these
positions
24 o 0 0 0

8
LI N [[[—

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 30 41 42 43 44 45 46 47

-
N
w
&
o
o
~N
«

X

!
X. X
lm

-~

;
’
’

e
(]

;i {

-IT @M mOo0w > .

- I @M MmO 0w >
T 0 T om.0,0,.0 >

.
- I @ mm 0 N W >

- I Q@M mOoOO0.w.>».

- IO m 0 n D>

- I Q@ T MmO O0.W»,

- I Q@ mnm

- I QT MmO 0.0

- I 07" MmOaAa w:i».

@)

.05 {05 @ i»
@

anmo o w3

- I 0 MmO B .3

- I @ "m0 0w

WLy

- I QM moOAa B>
- 071 MmO nw

- I Q0" mO0O0 W > .
- I @ 7 MmO 0 W)
- I 0T moOoo0.o.>
-.I @ 7 m 008,
- D@ mmooa @
- I 07T mOoO0 W

-~ I @ 7 ;00w
- I 07 mmo0an !;\5;(:‘)
- I Q.MM 000>

- I 0. MmO 0w B,
e om0 0w
- T @ mm 0 .0.® . B>,
. I.0.m m O A,

ST Q0 T om0 0 W
S S I B WY PRT: PRU WS 3

- I @ MmO N0 .@ »,
- I 0 m.m.0.0 8 »

- I @ TM MmO N B »;
EU S0 I T - B P IO TR
- I @ T mO0OO0N @ >
-~ T @ m om0 0w
- I 0 mMmoano >

- I @ mm m 00N o >

- I @@ mmOO0w >

- I @ 7m0 .0 @ >

- I @ " m 00 . >

- I 0T MmO 0@ >
- I QM mOO0w 3.
- I @ m m 0O 0 W i
- I 6" mO0o0w >

- I @ mmoan
- I 0 T.m.0n;

'

In this example, three skunk marks are found on a form in locations 4, 12, and
13. Since location 4 has a value of 8, and 8 appears in the skunk table for
the value of field 1. Positions 12 and 13 also contain skunk marks. Their
values are 8 and 16, which add up to 24. 24 appears in the skunk table for
the value of field 2. Since fields 3 through 6 contain no skunk marks, zeros
appear in those positions in the skunk table.

oTo display another set of entries, press Y and follow the same
procedure.. '

oTo get back to the display menu, press N.

Press 3 and the enter key if you want to return to the main menu. ‘X'

B-12

TEST PROGRAM

QUIT

When QUIT is selected from the main menu, you will return to the Basic
Operating System

EXPLANATION: TEST PROGRAM

The actual test program is listed in its entirety in Compiled Basic, Interpre-
tive Basic, and Pascal as a further illustration of how to incorporate scanner
commands into host programming. The first listing is in Compiled Basic.

30 REM FILENAME: CTESTER COMPILED BASIC TEST ROUTINE
33 REM FILE CREATED: 2B-JUN-B3

60 REN LAST REVISED: 28-JUN-83 10:00

65 REM CONTEXT: TESTE PROGRAM FOR COMPILED BASIC VERSION OF MICROSCANNER CMDS
70 REM

71 REN THIS TEST PROGRAM ALLONS THE USER TO DISPLAY THE SHEET BUFFER AND

72 REN SKUNK TABLE. TEST PROGRAMS FOR OTHER LANGUAGES (INTERPRETIVE BASIC
73 REM AND IBM PASCAL) DO NOT HAVE THIS FEATURE.

74 REM
73 REM NOTE: THE LINES THAT ARE COMMENTED OUT ARE USED IN THE INTERPRETIVE
76 REN BASIC TEST PROGRAM (LINES 100-190)
77 REM
78 REM

100 *DEF SEB=YHICF4

110 ’BLOAD *coands.bas*®,0

120 *SCAN =PEEK(0) + 256 8 PEEK(1)

130 6RID =PEEK(2) + 256 § PEEK(3)

140 *SKUNK =PEEK(4) + 256 8 PEEK(S)

130 CONTROL =PEEK(4) + 256 % PEEK(7)

160 *SETUP =PEEK(8) + 256 8 PEEK(9)

170 *LEVEL =PEEK{10) + 256 $ PEEK(11)

180 *TRANSMIT=PEEK(12) + 256 8 PEEK(13)

190 "RECY =PEEK(14) + 256 8 PEEK(15)

200 DIM GRIDARGY(B)

210 DIM MARKSZ(48)

220 REMBSSSSSSISRERRELBSLSLILLLELLLLLLLLILLLSILS
230 REM MENU FOR TEST PROGRAM

240 REMIBSOSSSSLRTLRSLRSLLLALLLLLLLLLILLLLLILIINS

1000 PRINT "1. CONTROL COMMAND 4. SKUNK COMMAND 7. TRANSMIT COMMAND®
1010 PRINT "2, SETUP COMMAND 3. SCAN COMMAND 8. RECY COMMAND *
1020 PRINT *3. GRID COMMAND 6. LEVEL CONMAND 9. DISP. SHEET OR SKUNK TABLE®

1030 PRINT: PRINT "10. QUIT"

1040 PRINT: PRINT “ENTER SELECTION (1..10) FROM ABOVE: *;
1050 INPUT A%

1035 IF AZ >10 THEN 60TO 1000
1060 IF AZ=10 THEN SYSTEM

B-13

COMPILED BASIC TEST PROGRAM

1130 ON AZ G0SUB 10000, 11000, 12000, 13000, 14000,15000,16000,17000, 18000
1140 6070 1000

10000 REMBSETRIEILISRABASILLLALLESLILILILILNLL

10005 REM SUBROUTINE TO TEST CONTROL COMMAND

10007 REMSSERRSSSRSEIRLBLSERILLLLSLILRASRILLLLS

10010 CLS

10020 PRINT "TESTING CONTROL COMMAND":PRINT

10030 PRINT *1. RELEASE DOCUMENT 3. SELECT AUX PORT®
10040 PRINT "2, STOP SCANNER 4. SELECT SCANNER®
10050 PRINT: PRINT “ENTER SELECTION FROM ABOVE (1..4)"
10060 INPUT CTRLOPTZ

10070 CMDERR$=SPACE$ (20)

10080 CALL CONTROL (CTRLOPTZ,CMDERRS)

10090 PRINT "ERROR CODE:*;CHDERRS

10100 PRINT *DO AGAIN? (Y/N):"3:INPUT DOAGAINS

10110 IF DOAGAINS <> "N" THEN 6070 1002¢

10120 RETURN

11000 REMSSESESESERLRSSSTABLLLLLLLSLASRSLLLLNL

11005 REN SUBROUTINE TO TEST SETUP COMMAND

11007 REMSSESSILESSISRSSRRRRRLLLLLLSLLSSISILLLL
11010 CLS

11020 PRINT "TESTING SETUP COMMAND":PRINT

11030 PRINT “ENTER BAUD RATE:";:INPUT BAUDX

11040 PRINT "ENTER PARITY(O,E,N):";:INPUT PARITYS
11050 PRINT “ENTER DATA BITS:";:INPUT DATABITSY
11060 PRINT "ENTER STOP BITS:";:INPUT STOPBITSL
11070 PRINT “ENTER BOARD SELECT:";:INPUT PORTZ
11080 PARITYZ=ASC(PARITY$)

11085 CMDERR$=SPACE$(200)

11090 CALL SETUP(BAUDX,PARITYZ,DATABITSZ,STOPBITSX,PORTY,CMDERRS)
11100 PRINT "ERROR STRING:",CMDERRS

11110 PRINT *DO AGAIN? (Y/N):®;:INPUT DOAGAINS
11120 IF DOAGAINS <> “"N* THEN 60TO 11020

11130 RETURN

12000 REMSEERBIESSIRRLLLLLRLLLERNLISRLLESLLERLLLNL
12005 REM SUBROUTINE TO TEST GRID ROUTINE

12007 REMSSREETERSLRRLLBISAILLLSARILLALLLSLLLILLNL
12010 CLS

12015 PRINT “TESTING GRID COMMAND":PRINT

12020 PRINT °INPUT TYPE";:INPUT GRIDAREX(0)

12030 PRINT "INPUT CLASS";:INPUT GRIDARGZ(1)

12040 PRINT "INPUT S5X*;:INPUT GRIDAREZ(2)

12030 PRINT "INPUT" EX";:INPUT BRIDARGX(3)

12060 PRINT "INPUT IX*®;:INPUT GRIDARGX(4)

12070 PRINT "INPUT 5Y*;:INPUT BRIDARGZ(S)

12080 PRINT "INPUT EY®;:INPUT GRIDAREX(6)

12090 PRINT "INPUT IY";:INPUT 6RIDARGY(7)

12100 Y#=FRE(0)

12110 EDSTATZ=99

B-14

o

COMPILED BASIC TEST PROGRAM

12120 GRIDSTR$=SPACES (254) :CNDERR$=SPACE$ (200)

12130 ARGPTRY= VARPTR(BRIDARGX(0))

12140 CALL BRID(ARGPTRY,BRIDSTRS,EDSTATY,CHDERRS)

12130 PRINT "6RID STRING:®,6RIDSTR$:PRINT "EDIT STATUS:*,EDSTATL
12160 PRINT "ERROR STRING:*®,CMDERRS$

12180 PRINT "DO AGAIN? (Y/N):®;:INPUT DOAGAINS

12190 IF DOAGAINS <> *N* THEN 60T0 12020

12200 RETURN

13000 REMSSSSERSSERRELLLISELELLELLLLLILISLLLLLLLLLILS

13005 REM SUBROUTINE TO TEST SKUNK COMMAND

13007 REMSSIRSSRREITSLISLLLLLLLLLELEISLICLLLILILLLLL

13010 CLS

13020 PRINT "TESTING SKUNK COMMAND®:PRINT

13030 PRINT "INPUT DOC#:";:INPUT DOCNUMY

13040 PRINT "INPUT CELLS:"®;:INPUT CELLSZ

13050 PRINT “INPUT TRACKS:";:INPUT TRACKSY

13060 PRINT "INPUT NMARKS:*®;:INPUT NUMMARKSY

13070 FOR K=0 TO 50 : PRINT *INPUT MARK LOCATION,99 TO EXIT:®;
13075 INPUT MARKSL(K)

13080 IF MARKSL(K)=99 THEN 6070 13100

13090 NEXT K

{3100 CMDERR$=5SPACES (200)

13110 Y#=FRE(0)

13120 MARKPTRZ=VARPTR(MARKSY(0))

13130 CALL SKUNK (DOCNUNZ,CELLSY, TRACKS?, NUXNARKSY,, NARKPTRY, CHDERRS)
13140 PRINT "ERROR STRING:",CMDERR$

13150 PRINT *DO AGAIN? (Y/N):*®;:INPUT DOAGAINS

13160 IF DOAGAINS <> °N" THEN BOTO 13020

13170 RETURN ‘ .

14000 REMEERESSEXSISETLLLOLLLLIILELLELESLELISLASLLLSS

14005 REM SUBROUTINE TO TEST SCAN ROUTINE -

14007 REMEBBSRESEEILLLASLRLLLELLLLLRALIRLLLSLLILLILLS

14010 CLS

14020 PRINT "TESTING SCAN COMMAND":PRINT

14030 PRINT “ENTER 2 FOR SCAN, 3 FOR RE-TRANSMIT:*;:INPUT READTYPEL
14040 CHDERR$=SPACE$(200):D0CX=0

14030 CALL SCAN(DOCX,READTYPEX,CMDERRS)

14060 PRINT "I.D. NUMBER OF DOCUMENT SCANNED: *;

14065 PRINT USING "#8"; DOCY

14070 FRINT "ERROR STRING:",CMDERR$

14080 PRINT "DO AGAIN? (Y/N):";:INPUT DOAGAINS

14090 IF DOAGAINS <> "N" THEN 60TO 14020

14100 RETURN

13000 RENERISEIRRSIRRRSLLLLLILISESLLLLLLLLRLIILLRLLLRLL

13003 REM SUBROUTINE TO TEST LEVEL COMMAND

13007 REMERSESSSREILLRLSLIILLLLRLSRRARELLLLSILLLLSILILL

15008 CLS

15010 PRINT *TESTING LEVEL COMMAND®:PRINT

15020 PRINT "ENTER OFFSET TO READ LEVEL(-2..42):";:INPUT OFFSETL

B=-15

COMPILED BASIC TEST PROGRAM N

15030 CHDERR$=SPACES(200)

15040 CALL LEVEL(OFFSETX,CMDERRS)

13050 PRINT "ERROR STRING:",CMDERR$

15060 PRINT *DO AGAIN? (Y/N):®5:INPUT DOAGAINS

15070 IF DOAGAINS <> "N* THEN 6070 15010

15080 RETURN

16000 REMBEXEBSSESARBELRERTERLIRELIRLARILLLSALIRALLILLLENS

16005 REN SUBROUTINE TO TEST TRANSMIT COMMAND

16007 REMEBXSESSESBRILLRRRILLLILLLLLRSLILLLIBLLLLSLTLLLLLL

16010 CLS

16020 PRINT "TESTING TRANSMIT COMMAND®:PRINT

16030 PRINT “ENTER DESTINATION (0=PRINTER, 1= AUXPORT, 2=LED):®;:INPUT DESTZ
16040 If DESTZ=0 THEN PRINT "ENTER PRINT POSITION:®;:INPUT PRNTPOSZ

16050 IF DESTX=1 THEN PRINTPOSZ=0

16060 IF DESTZ=2 THEN PRINT "ENTER VALUE (0..15) TO BE DISPLAYED:";:INPUT PRNTPOSX
16070 XMITSTR$="ABC"

16080 IF DESTX = 0 OR DESTXZ=! THEN PRINT "ENTER STRING TO TRANSMIT:";:INPUT XMITSTRS$
16085 CHDERR$=5SPACES (200)

16090 CALL TRANSMIT(DESTZ,PRNTPOSZ,XMITSTRS,CHDERRS)

16100 PRINT "ERROR STRING:*,CMDERRS

16110 PRINT "DD ABAIN? (Y/N):*3:INPUT DOAGAINS

16120 IF DOAGAINS <> "N* THEN 6070 16020

16130 RETURN

17000 REMESBRESLRSATASLRRLLLLSILSLIBLLLLSLIRARISRLESRLSSLILY

17005 REM SUBROUTINE TO TEST RECV COMMAND

17008 REMSEREESLRELSBSLRLRIRLLILRLAILLLALIILLLLLLLSLRARLLLLLS

17010 CLS

17020 PRINT “TESTING RECV COMMAND®:PRINT

17030 PRINT °ENTER STRING AT AUX PORT TERMINAL AND PRESS®

17040 PRINT * RETURN AT TERMINAL TO TERMINATE OR ESCAPE ON PC TO TERMINATE®
17050 CMDERR$=SPACES (200)

17055 RECVSTR$ = SPACE$(254)

17060 CALL RECV(RECVSTRS,CMDERRS)

17080 PRINT "INPUT STRING:";:PRINT RECVSTRS
17090 PRINT "ERROR STRING:®,CMDERRS

17100 PRINT *DO ABAIN? (Y/N):";:INPUT DOABAINS

17110 IF DOAGRINS <> *N" THEN G0TO 17020

17120 RETURN

18000 REMISSEBISLLILLLILIBABAIRALIIALISLLLRRELLLLLARSIRRLSLALILLLILLLY
18002 REM SUBROUTINE TO DISPLAY SHEET BUFFER OR SKUNK TABLE

18004 REMBEBESSRRSERELIRLRLRLLLLLRRRERRLLLELRARILLARATLLLLLLLLLLALILLLS
18005 CLS

18010 PRINT "DISPLAY SHEET BUFFER OR SKUNK TABLE®

18020 PRINT

18030 PRINT *1. DISPLAY SHEET BUFFER"

18040 PRINT *2. DISPLAY SKUNK TABLE®

18050 PRINT *3. RETURN TO MAIN MENU*® Pa
18060 PRINT l
18070 PRINT °ENTER SELECTION FROM ABOVE (1..3): *3

B-16

COMPILED BASIC TEST PROGRAM

18080 INPUT K2

18090 IF KX = 3 THEN RETURN

18100 IF KX < 1 OR KX > 3 THEN 6070 18020

18110 CLS

18120 IF K1 = 1 THEN GOSUB 19000 ELSE 60SUB 20000

18130 60T0 18020

19000 REMESEEESERREILALLLLBRIILLREBASELLLLLITASAILRRLLSRSIRERLLLLILLLL
19002 REN DISPLAY SHEET BUFFER

19004 REMBSSSEBSESERLABLLLLLLATRLLLLLESEXLELEATILLSLLTIRARARAASLALLILLLL
19005 CLS

19010 PRINT "DISPLAY SHEET BUFFER®

19020 PRINT

19030 PRINT "ENTER DESIRED ROW (1..99) OF SHEET TO BE DISPLAYED: *;
19040 INPUT STARTROWY

19050 IF STARTROWL < { OR STARTROWZ >99 THEN 60TO 19010

19052 CODESEB%=0

19033 CALL GETSEG(CODESEGX)

19035 DEF SE6 =CODESEGY

19060 SHTBUFY%= PEEK{16) + 2568 PEEK(17) *LOCATION OF POINTER TO SHEET BUFFER
19070 PRINT

19080 PRINT "ROM LOCATION READ LEVELS®

19090 PRINT

19100 IF STARTROWL > B9 THEN ENDROWX=99 ELSE ENDROWX = STARTROWI + 10
19110 FOR KX = STARTROWL TO ENDROWY

19120 PRINT USING "##%°;K1;

19130 PRINT USING " #3483% "3 (KX-1)848;

19140 FOR EACHMARKY = 0 TO 47

19150 MLEVELX= PEEK (SHTBUFZ+(KX-1)848 + EACHMARKYX) -48 *SUBTRACT OFF ASCII PREFIX
19160 PRINT USING *#°; MLEVELZ;

19170 NEXT EACHMARKZ

19180 PRINT

19190 NEXT KT DO NEXT ROW

19200 PRINT "DO AGAIN ? (Y/N): ®; sINPUT DOAGAINS

19210 IF DOAGAINS <) “N" THEN 5070 19010

19220 RETURN

20000 REMSERERBEREESRLLRLILLLLLARITELSLLLIRILNSLIRELESERALLILILELLLNLS
20002 REM DISPLAY SKUNK TABLE

20004 REMBESRESSSRIRRLIRREITERLILRIIRIRSLLLIRTLILLLLLEILELITILLILLLS
20005 CLS

20010 PRINT °"DISPLAY SKUNK TABLE *

20030 PRINT

20040 PRINT "ENTER DESIRED LOCATION IN TABLE(1..99): *;

20050 INPUT K2 o

20060 IF K% < 1 OR K% > 99 THEN 60TD 20030

20062 CODESEG = 0

20063 CALL GETSEG(CODESEGX) °’6ET CODE SEBMENT OF ASSY MODULE

20065 DEF SEG =CODESEGY

20070 SKTBLOCX = PEEK(18) +256 SPEEK(19)

B-17

COMPILED BASIC TEST PROGRAM

20080 PRINT °"ENTRY DOC# CELLS TRACKS NMARKS MARKSL1..471"
20090 PRINT

20095 IF KT >89 THEN LZ = 99 ELSE LX = KY + 10

20100 FOR M1 = KX TO L%

20110 PRINT USING " 8% ";M%;

20120 FOR N2 =0 T0 3

20130 PRINT USING * #8% *; PEEK(SKTBLOCZ + ((MI-1)810)+NZ);
20140 NEXT NI

20150 PRINT * %

20160 FOR NZ = 4 TO 9 : PRINT USING "#838°;PEEK(SKTBLOCZ+((NZ-1)810)+N1);
20170 NEXT NI

20180 PRINT

20190 NEXT NI

20200 PRINT

20210 PRINT "DO AGAIN ? (Y/N): “:INPUT DOAGAINS

20220 IF DOAGAINS <> "N® THEN B0TO 20030

20230 RETURN

B-18

s
1\ ;

INTERPRETIVE BASIC TEST PROGRAM

50 REM
33 REM
60 REM
63 REM
67 REM
70 REM
74 REM
75 REM
77 REM
78 REM
100 DEF SEG=LHICD4

110 BLOAD "B:comnds.bas®,0

120 SCAN =PEEK(0} + 256 $ PEEK(1)

130 6RID =PEEK{2) + 256 % PEEK(3)

140 SKUNK =PEEK{4) + 256 3 PEEK(3)

150 CONTROL =PEEK(6) + 256 ¥ PEEK(7)

160 SETUP =PEEK(8) + 254 % PEEK(9)

170 LEVEL =PEEK{10) + 236 % PEEK(11)

180 TRANSMIT=PEEK{12) + 254 $ PEEK(13)

190 RECY =PEEK(14) + 236 ¢ PEEK{1D)

200 DIM BRIDARGL(8)

210 DIN MARKSY(48)

220 REMSIRSSRSRLSALERRAESRLSRLLILANERLLALLSILLNL

230 REM MENU FOR TEST PROGRAM

200 REMSSEEILERESRLLLTEERARLIALILLLILEL LRLILL

1000 PRINT *1. CONTROL COMMAND 4, SKUNK COMMAND
1010 PRINT *2, SETUP COMMAND 3. SCAN COMMAND
1020 PRINT *3. GRID COMMAND 6. LEVEL COMMAND
1030 PRINT: PRINT *9. @UIT"

FILENAME: ITESTER
FILE CREATED: 12-JUL-83

LAST REVISED: 12-JuL-83 10:00

CONTEXT: TEST PROGRAM FOR INTERPRETIVE BASIC

VERSION OF MICROSCANNER COMMANDS

1040 PRINT: PRINT °ENTER SELECTION (1..9) FROM ABOVE: *;

1050 INPUT AX
1035 IF AZ 9 THEN 60TO 1000
1060 IF AL=9 THEN SYSTEN

INTERPRETIVE BASIC TEST ROUTINE

NOTE: THE LINES 100-190 ARE COMMENTED OUT WHEN USING COMPILE BASIC

7. TRANSHIT COMMAND®
B. RECV COMMAND *®

1130 ON A% GOSUB 10000,11000,12000,13000,14000,15000,16000,17000

1140 6OTO 1000

10000 REMSEIZESIRELSIRERILLLILIRLBLLLILLLLLILLL
10005 REM SUBROUTINE TO TEST CONTROL COMMAND
10007 REMSIRELITELRITSIILLLLLCRLLILSLRALALLLLL
10010 CLS

10020 PRINT "TESTING CONTROL COMMAND*:PRINT
10030 PRINT 1. RELEASE DOCUMENT
10040 PRINT "2, STOP SCANNER
10050 PRINT: PRINT "ENTER SELECTION FROM ABOVE ({..4)*
10060 INPUT CTRLOPT)

10070 CMDERR$=5PACE$ (20)

10080 CALL CONTROL (CTRLOPTZ,CNDERR$)

10090 PRINT °*ERROR CODE:";CHDERR$

10100 PRINT DO ABAIN? (Y/N):®;:INPUT DOAGAINS

3. SELECT AUX PORT*
4. SELECT SCANNER®

B-19

INTERPETIVE BASIC TEST PROGRAM

10110 IF DOAGAINS <> "N* THEN 60T0 10020

10120 RETURN

11000 REMESSERSRRILILLLLLLLLLLLLLLLLLLLLLLLLLLL
11005 REM SUBROUTINE TO TEST SETUP COMMAND
11007 REMESSSEISREILLLASTLLILASILLILISILERLEALSLE
11010 CLS

11020 PRINT “TESTING SETUP COMNAND":PRINT

11030 PRINT "ENTER BAUD RATE:";:INPUT BAUDZ
11040 PRINT "ENTER PARITY(O,E,N):";:INPUT PARITYS

11050 PRINT °ENTER DATA BITS:*;:INPUT DATABITSX

11060 PRINT "ENTER STOP BITS:";:INPUT STOPBITSY

11070 PRINT "ENTER BOARD SELECT:";:INPUT PORTY

11080 PARITYX=ASC(PARITYS)

11085 CMDERR$=SPACE$ (200}

11090 CALL SETUP(BAUDX,PARITYX,DATABITSZ,STOPBITSY,PORTY,CHDERRS)
11100 PRINT "ERROR STRING:®,CMDERR$

11110 PRINT "DO AGAIN? (Y/N):®";s INPUT DDAGAINS

11120 IF DOAGAINS <> "N® THEN 60T0 11020

11130 RETURN

12000 REMSSESSSELRSRSLISRSIRIRLASILLIRISLALASLSLNS
12005 REN SUBROUTINE TO TEST 6RID ROUTINE

12007 RENESIESSSESIRLRSSRELLILLRSILLLLSLILESILLLSL
12010 CLS

12015 PRINT *TESTING GRID COMMAND":PRINT

12020 PRINT "INPUT TYPE";:INPUT GRIDARGZ(0)

12030 PRINT "INPUT CLASS®;:INPUT BRIDARGX(1)

12040 PRINT "INPUT S5X";:INPUT GRIDARGX(2)

12050 PRINT "INPUT EX";:INPUT GRIDARGX(3)

12060 PRINT "INPUT IX";:INPUT GRIDARGX(4)

12070 PRINT "INPUT S5Y*;:INPUT GRIDARGX(S)

12080 PRINT "INPUT EY*";:INPUT GRIDARGL(6)

12090 PRINT "INPUT IY";:INPUT GRIDARGZ(7)

12100 Y$=FRE(0) :

12110 EDSTATZ=99

12120 GRIDSTR$=SPACES (254) : CHDERR$=5SPACE$ (200)

12130 ARGPTRI= VARPTR(ERIDARGZ(0))

12140 CALL BRID(ARGPTRZ,BRIDSTRS,EDSTATI,CMDERRS)
12150 PRINT “BRID STRING:®,6RIDSTRS$:PRINT "EDIT STATUS:*®,EDSTATIL
12160 PRINT "ERROR STRING:",CHDERR$

12180 PRINT "DO AGAIN? (Y/N):";: INPUT DOAGAINS

12190 IF DOAGAINS <> "N* THEN 60TO 12020

12200 RETURN

13000 REMESEIBEESELLRLTLARAALILILRLILLLLLLSALLSALLLLLS
13005 REM SUBROUTINE TO TEST SKUNK COMMAND

13007 REMESXSRUREILSALLARILALIILLIRLLLILATLSLALLLLLLL
13010 CLS

13020 PRINT "TESTING SKUNK COMMAND":PRINT

13030 PRINT "INPUT DOC#:";:INPUT DOCNUMX

13040 PRINT "INPUT CELLS:";:INPUT CELLSI

B-20

A

P

INTERPRETIVE BASIC TEST PROGRAM

13050 PRINT *INPUT TRACKS:";:INPUT TRACKSI

13060 PRINT *INPUT NMARKS:®3:INPUT NUNMARKSZ

13070 FOR K=0 T0 50 : PRINT *INPUT MARK LOCATION,99 TO EXIT:*;
13075 INPUT MARKSL(K)

13080 IF MARKSL(K)=99 THEN G0TO 13100

13090 NEXT K

13100 CHDERR$=SPACES (200)

13110 Y#=FRE(0)

13120 MARKPTRZ=VARPTR (MARKSZ(0))

13130 CALL SKUNK (DOCNUMZ,CELLSY, TRACKSY, NUMMARKSY, MARKPTRY, CHDERRS)
13140 PRINT *ERROR STRING:".CMDERRS

13150 PRINT *DO ABAIN? (Y/N::*3:INPUT DOAGAINS

13160 IF DOAGAINS <> °N® THEN BOTO 13020

13170 RETURN

14000 REMSESSSSESESEELALIRRLRES8RALLLLLLLRRLLLRILAL

14005 REM SUBROUTINE TO TEST SCAN ROUTINE

14007 REMSEESESERSIRERLLEEESERLILLERLLELLLRLLLLLILLLS

14010 CLS '

14020 PRINT *TESTING SCAN COMMAND®:PRINT

14030 PRINT "ENTER 2 FOR SCAN, 3 FOR RE-TRANSMIT:*;:INPUT READTYPEX
14040 CMDERR$=SPACE$(200):DOC1=0

14050 CALL SCAN(DOCY,READTYPEZ,CMDERRS)

14060 PRINT *I.D. NUMBER OF DOCUMENT SCANNED: *;

14065 PRINT USING "#8*; DOCY

14070 PRINT "ERROR STRING:",CMDERR$

14080 PRINT *DD AGAIN? (Y/N):";:INPUT DOAGAINS

14090 IF DOAGAINS <) °N* THEN GOTO 14020

14100 RETURN

15000 RENSS3SSSEESESILLESLELR8RRERERLSS0LLLRRRLLSLSS

15005 REM SUBROUTINE TO TEST LEVEL COMMAND

15007 RENSSERESRERLLISLELERILELISLLRILILLLLLLLLLLILLLS

15008 CLS

15010 PRINT *TESTING LEVEL COMMAND®:PRINT

15020 PRINT "ENTER OFFSET TO READ LEVEL(-2..42):*;:INPUT OFFSETL
15030 CMDERR$=SPACES (200)

15040 CALL LEVEL(OFFSETZ,CMDERRS)

15050 PRINT "ERROR STRING:*®,CMDERR$

15040 PRINT *DO ABAIN? (Y/N):*;:INPUT DOAGAINS

15070 IF DOAGAINS <> *N" THEN G0TO 15010

15080 RETURN

15000 REMSSESEIRERELESLERLRERELELILILELLLALLLLLLLISALILLL

16005 REM SUBROUTINE TO TEST TRANSMIT COMMAND

16007 RENSESETSTESIBETELSLERBELERTLLLLELALELLALALILLLLING

16010 CLS '

16020 PRINT *TESTING TRANGMIT COMMAND*:PRINT

16030 PRINT "ENTER DESTINATION (0=PRINTER, 1= AUXPORT, 2=LED):";:INPUT DESTI
15040 IF DESTX=0 THEN PRINT "ENTER PRINT POSITION:®;:INPUT PRNTPOS

B-21

INTERPETIVE BASIC TEST PROGRAM

16050 IF DESTZ=1 THEN PRINTPOSZ=0

16060 IF DESTI=2 THEN PRINT "ENTER VALUE (0..15) TO BE DISPLAYED:";:INPUT PRNTPOS
16070 XMITSTR$="ABC"

16080 IF DESTI = 0 OR DESTZ=1 THEN PRINT °ENTER STRING TO TRANSMIT:"®;:INPUT XMITSTR$
16085 CMDERR$=SPACE$(200)

16090 CALL TRANSMIT(DESTL,PRNTPOSX,XMITSTRS,CNDERRS)

16100 PRINT "ERROR STRING:"®,CMDERR$

16110 PRINT “DO AGAIN? (Y/N):"5:INPUT DOAGAINS

16120 IF DOAGAINS (> "N THEN 60TO 16020

16130 RETURN

17000 REMBSSERISILIASTABEEILRLIRALLILILLASLILIILISILLILRLLILLS

17005 REM SUBROUTINE TO TEST RECV COMMAND

£7008 REMSISEESEEERBRBIRILSRTATRLLLLLILLIRLRSRLLLILLLLSLNLLS

17010 CLS

17020 PRINT "TESTING RECV COMMAND":PRINT

17030 PRINT "ENTER STRING AT AUX PORT TERMINAL AND PRESS®

17040 PRINT * RETURN AT TERMINAL TO TERMINATE OR ESCAPE ON PC TO TERMINATE®
17050 CMDERR$=SPACE$ (200)

17055 RECVSTRS = SPACE$(254)

17060 CALL RECV(RECVSTRS,CMDERRS)

17080 PRINT "INPUT STRING:";:PRINT RECVSTR$

17090 PRINT "ERROR STRING:*®,CMDERR$

17100 PRINT “DO AGAIN? (Y/N):®3:INPUT DOAGAINS

17110 IF DOAGAINS <> "N® THEN GOTO 17020
17120 RETURN

B-22

PASCAL TEST PROGRAM

{(FILENAME: PTESTER PASCAL MICROSCANNER COMMANDS TEST PROGRAM

FILE CREATED: 20-JUN-83

LAST REVISED: 15-JUL-B3 12:30

CONTEXT + IBM-PASCAL IMPLEMENTATION OF MICROSCANNER COMMANDS
EXANPLE TEST PROGRAM

}

PROGRAM PTESTER(INPUT, OUTPUT);
{$$INCLUDE: * SCANDECL.PAS’ $)

{THIS FILE HAS ALL THE SPECIAL TYPE DECLARATIONS
AND EXTERNAL DECLARATIONS FOR MICROSCANNER COMMANDS
AND MUST BE INCLUDED INTO ANY PROGRAM WHICH USES
MICROSCANNER COMMANDS. 1}

VAR
ACHAR @ CHAR;
ABAIN : BODLEAN;
K,MENUSELECT : INTEBER;
CMDERR,BRIDSTR & MSCSTR;
PROCEDURE DOAGAIN(VAR DUM! : BOOLEAN);

(ERRESEEERsEERERsRsenstnsesstsasassastssasasssesrsaesssansssstsssstisn)
BEGIN;
WRITELN;
WRITELN(OUTPUT, *ERROR STRING: ’,CMDERR);
WRITELN;
WRITE(QUTPUT, *DO ABAIN? (Y/N): ’);
READLN{INPUT, ACHAR);
WRITELN;
IF ACHAR = CHR(’N’) THEN DUN1 := FALSE
ELSE DUNI := TRUE;
END; (OF PROC DOAGAIN

83788598030 88238R03iRRsitetsinsitititastiitatitesittiiteiitisiottisty
PROCEDURE TCONTROL; {TEST CONTROL COMMAND}

4380383 Rsbeoibeitecitsatieeiteitistasditasissetisssteitntitittittiity
VAR
CTRLOPT: INTEGER;

BEBIN;
REPEAT
COPYLST(*DUNMY STRING’,CMDERR);
WRITELN;
WRITELN;

B-23

PASCAL TEST PROGRAM

WRITELN(*TESTING CONTROL COMMAND’);

WRITELN;

WRITELN{”1, RELEASE DOCUMENT 3. SELECT AUX PORT’);
WRITELN(’2. STOP SCANNER 4. SELECT SCANNER’);
WRITELN;

WRITE(’ENTFP SELECTION FROM ABOVE (1..4): °);
READLN(INPUT, CTRLOPT);

CONTROL (CTRLOPT, CMDERR); {(NICROSCANNER COMMAND CALL}

DOAGAIN(AGAIN)
UNTIL NOT ABAIN;
END; (OF PROC TCONTROL}

1822328092203883¢2708 00000204888 R8R00880ed08ieettsitetiedstittediseity
PROCEDURE TSETUP;

(RRRRBRBRRERsasaRsnseassssasnanesassssssnssssasssssassssesssssssteses}
VAR

BAUD, PARITY,DATABITS,STOPBITS,PORTSEL ¢ INTEGER;

BEGIN;

REPEAT
COPYLST (*DUMMY STRING’ ,CNDERR);
WRITELN;
WRITELN;
WRITELN(*TESTING SET-UP CONMAND’);
WRITELN;
WRITE (’ENTER BAUD RATE: ');
READLN(INPUT, BAUD);
WRITE(’ENTER PARITY (*0°, “E*, *N*): ’);
READLN(INPUT, ACHAR) ;
PATITY:= ORD(ACHAR) ;
WRITE(’ENTER DATA BITS: *);
READLN (INPUT, DATABITS) ;
WRITE(’ENTER STOP BITS: *);
READLN(INPUT, STOPBITS) ;
WRITE(’ENTER BOARD SELECT: ’);
READLN (INPUT, PORTSEL) ;

SETUP(BAUD, PARITY, DATABITS, STOPBITS, PORTSEL, CNDERR);
DOAGAIN(ABAIN) ;

UNTIL NOT ABAIN;
END; {OF PROC TSETUP}

B-24

PASCAL TEST PROGRAM

€RTEeERTei3edeeisioiaanifstisitetintiifiittatieiititecititiitiitisiteg
PROCEDURE TGRID;

1¢3848038020TR000800eetsititantitiitiitastetiiitintniiiteiiiziiititity
VAR
GRIDARG : GRIDARA;
EDSTAT : INTEGER;

BEGIN;
REPEAT
COPYLST {*DUNHY STRING’ ,GRIDSTR);
COPYLST (*DUMNY STRING®,CMDERR) ;
WRITELN;

WRITELN;
WRITELN(* TESTING GRID COMMAND');

WRITELN;

WRITEC'ENTER TYPE: ');
READLN (BRIDARGLOI);
WRITE("ENTER CLASS: ’);
READLN (GRIDARBI11);
WRITEC’ENTER SX: °);
READLN (GRIDARBL21);
WRITECENTER EX: °);
READLN (GRIDARGL31)3
WRITECENTER ks *);
READLN(BRIDARGL41);
WRITECENTER SY: ’);
READLN (BRIDARBES1);
WRITECENTER EY: ’);
READLN(GRIDARGL61);
WRITECENTER IV: °);
READLN(BRIDARSL71);

BRID(GRIDARG, BRIDSTR, EDSTAT, CMDERR);

WRITELN;
WRITELN(*EDIT STATUS: *, EDSTAT);
WRITE(’6RID STRING:’,GRIDSTR);
WRITELN;
DOAGAIN (ABAIN);
UNTIL NOT AGAIN;
END; (OF PROC TERID}

B-25

PASCAL TEST PROGRAM

(RBBRRRRBRasasaRssssssssssssstssssnsssassasassssssssssssstassssssssss)
PROCEDURE TSKUNK; {TEST ROUTINE FOR THE SKUNK COMMAND}

(1888080000000 Retsottstnsiinetptantitecitelitesestissitisdatitsitecity

VaR
L, DOCNUM, CELLS, TRACKS, NUMMARKS : INTEGER;
MARKS : SKARAY;

BEGIN;
REPEAT
COPYLST(*DUMMY STRING® ,CHDERR);
WRITELN;
WRITELN;
WRITELN(’TESTING SKUNK COMMAND’);
WRITELN;
WRITE(’ENTER DOCUMENT NUMBER: ’);
READLN (DOCNUM} 5
WRITE(’ENTER NUMBER OF CELLS: °);
READLN(CELLS);
WRITE(’ENTER NUMBER OF TRACKS: ’);
READLN(TRACKS) 3
WRITE(’ENTER # OF SKUNK MARKS: °);
READLN (NUMMARKS) 3
:= 03
K := 0
WHILE ({L <> 99) AND (K <47)) DO
BEGIN; ’
WRITE(” INPUT MARK LOCATION, 99 TO EXIT: °);
READLN(L); ‘
MARKSIK] s= L;
K 1= Ktl;
END; {OF WHILE}

SKUNK(DOCNUM, CELLS, TRACKS, NUNMARKS, MARKS, CMDERR);
DOAGAIN(AGAIN) 5

UNTIL NOT ABAIN;
END; (OF PROC TSKUNK}

B-26

-

PASCAL TEST PROGRAM

(13808202890 8002 e Rt i qnditedfesqtasictstedjteitiiftcitissitetitasisisy

PROCEDURE TSCAN;

(8119372083383008080¢08ER8be000dtiteatitibtatisiseaegniiisssiisteisiy

VAR
DOC, READTYPE : INTEGER;
BEBIN;
REPEAT
COPYLST(”DUMMY STRING’,CMDERR);
WRITELN;
WRITELN;
WRITELN (" TESTING SCAN COMMAND’);
WRITELN;
WRITE(’ENTER 2 FOR SCAN, 3 FOR RE-TRANSMIT:
READLN(READTYPE) § :

SCAN(DOC, READTYPE, CMDERR);

WRITE(’ASSIGNED NUMBER OF DOCUMENT SCANNED:
WRITELN(DOC);
DOAGAIN(AGAIN) ;
UNTIL NOT AGAIN;
END; (OF PROC TSCAN}

));

’);

182318882330 080008800e028000RtiReddittetitttsistecitittititnciiteitisly

PROCEDURE TLEVEL;

(ERERRIBRRtssaRantransisssaaensssssssssssnssssssssesssssssssssssssssss)

VAR
OFFSET: INTEGER;
BEGIN;
REPEAT
COPYLST (*DUNNY STRING’,CMDERR);
WRITELN;
WRITELN;
WRITELN(*TESTING LEVEL COMMAND’);
WRITELN;
WRITE(’ENTER OFFSET TO READ LEVEL (-2..+2):
READLN (OFFSET) 3
LEVEL(OFFSET, CNDERR);

" DOAGAIN(ABAIN);
UNTIL NOT AGAIN;
END; (OF PROC TLEVEL}

!);

B-27

PASCAL TEST PROGRAM

18321220283 0022080000888RR28oRR0itRRtsteasitaetitassitesisittisittsiity
PROCEDURE TXMIT;

(RISBRRTEBRRREaRaRtsssasesssassisssassssssssssssassassstssasssssssssie}

TYPE ONESTR = STRING(1);
VAR
PRNTPDS, DEST : INTEGER;
XMITSTR : NSCSTR;
F,6 1 FILE OF CHAR;
NEXTCHAR: ONESTR;
MY_EOLN : BOOLEAN;

{THE PROCEDURE ’OPEN CONSOLE, AND FUNCTION INKEY ARE NECESSARY BECAUSE THE
READLN PROCEDURE WILL ONLY INPUT 126 CHARACTERS AND WE NEED TO INPUT
254 CHARACTERS TO TEST THE XNIT COMMAND.
)
PROCEDURE OPEN_CONSOLE;
BEGIN;
ASSIGN(F,’ USER’)5
RESET(F);
ASSIGN(G,’ USER’)3
REWRITE (6);
END; (PROCEDURE OPEN_CONSOLE}

FUNCTION INKEY:ONESTR;
VAR
INCHAR : CHAR;
THPSTR :ONESTR;

BEBIN;
REPEAT BET(F) UNTIL F~ <> CHR(0);
INCHAR := F*;
WRITE (6, INCHAR) ;
TMPSTRI1] 3= INCHAR;
INKEY := THPSTR;
END; {(OF FUNCTION INKEY}

BEGIN; (OF PROCEDURE TXMIT)

OPEN_CONSOLE;

REPEAT
COPYLST (* DUNMY STRING®, XNITSTR);
COPYLST{(’DUNMY STRING’,CMDERR);

" WRITELN;
WRITELN;
WRITELN(* TESTING TRANSNIT COMMAND’);
WRITELN;
WRITE(’ENTER DESTINATION (O = PRINTER, 1 = AUX PORT, 2 = LED): °);

B-28

o5,

PASCAL

TEST PROGRAM

READLN(DEST)
CASE DEST OF
0:
BEGIN;
WRITE(’ENTER PRINT POSITION: ’);
_READLN(PRNTPOS) ;
WRITE(’ENTER STRINE TD BE PRINTED: ’);
READLN(XMITSTR);
END;
1:
BEGIN;
WRITE(’ENTER STRING TO BE SENT TO AUX PORT:
K:= 0
MY_EOLN := FALSE;
IMITSTR.LEN := 0
REPEAT
NEXTCHAR := INKEY;
IF NEXTCHAR[11 <> CHR(13) THEN
BEGIN;
CONCAT(XMITSTR,NEXTCHAR) ;
MY_EOLN := FALSE;
END
ELSE MY_EOLN := TRUE;

(CLEAR XMITSTR}

K := K+l
UNTIL (K = 254) OR (MY_EOLN =TRUE);
WRITELN;
PRNTPOS := 03
END;
2.
BEGIN;
WRITE(’ENTER VALUE (0..15) TO BE DISPLAYED:
READLN (PRNTPOS) ;
END;
3..MAXINT: PRNTPOS :=0;

END; {OF CASE}
TRANSHIT(DEST, PRNTPOS, XMITSTR, CNDERR);

DOAGAIN(ABAIN) ;
UNTIL NOT AGAIN;

END; {DF TXMIT COMMAND }

!);

”;

B-29

PASCAL TEST PROGRAM

(RRERRRRRBaRRtsesaRssanssssasssessassssassessssstesstasassssssesisses)
PROCEDURE TRECV;

181820820 3300800000800¢008R008bteensiiteiiietatiiisstitaiteiesitiaiioty
VAR

INSTRING : MSCSTR;

BEGIN;
REPEAT
COPYLST (*DUNMY STRING’ , INSTRING) ;

COPYLST {* DUNNY STRING’ ,CNDERR);
WRITELN;

WRITELN;

WRITELN(*TESTING THE RECEIVE CONMAND’);

WRITELN;

WRITELN(’ENTER STRING AT AUX PORT TERMINAL AND PRESS RETURN ’);

WRITELN(* AT TERMINAL OR ESCAPE ON PC TO TERMINATE RECY COMMAND’);
WRITELN; ‘

RECV(INSTRING, CMDERR);

WRITELN{’ INPUT STRING:’, INSTRING);
DOAGAIN(AGAIN) 5
UNTIL NOT AGAIN;
END; {OF PROC TRECV}

18280e2ieReeetoRe ettsinsstaieetiiasittaiitidictitiitbiteteistotites
BEGIN; (MAIN PROGRAM PTESTER}

(SEESRREERRETRILEERsaneansanitnsssnsesnseansssstaressstssssrssassassss)
REPEAT :

WRITELN;
WRITELN;
WRITELN(’1. CONTROL COMMAND 4. SKUNK COMNAND 7. TRANSMIT CONMAND’);
WRITELN(*2. SETUP COMNAND 5. SCAN CONMAND 8. RECY COMMAND’);
WRITELN(’3. GRID COMMAND 6. LEVEL COMMAND’);
WRITELN;
WRITELN(*9. QUIT *);
WRITELN;
WRITE ("ENTER SELECTION (1..9) FROM ABOVE: ’);
READLN (NENUSELECT);

B-30

PASCAL TEST PROGRAM

CASE MENUSELECT OF

1: TCONTROL;

2: TSETUP;

3: TGRID;

4: TSKUNK;

S: TSCAN;

b: TLEVEL;

7: TXMIT;

B: TRECV;

9:

END; {OF CASE}
UNTIL MENUSELECT = 93

END. {OF MAIN PROGRAM}

B=-31

€

-

APPENDIX C

PASCAL SCANDECL.PAS FILE

OVERVIEW: SCANDECL.PAS FILE

In Section Four, under program structure, programmers are advised to insert
the line (*$INCLUDE:'SCANDECL.PAS'*) into their programs immediately following
the program heading. That line causes the file SCANDECL.PAS to be included in
the application program. The file contains external type declarations neces-
sary for using Micro Scanner Commands.

EXPLANATION: SCANDECL.PAS FILE

The contents of the file are listed below.

{ FILENAME: SCANDECL.PAS
FILE CREATED: 12-JUL-83
LAST REVISED: 12-JUL-83 18:00 .
CONTEXT: IBM PASCAL IMPLEMENTATION OF MICROSCANNER COMMANDS

THIS FILE HAS THE TYPE AND EXTERNAL DECLARATIONS REQUIRED FOR
NICROSCANNER COMMANDS. IT 3 CONTENTS MUST BE INCLUED IN A PROGRAM

WHICH USES MICRO SCANNER COMMANDS. THIS IS EASILY ACCOMPLISHED WITH

THE FOLLOWING LINE IN THE APPLICATION PROGRAM:

_SINCLUDE: SCANDECL.PAS,

THIS "INCLUDE" STATEMENT SHOULD FOLLOW DIRECTLY AFTER THE PROGRAM HEADING.
i

TYPE
HSCSTR = LSTRING(254);
GRIDARA= ARRAY [0..71 OF INTEGER;
SKARAY = ARRAY [0..47] OF INTEGER;

838300038000 Rtootsitotpiiitesttipesstatisttisciititptisstetittesitity
{ EXTERMALLY REFERENCED MICROSCANNER COMMAND DECLARATIONS }
8235t pobtaipetipeisttispotipstisitasstacssesiseiitiitrisstetiistitttes

PROCEDURE CONTROL (CONST CTRLOPT: INTEGER; VAR CMDERR:MSCSTR);
EXTERNAL;

PROCEDURE SETUP(CONST BAUD:INTEGER; CONST PARITY:INTEGER; CONST DATABITS: INTEGER;
CONST STOPBITS: INTEGER; CONST PORTSEL: INTEBER;
VAR CMDERR:MSCSTR);
EXTERNAL; :

PROCEDURE GRID(CONST GRIDARG:GRIDARA; VAR GRIDSTR:MSCSTR; VAR EDSTAT: INTEGER;
VAR CMDERR:MSCSTR);
EXTERNAL; :

PASCAL SCANDECL.PAS FILE

EXPLANATION: SCANDECL.PAS FILE (cont.)

PROCEDURE SKUNK(CONST DOCNUM: INTEGER; CONST CELLS: INTEGER; CONST TRACKS: INTEGER;
CONST NUMMARKS: INTEGER;
CONST MARKS:SKARAY; VAR CMDERR:MSCSTR);
EXTERNAL;

PROCEDURE SCAN(VAR DOC: INTEGER; CONST READTYPE: INTEGER;
VAR CMDERR:MSCSTR);
EXTERNAL;

PROCEDURE LEVEL(CONST OFFSET:INTEGER; VAR CMDERR:MSCSTR);
EXTERNAL; '

PROCEDURE TRANSMIT(CONST DEST : INTEGER; CONST PRNTPOS: INTEGER;
CONST XMITSTR:MSCSTR; VAR CHDERR:NMSCSTR);
EXTERNAL;

PROCEDURE RECV(VAR INSTRING:MSCSTR; VAR CMDERR:MSCSTR);
EXTERNAL;

\\"ih.;/’

o

APPENDIX D

LINKING COMMANDS TO
APPLICATION PROGRAM

Introduction.................D-Z
Linking...-.............-....D—3
Diskette Contents............D-5

INTRODUCTION

In order to utilitze micro scan-
ner commands in application pro-
grams, they must be linked to-
gether. This appendix describes
the linking process.

LINKING

OVERVIEW: LINKING

The linking requirements for each
language are described below. For
detailed descriptions of the linking
process, refer to the IBM - Personal
Computer Language Series - BASIC
Compiler and Pascal Compiler.

EXPLANATION: COMPILED BASIC

The accompanying examples explain how
to link the commands to the applica-
tion program. The small letters
represent prompts generated by the
microcomputer; the capital letters
represent responses typed by the
programmer.

The first example is for running an
application program which is compiled
with the "/0" option. The second
example is for an application program
compiled without the "/0" option.

The linking procedure is started by
typing in the word LINK. Then the
object module is requested. The ob-
ject module refers to the program
files which will be connected to the
commands. Type in the name of the
application program and CBSCAN. The
run file line states that the file is
now executable. The list file 1line
allows the programmer to request a
map. Type in BASCOM after
"Libraries:[.1lib]:".

Linking for a program compiled with-
out the "/0" option works virtually
the same except the last line. Type
in BASRUN after "libraries:[.lib]:".

LINKING - COMPILED BASIC
/0 OPTION

c¢>LINK

IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp.
1982

Object Modules [.obj]: FILENAME
CBSCAN

Run File [filename.exe]:

List File [nul.map]:

Libraries [.1ib]: BASCOM

LINKING COMPILED BASIC
NO /0 OPTION

C>LINK

IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp.
1982

Object Modules [.obj]: FILENAME
CBSCAN

Run File [filename.exe]:

List File [nul.map]:

Libraries [.1ib]: BASRUN

D=3

LINKING A

LINKING - PASCAL EXPLANATION: PASCAL
C>LINK Linking in Pascal is similar to link-
ing in Compiled Basic. However, the
IBM Personal Computer Linker file name is PSCAN. Also, after
Version 1.10 (C)Copyright IBM Corp. "Libraries:[.1ib]:", enter PASCAL.
1982
Object Modules [.obj]: FILENAME
PSCAN
Run File [filename.exe]:
List File [nul.map]:
Libraries [.lib]: PASCAL
EXPLANATION: INTERPRETIVE BASIC
No separate linking process is re-
quired. The commands were already
linked to the application program
in the loading process.
-
'

D-4

DISKETTE CONTENTS

OVERVIEW: DISKETTE CONTENTS

The contents of the Micro Scanner Commands diskette are described below:

eCompiled Basic Files

CBSCAN.OBJ-~-Object file containing Compiled Basic implementation of
microscanner commands. This file is linked to a Compiled

Basic application program.
CTESTER.BAS--Source file containing the Compiled Basic test program.

CTESTER.EXE-~Executable file containing the CTESTER program and micro-
scanner commands.

LNKBAS.BAT--A sample batch file for linking a Compiled Basic applica-
tion program to CBSCAN.OBJ.

eInterpretive Basic Files

COMNDS.BAS--The file containing microscanner commands which is loaded
from within an Interpretive Basic application program.
(With a 'BLOAD "COMNDS.BAS",0 ' command).

IBSCAN.OBJ~~The object file containing unlinked and unlocated object
code of the Interpretive Basic microscanner commands. This
will allow the user to link his assembly language routine
with microscanner commands to create a single ".EXE" file.

ITESTER.BAS-~Interpretive Basic test program.

LNKIBSCN.BAT--Batch file to link IBSCAN.OBJ into IBSCAN.EXE.

ePascal Files

PSCAN.OBJ--Object file containing the Pascal implementation of micro-
scanner commands. This file is linked to a Compiled Pascal

application program.
SCANDECL.PAS--Pascal source file meant to be "included" in the user's

application program. It contains all the Pascal declara-
tions required to interface to microscanner commands.

PTESTER.PAS--Source file containing Pascal test program.

DISKETTE CONTENTS

-
ePascal Files (cont.)
PTESTER.EXE--Executable file containing the PTESTER test program and
Pascal implementation of microscanner commands.
PASLNK.BAT=-=Batch file to link PSCAN.OBJ to a Pascal application
program,

COMMENT SHEET

Micro Scanner Commands User’s Guide
For the Sentry PLU§ MSystem
Publication Number : 202 151 957

FROM: NAME:
BUSINESS ADDRESS:

COMMENTS: (Describe errors, suggested additions, or deletions,
including page numbers.)

NO POSTAGE STAMP NECESSARY IF MAILED IN U;S.A.
FOLD ON DOTTED LINES AND STAPLE

--- - e - - - - - - - - - - - FOLD - o e e - -

| " || | NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1840 MINNEAPOLIS, MINN.

POSTAGE WILL BE PAID BY ADDRESSEE

National Computer Systems
c/o Publications

4401 West 76th Street

P.O. Box 9365

Minneapolis, Minnesota 55440

FOLD == == == ~-

