
Micro Scanner Commands
User's Guide
For the Sentry PLUS™ System

NCS Publications Number 202 151 957
Price: $20.00

NATIONAL G™ COMPUTER
SYSTEMS

Copyright, 1983

by

National Computer Systems, Inc.

Minneapolis, Minnesota

All rights reserved. No part of this book may be
reproduced in any form or by any means, without
permission in writing from the publisher.

0

(

i

PREFACE

Micro Scanner Commands are de­
signed to function with a Sentry
3000™ scanner and an IBM PC or XT
with a minimum of 128K memory,_
one asynchronous port, and DOS
1. 1 or 2. O.

This guide to Micro Scanner Com­
mands describes the various com­
mands and how to incorporate them
into application programming.
Other user manuals relating to
the Sentry™ 3000 scanner are:

NCS
Title Part Number

Operator's Guide 202 151 981

The Operator's Guide provides in­
formation on the Sentry™ 3000
scanner parts, how to operate the
various programs, and error mes­
sages and recovery procedure.

Installation and
Maintenance Guide

202-151-999

The Installation and Maintenance
Guide provides information on how
to install, maintain, and repair
the Sentry™ 3000 scanner.

Host Programmer's
Guide

202 151 973

The Host Programmer's Guide pro­
vides information on how to con­
figure the scanner to enable
communications with the host
computer. It also describes the
scanner records and explains the
functions that must be performed
by the host program. The Host
Programmer's Guide is intended
for programming without scanner
commands.

ii

iii

TABLE OF
CONTENTS

Introduction ••••••••••••••••••••••••• iv

1: SYSTEM SETUP••••••••••••••••••••1-1
Read Technique •••••••••••••••••• 1-3
Mark Discrimination ••••••••••••• 1-7
Scanning the Forms •••••••••••••• 1-9
Host Programming ••••••••••••••• 1-13

2: CONFIGURING THE SCANNER ••••••••• 2-1
Coding the Sheet •••••••••••••••• 2-3
Configuration ••••••••••••••••••• 2-7

3: SCANNER COMMANDS••••••••••••••••3-1
Section Format •••••••••••••••••• 3-3
Controlling Scanner Operations •• 3-7
Reconfiguring the Scanner ••••••• 3-9
Adjusting Scanner Read Level ••• 3-13
Identifying the Form ••••••••••• 3-15
Scanning the Form •••••••••••••• 3-21
Resolving the Grids •••••••••••• 3-25
Sending Data to the Scanner •••• 3-41
Receiving Aux Device Data •••••• 3-45

4:

5:

HOST PROGRAM••••••••••••••••••••4-1
Program Structure ••••••••••••••• 4-3

SAMPLE PROGRAM••••••••••••••••••5-1
Program Listing (Compiled
Basicf •••••• ~ •••••••••••••••••• 5-3

Program Explanation •••••••••••• ~5-4
Interpretive Basic Listing •••••• 5-9

6: PROGRAM ERROR CODES ••••••••••••• 6-1

APPENDIX A: FORM PARAMETER
WORKSHEET•••••••••••••A-1

APPENDIX B: TEST PROGRAM ••••••••••• B-1
Compiled Basic Test Program ••••• B-3
Interpretive Basic Test

Program ••••••••••••••••• ; ••••• B-19
·Pascal Tes.t Program •••••••••••• B-23

APPENDIX C: PASCAL SCANDECL.PAS
FILE••••••••••••••••••C-1

APPENDIX D: LINKING COMMANDS TO
APPLICATION PROGRAM ••• D-1

INTRODUCTION

This manual is presented in six
sections and four appendices.
The first section provides an
introduction to scanner read
technology and scanner commands.
Section Two describes how to
configure the scanner to ensure
proper communications protocol.
Section Three provides an over­
view of each command. Section
Four describes host programming
with scanner commands. Section
Five lists and describes a sample
program that incorporates scanner
commands. Section Six describes
program parameter error codes.
Appendix A is a form parameter
worksheet. Appendix B is a list­
ing and explanation of a test

·program to use on your system
initially. Appendix C lists the
Pascal SCANDECL.PAS file, refer­
enced by each Pascal application
program. Appendix D describes
how to link Scanner Commands to
an application program.

()

iv

(

(

(

1-1

1

SCANNING
OVERVIEW

Introduction ••••••••••••••••• 1-2
Read Technique ••••••••••••••• 1-3
Mark Discrimination •••••••••• 1-7
Scanning the Forms ••••••••••• 1-9
Host Programming •••••••••••• 1-13

INTRODUCTION

The Sentry 3000 scanner is an
optica1 mark reader which trans-
1a tes marks on forms into infor­
mation a computer can understand.
Scanner commands a11ow the user
to incorporate input from the
scanner into app1ication program­
ming with a minimum of effort.

This section brief1y describes
how the scanner reads marks and
scans forms, and how to use the
scanner in a host program.

1-2

•·if

··"'···;

(

(

OVERVIEW: READ TECHNIQUE

The scanner scans sheets and trans­
mits a series of read levels to the
host computer. The following para­
graphs describe how the read levels
are generated and how they comprise
an image of the sheet.

EXPLANATION: READ TECHNIQUE

The Sentry™ 3000 scanner detects
marks on forms using the "read head"
which is a collection of 48 light
sources above the form and 48 photo­
cells below the form. Each of the 48
light sources beams light through the
form and each photocell records the
amount of light that passes through
the form. In this way, the scanner
reads both sides of the form at one
pass through the scanner. This is
called "transmitted light read."

1-3

READ TECHNIQUE

TRANSMITTED LIGHT READ

PAPER
(CROSS·

SECTION)

LIGHT
SOURCE

READ TECHNIQUE

GUIDE
EDGE

0

--

FORM FEATURES

Timing
Track

NCS® EIGHT-LEVEL READ

1 2 3 4 5 6 7

1-4

EXPLANATION: TIMING MARKS

Special features of the form called
"timing marks" cue the scanner's read
head to read across the form. The
column of timing marks is called the
"timing track." The timing track is
read by the photocell closest to the
front of the scanner. This is why
forms must always be fed into the
scanner with the timing track on the
left side ("guide edge") of the form.

EXPLANATION: READ LEVELS

A read level is an ASCII-coded char­
acter (0,1,2,3,4,S,6, or 7) which in~
dicates the amount of light blocked at
one position on the form. If no mark
is present on the form in a particular
position, the scanner will report a
read level of 0 or 1. When a dark
mark made with a No. 2 lead pencil is
scanned, a value of 6 or 7 is assigned.
Smudges and erasures will be reported
by values of 1,2, or 3. Light marks
will be reported as 4 or s.

Each time the read head encounters a
timing mark as the form passes through
the scanner, 47 read levels plus one
special value are stored in the scan­
ner• s buffer. The 47 read levels cor­
respond to the 47 positions across an
8-1/2 inch form. The 48th value is ({__:

(READ TECHNIQUE

EXPLANATION: READ LEVELS (cont.)

the number of times that the line
was scanned as the form passed un­
der the read head.

The first read level from the form
corresponds to the position on the
form that is closest to the first
timing mark on the leading edge of
the form. The second value corre­
sponds to the second possible re­
sponse position away from the first
timing mark, the third value to the
third possible position, and so on.

Each time a new timing mark is read,
48 more values are added to the scan­
ner's buffer for that form.

When the whole form has been read
then the record can be transmitted
to the host computer for processing.

CONSIDERATIONS: MARK READING

e48 values are assigned even when
the form is not 8-1/2" (47 response
positions) wide.

1-5

-------- ---- - ----

READ TECHNIQUE

1-6

{

OVERVIEW: MARK DISCRIMINATION

The process by which the host program
determines which marks on the form
are intended resonses is called mark
discrimination.

EXPLANATION: RESOLVING GRIDS

After the record of read levels is
passed to the scanner, data from
grids must be resolved. A single
response must be selected from each
grid item.

EXPLANATION: MARK DISCRIMINATION

After determining read levels the
GRID command discriminates intended
marks from erasures and smudges. The
read levels of the responses in one
item are compared and the darkest
mark is selected as the intended re­
sponse. However, if more than one
mark is found, the read levels must
be at least two read levels apart for
the darkest mark to be selected as
the chosen response. If read levels
are not at least two levels apart,
the response is deemed a "multiple"
and an asterisk is placed in the ap­
propriate position in the variable
gridstr.

MARK DISCRIMINATION

SAMPLE GRID

A B C D E A B C D E
370©0©© 470©0©©

A B C D E
380©0©©

A B C D E
390©0©©

A B C D E
400©0©©

MARK DISCRIMINATION

RESPONSE
POSITION

7 5 READ LEVEL
1. 011001

2. I

1-7

1 2 3 4 5...---POSITION

0
1

e7 - 5 = 2 levels apart
•position 2 is intended
response

7 6 READ LEVEL

• • 0 ol
2 3 4 s-POSITION

•7 - 6 = 1 level apart
emultiple mark

1-8

MARK DISCRIMINATION

Consideration: Mark Threshold

While NCS recommends using a read
level of 4 as the mark threshold, it
is possible for the host program to
establish a different threshold. One
technique for determining the thresh­
old is to take an average of the read
levels on the bias bar (the bar of
colored ink that extends the full
width of the form). This average is
the read level of paper and ink. To
determine the mark threshold, add 3
or 4 to the bias bar average.

Ci

(SCANNING THE FORMS

OVERVIEW: SCANNING THE FORMS

The features of the form determine
the direction in which forms are fed
into the scanner. Using the input
tray, the operator feeds forms into
the scanner one at a time. With the
automatic-feed hopper, the scanner
automatically picks forms one at a
time from a stack of forms.

EXPLANATION: DIRECTION OF SCANNING

Two features of the form determine
the direction that forms are fed into
the scanner:

•Timing Track
eSkunk Marks

The timing track is made up of small
black rectangles called timing marks.
The side of the form with the timing
track is placed along the guide rail
of the input hopper as it is fed into
the scanner. This edge is called the
"guide edge".

Skunk marks are small black marks
printed across from the first timing
mark of a form to identify it. The
edge with the skunk marks is the edge
of the form that goes into the scan­
ner first. This is called the
"leading edge."

1-9

DIRECTION OF SCANNING

t SkunkMarks

GUIDE
EDGE

Timint
Trade

LEADING EDGE t

SCANNING THE FORMS

USING THE INPUT TRAY

FEEDING SHEETS AUTOMATICALLY

1-10

EXPLANATION: USING THE INPUT TRAY

When operating the scanner using the
input tray, the operator manually
slides forms forward into the scanner
one at a time.

EXPLANATION: USING THE AUTO-FEED

Using the automatic-feed input hopper
option, the operator prepares a uni­
form stack of up to 50 forms with the
timing track on the left, places it in
the automatic-feed input hoppe,r against
the guide rail, and lines the sheet
guide up against the stack of forms.
The stack is pushed forward until the
green light on the hopper cover comes
on. If the stack is pushed in too far,
the light changes to red. To position
the stack properly, pull it back until
the light is green again. When the
green light is on, the operator press­
es START. One by one the scanner picks
forms from the top of the stack.

The READY light on the operator panel
will go out when the auto-feed hopper
becomes empty. (Pressing START when
the READY light is on and sheets are
present will also make the READY
light go out.)

(SCANNING THE FORMS

(

EXPLANATION: USING THE AUTO-FEED (cont.)

The READY light on the operator panel
will go out when the auto-feed hopper
becomes empty. (Pressing START when
the READY light is on and sheets are
present will also make the READY
light go out.)

1-11

SCANNING THE FORMS

lf :4._/

1-12

(- HOST PROGRAMMING

(

OVERVIEW: HOST PROGRAMMING

The scanner is used as an input de­
vice for the host program. The scan­
ner reads forms and transfers data
from forms to the host computer (IBM
PC or XT). The host program must be
able to control the operation of the
scanner, the host and auxiliary
devices, such as another microcom­
puter or printer. Although Scanner
Commands aid in the transfer and
editing of data, the host program
must still process the data.

EXPLANATION: SCANNER COMMANDS

Scanner Commands are subroutines on
disk which can be referenced by ap­
plication programs to do data editing
and provide system control, such as:

•Transfer control from the scan­
ner to an auxiliary device or
back to the scanner

•Alter communications protocol of
the IBM serial interface card to
communicate successfully

•Alter the read level for cor­
rect reading of especially
light or dark, smudged forms

•Identify forms

eScan forms and pass mark read
levels to the application program

•Resolve marks on forms into use­
able data

•Transmit and receive data to
and from the host and auxiliary
devices

1-13

HOST PROGRAMMING

1-14

EXPLANATION: HOST PROGRAM

The host program must still determine
input and output of data (whether
through scanning, auxiliary devices,
or from within the program), data
manipulation, and incorporation of
scanner commands. For a detailed de­
scription of host programming, refer
to Section Four.

(

2-1

2

CONFIGURING THE SCANNER

Introduction ••••••••••••••••• 2-2
Coding the Sheet ••••••••••••• 2-3
Configuration •••••••••••••••• 2-7

INTRODUCTION

This section describes how to
configure the scanner so that it
can communicate with the micro­
computer. It also describes how
to define the scanner's menu.

2-2

\('·--
/

(

OVERVIEW: CODING THE SHEET

The scanner's protocol is programmed
into the scanner by coding and scan­
ning the 3000 Asynchronous Communi­
cations Configurator Sheet. This
process is called "configuration"
and is described in Section One of
the Installation and Maintenance
Guide.

The grids on the Configurator Sheet
must be filled out so that the pro­
tocol of the scanner matches that of
the IBM PC or XT and aux device. A
list of the codes that should be con­
figured and a completed Asynchronous
Communications Configurator Sheet -­
as it ~ be completed for use with
Micro Scanner Commands -- is found
on the next two pages. The grid
title and the necessary code to en­
ter in the grid is printed directly
across from the coded sheet. . (For a
definition of grid titles and a com­
plete description of communications
protocol, refer to the Host Program­
mer's Guide.)

CODING THE SHEET

ASYNC CONFIGURATOR SHEET

-
1-
1-
1-
1-
1-
1-
1-

i : llEE1I~ThlH~~~
1-
1-
1-
1-
1-
1-

i: "''·m~~~~2filltji I - E,li:
l - €•

1: ~·~~~~~~~
I - .;.I'
I - <!•
1

: ~; ie"'"'"'"'"®"'Hl.il : @• 1\SG®G®®®®§®®®®®0®~

2-3

•

CODING THE SHEET

GRID CODE

INITIATE CODE 11, CPU
POSITIVE RESPONSE 11
RELEASE DOCUMENT 12
NEGATIVE RESPONSE 1A
SELECT AUX PORT 13
SELECT SCANNER FROM HOST 14
SELECT SCANNER FROM AUX OD
STOP SCANNER OE
PRINT POSITION 31
PRINT DATA CODE 32
AUX PORT DATA CODE 19
DIGIT DATA CODE 07
END OF INFO 04
CHECK SUM 8
START OF RECORD leave blank
END OF RECORD ODOA
END OF DOCUMENT leave blank
COMPRESS 15
RECORD LENGTH leave blank
CHECK CHARACTER leave blank
AUX PORT ECHO YES
PARITY ODD
STOP BITS 2
CHARACTER BIT LENGTH 7
BAUD RATE 9600

CONSIDERATION: USER-CHANGEABLE VALUES

The codes for parity, stop bits,
character bit length, and baud rate
have been specially marked to indi­
cate that the user may change these
values. The codes listed in the code
column match the protocol of the host.
When using an auxiliary device, all
three devices (the scanner, the IBM
PC, and the aux device) should be
configured to match protocol.

2-4

MANDATORY

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

VALUES USER CHANGEABLE

x
x
x
x

8
r:.:i
r:.:i :r:
Ul

r:.:i :r:
8

f!> z
H
0
0
u

.....

•

;

~
!
i
2
~

i

SENTRY 3000™ ASYNCHRONOUS COMMUNICATIONS
CONFIGURATOR SHEET

START OF RECORD £ND OF RECORD

(!_)@)

©©
©©
©©
©©
<!)©
©©
©©

i

®®
•©
©©
©©
©©
©•
©©
©©

RECORD
LENGTH

III
®®®®
©©©©
©©©©
©©©©
©©©©
©©©©
©©©©
©©©©
©©©©
®©®©

SEE IMPORTANT INSTRUCTIONS
ON BACK OF FORM

i UL;t;IAliikfa l
PARITY! STOP

BITS

eooo 01

QEYEN Q1'h

QNONE .2

CHARACTER
BIT LENGTH

e1 Qa

Q110

Q300

Qeoo
01200

Q2400

Q4800

.9600

CHECK AUX PORT
CHARACTER ECHO

QLRC .YES

0 PRINTABLELRC

tA.~:~bf.J . Jst~AY M~~R§ ,!~ ~~~~-~,~ .. ~tt~~§ mt _6~)!!.~.~,-~~-~~~~,.~~!~~~u.~~ c~.~-~!?.U#tt!!L~N HtfHJ~.~

®®
•©
©©
©©
©©
©©
©©
©©

I
©
© • ©
c

I®
©
©

®®
•©
©©
©•
©©
©©
©©
©©

I©

'(i)

!®
NCS P/N 202-111-901OCopyrlght1911, 1912, 1913, N•tlanol Comput•r Syat•ma, Inc.

All Afght• AHerved

01E
•© ..
©©
©©
©©
©©
©©
©©
©©

!©

® '• I©

®®
©•
©©
•©
©©
©©
©©
©©

I©
!©

I

©
©

I'~ ©
©

®®
©©
©•
•@
©©
©©
©©
©©

:©

!©

®®
•©
©©
©©
©©
©©
©©
©©

I© • ©
I
©

I~ ©
©

£,._
•©
©©
©©
©©
©•
©©
©©
©©

©
©
©
:©
!©
®
©
©

~Af.Jb~t~ll~ alll!J jtW~c-~_~uM ~
~­I l!I

I
........................ ____ ~~~~ ---------------------------------..------ ---- ---...~

... ~

l.O
I

C\l

CODING THE SHEET

2-6

OVERVIEW: CONFIGURATION

Once the Sentry 3000 Asynchronous
Communications Sheet has been filled
out, the sheet must be scanned and
the menu of system programs defined.

EXPLANATION: SCANNING THE SHEET

To scan the sheet, press and hold SEL
for 10 seconds until ".c" (calibra­
tion) is displayed on the operator
panel. Then, release and press SEL
within 3 seconds to display ".d"
(define). Press START within 3
seconds or you will have to repeat
this procedure.

Feed the Sentry 3000 Asynchronous
Communications Configurator Sheet
into the scanner. The sheet is fed
into the scanner with the timing
track (column of small black rec­
tangles) on the left side of the
sheet. Be sure the left edge is
completely against the guide rail of
the input tray.

CONFIGURATION

PROCEDURE SUMMARY

1. Press and hold SEL for 10 sec­
onds until ".c" is displayed.

NICATIONS SCANNER

0 0 0 0
XMIT CTS READY ERROR

0 0 0 0
RECV CO BUSY ST~

2. Release and press SEL within 3
seconds to display ".d".

COMMUNICATIONS

0 0
XMIT CTS

0 0
RECV CD

3. Press START within 3 seconds
and feed the sheet. The sheet
must be fed into the scanner
as shown below.

DIRECTION INTO SCANNER

: ~
: j(• '••<•!'n)(,.,/ •. ,! ,.):§~:(~::t:~~&~
: I ~

- I ••
.: I Ii
- I

~J~. _ ,,
~ 1: ::;:g~~°&~==='--j
: I
:1~~~~

,: f ~u:~
< - I :-­, _ ,_
,_ ,_ ,_ ,_ ,_ ,_ ,_
i : ll@~~~~~fil::1 ,_
i =-,c~~~~~fil::1! I -111 ,_
r - 0ee0eee®
1 - e ~ .. • "' • · · • eee0eE.ie<!1
[- <:·
[- E·
I - 0 i3l®000EH;>®
l - 1!1 •· • • n(• • • •G@®eeee@
: - <!'
l - ~'
(- (.°:' - e eee0eeee

- @• ... n• ··eeeeeeee

2-7

CONFIGURATION

ERROR
MESSAGE

GRID
WITH ERROR

Sheet not recognized
START OF RECORD
END OF RECORD
INITIATE CODE

.dOO

.d01

.d02

.d03

.d04

.dOS
INITIATE CODE (SCAN or CPU~
POSITIVE RESPONSE

.d06 RELEASE DOCUMENT

.d07

.d08

.d09
• dOA
.dOb
.dOC
.dOd

NEGATIVE RESPONSE
SELECT AUX PORT
SELECT SCANNER FROM HOST
SELECT SCANNER FROM AUX
STOP SCANNER
PRINT POSITION
PRINT DATA

.dOE AUX PORT DATA

.dOF DIGIT DATA

.d10 END OF INFORMATION
• d 11 END OF DOCUMENT
.d12 COMPRESS
.d13 RECORD LENGTH
.d14 CHECK CHARACTER
.d15 AUX PORT ECHO
.d16 PARITY
.d17 STOP BITS
.d18 CHARACTER BIT LENGTH
.d19 BAUD RATE
.d1A CHECK SUM

2-8

EXPLANATION: RECONFIGURATION

Configuration parameters may be
changed by marking and scanning a new
Sentry 3000 Asynchronous Communica­
tions Configurator Sheet. Any of the
user-changeable parameters may be
changed as long as they are consistent
with the requirements of the scanner,
the host computer, and all other sys­
tem components.

EXPLANATION: CONFIGURATION ERROR
MESSAGES

The list to the left shows the three­
digi t error messages that will be dis­
played if the coding of the specified
grids is not correct. The error mes­
sage will be a repeating sequence of
the three digits. The message will be
displayed on the scanner's operator
panel when the feed bed motor stops
and the ERROR light is lit.

If no error occurs when the sheet is
scanned, the first menu item (.C, .A,
or .s) will automatically be displayed
after the sheet is read •

c

(

EXPLANATION: MENU DEFINITION

The ".d" (define) program also scans
the Menu Definition Sheet. The Menu
Definition Sheet determines the order
in which the scanner programs are
listed in the display. The scanner
programs are:

.c = Communications

.s = Scoring

.A Auxiliary Device

The sheet must be marked so that
there is one and only one mark in
the row labeled "1st." If a second
program is desired, then there must
also be one and only one mark in the
row labeled "2nd," etc. In the il­
lustration shown, the sheet has been
marked so that:

e.A = the first menu program
e.c = the second menu program
e.s = the third menu program

H :
:
:

i

CONFIGURATION

MENU DEFINITION SHEET

-------------------------------------·

1••00000
ZMQQOOO
-00000
··~00000
··~00000

DIRECTIONS

3000
MENU

DEFINITION

SHEET

M..., tlte pt0tr- you ~ Md o-. ord9f you Wllllt th.m di1pl•Yed on lh• nu. If •Cann1n9 lo
c"'""'""ica11on1 11 111• onh' Pl'Oll,.,.. d11i.-d. "'- 1ha 1;,.1 <HPOllH under C •l\d. ,,...,. Iha oth ...
·-111 ... 11.

EXAMPl.I.: The follow1ng gnd •• martl.0 so "''" th• u.,., devoc:• P"'9'- Wiii ba 1111 fl .. I
otem on ti•• m.nu, 1111 acan pl'O!I''"' SKOfld, 1nd the seonnq pro9r..., lhtrd.

I

If lti
••• oeooo
~ •oooo
l .. ooeoo
... 00000
.. ~00000

SAMPLE MENU DEFINITION

U1-l:OWN-
,. ,.. ~ ::J en
:r :r Cl. Cl. ...

oooeo
0000•
ooeoo
00000
00000

.C=Scan to Communications

.A=Auxiliary Device

.S=Scoring Program

. 1 =-First Option

.2"".'Second Option

2-9

CONFIGURATION

-,.

DIRECTION OF SCANNING

' ! ;
3000 Ip I

~~!!.~ MENU

i I If i DEFINITION
"'00000 SHEET ,,..00000
wooooo
•••00000
11•00000

DIRICTIONS

M•rll th• Pf09•11tM "'"' w11h -.o th•°'"' you wan11hem di1p1..,... on tlN -u. 111c..m1119 10
=~=::::-oans ts the Drtll'PfOlram dn.,ed. ,,..,.. ,.,.,,,., ,..,.CNIH - .C and-• IH oth••

EXAMPt.E: Tt1e foll-mo 9rlCI i• mad•.,. 10th•,.,. •11•ih•1Y a ... 1e• '"°''...,will be tn. ''"'
•titm on th• ,,..,..,., the 1c:an P'1>!11•.,., second. enO the 1COn"f PfOI....., lhird

j

11!1!
••• oeooo
J 0000
J .. ooeoo
•••00000
•••00000

-···--._ __ _,_

ERROR
MESSAGE ERROR

.doo Sheet not recognized

•

.d20 Grid coded incorrectly

2-10

EXPLANATION: MENU DEFINITION (cont.)

The procedure for scanning the sheet
is the same as for the Configurator
Sheet. The orientation of the sheet
as it is fed into the scanner is shown
here. Be sure the left edge is ..£2!.::
pletely against the guide rail of the
input tray.

Once the sheet has been scanned suc­
cessfully, the display will show the
letter specified as "1st" on the Menu
Definition Sheet. Press SEL to dis­
play the second item and press it
again to display the third item (if
specified on the sheet) •

The error codes to the left show the
three-digit mesages that will be
displayed if the sheet was scanned
incorrectly, if the wrong sheet was
scanned, or if the grid was filled
out incorrectly. The error message
will be a repeating sequence of the
three digits. The message will be
displayed on the scanner's operator
panel when the feed bed motor stops
and the ERROR light is lit.

CONSIDERATIONS: MENU DEFINITION

eDo not define the menu to include
programs that will not be used. For
example, if the scanner will be used
for scoring only, define ".S" as the
first and only menu item. (The scan-
ner's scoring program is explained in {' -
detail in Section Two of the Operator's \ j

Guide.)

(,

CONSIDERATIONS: MENU DEFINITION (cont.)

eif ".A" (auxiliary device) is defined
to be the first program in the menu,
the communications link between the
host computer and the auxiliary device
will be activated automatically when
the scanner is powered ON.

•The first program in the menu is
activated automatically when the scan­
ner is powered ON.

CONFIGURATION

2-11

CONFIGURATION

2-12

(

(

(
3-1

3

SCANNER
COMMANDS

Introduction ••••••••••••••••••• 3-2
Section Format ••••••••••••••••• 3-3
Controlling Scanner
Operations ••••••••••••••••••••• 3-7
Reconfiguring the Scanner •••••• 3-9
Adjusting Scanner Read Level •• 3-13
Identifying the Form •••••••••• 3-15
Sc~nning the Form ••••••••••••• 3-21
Resolving the Grids ••••••••••• 3-25
Sending Data to Scanner ••••••• 3-41
Receiving Aux Device Data ••••• 3-45

INTRODUCTION

The NCS Micro Scanner Commands
provide the user of a 3000 scan­
ner with the ability to incorpo­
rate data from forms into ap­
plication programs on a micro­
computer. By incorporating these
commands into the application
program, the user will be able to
operate the scanner, identify
documents read by the scanner,
and translate data from grids on
documents into strings of charac­
ters for use by the microcomputer.

The following commands will be
described in this section:

CONTROL (Controlling the Scanner)
SETUP (Reconfiguring Communica­

tions Protocol)
LEVEL (Adjusting Scanner Read

Level)
SKUNK (Identifying the Form)
SCAN (Scanning the Form)
GRID (Resolving the Grids)
TRANSMIT (Sending Data to System

Components)
RECV (Receiving Aux Device Data)

3-2

(SCANNER COMMANDS

OVERVIEW: SECTION FORMAT

Each command is described in depth,
including an overview of the command,
instructions on how to call each com­
mand routine, definitions of parame­
ters, the result returned by the rou­
tine, and sample programming. For a
sample program incorporating many of
the commands, see Section Five. (All
of the sample programs at the end of
each command description in this sec­
tion will be done in Compiled Basic.)

EXPLANATION: VARIABLES, CALL FORMAT

In Basic, COlll!lland parameters must be
initialized and then listed in paren­
theses within the CALL statement.
The designated variable names used in
this manual (Basic and Pascal) are
merely examples for illustration pur­
poses. Programmers may feel free to
substitute their own choosing. How­
ever, actual data cannot be passed
to the command routines. Data must
be passed in variables.

In Pascal, only parameters which
pass specific values to a command
routine must be initialized.

CALL FORMAT - BASIC

20 DIM GRIDARG%(8)
30 FOR A = 0 TO 7
40 READ GRIDARG%(A):NEXT A
50 EDSTAT%=0
60 GRIDSTR$=SPACE$(200)
70 CMDERR$=SPACE$(200)
80 ARGPTR%=VARPTR (GRIDARG%(0))
90 CALL GRID% (ARGPTR%,GRIDSTR$,

EDSTAT%,CMDERR$)
100 DATA 2,0, 1, 10, 1,5,5,0

CALL FORMAT - PASCAL

PASCAL:

3-3

VAR
DOCNUM,READTYPE:INTEGER;
CMDERR:MSCSTR;

DOCNUM: = O;
READTYPE: = 2;
STATUS:= II ";

SCAN(DOC,READTYPE,CMDERR);

SCANNER COMMANDS

10
20
30
40
50
60
70
80
90

100

CALL FORMAT - BASIC

DIM GRIDARG(S)
Y# = FRE(O)--int. basic only
FOR A = 0 TO 7
READ GRIDARG%(A):NEXT A
EDSTAT%=0
GRIDSTR$=SPACE$(200)
CMDERR$=SPACE$(200)
ARGPTR%=VARPTR (GRIDARG%(0))
CALL GRID (ARGPTR%,GRIDSTR$,

EDSTAT%,CMDERR$)
DATA 2,0,1,10,1,s,s,o

CMDERR RETURNS:

@ - no error

xxx - three-digit error number

xxx xxx xxx, etc. - error string

3-4

EXPLANATION: VARIABLES, CALL FORMAT
(cont.)

Basic

The Basic CALL procedure sets up and
makes the command CALL. First, the
micro performs house-cleaning of the
string variable area with the line
Y#=FRE(O). (This statement is only
necessary in Interpretive Basic when
using the GRID command.) Then the
variables are initialized. The vari­
able CMDERR (which lists command error
numbers) and GRIDSTR (which returns
grid data) are set to the maximum
number of spaces which the programmer
expects to receive from the command
routine. Setting these variables to
200 spaces will easily ensure that
all the desired data can be passed
back to the application program. If
an array of values is passed to the
command routine, the array location
must be set in the line immediately
preceding the command CALL. The line
ARGPTR%=VARPTR (GRIDARG%(0)) sets
ARGPTR% to the location of the array
GRIDARG. Then the CALL is made. The
call passes the pointer to the array
rather than the array itself.

EXPLANATION: ERRORS

Scanner Commands programming errors
are indicated in the variable CMDERR
(command parameter error). CMDERR is
a string variable which must be passed
in the CALL statement to each command
routine. CMDERR should be declared in
Pascal and set to spaces in Basic when
sent to the subroutine in the call
statement. Upon return to the appli­
cation program, the variable CMDERR
will contain the symbol @ (ASCII 64)
in the first character location,
indicating no error, or a three-digit
number indicating what error has

c

(SCANNER COMMANDS

(

EXPLANATION: ERRORS (cont.)

occurred. If more than one error
is detected, the error numbers are
listed with a blank separating each
three-digit number. Error codes are
described in detail in Section Six
of this manual.

CAUTION: CMDERR

In Pascal programming, CMDERR need
only be declared before it is sent
to the first command routine. In
Basic, CMDERR must be initialized
before each command CALL.

CONSIDERATION: SCANNER OPERATIONS

The scanner's 11 .C" (communications)
program controls all operations of
the scanner while running a program
which utilizes scanner commands.
Although the scanner may utilize
other scanner programs during the
course of application programming,
Micro Scanner Commands reference
those programs. The user need only
be concerned that the program is
started with the scanner in the 11 .C"
program. (For descriptions of scan­
ner programs, refer to the Operator's
Guide.)

3-5

SCANNER COMMANDS

3-6

(

(.

{

CONTROLLING SCANNER OPERATIONS: CONTROL

OVERVIEW: CONTROL

The CONTROL command does exactly
what its name implies. It allows
the user to control the operation of
the scanner. The user can activate
an auxiliary device (deactivating
the scanner), reactivate the scan­
ner, stop the scanner, and release
documents which have been scanned.
The user is able to control the
scanner by inserting the CONTROL
command into the application pro­
gram in the following format.

EXPLANATION: CALL FORMAT

The application program calls the
CONTROL routine and must pass two
parameters:

eCtrlopt

eCmderr

One parameter is passed back to
the application program:

eCmderr

Ctrlopt

Ctrlopt is a one-digit integer vari­
able (1,2,3, or 4) indicating which
scanner control option is selected.
The control options allow the user to
control the following operations:
(1) release a document from the scan­
ner, (2) stop the scanner, (3) select
(choose to operate) the auxiliary de­
vice, and (4) select (choose to oper­
ate). the scanner.

CALL FORMAT

BASIC:
CTRLOPT%=1
CMDERR$=SPACE$(200)
CALL CONTROL%(CTRLOPT%,CMDERR$)

PASCAL:
VAR

CMDERR:MSCSTR;
CTRLOPT:INTEGER;

CTRLOPT:= 1;
CONTROL(CTRLOPT,CMDERR);

CTRLOPT OPTIONS

1 - release document
2 - stop scanner
3 - select auxiliary device
4 - select scanner

3-7

CONTROLLING SCANNER OPERATIONS: CONTROL

SAMPLE PROGRAMMING

80 CMDERR$=SPACE$(200)
90 CTRLOPT%=3

100 CALL CONTROL%(CTRLOPT%,
CMDERR$)

110 IF ASC(CMDERR$)<>64 THEN GOTO
500

120 program main body •••
500 CONTROL error section •••

3-8

Cmderr

Cmderr is a string variable which re­
turns an error code to the application
program from the CONTROL routine.

CONSIDERATION: STOPPING THE SCANNER

If the program stops the scanner, the
operator must press START on the scan­
ner in order to return control back to
the program.

EXPLANATION: SAMPLE PROGRAMMING

This program section allows the host
to receive large amounts of data from
the auxiliary device by selecting CON­
TROL option 3 - auxiliary device.

Line 80 initializes CMDERR$. Line 90
sets CTRLOPT% to 3, which selects the
auxiliary device. Line 100 makes the
call to the CONTROL routine and control
is passed to the auxiliary device. If
the first character of CMDERR% is not
"@" (ASCII 64), a CALL error has been
made and a CONTROL error check is per­
formed in lines 500 and beyond. Lines
120, etc., comprise the program body.

(

RECONFIGURING THE COMMUNICATIONS PROTOCOL: SETUP

OVERVIEW: SETUP

The user must use the 3000 Asynchro­
nous Communications Configurator
Sheet to configure the scanner ini­
tially (see Section Two). The proto­
col used by the host (microcomputer)
to communicate with the scanner and
auxiliary device can be programmed by
using the SETUP command. The proto­
col of the host must match the proto­
col of the scanner and auxiliary
device if they are to communicate
successfully. Since different devi­
ces can operate at different speeds
and with different parameters, the
user should check the operations user
manual for each auxiliary device to
ensure that communications protocol
is correct. (For a more detailed
description of communications proto­
col parameters, refer to the Host
Programmer's Guide.)

The default values for communications
prot"ocol are:

•Baud Rate = 9600
•Parity = odd
•Data Bits = 7
•Stop Bits = 2
•Port Selection = 1

3-9

RECONFIGURING THE COMMUNICATIONS PROTOCOL: SETUP

CALL FORMAT

BASIC:
BAUD%=9600
PARITY%=ASC(1 0 1)

DATABITS%=7
STOPBITS%=2
PORTSEL%=1
CMDERR$=SPACE$(200)
CALL SETUP%(BAUD%,PARITY%,DATA­

BITS%,STOPBITS%,PORTSEL%,
CMDERR$)

PASCAL:
VAR

BAUD,PARITY,DATABITS,STOPBITS,
PORTSEL:INTEGER;
CMDERR:MSCSTR;

BAUD:= 9600;
PARITY:= ORD(1 0 1);

DATABITS:= 7;
STOPBITS:= 2;
PORTSEL:= 1;
SETUP (BAUD,PARITY,DATABITS,STOP~

BITS 1 PORTSELJCMDERR);

BAUD RATES

11 0
300
600

1200
2400
4800
9600

PARITY

O for odd parity

E for even parity

N for no parity

ASCII Value

79

69

78

3-10

EXPLANATION: CALL FORMAT

The application program calls the
SETUP routine and must pass six
parameters:

oBaud Rate
oParity
•Data Bits
eStop Bits
•Port Selection (Portsel)
oCmderr

One parameter is passed back to the
application program:

eCmderr

Baud

The variable baud refers to the baud
rate, which is the rate of transmis­
sion in number of signal events per
second. NCS defines baud rate as
bits of binary data per second. The
user must configure the host so that
the baud rate matches that of the
scanner (when used).

Parity

Parity is the ASCII value of the one
character constant specifying the type
of parity used. Each data character
transmitted or re~eived by the scan­
ner, host, or auxiliary device may be
accompanied by a parity bit which pro­
vides a means of insuring the integrity
of the character transmission. The
parity bit is attached to the upper
end of the seven or eight bits that
represent the character.

RECONFIGURING THE COMMUNICATIONS PROTOCOL: SETUP

Databits

The variable databits is an integer
constant indicating the number of bits
used to transmit a data character.
This number does~ include the pari­
ty bit or stop bits and only applies
to data characters. The variable
databits may be either 7 or a.

Stopbits

The variable stopbits is an integer
constant indicating the number of stop
bits used to terminate the transmis­
sion of each character. Valid values
for stop bits are 1 or 2.

Portsel

The variable portsel is an integer
variable indicating which serial port
is being used. The serial port will
generally be 1 unless there are two
asynchronous serial channels in­
stalled on the host computer. Then
portsel will be 1 or 2 depending on
the address of the channel being
used for the scanner.

Cmderr

Cmderr is a string variable which re­
turns an error code to the applica­
tion program from the SETUP routine.

DATABITS

7 for 7 bits in one character

8 for 8 bits in one character

3-11

STOPBITS

1
2

RECONFIGURING THE COMMUNICATIONS PROTOCOL: SETUP

SAMPLE PROGRAMMING

50 BAUD%=9600
60 PARITY%=ASC (1 0 1)

70 DATABITS%= 7
80 STOPBITS%= 2
90 PORTSEL%= 1

100 CMDERR$ = SPACE$(200)
110 CALL SETUP%(BAUD%,PARITY%,

DATABITS%,STOPBITS%,
PORTSEL%,CMDERR$)

3-12

EXPLANATION: SAMPLE PROGRAMMING

This program section illustrates how
to initialize variables and call the
SETUP routine. Lines 50 through 100
initialize the necessary parameters
(baud rate, parity, data bits, stop
bits, and cmderr.) Line 110 makes
the SETUP routine call.

(

(

OVERVIEW: LEVEL

The scanner read level threshold is
initially set by the system at 4. All
marks at a read level of 4 and above
are considered valid marks; those be­
low 4 are not valid marks. The user
can adjust this up or down through the
use of the LEVEL command. This ad­
justment should only be used on small
batches of problem documents (such as
forms in which all marks have been
made too light). (Refer to Section
One for a description of how the scan­
ner "reads" forms and discriminates
between intended marks and erasures.)

EXPLANATION: CALL FORMAT

The application program calls the
LEVEL routine and must pass two pa­
rameters:

•Offset
eCmderr

One parameter is passed back to the
application program:

eCmderr

Offset

Offset is a one-digit variable (-2,
-1,0,1,or 2). The read level is ini­
tially set by the system at 4. The
variable off set represents the amount
up or down the user adjusts the read
level for a specific batch of forms.
For example, if a user wants to scan
a batch of forms with extremely light
marks, the read level could be ._lowered
by two levels (OFFSET= -2) so that the
scanner would accept read levels of 2
and above as valid marks. Setting
offset to zero resets the read level
to its original value of 4.

ADJUSTING SCANNER READ LEVEL: LEVEL

CALL FORMAT

BASIC:
Y#=FRE(O)
OFFSET%=2
CMDERR$=SPACE$(200)
CALL LEVEL%(0FFSET%,CMDERR$)

PASCAL:
VAR

CMDERR:MSCSTR;
OFFSET: INTEGER;

OFFSET:= 2
LEVEL(OFFSET1 CMDERR);

OFFSET

read level threshold set at 4

to lower:
OFFSET = -1, -2

to raise:
OFFSET = 1 ' 2

3-13

ADJUSTING SCANNER READ LEVEL: LEVEL

TO RESET LEVEL

BASIC:
OFFSET%= 0
CMDERR$= SPACE$(200)
CALL LEVEL%(0FFSET%,CMDERR$)

PASCAL:
VAR

CMDERR:MSCSTR;
OFFSET:INTEGER;

OFFSET:= O;
LEVEL (OFFSET~CMDERR);

SAMPLE PROGRAMMING

40 OFFSET% = 2
50 CMDERR$ = SPACE$(200)
60 CALL LEVEL (OFFSET%,CMDERR$)
70 IF ASC(CMDERR%)<>64 THEN GOTO

400
80 form scanning and data

manipulation •••
400 LEVEL error section •••
500 OFFSET% = 0
510 CALL LEVEL (OFFSET%,STATUS$)

3-14

Cmderr

Cmderr is a string variable which re­
turns an error code to the application
program from the LEVEL routine when
an incorrect variable has been entered
in offset. If no errors occur, cmderr
will return the symbol @ and the cur­
rent value of the read level (as ad­
justed). For example, if the read level
were lowered by 1, cmderr would return
@3.

CONSIDERATION: READ LEVEL

Once the standard scanner read level
(set by system to 4) has been altered
and the affected forms have been
scanned, the read level must be reset
to read at its normal level. This is
done by settirtg offset to 0 and
calling the LEVEL routine.

EXPLANATION: SAMPLE PROGRAMMING

This program section raises the read
level threshold to scan a batch of
smudged forms. The read level is
raised so that only the darkest marks
(the ·intended responses) are read. The
off set value must be set and then the
LEVEL routine can be called.

Line 40 sets OFFSET% to 2 to raise the
read threshold level by 2 levels. Line
50 initializes CMDERR$. Line 60 makes
the call to the LEVEL routine. If
"@" (ASCII 64) does not appear in the
first character of CMDERRS, a call
error has been made and the LEVEL call
error check is made in lines 400, etc.
Otherwise, forms are scanned and the
program manipulates the data (line
80, etc.).

Lines 500 and 510 reset the read level
threshold to its normal level.

(

OVERVIEW: SKUNK

The SKUNK command allows the user to
define forms which will be scanned
using the SCAN command. This is done
using the marks, called "skunk marks",
that are located at the leading edge
of the form. Each form will have a
different configuration of skunk
marks. Therefore, scanner commands
can verify if the form is the one it
expects by matching the unique skunk
mark configuration.

The form definitions are saved by
Micro Scanner Commands in an inter­
nal table. Then the form definitions
are used by the SCAN command to en­
sure that the correct form is being
read and that the form is being
scanned properly. For example, if a
form is defined in the SKUNK command
and a different form is scanned in
the SCAN command, an error code will­
be passed back to the application
program. Also, if a form is scanned
backwards, the SKUNK definition will
not be matched and an error code will
be passed back to the application
program. The values in the SKUNK
command are also used by the GRID
command for validity checks on form
parameters.

GUIDE
EDGE -

3-15

:
:

IDENTIFYING THE FORM

FORM FEATURES

Skunk Marks

•

Timing
Track

LEADING EDGE

IDENTIFYING THE FORM: SKUNK

CALL FORMAT

BASIC:
DOCNUM%=3
CELLS%=47
TRACKS%=99
NUMMARKS%=2
MARKS%(0)=2
MARKS%(1)=4
CMDERR$=SPACE$(200)
MARKPTR%=VARPTR(MARKS%(0))
CALL SKUNK%(DOCNUM%,CELLS%,TRACKS%,

NUMMARKS%,MARKTPR%,CMDERR$)
PASCAL: ,
VAR

DOCNUM,CELLS,TRACKS,NUMMARKS:
INTEGER;
MARKS:SKARAY;
CMDERR:MSCSTR;

DOCNUM:= 3;
CELLS:= 47;
TRACKS:= 99;
NUMMARKS: = 2;
MARKS[O] := 2;
MARKS[1] := 4;
CMDERR:= " ";
SKUNK(DOCNUM,CELLS,TRACKS,NUMMARKS,

TIMING
TRACK

MARKS ..t.. CMDERR) ;

CELLS/TRACKS

3-16

EXPLANATION: CALL FORMAT

The application program calls the
SKUNK routine and must pass six pa­
rameters:

eDocnum
eCells
•Tracks
eNummarks
•Marks
eCmderr

One parameter is returned to the ap­
plication program:

eCmderr

Docnum

Docnum is a number from 1 to 99 which
is assigned to a specific form. A
maximum of ninety-nine form defini­
tions can be stored in the skunk
table at any one time.

Cells

Cells is a one- or two-digit variable
which specifies the number of response
positions running horizontally across
a form from the timing marks to the
outside edge. Cells cannot be less
than 1 or greater than 47.

Tracks

Tracks is a one- or two-digit variable
which specifies the number of timing
marks on the form. Timing marks are
the small black rectangular marks on
the left side of a form. These marks
signal the scanner to read across the
form at that spot. Tracks cannot be
less than 1 or greater than 99.

(

Nummarks

Nummarks is a one- or two-digit vari­
able identifying the number of skunk
mark positions which are occupied on
a form. Skunk marks are black marks
which occupy response positions on
timing mark one of the document. Cau­
tion: nummarks is not the number of
skunk marks on a form but the number
of skunk mark locations occupied on a
form. Although the accompanying ex­
ample contains two skunk marks, they
occupy three spaces. Therefore num­
marks = 3. Nummarks cannot be less
than 1 or greater than 47.

Marks(

Marks is an array of number values
indicating the location of occupied
skunk mark positions. The first po­
sition to the right of the timing
mark is position 1, the second is
position 2, and so on. Only one
position is required to be filled.
Values can vary from 1 to 47. In
the example to the right, positions
2, 4, and 5 are filled. Therefore,

·the array is as follows: Marks
(0)=2, Marks (1)=4, Marks(2)=5.

The number of individual marks should
equal the value of nummarks. For ex­
ample, if nummarks = 7, indicating
that skunk marks occupy 7 positions,
there must be 7 mark values. Since
scanner commands do not directly
check for the possibility that an in­
correct number of marks are entered,
the application program. should do
this.

In Basic, the pointer to the array
marks is passed to the SKUNK routine.
The pointer must be set to the start­
ing location of the array. This must
be done immediately preceding the
SKUNK call.

--

3-17

IDENTIFYING THE FORM: SKUNK

NUMMARKS

. -
NUMMARKS = 3

MARKS

. -~ f ~ i E ~ ~ E 1 f i ! ~
boboboboobbb 9

MARKS (O) = 2
MARKS (1) = 4
MARKS (2) = 5

IDENTIFYING THE FORM: SKUNK

REMOVING A DOCUMENT

BASIC:
DIM MARKS%(48)
DOCNUM%=3
CELLS%=-1
TRACKS=1
NUMMARKS%=1
MARKS%(0)=1
CMDERR$=SPACE$(200)
MARKPTR%=VARPTR(MARKS%(0))
CALL SKUNK%(DOCNUM%,CELLS%,TRACKS%,

NUMMARKSt,MARKPTR%,CMDERR$)
PASCAL:

VAR
DOCNUM,CELLS,TRACKS,NUMMARKS:

INTEGER;
MARKS:SKARAY;
CMDERR:MSCSTR;

DOCNUM: = 3;
CELLS: = -1;
TRACKS: == 1;
NUMMARKS: = 1 ;
MARKS[O]: = 1;
CMDERR: = " ";
SKUNK (DOCNUM,CELLS,TRACKS,.

NUMMARKS~MARKS~CMDERR);

3-18

Cmderr

Cmderr is a string variable which re­
turns an error code to the application
program from the SKUNK routine.

CONSIDERATIONS: SKUNK

Documents must be defined using the
SKUNK command before the user can
process them. Skunk commands may be
issued for previously defined forms.
The latest definition will be used.

EXPLANATION: TO REMOVE A DOCUMENT

A programmer may wish to remove a
document definition from the SKUNK
table if a defined form will no long­
er be used or if a form has been in­
correctly defined. The accompanying
example describes how to remove a
document definition from the skunk
table. In this example, the defini­
tion of document 3 is removed. When
removing a document from the skunk
table, the variable docnum should
contain the number of the document to
be removed. ·Cells must be equal to -1.
The variables tracks, nummarks, and
marks may vary but they must have been
initialized at some point in the pro­
gram. Once the parameters have been
initialized as described, the SKUNK
command call is made.

c

(

EXPLANATION: SAMPLE PROGRAMMING

This program section defines the form
to be scanned and stores the form
definition in the SKUNK table. Then
a form is scanned. If the form is the
correct form, the program can perform
the desired operations. If not, an
appropriate error message is printed.

Line 20 initializes CMDERR$. Lines
30, 40 and 500 comprise READ and DATA
statements which read in the parame­
ters of form number 7. Line 50 sets
the pointer location for the array
MARKS. Line 60 calls the SKUNK rou­
tine and stores the definition of
form 7 in the skunk table.

Lines 70 through 100 initialize SCAN
parameters and call the SCAN routine.
The SCAN command allows the user to
scan forms and transmit data. First,
the SCAN parameters are initialized.
READTYPE% = 2 means that a new form
will be scanned. DOC% is set to o.
Since the program is written in
Basic, CMDERR$ must be reinitialized
for each command call. Line 100
calls the SCAN routine and the form
is scanned.

Line 110 ensures that the correct form
was scanned. The form scanned will
match a specific document in the skunk
table, if it exists. If a document
match is found in the skunk table, the
value passed back in DOC% will be the
number of the matching document. If
no match is found, the value returned
in DOC% will be O. If the document

.number is 7, then the program can per­
form the ne·cessary manipulations. . If
DOC% does not equal 7, line 110 di­
rects the program to line 200 which
prints out an error message.

IDENTIFYING THE FORM: SKUNK

SAMPLE PROGRAMMING

20 CMDERR$ = SPACE$(200)
30 READ DOCNUM%,CELLS%,TRACKS%,

NUMMARKS%
40 FOR A=O TO 2:READ MARKS%(A):

NEXT A
50 MARKPTR% = VARPTR(MARKS%(0))
60 CALL SKUNK%(DOCNUM%,CELLS%,

TRACKS%,NUMMARKS%,MARKPTR%,
CMDERR$)

70 READTYPE% = 2
80 DOC% = 0
90 CMDERR$ = SPACE$(200)

100 CALL SCAN%(DOC%,READTYPE%,
CMDERR$)

110 IF DOC%<> = 7 THEN GOTO 200
120 ELSE •••
200 PRINT "WRONG FORM SCANNED"
500 DATA 7,47,63,3,1,2,7

3-19

IDENTIFYING THE FORM: SKUNK

3-20

(_,

OVERVIEW: SCAN

The SCAN command is capable of two
useful functions: 1) It allows the
user to tell the scanner to scan a
sheet and pass the data from the
scanner to the microcomputer, 2) it
can also tell the scanner to retrans­
mit the current data record to the
microcomputer in the case of a com­
munications problem. By using this
command in the application program,
the user has control over scanning
and record transmission.

EXPLANATION: CALL FORMAT

The application program calls the
SCAN routine and must pass three
parameters:

•Doc
eReadtype
eCmderr

Two parameters are passed back to
the application program:

Doc -

•Doc
eCmderr

Doc is a number from 1 to 99 which is
returned by the SCAN routine. If a
document match is found in the SKUNK
table, the value passed back to the
application program in doc will be
the number of the matching document.
If no match is found, the value re­
turned in doc will be 0. The pro­
grammer must initialize doc to 0 be­
fore calling the SCAN routine.

SCANNING THE FORM: SCAN

CALL FORMAT

BASIC:
DOC%=0
READTYPE%=2
CMDERR$=SPACE$(200)
CALL SCAN%(DOC%,READTYPE%,

CMDERR$)

PASCAL:

3-21

VAR
DOC,READTYPE:INTEGER;
CMDERR:MSCSTR;

READTYPE: =2;
SCAN(DOC,READTYPE,CMDERR);

SCANNING THE FORM: SCAN

CALLING OPTIONS

READTYPE =

2 - to request a new document
from the scanner

3 - to request a retransmission
of the current record from
the scanner

SAMPLE PROGRAMMING

40 FOR A = 1 TO 10
50 DOC% = 0
60 READTYPE% = 2
70 CMDERR$ = SPACE$(200)
80 CALL SCAN%(DOC%,READTYPE%,

CMDERR$)
90 IF ASC (CMDERR$)<>64 THEN GOTC

500
100 program main body •••
480 NEXT A
490 GOTO 700
500 SCAN error check •••
700 END

3-22

Read type

Readtype is a numeric variable identi­
fying which calling option the user
chooses. The user can choose one of
two options: readtype = 2 to request
a new document from the scanner, in
which case a document will be scanned
and its record will be passed; or read­
type = 3 to request a retransmission of
the current record. A retransmission
should be requested only after receipt
of a defective transmission.

Cmderr

Cmderr is a string variable which re­
turns an error code to the application
program from the SCAN routine.

EXPLANATION: SAMPLE PROGRAMMING

This program section scans 10 forms
and ensures that the SCAN call is
made correctly.

Since 10 forms will be scanned, a loop
is set up to perform the scanning and
data manipulation operations (lines
40-480). Lines 50-70 initialize the
SCAN parameters. DOC% is initialized.
In order to select the scan a sheet
option, READTYPE% is set to 2. CMDERR$
is initialized.

The call to the SCAN routine is made
in line 80 and a form is scanned. If
the first character of CMDERR$ is not
"@" (ASCII 64) upon return to the
application program, a call parame­
ter error has been made and the SCAN
error check is made beginning on line
500. Otherwise the program performs
the necessary data manipulations
(lines 100, etc.). Line 490 allows
for bypassing of the SCAN error sec-
tion if no call error has been made r·
and line 700 ends the program. ';l,

CONSIDERATIONS: SCAN

The SCAN command should not be uti­
lized unless the document being
scanned has been defined through the
SKUNK command. The SCAN command uti­
lizes data from the SKUNK form defi­
nitions. This is to ensure that the
correct forms are being scanned and
that forms are being scanned in the
proper manner (refer to Section Three,
SKUNK command). If the SCAN command
is used without a previous SKUNK com­
mand, a record will still be passed
to the microcomputer but an error code
will be returned to the application
program in the cmderr variable indi­
cating that an unrecognized document
was scanned (error code 507).

SCANNING THE FORM: SCAN

3-23

SCANNING THE FORM: SCAN

3-24

c

(

(

OVERVIEW: GRID

The GRID command is used to resolve
an area (or grid) on a form into a
string of characters. The GRID com­
mand uses the standard NCS mark dis­
crimination techniques to resolve
the data in a grid. Refer to Section
One for a complete description of how
the scanner reads forms and performs
mark discrimination.

EXPLANATION: CALL FORMAT

The application program calls the
GRID routine and must pass four pa­
rameters, one of which is an array
of values:

eGridarg
eGridstr
eEdstat
eCmderr

Three parameters are returned to the
application program:

eGridstr
eEdstat
eCmderr

RESOLVING THE GRIDS: GRID

SAMPLE GRID

A B C D E A B C D E
37©©©©© 47©©©©®

A B C D E
38©©©©©

A B C D E
39©©©©©

ABC DE
40©©©©©

ITEM

RESPONSE
POSITION

CALL FORMAT

BASIC:
FOR A = 0 TO 7
READ GRIDARG(A):NEXT A
EDSTAT% = 0
CMDERR$ = SPACE$(200)
GRIDSTR$ = SPACE$(200)
ARGPTR% = VARPTR(GRIDARG%(0))
CALL GRID%(ARGPTR%,GRIDSTR$,

EDSTAT%,CMDERR$)
DATA 2,o,1,10,1,5,5,0

PASCAL:.

3-25

VAR
GRIDARG:GRIDARA;
EDSTAT:INTEGER;
CMDERR,GRIDSTR:MSCSTR;

GRIDARG[0]: = 2;
GRIDARG[1]:= O;
GRIDARG[2]:= 1;
GRIDARG[3]:= 10;
GRIDARG[4]:= 1;
GRIDARG[5]:= 5;
GRIDARG[6] := 5;
GRIDARG[7]:= O;
GRID (GRIDARG,GRIDSTR,EDSTAT,

CMDERR);

RESOLVING THE GRIDS: GRID

RESOLVED GRID

NAME flasl. Fu~I M I I

5U(JONfS
000•0000000000000000
00000000000000000000
®©©©©©©©©©©©®®®®®®®®
©©©©©©©©©©©©©©©©©©©©
@@@@@@@@@@@@@@@@@@@@
©©•©©©©•©©©©©©©©©©©©
00000000000000000000
©©©©©©@©©©©©@@@©@©@©
eeeeeeeeeeeeeeeeeeee
00000000000000000000
0000•000000000000000
®®®®®®®®®®®®®®®®®®®®
@@@@@@@@~@@@@@@@@@@@
eeM Meeeeeeeee

SUE JONES - the data to be
resolved

3-26

Grids tr

Gridstr is a string variable which
returns the result of the GRID opera­
tion to the application program.

Eds tat

The GRID routine returns error numbers
that result from incorrect coding of
grids. The programmer must initialize
this variable to 0 within the applica­
tion program before calling the GRID
routine. If edstat = 128, an input
parameter error has been detected and
will be listed in the variable cmderr.
If no coding errors or parameter er­
rors occur, the value returned in
edstat will be less than 128. The
edstat error codes are described in
more detail later in this section.

Cmderr

Cmderr is a string variable which re­
turns a parameter error code to the
application program from the GRID
routine. If no errors occur, cmderr
will return the symbol @ in the first
character position and the number of
characters returned in gridstr. For
example if cmderr were @004, no pa­
rameter errors were detected and the
first four characters of gridstr con­
tained the result of the CALL.

Gridarg

Gridarg is an array of integers which
define the GRID to be resolved. They
include type, class, sx, ex, ix, sy,
ey, and iy.

In Basic, the pointer to the array
gridarg is passed to the GRID command
routine. The pointer must be set to
the starting location of the array. {/
This must be done immediately pre-
ceding the GRID call.

(

Gridarg(O)-Type: Type is a one-digit
variable defining the type of grid to
be resolved.

When type = 1 the grid type is Alpha­
numeric (space,A-Z,0-9,special char­
acters.) An alphanumeric grid can
contain up to 63 response positions
per item. If it is not necessary to
use all 63 spaces, truncation must
be made from the end, not the begin­
ning. If the special characters are
used, they are placed in this order:
[• <(+\ & ! $ *) ; , -I. %_>?: #@I="

When type = 2 the grid type is Numer­
ic (0-9). The numeric grid may be
truncated at the end, but not at the
beginning.

RESOLVING THE GRIDS: GRID

GRID TYPES

1. Alphanumeric (space, A-Z, 0-9,
special characters)

2. Numeric (0-9)
3. One-Digit Response (1-9)
4. Two-Digit Response (01-99)
5. Binary
6. Binary Coded Decimal (0-9)
7. Litho-Code

3-27

GRID TYPE 1 - ALPHANUMERIC

0000000000000
@@@@@@@@@@@@@
®®®®®®®®®®®®®
©©©©©©©©©©©©©
@@@@@@@@@@@@@
®®®®®®®®®®®®®
®®®®®®®®®®®®
@@@@@@@@@@@
@@@@®@@@@
CD <D <D CD CD CD
Q)Q)Q)Q) J

GRID TYPE 2 - NUMERIC

SOCIAL SECURITY
NUMBER

@@@@@@@@@
000000000
©©©©©©©©©
©©©©©©©©©
000000000
©©©@©©©©©
©©©@@@@@@
000000000
@@@@@•@@@
®®®®®@.@®®

RESOLVING THE GRIDS: GRID

GRID TYPE 3 - RESPONSE(1-9)

13@ 14Q 1 (inch)

@ Q 5 (inches)

• .4Jinchesl

@ Q 1·1/4 (inchesl

@ Qs1•
(D Q Other

Q No Response

QI Don't Know

GRID TYPE 4 - RESPONSE(01-99)

SPORTS INTERESTS
(Mark only one)

0 badminton
0 baseball
0 basketball
0 boxing
0 cycling
0 football
0 golf
0 gymnastics
0 hockey .

0 skating
O soccer
O swimming

_Q tennis

GRID TYPE 5 - BINARY

1 2 4 8 18 32 84 128 258

0 0 0 0 0 0 0 0 0

3-28

Gridarg(O)-Type (cont.)

When type = 3 the grid type is a one
digit Response grid (1-9). Positions
in Response grids can be designated
with numeric or alpha characters, but
the output for both responses is nu­
meric. In both examples, if the third
position of the Response grid items
are filled in, the output would be a 3.
Therefore, it may be necessary for the
host program to translate the 1-9 re­
sponses into the intended responses.
The response grid may be truncated at
the end, but not at the beginning.

When type = 4, the grid type is a
two-digit Response grid (01-99).
Grid response positions can be desig­
nated as numeric or alpha characters
in any combination, but the output
will be in two-digit numeric charac­
ters. The grid may be truncated at
the end, but not at the beginning.

When type = 5, the grid type is
Binary. While the Alphanumeric,
Numeric, and Response grids expect
only one response per item, Binary
grids expect zero or more responses
per item. Binary grids also differ
from the other grids in that respon­
ses do not represent successive num­
°bers (1,2,3,etc•) or letters (a,b,c, ·
etc.), but instead represent succes­
sive powers of two (1,2,4,8), etc.).
Binary grids may contain a parity
bubble for odd parity. The parity
bubble must be placed at the high
end of the item. Binary grid items

Gridarg(O)-Type (cont.)

can contain up to 29 response posi­
tions (or 30 with parity). The maxi­
mum number of items in a binary grid
is 28. Binary grids cannot generate
blanks or multiples. If a response
position is left blank, zeros will be
generated.

The binary output chart will help you
determine how many output characters
to count for each item in a binary
grid. Note that a parity bubble is
not considered as a response position
when determining output characters.

The output of a Binary grid item is
the numeric total of the values of
every bubble marked. In the accom­
panying example, three binary posi­
tions are marke~. When each position
is added, the total value is 73.
(Since there are 9 response positions
and numeric values take 3 digits, the
returned gridstr will be 073.)

Binary grids are especially useful
for machine-coding large numbers in
small spaces.

When type = 6 the grid type is Binary
Coded Decimal. Like the Binary grid,
response positions in a Decimal grid
represent values that are powers of
two. The values of all positions
marked in one item are added together
to generate a decimal number in the
output record. Decimal grids resolve
items of one to five response posi­
tions. If five positions are used,
the fifth position must be a parity
bubble for odd parity.

RESOLVING THE GRIDS: GRID

BINARY OUTPUT CHART
Number of Number of Maximum
Responses Output Decimal
Positions Characters Value

1 to 3 1 7
4 to 6 2 63
7 to 9 3 511

10 to 13 4 8191
14 to 16 5 65535
17 to 19 6 524287
20 to 23 7 8~38B,_607

24 to 26 8 67_1_108_1_863
27 to 29 9 536..1.870....1.911

CODING BINARY GRIDS

1 2

• 0

3-29

4

0
a

•
18

0
32

0

1 + 8 + 64 = 73

84

•
128

0 ~1

RESOLVING THE GRIDS: GRID

GRID TYPE 6 - BINARY CODED DECIMAL
NO PARITY

®®®®®®
©®©•©©
©©©©•©
©©©©©•
00•0•0

001856

GRID TYPE 6 - BINARY CODED DECIMAL
PARITY

··®®•• ©©®•©@
©©©©••
©©©©©•
©©•©•©

001856

GRID TYPE 7 - LITHO-CODE

l IQ!ooooooooooooooooooooogol
DO NOT WRITE IN THIS ARE~ J

3-30

Gridarg(O)-Type (cont.)

The accompanying example illustrates
a Decimal grid with five response
choices per item. If a Binary grid
type had been used on this grid, the
number in output would be 000001080506.
The Decimal class will strip leading
zeros so that the number in output
would be 001856. If this grid were
being used for ID numbers it would be
very useful since the user would not
want leading zeros displayed. To
code zeros in this grid type, simply
leave an item blank.

Caution: Decimal grids may not have
numbers coded that are greater than
9. If a number greater than 9 is
coded, an asterisk (*) will appear in
the output indicating an illegal re­
sponse and the multiple bit will be
set in the edstat variable.

When type = 7 the grid type is Litho­
code. Response positions in a Litho­
code grid also represent values that
are powers of two. This is a special
grid that is designed for mechanically
coding a serial number on documents.
A unique serial number is coded in the
grid on each form at the time the
forms are originally printed. The
litho-code grid is used to:

1. Number two halves of a form too
large to scan in one piece, so
that the information on each
half may be matched up at a
later time. An example of this
would be an 11" x 17" form which
is perforated in the middle for
separation into two 8-1/2" x 11"
forms. Both 8-1/2" x 11" sides
would be printed with matching
Litho-Code numbers.

(

Gridarg(O)-Type (cont.)

2. Affix a scanner-readable control
number to a single page form for
distribution or processing con­
trol purposes.

Because the printing press has no
means of computing when parity bubbles
should be marked, resolution of litho
code class grids must ~ have a pari­
ty edit. However, no error will be
reported if a parity edit is used.
Litho code grids contain only one item
per grid.

Gridarg(1)-Class

The class variable of gridarg can be
0 through 7. A horizontal grid is
class o. A vertical grid is class 1.
If the programmer is using binary
grids or binary coded decimal grids,
class = 2 or 3 will check to ensure
correct parity and return the check
in the edit variable. Classes 4
through 7 are the same as classes 0
through 3 except that they are linked
grids.

A grid is vertical if response posi­
tions run parallel to the timing track
and horizontal if response positions
run perpendicular to the timing track.

Value
0
1
2
3
4
5
6
7

3-31

RESOLVING THE GRIDS: GRID

CLASS
Horiz Vert Pari 1=Y._ Link

x
x

x x
x x

x x
x x

x x x
x x x

VERTICAL

- BIRTH DATE

RESOLVING THE GRIDS: GRID

HORIZONTAL - 1 2 3 4 5 -69@00G - 1 2 3 4 5 - 7@@000 - 1 2 3 4 5 -a@@OOO - 1 2 3 4 5 -9@@000 - 1 2 3 4 5 -10®@000

LINKING EXAMPLES

1. -a b
-o 0

segment
1

,,.. -
2.-0 1885

-o 1896

-o 1897

-o 1899

--

c d
0 0

segment
2

-
0 1906

0 1915

0 1918

0 1919

"-./"

single item

e
0

segment-
3

..--

0 1923

0 1931

--

3-32

Gridarg(1)-Class (cont.)

Linking: Not all items are set in
uniform grids. Occasionally one
question may consist of several non­
uniform sets of responses, such as
the grid in example one.

Each of the uniform sets of responses
is resolved with a separate grid call.
However, since just one output is de­
sired for the item, there must be a
way of connecting the resolutions.
Linking connects the contents of two
or more item segments into one output.
It may be used with any grid type, but
is primarily used to link response
grids. Grids which use linking can
contain only 2E.! item.

Example two is a single item composed
of three distinct segments (in this
case, response strings.) Each re­
sponse string is resolved with an in­
dividual grid call. Grid call one
would resolve 1885-1899. Grid call
two would resolve 1906-1919; and grid
call three would resolve 1923-1931.

To link these strings together, a
special grid class must be used. Grid
classes 4 through 7 are really the
same as classes 0 through 3 except
that the linking provision is added.

{

(.. .

c

Linking (cont.)

To link one segment to the next, use
the appropriate grid class (with
linking) in each grid call until
reaching the last segment. Then make
the grid call using the appropriate
class without linking. This signals
the program that the last segment in
the item has been reached. At this
point the grid routine will return
the selected response in the grid­
string variable.

In the second grid example the first
grid class would be linked vertical
(class=5). This links the first seg­
ment to the next. The second grid
class would also be linked vertical
(class=5). This links the first and
second segments to the next. The
third grid class would be vertical
with no linking (class•1). This sig­
nals that there is no more linking
and the response (01-10) is returned
by the grid routine in the variable
gridstring.

Note: The same restrictions which
apply to all other grids also apply
to linked grids. Linked item seg­
ments must be of one type and item
lengths cannot exceed normal length
limits. For example, a linked two­
digit response grid (01-99) cannot
have more than 99 response positions.

Gridarg(2)-Sx: The variable sx
(start x) indicates the starting x
coordinate of the grid. To locate
this position, the programmer must
use an NCS Sheet Compile Ruler. Then
find sx by follQwing this procedure.

1. Lay the ruler parallel to the
leading edge of the form (the
edge with the skunk marks)
using 6-to-the-inch scale.

RESOLVING THE GRIDS: GRID

LINKING EXAMPLES (cont.)

GRID CALLS - EXAMPLE 2

string 1 CALL GRID (••• class=
5- linked vertical)

string 2 CALL GRID (••• class=
5- linked vertical)

string 3 CALL GRID (••• class=
1- vertical)

LOCATING X

3-33

RESOLVING THE GRIDS: GRID

LOCATING START X AND END X

E~D X (8)
-..,.,o .,..,o .,..,o II)~
-"'1'o "'1'o "'1'o "'1'o
-Mo ,...,o Mo Mo
-N© N@ N@ N@

-~, ~~ ~~ ~~

START X (2)

y .. 7

fND X (1)

-600@0£
-sv£Zt
-ooo©ei
-s v £ i?: l

-OOO©(i)L'
S t £ Z: i...,START X (5)

X SPACING

1. - QQ - 1 X SPACE

2. - 0 0
"--v--' - 2 X SPACES

3.-~
3X SPACES

LOCATING Y

-- -10 ® 0 e
® ® ®
@ 0 0
® ® ®

"'@ ~ © ~ :;! • :i!
5®
u © e 0 G

Ii ® ® ®
0 @ @
® ® @

3-34

Gridarg{2)-Sx (cont.)

2. Line up the timing mark on the
ruler with the timing mark on
the form.

3. The distance in x units from
the timing track to the first
response choice of the first
item is sx (Start x).

Gridarg(3)-Ex: The variable ex (end
x} indicates the ending x coordinate
of the grid. It is found through the
same procedure described in the sx
(start x) section, except the distance
in x units is to the last response of
the last item.

Gridarg(4)-Ix: The variable ix (in­
crement x) indicates the spacing be­
tween x response items. X-axis spac­
ing is fixed at six response positions
per inch. An NCS Sheet Compile Ruler
is used to measure these spaces. In
example one, the x spacing is one
since there are no spaces in between
x response items. In example two, the
x spacing is two since there is one
space in between x responses. In ex­
ample three, the x spacing is three
since there are two spaces in between
x responses.

Gridarg(5)-Sy: The variable sy (start
y) indicates the starting y coordinate
of the grid. To locate this position,
the programmer must:

1. Mark every fifth timing mark for
reference.

2. Count down from the closest marked
timing mark to the timing mark • f
corresponding to the first re- '-t./
sponse position for sy (start y).

Gridarg(6)-Ey: The variable ey (end
y) indicates the ending y coordinate
of the grid. It is found through the
same procedure described in the sy
(start y) section, except the count
is to the timing mark corresponding
to the last response position for ey
(end y).

Gridarg(7)-Iy: The variable iy in­
crement y) indicates the spacing be­
tween y response items. In examples
one and two, the y spacing is one
since there is one space between y
response items. In example three,
there are two spaces between y re­
sponse items.

RESOLVING THE GRIDS: GRID

LOCATING START Y AND END Y

START Y (1)

Timing Mark 1
2 3 4 5

- @000
- 1 2 3 4 5
-2®@000

Timing Mark 5
- 1 2 3 4 5
:3@@00~
- END Y (5)

Timing Mark 1 ----Timing Mark 5 --

Y SPACING

1. ::>1 Y SPACE --
2. :>1 Y SPACE ----
3. ~2YSPACES

3-35

RESOLVING THE GRIDS: GRID

VALUE

2
4
8

EDSTAT RETURNS:

BIT GRID CONDITION

0 at least 1 omit
at least 1 multiple

2 incomplete/multiple
3 blank grid
4 not left justified
5 not right justified

16
32
64

128

6 parity error (binary ~
binary coded decimal)

7 call had parameter
error

OMIT

1. 0. 0 0 4. • 0 0 0

2. 0 0 0 • 5. 0 0 0 0

3. 0 0 0 • 6. 0 0 0 •

MULTIPLE RESPONSE

1. 0 •• 0

INCOMPLETE/MULTIPLE

1 • • 0 0 0 5. 0 0 • 0

2. 0 0 0 0 6. 0 • 0 0

3. 0 0 0 0 7. 0 0 0 •

4. 0 0 0 0 a. 0 • • 0

BLANK GRID

1 • . o 0 0 0 4 • 0 0 0 0

2. 0 0 0 0 . 5. 0 0 0 0

3. 0 0 0 0 6. 0 0 0 0

3-36

Eds tat

The GRID routine returns the vari­
able edstat -- a decimal variable
which can be divided into 7 bits.

Edstat reports whether a grid has been
correctly filled out. Each bit de­
scribes a specific edit condition.
If the bit contains zero, the grid
condition for that location is not
present. If the bit contains one,
the grid condition is present.

Bits 0-7 indicate special grid condi­
tions.

A one in bit 0 indicates that at
least one item has been omitted. The
string of characters in the variable
gridstr will contain a blank at the
omitted location.

A one in bit 1 indicates a multiple
response, meaning that more than one
response has been chosen in at least
one item. The data string in gridstr
will contain an asterisk (*) at the
multiple location.

A one in bit 2 signals that the grid
has been left incomplete or that a
,multiple response has occurred.
Check bits 0 and 1 to see which situ­
ation is present.

A one in bit 3 signals that the grid
has been left entirely blank.

(

Edstat (cont.)

A one in bit 4 signals that the grid
is not left justified, that is, the
grid is not complete to the left edge
of the grid. This condition is es­
pecially useful to know when using
name or address grids where that data
must be correctly filled out.

A one in bit 5 signals that the grid
is not right justified, that is, the
grid is not complete from where it
begins to the right edge of the grid.
This could be useful for an identifi­
cation number grid (like social se­
curity number) where each number must
be completed.

Ones will also occur in bits 4 and 5
if a grid contains an omit within the
number or word.

A one in bit 6 indicates a parity er­
ror. In the accompanying example,
the second item is coded incorrectly.
Since parity is odd, there should be
an odd number of coded bubbles in
each item. Parity errors occur in
binary and binary coded.decimal grids.

A one in bit 7 indicates an incorrect
parameter passed in the calling state­
ment. For example, in the programming
example on the left, a parameter error
will be returned in the cmderr vari­
able because valid sx positions run
from 1 to 47. 75 cannot be a valid
parameter.

RESOLVING THE GRIDS: GRID

NOT LEFT JUSTIFIED
IDENTIFICATION NUMBER

®®®®®®®®®
000000000
©©©©©e©©z
3@@©•©

NOT RIGHT JUSTIFIED

SOCIAL SECURITY
NUMBER

PARITY ERROR

®®®e®®
®®•©@@
©e©©••
@•@•©©
•©©•©©

INCORRECT INPUT PARAMETER

BASIC:
sx = 75
GRIDARG%(3) = SX
ARGPTR% = VARPTR(GRIDARG%(0))
CALL GRID%(GRIDARG%,GRIDSTR$,

EDSTAT%,CMDERR$)

PASCAL:

3-37

SX:= 75;
GRIDARG(3): = SX;
GRID (GRIDARG,GRIDSTR,

EDSTAT,CMDERR);

RESOLVING THE GRIDS: GRID

INTERPRETING EDSTAT

ED STAT = 21

128 64 32 16 8 4 2 1 value

jojojoj1joj1joj 1 I 0 or 1

7 6 5 4 3 2 1 0 position

21J
-16 - 5
- 4

1
- 1 - 0

GRID CONDITION

IDENTIFICATION NUMBER

©©©©©•©©©
0•0000000
©©•©@©•©©
©©©©•©©©©
©©©©©©©©©
©©©©©©©•©
©©©©©©©©©
000e00000
©©©©©©©©©
©©©®®®®©•

incom lete with omit on left

EDSTAT - BINARY GRID

POSITION CONTAINS
0 always 0
1 always 0
2 1 when parity error
3 always 0
4 always 0
5 always 0
6 1 when parity error
7 1 when_p~rameter error

3-38

EXAMPLE: INTERPRETING EDSTAT

Since edstat is returned as a decimal
number, the user must be able to divide
the number into its binary equivalent
to interpret the grid edit condition.
Each bit position (0-7) has a value
equal to a power of two. By taking
the edstat value and subtracting each
greatest possible power of two until
reaching zero, the user can determine
which bits contain a one. The example
to the right accomplishes that task.
If the number returned in edstat is
21, the first value which is not
greater than 21 is 16 (position 4).
21 - 16 = 5. The next value not
greater than 5 is 4 (position 2).
5 - 4 = 1, and 1 - 1 = 0 (position O).

Therefore, positions O, 2 and 4 con­
tain ones. The grid condition is
incomplete (position 2) with an omit
(position 0) occurring on the far
left (position 4).

EDSTAT: BINARY GRID

The variable edstat is interpreted
differently for binary grids. Posi­
tions 0,1,3,4, and 5 remain constant
while bits 2, and 6 signal parity
errors and bit 7 signa·1s an error in

·passing parameters.

(

(

EDSTAT: BINARY CODED DECIMAL GRID

The variable edstat is interpreted
differently for binary coded decimal
grids. Bits 0,3,4, and 5 remain
constant while bit 1 signals that an
item is coded > 9, bits 2 and 6 sig­
nal parity errors and bit 7 signals
an error in passing parameters.

CONSIDERATION: EDSTAT, CMDERR

The variable edstat contains errors
that result from incorrectly coding
the grids on forms. In the absence
of parameter errors, cmderr returns
the @ symbol. However, if edstat
128, at least one parameter error
has been made and cmderr contains
the parameter error number(s). Pro­
gramming error numbers are described
in Section Six.

EXPLANATION: SAMPLE PROGRAMMING

This program section scans 25 forms
and resolves a name grid from each
form to compile a list of class mem­
bers. The program section assumes
that the parameters for the SCAN call
have been defined previously. Line
20 prints a heading for the class
list. Lines 30 through 140 comprise
a loop which scans forms and resolves
name grids. The loop runs 25 times,
once for each student. Line 40 calls
the SCAN command and a form is
scanned. Lines 50 and 60 initialize
EDSTA~% and GRIDSTR$. Lines 80 and
150 read in parameters for the GRID
call through READ and DATA statements.'
Line 90 initializes CMDERR$. Line 100
sets the pointer to the start of the
GRIDARG array.

RESOLVING THE GRIDS: GRID

EDSTAT - BINARY CODED DECIMAL

BIT CONTAINS
0 always 0
1 1 when coded # > 9
2 1 when parity error
3 always 0
4 always 0
5 always 0
6 1 when parity error
7 1 when .E_arameter error

EDSTAT/CMDERR

if no parameter errors:

edstat=decimal number (0-127),
numbers 1-127 indicate
grid edit conditions

cmderr=@

if parameter errors:

.edstat=128 (indicating paramete~
error(s))

cmderr=parameter error number
strin_g_

SAMPLE PROGRAMMING

20 PRINT "CLASS MEMBERS ARE:"
30 FOR B= 1 TO 25
40 CALL SCAN%(DOC% 1 READTYPE%,

CMDERR$)
50 EDSTAT% = 0
60 GRIDSTR$ = SPACE$(200)
70 FOR A = 0 TO 7
80 READ GRIDARG%(A):NEXT A
90 CMDERR$ = SPACE$(200)

100 ARGPTR% = VARPTR(GRIDARG%(0))
110 CALL GRID%(ARGPTR% 1 GRIDSTR% 1

EDSTAT% 1 CMDERR$)
120 IF EDSTAT% = 128 THEN GOTO 20q
130 PRINT GRIDSTR$
140 NEXT B
150 DATA 1,o,10,2a,1,5,27,1
200 error check section •••

3-39

RESOLVING THE GRIDS: GRID

3-40

EXPLANATION: SAMPLE PROGRAMMING
(cont.)

Line 110 calls the GRID routine which
resolves the name grid. If EDSTAT% =
128 (line 120), a parameter error has
occurred and the program is directed
to line 200 which is the start of the
program's parameter error check. If
EDSTAT% is not 128, no parameter er­
ror has occurred and the program
prints GRIDSTRS which contains the
name from the resolved grid (line
130). Line 140 directs the program
back to line 30 and the sequence is
repeated until all 25 names are read.

,f

""~'

("

OVERVIEW: TRANSMIT

The TRANSMIT command allows data to
be transmitted to the following
destinations: the LED display, the
optional transport printer, or the
auxiliary port.

EXPLANATION: CALL FORMAT

The application program calls the
TRANSMIT routine and must pass four
parameters:

•Dest
•Outs tr
ePrntpos
eCmderr

One parameter is passed back to the
application program:

eCmderr

Dest -
Dest (destination) is a one-digit
variable which indicates to which de­
vice output is to be directed. Dest
will be 0 for the scanner transport
printer, 1 for the scanner auxiliary
port, and 2 for the scanner LED dis­
play. The length of the data trans­
mitted is dependent on the device
being selected. The transport print­
er is limited to 99 characters.
There is a 254 character limit to the
auxi~iary port and the LED display is
limited to one numeric character.

SENDING DATA TO SCANNER: TRANSMIT

CALL FORMAT

BASIC:
DEST% = 0
CMDERR$ = SPACE$(200)
PRNTPOS% = 10
OUTSTR% = SPACE$(200)
CALL TRANSMIT%(DEST%,OUTSTR$,

PRNTPOS%,CMDERR$)

PASCAL:
VAR

CMDERR,OUTSTR:MSCSTR;
DEST,PRNTPOS:INTEGER;

DEST:= O;
PRNTPOS:= 10;
OUTSTR:= "ERROR";
TRANSMIT(DEST,OUTSTR,PRNTPOS,

CMDERR);

DEST
length

de st which of output
number device or prntpos

0 transport 99
printer

1 aux. port 254

2 LED display 1

3-41

SENDING DATA TO SCANNER: TRANSMIT

if DEST

0
1
2

PRNTPOS

PRNTPOS is

01 to 99
0

1 to 15

3-42

Cmderr

Cmderr is a string variable which re­
turns an error code to the application
program from the TRANSMIT routine.

Prntpos

Prntpos is the name of a number vari­
able. If the destination is the trans­
port printer (DEST = O) then prntpos
will be the desired starting print po­
sition (from 01 to 99). If the desti­
nation is the auxiliary port (DEST= 1)
then prntpos will be zero. If the de­
stination is the scanner display (DEST =
2) then prntpos will be the value the
programmer wants displayed (0-15).
Numbers 10-15 appear as A,b,C,d,E,
and F.

Outs tr

Outstr is a string variable containing
the data to be transmitted. First,
the user must decide which data to
transmit and then load that data into
outs tr.

EXPLANATION: SAMPLE PROGRAMMING

This program section utilizes both
the TRANSMIT and RECV commands. A
test grading center has been set up
with the microcomputer operator at
the host computer and an instructor
at a remote location with a display
monitor and keyboard attached to the
scanner's auxiliary port. This pro­
gram section describes the start of
the test grading procedure. The host
sends a message to the auxiliary port
asking if the scanner operator is
ready to begin scanning forms. The
host expects a response from the
scanner operator.

Lines 40-60 initialize the TRANSMIT
parameters. The message which will
be sent to the aux port is entered in
OUTSTR$. Line 80 makes the TRANSMIT
CALL and the message is sent. In
line 90, if CMDERR$ does not contain
"@" (ASCII 64) the call has not been
made correctly and the program is
directed to line 200, the start of
the TRANSMIT error check.

If no errors occurred during the
TRANSMIT call, line 100 initializes
RECVSTR$. Then the RECV CALL is made
and the "Y" or "N" the scanner opera­
tor entered on the aux port keyboard
is received by the host (line 120).
In line 130, if CMDERR$ does not con­
tain "@" (ASCII 64), an error has
been made in the call and the RECV
error check is started in line 300.
If "Y" is retumed in RECVSTR$' the
scanner operator is ready to begfn
scanning forms and tQe scanning rou­
tine begins (line 400). If "N" is
retumed in RECVSTR$, the scanner
operator is not ready to begin scan­
ning forms and the program moves to
line 100 which waits for a response
of "Y" from the scanner operator.

SENDING DATA TO SCANNER: TRANSMIT

SAMPLE PROGRAMMING

40 CMDERR$ = SPACE$(200)
50 DEST% = 1
60 PRNTPOSt = 0
70 OUTSTR$ ="ARE YOU READY?(Y/N)'
80 CALL TRANSMIT(DESTt,PRNTPOSt,

OUTSTR$,CMDERR$)
90 IF ASC(CMDERR$)<>64 THEN GOTO

200
100 RECVSTR$ = SPACE$(80)
110 CMDERR$ = SPACE$(200)
120 CALL RECV(RECVSTR$,CMDERR$)
130 IF ASC(CMDERR$)<>64 THEN GOTO

300
130 IF RECVSTR$="Y"THEN GOTO 400
140 IF RECVSTR$<>"N"THEN GOTO 100
200 TRANSMIT error section •••
300 RECV error section •••
400 testing routine •••

3-43

SENDING DATA TO SCANNER: TRANSMIT

' c
3-44

(

{

OVERVIEW: RECV

The RECV command allows the host to
receive a data string of up to 254
characters from an auxiliary device.
The command is especially useful when
the user has reason to enter data via
an auxiliary keyboard rather than the
scanner. For example, if an instruc­
tor were scanning batches of test
forms for three different classes and
certain students did not complete the
class grid on the test form, the in­
structor could enter that data on the
keyboard.

EXPLANATION: CALL FORMAT

The application program calls the
RECV routine and must pass two pa­
rameters:

eRecvstr
eCmderr

Two parameters are passed back to
the application program:

eRecvstr
eCmderr

Recvstr

Recvstr is the name of a string
variable which is received from the
auxiliary device. The operator en­
ters the string and presses the re­
turn key on the auxiliary device to
terminate the string. Up to 255
characters can be received by the
RECV CALL in Basic. In Pascal, the
limit is 254 characters.

Cmderr

Cmderr is a string variable which re­
turns an error code to the application
program from the RECV routine.

RECEIVING AUX DEVICE DATA: RECV

CALL FORMAT

BASIC:
RECVSTR$ = SPACE$(255)
CMDERR$ = SPACE$(200)
CALL RECV%(RECVSTR$,CMDERR$)

PASCAL:

3-45

VAR

RECVSTR,CMDERR:MSCSTR;
RECV (RECVSTR,CMDERR);

RECEIVING AUX DEVICE DATA: RECV

3-46

EXPLANATION: SAMPLE PROGRAMMING

A program section which illustrates
both the TRANSMIT and RECV command
appears in this section under Sending
Data to the Scanner, page 3-45.

(

4-1

4

HOST
PROGRAM

Introduction ••••••••••••••••• 4-2
Program Structure •••••••••••• 4-3

INTRODUCTION

Using the scanner as an input de­
vice necessitates changes in ap­
plication programming. Although
Scanner Commands simplify many
procedures, certain programming
steps must be initiated to allow
the programmer to use scanner com­
mands. This section describes the
structure of an application pro­
gram that uses Scanner Commands.

c
4-2

(PROGRAM STRUCTURE

OVERVIEW: PROGRAM STRUCTURE

In general, all programs must accom­
plish three things. First, a means
must be provided for data input.
Second, the data must be manipulated
to achieve a desired result. Third,
the result must be presented (or
output) in a meaningful manner.

A program which uses data input from
scannable forms must accomplish cer­
tain other tasks including establish­
ing buffers and loading commands into
memory.

This section describes the general
format of an application program
which utilizes scanner commands.

EXPLANATION: LOADING OR ACCESSING
SCANNER COMMANDS

To utilize Micro Scanner Commands, the
programmer must insert special state­
ments within the application program.
These statements tell the microcomputer
to load scanner commands in memory.
The scanner commands then exist in a
portion of memory which is protected
from inadvertent overwriting.

Interpretive Basic

The first line of the Basic program
should define the beginning segment
of memory that the commands will be
loaded into. This location should be
set to &H1CD4. The following lines
load the commands into the location
defined in the first line.

[PROGRAM SEQUENCE

Load or access commands

LOADING SCANNER COMMANDS
FOR INTERPRETIVE BASIC

DEF SEG =&H1CD4
BLOAD "COMNDS.BAS",0
SCAN%=PEEK(O) + 256*PEEK(1)
GRID%=PEEK(2) + 256*PEEK(3)
SKUNK%=PEEK(4) + 256*PEEK(5)
CONTROL%=PEEK(6) + 256*PEEK(7)
SETUP%=PEEK(8) + 256*PEEK(9)
LEVEL%=PEEK(10) + 256*PEEK(11)
TRANSMIT%=PEEK(12) + 256*PEEK(13)
RECV%=PEEK(14) + 256*PEEK(15)

4-3

PROGRAM STRUCTURE

ACCESSING SCANNER COMMANDS
FOR PASCAL

(*$INCLUDE: 1 SCANDECL.PAS 1 *)

PASCAL - VARIABLE TYPES

Variable Command .'£lE!.

Cmderr all MSCSTR
Marks SKUNK SKARAY
Recvstr RECV MSCSTR
Outs tr TRANSMIT MSCSTR
Gridarg GRID GRID ARA
All others INTEGER

Where:

MSCSTR = LSTRING (254);
SKARAY = ARRAY[0 •• 47] of integer;
GRIDARA = ARRAY[0 •• 7] of integer;

4-4

Pascal

The commands can be easily accessed
by including one statement 11 (*$
INCLUDE: 1 SCANDECL.PAS 1 *) 11 • This
statement should immediately follow
the program heading line.

Compiled Basic

The commands are linked to the host
program and no special statements are
required in the host program.

EXPLANATION: DECLARING VARIABLES

Pascal

In Pascal, variable types must be de­
clared and input before they are passed
to command routines. Most command rou­
tine variables are of type INTEGER.
However, the cmderr variable, which
passes back error messages or resolved
grid data to command routines, is a
special MSCSTR variable. The variable
marks, the array of skunk mark loca­
tions, is type SKARAY. The variables
recvstr and outstr, which transport
data to and from the host computer,
are of type MSCSTR. Gridarg, the ar­
ray containing parameters which de­
scribe a grid, is type GRIDARA. It is
not necessary to declare types MSCSTR,
SKARAY, or GRIDARA within the type de­
claration since these types are already
declared within the SCANDECL.PAS file
which is included in the host program.

Basic

No declaration section is ~ecessary
in Basic since the variable type is
implicitly declared within the vari­
able name. All variables ending with
11 %11 are type integer. Those ending
with 11 $11 are string variables.

(PROGRAM STRUCTURE

("

c-

EXPLANATION: FORM DEFINITIONS

After variables have been declared,
the forms to be used in the program
should be defined with the SKUNK com­
mand. All form definitions should be
listed in this area. This makes the
program more readable since all defi­
nitions are in one location. It also
saves progamming time since the pro­
grammer does not have to consider form
definitions throughout the program.

EXPLANATION: COMMUNICATIONS PROTOCOL

Before obtaining data from the scan­
ner or auxiliary device, the communi­
cations protocol should be checked to
ensure that the host and scanner (or
auxiliary device) can communicate suc­
cessfully. The host protocol must be
configured to match that of the scan­
ner or auxiliary device. The proto­
col can be programmed into the host
through the SETUP command.

EXPLANATION: INPUT DATA

The next step in an application pro­
gram is to input the data that a pro­
gram will work with.

In Basic, variables must be initial­
ized (that is, set to a value) before
they are sent to the command routines.
Parameters which are not used as input
to the command routines, but which
return values to the host program,
also need to be initialized at this
point. In Basic, the variable cmderr,
which returns error messages, should
be set to SPACES (200) • - Recvstr, the
variable containing data sent to the
host by the auxiliary device in the
RECV command, should be set to
SPACE$(255).

In Pascal, only variables which pass
values to the command routines need
to be set prior to the call.

4-5

PROGRAM SEQUENCE

Load or access commands

(Declare variable types
for Pascal ram)

Establish form definitions

L PROGRAM SEQUENCE

Load or access commands

(Declare variable types
for Pascal ram)

Establish form definitions

Set communications protocol
of host

In ut data

0

<'' PROGRAM STRUCTURE ~·

4-6

EXPLANATION: INPUT DATA (cont.)

Data can be input in a variety of ways.
It can be entered by scanning forms
(using the SCAN command). It can be
entered through an auxiliary device
(using the RECV command). Or if data
is pre-determined (like heading infor­
mation), it can be entered from within
the program. (In Basic this would be
accomplished with READ and DATA state­
ments.)

CONSIDERATION: INPUT DATA

It is possible, during the course of
the SCAN, TRANSMIT, or RECV commands,
that the scanner will not transfer
control back to the program. This
could happen in the case of a commu­
nications error or when a sheet jams
and the scanner doesn't send an EOR
(end of record) signal. The operator
can abort the routine by pressing the
'ESC 1 (escape) key on the host key­
board.

EXPLANATION: RESOLVE DATA

· Once the SCAN command transfers data
from a form to the host, the data must
be resolved. That is, data for each
grid must be taken from the sheet buf­
fer and transferred from read levels
to data for use in the application
program. This is a simple process,
since the GRID command resolves grid
data one grid at a time.

,f""
~:

(

EXPLANATION: VERIFY DATA

The application program D11:1St check
the validity of data input during
the program. Communications errors
can occur, in which case the program
should request retransmission of
data. (If this happens while enter­
ing data from the scanner, use the
SCAN command with option 3, retrans­
mit data.) Or if the entered data
is not what the program expects, an
error message should be displayed
with suggestions of how to correct
the error.

Parameter errors or errors due to
filling out a form incorrectly can be
determined by interpreting the vari­
able edstat. For a complete descrip­
tion of the edstat variable, refer to
Section Three, Resolving'the Grids.

For example, a program is designed to
record pertinent data (such as com­
pany division, employee address,
health insurance number) for all
employees in a company. Since
employees are referenced by social
security number, it is essential that
the social security grid be complete.
The program section uses the GRID
command to resolve the social secur­
ity grid and checks for errors in
grid completion.

First the GRID call is made. Then,
if the edstat variable is less than
64, an error has been made in the
completion of the grid. (For an in­
terpretation of edstat, refer to Sec­
tion Three, Resol~ing the Grids.) An
operator message is provided in line
220 telling the operator to correct
the social security grid and rescan
the sheet.

PROGRAM STRUCTURE

PROGRAM SEQUENCE

Load or access commands

(Declare variable types
for Pascal ro ram)

Establish form definitions

Set communications protocol
of host

In ut data

Resolve data

Verif data

VERIFY DATA

210 CALL GRID%(ARGPTR%,GRIDSTR$,
EDSTAT%,CMDERR$)

220 IF EDSTAT% < 64 THEN

4-7

PRINT "SOCIAL SECURITY GRID
COMPLETION ERROR, CORRECT
ERROR, RESCAN SHEET"
ELSE •••

PROGRAM STRUCTURE

[PROGRAM SEQUENCE

Load or access commands

(Declare variable types
for Pascal ro ram)

Establish form definitions

Set communications protocol
of host

In ut data

Resolve data

Verif data

Main bod - data mani ulation

RESPONSE ITEM

Which sport do you enjoy most?

o tennis
o basketball
o football
o baseball
• track

4-8

EXPLANATION: DATA MANIPULATION

The manipulating of data to achieve
the desired program result is the
main body of the program. In both
Basic and Pascal, programmers can
use loops or subroutines to achieve
results.

EXPLANATION: TRANSLATION OF RESPONSE
GRIDS

Although the data returned in alpha
and numeric grids can be used without
making a translation, data from re­
sponse grids must often be translated.
For example, the response item to the
left would yield a 1, 2, 3, 4 or 5.
Since the response is returned as 5
by the GRID routine, it must be trans­
lated into "track."

(

(

(

EXPLANATION: OUTPUT DATA

After manipulations are complete, re­
sults must be output in some manner.
Data can be printed on forms (if your
scanner is equipped with a transport
printer), on a printer attached to
the microcomputer, or on the micro­
computer screen, etc. It is impor­
tant that output be meaningful. Out­
put is meaningful if headings are in­
cluded, lists, or comparisons made.
The range of output style is unlimit­
ed and greatly enhances the substance
and clarity of a program.

CONSIDERATION: OPERATOR INSTRUCTIONS

One sign of a well written program is
the abundance of operator instructions.
Since the programmer is not always
aware of how knowledgeable the user is
about the system, operator instruc­
tions must be instructive and complete.
The programmer must be especially
careful when writing instructions re­
garding errors. For example, an error
takes place due to unacceptable data.
The data entered is negative and
should not be. The following message
would not be descriptive:

ERROR NOTED

A more meaningful message would be:

ERROR, NEGATIVE DATA NOT ALLOWED

An even more descriptive error mes­
sage would explain what error took
place and how to correct the error:

ERROR, NEGATIVE DATA NOT ALLOWED
REMOVE SHEET FROM SCANNER
RE-MARK SHEET AND RESCAN

4-9

PROGRAM STRUCTURE

[PROGRAM SEQUENCE

Load or access commands

(Declare variable types
for Pascal ro ram)

Establish form definitions

Set communications protocol
of host

In ut data

Resolve data

Verif data

Main bod - data mani ulation

Out ut

PROGRAM STRUCTURE

4-10

(

(,

5-1

5

SAMPLE
PROGRAM

Introduction ••••••••••••••••• 5-2
Program Listing (Compiled
Basic) •••••••••••••••••••••• 5-3

Program Explanation •••••••••• 5-4
Interpretive Basic Listing ••• 5-9

INTRODUCTION

NCS Micro Scanner Commands has
been designed to allow users of
microcomputers to incorporate
input data into programs from
scannable forms. The following
sample program has been written
to give programmers suggestions
on how to utilize scanner com­
mands in.application programming.

5-2

OVERVIEW: PROGRAM FUNCTION

The sample program is designed to
scan and report results of the Compu­
test Answer Sheet. The program makes
use of the SKUNK, SCAN, and GRID com­
mands, which are generally used to­
gether. It also uses the SETUP com­
mand to establish communications pro­
tocol. The program is coded in Com­
piled Basic and is accompanied by a
line by line explanation. Then the
program is listed in Interpretive
Basic.

EXPLANATION: PROGRAM

Before its explanation, the Compiled
Basic program is listed in one spot,
for convenience.

L.

5-3

PROGRAM LISTING

COMPUTEST ANSWER SHEET

-· . I
r. I
01
~I --0
c:
-I
lrJ

"' '"'f.

I -= ::: ~ &;; • = ;:: :: = UI ,. ""' at "' .cm. w N -

I -000000000000000000
I -000000000000000000
I -©©©©©©©©©©©©©©©©©©
I -@©©©©©©©©©©©©©©©©©
1 · -e000000000000eeeee
i_-1 I
I -f . ~ ~ z ·~ ~ g 1 ::.1 >~ ~~ I
r -~~'.tl:t:~~=::~~~~~~:::t~a==
I -000000000000000000
1 -0ee000000G©e000000
I -©©©©©©©©©©©0©©©©©©
I -©©©©©©©©©©©©©©©©©G
1 -eeeeeeeeeeeeeeeeee

::i· ~=-~~.. 111 : :l ~·~ z ~ =< 0 ' J

I -000000000000000000
f .•@00000000©0©000000
f -@©0©0©©©000©©00000
f -©©©©©©©©©©©©©©@@©©
1 -ee00eee000ee0e0000

PROGRAM LISTING-COMPILED BASIC

]LIST

10 DEFINT A-Z
20 DIM MARKS (2),GRIDARG (7)
30 OPEN "SCANREC" FOR OUTPUT AS #1
40 CLS: PRINT TAB (20) "SAMPLE

PROGRAM FOR NCS/IBM SCANNER
COMMANDS"

50 REM*****************************
60 CTRLOPT=4
70 CMDERR$=SPACE$(20)
80 CALL CONTROL (CTRLOPT.CMDERR$)
90 IF LEFT$(CMDERR$,1)<>"@" THEN

PRINT "CONTROL ERROR - ";
CMDERR$: STOP

100 REM*****************************
110 BAUD =9600
120 PARITY= ASC("O")
130 DATABITS = 7
140 STOPBITS = 2
150 PORTSEL = 1
160 CMDERR$ = SPACE$ (20)
170 CALL SETUP (BAUD,PARITY,DATABITS,

STOPBITS,PORTSEL,CMDERR$)
180 IF LEFT$(CMDERR$,1)<>"@" THEN

PRINT "SETUP ERROR - ";
CMDERR$:STOP

190 REM*****************************
200 OFFSET = -1 . .
210 CMDERR$ = SPACE$(20)
220 CALL LEVEL (OFFSET,CMDERR$)
230 IF LEFT$(CMDERR$, 1)<>"@" THEN

PRINT "LEVEL ERROR -";
CMDERR$:STOP

240 REM*****************************
250 OOCNUM = 1
260 CELLS = 18
270 TRACKS = 39
280 NUMMARKS = 2
290 MARKS (0) = 1
300 MARKS (1) = 7
310 CMDERR$ = SPACE$(20)
320 AR.GPTR = VARPTR(MARKS(O})
330 CALL SKUNK (DOCNUM,CELLS,TRACKS,

NUMMARKS,ARGPTR,CMDERR$)

5-4

340 IF LEFT$(CMDERR$,1)<>"@" THEN
PRINT "SKUNK ERROR -";
CMDERR$:STOP

350 REM******************************
360 LOCATE 20,20:PRINT "Feed sheet

into scanner or press ESC";
370 DOC = 0
380 READTYPE = 2
390 CMDERR$ = SPACE$(20)
400 CALL SCAN (DOC,READTYPE,CMDERR$)
410 IF LEFT$(CMDERR$,3) ="504" THEN

PRINT PROGRAM ENDED":CLOSE:END
420 IF LEFT$(CMDERR$,1)<>"@" THEN

PRINT "SCAN ERROR -";
CMDERR$:STOP

430 REM******************************
440 RESTORE 610
450 A$=""
460 FOR !=1 TO 8
470 FOR J=O TO 7
480 READ GRIDARG{J)
490 NEXT J
500 GRIDSTR$ = SPACE${20)
510 CMDERR$ = SPACE$(20)
520 EDSTAT = 0
530 ARGPTR = VARPTR(GRIDARG(O})
540 CALL GRID(ARGPTR, GRIDSTR$,

EDSTAT,CMDERR$)
550 IF LEFT$(CMDERR$,1)<>"@" THEN

PRINT "GRID ERROR -";
CMDERR$:STOP

560 A$=A$+GRIDSTR$
570 NEXT I
580 PRINT #1,A$
590 LOCATE 5,1:PRINT A$
600 GOTO 350
610 DATA 2,0,10,1,1,3,12,1
620 DATA 3,1,18,1,1,15,19,1
630 DATA 3,1,18,1,1,25,29,1
640 DATA 3,1,18,1,1,35,39,1
650 DATA 3,i,18,1,1,34,30,1
670 DATA 3,1,18,14,1,14,10,1
680 DATA 3,1,18,14,1,7,3,1

(

(

(

OVERVIEW: PROGRAM LAYOUT

The sample program is described in
this section. Program lines are
listed on one side of each page with
an explanation of each program line
on the opposite page. The program
is coded in Compiled Basic. Follow­
ing the program explanation, the
same program is coded in Interpre­
tive Basic and Pascal.

Lines 10 through 30 are declarative
lines. Line 10 defines variables
starting with the letters A-Z as
integers. Line 20 establishes the
arrays that will be used in the
program. MARKS is the array of
skunk mark locations and GRIDARG is
the array of grid parameters. Line
30 opens the disk file SCANREC for
output, used later.

Line 40 clears the screen and prints
a program heading.

Line 60 sets the control option
(CTRLOPT) to 4, which means that ·the
scanner wii1 be utilized. Line 70
initializes CMDERR$, which is the
variable describing the command call
error status. Line 80 makes the
call to the CONTROL routine. Line
90 checks for errors. If the left­
most character in CMDERR$ is not
"@", then an error has occurred and
the error number is printed and the
program stops. If the leftmost
character in CMDERRS is "@", the
program continues.

PROGRAM EXPLANATION

10 DEFINT A-Z
20 DIM MARKS (2),GRIDARG (7)
30 OPEN "SCANREC" FOR OUTPUT AS #1

40 CLS: PRINT TAB (20) "SAMPLE
PROGRAM FOR NCS/IBM SCANNER
COMMANDS"

60 CTRLOPT=4
70 CMDERR$=SPACE$(20)
80 CALL CONTROL (CTRLOPT,CMDERR$)
90 IF LEFT$(CMDERR$,1)<>"@" THEN

5-5

PRINT "CONTROL ERROR -";
CMDERR$:STOP

110 BAUD =9600
120 PARITY = ASC("O")
130 DATABITS = 7
140 STOPBITS = 2
150 PORTSEL = 1
160 CMDERRS = SPACES (20)
170 CAll SETUP (BAUD,PARITY,DATABITS,

STOPBITS,PORTSEL,CMDERR$)
180 IF LEFT$(CMDERR$,1)<>"@" THEN

PRINT "SETUP ERROR -";
CMDERR$:STOP

200 OFFSET • -1
210 CMDERRS = SPACE$(20)
220 CALL LEVEL (OFFSET,CMDERR$)
230 IF LEFT$(CMDERR$,1)<>"@" THEN

PRINT "LEVEL ERROR -";
CMDERRS: STOP

250 DOCNUM = 1
260 CELLS = 18
270 TRACKS = 39
280 NUMMARKS = 2
290 MARKS [O] = 1
300 MARKS [1] = 7
310 CMDERRS = SPACE$(20)
320 ARGPTR = VARPTR(MARKS(O))
330 CALL SKUNK (DOCNUM, CELLS,

TRACKS, NUMMARKS, ARGPTR,
CMDERR$)

340 IF LEFT$(CMDERR$,1)<>"@" THEN
PRINT "SKUNK ERROR -";
CMDERR$:STOP

360 LOCATE 20,20:PRINT "Feed sheet
into scanner or press ESC";

5-6

.4'~

PROGRAM EXPLANATION ·\iL,.·

Lines 110 through 180 configure the
scanner. Lines 110-160 initialize
the SETUP variables. Line 170 makes
the call to the SETUP routine. Line
180 checks for SETUP errors.

Lines 200 through 230 lower the
scanner read level to accept light
marks on forms. Line 200 sets the
read level offset to -1 which will
lower the read level threshold from 4
to 3. Line 210 initializes CMDERR$.
Line 220 makes the call to the SETUP
routine. Line 230 checks for errors.

Lines 250 through 340 set up and make
the call to the SKUNK routine. Lines
250 through 320 initialize the
variables which describe the form to
be defined. Line 330 makes the call
to the SKUNK routine. Line 340
checks for call errors.

Line 360 prints the feed sheet message
onto the screen starting at line 20,
column 20.

(

(

Line 370 initializes DOC. Line 380
sets READTYPE to 2 which means a
form will be scanned and its record
passed to the micro. Line 390 ini­
tializes the error status variable,
CMDERRS. Line 400 makes the call to
the SCAN routine. If the operator
pressed the escape key, error number
504 will be returned in CMDERRS, line
410 will print "PROGRAM ENDED" and
the program will end. Line 420
checks for other call parameter er­
rors.

Line 440 allows data statements to
be read starting from line 610. AS,
the variable containing the returned
GRIDSTRING, is initialized in line
450.

Lines 460 through 570 comprise a
loop that reads the grids on the
Computest form and saves the
returned response strings in AS.
Line 460 starts the loop. The loop
will run 8 times, once for each grid
on the form. Lines 470 through 490
comprise a loop that reads in the
grid characteristics for each of the
8 grids. After the grid charac­
teristics are read in, lines 500 and
510 initializes GRIDSTRS (which
returns responses) and CMDERRS (the
error status variable). Line 520
initializes EDSTAT, the variable
which identifies edit errors due to
incorrect coding on forms. Lines
530 sets ARGPTR (the pointer to the
gridarg array) to the start of the
array. Line 540 makes the call to
the GRID routine. Line 550 checks
for.parameter errors. Line 560 adds
the resolved grid data to the string
variable AS. Line 570 sends the
computer back to line 460 for the

(next grid.

PROGRAM EXPLANATION

370 DOC = 0
380 READTYPE = 2
390 CMDERRS = SPACES(20)
400 CALL SCAN (DOC,READTYPE,CMDERRS)
410 IF LEFTS(CMDERRS,3) ="504" THEN

PRINT "PROGRAM ENDED":CLOSE:END
420 IF LEFTS(CMDERRS,1)<>"@" THEN

PRINT "SCAN ERROR -";
CMDERRS:STOP

440 RESTORE 610
450 AS=""

460 FOR I=1 TO 8
470 FOR J=O TO 7
480 READ GRIDARG(J)
490 NEXT J
500 GRIDSTRS = SPACES(20)
510 CMDERRS = SPACES(20)
520 EDSTAT = 0
530 ARGPTR =.VARPTR(GRIDARG(O))
540 CALL GRID(ARGPTR, GRIDSTRS 7

EDSTAT, CMDERRS)
550 IF LEFTS(CMDERRS,1)<>"@" THEN

PRINT "GRID ERROR -";
CMDERRS:STOP

560 AS=AS+GRIDSTRS
570 NEXT I

5-7

Line 580 prints the resolved data to
file #1. Line 590 prints the resolved
grid data string on the screen at
location 5,1. Line 590 directs the
computer back to line 350 which re­
starts the entire operation beginning
with scanning a sheet. Lines 610
through 680 are data statements cor­
responding to the read statement in
line 480.

5-8

PROGRAM EXPLANATION

580 PRINT #1,A$
590 LOCATE 5,1:PRINT A$
600 GOTO 350
610 DATA 2,0,10,1,1,3,12,1
620 DATA 3,1,18,1,1,15,19,1
630 DATA 3,1,18,1,1,25,29,1
640 DATA 3,1,18,1,1,35,39,1
650 DATA 3,1,18,1,1,34,30,1
660 DATA 3,1,18,1,1,24,20,1
670 DATA 3,1,18,14,1,14,10,1
680 DATA 3,1,18,14,1,7,3,1

(

(

]LIST

10 DEFINT A-Z
15 GOSUB 1000
20 DIM MARKS (2),GRIDARG (7)
30 OPEN "SCANREC" FOR OUTPUT AS #1
40 CLS: PRINT TAB (20) "SAMPLE

PROGRAM FOR NCS/IBM SCANNER
COMMANDS"

50 REM****.*************************
60 CTRLOPT=4
70 CMDERR$=SPACE$(20)
80 CALL CONTROL (CTRLOPT,CMDERR$)
90 IF LEFT$(CMDERR$,1)<>"@" THEN

PRINT "CONTROL ERROR - ";
CMDERR$:STOP

100 REM*****************************
110 BAUD =9600
120 PARITY= ASC("O")
130 DATABITS = 7
140 STOPBITS = 2
150 PORTSEL = 1
160 CMDERR$ = SPACE$ (20)
170 CALL SETUP (BAUD,PARITY,DATABITS,

STOPBITS,PORTSEL,CMDERR$)
180 IF LEFT$(CMDERR$,1)<>"@" THEN

PRINT "SETUP ERROR - 11 ;

CMDERR$:STOP
190 REM*****************************
200 OFFSET = -1
210 CMDERR$ = SPACE$(20)
220 CALL LEVEL (OFFSET,CMDERR$)
230 IF LEFT$(CMDERR$,1)<>"@" THEN

PRINT "LEVEL ERROR -";
CMDERR$:STOP

240 REM*****************************
250 DOCNUM = 1
260 CELLS = 18
270 TRACKS = 39
280 NUMMARKS = 2
290 MARKS (0) = 1
300 MARKS (1) = 7 . .
310 CMDERR$ ~ SPACES(20)
320 ARGPTR = VARPTR(MARKS(O))
3 3 0 CALL SKUNK (·OOCNUM, CELLS, TRACKS ,

NUMMARKS,ARGPTR,CMDERRS)

INTERPRETIVE BASIC

340 IF LEFT$(CMDERR$,1)<>"@" THEN
PRINT "SKUNK ERROR -";
CMDERRS:STOP

350 REM******************************
360 LOCATE 20,20:PRINT "Feed sheet

into scanner or press ESC";
370 DOC = 0
380 READTYPE = 2
390 CMDERR$ = SPACE$(20)
400 CALL SCAN (DOC,READTYPE,CMDERR$)
410 IF LEFT$(CMDERR$,3) ="504" THEN

PRINT PROGRAM ENDED":CLOSE:END
420 IF LEFT$(CMDERR$,1)<>"@" THEN

PRINT "SCAN ERROR -";
CMDERR$: STOP

430 REM******************************
440 RESTORE 610
450 AS=""
460 FOR I=1 TO 8
470
480
490
500
510
520
525
530
540

550

560

FOR J=O TO 7
READ GRIDARG(J)

NEXT J
GRIDSTRS = SPACES(20)
CMDERR$ = SPACE$(20)
EDSTAT = 0
Y#=FRE(O)
ARGPTR = VARPTR(GRIDARG(O))
CALL GRID(ARGPTR, GRIDSTRS,

EDSTAT,CMDERR$)
IF LEFT$(CMDERR$,1)<>"@" THEN

PRINT "GRID ERROR -";
CMDERR$: STOP

AS=A$+GRIDSTR$
570 NEXT I
580 PRINT # 1, A$
590 LOCATE 5,1:PRINT AS
600 GOTO 350
610 DATA 2,0,10,1,1,3,12,1

.620 DATA 3,1,18,1,1,15,19,1
630 DATA 3,1,18,1,1,25,29,1
640 DATA 3,1,18,1,1,35,39,1
650 DATA 3,1,18,1,1,34,30,1
670 DATA 3,1,18,14,1,14,10,1
680 DATA 3,1,18,14,1,7,3,1

5-9

INTERPRETIVE BASIC

1000 DEFSEG = $H1D54
1010 BLOAD "COMNDS.BAS",0
1020 SCAN= PEEK(0)+256*PEEK(1)
1030 GRID = PEEK{2)+256*PEEK(3)
1040 SKUNK = PEEK(4)+256*PEEK(5)
1050 CONTROL = PEEK(6)+256*PEEK(7)
1060 SETUP = PEEK(8)+256*PEEK(9)
1070 LEVEL= PEEK(10)+256*PEEK(11)
1080 TRANSMIT = PEEK(12)+256*PEEK{13)
1090 RECV = PEEK(14)+256*PEEK(15)
1100 RETURN

5-10

6-1

6

PROGRAM
ERROR
CODES

Introduction ••••••••••••••••• 6-2
Errors ••••••••••••••••••••••• 6-3

INTRODUCTION

The NCS Micro Scanner Commands
are designed to be easily in­
corporated into application pro­
gramming. To facilitate easy
use of the commands, NCS has
designed a set of meaningful
error codes for each command.
Error codes are divided into
eight different levels:

100 level - CONTROL Errors
200 level - SETUP Errors
300 level - GRID Errors
400 level - SKUNK Errors
500 level - SCAN Errors
600 level - LEVEL Errors
700 level - TRANSMIT Errors
800 level - RECV Errors

6-2

,. ERRORS

OVERVIEW: ERRORS

If an error occurs during the opera­
tion of Micro Scanner Commands, it
will be noted and passed back to the
application program in the cmderr
variable.

CONSIDERATIONS: ERRORS

Since programming error codes are
passed back to the application pro­
gram within the variable cmderr, the
programmer can determine the effect
of errors on the program. The pro­
grammer can choose to stop the pro­
gram in the case of a serious error.
Or, if an inconsequential error oc­
curs, the programmer can choose to
print out an error flag while con­
tinuing on in the program.

(For a description of variable names
which are referred to in this error
section, see the appropriate command
in Section Three.

(

6-3

PROGRAMMING ERRORS: CONTROL, SETUP

NUMBER PROBLEM EXPLANATION

101 Incorrect scanner Ctrlopt has been assigned an incorrect
control option number value. Ctr lo pt cannot be less than 1 or
(<1 or >4) greater than 4.

102 Scanner device not The operator has pressed the ESC key and
ready to receive the scanner device is not ready to receive
transmission. the transmission. Check connections and

modem status. Then retransmit the data.

201 Incorrect speed indi- The baud variable (which describes the
cation (baud rate) baud rate) has been assigned an incorrect

value. Correct values are 110, 300, 600,
1200, 2400, 4800, and 9600.

202 Incorrect parity in- The parity variable has been assigned an
dication incorrect value. Correct values are the

ASCII values for o, E, and and N.

203 Incorrect number of The databits variable (which describes the
data bits indicated number of bits per character) has been as-

signed an incorrect value. Correct values
are 7 and 8

204 Incorrect number of The stopbits variable has been assigned an
stop bits indicated incorrect value. Correct values are 1 and

2.

205 Incorrect board The variable portsel has been assigned an
selection indicated incorrect value. Correct values for

portsel are 1 and 2.

206 Incorrect combination This error occurs if the user tries to set
of parameters 8 data bits, parity and 2 stop bits, which

is a total ·of 11 bits per character. The
maximum allowed is ·10 bits per character.

6-4

NUMBER

301

302

(

303

(

PROBLEM

Incorrect type indi­
cation (Gridarg(O))

Incorrect starting x
position (Gridarg(2))

Incorrect ending x
position (Gridarg{3))

PROGRAMMING ERRORS: GRID

EXPLANATION

The grid type has been incorrectly defined
or an attempt was made to link two dif­
ferent types of grids. The variable type
cannot be less than 1 or greater than 7.
If this grid has been linked to another
grid, ensure that they are the same types.

The start x variable, sx, has been incor­
rectly defined. One of two conditions
exists:

1. The start x position is out of the
range indicated in the SKUNK command.
For example:

cells = 35
start x = 40

If there are 35 cells, start x must
be from 1 to 35.

2. The start x position was not defined
or start x was defined but was not
inserted into the GRID command call.

The end x variable, ex, has been incorrect~
ly defined. One of two conditions exists:

1. The end x position is out of the
range indicated in the SKUNK command.
For example:

cells = 37
end x = 41

If there are 37 cells, end x must
be from 1 to 37.

2. The end x position was not defined or
end x was defined but was not in­
serted into the GRID command.

6-5

PROGRAMMING ERRORS: GRID

NUMBER

304

305

306

PROBLEM

X spacing out of
range indicated in
SKUNK command (Gridarg
(4))

Incorrect starting y
position (Gridarg(S))

Incorrect ending y
position (Gridarg(6))

EXPLANATION

X Spacing is out of range given the defi­
nition of the variable cells in the SKUNK
table. For example:

cells = 43
spacing = 47

Since there are only 43 cells, spacing
cannot be 47.

The start y variable, sy, has been incor­
rectly defined. One of two conditions
exists:

1. The start y position is out of the
range indicated in the SKUNK command.
For example:

tracks = 32
start y = 34

If there are 32 timing marks, start y
must be from 1 to 32.

2. The sta~t y position was not defined
or sy was defined but was never in­
serted into the GRID command call.

The end y variable, ey, has been incorrect~
ly defined. One of two conditions exists:

1. The end y position is out of the
range indicated in the SKUNK command.
For example:

tracks = 30
end y = 37

If there are 30 timing marks, end y
must be from 1 to 30.

2. The end y position was not defined or C1•· '_,

end y was defined but was not in- .
serted into the GRID command.

6-6

(

NUMBER

307

308

309

314

(

PROBLEM

Y spacing out of
range indicated in
SKUNK command (Gridarg
(7))

Spacing x is impos­
sible.

Spacing y is impos­
sible.

Class is out of range
(Gridarg(1))

PROGRAMMING ERRORS: GRID

EXPLANATION

Y spacing is out of range given the defi­
nition of the variable tracks in the SKUNK
table. For example:

tracks = 30
spacing = 31

Since tracks is only 30, spacing cannot be
31.

Given the starting and ending x coordi­
nates, the spacing between x response po­
sitions is incorrect. For example:

start x = 8
end x = 15

spacing x = 2

If the first x response position is 8, the
next will be 10, the next 12, the next 14,
etc. The last x response position could
not be an odd number.

Given the starting and ending y coordi­
nates, the spacing between y response po•
sitions is incorrect. For example:

start y = 7
end y = 15

spacing y = 3

If the first y response position is 7, the
next will be 10, the next 13, the next 16,
etc. End y could ,!!2! be 15.

Class cannot be less than 0 or greater thaq
7. Class describes whether the grid is
vertical, horizontal, check parity, or
linked grid.

6-7

PROGRAMMING ERRORS: GRID, SKUNK
,·!'',,

',il._y

NUMBER PROBLEM EXPLANATION

321 Number responses per Given the grid type, the number of re-
item wrong for grid ponses per item is wrong. For example, a
type or number of grid is deemed a numeric grid. However,
items exceeds maximum coordinates indicate that there are 36 re-
allowed. sponses per item. A numeric grid must con-

tain no more than 10 responses per item
(0-9). The only grid types with 36 pos-
sible responses per item are alphanumeric
grids and two-digit response grids. In
the case of binary grids, a maximum of 28
items is allowed per grid. A linked grid
can only resolve one item.

322 Number of items ex- More than one item was resolved in a grid
ceeded in linked grid. with a link class.

400 Document number out o~ The variable docnum is out of range.
range (1-99) Docnum cannot be less than 1 or greater

than 99.

401 Value for cells out The variable cells, the highest X response
of range (1-47) position, is out of range. Cells cannot

be less than 1 or greater than 47.

402 Value for number of The variable tracks, the number of timing
timing tracks out of tracks on a form, is out of range. Tracks
range (1-99) cannot be less than 1 or greater than 99.

403 Number of SKUNK mark The variable nummarks, the number of SKUNK
positions out of rang~ mark positions occupied, is out of range.
(1-47) Nummarks cannot be less than 1 or greater

than 47.

404 A value for a skunk A value found in the array marks, a list
mark position is out of the response positions occupied by skunk
of range (1-47) marks, is out of range. The value for

marks cannot be less than 1 or greater
than 47.

ft,.'.·,,
\'j

.; ... -"'

6-8

PROGRAMMING ERRORS: SKUNK...1_ SCAN

NUMBER PROBLEM EXPLANATION

405 A value for a skunk A value found in the array marks is re-
mark position is re- peated. For example, in the array marks
peated (1,2,7,7,15) the position 7 is repeated.

Since there is only one position 7 1 it
should be listed just once.

406 Two documents have Two documents have the same skunk marks.
the same skunk marks In other words, the programmer has defined

a document which is already defined with
another docnum. The first document defi-
nition will not be altered.

407 Number of Skunk More than the allotted 99 entries have
entries greater than been entered into the skunk table.
maximum allowed

(
504 Operator pressed the The operator pressed the "ESC" key while

"ESC" key the SCAN command was operating.

505 Invalid SCAN command The SCAN command calling option found in
calling option read type is incorrect. The calling option~

are:

e2' - request new document from scanner
•3 - request retransmission of current

record from scanner

507 Skunk marks do not A document image has been received and is
match any document in the buffer but the skunk marks do not
in skunk table. match any document which has been defined

in the skunk table.

6-9

PROGRAMMING ERRORS: SCAN

NUMBER

508

509

510

511

512:x

PROBLEM

Document match made
but more or less data
than defined in SKUNK

Sheet buffer overflow

Illegal compression
count received

Sheet buffer overflow
while decompressing
sheet buffer

Communications
link error

x = 01 for overrun
error

x = 02 for parity
error

x = 04 for framing
error

EXPLANATION

Although the document is matched up with a
document definition in the skunk table
(via the defined skunk marks), there is
more or less data than defined in the
skunk command. For example, a document
could be matched through skunk marks, but
the sheet could become jammed and less than
a complete record would be transferred to
the host. In this case the number of
timing marks for the jammed sheet would
be more or less than the number of timing
marks defined in the SKUNK command.

Data for more than 99 timing tracks x 48
cells were received. This could be a
hardware problem or the communications
protocol is incorrect.

When a record contains four or more identi­
fied characters in a row the data is com­
pressed as it is transmitted from the scan­
ner to the microcomputer. The compression
is not working correctly. This error oc­
curs when the communications protocol is
incorrect. The compression character code
on the configuration sheet should be
checked.

As data is being decompressed, the sheet
buffer overflows. This could be a hardware
problem or communications protocol could
be incorrect.

One of the following communications errors
occurs: data is received too fast, parity
is in error, timing of reception is off.
These are all hardware problems. If this
error is a recurring problem, the communi­
cations protocol of the scanner does not
match that of the host. If the error oc­
curs occasionally it is an electrical
noise problem. Check the cable to see
that it does not lie next to heavy exten­
sion cords or near other office e_g_u~ment.

6-10

(~~'

\~,·

(

NUMBER

601

701

702

(
703

704

(

PROBLEM

Incorrect off set
value

Incorrect device
number

Incorrect transport
printer start positioq
(< 1 or > 99}

Number of output char~
acters > device limit
or value of output
characters does not
fall within range
limit

Escape key pressed

PROGRAMMING ERRORS: LEVEL~ TRANSMIT

EXPLANATION

The value of offset, the variable describ­
ing the offset value, is incorrect. Off­
set should be from -2 to 2.

The number selected for dest (DEST%} is
incorrect. Dest indicates the device to
which outputs is to be directed:

eO = scanner transport printer
e1 = scanner auxiliary port
e2 = scanner LED display

The numbers O, 1 and 2 are the only pos­
sible values for dest (DESTt}.

The start print position for the transport
printer is incorrect. Valid start print
,positions are from 1 to 99.

One of two conditions exists:

eThe number of output characters is beyond
the device limits. For example, if the
programmer wishes to output a string of
22 characters in length the programmer
would not choose the LED display. Since
the LED display is limited to one charac­
ter, 22 characters would be beyond the
LED display limits.

eThe value of the output character does
not fall within the range limit. For
example, the LED display can display only
1-9 and A-F. If the letter M were re­
ceived by the LED display, the error code
703 would be returned by cmderr.

Operator pressed the Escape key. The
TRANSMIT command is terminated whether or
not any transmission has taken place.
This can be useful if the scanner and host
do not seem to be communicating.

6-11

PROGRAMMING ERRORS: RECV

NUMBER PROBLEM EXPLANATION

801 ESC key pressed The ESC key was pressed while the RECV
during RECV call routine was in operation.

802:x Communications error The data was not recognized as data or was
detected received incorrectly. Check to ensure

that the communications cable is hooked
x = 1 for overrun up correctly.

error
x = 2 for parity

error
x = 3 for framing

error

6-12

APPENDIX A

FORM PARAMETER WORKSHEET

(- Program Name:

SKUNK Document No. No. Cells Tracks -DATA No. Skunk Marks Marks - --------
GRID GRII:l

NO. TYPE CLASS sx EX IX SY EY IY NO. TYPE CLASS sx EX IX SY EY IY

4'

(

(

(

B-1

APPENDIX B

TEST
PROGRAM

TEST PROGRAM••••••••••••••••·B-1
Introduction ••••••••••••••••• B-2
Test Program ••••••••••••••••• B-3
Compiled Basic Test

Program •••••••••••••••••••• B-13
Interpretive Basic Test

Program •••••••••••••••••••• B-19
Pascal Test Program ••••••••• B-23

INTRODUCTION

This appendix describes the scan­
ner commands sample testing pro­
gram and lists the program in
Compiled Basic, Interpretive
Basic, and Pascal.

B-2

(TEST PROGRAM

OVERVIEW: TEST PROGRAM

A sample program is on the scanner commands dis~ette in an executable format
for testing scanner commands with actual data to ensure that parameters are
being correctly passed to command routines and returned to the host program.
The test routine is also useful in determining whether communications problems
exist. The test routine is easy to use since data can be entered via the
keyboard.

The test programs included on the diskette are the following versions:

Compiled Basic (CTESTER.EXE)
Interpretive Basic (!TESTER.BAS)
Pascal (PTESTER.BAS)

EXPLANATION: TEST PROGRAM

A run through of the program follows with illustrations of the micro screens
and instructions of how to proceed.

eTo utilize the testing program from the Basic Operating
System, enter one of the following:

B:CTESTER for Compiled Basic
B:PTESTER for Pascal
B:ITESTER for Interpretive Basic

•~hen press the enter key.

1. CONTROL COMMAND 4. SKUNK COMMAND 7. TRANSMIT COMMAND
2. SETUP COMMAND 5. SCAN COMMAND 8. RECV COMMAND
3. GRID COMMAND 6. LEVEL COMMAND 9. DISP. SHEET OR SKUNK TABLE

10. QUIT

ENTER SELECTION (1 •• 10) FROM ABOVE 7

TESTING PROGRAM MAIN MENU

•Enter the number of the command you want to. test (1 •• ~) or
enter 9 to display the sheet buffer or skunk table~ (Op­
tion 9 is only available in the Compiled Basic program.)

•Then press the enter key.

CAUTION: A record must be passed (through the SCAN command) before the
CONTROL, TRANSMIT, and RECV commands will be effective.

B-3

,r,
TEST PROGRAM \~_,,

EXPLANATION: TEST PROGRAM (cont.)

Control Command

This message appears when CONTROL COMMAND is selected from the main menu:

TESTING CONTROL COMMAND

1. RELEASE DOCUMENT 3. SELECT AUX PORT

2. STOP SCANNER 4. SELECT SCANNER

ENTER SELECTION FROM ABOVE (1 •• 4)
7

•Press the number of the desired option (1 •• 4). Then press
the enter key.

ERROR STRING:
@

ERROR STRING :
101

If the transmission has been made co~rectly, the message on the left will be
returned; The cmderr variable, which returns a parameter error string, con­
tains "@", indicating no error has been made.

If an error or errors have occurred, the message on the right will appear
listing parameter error numbers. These errors are explained in Section Six.

DO AGAIN (Y/N): 7

After each command routine is tested, this message appears.

•If the t~st is ~o be repeated, enter Y and press the
enter, key.

eif the test is not to be repeated, enter N and press
the enter key. The system will return to the main
menu.

B-4

(

(

TEST PROGRAM

EXPLANATION: TEST PROGRAM (cont.)

Setup Command

This message appears when SETUP COMMAND is selected from the main menu:

TESTING SETUP COMMAND

ENTER BAUD RATE :7

ENTER PARITY :7

ENTER DATA BITS :7

ENTER STOP BITS :7
ENTER BOARD SELECT :7

•Enter the baud rate, parity, data bits, stop bits, and
board selection. Press the enter key after each entry.

Just as described in the CONTROL COMMAND selection, an "@" will be returned if
there are no parameter errors. If there are parameter errors, they will be
listed.

-GRID Command

This message appears when GRID COMMAND is selected from the main menu:

TESTING GRID COMMAND

INPUT TYPE 7

INPUT CLASS 7

INPUTSX 7

INPUT EX 7

INPUT IX 7

INPUT SY 7

INPUT EV 7

INPUT IV 7

•Enter the type, class, start x position, end x position, x
spacing, start y position, end y position, and spacing y.
Press the enter key after each entry.

B-5

TEST PROGRAM

EXPLANATION: TEST PROGRAM (cont.)

GRID Command (cont.)

GRID STRING:
EDIT STATUS:
ERROR STRING:
0004

The system returns the grid string, then @ followed by the number of charac­
ters in the gridstring if no errors have occurred. If parameters errors occur,
EDIT STATUS will be 128 and ERROR STRING will list the parameter error numbers.

Note: Errors will occur if the GRID command is tested before entering the
document parameters under the SKUNK command. Make certain to test the
GRID command after defining forms via the SKUNK command.

SKUNK Command

This message appears when SKUNK COMMAND is selected from the main menu:

TESTING SKUNK COMMAND

INPUTDOC ?
INPUT CELLS 1
INPUT TRACKS?
INPUT MARKS 1
INPUT MARK LOCATION, 99 TO EXIT :?
INPUT MARK LOCATION, 99 TO EXIT:?

•Enter the document number, number of cells, number of timing
tracks, number of skunk marks, and locations of skunk marks.
Press the enter key after each entry.

•Enter the number 99 to indicate that all skunk mark locations
are listed. The system will keep asking for skunk mark loca­
tions until 99 is entered.

As with the other commands, parameter errors are listed if they occur.

B-6

(TEST PROGRAM

EXPLANATION: TEST PROGRAM (cont.)

SCAN Command

This message appears when SCAN COMMAND is selected from the main menu:

TESTING SCAN COMMAND

ENTER 2 FOR SCAN, 3 FOR RE-TRANSMIT :7

eEnter the number 2 for scan or 3 for re-transmit. (Remember
that a document must first be scanned before it can be re­
transmitted.) Then press the enter key.

l.D. NUMBER OF DOCUMENT SCANNE9:

ERROR STRING:

The document I.D. number will be returned along with parameter errors, if they
occur.

Note: Again, this command should not be used unless the form to be scanned
has been defined with the SKUNK command.

LEVEL Command

This message appears when LEVEL COMMAND has been selected from the main menu:

TESTING LEVEL COMMAND

ENTER OFFSET TO READ LEVEL (-2 •• +2)

•Enter the number of the read level adjustment and press
the enter key.

ERROR STRING:
@5

Again, parameter errors are listed if they occur. If no parameter errors
occur, the adjusted read level will be returned in cmderr along with the @
symbol.

B-7

TEST PROGRAM '""--·'

EXPLANATION: TEST PROGRAM (cont.)

TRANSMIT Command

This message appears when TRANSMIT COMMAND is selected from the main menu:

[

TESTING TRANSMIT COMMAND

ENTER DESTINATION (O•PRINTER,1=AUXPORT,2=LED):?

•Enter the number indicating the data destination and
press the enter key.

ENTER VALUE (0 •• 99} START PRINT POSITION :?

ENTER STRING TO TRANSMIT:?

•If 0 (printer) is selected, enter the start print
position. Then press the enter key.

•Then enter the string to be transmitted. Press the
enter key to signal the end of the string. (Do not
enter , or : in the Basic test program as either mark
is interpreted as a signal to end the string.)

ENTER STRING TO TRANSMIT:?

•If 1 (auxport) is selected, enter the string to transmit.
Then press the enter key.

ENTER VALUE (0 •• 15) TO BE DISPLAYED:?

•If 2 (LED-scanner display panel) is selected, enter
the value to be displayed. Then press the enter key.

In all three cases, parameter errors will be listed if they occur.

B-8

c· TEST PROGRAM

EXPLANATION: TEST PROGRAM (cont.)

RECV Command

This message appears when RECV COMMAND is selected from the main menu:

TESTING RECV COMMAND

ENTER STRING AT AUX PORT TERMINAL AND PRESS

RETURN AT TERMINAL TO TERMINATE OR ESCAPE ON PC TO TERMINATE

INPUT STRING:

•Enter the string at the aux port terminal. Press the
enter key to terminate the string.

If parameter errors occur, they will be listed.

DISPLAY SHEET OR SKUNK TABLE

The sheet buffer or skunk table can be displayed in the Compiled Basic Testing
Program. This message appears when DISPLAY SHEET OR SKUNK TABLE is selected
from the main menu:

DISPLAY SHEET BUFFER OR SKUNK TABLE

1. DISPLAY SHEET BUFFER

2. DISPLAY SKUNK TABLE

3. RETURN TO MAIN MENU

ENTER SELECTION FROM ABOVE (1 •• 3): 7

DISPLAY MENU

•Enter the number of the desired option and press the enter key.

If option 1, DISPLAY SHEET BUFFER, is selected, this message appears:

DISPLAY SH.EET BUFFER

ENTER DESIRED ROW (1 •• 99) OF SHEET TO BE DISPLA YEO: 7

•Enter the number of the row to start displaying at. Then press
the enter key. Eleven rows will be displayed at one time.

B-9

.,,--.
TEST PROGRAM ""-_,;

EXPLANATION: TEST PROGRAM (cont.)

ROW LOCATION

1 1
2 49
3 97
4 145
5 193
6 241
7 289
8 337
9 385

10 433
11 481

DO AGAIN 7 (Y/NI: 7

READ LEVELS

71700030066112722225575100000030000711131777004
00000600603222210000706066100040007671000506115
22222000600006700061114000000050001110660070605
00000000000010000010000000000406660070200307774
22222322222000500050077711100600101700300000404
00000000007000000061113166000700003020020500564
00010006070070111401000000000000000050000500075
77000000500060606001111000000000050000660000604
00066000021000000650000113100000700006000030005
07071111111000000000111100000607000001216660005
00000000000000100000600606111604300000000006004

•To display another set of rows, press Y and follow the same
procedure.

eTo get back to the display menu, press N and press the enter
key.

If option 2, DISPLAY SKUNK TABLE, is selected, this message appears:

DISPLAY SKUNK TABLE

ENTER DESIRED LOCATION IN TABLE (1 •• 99): 7

•Enter the number of the entry to start displaying at. Then
press the enter key. Eleven entries will be displayed at
one time.

B-10

'
~·

(TEST PROGRAM

(:

EXPLANATION: TEST PROGRAM (cont.)

ENTRY DOC CELLS TRACKS NMARKS MARKS 1 .. 47

1 1 48 65 2 2 8 0 0 0 0
-2 2 48 65 3 8 24 0 0 0 0
3 3 48 65 3 0 0 "26 0 0 0
4 4 48 65 2 16 44 0 0 0 0
5 5 48 65 4 48 24 32 0 0 0
6 6 48 65 3 2 96 0 0 0 0
7 7 48 65 3 8 0 32 0 0 8
8 8 48 65 2 0 0 0 192 0 0
9 9 48 65 1 16 0 0 0 0. 0
10 10 48 65 4 20 48 0 0 0 0
11 11 48 65 2 0 0 96 0 0 0

DO AGAIN 7 CV/NI:
7

When programming with the SKUNK command, skunk mark locations are entered by
matching their X locations on the form. In the skunk buffer, the marks are
stored in a different manner. The following illustration and description
explains how skunk mark locations are represented in the skunk buffer:

Field 1 Field2 Field 3 Field4 Field5 Field 6 ,, ,, ,, r""--111111111--., r,,..--,...--.., r"""--,...--.,

~·) - r::)i .. ~, ·- .) 1 •. : ~) {~= () :."~ _): ~ (J ::,. 0 _· \:) .·: 0 '-~ ,-. ·: : .. :; ...
i.~1-~1 ·A.· A: A· ~~\·.~ 1 .~'1 A'~ '~:~~·i..; 1.~))~1 ~_i.~·1 & ~;':~-~~i~) A .A Ai A A-·:~)~ .~l.~: A A. A· A ~1 ~ ,~1 ~'A. A A A A A A· A

.9;:'9; B· a B it a :~)a··.·~)~, ri: Ei ~I B: !i g, '!) B a. a ii\ a .-, a a: a B· .. ~) 9, a a B· a 81 a 8' a· a a a a a· a a B

c; c c c c·. c @ c;, 'S" c, c: c c: c -~ c :'?> c C.' c c· c :SJ c: ?: c. c c:· c. c c;:i c S· c c c c; c .;· c .<; c c; c c c
•D· ·i), ii D D Dl D €1 a. DJ D• D· D• D> D ~ "."' Dl D· a· D D· D ~ D I:!' D D D D D ~I D ~.I D D D D D °-' D D: D D D D D

;£ ·~) ~- ~) E Ei E E: E ~} ~- .E: E: l!i ~:.:'~: E· e;~l E E' E 8:1 a:·-~~ E ~l E, E E E a: ~: E' -~; E IE a: E E ~- E '!!.. E E E. E E

F F F

H' H H' H H H H H H· H ~ H H H H H H. H H H

I I I I_, I !) I, -.~· I I 1. I I ·'-· . I~. I I I I I 1. I 1 ·I

~,' J J. J ~: J J~· J L: j 'i. j' :)~: J J J J . J -~- J~ t.~ J J J J J ~. J J__ J

·K K K K K ~) K ~ ~- I<"· K K. K K) K• !9 14:' K• K K. K Kl K. g; ~- ~ K. K K. ~; K'. ~' K K:i .K K K K\ K K K K. K K_ K K' K

..;, ..:;:; ..:: :.;;; .., -~' .., I.,;i ..::. fl ..:: . .:: . ..:::- .; ..; :Q ..:: .;-; a.;·; .:;, i.; .s. .._ .:;:; i.:: ..:: i.,:,,

Notice that there. are 47 possible skunk mark locations on the ,form. The.form
is physically divided into 6 fields. Each field contains 8 response positions
except field 6, which contains 7 response positions. Field 1 contains X loca­
tions 1-8; field 2 contains X location 9-16, etc.

B-11

,;#~'·

TEST PROGRAM ~·

EXPLANATION: TEST PROGRAM (cont.)

Each field (1 •• 6) contains 8 possible values. Position values are expressed in
powers of two. So positions 1 through 8 represent the values 1(20), 2(21),
4(22), 8(23), 16(24), 32(25), 64(26), and 128(27).

Field 1 Field 2 ., _,,...,~
~~----... --n~ ---.'v""' "

Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Values 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

The powers of 2 numbering sequence is repeated for each field so that the same
8 values are repeated for the 8 positions of field 2, field 3, field 4, field
s, and field 6.

When reviewing skunk mark locations in the skunk buffer, a value appears for
each of the 6 fields. For example:

skunk marks
in these
positions

8 ____ ,..,,.... ___
,.. '

345678

x

24

x.x

0 0 0 0

:-:1 ~"J'... .,J::<::1.:·:-c~·-- ·.:() ~:o ·~ .. ~·,~J< .. ~.r:;·.=, ·.:, =. ,_.
A .. A.,.~}~ A:A .. ~/~-/~)~~)'A1A.~ A·.~)A·.:~,,~,:~,!A-A,A ~-A··~;;. AJA'A A·A ~~:·A ~.;A A A A A A•A A_ A

B 8 ~> 8 ,~'·B 8\ ii. ·9,.9, iii B• ~) a• ~i 8 ••
c c c c c ~! c c: c c c· c c s· c· C' c c.

8 i1 B· a: a·

c c c ~; c
Bl ii
«;,: c

a;
c

8

c
~~j 9 B• B 8 B BJ B 8) B a· B B B B B B B

c c ~· c ~ c. c c c c c c c c c c c c
DD D' 0··~1 D ~;DD D· Q, D ~) ci.·tii DD DD D D•D ~ D q DD D ~lD DJ D· DD 0 DD D 0 D 0 DD D

E E E E E E E E E E E E E E ~ E

~ F ~ F F F F F F F F F F F F F F F F F F F i F
-

~· G G G G G G G G. G. G G G G G G G. G G; G G G G G G G G G G G G G G G G G G G.G G G G G G

H ~. H H H H H H, H ~ H H· H H H' H' H H1 H. H" H H H H H H· H H H H H H H H H H H H H H H H' H H H

-t I I I I I I I I I I 1 I I I I I I I 1 ' • I I I I I 1 I

In this example, three skunk marks are found on a form in locations 4, 12, and
13. Since location 4 has a value of 8, and 8 appears in the skunk table for
the value of field 1. Positions 12 and 13 also contain skunk marks. Their
values are 8 and 16, which add up to 24. 24 appears in the skunk table for
the value of field 2. Since fields 3 through 6 contain no skunk marks, zeros
appear in those positions in the skunk table.

•To display another set of entries, press Y and follow the same
procedure •.

eTo get back to the display menu, press N.

Press 3 and the enter key if you want to return to the main menu.

B-12

(

TEST PROGRAM

When QUIT is selected from the main menu, you will return to the Basic
Operating System

EXPLANATION: TEST PROGRAM

The actual test program is listed in its entirety in Compiled Basic, Interpre­
tive Basic, and Pascal as a further illustration of how to incorporate scanner
commands into host programming. The first listing is in Compiled Basic.

SO REK FILENAKE: CTESTER COKPILED BASIC TEST ROUTINE
SS REK FILE CREATED: 28-JUN-83
60 REK LAST REVISED: 28-JUN-83 10:00
65 REK CONTEXT: TESTE PROGRAK FOR COKPILED BASIC VERSION OF KICROSCANNER CKDS
70 REK
71 REK THIS TEST PROGRAK ALLONS THE USER TO DISPLAY THE SHEET BUFFER AND
72 REK SKUNK TABLE. TEST PROSRAKS FOR OTHER LANGUAGES (INTERPRETIVE BASIC
73 REK AND IBK PASCAL! DO NOT HAVE THIS FEATURE.
74 REK
75 REK NOTE: THE LINES THAT ARE COKKENTED OUT ARE USED IN THE INTERPRETIVE
76 REK BASIC TEST PROGRAK (LINES 100-190!
77 REK
78 REK
100 'DEF SE6=~H1CF4
110 'BLOAD 'coands.bas•,o
120 'SCAN =PEEK!Ol + 256 S PEEK(1l
130 'GRID =PEEK(2l + 256 t PEEK(31
140 'SKUNK =PEEK(41 + 256 t PEEK(5l
150 'CONTROL =PEEKl6l + 256 t PEEK(7l
160 'SETUP =PEEKl8l + 256 t PEEK(9J
170 'LEVEL =PEEKllOl + 256 t PEEK(11l
180 'TRANSKIT=PEEKl12J + 256 t PEEKl13l
190 'RECV =PEEKl14l + 256 t PEEK<15l
200 DI" 6RIDAR6I<81
210 DIK KARKSI!4Bl
220 REKtttttttttttttttlttttttttttlttttttttttttt
230 REK KENU FOR TEST PROGRAK
240 REKtttttlttlttttttttttttttttttttttttttttttt
1000 PRINT '1. CONTROL COKKAND 4. SKUNK COKKAND
1010 PRINT '2. SETUP COKKAND 5. SCAN COKKAND
1020 PRINT '3. GRID COKKAND 6. LEVEL COKKAND
1030 PRINT: PRINT '10. QUIT'
1040 PRINT: PRINT 'ENTER SELECTION <1 •• 10l FROK ABOVE: ';
1050 INPUT At
1055 IF A% >10 THEN GOTO 1000
1060 IF A%=10 THEN SYSTEK

7. TRANSKIT COKKAND'
s. RECV COKKAND I

9. DISP. SHEET OR SKUNK TABLE'

B-13

COMPILED BASIC TEST PROGRAM

1130 ON AI 60SUB 10000,11000,12000,13000,14000,15000,16000,11000,1eooo
1140 &OTO 1000
10000 RE"tttttttttttttttttttttttttttlttttttttt
10005 RE" SUBROUTINE TO TEST CONTROL co""AND
10007 RE"Sttttttttttttltttttttlltltttattttlttt
10010 CLS
10020 PRINT ·TESTING CONTROL co"~No•:PRINT
10030 PRINT '1. RELEASE DDCUKENT 3. SELECT AUX PORT'
10040 PRINT '2. STOP SCANNER 4. SELECT SCANNER•
10050 PRINT: PRINT 'ENTER SELECTION FRO" ABOVE (1 •• 4)'
10060 INPUT CTRLOPT%
10070 C"DERRS=SPACES(20)
10080 CALL CONTROL<CTRLOPTl,C"DERRSl
10090 PRINT 'ERROR CODE:';C"DERRS
10100 PRINT 'DO AGAIN? (Y/N):•;:INPUT DOAGAINS
10110 IF DOAGAINS 0 •N1 THEN GOTO 1002!'
10120 RETURN
11000 RE"tSSttatttttttStttttttttSSSttSSttttSStt
11005 R~ SUBROUTINE TO TEST SETUP CO""AND
11007 RE"tUtUUUtUUtUUUUUtUUUUUI
11010 CLS .
11020 PRINT ·TESTING SETUP co""AND•:PRINT
11030 PRINT •ENTER BAUD RATE:•;: INPUT BAUD%
11040 PRINT •ENTER PARITY!O,E,N>:•;:INPUT PARITY$
11050 PRINT •ENTER DATA BITS:•;:INPUT DATABITSI
11060 PRINT •ENTER STOP BITS:•;:INPUT STOPBITS%
11070 PRINT •ENTER BOARD SELECT:';:INPUT PORT%
11080 PARITYI=ASC<PARITYSl
11085 C"DERRS=SPACES<200l
11090 CALL SETUP<BAUD%,PARITY%,DATABITS%,STOPBITS%,PORT%,CKDERRSl
11100 PRINT 'ERROR STRING:•,CKDERRS
11110 PRINT 'DO AGAIN? <YIN>:•;:INPUT DOAGAINS
11120 IF DOAGAINS <> •N• THEN &OTO 11020
11130 RETURN
12000 RE"tttttttttSSttttttSSttttttttSSSttttttttttt
12005 REK SUBROUTINE TO TEST GRID ROUTINE
12007 RE"ttt
12010 CLS
12015 PRINT 'TESTING GRID CO"ftAND':PRINT
12020 PRINT 'INPUT TYPE';:INPUT 6RIDAR6%(0)
12030 PRINT •INPUT CLASS•;:INPUT 6RIDAR6%<1l
12040 PRINT ·INPUT sx•;:INPUT 6RIDARG%(2J
12050 PRINT ~INPUT' EX-;:INPUT 6RIDARG%<~>
12060 PRINT 'INPUT IX•;:INPUT GRIDARGXC4l
12070 PRINT ·INPUT sv•;:INPUT 6RIDARG%(5)
12080 PRINT 'INPUT EY•;:INPUT GRIDARG%C6l
12090 PRINT •INPUT IY';:INPUT 6RIDARG%(7)
12100 Yl=FRECOl
12110 EDSTAT%=99

B-14

if'-,

''-~.:

(

(

12120 6RIDSTRS=SPACES(254l:C"DERRS=SPACES(200l
12130 ARGPTRI= YARPTR(6RIDAR61(0Jl
12140 CALL GRID(ARGPTRl,GRIDSTRS,EDSTATl,C"DERRSl
12150 PRINT 'GRID STRING:',GRIDSTRS :PRINT 'EDIT STATUS:',EDSTATl
12160 PRINT •ERROR STRING:',C"DERRf
12180 PRINT ·no AGAIN? (Y/N):•;:INPUT DOA6AINf
12190 IF DOA6AINS <> 'N' THEN GOTO 12020
12200 RETURN
13000 RE"ttttttttttttttaatttttttttattttttttttttttatt•
13005 RE" SUBROUTINE TO TEST SKUNK co""AND

· 13007 RE"ttttttttlttttttttttttttttttttttttttttttttttt
13010 CLS
13020 PRINT ·TESTING SKUNK co""AND':PRINT
13030 PRINT 'INPUT DDCl:';:INPUT DOCNU"l
13040 PRINT •INPUT CELLS:•;:INPUT CELLS%
13050 PRINT 'INPUT TRACKS:';:INPUT TRACKS%
13060 PRINT 'INPUT N"ARKS:•;:INPUT NU""ARl<Sl
13070 FOR K=O TO 50 : PRINT 'INPUT "ARK LOCATION,99 TO EXIT:';
13075 INPUT "ARKSl!KJ
13080 IF "ARKS%(KJ=99 THEN GOTO 13100
13090 NEXT K
13100 C"DERRf=SPACES(200l
13110 Yl=FRE!Ol
13120 "ARKPTRl=YARPTR("ARKS%(0JJ
13130 CALL SKUNK!DOCNU"l,CELLSl,TRACKS1,NU""ARKS%,"ARKPTRl,C"DERRSl
13140 PRINT 'ERROR STRIN6:',C"DERRS
13150 PRINT ·oo AGAIN? (Y/N):•;:INPUT DOA6AINS
13160 IF DOAGAINS <> •N1 THEN GOTO 13020
13170 RETURN
14000 RE"tt
14005 RE" SUBROUTINE TO TEST SCAN ROUTINE
14007 RE"ttttttttttttttttttttfttttfttttttttlttttttttl
14010 CLS
14020 PRINT 'TESTING SCAN co""AND':PRINT
14030 PRINT 'ENTER 2 FOR SCAN, 3 FOR RE-TRANS"IT:•;:INPUT READTYPE%
14040 C"DERRS=SPACES(200l:DOC1=0
14050 CALL SCAN(DOCI,READTYPEI,C"DERRSI
14060 PRINT 'I.D. NU"BER OF DOCU"ENT SCANNED: ";
14065 PRINT USING 'tt•; DOC%
14070 PRINT •ERROR STRIN6:',C"DERRS
14080 PRINT •oo AGAIN? (Y/Nl:';:INPUT DOAGAINS
14090 IF DOAGAINS <> •ff• THEN GOTO 14020
14100 RETURN
15000 RE"tttttttttttatttttttttttttttttttttttttttttttttt
15005 RE" SUBROUTINE TO TEST LEVEL co""AND
15007 RE"ttttttttttttttttttttttttattttttltttttttttttttt
15008 CLS
15010 PRINT "TESTING LEVEL co""AND":PRINT
15020 PRINT 'ENTER OFFSET TO READ LEYEL<-2 •• +2l:';:INPUT OFFSET%

B-15

COMPILED BASIC TEST PROGRAM

COMPILED BASIC TEST PROGRAM

15030 C"DERRS=SPACESC200J
15040 CALL LEYEL<OFFSETI,C"DERRSl
15050 PRINT 'ERROR STRIN6:',C"DERRS
15060 PRINT 'DD A6AIN? (Y/Nl:';:INPUT DOA&AINS
15070 IF DOAGAINS <> 1 N1 THEN GOTO 15010
15080 RETURN
16000 REMtaaaaaaaaaaaaatStSSSSSSSSSSttSSSSSS&SStSSttSttSSt
16005 RE" SUBROUTINE TO TEST TRANS"IT co""AND
16007 RE"SStttSSSSSStttSSSSSttttStStStSttStSSSSSttSSttttSt
16010 CLS
16020 PRINT 'TESTING TRANSMIT co""AND':PRINT
16030 PRINT 'ENTER DESTINATION (O=PRINTER, 1= AUXPORT, 2=LEDl: 1 ;:INPUT DEST%
16040 IF DESTI=O THEN PRINT 'ENTER PRINT POSITION:•;:INPUT PRNTPOSl
16050 IF DEST%=1 THEN PRINTPOS%=0
16060 IF DESTl=2 THEN PRINT 'ENTER VALUE (0 •• 15l TO BE DISPLAYEO:';:INPUT PRNTPOSI
16070 XMITSTRS='ABC'
16080 IF DESTl = 0 OR DEST%=! THEN PRINT 'ENTER STRING TO TRANSMIT:';:INPUT XMITSTRS
16085 C"DERRt=SPACEt(200l
16090 CALL TRANSMIT<DESTl,PRNTPOSl,XMITSTRS,C"DERRSl
16100 PRINT 'ERROR STRING:',C"DERRt
16110 PRINT 'DO A6AJN? CY/Nl:';:INPUT DOA&AINS
16120 IF DOA&AINS <> 'N' THEN SOTO 16020
16130 RETURN
17000 REMSStStStttlSStSttSttttSSttatSSSStSttSttSSStSttSSSttS&
17005 RE" SUBROUTINE TO TEST RECY CD"MAND
17008 RE"tSttttttStttStSSStStttttttSttt&StttttttttttttttttSSS
17010 CLS
17020 PRINT 'TESTIN6 RECV co""AND':PRINT
17030 PRINT 'ENTER STRING AT AUX PORT TER"INAL AND PRESS'
17040 PRINT ' RETURN AT TER"INAL TO TERMINATE OR ESCAPE ON PC TO TER"INATE 1

17050 CMDERRS=SPACESC200l
17055 RECVSTRt = SPACES<254l
17060 CALL RECYCRECVSTRS,CMDERRSl
17080 PRINT 'INPUT STRIN&:•;:PRINT RECVSTRS
17090 PRINT 'ERROR STRIN&:',C"DERRS
17100 PRINT 'DO AGAIN? (Y/NJ:•;:INPUT DOAGAINS
17110 IF DOA6AINS <> 'N" THEN &OTO 17020
17120 RETURN
18000 REMtSSttSStttttttttttttSttttttStSttStStttSStttSSSSttttttttttttttt
18002 REM SUBROUTINE TO DISPLAY SHEET BUFFER OR SKUNK TABLE
18004 REMtttttttttttttttStttttttttttttttttttttttttttStStStttttttt&S&Stt
18005 CLS
18010 PRINT 'DISPLAY SHEET BUFFER OR SKUNK TABLE'
18020 PRINT
18030 PRINT "1. DISPLAY SHEET BUFFER'
19040 PRINT '2. DISPLAY SKUNK TABLE'
18050 PRINT '3. RETURN TO "AIM "ENU'
18060 PRINT
18070 PRINT 'ENTER SELECTION FROM ABOVE Ct •• 3>: •;

B-16

(.

(

(

(

18080 INPUT KI
18090 IF KI = 3 THEN RETURN
18100 IF KI < 1 DR Kl > 3 THEN GOTO 18020
18110 CLS
18120 IF Kl = 1 THEN GDSUB 19000 ELSE GDSUB 20000
18130 GOTO 18020

COMPILED BASIC TEST PROGRAM

19000 REKtttitttttttttttt
19002 REK DISPLAY SHEET BUFFER
19004 RE"tttttttttttllttt
19005 CLS
19010 PRINT 'DISPLAY SHEET BUFFER'
19020 PRINT
19030 PRINT 'ENTER DESIRED ROW (1 •• 991 OF SHEET TO BE DISPLAYED: 1 ;

19040 INPUT STARTROWI
19050 IF STARTROWI < 1 DR STARTRONI >99 THEN GOTO 19010
19052 CODESEGI=O
19053 CALL 6ETSEG!CODESE6Il
19055 DEF SEG =CODESESI
19060 SHTBUFI= PEEK!16l + 256t PEEK!17l 'LOCATION OF POINTER TO SHEET BUFFER
19070 PRINT
19080 PRINT "ROW LOCATION READ LEVELS'
19090 PRINT
19100 IF STARTROWl > 89 THEN ENDROWI=99 ELSE ENDRONI = STARTRONI + 10
19110 FOR Kl = STARTROWt TO ENDROWI
19120 PRINT USING 1 llt1 ;Kl;
19130 PRINT USING I 111111 1 ;!KI-1Jt4B;
19140 FOR EACH"ARKI = 0 TO 47
19150 "LEVELl= PEEK!SHTBUFI+!KI-1lt48 + EACHKARKll -48 'SUBTRACT OFF ASCII PREFIX
191b0 PRINT USING 1 11 ; "LEVEL%;
19170 NEXT EACHKARKI
19180 PRINT
19190 NEXT KI 'DO NEXT ROW
19200 PRINT 'DO AGAIN? !Y/NI: 1 ; :INPUT DOA6AIN$
19210 IF DOAGAINS <>· 1 N1 THEN SOTO 19010
19220 RETURN
20000 RE"tttttttttttttttttt~ttt
20002 REK DISPLAY SKUNK TABLE
20004 REKtttttttttttttttttttttttttttttttttttttlttttttlttttttttttttttttl
20005 CLS
20010 PRINT "DISPLAY SKUNK TABLE I

20030 PRINT
20040 PRINT 'ENTER DESIRED LOCATION IN TABLE!l •• 991: .';
20050 INPUT KI
20060 IF KI < 1 OR Kl > 99 THEN GOTO 20030
20062 CODESEGI = 0
20063 CALL 6ETSE6!CODESE6ll 'GET CODE SEGKENT OF ASSY KODULE
200b5 DEF SES =CDDESEGI
20070 SKTBLOCI = PEEK!181 +256 tPEEK<191

B-17

COMPILED BASIC TEST PROGRAM

20080 PRINT "ENTRY DOCI CELLS TRACKS N"ARKS "ARKSC1 •• 47l'
20090 PRINT
20095 IF KI >89 THEN LI = 99 ELSE LI : Kl + 10
20100 FOR "I = Kl TO L%
20110 PRINT USING I Ill ';"%;
20120 FOR NI = 0 TO 3
20130 PRINT USING 1 Ill •; PEEK!SKTBLDCI + (("%-1>StO>+N%l;
20140 NEXT Nl
20150 PRINT • •;
20160 FOR NI= 4 TD 9: PRINT USING "llll";PEEK!SKTBLOC%+!!"%-1>SlO>+Nil;
20170 NEXT NI
20180 PRINT
20190 NEXT "%
20200 PRINT
20210 PRINT 'DO AGAIN ? !Y/Nl: ':INPUT DOA6AIN$
20220 IF DOA6AIN$ <> "N' THEN GOTO 20030
20230 RETURN

B-18

(

(

50 RE"
55 RE"
60 RE"
65 RE"
67 RE"
70 RE"
74 RE"

FILENAKE: ITESTER INTERPRETIVE BASIC TEST ROUTINE
FILE CREATED: 12-JUL-83
LAST REVISED: 12-JUL-83 10:00
CONTEXT: TEST PROGRAK FOR INTERPRETIVE BASIC

VERSION OF KICROSCANNER COK"ANDS

INTERPRETIVE BASIC TEST PROGRAM

75 RE" NOTE: THE LINES 100-190 ARE CO"KENTED OUT WHEN USING CO"PILE BASIC
77 RE"
78 REH
100 DEF SEG=&H1CD4
110 BLOAD "B:co1nds.bas•,o
120 SCAN =PEEK<OI + 256 a PEEK!ll
130 GRID =PEEK<2l + 256 t PEEK<3l
140 SKUNK =PEEKl4l + 256 t PEEK<51
150 CONTROL =PEEK<6l + 256 t PEEKl7l
160 SETUP =PEEKIBJ + 256 t PEEKl91
170 LEVEL =PEEKl10J + 256 t PEEKl11l
180 TRANSKIT=PEEK<12l + 256 a PEEK!l31
190 RECV =PEEK<l4l + 256 S PEEK<15l
200 DIH GRIDARGI<Bl
210 DI" KARKSXl48l
220 REKtlttttttttttltttStttSStSStttttSttSttSStt
230 RE" "ENU FOR TEST PROGRAH
240 REKttSttSSSStttStttttttttttttttttttt~ttttSS
1000 PRINT ·1. CONTROL co""AND 4. SKUNK COMMAND 7. TRANSKIT COKHAND"
1010 PRINT "2. SETUP COHHAND 5. SCAN COKHAND 8. RECV COKHAND 1

1020 PRINT 1 3. GRID COMMAND 6. LEVEL COKKAND
1030 PRINT: PRINT "9. QUIT"
1040 PRINT: PRINT "ENTER SELECTION <1 •• 9l FRDH ABOVE: ";
1050 INPUT AI
1055 IF AX >9 THEN GOTO 1000
1060 IF AX=9 THEN SYSTEK
1130 ON AX sosuB 10000,11000,12000,13000,14000,1sooo,16000,11000
1140 SOTO 1000
10000 REHSSaaaaatttttttttttttSStStttSSttttaaaa
10005 REH SUBROUTINE TO TEST CONTROL COKKAND
10001 REKttttttaattttatttttttatttatttattattttt
10010 CLS
10020 PRINT 'TESTING CONTROL COKHAND":PRINT
10030 PRINT 1 1. RELEASE DOCUHENT 3. SELECT AUX PORT"
10040 PRINT 1 2. STOP SCANNER 4. SELECT SCANNER"
10050 PRINT: PRINT 'ENTER SELECTION FROK ABOVE lt •• 41 1

10060 INPUT CTRLOPTI
10070 CKDERRS=SPACESl20l
10080 CALL CONTROL<CTRLOPTI,CHDERRSl
10090 PRINT "ERROR CODE:";CHDERRS
10100 PRINT ·no A6AIN? (Y/Nl:';:INPUT DOASAINS

B-19

INTERPETIVE BASIC TEST PROGRAM

10110 IF DOASAINS <> •N• THEN SOTO 10020
10120 RETURN
11000 REt!UUUUUUUUUUUUUUUUUUU
11005 REt! SUBROUTINE TO TEST SETUP co""AND
11007 RE"tttSSStStSStSttSttttStttSttttStttStttt
11010 CLS
11020 PRINT •TESTING SETUP COt!t!AND•:PRINT
11030 PRINT •ENTER BAUD RATE:•;:INPUT BAUD%
11040 PRINT •ENTER PARITY!O,E,N>:•;:INPUT PARITY$
11050 PRINT •ENTER DATA BITS:•;: INPUT DATABITS%
11060 PRINT •ENTER STOP BITS:•;: INPUT STOPBITS%
11070 PRINT •ENTER BOARD SELECT:";:INPUT PORT%
11080 PARITYZ=ASC!PARITYSl
11085 C"DERRS=SPACE$(200l
11090 CALL SETUP<BAUD%,PARITY%,DATABITS%,STOPBITS%,PORTX,CKDERRSI
11100 PRINT 'ERROR STRIN6: 1 ,CKDERR$
11110 PRINT 'DO AGAIN? <YINl:';:INPUT DDAGAINS
11120 IF DOAGAINS <> •N• THEN GOTO 11020
11130 RETURN
12000 REt!ttttttttStttSttttttttStttttStStttaaaaaaat
12005 RE" SUBROUTINE TO TEST GRID ROUTINE
12007 REKSStStSStttttattStttStStttttttltSSStStttSt
12010 CLS
12015 PRINT •TESTING GRID COKKAND":PRINT
12020 PRINT 'INPUT TYPE";:INPUT 6RIDARG%!0)
12030 PRINT 'INPUT CLASS';: INPUT 6RIDARG%!1l
12040 PRINT 'INPUT SX';:INPUT GRIDARG%!21
12050 PRINT 'INPUT EX';: INPUT GRIDARG%!3l
12060 PRINT •INPUT IX';: INPUT GRIDAR6%!4J
12070 PRINT 'INPUT SY";: INPUT GRIDAR6%!5l
12080 PRINT •JNPUT EV•;: INPUT 6RIDAR6%!6l
12090 PRINT •INPUT IY';:INPUT GRIDARG%!7l
12100 Yt=FRE !Ol
12110 EDSTAT%=99
12120 6RIDSTRS=SPACES!254l:CKDERRS=SPACES!200l
12130 AR6PTR%= YARPTR!6RIDARG%!0ll
12140 CALL 6RID!AR6PTR%,6RIDSTRS,EDSTAT%,C"DERR$l
12150 PRINT •sRID STRIN6:',6RIDSTRS :PRINT •EDIT STATUS:",EDSTAT%
12160 PRINT ·ERROR STRINs:•,ct1DERRS
12180 PRINT 'DO AGAIN? !Y/Nl:';:INPUT DOASAINS
12190 IF DOASAINS <> 'N' THEN SOTO 12020
12200 RETURN
13000 RE"tutuauunuuauuutuuuuuuauuu
13005 RE" SUBROUTINE TO TEST SKUNK CO""AND
13007 REKtSttSStStltttSttStSStSSttttSSStttSSStStSStll
13010 CLS
13020 PRINT •TESTING SKUNK COM"AND•:PRINT
13030 PRINT •INPUT DOCt:•;:INPUT DOCNU"X
13040 PRINT •INPUT CELLS:•;:INPUT CELLS%

B-20

(

(

c

13050 PRINT "INPUT TRACKS:";:INPUT TRACKS%
13060 PRINT "INPUT N"ARKS:";:INPUT NUK"ARKS%

INTERPRETIVE BASIC TEST PROGRAM

13070 FOR K=O TO 50 : PRINT "INPUT "ARK LOCATION,99 TO EXIT:";
13075 INPUT "ARKS%(K)
13080 IF "ARKS%<K>=99 THEN GOTO 13100
13090 NEIT K
13100 CKDERRt=SPACEt(2001
13110 Yl=FRECOI
13120 KARKPTR%=YARPTR<KARKS%101l
13130 CALL SKUNKIDOCNU"%,CELLS%,TRACKS%,NUK"ARKS%,KARKPTR%,CKDERRS>
13140 PRINT "ERROR STRING:"~C"DERRS
13150 PRINT "DO AGAIN? CY/N':";:INPUT DOAGAINS
13160 IF DOAGAINS <> 1 N1 THEN GOTO 13020
13170 RETURN
14000 RE"tttttttttttttttttatatattlttllllllttttltltttt
14005 REK SUBROUTINE TO TEST SCAN ROUTINE
14007 RE"ttlltttttttttttttttttlttttattttttttttltttttt
14010 CLS
14020 PRINT "TESTING SCAN COK"AND":PRINT
14030 PRINT "ENTER 2 FOR SCAN, 3 FOR RE-TRANSKIT:";:INPUT READTYPEI
14040 CKDERRt=SPACEtl200l:DOC%=0
14050 CALL SCANCDOC%,READTYPE%,CKDERR$l
14060 PRINT "I.D. NUKBER OF DDCUKENT SCANNED: ";
14065 PRINT USING 1 111 ; DOC%
14070 PRINT "ERROR STRIN6: 1 ,CKDERRS
14080 PRINT "DO AGAIN? IY/Nl:";:INPUT DOA6AIN$
14090 IF DOAGAINS <> 1 N1 THEN GOTO 14020
14100 RETURN
15000 REKtttttttSlttttlttlttltlttttlttttttttttttttttttt

, 15005 REK SUBROUTINE TD TEST LEVEL COK"AND ,
15007 REKtt
15008 CLS
15010 PRINT "TESTING LEVEL CDKKAND 1 :PRINT
15020 PRINT "ENTER OFFSET TO READ LEYELl-2 •• +2>:•;:INPUT OFFSETt
15030 CKDERRS=SPACESC200)
15040 CALL LEYELCOFFSET%,C"DERRSI
15050 PRINT 1 ERROR STRIN6: 1 ,CKDERRS
15060 PRINT ·oa AGAIN? IY/Nl:";:INPUT DOAGAINS
15070 IF DOAGAINS <> 1 N1 THEN GOTO 15010
15080 RETURN
16000 REKttt
16005 RE" SUBROUTINE TO TEST TRANSKIT CO"KAND
16007 REKttttt~ttttttttttttttltttttttlttttttttttttttlttttt
16010 CLS
16020 PRINT 1 TESTING TRANS"IT CO"KAND":PRINT
16030 PRINT "ENTER DESTINATION <O=PRINTER, 1= AUXPORT, 2=LED>z";:INPUT DEST%
16040 IF DEST%=0 THEN PRINT "ENTER PRINT POSITIDN:";:INPUT PRNTPOSl

B-21

INTERPETIVE BASIC TEST PROGRAM

16050 If DEST%=1 THEN PRINTPDS%=0
16060 If DEST%=2 THEN PRINT •ENTER VALUE 10 •• 15) TD BE DISPLAYED:";: INPUT PRNTPOS%
16070 X"ITSTR$="ABc•
16080 If DEST%= 0 DR DEST%=1 THEN PRINT •ENTER STRING TD TRANS"IT:•;:INPUT X"ITSTR$
16085 C"DERRS=SPACES<200l
16090 CALL TRANS"IT<DESTI,PRNTPOS%,X"ITSTRS,C"DERR$l
16100 PRINT •ERROR STRING:",C"DERRS
16110 PRINT ·oo AGAIN? (Y/N):•;:INPUT DOAGAINS
16120 If DOAGAINS <> •N• THEN SOTO 16020
16130 RETURN
17000 RE"ttSttttSttSSStStltttSSSStttttStlttStSSSattattttttttt
17005 RE" SUBROUTINE TO TEST RECY CO"KAND
17008 RE"tttttttttttStttattttSStttSStSSSttttttttttttttttttttt
17010 CLS
17020 PRINT •TESTING RECY CD""AND":PRINT
17030 PRINT •ENTER STRING AT AUX PORT TER"INAL AND PRESS•
17040 PRINT 1 RETURN AT TER"INAL TO TER"INATE OR ESCAPE ON PC TD TER"INATE"
17050 C"DERRS=SPACES<200J
17055 RECYSTRS = SPACES<254l
17060 CALL RECY<RECYSTRS,C"DERRSJ
17080 PRINT •JNPUT STRIN&:•;:PRINT RECYSTRS
17090 PRINT "ERROR STRING:•,c"DERRS
17100 PRINT "DO AGAIN? (Y/NJ:";:INPUT DOA&AINS
17110 If DDAGAINS <> •N• THEN &OTO 17020
17120 RETURN

B-22

''.· ~/

(

{FILENAHE: PTESTER PASCAL HICROSCANNER CDHHANDS TEST'PROGRAH
FILE CREATED: 20-JUN-83
LAST REVISED: 15-JUL-83 12:30
CONTEXT : IBH-PASCAL IHPLE"ENTATIDN OF "ICROSCANNER COHHANDS

EXA"PLE TEST PROGRAH
}

PROSRA" PTESTER(INPUT, OUTPUT!;

ISSINCLUDE:'SCANDECL.PAS'Sl

<THIS FILE HAS ALL THE SPECIAL TYPE DECLARATIONS

YAR
ACHAR : CHAR;
AGAIN : BOOLEAN;
K,"ENUSELECT : INTEGER;
CKDERR,GRIDSTR : KSCSTR;

AND EXTERNAL DECLARATIONS FOR HICROSCANNER co""ANDS
AND "UST BE INCLUDED INTO ANY PROGRA" WHICH USES
HICROSCANNER co""ANDS. }

~ PROCEDURE DOAGAIN(YAR DUKl : BOOLEAN!;

<ttttttttttttttttttttttattttttattttaaatattattttttttatttaatttttsttttttt}
BEGIN;

WRITELN;
NRITELN<OUTPUT, 'ERROR STRING: ',CKDERRl;
llRITELN;
NRITE(OUTPUT, 'DO AGAIN? IY/Nl: 'l;
READLNIINPUT, ACHARl;
llRITELN;
IF ACHAR = CHR<'N'l THEN DUK! :=FALSE

ELSE DUKl := TRUE;
END; <OF PROC DOAGAIN}

CttttttttittttttttSStttttttStttttttStttSttttttttttttttltSttttttttttttt}
PROCEDURE TCONTROL; {TEST CONTROL co""AND}

<••···••> YAR
CTRLOPT:INTEGER;

BEGIN;
REPEAT

COPYLSH'DUKKY STRING' ,CKDERRl;
NRITELN;
NRITELN;

B-23

PASCAL TEST PROGRAM

PASCAL TEST PROGRAM

NRITELN!'TESTIN6 CONTROL COtl"AND'>;
NRITELN;
NRITELN!'l. RELEASE DOCUKENT 3. SELECT AUX PORT'>;
WRITELN!'2. STOP SCANNER 4. SELECT SCANNER'!;
WRITELN;
NRITE!'ENTfP SELECTION FRO" ABOVE (1 •• 4>: '>;
READLN!INPUT, CTRLOPTl;

CONTROL(CTRLOPT, C"DERRl; {"ICROSCANNER co""AND CALL}

DOA6AIN!A6AINl;
UNTIL NOT AGAIN;

END; <OF PROC TCONTROL}

{tttttttttSStttttttltttSttttSStttttttttStttttttttttttttttlttttlttttttt}
PROCEDURE TSETUP;

{tttttttlStlttttttttttttttStltttttttttttttttlllSttttltlttttttStttttttt}
VAR

BAUD,PARJTY,DATABITS,STOPBITS,PORTSEL : INTEGER;

BEGIN;
REPEAT

COPYLST!'DU""y STRING' ,C"DERRJ;
NRITELN;
WRITELN;
NRITELN('TESTING SET-UP co""AND')j
NRITELN; .
NRITE!'ENTER BAUD RATE: 'l;
READLNI INPUT, BAUD>;
WRITE!'ENTER PARITY (•a•, "E", •N•J: 'l;
READLN!INPUT,ACHARl;
PAfITY:= DRD!ACHAR>;
NRITE!'ENTER bATA BITS: 'l;
READLN!INPUT,DATABITSl;
WRITE!'ENTER STOP BITS: ');
READLN!INPUT,STOPBITSl;
NRITE!'ENTER BOARD SELECT: 'l;
READLN!INPUT,PORTSELl;

SETUP! BAUD, PARITY, DATABITS, STQPBITS, PORTSEL, C"DERR>;

DOAGAIN!AGAINJ;
UNTIL NOT AGAIN;

END; {Of PROC TSETUP}

B-24

.-ff '

·~_,..

1(.

\~v

(

<•••··••> PROCEDURE TSRID;

<••···••> VAR
SRIDARS : SRIDARA;
EDSTAT : INTEGER;

BEGIN;
REPEAT

COPYLST<'DU""y STRIN6',6RIDSTR>;
CDPYLST<'DU""y STRIN6',C"DERR>;
llRITELN;
llRITELN;
llRITELN!'TESTIN6 &RID co""AND')j
llRITELN;
llRJTE<'ENTER TYPE: '>;
READLN<SRIDARGCOll;
llRITE<'ENTER CLASS: 'l;
READLN!6RIDAR6C1l>;
llRITE!'ENTER SX: '>;
READLN!6RIDAR6C2l>;
llRITE!'ENTER EX: '>;
READLN!6RIDAR6C3ll;
llRITE<'ENTER IX: '>;
READLN<6RIDAR6C4l>;
llRJTE<'ENTER SY: '>;
READLN<6RJDAR6C5l>;
llRITEC'ENTER EY: '>;
READLN<6RIDAR6C6l>;
llRJTEC'ENTER IY: '>;
READLN<6RIDAR6C7l>;

6RJD(6RIDAR6, 6RIDSTR, EDSTAT, C"DERR>;

llRITELN;
llRITELN!'EDIT STATUS: ', EDSTAT>;
llRITE('6RJD STRIN6:',6RIDSTRl;
MRITELN;
DOA6AIN<A6AIN>;

UNTIL NOT AGAIN;
END; CQF PROC T6RID>

B-25

PASCAL TEST PROGRAM

PASCAL TEST PROGRAM

<••···••i•••••••••••> PROCEDURE TSKUNK; CTEST ROUTINE FOR THE SKUNK CO""AND>

<••···••>
VAR

L, DOCNU", CELLS, TRACKS, NU""ARKS : INTE&ER;
"ARKS : SKARAY;

BE&IN;
REPEAT

COPYLST<'DU"MY STRIN&' ,cnDERR>;
llRITELN;
NRITELN;
NRITELN<'TESTING SKUNK COKKAND'J;
ltRITELN;
llRITEl'ENTER DOCUltENT NUKBER: '>;
READLN IDOCNUIU ;
llRITE<'ENTER NU"BER OF CELLS: '>;
READLN !CELLS>;
NRITE<'ENTER NU"BER OF TRACKS: 'I;
READLN<TRACKSI;
NRITEl'ENTER I OF SKUNK KARKS: 'I;
READLN<NUK"ARKS>;
L := O;
K := O;
ltHILE ((L <> 991 AND <K <47>> DD

BEGIN;
ltRITE<'INPUT "ARK LOCATION, 99 TO EXIT: '>;
READLN<U;
llARKSCKl := L;
K := K+t;

END; <OF llHILE>

SKUNK(DOCNU", CELLS, TRACKS, NUK"ARKS, "ARKS, C"DERRI;

DOA&AIN<AGAIN>;
UNTIL NOT AGAIN;

END; <OF PROC TSKUNK>

B-26

tlllJllllSSSSSSStttStttttSSttttttSttttSStSSttSttStStttttttttSStSStSSSS)
PROCEDURE TSCAN;

{tt••··················••t••··••>
VAR

DOC, READTYPE : INTEGER;

BEGIN;
REPEAT

COPYLSTl'DU""y STRING',C"DERRl;
llRITELN;
lrlRITELN;
llRITELNl'TESTING SCAN co""AND'l;
llRITELN;
llRITEC'ENTER 2 FOR SCAN, 3 FOR RE-TRANS"IT: 'l;
READLNIREADTYPEl;

SCAN! DOC, READTYPE, CKDERRl;

llRITEl'ASSIGNED NU"BER OF DOCUMENT SCANNED: 'l;
llR ITELN !DOC l ;
DOAGAINIAGAINJ;

UNTIL NOT AGAIN;
END; <OF PROC TSCAN>

<••···••t•••••••••••••••>
PROCEDURE TLEVEL;

{SlltltlSSttStStttlSSSttttttttttttttttttSttttttttttttttttttttttttttttl)
VAR

OFFSET: INTEGER;
BEGIN;

REPEAT
COPYLSTl'DUKKY STRING',CKDERRJ;
llRITELN;
WRITELN;
llRITELN<'TESTING LEVEL co""AND'l;
llRITELN;
WRITEl'ENTER OFFSET TO READ LEVEL (-2 •• +21: '>;
READLN !OFFSET!;
LEVELi OFFSET, C"DERRl;

DOASAIN<AGAINl;
UNTIL NOT AGAIN;

END; <OF PROC TLEVEL}

B-27

PASCAL TEST PROGRAM

PASCAL TEST PROGRAM

<••···••> PROCEDURE TXKIT;

TYPE ONESTR = STRINGl1>;
VAR

PRNTPOS, DEST : INTEGER;
XKITSTR : KSCSTR;
F,G : FILE OF CHAR;
NEXTCHAR: ONESTR;
"Y_EOLN : BOOLEAN;

<THE PROCEDURE 'OPEN CONSOLE, AND FUNCTION INKEY ARE NECESSARY BECAUSE THE
READLN PROCEDURE WILL ONLY INPUT 126 CHARACTERS AND WE NEED TO INPUT

}
254 CHARACTERS TO TEST THE XKIT COK"AND.

PROCEDURE OPEN_CONSOLE;
BEGIN;
ASSIGNIF,'USER'l;
RESET I Fl;
ASSIGNIG,'USER'l;
REWR !TE 16 l ;

END; <PROCEDURE OPEN_CONSOLE}

FUNCTION INKEY:OHESTR;
VAR

INCHAR : CHAR;
TKPSTR :ONESTR;

BEGIN;
REPEAT SETIFl UNTIL FA <> CHRIOl;
INCHAR := FA;
WRITE IG, INCHAR>;
T"PSTRC1l := INCHAR;
INKEY := T"PSTR;

END; <OF FUNCTION INKEYl

BEGIN; <OF PROCEDURE TX"IT}
OPEN_CONSOLE;
REPEAT

COPYLSTl'DU""y STRING',X"ITSTRl;
COPYLSH'DUKKY STRINS',C"DERRl;"

. NRITELN;
NRITELN;
NRITELNl'TESTING TRANSKIT COKKAND'l;
NRITELN;
llRITEl'ENTER DESTINATION (0 =PRINTER, 1 =AUX PORT, 2 =LED>: '>;

B-28

(

(

READLN <DEST> ;
CASE DEST OF

O:
BEGIN;

WRITE<'ENTER PRINT POSITION: '>;
.READLN<PRNTPOS>;
llRITE<'ENTER STRING TO BE PRINTED: 'l;
READLN<XMITSTRl;

END;
1:

BEGIN;
NRITE<'ENTER STRING TO BE SENT TO AUX PORT: 'I;
K:= O;
"Y_EOLN := FALSE;
X"ITSTR.LEN := O; <CLEAR X"ITSTR>
REPEAT

NEITCHAR := INKEY;
IF NEXTCHARC1l <> CHR<13l THEN

BEGIN;
CDNCAT<XMITSTR,NEXTCHARl;
"Y_EOLN := FALSE;

END
ELSE "Y_EOLN := TRUE;

K := K+l;
UNTIL <K = 254) OR <"Y_EOLN =TRUE!;
llRITELN;
PRNTPOS := O;

END;
2:

BEGIN;
llRITE!'ENTER VALUE <0 •• 15> TO BE DISPLAYED: ');
READLN!PRNTPOSI;

END;
3 •• MAXINT: PRNTPOS :=O;

END; <OF CASE>

TRANSMIT< DEST, PRNTPOS, X"ITSTR, CMDERRl;

DOA6AIN!A6AINl;
UNTIL NOT AGAIN;

. END; <OF .TX" IT COMKAND)

B-29

PASCAL TEST PROGRAM

PASCAL TEST PROGRAM

<••···••> PROCEDURE TRECV;

<••··••i••••> VAR
INSTRIN6 : KSCSTR;

BES IN;
REPEAT

COPYLST<'DU"KY STRIN6',INSTRIN6>;
COPYLST<'DU""Y STRINS',C"DERR>;
NRITELN;
NRITELN;
NRITELN!'TESTINS THE RECEIVE COKKAND'>;
NRITELN;
NRITELN<'ENTER STRINS AT AUX PORT TER"INAL AND PRESS RETURN '>;
NRITELN<' AT TER"INAL OR ESCAPE ON PC TO TERKINATE RECY COKKAND'>;
NRITELN;

RECV! INSTRINS, C"DERR>;

NRITELN!'INPUT STRIN6:', INSTRINS>;
DOA6AIN!A6AIN>;

UNTIL NOT AGAIN;
END; <OF PROC TRECV>

<••··•••> BEGIN; C"AIN PR06RAK PTESTER>

<uauaaaaauuuauuauautuuuuuaauauuaaaauuuaaauauuaa>
REPEAT

NRITELN;
NRITELN;
NRITELN<'1. CONTROL COMMAND
NRITELN<'2. SETUP COMMAND
NRITELN<'l. &RID COKKAND
NRITELN;
NRITELN('9. QUIT '>;
NRITELN;

4. SKUNK COKKAND
5. SCAN COMMAND
6. LEVEL COKKAND'l;

NRITE('ENTER SELECTION 11 •• 9> FROK ABOVE: '>;
READLNIKENUSELECT>;

B-30

7. TRANSKIT CDKKAND'>;
8. RECV COKKAND'>;

C'
{.,;

,f''
~?

(

('

CASE "ENUSELECT OF
l: TCONTROL;
2: TSETUP;
3: TGRID;
4: TSKUNK;
S: TSCAN;
b: TLEVEL;
7: TX"IT;
B: TRECV;
9:
END; COF CASE}

UNTIL KENUSELECT = 9;
END. <OF "AIN PROGRA"}

PASCAL TEST PROGRAM

B-31

ef ~
'~,/

(

(

APPENDIX C

PASCAL SCANDECL.PAS FILE

OVERVIEW: SCANDECL.PAS FILE

In Section Four, under program structure, programmers are advised to insert
the line (*$INCLUDE:'SCANDECL.PAS 1 *) into their programs immediately following
the program heading. That line causes the file SCANDECL.PAS to be included in
the application program. The file contains external type declarations neces­
sary for using Micro Scanner Commands.

EXPLANATION: SCANDECL.PAS FILE

The contents of the file are listed below.

{ FILENA"E:
FILE CREATED:
LAST REVISED:

SCANDECL.PAS
12-JUL-93
12-JUL-93 18:00

CONTEXT: IB" PASCAL I"PLEnENTATION OF "ICROSCANNER co""ANDS

THIS FILE HAS THE TYPE AND EXTERNAL DECLARATIONS REQUIRED FOR
MICROSCANNER COM"ANDS. IT 3 CONTENTS MUST BE INCLUED IN A PROGRA"
WHICH USES MICRO SCANNER CO"MANDS. THIS IS EASILY ACCOMPLISHED WITH
THE FOLLOWING LINE IN THE APPLICATION PROGRA":

.sINCLUDE:SCANDECL.PAS·
THIS "INCLUDE" STATEMENT SHOULD FOLLOW DIRECTLY AFTER THE PROGRA" HEADING.

TYPE
MSCSTR = LSTRIN6!254>;
GRIDARA= ARRAY C0 •• 71 OF INTEGER;
SKARAY =ARRAY C0 •• 471 OF INTEGER;

{ttittittttitttttitittttttttttiittiitiiiiittitttttttiitttttttttttittii}
{ EXTERNALLY REFERENCED "ICROSCANNER COM"AND DECLARATIONS }
{tttttttttttttttttitttttttttittttttttttittttitttittttttttttttttttttttt}

PROCEDURE CDNTROL!CONST CTRLOPT:INTEGER; VAR CMDERR:MSCSTR>;
EXTERNAL;

PROCEDURE SETUP(CONST BAUD: INTEGER; CONST PARITY: INTEGER; CONST DATABITS:INTEGER;
CONST STOPBITS:INTEGER; CONST PORTSEL:INTEGER;

VAR CMDERR:"SCSTR>;
EXTERNAL;

PROCEDURE SRID!CONST GRIDARG:GRIDARA; VAR SRIDSTR:"SCSTR; VAR EDSTAT:INTEGER;
VAR CMDERR:MSCSTR>;

EXTERNAL;

C-1

PASCAL SCANDECL.PAS FILE

EXPLANATION: SCANDECL.PAS FILE (cont.)

PROCEDURE SKUNKCCONST DOCNUM:INTESER; CONST CELLS:INTESER; CONST TRACKS:INTE6ER;
CONST NUMKARKS:INTEGER;

CONST MARKS:SKARAY; VAR CMDERR:MSCSTR>;
EXTERNAL;

PROCEDURE SCAN(VAR DOC: INTEGER; CONST READTYPE:INTESER;
VAR CMDERR:KSCSTRl;

EXTERNAL;

PROCEDURE LEVEL< CONST OFFSET: INTEGER; VAR CMDERR:KSCSTR>;
EXTERNAL;

PROCEDURE TRANSMIT< CONST DEST :INTEGER; CONST PRNTPOS:INTEGER;
CONST XMITSTR:MSCSTR; VAR CMDERR:MSCSTRl;

EXTERNAL;

PROCEDURE RECVC VAR INSTRIN6:MSCSTR; VAR CMDERR:MSCSTRl;
EXTERNAL;

C-2

{

(

c
D-1

APPENDIX D

LINKING COMMANDS TO
APPLICATION PROGRAM

Introduction ••••••••••••••••• D-2
Linking •••••••••••••••••••••• D-3
Diskette Contents •••••••••••• D-5

INTRODUCTION

In order to utilitze micro scan­
ner commands in application pro­
grams, they must be linked to­
gether. This appendix describes
the linking process.

D-2

(

OVERVIEW: LINKING

The linking requirements for each
language are described below. For
detailed descriptions of the linking
process, refer to the IBM - Personal
Computer Language Series - BASIC
Compiler and Pascal Compiler.

EXPLANATION: COMPILED BASIC

The accompanying examples explain how
to link the commands to the applica­
tion program. The small letters
represent prompts generated by the
microcomputer; the capital letters
represent responses typed by the
programmer.

The first example is for running an
application program which is compiled
with the "/0" option. The second
example is for an application program
compiled without the "/0" option.

The linking procedure is started by
typing in the word LINK. Then the
object module is requested. The ob­
ject module refers to the program
files which will be connected.to the
commands. Type in the name of the
application program and CBSCAN. The
run file line states that the file is
now executable. The list file line
allows the programmer to request a
map. Type in BASCOM after
"Libraries:[.lib]:".

Linking for a program compiled with­
out the "/0" option works virtually
the same except the last line. Type
in BASRUN after "libraries:[.lib]:".

LINKING

LINKING - COMPILED BASIC
/0 OPTION

c>LINK

IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp.
1982

Object Modules [.obj]: FILENAME
CB SCAN

Run File [filename.exe]:
List File [nul.map]:
Libraries [.lib]: BASCOM

C>LINK

LINKING COMPILED BASIC
NO /0 OPTION

IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp.
1982

Object Modules [.obj]: FILENAME
CB SCAN

Run File [filename.exe]:
List File [nul.map]:
Libraries [.lib]: BASRUN

D-3

LINKING

LINKING - PASCAL

C>LINK

IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp.
1982

Object Modules [.obj]: FILENAME
PS CAN

Run File [filename.exe]:
List File [nul.mapJ:
Libraries [.lib]: PASCAL

D-4

EXPLANATION: PASCAL

Linking in Pascal is similar to link­
ing in Compiled Basic. However, the
file name is PSCAN. Also, after
"Libraries:[.libJ:", enter PASCAL.

EXPLANATION: INTERPRETIVE BASIC

No separate linking process is re­
quired. The commands were already
linked to the application program
in the loading process.

(

(

DISKETTE CONTENTS

OVERVIEW: DISKETTE CONTENTS

The contents of the Micro Scanner Commands diskette are described below:

•Compiled Basic Files

CBSCAN.OBJ--Object file containing Compiled Basic implementation of
microscanner commands. This file is linked to a Compiled
Basic application program.

CTESTER.BAS--Source file containing the Compiled Basic test program.

CTESTER.EXE--Executable file containing the CTESTER program and micro­
scanner commands.

LNKBAS.BAT--A sample batch file for linking a Compiled Basic applica­
tion program to CBSCAN.OBJ.

•Interpretive Basic Files

COMNDS.BAS--The file containing microscanner commands which is loaded
from within an Interpretive Basic application program.
(With a 1 BLOAD "COMNDS.BAS",0 1 command).

IBSCAN.OBJ--The object file containing unlinked and unlocated object
code of the Interpretive Basic microscanner commands. This
will allow the user to link his assembly language routine
with microscanner commands to create a single ".EXE" file.

ITESTER.BAS--Interpretive Basic test program.

LNKIBSCN.BAT--Batch file to link IBSCAN.OBJ into IBSCAN.EXE.

•Pascal Files

PSCAN.OBJ--Object file containing the Pascal implementation of micro­
scanner commands. This file is linked to a Compiled Pascal
application program.

SCANDECL.PAS--Pascal source file meant to be "included" in the user's
application program. It contains all the Pascal declara­
tions required to interface to microscanner commands.

PTESTER.PAS--Source file containing Pascal test program~

D-5

DISKETTE CONTENTS

•Pascal Files (cont.)

PTESTER.EXE--Executable file containing the PTESTER test program and
Pascal implementation qf microscanner commands.

PASLNK.BAT--Batch file to link PSCAN.OBJ to a Pascal application
program.

D-6

FROM:

COMMENTS:

(

COMMENT SHEET

Micro Scanner Commands User's Guide
TM

· For the Sentry PLUS System

Publication Number: 202 151 957

NAME:

BUSINESS ADDRESS:

(Describe errors, suggested additions, or deletions,
including page numbers.)

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTIED LINES AND STAPLE

::> ---•------------------ FOLD -- -- - - -

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1840 MINNEAPOLIS, MINN.

POSTAGE WILL BE PAID BY ADDRESSEE

National Computer Systems
c/o Publications
4401 West 16th Street
P.O. Box 9365
Minneapolis, Minnesota 55440

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

, ·--- FO LO -- - - -- - •

