
PRODUCT CODE 72900
41963-00

SYSTEM V/68
ADMINISTRATOR'S MANUAL

®MOTOROLA
Computer Systems

SYSTEM V /68 DOCUMENTATION SET

VOLUME I

Product Code 72912
41975G01

SYSTEM V /68 USER'S REFERENCE MANUAL, 72905 (41968-00)
Introduction
Permuted Index
Section 1 - Commands

VOLUME II

SYSTEM V /68 USER'S REFERENCE MANUAL, 72905 (41968-00)
Section 2 - System Calls Section 5 - Miscellaneous Facilities
Section 3 - Subroutines Section 6 - Games
Section 4 - File Formats

VOLUME III

SYSTEM V /68 ADMINISTRATOR'S MANUAL, 72900 (41963-00)
Introduction Section 7 - Special Files
Permuted Index Section 8 - Procedures
Section IM- Commands

SYSTEM V /68 ADMINISTRATOR'S GUIDE, 72901 (41964-00)
Introduction File System Checking
Administrative Guidelines LP Spooling System
Using the System System Activity Package
Accounting

SYSTEM V /68 OPERATOR'S GUIDE, 72904 (41967-00)
Chapter 1 - System Overview Appendix A - System Specifications
Chapter 2 - Getting Started Appendix B - Error Messages
Chapter 3 - Using the System

SYSTEM V /68 USER'S GUIDE, 72903 (41966-00)
Introduction
Primer
Basics for Beginners
Text Editors

An Introduction to Shell
Source Code Control System (SCCS)
UNIX-to-UNIX CoPy: A Tutorial

VOLUME IV

SYSTEM V /68 PROGRAMMING GUIDE, 72908 (41971-00)
Introduction FOR TRAN
An Introduction to Shell Curses and Terminfo Package
C Programming Language Programming Language EFL

SYSTEM V /68 SUPPORT TOOLS GUIDE, 72909 (41972-000)
Introduction Desk Calculator Language (BC)
Maintaining Computer Programs Desk Calculator Program (DC)

(MAKE)
Augmented Version of MAKE Lexical Analyzer Generator (LEX)

The M4 Macro Processor Yet Another Compiler-Compiler (YACC)

The A WK Programming Language Common Object File Format

SYSTEM V /68 ASSEMBLER USER'S GUIDE, 72910 (41973-00)
Introduction Expressions
Warnings Pseudo-Operations
General Syntax Rules Span-Dependent Optimization
Segments, Location Counters, Address Mode Syntax

and Labels Machine Instructions
Types

SYSTEM V /68 COMMON LINK EDITOR REFERENCE MANUAL, 72911 (41974-00)
Introduction Notes and Special Procedures
Using the Link Editor Error Messages
Link Editor Command Language Syntax Diagram for Input Directives

VOLUME V

SYSTEM V /68 DOCUMENT PROCESSING GUIDE, 72906 (41969-00)
Introduction Table Formatting Program
Advanced Editing Mathematics Typesetting Program
Stream Editor Memorandum Macros
Nroff and Troff User's Manual Viewgraphs and Slides Macros

SYSTEM V /68 ERROR MESSAGE MANUAL, 72902 (41965-00)
Introduction Index
Error Messages

SYSTEM V/68

ADMINISTRATOR'S MANUAL

Product Code 72900

Part Number 41963~00

Version I

EXOR.macs, EXOR term, VME/10, and SYSTEM V /68 are trademarks of Motorola Inc.
UNIX is a trademark of AT&T Bell Laboratories, Incorporated. PDP, VAX, and DEC are
trademarks of Digital Equipment Corporation. PRINTRONIX is a trademark of Printronix,
Inc. CENTRONICS is a trademark of Data Computer Corporation. LARK is a trademark
of Control Data Corporation.

The software described herein is furnished under a licensed agreement and may be used only
in accordance with the terms of the agreement.

Copyright © 1984, 1985, 1986 by Motorola Inc. All rights reserved. No part of this manual
may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any means, without the prior written
permission of Motorola Computer Systems, 3013 S. 52nd St., Tempe, AZ 85282.

Portions of this document are reprinted
from copyrighted documents by permission of

AT&T Technologies, Incorporated, 1983.

PREFACE

The SYSTEM V /68 Administrator's Manual (Part Number 41963-00, Product Code 72900) is
intended to supplement the information contained in the UNIX System V User's Manual and
to provide an easy reference volume for those who administer the UNIX-derived operating
system.

While reasonable efforts have been made to assure the accuracy of this document, Motorola
assumes no liability resulting from any omissions in this document or from the use of the
information obtained therein. Motorola reserves the right to revise this document and to
make changes from time to time in its content without being obligated to notify any person of
such revision or changes.

INTRODUCTION

t. GENERAL

The Administrator's Manual is intended to supplement the information contained in the
UN IX System V User's Manual and to provide an easy reference volume for those who must
administer UNIX operating system. Accordingly, only those commands and descriptions
deemed appropriate for system administrators have been included here.

On most systems, all entries are available online via the man(l) command.

2. ADMINISTRATOR'S MANUAL ORGANIZATION

2.1 Description of Contents

The manual is divided into three sections:

Section 1 ("System Maintenance Commands and Application Programs") contains system
maintenance programs such as fsck, mkfs, etc., which generally reside in the directory /etc;
these entries carry a sub-class designation of "lM" for cross-referencing reasons.

Section 7 ("Special Files") discusses the characteristics of each system file that actually refer
to an input/output device. The names in this section generally refer to device names for the
hardware, rather than to the names of the special files themselves.

Section 8 ("System Maintenance Procedures") discusses crash recovery and boot procedures,
facility descriptions, etc.

2.2 Section Organization

Each section consists of a number of independent entries of a page or so each. The name of the
entry appears in the upper corners of its pages. Entries within each section are alphabetized,
with the exception of the introductory en try that begins each section. The page numbers of
each entry start at 1. Some entries may describe several routines, commands, etc. In such
cases, the entry appears only once, alphabetized under its major name.

The UNIX System v User's Manual, which contains sections 1 - 6, is organized in the same
manner as this Administrator's Marw.al. Throughout the documentation, references to the
contents of either manual are given as nameCsection). For example, chrootClM) is a reference
to the chroot entry in section lM of the Administrator's Manual.

A table of contents and a permuted index derived from that table precede Section lM. The
permuted index contains entries from both the UNIX System v User's Manual and this
volume, and on each "index" line, the title of the entry to which that line refers is followed
by the appropriate section number in parentheses. This is important because there is
considerable duplication of names among the sections, arising principally from commands that
exist only to exercise a particular system call.

2.3 Entry Format

AU entries are based on a common format, not all of whose parts always appear:

NAME gives the name(s) of the entry and briefly states its purpose.

SYNOPSIS summarizes the use of the program being described.

DESCRIPTION provides additional information about the program or facility outlined in
the "Name" and "Synopsis" parts.

EXAMPLE gives an example(s) of usage, where appropriate.

FILES gives the filenames that are built into the program.

SEE ALSO gives pointers to related information.

DIAGNOSTICS discusses the diagnostic indications that may be produced. Messages that
are self-explanatory are not listed.

WARNINGS points out potential pitfalls.

BUGS gives known bugs and sometimes deficiencies. Occasionally, the suggested fix is also
described.

2.4 Conventions

A few conventions are used, particularly in Section 1 ("Commands"):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and program names
found elsewhere in the manual. Note that this convention is not used in the "SYNOPSIS"
or "SEE ALSO" part.

Square brackets [] around an argument prototype indicate that the argument is optional.
When an argument prototype is given as name or file, it always refers to a filename.

Ellipses ... are used to show that the previous argument prototype may be repeated.

A final convention is used by the commands themselves. An argument beginning with a
minus-, plus+, or equal sign= is often taken to be some type of flag argument, even if it
appears in a position where a filename could appear. Therefore, it is unwise to have files
whose names begin with -, +, or =.

ii

TABLE OF CONTENTS

t. System Maintenance Commands and Application Programs

intro •••••••• introduction to system maintenance commands and application programs
accept • . . • • allow /prevent LP requests
acct • • • . • • • • • • • overview of accounting and miscellaneous accounting commands
acctcms • • • • • • • • . • • • •• command summary from per-process accounting records
acctcon • . • • • connect-time accounting
acctmerg • • • • • . • • • • • • • • • • • • • • . • • merge or add total accounting files
acctprc • • . • • • • • • . • . • • • • • • • . • • • . • • • • • • • process accounting
acctsh • • • • • • • . • • • • • • • • • • ·• • • • • • • • shell procedures for accounting
bcopy • . • • • • • • • . • • . . • • • • . • • . . . • • interactive block copy
brc • • • • • • • • • • • • • • • • • • system initialization shell scripts
checkall • • • • • • • • • • • • • • • • faster file system checking procedure
chroot • • •• change root directory for a command
clri • clear inode
config.68 • . • configure SYSTEM V /68
cpset • . • • • . . • • • • • • • • • • • • • • • • install object files in binary directories
crash • examine system images
cron • • • • • • • • • • • . • clock daemon
dcopy • • • • • • • • • • • • • • • • • • copy file systems for optimal access time
devnm • device name
df • • • • • • • • • • • • • • • • report number of free disk blocks
dinit • • • . • • • • • • • • • • • • • • • • • • • disk initializer
diskusg . • • • . • • • • generate disk accounting data by user ID
errdead • • . • • • • • • • • • • • . • • • • . • . • • • extract error records from dump
errdemon • • . • error-logging daemon
errpt • • • • • • • • • • • • • • • • . • • • • • • • • . process a report of logged errors
errstop • • . • • • • • • • . • • • • • • • • • • • • terminate the error-logging daemon
ff • • • • • • • • • • • • • • • • . • • . • • list filenames and statistics for a file system
filesave • • • • • • • • • . • • • . • •• daily/weekly SYSTEM V /68 file system backup
fine • • • • • • • . • • • • . • . • • • • • • • • • • • • • • • fast incremental backup
free • • • • • • • . • . • • • • • • • • • • • • • • . • recover files from a backup tape
fsba • • • • • • • • • • . • • • • • • • • • • • . • • • • • • file system block analyzer
fsck • • • • • • • • • • • • • • • • • file system consistency check and interactive repair
fscv • • . • • • • • • • • • . • convert files between M68000 and V AX-11/780 processors
fsdb • • • • • • • • • • • • • . • • • • • • • • • • • • . • • • • • file system debugger
fuser . . • • • • • • • • • • • • • • • • . • identify processes using a file or file structure
fwtmp • • • • • • • • • • • . • • '- • • • • • •• manipulate connect accounting records
getty • • • • • • • • • • . • • • • • set terminal type, modes, speed, and line discipline
init • process control initialization
install • • • • • • • • • • • • • • • . • • • • • . • • • • • • • • • • install commands
killall • • • • • • • • • • . • • • • • • • • • • • • • • • • • • kill all active processes
link • . • exercise link and unlink system calls
lpadmin • configure the LP spooling system
lpsched • • • . • • • • • • • • • • • start/stop the LP request scheduler and move requests
mkf s • • • • • • • • • • • • • • • • • • . • • • • • . . . • • . construct a file system
mknod • • • • • • • • • • . • • • • • • . • • • • • • • • . • • • • • build special file
mount • • • • • • • • • • • • • • . • • • . • • • mount and dismount file system
mvdir • move a directory
ncheck • • • • . • • • • • • • • • • • . • • • • • • • • generate names from i-numbers
profiler • • • • . • • • • • • • • . • . • • • • • . • • • • • • operating system profiler
pwck • • • • • . • • • • • • • • . • • • . • • . • • . • . password/group file checkers
runacct • • • • . • • • • • . • • • • • • • • . • • • • • • • • run daily accounting

Table of Contents

sad p • disk access profiler
sar • • • • • • • • system activity report package
setmnt • • • • • • • • • • • • • • • establish mount table
shutdown • terminate all processing
sysdef • system definition
tic • terminfo compiler
trenter • • • • • . • enter a trouble report
uuclean • uucp spool directory clean-up
uusub • monitor uucp network
vm22fmt • • • • • • • • • • • • • . • • • • • format disks on the VM22 disk controller
volcopy • copy file systems with label checking
wall • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • write to all users
wffmt • format floppies for the VME/10 processor
whodo • who is doing what

7. Special Files

intro • introduction to special files
acia • • • • • • • • • • • . • Asynchronous Communications Interface Adapter
cm16 • • • • • • • • • • • • • • 16Mb Cartridge Module Drive for Universal Disk Driver
cm80 •••••••••••••• 80Mb Cartridge Module Drive for Universal Disk Driver
cmd16 • 16Mb Cartridge Module Drive for VM21 Driver and VM22 Driver
cmd80 • • • • • • • • • 80Mb Cartridge Module Drive for VM21 Driver and VM22 Driver
err • error-logging interface
fl8 • • • • • • • • • •• 8-inch Floppy Disk Drive for Universal Disk Driver
lark25 • • • • • • 50Mb LARK Module Drive for VM21 Driver and VM22 Driver
lark8 • • • • • 16Mb LARK Module Drive for VM21 Driver and VM22 Driver
lp • • • • • • • • • • • • • • • • • • • MVME410 line printer interface
1rk25 • • • • • • • • • • • • • • • • 25Mb LARK Module Drive for Universal Disk Driver
m400 • • • • • • • • • • • • • • • • • • •• MVME400 Dual RS-232C Serial Port Module
mem • core memory
null • . • . . . • • • • • • • • the null file
prf • operating system profiler
sa400fl22 • • • • • • • • • • • • • • • • • • 51/4-inch Floppy Disk Drive for VM22 Driver
sa400flwd ••••••••••• 51/4-inch Floppy Disk Drive for the Winchester Disk Driver
sa800fl • 8-inch Floppy Disk Drive for VM21 Driver
sa800fl22 • • • • • • • • • • • • • • • . • • • 8-inch Floppy Disk Drive for VM22 Driver
sxt • . • • • • • • • • pseudo-device driver
termio • general terminal interface
tty • controlling terminal interface
ud •••••• general driver for all disk units supported by the M68KVM21 disk controller
vlOgraph • VME/10 graphics subsystem interface
vm21 • default general driver for all disk units supported by the M68KVM21 disk controller
vm22 • default general driver for all disk units supported by the M68KVM22 disk controller
wdl5 • • • • • • • • 15Mb Winchester Disk Drive
wd40 • 40Mb Winchester Disk Drive

8. System Maintenance Procedures

intro • • • • • • • • • • • • introduction to system maintenance procedures
ho.macs ••••••••••• bootstrap operating procedure for system restart on EXORmacs
bo.vme •••••••••••• bootstrap operating procedure for system restart on VME/10
crash;macs • what to do when the system crashes
mk • how to remake the system and commands
ops.macs • EXORmacs operations

ii

PERMUTED INDEX

wd15:
Driver. cm16:

VM22 Driver. cmdl6:
Driver. lark8:

lrk25:
hp: handle special functions of HP 2640 and

hp: handle special functions of HP
300s terminals.

300, 300s: handle special functions of DASI
terminals. 300,

300, 300s: handle special functions of DASI 300 and
13tol, ltol3: convert between

diff3:

4014: paginator for the Tektronix
wd40:

terminal.
450: handle special functions of the DASI

con.fi.g.68: configure
filesave, tapesave: daily/weekly

cu: call another
Driver. lark25:

Disk Driver. sa400fiwd:
sa400fi22:

f77: FORTRAN
Driver. cm80:

VM22 Driver. cmd80:
fi8:

sa800fi21:
sa80011.22:

~64 ASCII string.

value.

abs: return integer
abs, iabs, dabs, cabs, zabs: FOIITRAN

fioor, ceil, fmod, fabs: floor, ceiling, remainder,

touch: update
utime: set file

15Mb Winchester Disk Drive. • • • • • • • • • • • • wd15(7)
16Mb Cartridge Mxlule Drive for Universal Disk • • • cm16(7)
16Mb Cartridge Mxlule Drive for VM21 Driver and cmdl6(7)
16Mb LARK Mxlule Drive for VM21 Driver and VM22 1ark8(7)
25Mb LARK Mxlule Drive for Universal Disk Driver. lrk25(7)
2621-series terminals. • • • • • • • • • • • • • • hp(l)
2640 and 2621-series terminals. • • • • • • • • • • hp(l)
300, 300s: handle special functions of DASI 300 and 300(1)
300 and 300s terminals. • • • • • • • • • • • • • 300(1)
300s: handle special functions of DASI 300 and 300s 300(1)
300s terminals. • • • • • • • • • • • • • • • 3o0(1)
3-byte integers and long integers. • • • • • • • 13tol(3C)
3-way differential file comparison. • • • • • • diff3(1)
4014: paginator for the Tektronix 4014 terminal. 4014(1)
4014 terminal. • • • • • • • • • • • • • • 4014(1)
40Mb Winchester Disk Drive. • • • • • • • • wd40(7)
450: handle special functions of the DASI 450 450(1)
450 terminal. • • • • • • • • • 450(1)
SYSrEM V/68. • • • • • • • • • • • • • • • confi.g.68(1M)
SYSTEM V/68 file system backup. • • • • • • filesave(lM)
SYSrEM V/68 system. • • • • • • • • • • • • cu(lC)
50Mb LARK Mxlule Drive for VM21 Driver and VM22 lark25C7)
5114-inch Floppy Disk Drive for the Winchester • sa400fiwd(7)
5114-inch Floppy Disk Drive for VM22 Driver. sa400fi22(7)
77 compiler. • • • • • • • • • • • • • • • • • • • f77(1)
80Mb Cartridge Mxlule Drive for Universal Disk • • cm80(7)
80Mb Cartridge Mxlule Drive for VM21 Driver and cmd80(7)
8-inch Floppy Disk Drive for Universal Disk Driver. 11.8(7)
8-inch Floppy Disk Drive for VM21 Driver. sa80011.21(7)
8-inch Floppy Disk Drive for VM22 Driver. sa800fi22(7)
a641, 164a: convert between long integer and a641(3C)
abort: generate an IOT fault. • • • • • • • abort(3C)
abort: terminate FORTRAN program. abort(3F)
abs, iabs, dabs, cabs, zabs: FOIITRAN absolute • abs(3F)
a~ return integer absolute value. abs(3C)
absolute value. • • • • • • • • • • • abs(3C)
absolute value. • • • • • • • • • • • abs(3F)
absolute value functions. • • • • • • • fioorC3M)
accept, rejlct: allow/prevent LP requests. accept(IM)
access and modification times of a file. • touch(l)
aettSS and modification times. • • • • • utime(2)
aettSS: determine aettSSibility of a file. • access(2)

graphics: aettSS graphical and numerical commands. graphics(lG)
fashion- sputl, sgetl: access long integer data in a machine independent sput1(3X)

sadp: disk aettSS profiler. • • • • • • • • • • • • sacip(l)
ldfcn: common objlct file aettSS routines. • • • • • • • • • • • ldfcn(4)

dcopy: copy file systems for optimal aettSS time. • • • • • • • • • • • • • • dcopy(lM)
getutline, pututline, setutent, endutent, utmpname: access utmp file entry. getutent, getutid, • getut(3C)

access: determine aett&'libility of a file. • • accea(2)
acct: enable or disable process accounting. • • • • • • • • • • • • • • acctU)

acctconl, acctcon2: connect-time accounting. • • • • • • • • • • • • • acct.con(lM)
acctprcl, acctprc2: process accounting. • • • • • • • • • • • • • acctprcClM)

shutacct, startup, turnacct: shell procedures for accounting. /prctmp, prdaily, prtacct, runacct, • • acctsh(lM)
acctdisk, acctdusg, accton, acctwtmp: overview of accounting and miscellaneous accounting commands. • acct(1M)

acctwtmp: overview of accounting and miscellaneous accounting commands. acctdisk. acctdusg, accton, acct(1M)
diskusg: generate disk accounting data by user ID. cliskusg(lM)

acct: per-process accounting file format. • acct(4)
acctcom: search and print process 1 accounting file(,). • • acctcom(l)

acctmerg: merge or add total accounting files. • acctme1'2(1M)
mclock.: return FOIITRAN time accounting. • • • mclockC3F)

acctcms: command summary from per-process accounting records. • acctcms(lM)
fwtmp, wtmpfuc manipulate connect accounting records. • fwtmp(lM)

runacct: run daily accounting. • • • • • ., • runacct(lM)
acct: enable or disable procas accounting. • • acctU)

accounting records.
fi.le(°J).

acctconl,
accounting and miacellaneous accounting commands.

acct: per-process accounting file format. acct(4)
acctcms: command summary from per-process acctcms(1M)
acctcom: search and print process accounting • • • acctcom(l)
acctconl, acctcon2: connect-time accounting. 11CCtc011(1M)
acctcon2: connect-time accounting. • • • • • • • acctcon(lM)
acctdisk, acctdusg, accton, acctwtmp: overview of • • acctClM)

Permuted Index

and miscellaneous accounting commands. acctdisk,

miscellaneous accounting/ acctdisk, acctdusg,

acctprcl,
accounting commands. acctdisk, acctdusg, accton,

Adapter.
sin, COS, tan, asin,

killall: kill all
sag: system

sal, sa2, sadc: system
sar: system

sact: print current SCX::S file editing
time a command; report process data and system

acia: Asynchronous Communications Interface
acctmerg: merge or
putenv: change or

admin: create and
argument.
function.

alarm: set a process's

crypt, encrypt: a one way hashing encryption
brk, sbrk: change data segment space

malloc, free, realloc, calloc: main memory
calloc, mallopt, mallinfo: fast main memory

accept, re jlct:
intrinsic function. log,

function. loglO,
functions. max, maxo,

max, maxO, amaxO, maxl,
functions. min, minO,

min, minO, amino, minl,
functions. mod,

fsba: file system block
Boolean fUnctions.

sort: sort
functions.

aouthdr: optional

intro: introduction to commands and
introduction to system maintenance commands and

archives.

be:
acos, dacos: FOJrrRAN

archives. ar:
cpio: format of cpio

ar: common
ldahread: read the archive header of a member of an

ldahread: read the
tar: tape file

ar: archive and library maintainer for portable
cpio: copy file

asin, dasin: FOJrrRAN
atan2, datan2: FOJrrRAN

atan, datan: F(.\JrrRAN
aimag, dimag: FORTRAN imaginary part of complex

getarg: retum POJrrRAN command-line
varargs: handle variable

vsprintf: print formatted 011tput of a varargs
xargs: construct

getopt: get option letter from
expr: evaluate

echo: echo
be: arbitrary-precision

expr: evaluate ugmnents

ua: interpret

ucli: map of

acctdusg, accton, acctwtmp: overview of accounting acct(IM)
acctmerg: merge or add total accounting files. • • • acctmet2(1M)
accton, acctwtmp: overview of accounting and • • acct(lM)
acctprcl, acctprc2: procm accounting. • • • • • • acctprc(IM)
acctprc2: process accounting. • • • • • • • • • • acctprc(lM)
acctwtmp: overview of accounting and miscellaneous acct(lM)
acia: Asynchronous Communications Interface acia(7)
acos, atan, atan2: trigonometric functions. trig(3M)
acos, dacos: FORTRAN arccosine intrinsic function. ac0i3F)
active processes. • • • kill all(lM)
activity graph. sag(lG)
activity report package. sarCIM)
activity reporter. sai(l)
activity. • • • • • • sact(l)
activity. timex: • • • time:x(l)
Adapter. • • • • • • acia(7)
add total accounting files. acctmet2(1M)
add value to environment. putenv(3C)
admin: create and administer SCX::S files. admin(l)
administer SCX::S files. • • • • • • • • admin(1)
aimag, dimag: FORTRAN imaginary part of complex aimag(3F)
aint, dint: FORTRAN integer part intrinsic aint(3F)
alarm clock. • • • • • • • • • • alarm(2)
alarm: set a process's alarm clock. alarm(2)
algorithm. • • • • • • • • • crypt(3C)
allocation. • • • • • • • • • • brk(2)
allocator. • • • • • • • • • • • malloc(3C)
allocator. malloc, free, realloc, malloc(3X)
allow /prevent LP requests. • • • • • accept(lM)
alog, dlog, clog: FOIITRANnatural logarithm Iog(3F)
aloglO, dloglO: FORTRAN common logarithm intrinsic logl0(3F)
amaxO, maxl, amaxl, dmaxl: FORTRAN maximum-value ma:xC3F)
amaxl, dmaxl: FOIITRAN maximum-value functions. • ma:x(3F)
amino, minl, aminl, dminl: FORTRAN minimum-value min(3F)
aminl, dminl: FORTRAN minimum-value functions. min(3F)
amod, dmod: FOIITRANremaindering intrinsic • • mod(3F)
analyzer. • fsba(lM)
and, or, xor, not, !shift, rshift: FOirrR.ANbitwise • bool(3F)
and/or merge files. • • • • • • • • • • • • • • • sort(l)
anint, dnint, nint, idnint: FORTRAN nearest integer round(3F)
a.out: common assembler and link editor output. • a.out(4)
aout header. • • • • • • • • • • • • • • • • • • aouthdrC4)
aouthdr: optional aout header. • • • • • • • • • aouthdrC4)
application programs. • • • • • • • • • • • intro(!)
application programs. intro: • • • • • • • • intro(lM)
ar: archive and library maintainer for portable ar(l)
ar: common archive file format. • • • • • arC4)
arbitrary-precision arithmetic language. • • • bc(l)
arccosine intrinsic function. • • • • • • • • • accs(3F)
archi~ and library maintainer for portable ar(l)
archive. • • • • • • • • • • • • • • • • • cpio(4)
a_rchive file format. • • • • • • • • • • • • ar(4)
archive file. • • • • • • • • • • • • • • • • • ldahread(3X)
archive header of a member of an archive file. ldahread(3X)
archiver. • • • • • • • • • • • • • • tarCl)
archives. • • • • • • • • • • arCl)
archivs in and oU't. cpio(l)
arcsine intrinsic function. asin(3F)
arctangent intrinsic function. atan2C3F)
arctangent intrinsic function. • • • • • • atan(3F)
argument. • • • • • • • • • • aimag(3F)
argument. • • • • • • • • • • getari(3F)
argument list. • • • • • • • • • • v~)
argument list. vprintf, vfprintf, • • • vprinif(3S)
argument list(s) and execute command. • • • • • Digs(l)
argument vector. • • • • • • get.Opt(3C)
arguments as an expnmion. • • • • • • • expr(l)
arguments. • • • • • • • • • • • • • • echo(1)
arithmetic language. • • • • • • • • • • bc(l)
arithmetic: provide drill in number fKts. arithmetic(6)
as an expnllllion. • • • • • • • • • • • • • cxpr() 1)
as: common uscmbler. • • • • • • • • • u(l)
ASA carriage control charact.ers. • • • • • • • asa(l)
ua: interpret ASA carriage control c:llaract.ers. • • asa(l)
ASCII character set. • • • • • • • • • • • • • • axii(S)

ii

164a: convert between long integer and base-64
atof: convert

ctime, local time, gmtime,
sin, cos, tan,

help:
a.out: common

as: common

assert: verify program
setbuf, setvbuf:

acia:

ascii: map of ASCII character set. • • • • • •
ASCil string. a641, • • • • • • • • • • • •
ASCII string to ftoating-point number. • ••••
asctime, ti.set: convert date and time to string.
asin, acos, atan, atan2: trigonometric functions.
asin, dasin: FOIITRAN an:sine intrinsic function.
ask for help. • • • • • • • • •
assembler and link editor output.
assembler •••••••••••
assert: verify program assertion. •
assertion. • ••••••••••
assign buffering to a stream.
Asynchronous Communications Interface Adapter.
at, batch: execute commands at a later time.

Permuted I ndu

ascii(S)
a641(3C)
atofC3C)
ctime(3C)
trig(3M)
asin(3F)
help(l)
a.out(4)
as(l)
assert(3X)
assert(3X)
setbuf(3S)
acia(7)

sin, cos, tan, asin, acos,

function.

atan, atan2: trigonometric functions. • • • • • • •
atan, datan: FOIITRANarctangent intrinsic function.
atan2, datan2: FORTRAN arctangent intrinsic

at(l)
trig(3M)
atan(3F)
atan2(3F)

sin, cos, tan, asin, acos, atan,
number.

strtod,
strtol, atol,

strtol,
wait

ungetc: push character

back: the game of
filesave, tapesave: daily/weekly SYSTEM V/68 file system

fine: fast incremental
free: recover files from a

term.info: terminal capability data
a641, 164a: convert between long integer and

vi: screen-<>riented (visual) display editor

atan2: trigonometric functions. • • • • • • •
atof: convert ASCII string to ftoating-point • • •
atof: convert string to double-precision number.
atoi: convert string to integer. • • • • • • • •
atol, atoi: convert string to integer. • • • • •
await completion of process. • • • • • • • •
awk: pattern scanning and processing language.
back into input stream. ••••
back: the game of backgammon.
backgammon.
backup •••••••••
backup ••••••••
backup tape. • • • • • •
banner: make posters.
base. ••••••••
base-64 A&::Il string. •
based on ex. ••••••
basename, dirname: deliver portions of pathnamf)S.

at, batch: execute commands at a later time. • • •

shell scripts. bre,

cb: C program
JJ, jl, jn, yo, yl, yn:

cpset: install objlct files in
fread, fwrite:

bsearch:
tsearch, tfind, tdelete, twalk: manage

and, or, xor, not, !shift, rshift: FORI'RAN

be: arbitrary-precision arithmetic language. •
bcheckre, re, powerfail: system initialization
bcopy: interactive block copy. • • •
bdiff: file comparator for large files.
beautifier. • • • • • •
Bessel functions. • •
bfs: big file scanner.
binary directories. •
binary input/output.
binary search. • • • •
binary search trees.
bitwise Boolean functions.
bjthegameofblackjack.
blackju:k ••••••
block analyrer.
block copy.
block count of a file.
block. .•••••••
blocks. ••••••
ho.macs: bootstrap operating procedure for system

trig(3M)
atof'(3C)
strtod(3C)

• strtol(3C)
strtol(3C)
wait(l)
awk(l)
ungetc(3S)
back(6)
back.(6)
filesave(IM)
fi.nc(lM)
frec(lM)
banner(l)
terminf o(4)
a641(3C)

• vi(l)
basename(l)
at(l)
bc(l)

• brc(IM)
bcopy(lM)
bdi.ff(l)

• cb(l)
bessel(3M)
bfs(l)
cpset(IM)

• fread(3S)
bseareh(3C)
tseareh(3C)

• bool(3F)
• bJ6)

bJ6)
fsba(lM)

• bcopy(lM)
sum(l)
sync(l)
df(IM)

bj the game of
fsba: file system

bcopy: interactive
sum: print chec)tsum and

sync: update the super
df: report number of free disk.

restart on EXORmacs.
and, or, xor, not, !shift, rshift FORTRAN bitwise

EXORmacs. ho.macs:
Boolean functions. • • • • • • • • • • • • • • •

bo.macs(8)
bool(3F)
bo.macs(8)

VME/10. bo.vme:
restart on VME/10.

shell scripts.

programs.

bootstrap operating procedure for system rest.art on
bootstrap operating procedure for system rest.art on
bo.vme: bootstrap operating procedure for system
bre, bcheck.rc, re, powerfail: system initialization
brk., sbrk.: change data segment space allocation.
bs: a compiler/interpreter for modest-sized
bseareh: binary search. • • • •

stdio: standard buffered input/output pack.age.
setbuf, setvbuf: assign buffering to a stream.

mknod: build special file ••••••••
swab: swap bytes. ••••••••••••

cc: C compiler. • • • • • • • • • •
sec:

cfiow: generate
cpp: the

cb:
lint: a

cxref: generate

C compiler for stand-alone programs.
C flow graph. • • • • , • •
C language preprocessor. •
C program beautiJier. • • •
C program checker.
C program cross-referem:e.

iii

bo.vmt(8)
bo.vme(8)
brc(IM)

• brk(2)
• bs(l)

bsearch(3C)
stdio(3S)

• setbuf(3S)
• •• mknod(lM)

• swab(3C)
• • cc(l)

• • • scc:(1)
cfiow(l)

• cpp(l)
cb{l)

•• lint(l)
cxref(l)

Permuted Index

ct race:
abs, iabs, dabs,

de: desk
cal: print

cu:
stat: data returned by stat system

malloc, free, realloc,
allocator. malloc, free, realloc,

intro: introduction to system
link, unlink: exercise link and unlink system

Ip,
terminfo: terminal

pnch: file format for
asa: interpret ASA

cm16: 16Mb
cm80: 80Mb

Driver. cmd16: 16Mb
Driver. cmd80: 80Mb

edit: text editor (variant of ex for

cos, dcos,

absolute value functions. floor,
floor, ceil, fmod, fabs: floor,

exp, dexp,

delta: make a delta
pipe: create an interproce:Ss

real, float, sngl, dble, cmplx, dcmplx, ichar,
ungetc: push

cuserid: get
getc, getchar, fgetc, getw: get

putc,putchar,fputc,putw:put
ascii: map of ASCII

asa: interpret ASA carriage control
tolower, _toupper, _tolower, toascii: translate

isprint, isgraph, iscntrl, isascii: classify
tr: translate

nulladm, prctmp, prdaily, prtacct, runacct/

fsck, dfsck: file system consistency

lint: a C program
pwck, grpck: password/group file

checkall: faster file system
volcopy, labelit: copy file systems with label

sum: print
chess: the game of

chown,
times: get process and

wait: wait for

prctmp, prdaily, prtacct, runacct/ chargefee,
ispunct, isprint, isgraph, iscntrl, isascii:

uuclean: uucp spool directory
clri:

ferror, foof,
alarm: set a process's alarm

cron:

log, alog, dlog,
ldclose, ldaclose:

close:

C program derugger. • ••••••
cabs, zabs: FORTRAN absolute value.
cal: print calendar. • • • •
calculator. • • • • • • •
calendar. • • • • • • • •
calendar: reminder service.
call another SYSTEM V /68 system.
call. • • • • • • • • • • • • • •
calloc: main memory allocator.
calloc, mallopt, mallinfo: fast main memory
calls and error num hers. • • • • • • • • •

calls. • • • • • • • • • • • • • • • • • •
cancel: send/cancel requests to an LP line printer.
capability data base.
card images. • • • • • • • • • • • • • • • • •
carriage control characters. • • • • • • • • • •
Cartridge Module Drive for Universal Disk Driver.
Cartridge Module Drive for Universal Disk Driver.
Cartridge Module Drive for VM21 Driver and VM22
Cartridge Module Drive for VM21 Driver and VM22
casual users). • • • • • • • •
cat: concatenate and print files.
cb: C program beautifier.
cc: C compiler. • . • • • • • •
ccos: FORTRAN cosine intrinsic function.
cd: change working directory. • • • • •
cdc: change the delta commentary of an SCCS delta.
ceil, fmod, fabs: floor, ceiling, remainder, • • •
ceiling, remainder, absolute value functions.
cexp: FORTRAN exponential intrinsic function.
cflow: generate C flow graph. • ••••
(change) to an SCCS file. • • • • • • •
channel. • •••••••••••••
char: explicit FORTRAN type conversion. /idint,
character back into input stream.
character login name of the user.
character or word from stream.
character or word on a stream.
character set.
characters. • • • • • • • • •
characters. toupper, • • • • •
characters. /isxdigit, isalnum, isspace, ispunct,
characters. • • • • • • • • • • • • • • •
chargefee, ckpacct, dodisk, lastlogin, monacct, •
chdir: change working directory. • •••••
check and interactive repair. • • • • • • • •
checkall: faster file system checking procedure.
check.er .••••••
checkers. •••••
checking procedure.
checking. • • • • •
checklist: list of file systems processed by fsck.
checksum and block count of a file.
chess. • • • • • • • • • • •
chess: the game of chess.
chgrp: change owner or group.
child process times.
child process to stop or terminate.
chmod: change mode. • • • • • •
chmod: change mode of file. • • •
chown: change owner and group of a file.
chown, chgrp: change owner or group. • •
chroot: change root directory. • • • • • •
chroot: change root directory for a command.
ckpacct, dodisk, lastlogin, monacct, nulladm,
classify characters. /isxdigit, isalnum, isspace.
clean-up. • • • • • • • • • • • • •
clear inode. • • • • • • • • • • • •
clearerr, fileno: stream status inquiries.
clock. • • • • • • • • • • •
clock daemon. • • • • • • • • • • •
clock: report CPU time used.
clog: FORTRAN natural logarithm intrinsic function.
close a common objlct file.
close a file descriptor. • • • • • • • • • • • • • • •

iv

ctrace(l)
abs(3F)
cal(l)
dc(l)
cal(l)
calendar(1)
cu(lC)
stat(S)
malloc(3C)
malloc(3X)
intro(2)
link(IM)
lp(l)
terminf o(4)
pnch(4)
asa(l)
cm16(7)
cm80(7)
cmd16(7)
cmd80(7)
edit(l)
cat(l)
cb(l)
cc(l)
cos(3F)
cd(l)
cdc(l)
floor(3M)
floor(3M)
exp(3F)
cflow(l)
delta(l)
pipe(2)
ftype(3F)
ungetc(3S)
cuserid(3S)
getc(3S)
putc(3S)
ascii(S)
asa(l)
conv(3C)
ctype(3C)
tr(f)
acctsh(lM)
chdir(2)
fsck(lM)
checkall(lM)
lint(l)

• pwck(lM)
checkall (IM)
volcopy(IM)
checklist(4)
sum(l)
chess(6)
chess(6)
chown(l)
times(2)
wait(2)
chmod(l)
chmod(2)
chown(2)
chown(l)
chroot(2)
chroot(lM)
acctsh(lM)
ctype(3C)
uuclean(lM)
clri(lM)
ferror(3S)
alarm(2)
cron(lM)
clock(3C)
log(3F)
ldclose(3X)
close(2)

fclose, fliush:

Disk Driver.
Disk Driver.

and VM22 Driver.
and VM22 Driver.

int, iiix, idint, real, float, sngl, dble,

comb:
files.

nice: run a
chroot: change root directory for a

env: set environment for
uux: UNIX-to-UNX system

system: issue a shell
nohup: run a
getopt: parse

sh, rsh: shell, the standard/restricted
timex: time a

records. acctcms:
system: issue a shell

test: condition evaluation
time: time a

xargs: construct argument list(s) and execute
getarg: return FORTRAN

overview of accounting and miscellaneous accounting
intro: introduction to

intro: introduction to system maintenance
at, batch: execute

graphics: access graphical and numerical
install: install

mk: how to remake the system and
stat: statistical network useful with graphical

cdc: change the delta
ar:

a.out:
as:

loglO, aloglO, dloglO: FORTRAN
ldfcn:

ldopen, ldaopen: open a
ldlitem: manipulate line number entries of a

ldclose, ldaclose: close a
ldfhread: read the file header of a

seek to line number entries of a section of a
ldohseek: seek to the optional file header of a

seek to relocation entries of a section of a
read an indexed/named section header of a

ldnsseek: seek to an indexed/named section of a
compute the index of a symbol table entry of a

ldtbread: read an indexed symbol table entry of a
ldtbseek: seek to the symbol table of a

linen um: line number entries in a
nm: print name list of

reloc: relocation information for a
scnhdr: section header for a

syms:
filehdr: file header for

Id: link editor for
size: print section mes of

comm: select or rejlct lines
ipcs: report inter-process

stdipc: standard interprocess
acia: Asynchronous
di1f: di1ferential file

bdllf: file
cmp:

sccsdi1f:
lge, lgt, lie, llt: string

di1f3: 3-way di1ferential file
dircm p: directory

regcmp, regex:
regexp: regular expression

PerllUlled Index

close: close a file descriptor. • • • • • • • • • • • • close(2)
close or flush a stream. • • • • • • • • • • • • • • fclose(3S)
clri: clear inode. • • • • • • • • • • • • • • • • • clri(t:M)
cm16: 16Mb Cartridge Module Drive for Universal • cm16(7)
cm80: 80Mb Cartridge Module Drive for Universal cm80(7)
cmd16: 16Mb Cartridge Module Drive for VM21 Driver cmd16(7)
cmd80: 80Mb Cartridge Module Drive for VM21 Driver cmd80(7)
cmp: compare two files. • • • • • • • • • • • • • • • cmp(l)
cmplx, dcmplx, ichar, char: explicit FORTRAN type/ • ftype(3F)
col: filter reverse line feeds. col(l)
comb: combine SCCS deltas. • • • • • • • • • • comb(l)
combine SCX::S deltas. • • • • • • • • • • • • • comb(l)
comm: select; or re pct lines common to two sorted comm(!)
command at low priority. nice(l)
command. • • • • • • chroot(lM)
command execution. • • • • • env(l)
command execution. • • • • uux(lC)
command from FORTRAN • system(3F)
command immune to hangups and quits. • nohup(l)
command options. • • • • • • • • • • • getopt(l)
command programming language. • • • sh(l)
command; report pr~ data and system activity. timex(l)
command summary from per-process accounting • • • acctcms(lM)
command. • system(3S)
command. • test(l)
command. time(!)
command. • xargs(l)
command-line argument. • getarg(3F)
commands. acctdisk, acctdusg, accton, acctwtmp: acct(lM)
commands and application programs. • • • intro(l)
commands and application programs. intro(lM)
commands at a later time. • • at(l)
commands. •• graphics(lG)
commands. •• install(lM)
commands. • • mk(8)
commands. •• statClG)
commentary of an SCX::S delta. • • cdc(l)
common archive file format. •• ar(4)
common assembler and link editor output. a.out(4)
common assembler. • • • • • • • • • as(l)
common logarithm intrinsic function. • • • •• log10(3F)
common objlct file access routines. • • • • • •• ldfcn(4)
common objlct file for reading. • • • • • • • ldopen(3Xl
common objlct file function. ldlread, ldlinit, •• ldlread(3X)
common objlct file. • • • • • • • • • •• ldclose(3Xl
common objlct file. • • • • • • • • • • • • ldfhread(3X)
common objlct file. ldlseek., ldnlseek: •• ldlseek.(3Xl
common objlct file. • • • • • • • • • • • ldohseek(3Xl
common objlct file. ldrseek., ldnrseek: •• ldrseek.(3X)
common objlct file. ldshread, ldnshread: • ldshread(3X)
com.men objlct file. ldsseek, ldsseek(3Xl
common objlct file. ldtbindex: ldtbindex(3X)
common objlct file. • ldtbread(3Xl
common objlct file. •• ldtbseek.(3X)
common objlct file. •• linenum(4)
common objlct file. nm(l)
common objlct file. •• reloc(4)
common objlct file. scnhdr(4)
common objlct file symbol table format. •• syms(4)
common objlct files. •• filehdr(4)
common objlct files. • • •• ld(l)
common objlct files. • • • siz.e(l)
common to two sorted Jiles. • • • comm(l)
communication facilities status. • ipcs(l)
communication package. • • • stdipc(3C)
Communications Interface Adapter. • • acia(7)
comparator. • • • • • • • • • • • di1f(l)
comparator for large files. • • • • • • bdi1f(l)
compare two files. • • • • • • • • • • • • cmp(l)
compare two versions of an SCX::S . .fi.le. ••• sccsdiff(l)
comparision intrinsic functions. • • • • • strcmp(3F)
comparison. • • • • • • • • • • • • dlif3(1)
comparison. • • • • • • • • • • • • dircmp(l)
compile and e:xecute a regular expreaion. • • • • regcmp(3Xl
compile and match routines. • • • • • • regexp(S)

v

Permuted Index

regcmp: regular expression
term: format of

cc:C
f77: FORTRAN 77

scc:C
tic: temtinfo

yacc: yet another
bs: a

erf, erfc: error function and
wait: await

aimag, dimag: FORTRAN imaginary part of
con,& dcon.£: FORTRAN

pack, peat, unpack:
common objlct file. ldtbindex:

cat:
test:

confi.g.68:
lpadmin:
function.

con,£, dconjr. FORTRAN complex
fwtmp, wtmpfi.x: manipulate

dial: establish an out-going terminal line
acctcon 1, acctcon2:

f sck., df sck: file system
rjlstat: RJE status report and interactive status

math: math functions and
mkfs:
xargs:
ls: list

toe: graphical table of
csplit:

asa: interpret ASA carriage
ioctl:

fcntl: file
init, telinit: process

msgctl: message
semctl: semaphore

shmctl: shared memory
fcntl: file

uustat: uucp status inquiry and ,Pb
vc: version

for all disk. units supported by the M68KVM21 disk
for all disk units supported by the M68KVM21 disk
for all disk units supported by the M68KVM22 disk

vm22fmt: format disks on the VM22 disk
tty:

term:
cmplx, dcmplx, ichar, char: explicit FORI'RANtype

units:
dd:

atof:
13tol, ltol3:

string. a641, 164a:
ctime, localtime, gmtime, asctime, tzset:

processon. fscv:
ecvt, fcvt, gcvt:

scanf, fScanf, acanf:
strtod, atof:

strtol, atol, atoi:
conv: objlct file
dd: convert and

bcopy: interactive block
cpio:

dcopy:
volcopy, label.it:

cp.ln, mv:
uucp, uulog, uuname: unix to unix

uupick: public UNXSystem-to-UNXSystan file

core: format of
mem.k.mem:

functimas. sin,

compile.
compiled term file.
compiler. • •••
compiler. • •••
compiler for stand-alone programs.
compiler. • •••••••••••

,•

compiler-compiler. • • • • • • • •
compilerfmterpreter for modest-sized programs.
complementary error function.
completion of process. • • • • • • •
complex argument. • • • • • • • • •
complex conjugate intrinsic function.
compress and expand files. • • • • •
compute the index of a symbol table entry of a
concatenate and print fi.les. • , • •
condition evaluation command. • •
confi.g.68: confi.gure SYSTEM V /68.
confi.gure SYSTEM V /68. • • • • •
confi.gure the LP spooling system.
con.£, dcon,£: FORTRAN complex conjugate intrinsic
conjugate intrinsic function.
connect accounting records. • • • • • • •
connection. • • • • • • • • • • • • •
connect-time accounting. • • • • • • •
consistency check and interactive repair.
console. •••••••••••••••
constants. ••••••••••••••
construct a file system. • • • • • • • • • • •
construct argument list(s) and execute command.
contents of directories.
contents routines.
context split.
control characters.
control device. • •
control. • ••••
control initializ.ation.
control operations.
control operations.
control operations.
control options.
control. • ••••
control. •••••
controller. ud: general driver
controller. vm21: default general driver
controller. vm22: default general driver
controller. • • • • • • • • • • •
controlling terminal interface.
conv: objlct file converter.
conventional names for temtinals.
conversion. rmx. idint, real, float, sngl, dble,
conversion program. • ••••••••••
convert and copy a file. ••••••••••
convert ASCil string to floating-point number.
convert between 3-byte integers and long integers.
convert between long integer and base-64 .A:l::Il
convert date and time to string. • • • • • • • • •
convert files between M68000 and VAX-unso
convert floating-point number to string.
convert formatted input. • ••••••••
convert string to double-precision number.
convert string to integer. • •••••
converter ••
copy a file. • • • • • • •••••
copy. • • •••••••
copy file archives in and out.
copy file systems for optimal access time.
copy file systems with label c:he<:king.
copy, link or move files.
copy. . • • • .• • . • •• • •
copy. uuto, • • • • . • • • •
core: format of core image file.
core image file. • • • • • • •
core memory. • • • • • • • •
cos, dcos, ccos: FORTRAN cosine intrinsic function.
cos, tan, asin, ·acas, atan, atan2: trigonometric

vi

• regcmp(l)
term(4)

• cc(l)
• • f77(1)

• scc(1)
• tic(lM)
• yacc(l)
• bs(l)
• erf(3M)

wait(l)
aimag(3F)
con,E{3F)
pack(l)

• ldtbindex(3X)
• cat(l)

test(l)
confi.g.68(1M)
confi.g.68(1M)
lpadmin(lM)

• con_g(3F)
·conj(3F)
fwtmp(lM)
dial(3C)

• acctcon(lM)
• fsck(lM)

rptat(lC)
math(S)
mkfs(lM)
xargs(l)
Js(f)
toc(lG)

• csplit(l)
asa(l)

• ioct1(2)
• fcnt1(2)
• init(lM)

msgct1(2)
• semct1(2)
• shmct1(2)

fcntl(S)
uustat(lC)
vc(l)

• ud(7)
vm21(7)

• vm22(7)
• vm22fmtC1M>

tty(7)
conv(l)
term.CS)

• ftype(3F)
units<l)

• dd(l)
• atof'C3C)

•• 13tol(3C)
• a641(3C)

ctime(3C)
• fscv(IM)
• ecvt(3C)

•• scanf(35)
• • strtod(3C)

strto1(3C)
• conv(l)

• • dd(l)
bcopy(lM)
cpiO(l)

•• dcopy(lM)
• volcopy(lM>

cp(l)
uucp(lC)

• uutoClC)
• • c:on(4)
•• core(4)
• • mem(7)
• • cos(3F)
• • trig(3M)

function. cosh, dcosh: FORTRAN hyperbolic cosine intrinsic
sinh, cosh, tanh: hyperbolic functions.

cos, dcos, ccos: FORTRAN cosine intrinsic function.
cosh, dcosh: FORTRAN hyperbolic cosine intrinsic function. • • • • •

sum: print checksum and block count of a .tile .••••••••••
we: word count. • • • • • • • • • • • • •

cp, ln, mv: copy, link or move files.
cpio: format of cpio archive. • • • • • • • • • •

cpio: copy .tile archives in and out. •
cpio: format of cpio archive.
cpp: the C language preprocesoor.
cpset: install objlct files in binary directories.

clock: report CPU time used. • • • • • •
craps: the game of craps. • • • • • • • • • • • • • • • • • •

craps: the game of craps. • • • • • • • • •
crash: examine system images. • • • • • •
crash: what to do when the system crashes.

crash: what to do when the system crashes. • • • • • • • • • • • • • • • • •
one. creat: create a new file or rewrite an existing

tmpnam, tempnam: create a name for a temporary file. • • • • •
creat: create a new file or rewrite an existing one.
fork: create a new process. • • • • • • •

tmpfile: create a temporary file. • ••••
pipe: create an interprocess channel.

admin: create and administer sa;s files.
umask: set and get file creation mask. • • • • •

cron: clock daemon.
crontab: user crontab file. ••••••••••

crontab: user crontab file. • • • •
cxref: generate C program cross-reference. • • • • • • • •

curses: CRT screen handling and optimization package.
algorithm. crypt, encrypt: a one way hashing encryption

sin, dsin, csin: FORTRAN sine intrinsic function.
csplit: context split. • • • • • • • • • • • •

sqrt, dsqrt, csqrt: FOIITRANsquare root intrinsic function.
ct: spawn getty to a remote terminal.
ctermid: generate filename for terminal.

date and time to string. ctime, localtime, gmtime, asctime, ti.set: convert
ctrace: C program debugger ••••••
cu: call another SYSTEM V/68 system.

ttt, cubic: tic-tac-toe. • • • • • • • •
uname: get name of current operating system. • • • • ,

sact: print current S<x;s file editing activity.
uname: print name of current UNX System. , • • • •

ttyslot: find the slot in the utmp file of the current user. • ••••••••
getcwd: get pathname of current working directory. • •••

package. curses: Clll" screen handling and optimization
spline: interpolate smooth curve. • • • • • • • • • • • • • • • • •

cuserid: get character login name of the user.
file. cut: cut out selected fidds of each line of a
cut: cut out selected fields of each line of a file. • •

cxref: generate C program cress-reference.
abs, iabs, dabs, cabs, abs: FORTRAN absolute value. •

11ro1, dacos: FORTRAN arccosine intrinsic function.
cron: clock daemon.

errdemon: error-logging daemon.
errstop: terminate the error-logging daemon.

lpd: line printer daemon.
runacct: run daily accoanting.

filesave, tapesave: daily/weekly SYSI'EM V/68 file system backup.
300, 300s: handle special functions of DASI 300 ud 3<>n. terminals. • • • • • • •

450: handle special functions of the DASI 450 terminal. • • • • • , • • • • •
asin, dasin: FORTRAN arcsine intrinsic function.

timex: time a command; report process data and systan activity. • • • • • • • • • •
terminfo: terminal capability data base. ••••••••••••••

diskusg: generate disk acc0unting data by user ro. • . . .
sputl, sgetl: accea long integer data in a machine independent fashion..

plock.: lock proces.t, text, or data in memory. • • • • • • • •
prof: display profile data. • • • • • • • • • • • • • • •

stat: data returaed by stat system call.
brk, sbrk.: change data segment space allocation.

types: primitive system data types. • • • • • • • • • •
pin: relational database operator. • • • • • • •

tput: query terminfo database. • • • • • • • • • • •
atan, datan: FORTRAN arctangent intrinsic fu11.ction.

vii

Permuted I ~dex

cosh(3F)
• sinh(3M)

cos(3F)
cosh(3F)
sum(I)
wc(l)
cp(I)
cpio(4)
cpio(I)
cpio(4)
cpp(I)
cpset(lM)
clock(3C)
craps(6)
craps(6)
crash(IM)
crash.macs(8)

• crash.macs(8)
creat(2)
tmpnam(3S)
creat(2)

• • fork(2)
tmpfile(3S)
pipe(2)
admln(l)
umask(2)
cron(l.M)
crontab(I)
crontab(l)

• cxref(l)
curses(3X)
crypt(3C)
sin(3F)
csplit(l)
sqrt(3F)

• ct(lC)
ctermid(3S)
ctime(3C)

• ctracc(l)
cu(lC)
ttt(6)
unamcO)

• sact(l)
uname(l)
ttyslot(3C)
getcwd(3C)
curses()X)

• spline(IG)
cuserid(3S)

• • cut(l)
•• cut(l)

• cxref(l)
abs(3F)
acos(3p)
cron(l.M)
errdemon(IM)
errs top(IM)
lpd(lC)
runar.ct(l.M)

• • • filesav«(IM)
300(1)
450(1)
asin(3P)

• • timeJ!:l)
• • terminfa(4)
• • diskusg(IM)

sputl(3l()
•• plock(.l)

prof(l)
• • stat(S)

• brk(2)
typc:s(S)
j;'>in(l)

•• tp11t(l)
atan(3P)

Permuted Ilidex

atan2, datan2: FORTRANarctangent intrinsic function.
ctimt\ localtimt\ gmtime, asctimt\ tzset: convert date and time to string. • • • • • • • • • • • • •

• atan2(3F)
ctimc(3C)

date: print and set the date. •• datt(l)
datt(l)
ftype(3F)
de(!)

type/ int, ifix. idint, real. fl.oat, sngl,

int. ifix, idint. real, fl.oat, sngl, dble, cmplx.
· function. conE,

cos,
function .. rosh.

functions. dim,
ctraa: C program

fsdb: file system
sdb: symbolic

by the M68KVM21 disk controller. vm21:
by the M68KVM22 disk controller. vm22:

sysdef: system
baseoame, dirname:

tail:
cdc: change the delta commentary of an SCX::S

delta: make a
cdc: change the

rmdel: remove a

comb: combine SCX::S
mesg: permit or
elate: close a file

dup: duplicate an open file
de:

access:
file:

dfile:
master: master

ioctl: control
devnm:

hpd. er&St\ hardcopy. tekset. td: graphical

exp,

interactive repair. fsck,
connection.

ratfor: rational FORTRAN

dim, ddim, idim: positive
sdilf: sid&-by-side

dilfmk: mark
di1f:

dilf3: 3-way

functions.
aimag,

aint.

cpset: 'install ob)ct Jiles in binary
dir: format of

ls: list contents of
rm, rmdir: nmiove files or

cd: change working
chdir: change working

chroot: change root
uuclmn: uucp spool

dircmp:
unlink: remove

chroot: change root
getcwd: get pathname of current working

mkdir: make a
mvdir: move a
pwd: working

mknod: make a

date: print and set the date. • • • • • • • • • • •
dble, cmplx, dcmplx. ichar, char: explicit FORTRAN ••
de: desk calculator. • • • • • • • • • • • • ••
dcmplx. ichar, char: explicit FORTRAN type/ , • •
dcon.£: FORTRAN complex conjugate intrinsic •
dcopy: copy file systems for optimal access time.
dcos, ccos: FORTRAN cosine intrinsic function.
dcosh: FORTRAN hyperbolic cosine intrinsic
dd: convert and copy a file. • • • • • •
ddim, idim: positive dilference intrinsic
debugger. • •••••••••••••••
debugger. • •••••••••••••••
debugger. • , ••••••••••••••
default general driver for all disk units supported
default general driver for all disk units supported
definition. • • • • • • • • • •
deliver portions of pathnames.
deliver the last part of a file. • • •
delta.. • • • • • • • • • • • • • • •
delta (change) to an SCX::S file •••••
delta commentary of an SCX::S delta.
delta from an SCX::S file. • • • • • • • ••
delta: make a delta (change) to an SCCS file.
deltas. •••••
deny messages.
descriptor.
descriptor.
desk calculator.
determine accessibility of a file.
determine file type.
device information file. •
device information table. •
device. •••••••••
device name. • • • • • .
device routines and filters.
devnm: device name. • • •
dexp, cexp: FORTRAN exponential intrinsic function.
df: report number of free disk blocks. •
dfile: device information file. • • • • • •
dfsck: file system consistency check and
dial: establish an out-going terminal line
dialect. • • • • • • • • • • • • • • • •
dilf: dilferential file comparator. • • • • •
di1f3: 3-way dilferential file comparison.
difference intrinsic functions.
dilference program.
dilferenc:EB betwem files. • • • • • •

• • ftype(3F)
con.£(3F)
dcopy(lM)
cos(3F)
cosh(3F)
dd(l)
dim(3F)
ctracc(l)
fsdb(lM)
sdb(l)
vm21(7)
vm22(7)
sysdef(lM)
ba.senamc(l)
tail(l)

•• cdc(l)
delta(!)
cdc(l)
rmdel(l)
delta(l)
comb(l)
mesg(l)
close(l)
dup(2)
dc(l)

•• acceisC2)
filc(l)
dfilc(4)
master.dec(4)
ioct1(2)
devnm(lM)
gdev(lO)
devnm(lM)

• exp(3F)
df'(1M)
dfilc(4)
fsck.(lM)
dia1(3C)
ratfor(l)

• • dilf(l)
• • dilf3(1)

dim(3F)
sdilf(l)
dilfmk(l)
dilf(l) dilfc;ential file comparator. • • • • •

dilferential file comparison. • • • • •
dilfmk: mark dilf~ces betwem files. •
dim, ddim, idim: positive dilference intrinsic

• • • • • dilf3(1)
dilfmk(l)

dimag: FORTRAN imaginary part of complex aigument.
dim(3F)
aimag(3F)
dinit(lM) dinit disk initializer. • • • • • • • • • • • •

dint: FORTRAN integer part intrinsic function.
dir: format of ditectories. •••
dircmp: directory comparison.
directories.
directories.
directories.
directories.
directory ••
directory. •
directory. •
directory clean-up.
directory comparison.
directory entry. • ••
directory for a command.
directory. • ••
directory. • ••••••
directory. • ••••••
directory name. • • • • • • • • • •
directory, or a special or ordinary file.

viii

"

aint(3F)
dir(4)
dircmp(l)

•• cpset(lM)
dir(4)

•• ls(l)
rm(l)
cd(l)
chdir(2)
chrootC2)
uuclean(lW
dircmp(l)
unlink(2)

•• chroot(lJ.0
•• getcwd(3C)

mkdir(l)
mvdir(lM)

•• pwd(l)
mknod(2)

Permuted Index

basename, dirname: deliver portions of pathnames.
dis: disassembler. • • • • • • •

enable, disable: enable/disable LP printers.
acct: enable or disable process accounting.

dis: disassembler.
getty: set terminal type, modes. speed, and line discipline. • • • • • • • •

sadp: disk access profiler •••••
diskusg: generate disk accounting data by user ID.

df: report number of free disk blocks. . ••••••••
driver for all disk units supported by the .M68KVM21 disk controller. ud: general ••
driver for all disk units supported by the .M68KVM21 disk controller. vm21: default general
driver for all disk units supported by the :M68KVM22 disk controller. vm22: default general

vm22fmt: format disks on the VM22 disk controller. • • • • • • • • • .
sa400:flwd: S1f4-inch Floppy Disk Drive for the Winchester Disk Driver.

:£18: 8-inch Floppy Disk Drive for Universal Disk Driver.
sa800fl.21: 8-inch Floppy Disk Drive for VM21 Driver.

sa400fi22: S1f4-inch Floppy Disk Drive for VM22 Driver.
sa800fl.22: 8-inch Floppy Disk Drive for VM22 Driver.
wd 15: 15Mb Winchester Disk Drive.
wd40: 40Mb Wmchester Disk Drive.

cm16: 16.Mb Canridge Module Drive for Universal Disk Driver.
cm80: 80.Mb Canridge Module Drive for Universal Disk Driver.

:£18: 8-inch Floppy Disk Drive for Universal Disk Driver.
Jrk25: 25.Mb LARK Module Drive for Universal Disk Driver.
.51/4-inch Floppy Disk Drive for the Winchester Disk Driver. sa400:flwd:

dinit: disk initializer.
controller. ud: general driver for all disk units supported by the M68KVM21 disk

controller. vm21: default general driver for all disk units supported by the M68KVM21 disk
controller. vm22: default general driver for all disk units supported by the M68KVM22 disk

du: summarize disk usage. • • • . • • • • • • • • • • •
vm22fmt: format disks on the VM22 disk controller. • • • • •

diskusg: generate disk accounting data by user ID.
mount, umount: mount and dismount file system. • • •

vi: screen-oriented (visual) display editor based on ex.
prof: display profile data.

hypot: Euclidean distance function.
srand48, seai48, lcong48: generate uniformly distributed pseudo-random numbers. /j'and48,

function. log, alog, dlog, clog: FORTRAN natural logarithm intrinsic
function. loglO, aloglO, dloglO: FORTRAN common logarithm intrinsic •

max, maxO, amaxO, maxl, amaxl, dmaxl: FORTRAN maximum-value functions.
min, minO, amino, minl, aminl, dminl: FORTRAN minimum-value functions.

mod, amod, dmod: FORTRAN remaindering intrinsic functions.
functions. anint, dnint, nint, idnint: FORTRAN nearest integer

prdaily, prtacct, runacct,/ chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp,
whodo: who is doing what. • •..••••••••.•.

dprod: double precision product intrinsic function .•
strtod, atof: convert string to double-precision number. • •••.•••.

dprod: double precision product intrinsic function.
reversi: a game of dramatic reversals. • • • • • • • • • . . . •

jrand48, srand48, seai48, lcong48: generate/ drand48, erand48, lrand48, nrand48, mrand48,
graph: draw a graph. • • • • • • • • • • •

arithmetic: provide drill in number facts. • • • • • • •
sa400fl.wd: ,51/4-inch Floppy Disk Drive for the Wmchester Disk Driver.

cm 16: 16.Mb Cartridge Mxlule Drive for Universal Disk Driver.
cm80: 80.Mb Cartridge Mxlule Drive for Universal Disk Driver.

:£18: 8-inch Floppy Disk Drive for Universal Disk Driver.
lrk25: 25.Mb LARK Mxlule Drive for Universal Disk Driver.

cmdl6: 16Mb Cartridge Mxlule Drive for VM21 Driver and VM22 Driver.
cmd.80: 80.Mb Cartridge Mxlule Drive for VM2 l Driver and VM22 Driver.

lark25: SO.Mb LARK Mxlule Drive for VM21 Driver and VM22 Driver.
lark8: 16Mb LARK Mxlule Drive for VM21 Driver and VM22 Driver.

sa800:fl21: 8-inch Floppy Disk Drive for VM21 Driver.
sa400fl.22: ,51/4-inch Floppy Disk Drive for VM22 Driver.

sa800ft22: 8-inch Floppy Disk Drive for VM22 Driver.
wdl5: 15Mb Winchester Disk Drive. • •••••••
wd40: 40Mb Wmchester Disk Drive. • • • • • • • •

cmdl6: 16Mb Cartridge Mxlule Drive for VM21 Driver and VM22 Driver.
cmd80: 80Mb Cartridge Mxlule Drive for VM21 Driver and VM22 Driver.

lark25: 50Mb LARK Mxlule Drive for VM21 Driver and VM22 Driver.
lark8: 16Mb LARK Module Drive for VM21 Driver and VM22 Driver.

16Mb Cartridge Module Drive for Universal Disk Driver. cm 16: • • • •
80Mb Cartridge Module Drive for Universal Disk Driver. cm80: • • • •

Cartridge Module Drive for VM21 Driver and VM22 Driver. cmdl6: 16Mb
Cartridge Module Drive for VM21 Driver and VM22 Driver. cmd80: 80Mb

:£18: 8-inch Floppy Disk Drive for Universal Disk Driver. • • • • • • •

ix

basenam e(l)
dis(!)
enable(!)
acct(2)
dis(l)
getty(lM)
sadp(l)
diskusg(lM)
df'(lM)
ud(7)
vm21(7)
vrn22(7)
vm22fmt(lM)
sa400:flwd(7)
:£18(7)
sa800fl.2 l (7)
sa400fl.22(7)
sa800fl.2 2(7)
wdl5(7)
wd40(7)
cml6(7)
cm8oC7)
fl.8(7)
lrk25(7)
sa400:flwd(7)
dinit(lM)
ud(7)
vm21(7)
vm22(7)
du(l)
vm22fmt(lM)
diskusg(lM)
mount(lM)
vi(l)
prof(l)
hypot(3M)
drand48(3C)
log(3F)
logl0(3F)
max(3F)
min(3F)
mod(3F)
round(3F)
acctsh(lM)
whodo(IM)
dprod(3F)
strtod(3C)
dprod(3F)
reversi(6)
drand48(3C)
graph(lG)
arithmetic(6)
sa400fiwd(7)
cml6(7)
cm80(7)
:£18(7)
lrk25C7)
cmd16(7)
cmd80(7)
lark25(7)
lark.8(7)
sa800fl.21 (7)
sa400fl.22(7)
sa800fl.22(7)
wdl5(7)
wd4oC7)

• cmd16(7)
cmd80(7)
lark25(7)
lark.8(7)
cm16(7)
cm8oC7)
cmd16(7)
cmd80(7)
ft8(7)

Permuted Index

disk controller. ud: general
disk controller. vm21: default general
disk controller. vm22: default general

SOMb LARK Module Drive for VM21 Driver and VM22
16Mb LARK M:xiule Drive for VM21 Driver and VM22

ltk2S: 2SMb LARK Module Drive for Universal Disk
sa400:fi22: S1/.c-inch Floppy Disk Drive for VM22

Floppy Disk Drive for the W111chester Disk
sa800fi21: 8-inch Floppy Disk Drive for VM21
sa800fi22: 8-inch Floppy Disk Drive for VM22

sxt:pseudo-device
sign, isign,

sin,
sinh,

function. sqrt,
tan,

function. tanh,

m400: MVME400

errdead: extract error records from
od: octal

dump:

dup:
echo:

string.

end, etext,

sact: print current SOCS file
vi: screen-oriented (visual) display

ed, red: text
ex: text
Id: link

ged: graphical
a.out: common assembler and link

sed: stream
edit: text

get real user, effective user, real group, and
getuid, geteuid, getgid, getegid: get real user,

fsplit: split f77, ratfor, or
grep,

acct:
enable, disable:

crypt.
crypt_ encrypt: a one way hashing

makekey: generate

getgrent, getgrgid, getgrnam, setgrent.
getpwent, getpwuid, getpwnam, setpwent.

getutent, getutid, getutline, pututline, setutent.
trenter:

nlist: get
linenum: line number

man, manprog: print
ldlread, ldlinit, ldlitem: manipulate line number

ldlseek. ldnlseek: seek to line number
ldrseek, ldnrseek: seek to relocation

utmp, wtmp: utmp and wtmp
setpwent, endpwent, fgetpwent: get password file

setutent, endutent, utmpname: access utmp file
ldtbindex: compute the index of a symbol table

ldtbread: read an indexed symbol table
putpwent: write password file

unlink: remove directory

profile: setting up an
environ: user

env:set
getenv: return value for

driver for all disk units supported by the M68KVM21 ud(7)
driver for all disk units supported by the M68KVM21 vm21(7)
driver for all disk units supported by the M68KVM22 vm22(7)
Driver. lark2S: • • lark2S(7)
Driver. lark8: • • • • • • • • • lark8(7)
Driver. • • • • • • • • • • lrk2S(7)
Driver. • • • • • • • • • • sa400fi22(7)
Driver. sa40011.wd: S1f4-inch sa40011.wd(7)
Driver. • • • • • • • • • • sa80011.21(7)
Driver. • • • • • • • • • • sa80011.22(7)
driver. • • • • • • • • • • • • sxt(7)
dsign: FORTRAN transfer-of-sign intrinsic function. sign(3F)
dsin, csin: FORTRAN sine intrinsic function. • • • sin(3F)
dsinh: FORTRANhyperbolic sine intrinsic function. • sinh(3F)
dsqrt, csqrt: FORTRAN square root intrinsic sqrt(3F)
dtan: FORTRAN tangent intrinsic function. tan(3F)
dtanh: FORTRAN hyperbolic tangent intrinsic tanh(3F)
du: summarize disk usage. • • • • • • • du(l)
Dual RS-232C Serial Port Module. • • • • m400(7)
dump: dump selected parts of an objict file. dump(l)
dump. • • • • • • • • • • • • • • • errdead(lM)
dump. • • • • • • • • • • • • • • od(l)
dump selected parts of an objlct file. • dump(l)
dup: duplicate an open file descriptor. dup(2)
duplicate an open file descriptor. dup(2)
echo arguments. • • • • • • • • • • • echo(l)
echo: echo arguments. • • • • • • • • • echo(l)
ecvt, fcvt, gcvt: convert floating-point number to ecvt(3C)
ed, red: text editor. • • • • • • • • • • • • • • ed(l)
edata: last locations in program. • • • • • • • end(3C)
edit: text editor (variant of ex for casual users). edit(l)
editing activity. • sact(l)
editor based on ex. • • • • • • • • vi(l)
editor. • • • • • • • • • • • ed(l)
editor. • • • • • • • • • • • ex(l)
editor for common objlct files. ld(l)
editor. • • • • • • • • • • • ged(lG)
editor output. • • • • • • • • a.out(4)
editor. • • • • • • • • • • • • • sed(l)
editor (variant of ex for casual users). •• edit(l)
effective group IDs. /geteuid, getgid, getegid: getuid(2)
effective user, real group, and effective group/ getuid(2)
efl: Extended FORTRAN Language. efl(l)
efl files. • • • • • • • • • • • • • • • • • • fsplit(l)
egrep, fgrep: search a file for a pattern. • • • grep(l)
enable, disable: enable/disable LP printers. enable(!)
enable or disable process accounting. • • • • • acct(2)
enable/disable LP printers. • • • • • • • • enable(l)
encrypt: a one way hashing encryption algorithm. • crypt(3C)
encryption algorithm. • • • • • • • • • crypt(3C)
encryption key. • • • • • • • • • • • • • • • • make.key(!)
end, etext, edata: last locations in program. • • • end(3C)
endgrent: obtain. • • • • • • • • • • • • • • • getgrentC3C)
endpwent, fgetpwent: get password file entry. getpwentC3C)
endute:nt, utmpname: access utmp file entry. getut(3C)
enter a trouble report. trenter(IM)
entries from name list. • • • • • • • • • nlist(3C)
entries in a comm,on objict file. • • • • • linenum(4)
entries in this manual. • • • • • • • • • •• man(l)
entries of a common objict file function. • • ldlread(31()
entries of a section of a common objlct file. ldlseeit(3X)
entries of a section of a common objict file. • ldrseeit(31()
entry formats. • • • • • • • • • • • • • • • utmp(4)
entry. getpwent. getpwuid, getpwnam, • • • getpwent(3C)
entry. getutent. getutid, getutline, pututline, getut(3C)
entry of a common objict file. • ldtbindell(3X)
entry of a common objict file. • • • • • • • • ldtbread(31()
entry. • putpwent(3C)
entry. • • • • • • • • • • • • • • • • • • unlink(2)
env: set environment for command ellllCUtion. ~v(l)
environ: user environment. • • • • • environ(S)
environment at login time. • • • • • profile(4)
environment. • • • • • • • • • • • • • environ(S)
environment for command execution. env(l)
environment name. • • • • • • • • • • getenv(3C)

x

putenv: change or add value to
getenv: return FORTRAN

sky: obtain
srand48, sem48, lcong48: generate/ drand48,

routines and filters. hpd,
function.

function. erf,

messages. petror,
erf, erfc:

erf, erfc: error function and complementary
perror, ermo, sys~rrlist, sys..J).err: system

intro: introduction to system calls and
errde.ad: extract

matherr:
errfile:

errdemon:
errstop: terminate the

err:
errpt: process a report of logged

spell, hashmake, spellin, hashcheck: fi.nd spelling

dial:
setmnt:

end,
hypot:

expr:
test: condition

edit: text editor (variant of

screen-oriented (visual) display editor based on
crash:

execute a file.
execl, execv,

execl, execv, execle, execve,
execl, execv, execle, execve, execlp, execvp:

regcmp, regex: compile and
xargs: construct argument list(s) and

at, batch:
env: set environment for command

sleep: suspend
sleep: suspend

monitor: prepare
profil:

uux: UNX-to-UNXsystem command
file. execl,

execl, execv, e:xec:le,
execl, execv, execle, execve, execlp,

link., unlink:
creat: create a new file or rewrite an

exit,
bootstrap operating procedure for system restart on

ops.macs:
function.

power, square root functions.
pack, peat, unpack: compress and

ii.oat, sngl, dble, cmpl:z, dcmplx, ichar, char:
exp. dcxp, cexp: FORTRAN

functions. exp. log, loglO, pow, sqrt:

regexp: regular
regcmp: regular

expr: evaluate arguments as an
regcmp, regex: compile and execute a regular

efl:
errdead:

fsplit: split
functiom. Jloor, cell, fmod,

factor:

environment. • • • • •
environment variable.
ephemerides.
erand48, lrand48, nrand48, mrand48, jrand48,
erase, hardcopy, tekset, td: graphical device •••
erf, erfc: error function and complementary error
erfc: error function and complementary error •
err: error-logging interface. • • • , • • •
errde.ad: extract error records from dump.
errdemon: error-logging daemon.
errfile: error-log file format. • • • • • • •
errno, sys..Jm"list, sys..J).err: system error •
error function and complementary error function.
error function.
error meSsa.ges.
error numbers.
error records from dump.
error-handling function.
error-log file format. •
error-logging daemon.
error-logging daemon.
error-logging interface.
errors. •••••••
errors. •••••••
errpt: process a report of logged errors.
errstop: terminate the error-logging daemon.
establish an out-going terminal line connection.
establish mount table. • • • • • • •
etext, edata: last locations in program.
Euclidean distance function.
evaluate arguments as an expression.
evaluation command.
ex for casual users).
ex: text editor. • • •
ex. vi: ••••••
examine system images.
exec!, e:xecv, execle, e:xecve, e:xec:lp, execvp:
execle, execve, execlp, execvp: execute a file.
execlp, execvp: execute a file. • • • • •
execute a file. • • • • • • • •
execute a regular expression.
execute command. • • • • • •
execute commands at a later time.
execution ••••••••
execution for an interval.
execution for interval.
execution profile.
execution time profile.
execution •••••••
execv, execle, e:xecve, execlp, execvp: execute a
execve, execlp, execvp: execute a file. •
execvp: execute a file. • • • • • • ••
exercise link and unlink system calls.
existing one. • • • • • • • • •
exit, ~t: terminate process.
_exit: terminate process.
EIDRmacs. bo.macs: • • • • •
EIDRmacs operations.
exp, dexp, cexp: FORTRAN eJq10nential intrinsic
exp. log, loglO, pow, sqrt: exponential, logarithm,
expand files. • • • • • • • • • • • • • • • • •
explicit FORTRAN type convasion. /idint, real,
exponential intrinsic function. •••••
exponential, logarithm, power, square root
expr: evaluate arguments as an expression.
expression compile and match routines.
expression compile. • • • •••
expression. • • • • • • • • •
expression. • • • • • • • • • •
Extended FORTRAN Language.
extract error records from dump.
f77: FORTRAN 77 compiler.
f77, ratfor, or efl files. • • • , • •
fabs: 1loor, ceiling, remainder, absolute value
factor a number. • • • • • • • • • • • • •

xi

Permuted I nde;x

putenv(3C)
getenv(3F)
sky(6)
drand48(3C)
gdev(lG)
erf(3M)
erf(3M)
err(?)
errdead(lM)
errdemon(1M)
errfile(4)
perror(3C)
erf(3M)
erf(3M)
perror(3C)
introC2)
errdead(lM)
matherr(3M)
errfile(4)
errdemon(l.M)
errstop(lM)
err(?)
errpt(lM)
spell(l)
errpt(lM)
errstop(lM)
dia1(3C)
setmnt(l.M)
end(3C)
hypot(3¥)­
expr(l)
testCl)
edit(l)
ex(l)
vi(l)
crash(IM)

•• exec(2)
•• execC2)

execC2)
execC2)

regc~3X> xa 1)
at(l
env(l)
sleep(l)
s1eep(3C)
monitor(3C)
profil(2)
uux(lC)
execC2)
execC2)
execC2)
link.(lM)
creatC2)

•• exitU)
exitC2)
bo.macs(B)
ops.macs(8)
exp(3F)
exp(3M)
pack(l)
ftype(3F)
exp(3F)
exp(3M)
expr(l)
regexp(S)
regcmp(l)
expi(l)
regcmp(3X>
efl(l)
emlead(lM)

•• f77(1)
• • fsplit(l)

Jloor(3M)
fac:tor(l)

Permuted I nde:x

true,
access long integer data in a machine independent

fine:
malloc, free, realloc, calloc, mallopt, mallinfo:

checkall:
abort: generate an IOT

string. ecvt,
fopen, freopen,

col: filter reverse line
ferror,

inquiries.
system.

fclose,
getc, getchar,

getpwent, getpwuid, getpwnam, setpwent, endpwent,
gets,

grep, egrep,
utime: set

ldfcn: common obpct
access: determine accessibility of a

tar: tape
cpio: copy

pwck, grpck: password/group
chmod: change mode of

chown: change owner and group of a
diif: differential

bdiif:
di1f3: 3-way differential

fcntl:
fcntl:

conv: obpcr
uuto, uupick: public UNIX System-to-UNIX System

core: format of core image
umask: set and get

crontab: user crontab
cut: cut out selected fields of each line of a

dd: convert and copy a
delta: make a delta (change) to an SCCS

close: close a
dup: duplicate an open

dfile: device information
dump: dump selected parts of an obpcr

sact: print current SCX::S
setpwent, endpwent, fgetpwent: get password

setutent, endutent, utmpname: a~ utmp
putpwent: write password

execv, execle, execw, execlp, eXllCVp: execute a
grep, egrep, fgrep: search a

ldopen, ldaopen: open a common obpcr
acct: per-process accounting

ar: common archive
errfile: error-log

pnch:
intro: introduction to

manipulate line number entries of a common ob)ct
get: get a version of an SCX::S

group: group
filehdr:

ldfhread: read the
ldohseek: seek to the optional

split split a
issue: issue identification

read the archive header of a member of an archive
ldclose, ldaclose: close a common ob)ct

ldfhread: read the file header of a common ob)ct
ldgetname: retrieve symbol name for ob)ct

line number entries of a section of a common ob)ct
seek to the optional file header of a common ob)ct

relocation entries of a section of a common ob)ct
an indexed/named section header of a common ob)ct

factor: factor a number.
false: provide truth values.
fashion •. sputl, sgetl: •••
fast incremental backup. •
fast main memory allocat<ir.
faster file system checking procedure.
fault. • •••••••••••••
fclose, filush: close or .6.ush a stream. •
fcntl: file control. • • • • • • • • •
fcntl: file control options. • • • • • •
fcvt, gcvt: convert .6.oating-point number to
fdopen: open a stream. • • • • • • • • • •
feeds. ••••••••••••••••••
feof, clearerr, fileno: stream status inquiries.
ferror, feof, clearerr, fileno: stream status ••
ff: list filenames and statistics for a file
filush: close or flush a stream. • ••••••
fgetc, getw: get character or word from stream.
fgetpwent: get password file entry.
fgets: get a string from a stream.
fgrep: search a file for a pattern .•
file access and modification times.
file access routines. • •
file. • • • • • • • • •
file archiver.
file archives in and out.
file checkers.
file. • • • • • • • • •
file. • • • • • . • • • •
file comparator.
file comparator for large files.
file comparison.
file control. • • •
file control options.
file converter. • •
file copy.
file. • ; • • • • •
file creation mask.
file ••
file. • • • • •
file. • • • • ••
file. • • • • •
file descriptor.
file descriptor.
file: determine file type.
file. • • • • • • • • • • •
file. • • • • • • • • • • •
file editing activity.
file entry. getpwent, getpwuid, getpwnam,
file entry. /getutid, getutline, pututline,
file entry. • •••
file. exec!,
file for a pattern.
file for reading.
file format. • ••
file format. •••
file format. •••
file format for card images.
file formats. •••••••
file fUnction. ldlread, ldlinit, ldlitem:
file. • • • • • • • • • • • • •••
file. • • • • • • • • • • • • ••••
file header for common ob)ct files.
file header of a common objlct file.
file header of a common objlct file.
file into pieces. • ·
file. • • • • •
file. ldahread:

factor(l)
true(l)

•• sput1(3X)
nncClM)
malloc(3X)

• checkall(lM)
abort(3C)

• fclose(3S)
fcnt1(2)
fcntl(S)
ecvt(3C)
fopen(3S)

•• col(l)
ferror(3S)
ferror(3S)
ff(IM)
fclose(3S)
getcC3S)
getpwent(3C)
gets(3S)
grep(l)
utimeC2)
ldfcn(4)
accessC2)
tarCl)
cpio(l)
pwck(IM)
chmod(2)
chown(2)
diif(l)

• bdiff(l)
diff3(1)
fcntl(2)
fcntl(S)
conv(l)
uutoClC)
core(4)
umask(2)
crontab(l)
cut(l)
dd(l)
delta(!)
close(2)
dup(2)

• .file(!)
• dfill'(4)

••• dump(!)
sact(l)
getpwent(3C)
getut(3C)
putpwent(3C)
exec(2)
grep(l)
ldopen(3Xl
acct(4)
ar(4)
errfilc(4)
pnch(4)
introC4)

•• ldlread(3X)
get(!)
group(4)
.filehdr(4)
ldfhread(3X)
Idohseek(3X)
split(l)
issue(4)
ldahread(3X)
ldclose(3X) ·.file. • • • • •

.file. • • • • •
file. • • • • •

• • • • • • ldfhread(3X)

file. ldlseek, ldnlseek.: seek to
file. ldohseek.: • • • • • • • ' • • • •
file. ldrseek., ldnrseek: seek to
file. ldshread, ldnshread: read

• • • • • • ldgetnaml'(3X)
ldlseek(3X)
ldohseek(3X)
ldrseek.(3.x)
ldsh read(3Xl

Permuted Index

to an indexed/named section of a common objlct file. ldsseek, ldnsseek: seek
index of a symbol table entry of a common objlct file. ldtbindex: compute the

an indexed symbol table entry of a common objlct file. ldtbread: read
seek to the symbol table of a common objlct file. ldtbseek:

linenum: line number entries in a common objlct file.
link: link to a file.

mknod: build special file.
mknod: make a directory, or a special or ordinary file.

newform: change the format of a text file.
nm: print name list of common objlct file.

null: the null file.
ttyslot: find the slot in the utmp file of the current user.
fuser: identify processes using a file or file structure.

creat: create a new file or rewrite an existing one.
passwd: password file .•••••..•••••

lines of several files or subsequent lines of one file. paste: merge same • • •
pg: file perusal filter for soft-copy terminals.

fseek, rewind, ftell: reposition a file pointer in a stream.
!seek: move read/write file pointer.

prs: print an SCX::S file.
read: read from file.

reloc: relocation information for a common objlct file.
rmdel: remove a delta from an SCCS file.

bfs: big file scanner.
sccsdiff: compare two versions of an SCX::S file.

sccsfile: format of secs file .•••
scnhdr: section header for a common objlct file. • • •

stat, fstat: get file status.
symbol and line number information from an objlct file. strip: strip

fuser: identify processes using a :file or file structure.
sum: print checksum and block count of a file •••••••

syms: common objlct file symbol table format.
:filesave, tapesave: daily/weekly SYSfEM V/68 file system backup ••••

fsba: file system block analyzer.
checkall: faster file system checking procedure.

repair. fsck, dfsck: file system consistency check and interactive
fsdb: file system debugger. • •••••••

ff: list filenames and statistics for a file system. • • • • • • • • • • • •
file system: format of system volume.

mkfs: construct a file system.
mount, umount: mount and dismount file system.

mount: mount a file system.
ustat: get file system statistics.

mnttab: mounted file system table. • •
umount: unmount a file system.

dcopy: copy file systems for optimal acce& time.
checklist: list of file systems proeeBSed by fsck.. • •

volcopy, labelit: copy file systems with label checking.
tail: deliver the last part of a file.

term: format of compiled term :file.
tmp:file: create a temporary file.

tmpnam, tempnam: create a name for a temporary file.
touch: update access and modification times of a file.

ftw: walk. a file tree. •
file: determine file type.

unget: undo a previous get of an SCX::S file.
uniq: report repeated lines in a file.

val: validate SCCS file.
write: write on a file.

umask.: set :file-creation mode mask.
:filehdr: file header for common ob)ct files.

ctermid: generate :filename for terminal. • •••••••
mk.temp: make a unique :filename. ••••••••••••••

ff: list filenames and statistics for a file system.
ferror, fe;if, clearerr, :fileno: stream status inquiries.

acctcom: search and print procea accounting file<$).
acctmerg: merge or add total accounting files.

admin: create and administer SCCS files.
bdiff: file comparator for large files.

fscv: convert files between M68000 and V AXc-11/780 proce.-aors.
cat: concatenate and print files.

cmp: compare two files.
comm: select or rejlct lines common to two sorted files.

cp, ln, mv: copy, link or move files.
diifmk: mark differences between files.

xiii

ldsseek(3X)
ldtbindex(3X)
ldtbread(3X)
ldtbseek(3X)
linenum(4)
link(2)
mknod(lM)
mknod(2)
newform(l)
nm(l)
null(7)
ttyslot(3C)
fuser(IM)
creat(2)
passwd(4)
paste(!)
pg(l)
fseek(3S)
lseek(2)
prs(l)
read(2)
reloc(4)
rmdel(l)
bfs(l)
sccsdiff(l)
sccsfile(4)
scnhdr(4)
stat(2)
strip(!)
fuser(IM)
sum(l)
sym.s(4)
file.save(IM)
fsba(lM)
checkall(lM)
fsck(lM)
fsdb(lM)
ff(1.M)
fs(4)
mkfs(IM)
mount(IM)
mount(2)
ustatC2)
mnttabC4)
umount(2)
dcopy(IM)
checklist(4)
volcol>y(lM)
tail(l)

• term(4)
tmpfile(3S)

• tmpnam(3S)
touch(!)
ftw(3C)
file(l)

• unget(l)
unlq(l)
val(l)
write(2)
umast.(1)
filehdJ(4)
ctennid(3S)
mkttmp(3C)

• • ff(1M)
fel'l'Ol(3S)
acctaml(l)

• acctmm2(1M)
admin(i)
bdllf(I)
fscv(IM)

•• cat(l)
•• cmp(l)

comm(l)
cp(l)
diJfmk(l)

Permuted Index

filehdr: file header for common objlct
find: find

free: recover
fspec: format specification in text

fsplit: split f77, ratfor, or ef1
graphical primitive string, format of graphical

cpset: install objlct
intro: introduction to special

Id: link editor for common objlct
rm, rmdir: remove

paste: merge same lines of several
pack, peat, unpack: compress and expand

pr: print
size: print section sizes of common objlct

sort: sort and/or merge
what: identify SCX::S

backup.
pg: file perusal

greet.: select terminal
nl: line numbering

col:
hardcopy, tekset, td: graphical device routines and

tplot: graphics

find:

hyphen:
ttyname, isatty:

!order:
spell, hashmake. spellin, hashcheck:

ttyslot:
tee: pipe
Driver.

explicit FORTRAN type/ int, iJix, idin t, real,
atof: convert ASCil string to

ecvt, fcvt, gcvt: convert
frexp, ldexp, modf: manipulate parts of

absolute value functions.
functions. .floor, cell, fmod, fabs:

wffmt: format
sa400.ftwd: 5114-inch

.ft8: 8-inch
sa800.ft21: 8-inch

sa400.ft22: 51/4-inch
sa800.ft22: 8-inch
cflow: generate C

fclose, filush: close or
value functions. floor, ceil,

acct: per-process accounting file
ar: common archive file

vm22fmt:
errftl e: error-I og file

wffmt:
pnch: file

newform: change the
in ode:
term:
core:
cpio:
dir:

gps: graphical primitive string,
sccsfile:

file system:
fspec:

syms: common objlct file symbol table
intro: introduction to file

utmp, wtmp: utmp and wtmp entry
scanf,fscanf,sscanf:convert

vprintf, vfprintf, vsprintf: print
printf, fprintf, sprintf: print

f77:
abs, iabs, dabs, cabs, zabs:

signal: specify

files. • • • • • • • • •
files. • • • • • • • • •
files from a backup tape.
files. • • • • • • • • •
files. •••••••••
files. gps: • • • • • • •
files in binary directories.
files. • • • • • • • • •
files. • • • • • • • • •
files or directories. • • •
files or subsequent lines of one file.
files.
files.
files.
files.
files. • • • • • • • • • • • • • • • • • • •
filesave, tapesave: daily/weekly 5) file system
filter for soft-oopy terminals.
filter. • •••••••
filter. • • • • • • • •
filter reverse line feeds. • • •
filters. hpd. erase, • • • • •
filters. • • • • • • • • • •
fine: fast incremental backup.
find files. • • • • • • •
find: find files. • • • • • • •
find hyphenated words.
find name of a terminal.
find ordering relation for an objlct library.
.find spelling errors. • • • • • • • • • •
.find the slot in the utmp file of the current user.
:fitting. • • • • • • • • • • • • • • • • • • •
.ft.8: 8-inch Floppy Disk. Drive for Universal Disk.
.float, sngl, dble, cmplx, dcmplx, ichar, char:
floating-point number. • ••••••••••
.floating-point number to string. • ••••••
.floating-point numbers. •••••••••••
floor, cell, fmod, fabs: floor, ceiling. remainder,
.floor, ceiling, remainder, absolute value
.floppies for the VME/10 processor •••••••
Floppy Disk. Drive for the Winchester Disk. Driver.
Floppy Disk. Drive for Universal Disk. Driver •
Floppy Disk. Drive for VM21 Driver.
Floppy Disk. Drive for VM22 Driver.
Floppy Disk. Drive for VM22 Driver.
flow graph. •• · •••••••••••
flush a stream. • • • • • • • • • • •
fmod, fa\E floor, ceiling, remainder, absolute
fopen, freopen. fdopen: open a stream.
fork: CJ'Qte a new process. • • • • • • •
format. • •••••••••••••••
format. ••••••••••••••••
format disks on the VM22 disk controller.
format. •••••••••••••••••
format floppies for the VME/10 processor.
format for card images. •••
format of a text fil'e. • • • •
format of an inode.
format of compiled term. file.
format of core image file.
format of epic archive. •
format of ditectories. • •
format of graphical :files.
format of SCX::S file. • •
format of system volume.
format specification in text :files. •
format. ••••
formats. ••••••••••
formats. ••••••••••
formatted input. • • • • • • • •
formatted output of a varargs argument list.
formatted output. • • • • • • • • • • • •
FORTRAN 77 compiler. • • • • • • • • • •
FORTRAN absolute value. • • • • • • • •
FORTRAN action on rereipt of a ~ signal.

xiv

• filehdr(4)
•• :find(l)

frec(lM.)
fspec(4)
fsplit(l)
gps(4)
cpset(lM)
intro())
ld(1)
rm(l)
paste(!)
pack(l)
pr(I)
size(J)
sort(1)
what(!)
filesave(lM)
pg(l)
greek.(1)
nl(l)
co1(1)

• gdev(lG)
tplot(lG)
:finc(lM.)
:find(!)
:find(l)
hyphen(!)
ttyname(3C)

• lorder(l)
spell(!)

• ttys].ot(3C)
• tee(l)
• fl.8(7)

ftype(3F)
• atofC3C)

ecvt(3C)
frexp(3C)

• • floor(3M.)
• fioor(3M)

• • wffmt(1M.)
sa400.ftwd(7)

• fl.8(7)
• sa800.ft21(7)
• sa400fl22(7)

sa.800fl22(7)
• cfiow(l)

• • fclose(3S)
floor(3M.)

• fopen(~)
forlr.(2)

• acct(4)
• ar(4)
• vm22fmt(lM.)
• errfile(4)

• • wffmt(lM)
• pnch(4)

newform(l)
• inode(4)
• term(4)

c:on(4)
cpio(4)

•• dil(4)
• gp(4)

sctsfile(4)
•• fl(4)
•• fspec(4)

sjms(4)
• • intro(4)

Ut.Jnp(4)
• • scanf(3S)

vprintf(3S)
•• printf(3S)
•• f77(1)

abs(3F)
•• signal(3P)

acos, daces:
asin, dasin:

atan2, datan2:
atan, datan:

and, or, xor, not, !shift, rshift:
getarg: return

loglO, aloglO, dloglO:
conE, dconE:
cos, dcos, ccos:

ratfor: rational
getenv: return

exp, dexp, cexp:
cosh, dcosh:
sinh, dsinh:

tanh' dtanh:
aimag, dimag:

aint, dint:
efl: Extended

max, maxO, amaxO, maxl, amaxl, dmaxl:
min, minO, amino, mint, aminl, dminl:

log, alog, dlog, clog:
anint, dnint, nint, idnint:

abort: terminate
mod, amod, dmod:

sin, dsin, csin:
sqrt, dsqrt, csqrt:

len: return length of
index: return location of

system: issue a shell command from
tan, dtan:

mclock: return
sign, isign, dsign:

sngl, dble, cmplx, dcmplx, ichar, char: explicit
printf,

putc, putchar,
puts,

df: report number of
malloc,

memory allocator. malloc,
fopen,

.ftoating-point numbers.
free: recover files

gets, fgets: get a string
strip: strip symbol and line number information

rmdel: remove a delta
getopt: get option letter

errdead: extract error records
read: read

system: issue a shell command
ncheck: generate names

nl ist: get en tries
acctcms: command summary

getc, getchar, fgetc, getw: get character or word
getpw: get name

scanf,
checklist: list of 1ile systems pr~ by

interactive repair.
processors.

a stream.

stat,
fseek., rewind,

acos, dacos: FORTRANarccosine intrinsic
aint, dint: FORTRAN integer part intrinsic

erf, erfc: error
asin, dasin: FORTRAN arcsine intrinsic

atan2, datan2: FORTRAN arctangent intrinsic
atan, datan: FORTRAN arctangent intrinsic

conE, dcon.£: FORTRAN complex conjugate intrinsic

Permuted Index

FORTRANarccosine intrinsic function.
FORTRAN arcsine intrinsic function.
FORTRAN arctangent intrinsic function.
FORTRAN arctangent intrinsic function.
FORTRAN bitwise lix>lean functions.
FORTRAN command-line argument. • •
FORTRAN common logarithm intrinsic function.
FORTRAN complex conjugate intrinsic function.
FORTRAN cosine intrinsic function.
FORTRAN dialect. • • • • • • • • • • • • •
FORTRAN environment variable. • • • • • •
FORTRAN exponential intrinsic function.
FORTRAN hyperbolic cosine intrinsic function.
FORTRAN hyperbolic sine intrinsic function ••
FORTRAN hyperbolic tangent intrinsic function.
FORTRAN imaginary part of complex argument.
FORTRAN integer part intrinsic function.
FORTRAN Language. • • • • • • • • • • • • •
FORTRAN maximum-value functions. • • ••••
FORTRAN minimum-value functions. •••••
FORTRAN natural logarithm intrinsic function.
FORTRAN nearest integer functions. • • • •
FORTRAN program. • • • • • • • • • • •
FORTRAN remaindering intrinsic functions.
FORTRAN sine intrinsic function. • • • •
FORTRAN square root intrinsic function.
FORTRAN string.
FORTRAN substring. • • • • • • • •
FORTRAN ••••••••••••
FORTRAN tangent intrinsic function.
FORTRAN time accounting .•••••
FORTRAN transfer--0f-sign intrinsic function.
FORTRAN type conversion. /ifi.x, idint, real, 11.oat,
fprintf, sprintf: print formatted output. • • • •
fputc, putw: put character or word on a stream.
fputs: put a string on a stream.
fread, fwrite: binary input/output.
free: recover files from a backup tape.
free disk blocks. • • • • • • • • • • • • • • •
free. realloc, calloc: main memory allocator.
free. realloc, calloc, mallopt, mallinfo: fast main
freopen, fdopen: open a stream.
frexp, ldexp, modf: manipulate parts of
from a backup tape.
from a stream. • •
from an objlct file. •
from an SCCS file. •
from argument vector.
from dump. ••
from file. •••
from FORTRAN
from i-numbers.
from name list.
from per-process accounting records.
from stream. • •••••••
from UID. • •••••••••••
fsba: file system block analyzer. • •
fscanf, sscanf: convert formatted input.
fsck. • ••••••••••••••••
fsck, dfsck: file system consistency check. and
fscv: convert files between M68000 and VAX-lln80
fsdb: file system debugger. • •••••••••
fseek, rewind, ftell: reposition a file pointer in
fspec: format speci1ication in text 1iles. • •
fsplit: split f77, ratfor, or efl files. • • • •
fstat: get file status. • • • • • • • • •
ftell: reposition a file pointer in a stream.
ftw: walk a file tree.
function.
function. • •••••••••••••
function and complementary error function.
function.
function.
function.
function.

xv

acos(3F)
asin(3F)
atan2(3F)
atan(3F)
bool(3F)
getarg(3F)
log10(3F)
con_i?(3F)
cos(3F)
ratfor(l)
getenv(3F)
exp(3F)
cosh(3F)
sinh(3F)
tanh(3F)
aimag(3F)
aint(3F)
efi(l)
max(3F)
min(3F)

•• log(3F)
round(3F)
abort(3F)
mod(3F)
sin(3F)

• sqrt(3F)
len(3F)
index(3F)

• system(3F)
• tan(3F)
• mclock(3F)

sign(3F)
ftype(3F)

• prin tfC3S)
• putc(3S)
• puts(3S)
• fread(3S)

frec(lM)
• df(tM)

malloc(3C)
malloc(3X)
fopen(3.5)
frexp(3C)
frec(lM)

• gets(3S)
strip(!)
rmdel(l)

• getopt(3C)
• errdead(lM)

read(2)
system(3F)
ncheck(lM)
nlist(3C)
acctcmsCtM)
getc(3S)
getpw(3C)
fsba(lM)

• scanf(3S)
checklist(4)
fsck(lM)

• fscv(tM)
fsdb(IM)
fseek(3S)

• fspec(4)
fsplit(l)
stat(2)
fseek.(3S)

• ftw(3C)
acos(3F)

• aint(3F)
erf(3M)
asin(3F)
atan2(3F)

• atan(3F)
• conE{3F)

Permuted Index

cos, dcos, ccos: FORTRAN cosine intrinsic
cosh, dcosh: FORTRAN hyperbolic cosine intrinsic

dprod: double precision product intrinsic
erf, erfc: error function and complementary error

exp, dexp, cexp: FORTRAN exponential intrinsic
gamma: log gamma

hypot: Euclidean distance
line number entries of a common objlct file

aloglO, dloglO: FORTRAN common logarithm intrinsic
diog, clog: FORTRAN natural logarithm intrinsic

matherr: error-handling
prof: profile within a

isign, dsign: FORTRAN transfer-of-sign intrinsic
sin, dsin, csin: FORTRAN sine intrinsic

sinh, dsinh: FORTRAN hyperbolic sine intrinsic
sqrt, dsqrt, csqrt: FORTRAN square root intrinsic

tan, dtan: FORTRAN tangent intrinsic
tanh, dtanh: FORTRAN hyperbolic tangent intrinsic

math: math
J>, jl, jn, yO, y 1, yn: Bes.5el

xor, not, !shift, rshift: FORTRAN bitwise Boolean
dim, ddim, idim: positive difference intrinsic

sqrt: exponential, logarithm, power, square root
fabs: floor, ceiling, remainder, absolute value

amaxO, maxi, amaxl, dmaxl: FORTRAN maximum-value
amino, mini, aminl, dminl: FORTRAN minimum-value

mod, amod, dmod: FORTRAN remaindering intrinsic
300, 300s: handle special

hp: handle special
450: handle special

anint, dnin t, nint, idnint: FORTRAN nearest integer
sinh, cosh, tanh: hyperbolic

lge, !gt, lie, lit: string comparision intrinsic
cos, tan, asin, acos, atan, atan2: trigonometric

structure.
fread,

records.
j:>tto: secret word

moo: guessing
back: the

bj the
chess: the
craps: the
reversi: a

wump: the
intro: introduction to

gamma: log

ecvt, fcvt,

maze:
abort:
cfiow:
cxref:

diskusg:
make key:

ctermid:
nchock:

lex:
/mrand48, jrand48, srand48, seed48, lcong48:

rand, srand: simple random-number
irand, srand, rand: random number

getS, fgets:
get:

ulimit:
cuserid:

getc,getchar, fgetc, getw:
nlist:

umask: set and
stat, fstat:

us tat:

getlogin:
logname:

msgget:

function.
function.
function.
function.
function.
function.
function.
function. ldlread, ldlinit, !dlitem: manipulate
function. loglO, .
function. log, alog,
function.
function.
function. sign,
function.
function.
function.
function.
function.
functions and constants.
functions.
functions. and, or, • • •
functions.
functions.
functions.
functions.
functions.

exp, log, log 10, pow,
floor, ceil, fmod,
max,maxO,
min, minO,

functions. • •••..
functions of DASI 300 and 300s terminals.
functions of HP 2640 and 2621-series terminals.
functions of the DASI 450 terminal.
functions.
functions.
functions.
functions. sin,
fuser: identify processes using a file or file
fwrite: binary input/output. • •••••
fwtmp, wtmpfix: manipulate connect accounting
game ..•••••••
game .••••••••
game of backgammon.
game of blackjlck. • •
game of chess. • • • •
game of craps. • • . .
game of dramatic reversals.
game of hunt-the-wumpus.
games. • •••••••.
gamma function.
gamma: log gamma function.
gcvt: convert floating-point number to string.
ged: graphical editor. •
generate a maze. • • •
generate an JOT fault.
generate C flow graph.
generate C program cross-reference.
generate disk accounting data by user ID.
generate encryption key.
generate filename for terminal.
generate names from i-numbers.
generate programs for simple lexical tasks.
generate uniformly distributed pseudo-random/
generator. . ••••....
generator. . ••••.••.
get a string from a stream.
get a version of an SCX::S file.
get and set user limits. • • •
get character login name of the user.
get character or word from stream.
get entries from name list.
get file creation mask.
get file status. . • . . • .
get file system statistics.
get: get a version of an SCX::S file.
get login name.
get login name.
get message queue.

xvi

cos(3F)
cosh(3F)
dprod(3F)
erf(3M)
exp(3F)
gamma(3M)
hypot(3M)
ldlread(3X)
logl0(3F)
log(3F)
matherr(3M)
prof(S)
sign(3F)
sin(3F)
sinh(3F)
sqrt(3F)
tan(3F)
tanh(3F)
math(5)
bessel(3M)
bool(3F)
dim(3F)
exp(3M)
floor(3M)
max(3F)
min(3F)
mod(3F)
300(1)
hp(l)
450(1)
round(3F)
sinh(3M)
strcmp(3F)
trig(3M)
fuser(lM)
fread(3S)
fwtmp(lM)
j:>ttoC6)
moo(6)
back(6)
bJ6)
chess(6)
craps(6)
reversi(6)
wump(6)
intro(6)
gamma(3M)
gamma(3M)
ecvt(3C)
ged(lG)
maze(6)
abort(3C)
cflow(l)
cxref(l)
diskusg(lM)
makekey(l)
ctermid(3S)
nche:k(lM)
lex(!)
drand48(3C)
rand(3C)
rand(3F)
gets(3S)
get(!)
ulimit(2)
cuserid(3S)
getc(3S)
nlist(3C)
umask(2)
stat(2)
ustat(2)
get(!)
getlogin(3C)
logname(l)
msgget(2)

getpw:
uname:

unget: undo a previous
getopt:

getpwuid, getpwnam, setpwent, endpwent, fgetpwent:
gacwd:

times:
getpid, getpgrp, getppid:

effective group/ getuid, geteuid, getgid, getegid:
semget:
shmget:

tty:
time:

from stream.
stream. getc,

and effective group IDs. getuid, geteuid, getgid,

user, real group, and effective group IDs. getuid,
real group, and effective group/ getuid, geteuid,

obtain.
getgrent,

getgrent, getgrgid,

parent process IDs. getpid,
group, and parent process IDs.

process IDs. getpid, getpgrp,

fgetpwent: get password file entry.
password file entry. getpwent, getpwuid,

get password file entry. getpwent,

gettydefs: speed and terminal settings used by
discipline.
ct: spawn

getty.
effective user, real group, and effective group/

endutent, utmpname: access utmp file entry.
utmpname: access utmp .file entry. getutent,

access utmp file entry. getutent, getutid,
getc, getchar, fgetc,

string. ctime, localtime,
setjnp, longjnp: non-local

graphical files.
c1iow: generate C 11.ow

graph: draw a
sag: system activity

graphics: access
stat: statistic:al network useful with

hpd, erase, hardcopy, tekset, td:
gen:

gps: graphical primitive string, format of
.files. gps:

toe:
gutil:

tplot:
plot:
plot:

vlOgraph - VME/10

getegid: get real mer, effective user, real
getpid, getpgrp, getppid: get pr~ process

chown. chgrp: change owner or
group:

setpgrp: set process
id: print user and

Permuted /nde:x.

get name from um.
get n<IDle of current operating system. • •
get of an SCCS .file. • • • • • • • • •
get option letter from argument vector.
get password ii.le entry. getpwent,
get pathname of current working directory.
get process and child process times.
get process, process group, and parent process IDs.
get real user, effective user, real group, and
get set of semaphores.
get shared memory segment. • • • • • •
get the terminal's name. • •••••
get time. •.••••••••••••••
getarg: return FORTRAN command-line argument.
getc, getchar, fgetc, getw: get character or word • •
getchar, fgetc, getw: get character or word from
getcwd: get pathname of current working directory.
getegid: get real user, effective user, real group, •
getenv: return FORTRAN environment variable.
getenv: return value for environment name. •
geteuid, getgid, getegid: get real user, effective
getgid, getegid: get real user, effective user, • •
getgrent, getgrgid, getgrnam, setgrent, endgrent:
getgrgid, getgmam, setgrent, endgrent: obtain.
getgrnam, setgrent, endgrent: obtain. • • • • •
getlogin: get login name. ••••••••••
getopt: get option letter from argument vector.
getopt: parse command options. • • • • • • •
getpass: read a password. • • • • • • • • • •
getpgrp, getppid: get process, process group, and
getpid, getpgrp, getppid: get process, process
getppid: get process, process group, and parent

getpw(3C)
uname(2)
unget(l)
getopt(3C)
getpwent(3C)
getcwd(3C)
times(2)
getpid(2)
getuid(2)
semget(2)
shmget(2)
tty(l)
timeC2)
getarg(3F)
getc(3S)
getc(3S)
getcwd(3C)
getuid(2)
gerenv(3F)

• getenv(3C)
getuid(2)
getuid(2)
getgrent(3C)
getgrent(3C)
getgrent(3C)

• getlogin(3C)
getopt(3C)
getopt(l)
getpass(3C)
getpid(2)
getpid(2)

getpw: get name from um.
getpwent, getpwuid, getpwnam, setpwent, endpwent,
getpwnam, setpwent, endpwent, fgetpwent: get
getpwuid, getpwnam, setpwent, endpwent, fgetpwent:
gets, fgets: get a string from a stream. • • • •

• getpid(2)
getpw(3C)

• getpwent(3C)
getpwent(3C)
getpwent(3C)
gets(3S)
gettydefs(4)
gett~lM)

getty ••••••••••••••••••••
getty: set terminal type, modes, speed, and line
getty to a remote terminal. • • • • • • • • •
gettydefs: speed and terminal settings used by
getuid, geteuid, getgid, getegid: get real user,
getutent, getutid, getutline, pututline, setutent,
getutid, getutline, pututline, setutent, endutent,
getutliiie, pututline, setutent, endutent, utmpname:
getw: get character or word from stream.
gmtime, asctime, tz.set: convert date and time to
goto. • ••••••••••••••••
gps: graphical primitive string, format of
graph. • •••••
graph: draw a graph. • • • • • • • •
graph. • •••••••••••••
graph. • •••••••••••••
graphical and numerical commands.
graphical commands. • • • • • • •
graphical device routines and .filters.
graphical editor. • • • • • • • • • •
graphical files. • • • • • • • • • •
graphical primitive string, format of graphical
graphical table of contents routines. • • • • •
graphical utilities. • • • • • • • • • • • • •
graphics: access graphical and numerical commands.
graphics .filters. • • • • • • •
graphics interface. ••••••
graphics interface subroutines.
graphics subsystem interface. •
greek.: select terminal 1il ter. • •
grep, egrep, fgrep: search a .file for a pattern.
group, and effective group IDs. /geteuid, getgid,
group, and parent process IDs. • • -•
group. •••••
group .file •••••••
group: group file. • • •
group ID. • •••• _.
group IDs and names.

xvii

• ct(lC)
gettydefs(4)

• getuid(2)
getut(3C)
getut(3C)
getut(3C)

• getc(3S)
ctime(3C)
setjmp(3C)
gpS(4)
cftow(l)
graph(lG)
graph(lG)
sagUG)
graphics(lG)
statClG)
gdev(lG)
ged(lG)

• gps(4)
gps(4)
tocClG)

•• gutil(lG)
graphics(lG)

• tplot(lG)
•• plotC4)

plot(3X)
vl~ra~h(7)
greelt(l)
grep(l)
getuid(2)

• getpid(2)
chown(l)

• • group(4)
group(4)

• setj>grp(2)
id(l)

Permuted I nde:x

user, effective user, real group, and effective group IDs. /geteuid, getgid. getegid: g« real
setuid, setgid: set user and group IDs. • • • •

newgrp: log in to a new group. • • • • • •
chown: change owner and group of a file ••••

kill: send a signal to a process or a group of processes. •
make: maintain, update, and regenerate groups of programs. • •

pwck, grpck: password/group file checkers.
ssignal, gsignal: software signals.

hangman: guess the word. • • • • • • • • •
moo: guessing game. • • • • • • • • • •

terminals. 300, 300s:
terminals. hp:

450:

gutil: graphical utilities. • • • • •
handle special functions of DASI 300 and 300s
handle special functions of HP 2640 and 2621-series
handle special functions of the DASI 450 terminal.

varargs: handle variable argument list.
curses: CRT screen handling and optimiz.ation package. • • • • • • •

nohup: run a command immune to
filters. h pd, erase.

hsearch, hcreate, hdestroy: manage
spell, hashmake, spellin,

crypt, encrypt: a one way
spell,

hsearch,
hsearch, hcreate,

aouthdr: optional aout
scnhdr: section

filehdr: file
ldfhread: read the file

ldohseek: seek to the optional file
ldshread, ldnshread: read an indexed/named section

ldahread: read the archive

help: ask for
hp: handle special functions of

2621-series terminals.
routines and filters.

t.ables.
wum p: the game of

cosh,dcosh:FORTRAN
sinh, cosh, tanh:

sinh,dsinh:FORTRAN
tanh, dtanh: FORTRAN

hangman: guess the word. • • • • • • • • • • •
hangups and quits. ••••••••••••••.•
hardcopy, tek.set, td: graphical device routines and
hash search t.a bles. • • • • • • • • • • . • • • •
hashcheck.: ftnd spelling errors. • • • • • • • •
hashing encryption algorithm. • • • • • • • •
hashmake, spellin, hashcheck: ftnd spelling errors.
hcreate, hdestroy: manage hash search t.ables.
hdestroy: manage hash search t.ables.
header. • ••••••••••
header for a common objlct file.
header for common objlct files.
header of a common ob)ct file.
header of a common ob)ct file.
header of a common ob)ct file.
header of a member of an archive file.
help: ask for help. • • • • • • • • •
help. • •••••••••••••••
HP 2640 and 2621-series terminals. •
hp: handle special functions of HP 2640 and
hpd, erase, hardcopy, tekset, td: graphical device
hsearch, hcreate, hdestroy: manage hash search
hunt-the-wumpus. • • • • • • • • •
hyperbolic cosine intrinsic function. • •
hyperbolic functions. • • • • • • • •
hyperbolic sine intrinsic function. • • •
hyperbolic tangent intrinsic function.
hyphen: find hyphenated words.

hyphen: ftnd hyphenated words. • • • • • • • • •
hypot: Euclidean dist.ance function.

abs, iabs, dabs, cabs, i.abs: FORTRAN absolute value.
iargc. • • • • • • • • • • • • • • • • • • ••

/idint, real, fl.oat, sngl, dble, cmplx, dcmplx, ichar, char: explicit FORTRAN type conversion.
diskusg: generate disk accounting data by user ID. • ••••••••••••••••

a message queue, semaphore set or shared memory id. ipcrm: remove • • • • • • • • • •
id: print user and group IDs and names. • • • •

setpgrp: set process group ID. • ••••••••••••••••••••
issue: issue idenillication frle. • • • • • • • • • • • • •

fuser: identify processes using a file or file structure.
what: identify SCCS files. •••••••••••

dim, ddim, idim: positive difference intrinsic functions.
ichar, char: explicit FORTRAN type/ in):, iftx, idint, real, fl.oat, sngl, dble, cmplx, dcmplx, •

anint, dnint, nint, idnint: FORTRAN nearest integer functions.
id: print user and group IDs and names. • •••••••••••

get procea, process group, and par.ent process IDs. getpid, getpgrp, getppid: • • • • • •
effective user, real group, and effective group IDs. /geteuid, getgid, getegid: get real user,
· setuid, setgid: Sl'lt. user and group IDs. • • • • • • • • • • • • • • • •

dcmplx, ichar, char: explicit FORTRANtype/ int, ·iftx, idint, real, float, sngl, dble, cmplx,

getuid(2)
setuid(2)

•• newgrp(l)
chown(2)

• • k.lll(2)
mak.e(l)
pwck(lM)
ssignal(3C)
hangman(6)
mooC6)

• gutil(lG)
300(1)
hp(l)
450(1)
varargs(S)
curses(3X)
hangman(6)
nohup(l)
gdev(IG)
hsearch(3C)
spell(l)

• crypt(3C)
spell(l)

• • hsearch(3C)
• hsearch(3C)
• aouthdr(4)
• scnhdrC4)

• • filehdr(4)
• ldfhread(3X)

ldohseek(3X,)
ldsh read(3X)
ldahread(3X)

•• help(l)
help(l)
hp(l)
hp(l)
gdev(lG)
hsearch(3C)
wump(6)
cosh(3F)
sinh(3M)
sinh(3F)
tanh(3F)
hyphen(l)
hyphm(l)
hypot(3M)

• absC3F)
iargc(3F)
ftype(3F)

• diskusg(lM)
ipcrm(l)
id(l)
setpgrp(2)
issue(4)
fuser(J.M)

•• what(l)
dim(3F)
ftype(3F)
round(3F)

• id(l)
• • getpid(2)

getuid(2)
setuid(2)

• ftype(3F)
cord'.4) core: format of core image file •••••••••••••••

crash: examine system images. • • • • • • • • • • • • • • • • • • • crash(lM)
pnch: file format for eard images. • • • • • • • • • • • • • •
aimag. dimag: FORTRAN imaginary part of complex argument.

nohup: run a command immune to hangups and quits.
fine: fast increment.al backup. • • • • • • • •

sputl, sgetl: acam long integer dat.a in a machine independent fashion" • • • • • • • •
file. ldtbindex: compute the index of a symbol table entry of a common objlct

ptx: permuted index. • • • • • • • • • • • • • • • • • • •
· index: return location of FORTRAN mbstring.

ldtbread: read an indexed symbol table entry of a common objlct file.

xviii

pnch(4)
• aimag(3F)

nohup(l).
fine(IM)

• • sput1(3X)
ldtbinde:x(3X)
ptx(l)

• index(3F)
• ldtbread(3X,)

file. ldshread, ldnshread: read an indexed/named section header of a common objict
ldsseek, ldnsseek: seek to an indexed/named section of a common ob)ct file.

inittab: script for the ini t process. • • • • • • • • • • • • •
init, telinit: process control initialization.

init, telinit: process control initialization. • • • • • •
brc, bcheckrc, re, powerfail: system initialization shell scripts.

dinit: disk initializer. • • • • • • • •
popen, pclose: initiate pipe to/from a process.

inittab: script for the init process.
clri: clear inode. • • • • • • • • •

inode: format of an inode.
inode: format of an inode. • • • •

scanf, fscanf, sscanf: convert formatted input.
ungetc: push character back into input stream.

fread, fwrite: binary input/output.
stdio: standard buffered input/output package.

ferror, fwf, clearerr, fileno: stream status inquiries. • • • • • •
uustat: uucp status inquiry and j>b control.

install: install commands. • • • •
install: install commands.

cpset: install ob)ct files in binary directories.
dcmplx, ichar, char: explicit FORTRAN type/ int, i1ix, idint, real, float, sngl, dble, cmplx,

abs: return integer absolute value. • • • • • • • • •
a641, 164a: convert between long integer and base-64 ASCII string.

sputl, sgetl: accellS long integer data in a machine independent fashion­
anint, dnint, Dint, idnint: FORTRAN nearest integer functions. • • • • • •

aint, dint: FORTRAN integer part intrinsic function.
strtol, atol, atoi: convert string to integer. • • • • • • • • •

13tol, lto13: convert between 3-byte integers and long integers.
ltol3: convert between 3-byte integers and long integers. 13tol, • • • • •

bcopy: interactive block copy. • •
mailx: interactive message processing system.

fsck, dfsck: file system consistency check and interactive repair.
rjestat: RJE status report and interactive status console.

acia: Asynchronous Communications Interface Adapter.
err: error-Jogging interface.

lp: MVME410 line printer interface. • • • •
plot: graphics interface. • • • •
plot: graphics interface subroutines.

termio: general terminal interface.
tty: controlling terminal interface. •••••

vlOgraph - VME/10 graphics subsystem interface. • • • • •
spline: interpolate smooth curve. •

asa: interpret ASA carriage control characters.
sno: SNJBOL interpreter. • • • • • • • • • • • • • •

pipe: create an interprocess channel. • • • • • • • • • •
ipcs: report inter-process communication facilities status.

stdipc: standard interprocess communication package.
sleep: suspend execution for an interval.

sleep: suspend e:xecution for interval.
acos, dacos: FORTRAN arccosine intrinsic function.

aint, dint: FORTRAN integer part intrinsic function.
asin, dasin: FORTRAN arcsine intrinsic function.

atan2, datan2: FORTRAN arctangent intrinsic function.
atan, datan: FORTRAN arctangent intrinsic function.

conjg, dcon.£: FORTRAN complex conjugate intrinsic function.
~ d~ ccos: FORTRAN cosine intrinsic function.

cosh, dcosh: FORTRAN hyperbolic cosine intrinsic function.
dprod: double precision product intrinsic function.

exp, dexp, cexp: FORTRAN exponential intrinsic function.
loglO, aloglO, dloglO: FORTRAN common logarithm intrinsic function.

log, alog, dlog, clog: FORTRAN natural logarithm intrinsic function.
sign, isign, dsign: FORTRAN transfer-of-sign intrinsic function.

sin, dsin, csin: FORTRAN sine intrinsic function.
sinh, dsinh: FORTRAN hyperbolic sine intrinsic function.

sqrt, dsqrt, csqrt: FORTRAN square root intrinsic function.
tan, dtan: FORTRAN tangent intrinsic function.

tanh, dtanh: FORTRAN hyperbolic tangent intrinsic function.
dim, ddim, idim: positive di1ference intrinsic functions. •

mod, amod, dmod: FORTRAN remaindering intrinsic functions.
lge, lgt, lle, llt: string comparision intrinsic functions.

programs. intro: introduction to commands and application
intro: introduction to file formats. • ••••
intro: introduction to games. • • • • • • •
intro: introduction to miscellaneous facilities.

xix

Permuted Index

ldsh read(3X)
ldsseek(3X)
inittabC4)
init(lM)
init(lM)
brc(lM)
dinit(lM)
popen(3S)
inittabC4)
clri(IM)
inode(4)
inode(4)
scanf(3S)
ungetc(3S)
fread(3S)
stdio(3S)
ferror(3S)
uustat(lC)
install(IM)
install(IM)
cpset(lM)
ftype(3F)
abs(3C)
a641(3C)
sput1(3X)
round(3F)
aint(3F)
strtol(3C)
13tol(3C)
13tol(3C)
bcopy(lM)
mailx(l)
fsck(lM)
rjestat(lC)
acia(7)
err(7)
lp(7)
plot(4)
plot(3X)
termio(7)
tty(7)
vl0graph(7)
spline(IG)
asa(l)
sno(l)
pipt(2)
ipcs(l)
stdipc(3C)
sleep(l)
sleep(3C)
acos(3F)
aint(3F)
asin(3F)
atan2(3F)
atan(3F)
con.E(3F)
ccs(3F)
cosh(3F)
dprod(3F)
exp(3F)
log10(3F)
log(3F)
sign(3F)
sin(3F)
sinh(3F)
sqrt(3F)
tan(3F)
tanh(3F)

• dim(3F)
mod(3F)
strcmp(3F)
intro(!)
introC4)
introC6)
intro(S)

Permuted I nde:x

numbers.
and application programs.

· procedures.
intro:
intro:
intro:
intro:
intro:
intro:
intro:

application programs. intro:
intro:

ncheck: generate names from

abort: generate an
shared memory id.

status.

isalpha, isupper, islower, isdigit, iSxdigit,
isalnum, isspace, ispunct, isprint, isgraph./

isspace, ispunct, isprint, isgraph, iscntrl,
ttyname,

isalnum, isspace, ispunct, isprint, isgraph,
isprint, isgraph,/ isalpha, isupper, islower,
/isxdigit, isalnum, isspace, ispunct, isprint,

function. sign,
ispunct, isprint, isgraph,/ isalpha, isupper,
/1s<ligit, isxdigit, isalnum, isspace, ispunct,
/islower, isdigit, isxdigit, isalnum, isspace,

/isupper, islower, isdigit, isxdigit, isalnum,
system:
system:

issue:

isspace, ispunct, isprint, isgraph,/ isalpha,
isgraph,/ isalpha, isupper, islower, isdigit,

news: print news

p,
p,jl,

drand48, erand48, lrand48, nrand48, mrand48,
makekey: generate encryption

ltillall:
processes.

mem,
quiz: test your

long integers.
ASCil string. a641,

volcopy, labelit: CJJPY file systems with
volcopy,

awk: pattem scanning and proceming
be: arbitrary-precision arithmetic

cfl: Extended FORl'RAN
cpp: the C

shell, the standard/restricted command program.ming
lrk25:25Mb

lark25: SOMb
lark.8: 16Mb

VM22 Driver.
VM22 Driver.

prtacct, runac:ct,/ chatgefee, cltpacct, dodislt,
shl: shell

nrand48, mrand48, jrand48, srand48, seed48,

ldclase,
archive file.

Id.open,

numbers. frexp,

intro: introduction to special files. • • • • • • • • • intro(7)
intro: introduction to subroutines and libraries. • • • • introC3)
intro: introduction to system calls and error introC2)
intro: introduction to system maintenance commands introClM)
intro: introduction to system maintenance • • • • • • introCS)
introduction to commands and application programs. introCl)
introduction to file formats. • • • • • • introC4)
introduction to games. • • • • • • • • introC6)
introduction to miscellaneous facilities. intro(S)
introduction to special files. • • • • • • intro(7)
introduction to subroutines and libraries. • intro(3)
introduction to ~ystem calls and error numbers. • intro(2)
introduction to system maintenance commands and introClM)
introduction to system maintenance procedures. intro(S)
i-numbers. • • • • • • • • • • • • • • • • • ncheck(lM)
ioctl: control device. • • • • • • • • • • • • • ioct1(2)
IOT fault. • • • • • • • • • • • • • • • • • • • abort(3C)
ipcrm: remove a message queue, semaphore set or ipcrm(l)
ipcs: report inter-process communication facilities ipcs(l)
irand, srand, rand: random number generator. rand(3F)
isalnum, isspace, ispunct, isprint, isgraph,/ • • ctype(3C)
isalpha, isupper, islower, isdigit, isxdigit, • • • ctype(3C)
isascii: classify characters. /isxdigit, isalnum, ctype(3C)
isatty: 1ind name of a terminal. • • • • • • ttyname(3C)
iscntrl, isascil: classify characters. /isxdigit, ctype(3C)
isdigit, isxdigit, isalnum, isspace, ispunct, • • • ctype(3C)
isgraph, iscntrl, isascil: classify characters. ctype(3C)
isign, dsign: FORTRAN transfer-of-sign intrinsic sign(3F)
islower, isdigit, isxdigit, isalnum, isspace, • ctype(3C)
isprint, isgraph, iscntrl, isascii: classify/ ctype(3C)
ispunct, isprint, isgraph, iscntrl, isascii:/ ctype(3C)
isspace, ispunct, isprint, isgraph, iscntrl,/ ctype(3C)
issue a shell command from FORTRAN system(3F)
issue a shell command. • • • • • • • • • system(3S)
issue identification file. • • • • • • • • • • • • • issue(4)
issue: issue identification file. • • • • • issue(4)
isupper, islower, isdigit, isxdigit, isalnum, ctype(3C)
isxdigit, isalnum, isspace, ispunct, isprint, ctype(3C)
items. • • • • . • . • • • • • • • • • • • • • • • • news(!)
p, jl, jn, yO, yl, yn: Bessel functions. bessel(3M)
jl, jn, yO, yl, yn: Bessel functions. bessel(3M)
jn, yo, yl, yn: Bessel functions. • • • bessel(3M)
jJin: relational database operator. j>in(l)
j.ltto: secret word game. • • • • • • • • ptto(6)
jrand48, srand48, seed48, lcong48: generate/ drand48(3C)
key. • • • • • • • • • • • • • . • • • • • m.ak.Sey(I)
kill all active proceaeL • • • • • • • • killall(lM)
kill: send a signal to a process or a group of kill(2)
kill: terminate a process. • • • kill (1)
killall: kill all active processes. • • • • • killall(lM)
kmem:,core memory. • • • • • • • • • • mem(7)
knowledge. • • • • • • • • • • • • • • • • quiz.(6)
13tol, lt.ol3: convert between 3-byte integers and 13to1(3C)
164a: convert between long integtz and bas&-64 • a641(3C)
label checking. • • • • • • • • • • • • • • • • • volcopy(lM)
labelit: CJJPY file systems with label checking. • • volcop. y(1M)
language. • • • • • • • awltU)
language. • • • ' • • • • • • • • • • • • • bc(l)
I.anguage. • • • • • • • • • • • • • • • • • • • cdl(l)
language preprocessor. • • • • • • • • • • • • c:pp(l)
language. sh, rsh: • • • • • • • • • • • • • sfl 1)
LARK Midule Drive for Universal Disk. Driver. • • • Jrlt25(7)
LARK Midule Drive for VM21 Driver and VM22 Driver. Iarlt25(7)
LARK Midule Drive for VM21 Driver and VM22 Driver. 1arlt8(7)
larlt25: 50Mb LARK Module Drive for VM21 Driver and larlt25C7)
larlt8: 16Mb LARK Midule Drive for VM21 Driver and 1arlt8(7)
lastlogin, manacct, nulladm, prctmp, prdaily, ••••• acctsh(IM)
layer manager. • • • • • • • • • • • • • • • • • • shl(l)
lcong48: generate uniformly distribat.ed/ /lrand48, • • clrand48(3C)
Id: link editor for common ob)ct files. • • • • • • • • ld(l)
ldacloae: clme a common ob)ct file. • • • • • • • • • ldclose(3X)
ldahread: read the archive header of a member of an • ldahread(3X)
ldaopen: open a common obpct .file for reading. • • 1dopen(3X)
ldclase, ldaclose: close a common obj!ct file. • • • • 1dclose(3X)
ldexp, modf: manipulate parts of bting-point • • frexp(3C)

Permuted Index

ldfcn: common objlct file access routines. • • • • •
file. !dfhread: read the file header of a common objlct •

ldgetname: retrieve symbol name for obp:t file. • •
a common obp:t file function. !di read, ldlinit, ldlitem: manipulate line number entries of

objict file function. ldlread, ldlinit, ldlitem: manipulate line number entries of a common
entries of a common objlct file function. ldlread, ldlinit, ldlitem: manipulate line number

section of a common objlct file. Jdlseek. Jdnlseek.: seek to line number entries of a •
of a common objlct file. Jdlseek. ldnlseek: seek to line number entries of a section
of a common objlct file. ldrseek., ldnrseek: seek to relocation entries of a section

a common objict file. ldshread, Jdnshread: read an indexed/named section header of
common obp:t file. Jdsseek. ldnsseek.: seek to an indexed/named section of a

common objlct file. ldohseek.: seek to the optional file header of a • • •
reading. ldopen, Jdaopen: open a common oby.ct file for

section of a common objict file. ldrseek., ldnrseek: seek to relocation entries of a ••
header of a common objlct file. Jdshread, ldnshread: read an indexed/named section
section of a common objict file. ldsseek. ldnsseek.: seek. to an indexed/named

entry of a common objict file. Jdtbindex: compute the index of a symbol table •
common objlct file. ldtbread: read an indexed symbol table entry of a

objict file. ldtbseek: seek. to the symbol table of a common
len: return length of FORTRAN string.

len: return length of FORTRAN string. • • • • • • • • •
getopt: get option letter from argument vector. • •••••••

lex: generate programs for simple lexical tasks.
lex: generate programs for simple lexical tasks. •••••••••••••

!search, lfind: linear search and update. • • • • •
functions. lge, !gt, lle, llt: string comparision intrinsic

functions. lge, lgt, lle, llt: string comparision intrinsic
intro: introduction to subroutines and libraries. • • • • • • • • • • • • • • •

!order: find ordering relation for an obp:t library. • •••••••••••••••
ar: archive and library maintainer for portable archives.

ulimit: get and set user limits.
dial: establish an out-going terminal line connection.

getty: set terminal type, modes, speed, and line discipline. •
col: filter reverse line feeds. • • •

line: read one line. • ••••
linenum: line number entries in a common objict file.

function. ldlread, ldlinit, ldlitem: manipulate line number entries of a common objict file
file. ldlseek., Jdnlseek: seek to line number entries of a section of a common objlct

strip: strip symbol and line number information from an obp:t file.
nl: line numbering filter.

cut: cut out selected fields of each line of a file.
!pd: line printer daemon. •

Ip: MVME410 line printer interface.
lp, cancel: send/cancel requests to an LP line printer. • ••••

line: read one line. • •
!search, !find: linear search and update.

file. linenum: line number entries in a common objlct
comm: select or rep:!; lines common to two sorted files.
uniq: report repeated lines in a file. • • • • • • • • • • • • • • •

merge same lines of several files or subsequent Jines of one file. paste: •••••••••••
file. paste: merge same lines of several files or subsequent Jines of one

link, unlink: exercise link and unlink system calls. • • •
Id: link editor for common objict files.

a.out: common assembler and link editor output.
link: link. to a file.

cp, In, mv: copy, link or move files.
link: link to a file.
calls. link, unlink: exercise link and unlink system

lint: a C program checker. • • • • • • • •
ls: list contents of directories. • • • • • • • •
ff: list filenames and statistics for a file system.

nlist: get entries from name list. • • • • • • • • • • • • • • •
nm: print name list of common objlct file. • • • • •

checklist: list of file systems processed by fsck.
varargs: handle variable argument list. • • • • • • • • • • • •

print formatted output of a varargs argument list. vprintf, vfprintf, vsprintf: ••
xargs: construct argument list(s) and e:m:ute command.

lge, lgt, Ile, llt: string comparision intrinsic functions.
lge, lgt, lle, lit: string comparision intrinsic functions.

cp, ln, mv: copy, link or move files. •••••••
time to string. ctime, Jocaltime, gm time, asctime, t.73et: convert date and

index: return location of FORTRAN substring.
end, ete:x:t, edata: last locations in program. • • • • • • • • • • • • •

ploc.k: lock process, text, or data in memory. • • • • •
intrinsic function. log, alog, dlog, clog: FORTRAN natural logarithm

xxi

Jdfcn(4)
ldfhread(3X)
ldgetname(3X)
!di read(3X)
ldlread(3X)
ldlread(3X)
ldlseek(3X)
ldlseek.(3X)
ldrseek.(3X)
ldshread(3X)
ldsseek(3X)
ldohseek.(3X)
ldopen(3X)
ldrseek(3X)
ldshread(3X)
ldsseek(3X)
Jdtbindex(3X)
ldtbread(3X)
ldtbseek.(3X)
len(3F)
Jen(3F)
getopt(3C)
lex(l)
Jex(l)
lsearch(3C)
strcmp(3F)
strcmp(3F)
introC3)
lorder(l)
ar(l)
ulimit(2)
dial(3C)
getty(lM)
col(l)
Jine(l)
linenum(4)

• ldlread(3X)
ldlseek.(3X)

• strip(!)
nl(l)
cut(l)
Jpd(lC)

• lp(7)
lp(l)
line(I)
lsearch(3C)
linenum(4)
comm(l)
uniq(l)
paste(l)
paste(l)
link(IM)

• ld(l)
• a.out(4)

link(2)
cp(l)
link(2)

• linkClM)
lint(I)
ls(l)

• fi"(IM)
• n!ist(3C)

nm(l)
checklist(4)
varargs(S)
vprintf(3S)

• xargs(l)
strcmp(3F)
strcmp(3F)

• cp(l)
• ctime(3C)

index(3F)
md(3C)
plock.(2)
iog(3F)

Permuted Index

gamma:
newgrp:

power, square root functions. exp,
intrinsic function.

square root functions. exp, log,
log-10, aloglO, dloglO: FORTRAN common

log, alog, dlog, clog: FORTRAN natural
exp, log, log IO, pow, sqrt: exponential,

errpt: process a report of
getlogin: get
logname: get

cuserid: get character
logname: return
pa.uwd: change

profile: setting up an environment at

a641, 164a: convert between
fashion. sputl, sgetl: access

13to!, ltol3: convert between 3-byte integers and
setjnp,
library.

nice: run a command at
printer.

lp, cancel: send/cancel requests to an

enable, disable: enable/disable
lpsched, lpshut, lpmove: start/stop the

accept, rejlct: allow /prevent
lpadmin: configure the

lpstat: print

move requests. lpsched, lpshut,
scheduler and move requests.
and move requests. lpsched,

seed48, lcong48: generate/ drand48, erand48,
Driver.

and, or, xor, not,
int1¥ers. 13tol,

fscv: convert files between
type. pdpll,u3b,vax,

general driver for all disk units supported by the
general driver for all disk units supported by the
general driver for all disk units supported by the

sputl, sgetl: access long integer data in a
values:

m4:
mail, rmail: send mail t.c users or read

mail, rmail: send

malloc, ftee, realloc, calloc:
free, realloc, calloc, mallopt, mallinfo: fast

programs. make:
ar: archive and library

intro: introduction t.c system
intro: introduction t.c system

delta:
mkdir:

mknod:
mktemp:

programs.
banner:

malloc, free, realloc, calloc, mallopt,
allocator.

fast main memory allocator.

log gamma function. • • • • • • • • • • • • • • •
log in to a new group. • • • • • • • • • • • • • •
log, loglO, pow, sqrt: exponential, logarithm, ••••
loglO, aloglO, dloglO: FORTRAN common logarithm
loglO, pow, sqrt: exponential, logarithm, power,
logarithm intrinsic function. • • • • • •
logarithm intrinsic function. • • • • . • •
logarithm, power, square root functions.
logged errors.
login name. • ••••
login name. • ••••
login name of the user.
login name of user.
login pa.uword.
login: sign on. • • • •
login time. • ••••
logname: get login name.
logname: return login name of user.
long integer and bas&-64 ASCll string.
long integer data in a machine independent
long integers. • • • • • • • • • • • • •
longjmp: non-local goto. • • • • • • • •
!order: find ordering relation for an objlct
low priority. • • • • • • • • • • • • •
lp, cancel: send/cancel requests to an LP line
LP line printer. • • • • • • • • • • •
lp: MVME410 line printer interface. • •
LP printers. • • • • • • • • • • • • •
LP request scheduler and move requests.
LP requests. • • • • • • • • • • • • • •
LP spooling system. • •••••••••
LP status information. • • • • • • • • •
lpadmin: configure the LP spooling system.
lpd: line printer daemon. • • • • • • • • •
lpmove: start/stop the LP request scheduler and
lpsched, lpshut, lpmove: start/s~ the LP request
lpshut, lpmove: start/stop the LP request scheduler
lpstat: print LP status information. • • • • • • •
lrand48, nrand48, mrand48, jrand48, srand48, • •
lrk25: 25Mb LARK M:idule Drive for Universal Disk
ls: list contents of directories. • • • • • • • • • •
!search, liind: linear search and update. • • • • •
!seek: move read/write file pointer. • • • • • • •
!shift, rshift: FORTRAN bitwise Boolean functions.
ltol3: convert between 3-byte integers and long • •
m4: macro processor. • • • • • • • • • • • • • •
m400. MVME400 Dual RS-232C Serial Port M:idule.
M68000 and V AX-unso processors. • • • • •
m68k: provide truth value about your proccmor
M68KVM21 disk controller. ud: •••••
M68KVM21 disk controller. vm21: default
M68KVM22 disk controller. vm22: default
machine independent fashion.
machintxlependent values. ••••••••
macro processor. • ••••••••••••
mail. • ••••••••••••••••••
mail, rmail: send mail to users or read mail.
mail to users or read mail. • • • • • • • •
mailx: interactive message processing system.
main memory allocator. • •••••••
main memory allocator. malloc, •••••
maintain, update, and regenerate groups of •
maintainer for portable archive&. • • • • •
maintenance commands and application programs.
maintenance procedures. • • • • • • • • • •
make a delta (change) to an SCCS file. • ••••
make a direct.cry. • • • • • • • • • • • • •
make a direct.cry, or a special or ordinary file.
make a unique filename. • • • • • • • • • •
make: maintain, update, and regenerate groups of
make posters. • • • • • • • • • • • • •
makekey: generate encryption key. • • • • •
mallinfo: fast main memory allocator. • • • •
malloc, free, realloc, callee: main memory
malloc, free, realloc, callee, mallopt, mallinfo:

xxii

gamma(3M)
newgrp(l)
exp(3M)

• log10(3F)
exp(3M)
log10(3F)
log(3F)
exp(3M)
errpt(lM)
getlogin(3C)
logname(l)
cuserid(3S)
logname(3X)
pa.uwd(l)
login(l)
pronle(4)
logname(l)
logname(3X)
a641(3C)
sputl(3X)
13tol(3C)
setjmp(3C)
lorder(l)

• nice(!)
lp(l)
lp(l)
lp(7)
enable(!)
lpsched(IM)
accept(IM)
lpadmin(IM)

• lpstat(l)
• lpadmin(lM)

lpd(lC)
lpsched(lM)
lpsched(IM)
lpsched(IM)
lpstat(l)
drand48(3C)
lrk25(7)
ls(l)
lsearch(3C)
1seek(2)
bool(3F)
13tol(3C)
m4(1)
m400(7)
fscv(lM)

• machid(l)
ud(7)
vm21(7)
vm22(7)
sputl(3X)

• values(5)
• m4(1)

mail(l)
mail(l)

• mail(l)
mailx())
malloc(3C)
malloc(3X)
make(I)

• ar(l)
intro(lM)
intro(8)
delta(l)
mkdir(l)
mknod(2)
mktemp(3C)
make(I)
banner(!)
makeltey(l)
malloc(3X)

• malloc(3C)
malloc(3X)

malloc, free, reall oc, calloc,

tsearch, tfind, tdeletr. twalk:
hsearch, hcreate, hdestroy:

shl: shell layer
fwtmp, wtmpfi.x:

file f~'nction. ldlread, ldlinit, ldlitem:
frexp, ldexp, modf:

man,
man, manprog: print entries in this

ascii:
diffmk:

umask.: set file-creation mode
umask.: set and get file creation

master:

regexp: regular expresmon compile and
math:

maximum-value functions.
maximum-value functions. max,

functions. max, maxO, amaxO,
max, maxo, amaxO, maxl, amaxl, dmaxl: FORTRAN

maze: generate a

operations.
memccpy,

memccpy, memchr,
memccpy, memchr, memcmp,

malloc, free,. realloc, calloc: main
free, realloc, calloc, mallopt, mallinfo: fast main

shmctl: shared
remove a me!!Sage queue, semaphore set or shared

mem, kmem: core
memccpy, memchr, memcmp, memcpy, memset:

shmat, shmdt: shared
plock: lock process, text, or data in

shmget: get shared
memccpy, memchr, memcmp, memcpy,

sort: sort and/ or
acctmerg:

lines of one file. paste:

msgctl:
msgsnd, msgrcv:

mailx: interactive
msgget: get

ipcrrn: remove a
mesg: permit or deny

perror, errno, sys~rrlist, sysJ1err: system error
minimum-value functions.

minimum-value functions. min,
functions. min, minO, amino,

min, minO, amino, minl, aminl, dminl: FORTRAN

file.

functions.
chmod: change

umask.: set file-<reation
chmod: change

getty: set terminal type,
bs: a compilerfmterpreter for

frexp, ldexp;
touch: update accais and
utime: set file accais and

cm16: 16Mb Cartridge
cm80: 80Mb Cartridge

Permuted Index

mallopt, mallinfo: fast main memory allocator. • malloc(3X)
man, manprog: print entries in this manual. • • man(l)
manage binary search tree& • • • • • • • • • tsearch(3C)
manage hash search tables. • • • • • • • • hsearch(3C)
manager. • • • • • • • • • • • • • • • shl(l)
manipulate connect accounting records. • fwtmp(IM)
manipulate line number entries of a common ob)ct ldlread(3X)
manipulate parts of floating-point numbers. frexp(3C)
manprog: print entries in this manual. man(l)
manual. • • • • • • • • • • • man(l)
map of ASCII character set. • • ascii(:S)
mark differences between files. diffmk(l)
mask. • • • • • • • • • • • • umask.(l)
mask.. • • • • • • • • • • • • umask(2)
master device information table. master.dec(4)
master: master device information table. • • master.dec(4)
match routines. • • • • • • • • • regexp(:S)
math functions and constants. math(:S)
math: math functions and constants. • math(:S)
matherr: error-handling function. • • • matherr(3M)
max, maxO, amaxO, maxi, amaxl, dmaxl: FORTRAN max(3F)
maxO, amaxO, maxl, amaxl, dmaxl: FORTRAN • • • • max(3F)
maxl, amaxl, dmaxl: FORTRAN maximum-value •• max(3F)
maximum-value functions. • max(3F)
maze: generate a maze. • • • • • • • • • mau(6)
maze. • • • • • • • • • • • • • • • • • • • mau(6)
mclock: return FORTRAN time accounting. mclock(3F)
mem, kmem: core memory. • • • • • • • • • • • • • mem(7)
memccpy, memchr, memcmp, memcpy, mernset: memory memory(3C)
memchr, memcmp, memcpy, memset: memory operations. memory(3C)
memcmp, memcpy, memset: memory operations. • • memory(3C).
memcpy, memset: memory operations. •• memory(3C)
memory allocator. • • • • malloc(3C)
memory allocator. malloc, • • malloc(3X)
memory control operations. • • shmct1(2)
memory id. ipcrm: ipcrm(l)
memory. • • • • • • • • mem(7)
memory operations. memory(3C)
memory operations. shmop(2)
memory. • • • • • • plock(2)
memory segment. • • shmget(2)
memset: memory operations. • • memory(3C)
merge files. • • • • • • • • • • sort(l)
merge or add total accounting files. • acctmerg(IM)
merge same lines of several files or subsequent paste(!)
mesg: permit or deny messages. mesg(l)
message control operations. msgct1(2)
message operations. msgop(2)
message processing system. mailx(l)
message queue. • • • • • • msgget(2)
message queue, semaphore set or shared memory id. ipcrm(l)
messages. • mesg(1)
messages. • perror(3C)
min, rninO, amino, minl, aminl, dminl: FORTRAN • • min(3F)
minO, amino, minl, aminl, dminl: FORTRAN • • • min(3F)
minl, aminl, dminl: FORTRAN minimum-value • min(3F)
minimum-value functions. • • • • • • • • • min(3F)
mk: how to remake the system and commands. mk(8)
mkdir: make a directory. • • • • • • • • • • • • • mkdir(I)
mk.fs: construct a file system. • • • • • • • • • • mkfsClM)
mknod: build special file. • • • • • • • • • • • mknod(lM)
mknod: make a directory, or a special or ordinary • mknod(2)
mktemp: make a unique filename. • • • • • • • mkt.emp(3C)
mnttab: mounted file system table. • • • • • • mnttabC4)
mod, amod, dmod: FORTRAN remaindering intrinsic mod(3F)
mode. • • • chmod(l)
mode mask. • • • • • • • • • • • • umask.(1)
mode of file. • • • • • • • • • • • chmod(2)
modes, speed, and hne discipline. getty(lM)
modest-sired programs. • • • • • • • bs(l)
modf: manipulate part.:. of floating-point numbers. •• frexp(3C)
modllication times of a file. • • • • • • • • touch(!)
modification times. • • • • • • • • • • • • • utime(2)
Mxlule Drive for Universal Disk Driver. • cm16(7)
Mxlule Drive for Universal Disk Driver. • cm80(7)

xxiii

Permuted Index

Jrk25: 25Mb LARK
cmd16: 16Mb Cartridge
cmd80: 80Mb Cartridge

Jark25: 50Mb LARK
lark8: 16Mb LARK

m400: MVME400 Dual RS-232C Serial Port
runacct,/ chargefee, ckpacct, dodisk, lastlogin,

uusub:

mount:
mount, umount:

setmnt: establish

mnttab:
mvdir:

cp, Jn, mv: copy. link or
ls eek::

lpmove start/stop the LP request scheduler and
generate/ drand48, erand48, lrand48, nrand48,

msgsnd,

cp, ln,

m400:
lp:

Jog, alog, dlog, clog: FORTRAN

anint, dnint, nint, idnint: FORTRAN
stat: statistical

uusub: monitor uucp

news: print

anint, dnint,

setjmp, Jongjmp:
functions. and, or, xor,

Jcong48: generate/ drand48, erand48, Jrand48,
null: the

chargefee, ckpacct, dodisk, lastlogin, monacct,
nl: line

graphics: acce>s graphical and
ldfcn: common

conv:
dump: dump selected parts of an
ldopen, ldaopen: open a common

ldlitem: manipulate line number entries of a common
Jdclose, ldac!ose: close a common

Jdfhread: read the file header of a common
Jdgetname: retrieve symbol name for

to line number entries of a section of a common
:ieek to the optional file header of a common

seek to relocation entries of a section of a common
read an indexed/named section header of a common

seek to an indexed/named section of a common
the index of a symbol table entry of a common

read an indexetl symbol table entry of a common
Jdtbseek: seek to the symbol table of a common

Jinenum: line number entries in a common
nm: print name list of common

reloc: relocation information for a common
scnhdr: section header for a common

strip symbol and line number information from an
syms: common

Mxiule Drive for Universal Disk Driver .•••••
Mxiule Drive for VM21 Driver and VM22 Driver.
Mxiule Drive for VM21 Driver and VM22 Driver.
Mxiule Drive for VM21 Driver and VM22 Driver.
Mxiule Drive for VM21 Driver and VM22 Driver.
Mxiule .••••••.•••••••••
monacct, nulladm, prctmp, prdaily, prtacct,
monitor: prepare execution profile.
monitor uucp network.
moo: guessing game. . • . • . .
mount a file system. . .••..
mount and dismount file system.
mount: mount a file system.
mount table. •••.•••••
mount, umount: mount and dismount file system.
mounted file system table.
move a directory. • . • • •
move files. . • • • . • . .
move read/write file pointer.
move requests. lpsched, lpshut,
mrand48, jrand48, srand48, seed48, Jcong48:
msgctl: message control operations.
msgget: get message queue.
msgrcv: message operations. • • . .
msgsnd, msgrcv: message operations.
mv: copy, link or move files.
mvdir: move a directory. . •.•.
MVME400 Dual RS-232C Serial Port Mxiule. •
MVME410 line printer interface.
natural logarithm intrinsic function.
ncheck: generate names from i-num bers.
nearest integer functions. . • • • . • .
network useful with graphical commands.
network. • ••••••.•••.•.•
newform: change the format of a text file.
newgrp: log in to a new group.
news items. . .•..•••••
news: print news items.
nice: change prioritycof a prncess.
nice: run a command at low priority.
nin t, idnin t: FORTRAN nearest integer functions.
nl: line numbering filter .•.•••••••••
nlist: get entries from name list. . . . • . • • •
nm: print name list of common oby,ct file.
nohup: run a command immune to hangups and quits.
non-local goto .•••••••••.•.••
not, Jshift, rshift: FORTRAN bitwise fuolean
nrand48, mrand48, jrand48, srand48, seed48,
null file. • • . . • • . • • • • . . . • ••
null: the null file. • • • . . • • • • • • •
nulladm, prctmp, prdaily, prtacct, runacct,/
numbering filter.
numerical commands.
objlct file access routines.
objlct file converter.
ob jlct file. • • • • • • •
objlct file for reading.
objlct ii.le function. ldlread, ldlinit,
ob jlct file.
ob jlct file.
ob jlct file.
ob jlct file.
ob jlct file.
objlct file.
objlct Ji.le.
objrt file.
ob;xt file.
objlct file.
objlct file.
ob jlct file.
ob jlct file.
objlct file.
ob jlct file.

I dis eek, ldnlseek.: seek.
ldohseek.: • . • • •
Id rseek, ldn rset'k:
ldshread, ldnshread:
ldsstt.k, Id~:
ldtbindex: compute
Jdtbread:

ob jlct file. strip:
objlct file symbol table format.

xxiv

lrk25(7)
cmd16(7)
cmd8o(7)
Jark25(7)
lark8(7)
m400(7)
acctsh(lM)
monitor(3C)
uusub(lM)
moo(6)
mount(2)
mount(IM)
mount(2)
setmnt(lM)
mount(lM)
mnttab(4)
mvdir(lM)
cp(l)
Jseek(2)
lpsched(lM)
drand48(3C)
msgctl(2)
msgget(2)
msgop(2)
msj;op(2)
cp(l)
mvdir(lM)
m400(7)
Jp(7)
Jog(3F)
ncheck(lM)
round(3F)
stat(lG)
uusub(lM)
newform(l)
newgrp(l)
news(l)
news(l)
nice(2)
nice(l)
round(3F)
nJ(l)
nlist(3C)
nm(l)
nohup(l)
setjmp(3C)
bool(3F)
drand48(3C)
nul1(7)
null(7)
acctsh(lM)
nl(l)
graphics(lG)
Jdfcn(4)
conv(l)
dump(l)
ldopen(3X)
ldl read(3X)
ldclose(3X)
ldfhread(3X)
ldgetname(3X)
ldlseek(3X)
ldohseek(3X)
ldrseek(3X)
ldshread(3X)
ldsseek(3X)
ldtbindex(3X)
ldtbread(3X)
ldtbseek.(3X)
linenum(4)
nm(l)
reloc(4)
scnbdr(4)
strip(I)
syms(4)

Permuted Index

filehdr: file header for common objx:t files. • • • • • • • • •
cpset: install objx:t files in binary directories.

Id: link editor for common objx:t files.
size: print section sizes of common objx:t files.

!order: find ordering relation for an objx:t library. • . •
sky: obtain ephemerides.

getgrent, getgrgid, getgmam, setgrent, endgrent: obtain.
od: octal dump. • • • •

od: octal dump.
ldopen, ldaopen: open a common objx:t file for reading.

fopen, freopen, fdopen: open a stream. • • • • • • • • •
dup: duplicate an open ii.le descriptor. • . • . • •

open: open for reading or writing.
open: open for reading or writing.

ho.macs: bootstrap operating procedure for system restart on EXDRmacs.
bo.vme: bootstrap operating procedure for system restart on VME/10.

prf: operating system profiler.
prfid, prfstat, prfdc, prfsnap, prfpr: operating system profiler.

uname: get name of current operating system.
memccpy, memchr, memcmp, memcpy, memset: memory operations.

msgctl: message control operations.
msgsnd, msgrcv: message operations.

ops.macs: EXORmacs operations.
semctl: semaphore control operations.

semop: semaphore operations.
shmctl: shared memory control operations.
shmat, shmdt: shared memory operations.

strrchr, strpbrk, strspn, strcspn, strtok: string operations. /strcpy, strncpy, strlen, strchr,
pin: relational database operator. • • • • • • • • • •

ops.macs: EXORmacs operations. • •
dcopy: copy file systems for optimal access time. •••••••

curses: CRT screen handling and optimization package. • • • • • •
getopt: get option letter from argument vector.

aouthdr: optional aout header .•••••••
ldohseek: seek to the optional file header ofa common objx:t file.

fen ti: file control options. • • • • • • • • • • • • • • • • •
stty: set the options for a terminal. • • • • . . • • • •

getopt: parse command options. • • • • • • • . • • • • • • • • •
Boolean functions. and, or, xor, not, !shift, rshift: FORTRAN bitwise

!order: find ordering relation for an objx:t library. • ,
mknod: make a directory, or a special or ordinary file. ••••••••••

dial: establish an out-going terminal line connection.
a.out: common assembler and link editor output. . •••.••••••••

vprintf, vfprintf, vsprintf: print formatted output of a varargs argument list .•
prin tf, fprintf, sprintf: print formatted output. • • • • • • • • . • • • .

commands. acctdisk, acctdusg, accton, acctwtmp: overview of accounting and miscellaneous accounting
chown: change owner and group of a file. • ••.•••••

chown, chgrp: change owner or group. • •.•••••.•••••
pack, peat, unpack: compress and expand files.

curses: CRT screen handling and optimization package.
sal, sa2, sadc: system activity report package.

stdio: standard buffered input/output package.
stdipc: standard interprocess communication package.

4014: paginator for the Tektronix 4014 terminal.
getpgrp, getppid: get process, process group, and parent proceis IDs. getpid,

getopt: parse command options.
passwd: change login password.
passwd: password file.

getpwnam, setpwent, endpwent, fgetpwent: get password file entry. getpwent, getpwuid,
putpwent: write password file entry.

passwd: password file. • •••••••
get pass: read a password. • • • • • • • • • •

passwd: change login password. • •••••••••
pwck, grpck; password/group file checkers.

subsequent lines of one file. paste: merge same lines of several files or
getcwd: get pathname of current working directory.

basename, dirname: deliver portions of pathnames. •••••••••••••
grep, egrep, fgrep: search a file for a pattern. • • • • • • • • • • • • • • • •

awk: pattern scanning and processing language.
pause: suspend process until signal.

pack, peat, unpack: compress and expand files. •
popen. pclose: initiate pipe to/from a process.

your processor type. pd pl l, u 3b, vax, m68k: provide truth value about
mesg: permit or deny messages.

ptx: permuted index. • • • • • • • • • • • • • • • •

xxv

filehdr(4)
cpset(lM)
ld(l)
sizeCI)
lorder(l)
sky(6)
getgrent(3C)
od(l)
od(l)
ldopen(3X)
fopen(3S)
dup(2)
open(2)
open(2)
bo.macs(8)
bo.vme(8)
prf(7)
profi.ler(lM)
uname(2)
memory(3C)
msgctl(2)
msgop(2)
ops.macs(8)
semctl(2)
semop(2)
shmctl(2)
shmop(2)
string(3C)
pin(l)
ops.macs(8)
dcopy(lM)
curses(3X)
getopt(3C)
aouthdr(4)
ldohseek(3X)
fcntl(S)
stty(l)
geto{>t(l)
bool(3F)
lorder(l)
mknod(2)
dial(3C)
a.out(4)
vprintfC3S)
printf(3S)
acct(lM)
chown(2)
chown(l)
pack(!)
curses(3X)
sar(IM)
stdio(3S)
stdipc(3C)
4014(1)
getpid(2)
getopt(l)
passwd(l)
passwd(4)
getpwent(3C)
putpwent(3C)
passwd(4)
getpass(3C)
passwd(l)
pwck(lM)
paste(!)
getcwd(3C)
basename(l)
grep(l)
awk(l)
pause(2)
pack(l)
popen(3S)
machid(l)
mesg(l)
ptx(l)

Permuted Index

acct:
acctcms: command summary from

messages.
pg: file

split: split a file into

tee:
popen, pclose: initiate

fseek., rewind, ftell: reposition a file
!seek: move read/write file

m400: MVME400 Dual RS-232C Serial
ar: archive and library maintainer for

basename, dirname: deliver
dim, ddim, idim:

banner: make
root functions. exp, log, loglO,

exp, log, loglO, pow, sqrt: exponential, logarithm,
brc, bcheckrc, re,

/ckpacct, dodisk, lastlogin, monacct, nulladm,
/dodisk, lastlogin, monacct, nulladm, prctmp,

dprod: double
monitor:

cpp: the C language
unget: undo a

prfid, prfstat,
system profiler.

prfid, prfstat, prfdc, prfsnap,
prfid, prfstat, prfdc,

profiler. prfid,
gps: graphical

types:
prs:

date:
cal:

sum:
sact:

man, manprog:
cat: concatenate and

pr:
vprintf, vfprintf, vsprintf:

printf, fprintf, sprintf:
lpstat:

nm:
uname:

news:
acctcom: search and

size:
id:

!pd: line
Ip: MVME410 line

Ip, cancel: send/cancel requests to an LP line
enable, disable: enable/disable LP

nice: run a command at low
nice: change

errpt:
acct: enable or disable

acctprcl, acctprc2:
acct.com: search and print

times: get
init, telinit:

timex: time a command; report
exit, .!'xit: terminate

fork.: create a new
getpid, getpgrp, getppid: get pl'OCeU,

. setpgrp: set
getppid: get proc:ea, process group, and parent

per-process accounting file format. • • • • • •
per-process accounting records. • • • • • • •
perror, errno, sys_errliSt, sys.J)err: system error
perusal filter for soft-ropy terminals.
pg: file perusal filter for soft-ropy terminals.
pieces. • ••••••••••••
pipe: create an interprocess channel. • • • •
pipe .fitting. • • • • • • • • • • • • • • •
pipe to/from a process. • •••••••••
plock: lock process, text, or dat.a in memory.
plot: graphics interface. • • • • • • •
plot: graphics interface subroutines.
pnch: file format for card images. • • • • • •
pointer in a stream. • ••••••••••
pointer. • ••••••••••••••••
popen, pclose: initiate pipe to/from a process.
Port l.biule. • • • • • • • • • • •
portable archives. • • • • • • • • •
portions of pathnames. • • • • • • • • • • •
positive difference intrinsic functions. •••
posters. • • • • • • • • • • • • • • • • •
pow, sqrt: exponential, logarithm, power, square
power, square root functions. ••••••••
powerfail: system initialization shell scripts.
pr: print files. • • • • • • • • • • • • • • •
prctmp, prdaily, prtacct, runacct, shutacct,/
prdaily, prtacct, runacct, shut.acct, startup,/
precision product intrinsic function.
prepare execution profile. • •
preprocessor. • • • • • • • • • • •
previous get of an SCCS file.
prf: operating system profiler. • • • • •
prfdc, prfsnap, prfpr: operating system profiler.
prfld, prfst.at, prfdc, prfsnap, prfpr: operating • •
prfpr: operating system profiler. • ••••••
prfsnap, prfpr: operating system profiler ••••
prfstat, prfdc, prfsnap, prfpr: operating system
primitive string, format of graphical files.
primitive system data types.
print an SCCS file. • • • • • • • • • ••
print and set the date. • • • • • • • • •
print calendar. • • • • • • • • • • • • •
print checksum and block count of a file.
print current SCCS file editing activity.
print entries in this manual. • •••••
print files. • • • • • • • • • • • • • • •
print files. • • • • • • • • • • • • • • •
print formatted output of a varargs argument list.
print formatted output. • • • • • • •
print LP status information.
print name list of common objlct file.
print name of current UNXSystem.
print news items. • • • • • • • • •
print process accounting file(s).
print section sizes of common obp:t files.
p~nt user and, group IDs and names.
pnnter daemon. • • • • • • • • •
printer interface. • • • • • • • •
printer. • • • • • • • • • • • • ••
printers. • • • • • • • • • • • • • • • •
printf, fprintf, sprintf: print formatted output.
priority~ • • • • • • ••••
priority of a process. • • • • •
process a report of logged errms.

acctC4)
• acctcms{lM>
• perrot(3C)
• pg(l)

pg(l)
split(l)
pipe(2)

• tee(l)
popen(3S)

• plock.(2)
plot(4)

• plot(3X)
•• pnch(4)

fsee.lt(3S)
lseek.(2)
popen(3S)
m400(7)
arCl)

• basename(l)
dim(3F)
banner(!)
exp(3M>
exi>(3M>

• brcClM>
pr(l)
acctsh(lM)

• acctsh(lM)
dprod(3F)
monitor(3C)
cpp(l)
unget(l)

• prf(7)
profilerClM>

• profilerClM>
profilerClM>

• • profilerClM>
profilerClM>
gps(4)
typm(S)
prs(l)
dau(l)

• cal(l)
•• sum(l)

sact(l)
man(l)

• cat(l)
pr(l)

• vprin tf(3S)
• printf(3S)

lpstat(l)
• nm(l)
• uname(l)
• news(l)

acctcom(l)
sm(1)
id(l)
lpd(lC)

•• lp(7)
lp(l)

• • aiable(l)
• printf(3S)

nice(l)
nic:e(2)

•• errpt(lM)
acct(l) process accounting. • • • • • • •

process accounting. • • • • • • •
process accounting Jile(s). • • •
process and child process times.
process control initialization.
process data and system activity.

• acctprc(lM>
acctcom(l)

••••• timeaC2)
init{lM>

•• timm(l)
process. • • • • • • • • • • • •
pr<>CfJSS. • • • • • • • • • • • •
process group, and parent pnicess IDs.
process group ID. • • • • • •
process IDs. getpid. getpgrp, • • • • •

xxvi

• mtC2)
fork(2)

• getpid(2)
llClt}l£rp(2)
gei;id{2)

inittab: script for the init process.
kill: terminate a process.

nice: change priority of a process.
kill: send a signal to a process or a group of processes.

popen, pclose: initiate pipe to/from a process. •••••••••••
getpid, getpgrp, getppid: get process, process group, and parent process IDs.

ps: report process status. ••••••••
plock: lock process, text, or data in memory.

times: get process and child process times. • •••••
wait: wait for child process to stop or terminate.

ptr ace: process trace.
pause: suspend process until signal.

wait: await completion of process. • • • . •
checklist: list of file systems processed by fsck.

kill: send a signal to a process or a group of processes.
killall: kill all active processes.

fuser: identify processes using a file or file structure.
awk: pattern scanning and processing language.

shutdown: terminate all processing.
mai!x: interactive message processing system. •

m4: macro processor. • •
u3b, vax, m68k: provide truth value about your processor type. pdpl l,

wffmt: format floppies for the VME/10 processor. • • • • •
fscv: convert files between M68000 and VAX-11/780 processors. • ••••

alarm: set a process's alarm clock. .
dprod: double precision product intrinsic function.

prof: display profile data. •
prof: profile within a function.
profil: execution time profile.

prof: display profile data. . • • • • • • • .
monitor: prepare execution profile. • •.••••••••

profil: execution time profile. • • • • • • • • • • •
profile: setting up an environment at login time.

prof: profile within a function.
prf: operating system profiler.

prfstat, prfdc, prfsnap, prfpr: operating system profiler. prftd, • . • • •
sadp: disk access profiler. • •.•••••

sh, rsh: shell, the standard/restricted command programming language. •
arithmetic: provide drill in number facts.

pdpl 1, u3b, vax, m68k: provide truth value about your processor type.
true, false: provide truth values. • • • • • • . • • • •

prs: print an SCX:S file. • • • • . . • • • •
/lastlogin, monacct, nulladm, prctmp, prdaily, prtacct, runacct, shutacct, startup, turnacct:/

ps: report process status. • • . . . • • • •
sxt: pseudMevice driver .••••.••••••

Permuted Index

inittabC4)
kill(!)
niceC2)
kil1(2)
popen(3S)
getpid(2)
ps(l)
plock(2)
times(2)
wait(2)
ptrace(2)
pause(2)
wait(!)
checklist(4)
kill(2)
kill all(IM)
fuser(lM)
awk(l)
shutdown(IM)
mai!x(l)
m4(1)
machid(l)
wffmt(lM)
fscvClM)
alarm(2)
dprod(3F)
prof(!)
prof(S)
profil(2)
prof(!)
monitor(3C)
profil(2)
profileC4)
prof(S)
prf(7)
profiler(IM)
sadp(l)
sh(l)
arithmetic(6)
machid(l)
true(!)
prs(l)
acctsh(lM)
ps(l)

seal48, lcong48: generate uniformly distributed pseudcrrandom numbers. /mrand48, jrand48, srand48,
sxt(7)
drand48(3C)
ptrace(2)
ptx(l)
ungetc(3S)
putc(3S)
putc(3S)
putenvC3C)
putpwent(3C)
puts(3S)
getut(3C)
putc(3S)
pwck(lM)
pwd(l)
qsort(3C)
tput(l)
msgget(2)
ipcrm(l)
qsort(3C)
nohu_p(l)
quiz(6)
rand(3F)
rand(3C)
rand(3F)
rand(3C)
fsplit(l)
ratfor(l)
ratfor(l)
brc(lM)
getpass(3C)
ldtbread(3XJ

ptrace: process trace. . • • • • . • • • • • • •
ptx: permuted index. • • • . • • • • • • • • •

ungetc: push character back into input stream. • • • ••
on a stream. putc, putchar, fputc, putw: put character or word

stream. putc, putchar, fputc, putw: put character or word on a.
putenv: change or add value to environment. •
putpwent: write password file entry.
puts, fputs: put a string on a stream .••.••

utmp file entry. getutent, getutid, getutline, pututline, setutent, endutent, utmpname: access
putc, putchar, fputc, putw: put character or word on a stream.

pwck, grpck: password/group file checkers.
pwd: working directory name.
qsort: quicker sort. . • .

tput: query terminfo database. • • •
msgget: get message queue. • •.•••.••••

ipcrm: remove a message queue, semaphore set or shared memory id.
qsort: quicker sort. • • • • • • •

nohup: run a command immune to hangups and quits. • ••••••••••••••••
quiz: test your knowledge. .••.•••

irand, srand. rand: random number generator.
rand, srand: simple random-number generator.

irand, srand, rand: random number generator.
rand, srand: simple random-number generator.

fsplit: split £77, ratfor, or efl files.
ratfor: rational FORTRAN dialect.

ratfor: rational FORTRAN dialect. • • •
brc, bcheckrc, re, powerfail: system initialization shell scripts.

getpass: read a password. • • • • • • • • • • • • • •
objlct file. ldtbread: read an indexoo symbol table entry of a common

xx vii

Permuted Index

objlct file. ldshread, ldnshread: cead an indexed/named section header of a common
read: read from file.

mail, rmail: send mail to users or read mail. • • • • •
line: read one line.

read: read from file.
file. ldahread: read the archive header of a member of an archive

ldfhread: read the file header of a common objlct file.
ldopen, Jdaopen: open a common objlct file for reading .••••••••••••••••

open: open for reading or writing. • • • • • • • • • • •
!seek: move read/write file pointer. • ••••••••

char: explicit FORTRAN type/ int, ifix, idint, real, fl.oat, sngl, dble, cmplx, dcmplx, ichar,
ma!loc, free, realloc, calloc: main memory allocator. • •

memory allocator. malloc, free, real!oc, calloc, mallopt, mallinfo: fast main
signal: specify what to do upon reccipt of a signal. • .•

signal: specify FORTRAN action on recei.pt of a system signal.
command summary from per-process accounting records. acctcms:

errdead: extract error records from dump.
fwtmp, wtmpfix: manipulate connect accounting records. ••••••

free: recover files from a backup tape.
ed, red: text editor. • ••••••

expression. regcmp, rege:x: compile and execute a regular
regcmp: regular expression compile. ••••

make: maintain, update, and regenerate groups of programs. • • • • • •
regcmp, regex: compile and execute a regular expression.

routines. regexp: regular expression compile and match •
regexp: regular expression compile and match routines.

regcmp: regular expression compile. • • . • • •
regcmp, rege:x: compile and execute a regular expression. • • • • • • • • • •

accept, rejlct: allow /prevent LP requests. •••
comm: select or rejlct lines common to two sorted files.

lorder: find ordering relation for an objlct library. • ..••
pin: relational database operator. • • • • •
file. reloc: relocation information for a common objlct

file. ldrseek, ldnrseek: seek to relocation entries of a section of a common objlct
reloc: relocation information for a common objlct file.

fioor, ceil, fmod, fabs: fioor, ceiling, remainder, absolute value functions.
mod, amod, dmod: FORTRAN remaindering intrinsic functions.

mk: how to remake the system and commands.
calendar: reminder service. • •••••••

ct: spawn getty to a remote terminal. • ••••••••
rmdel: remove a delta from an sa:::s file. •

memory id. ipcrm: remove a message queue, semaphore set or shared
· unlink: remove directory entry.

rm, rmdir: remove files or directories.
file system consistency check and interactive repair. fsck, dfsck: ••••

uniq: report rep12ted lines in a file. • •
rj:stat: RJE status report and interactive status console.

clock: report CPU time used. • •••••
status. ipcs: report inter-process communication facilities

df: report number of free disk blocks. •••
errpt: process a report of logged errors. • • • • • • • •

sal, sa2, sadc: system activity report pack.age. •••••••••••
time:x: time a command; report process data and system activity.

ps: report process status. • • • •
uniq: report rep12ted lines in a file. • ••

trenter: enter a trouble report. • • • • . . • • • • • . •
sar: system activity reporter. • • • • • . • • • • • •
fseek, rewind, ftel.l: reposition a file pointer in a stream.

lpsched, lpshut, lpmove: start/stop the LP request scheduler and move requests.
accept, rejlct: allow /prevent LP requests. • ••••••••••

start/stop the LP request scheduler and move requests. lpsched, lpshut, lpmove:
lp, cancel: send/cancel requests to an LP line printer •••

ho.macs: bootstrap operating procedure for system restart on EXORmacs. • • • • •
bo.vme: bootstrap operating procedure for system restart on VME/10. • •••••

ldgetname: retrieve symbol name for objlct file.
getarg: return FORTRAN command-line argument.
getenv: return FORTRAN environment variable.
mclock: return FORTRAN time accounting.

abs: return integer absolute value. • • • • •
len: return length of FORTRAN string.

index: return location of FORTRAN substring.
logname: return login name of user.

getenv: return value for environment name.
stat: data returned by stat system call.

reversi: a game of dramatic reversals. . • • • • • • • • • • •

xx viii

ldshread(3X)
read(2)
mail(l)
line(l)
read(2)
ldahread(3X)
ldfhread(3X)
ldopen(3X)
open(2)
lseek(2)
ftype(3F)
malloc(3C)
malloc(3X)
signal(2)
signal(3F)
acctcms(IM)
errdead(IM)
fwtmp(lM)
free(IM)
ed(l)
regcmp(3X)
regcmp(l)
make(l)
regcmp(3X)
regexp(S)
regexp(S)
regcmp(l)
regcmp(3X)
accqit(lM)
comm(l)
lorder(l)
j:lin(l)
reloc(4)
ldrseek(3X)
reloc(4)
fioor(3M)
mod(3F)
mk(8)
calendar(1)
ct(lC)
rmdel(l)
ipcrm(l)
unlink(2)
rm(l)
fsck(lM)
uniq(l)
rj:stat(lC)
clock(3C)
ipcs(l)
df(IM)
errpt(lM)
sarClM)
timex(l)
ps(l)
uniq(l)
trenterCIM)
sarCl)
fseek(3S)
lpsched(lM)
accept(lM)
lpsched(lM)
lp(l)
bo.macs(8)
bo.vme(8)
ldgetname(3X)
getarg(3F)
getenv(3F)
mclock(3F)
a~3C)
len(3F)
index(3F)
logname(3X)
getenv(3C)
stat(S)
reversi(6)

col: filter

stream. fseek.,
creat: create a new file or

rjestat:
console.

mail,

rm,
chroot: change
chroot: change

pow, sqrt: exponential, logarithm, power, square
sqrt, dsqrt, csqrt: FORTRAN square

hpd, erase, hardcopy, tekset, td: graphical device
ldfcn: common objlct file access

regexp: regular expression compile and match
toe: graphical table of contents

m400: MVME400 Dual
programming language. sh,

and, or, xor, not, lshift,
nice:

nohup:
run acct:

/monacct, nulladm, prctmp, prdaily, prtacct,

sal,
Driver.

Winchester Disk Driver.
Driver.
Driver.

sal, sa2,

brk,

bfs: big file
awk: pattern

cdc: change the delta commentary of an
comb: combine

delta: make a delta (change) to an
sact: print current

get: get a version of an
prs: print an

rmdel: remove a delta from an
sccsdiff: compare two versions of an

sccsfile: format of
unget: undo a previous get of an

val: validate
admin: create and administer

what: identify

l~hed, lpshut, lpmove: start/stop the LP request

curses: CRT
ex. vi:
inittab:

re, powerfail: system initialization shell

grep, egrep, fgrep:
acctcom:

!search, !find: linear
bsearch: binary

hsearch, hcreate, hdestroy: manage hash
tsearch, tfind, tdelete. twalk: manage binary

' jot to:
scnhdr:

ldshread, ldnshread: read an indexed/named
ldlseek, ldnlseek.: seek. to line number entries of a

Permuted Index

reverse line feeds. • • • • • • • • • • •
reversi: a game of dramatic reversals.
rewind, ftell: reposition a file pointer in a
rewrite an existing one. • • • • • • • • • •
RJE status report and interactive status console.
rjestat: RJE status report and interactive status
rm, rmdir: remove files or directories.
rmail: send mail to users or read mail. • •
rmdel: remove a delta from an SCX:::S file.
rmdir: remove files or directories.
root directory. • •••••••
root directory for a command ••
root functions. exp, log, loglO,
root intrinsic function.
routines and filters.
routines. ••••••
routines. ••••••
routines. ••••••
RS-232C Serial Port Mldule.
rsh: shell, the standard/restricted command
rshift: FORTRAN bitwise Boolean functions.
run a command at low priority. • • • • • •
run a command immune to hangups and quits.
run daily accounting. • • • • • • • • • •
runacct: run daily accounting. • • • • • • •
runacct, shutacct, startup, turnacct: shell/
sal, sa2, sadc: system activity report package.
sa2, sadc: system activity report package. • • •
sa4001l22: Slf4-inch Floppy Disk Drive for VM22
sa4001l.wd: Slf4-inch Floppy Disk Drive for the
sa8001l21: 8-inch Floppy Disk Drive for VM21
sa8001l22: 8-inch Floppy Disk Drive for VM22
sact: print current SCCS file editing activity.
sadc: system activity report package.
sadp: disk access profiler. • • • • • • • •
sag: system activity graph. • • • • • • • •
sar: system activity reporter. • • • • • •
sbrk: change data segment space allocation.
scanf, fscanf, sscanf: convert formatted input.
scanner ••••••••••••••••
scanning and processing language. • • •
sec: C compiler for stand-alone programs.
sa:::s delta. • • • • • • •
sa:::s deltas. • • • • • • •
sa:::s file. • • • • • • • •
SCX:::S file editing activity.
sa:::s file.
sa:::s file.
sa:::s file.
sa:::s file.
sa:::s file.
~file.
sa:::s file.
sa:::s files.
sa:::s files.
sccsdiff: compare two versions of an SCX:::S file.
sccsfile: format of SCCS file. • • • • • • • • •
scheduler and move requests. • • • • • • • •
scnhdr: section header for a common obpc:t file.
screen handling and optimization package. •••
screen-oriented (visual) display editor based on
script for the init process. • • • • • •
scripts. brc, bcheckrc, • • • • • • •
sdb: symbolic debugger. • • • • • • • •
sdiff: side-by-side difference program.
search a file for a pattern. • ••••••
search and print process accounting file(s).
search and update.

col(l)
reversi(6)
fseek.(3S)
creat(2)
rjestat(lC)
rjestat(lC)
rm(l)
mail(l)
rmdel(l)
rm(l)
chroot(2)
chroot(lM)
exp(3M)
sqrt(3F)
gdev(lG)
ldfcn(4)
regexp(S)
tocClG)
m4ooC7)
sh(l)
bool(3F)
niceCl)
nohup(l)
runacct(lM)
runacct(lM)
acctsh(lM)
sar(lM)
sar(lM)
sa4001l22(7)
sa400.fiwd(7)
sa800112l(7)
sa8001122(7)
sact(l)
sar(lM)
sadp(l)
sag(lG)
sar(l)
brk(2)
scanf(3S)
bfs(l)
awk(l)
scc(l)
cdc(l)
comb(!)
delta(!)

•• sact(l)
get(l)
prs(l)
rmdel(l)
sccsdiff(l)
sccsfile(4)
unget(l)
val(l)
admin(l)
what(l)
sccsdiff(l)
sccsfile(4)

• • lpsched(lM)
scnhdJ(4)
cunes(3X)
vi(l)

• • inittab(4)
•• brcClM)

• sdb(l)
• sdiff(l)

grep(l)
acctcom(l)

• lsearch(3C)
search. ••••• • • • • • bsean:h(3C)
search t.ables.
search trees. • • •
secret word game.
section header for a common ob)ct file. •••••
section header of a common ob)ct file.
section of a common ob)ct file. • • • • •

• • hsearch(3C)
•• tsearch(3C)
•• jott.o(6)

scnhdJ(4)
• ldshread(3X)

• • ldlseek.(3X)

Permuted Index

ldrseek, ldnrseek: seek to relocation entries of a section of a common objlct file.
ldsseek, ldnsseek: seek to an indexed/named section of a common objlct file.

size: print section sizes of common objlct files.
sed: stream editor. • • • • • . • •

/lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48: generate uniformly distributed/
objlct file. ldsseek, ldnsseek: seek to an indexed/named section of a common •

common objxt file. ldlseek, ldn!seek: seek to line number entries of a section of a
objlct file. ldrseek, ldnrseek: seek to relocation entries of a section of a common

file. ldohseek: seek to the optional file header of a common objxt
ldtbseek: seek to the symbol table of a common objlct file.

shmget: get shared memory segment. • • • • • • • • . • • • • • • • •
brk, sbrk: change data segment space allocation. • • • • • • • • • • •

comm: select or rejlct lines common to two sorted files.
greek: select terminal filter. • • • • • •

cut: cut out selected fields of each line of a file.
dump: dump selected parts of an objxt file .••

semctl: semaphore control operations. • •
semop: semaphore operations. • • • • •

ipcrm: remove a message queue, semaphore set or shared memory id.
semget: get set of semaphores. • • • • • . • • • . •

semctl: semaphore control operations.
semget: get set of semaphores. • • • •
semop: semaphore operations. • • • •

kill: send a signal to a process or a group of processes.
mail, rmail: send mail to users or read mail. • . • • •

lp, cancel: send/cancel requests to an LP line printer.
m400: MVME400 Dual RS-232C Serial Port Module. • • • • • • • . • • •

setbuf, setvbuf: assign buffering to a stream.
setuid, setgid: set user and group IDs. •

getgrent, getgrgid, getgrnam, setgrent, endgrent: obtain.
setjnp, longjmp: non-local goto.
setmnt: establish mount table. •
setpgrp: set process group ID. •

entry. getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent: get password file
profile: setting up an environment at login time. • • •

gettydefs: speed and terminal settings used by getty. • • • • • • • • • • •
setuid, setgid: set user and group IDs.

entry. getutent, getutid, getutline, pututline, setutent, endutent, utmpname: access utmp file
setbuf, setvbuf: assign buffering to a stream.

independent fashion_ sputl, sgetl: access long integer data in a machine ••
programming language. sh, rsh: shell, the standard/restricted command

shmctl: shared memory control operations.
ipcrm: remove a message queue, semaphore set or shared memory id. • ••••••

shmat, shmdt: shared memory operations.
shmget: get shared memory segment. • •••

system: issue a shell command from FORTRAN
system: issue a shell command. • •••••••

shl: shell layer manager. • • • • • •
prtacct, runacct, shutacct, startup, turnacct: shell procedures for accounting. /prctmp, prdaily,

brc, bcheckrc, re, powerfail: system initialization shell scripts. • • • • • • • • • • • • • • • • • •
language. sh, rsh: shell, the standard/restricted command programming

shl: shell layer manager. • • • • • • • •
shmat, shmdt: shared memory operations.
shmctl: shared memory control operations.

shmat, shmdt: shared memory operations. • • • •
shmget: get shared memory segment.

/nulladm, prctmp, prdaily, prtacct, runacct, shutacct, startup, turnacct: shell procedures for/
shutdown: terminate all processing. • •••

sdiff: side-by-side difference program. • • • • • •
intrinsic function. sign, isign, dsign: FORTRAN transfer-of-sign

login: sign on. • • • •
pause: suspend process until signal.

signal: specify what to do upon receipt of a signal.
specify FORTRAN action on receipt of a system signal. signal:

system signal. signal: specify FORTRAN action on receipt of a
signal. signal: specify what to do upon receipt of a

kill: send a signal to a process or a group of pr~
ssignal, gsignal: software signals. • • • • • • • • • • • •

lex: generate programs for simple lexical tasks. ••••••
rand, srand: simple random-number generator.

trigonometric functions. sin, cos, tan, asin, acos, atan, atan2:
sin, dsin, csin: FORTRAN sine intrinsic function.

sin, dsin, csin: FORTRAN sine intrinsic function. • ••••••
sinh, dsinh: FORTRAN hyperbolic sine intrinsic function. • ••••••

sinh, cosh, tanh: hyperbolic functions.

xxx

ldrseek(3X)
ldsseek(3X)
size(l)
sed(l)
drand48(3C)
ldsseek(3X)
ldlseek(3X)
ldrseek(3X)
ldohseek(3X)
ldtbseek(3X)
shmget(2)
brk(2)
comm(l)
greek(l)
cut(l)
dump(l)
semct1(2)
semop(2)
ipcrm(l)
semget(2)
semct1(2)
semget(2)
semop(2)
ki11(2)
mail(l)
lp(l)
m400(7)
setbuf(3S)
setuid(2)
getgrent(3C)
setjmp(3C)
setmnt(lM)
setpgrp(2)
getpwent(3C)
profile(4)
gettydefs(4)
setuid(2)
getut(3C)
setbuf(3S)
sput1(3X)
sh(l)
shmct1(2)
ipcrm(l)
shmop(2)
shmget(2)
system(3F)
system(3S)
shl(l)
acctsh(lM)
brc(lM)
sh(l)
shl(l)
shmop(2)
shmctl(2)
shmop(2)
shmget(2)
acctsh(lM)
shutdown(IM)

• sdiff(l)
sign(3F)
login(l)
pa.ust(2)
signa1(2)
signa1(3F)
signal(3F)

• signa1(2)
kill(2)
ssigna1(3C)
1ex(l)
rand(3C)
trig{3M)

• sin(3F)
• sin(3F)

sinh(3F)
sinh(3M)

Permuted Index

function. sinh, dsinh: FORTRAN hyperbolic sine intrinsic
size: print section sizes of common objxt files.

size: print section sizes of common object files. • • • • • •
sky. obtain ephemerides. • • • • • • •
sleep: suspend execution for an interval.
sleep: suspend execution for interval.

ttyslot: find the slot in the utmp file of the current user.
spline: interpolate smooth curve. •.••••••••.•

FORTRAN type/ int, ifix, idint, real, fl.oat, sngl, dble, cmplx, dcmplx, ichar, char: explicit
sno: SN:>BOL interpreter.

sno: SN:>BOL interpreter. .
pg: file perusal filter for soft-copy terminals.

ssignal, gsignal: software signals. . • •
sort: sort and/or merge files.

qsort: quicker sort. • • • • • . • •
sort: sort and/or merge files.

tsort: topological sort. • • . • •
comm: select or rejxt lines common to two sorted files. • • • • • • •

brk, sbrk: change data segment space allocation. • • • • •
ct: spawn getty to a remote terminal.

fspec: format specification in text files.
signal. signal: specify FORTRAN action on receipt of a system

signal: specify what to do upon receipt of a signal.
getty: set terminal type, modes, speed, and line discipline. • • • • • • • • • •

gettydefs: speed and terminal settings used by getty.
errors. spell, hashmake, spellin, hashcheck.: find spelling

spell, hashmake, spellin, hashcheck: find spelling errors.
spell, hashmake, spellin, hash check: find spelling errors. • ••••••

spline: interpolate smooth curve.
split: split a file into pieces.

csplit: context split. • • • . • • . • • •
fsplit: split f77, ratfor, or efl files.

split: split a file into pieces.
uuclean: uucp spool directory clean-up.

lpadmin: confignre the LP spooling system. . ••.•
printf, fprintf, sprintf: print formatted output.

independent fashion.. sputl, sgetl: access long int~er data in a machine
function. sqrt, dsqrt, csqrt: FORTRAN square root intrinsic

functions. exp, log, log IO, pow, sqrt: exponential, logarithm, power, square root
loglO, pow, sqrt: exponential, logarithm, power, square root functions. exp, log, ••••

sqrt, dsqrt, csqrt: FORTRAN square root intrinsic function .••••••••
irand, srand, rand: random number generator.
rand, srand: simple random-number generator. • ••

/erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48: generate uniformly/
scanf, fscanf, sscanf: convert formatted input ••

ssignal, gsignal: software signals.
sec: C compiler for stand-alone programs. • . • • •

stdio: standard buffered input/output package.
stdipc: standard interprocess communication package.

sh, rsh: shell, the standard/restricted command programming language.
requests. lpsched, lpshut, lpmove: start/stop the LP request scheduler and move •••

/prctmp, prdaily, prtacct, runacct, shutacct, startup, turnacct: shell procedures for accounting .•
stat: data returned by stat system call. • • • •
stat, fstat: get file status. • • • • • • • • • •

commands. stat: statistical network useful with graphical
stat: data returned by stat system call. • • . • • • • • • • • • • •

stat: statistical network useful with graphical commands.
ff: list filenames and statistics for a file system.
ustat: get file system r..atistics.

rjestat: RJE status report and interactive status console. • •
lpstat: print LP status information.

ferror, feof, clearerr, fileno: stream status inquiries. •
uustat: uucp status inquiry and jib control.

ipcs: report inter-process communication facilities status. • • • • • • • • • • •
ps: report process status. • • • • • • . • • • •

rjestat: RJE status report and interactive status console.
stat, fstat: get file status. • • . • • • . • • • • • • • • •

stdio: standard buffered input/output package.
package. stdipc: standard interprocess communication

stime: set time. • • • • • • • • • • • • • •
wait: wait for child process to stop or terminate. •.•••••••••••

strlen, strchr, strrchr, strpbrk, strspn, strcspn,/ strcat, strncat, strcmp, stmcmp, strcpy, stmcpy,
/strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok.:/

strrchr, strpbrk, strspn,/ strcat, strncat, strcmp, strncmp, strcpy, stmcpy, strlen, strchr,
strspn, strcspn,/ strcat, stmcat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk,

xxxi

sinh(3F)
size(l)
size(l)
sky(6)
sleep(!)
sleep(3C)
ttyslot(3C)
splineClG)
ftype(3F)
sno(l)
sno(l)
pg(l)
ssignal(3C)
sort(l)
qsort(3C)
sort(l)
tsort(l)
comm(l)
brk(2)
ct(lC)
fspec(4)
signa1(3F)
signa1(2)
getty(lM)
gettydefs(4)
spell(l)
spell(l)
spell(l)
splineClG)
split(!)
csplit(l)
fsplit(l)
split(!)
uuclean(lM)
lpadmin(lM)
printf(3S)
sput1(3X)
sqrt(3F)
exp(3M)
exp(3M)
sqrt(3F)
rand(3F)
rand(3C)
drand48(3C)
scanf(3S)
ssigna1(3C)
scc(l)
stdio(3S)
stdipc(3C)
sh(l)
lpsched(lM)
acctsh(lM)
stat(S)
stat(2)
stat(lG)
statCS)
stat(lG)
ff(lM)
Ustat(2)
rjestat(lC)
lpstat(l)
ferror(3S)
uustat(lC)
ipcs(l)
ps(l)
rjestat(lC)
stat(2)
stdio(3S)
stdipc(3C)
stimeC2)
wait(2)
string(3C)
string(3C)
string(3C)
string(3C)

Permuted Index

strncpy, strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok: string operations. /strcpy,
sed: stream editor.

fclose, ffiush: close or flush a stream.
fopen, freopen, fdopen: open a

rewind, ftell: reposition a file pointer in a
getchar, fgetc, getw: get character or word from

gets, fgets: get a string from a
putchar, fputc, putw: put character or word on a

puts, fputs: put a string on a
setbuf, setvbuf: assign buffering to a

stream.
stream.
stream.
stream.
stream.
stream.
stream.

fseek,
getc,

putc,

£error, foof, clearerr, fileno: stream status inquiries.
ungetc: push character back into input stream. . ••...•

convert between long integer and base-64 ASCII string. a641, 164a:
lge, lgt, lle, llt: string comparision intrinsic functions.

gmtime, asctime, tzset: convert date and time to string. ctime, local time,
ecvt, fcvt, gcvt: convert floating-point number to string. • ••.•••••••

gps: graphical primitive string, format of graphical files.
gets, fgets: get a string from a stream. • • • • •

len: return length of FORTRAN string. • • • • • • • • • • •
puts, fputs: put a string on a stream. • •••••

strchr, strrchr, strpbrk, strspn, strcspn, strtok: string operations. /strcpy, strncpy, strlen,
strtod, atof: convert string to double-precision number. • • • •
atof: convert ASCil string to floating-point number. • • • • •

strtol, atol, atoi: convert string to integer .••••••••••••
from an obj:ict file. strip: strip symbol and line number information

obj:lct file. strip: strip symbol and line number information from an
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strcspn,/ •
strchr, strrchr, strpbrk, strspn, strcspn,/ strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen,

strpbrk, strspn, strcspn,/ strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, •
strcspn,/ strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk, strspn,

strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok: string/ /strcmp,
/strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok: string/
/strcpy, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok: string operations.

number. strtod, atof: convert string to double-precision
strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok: string operations. /strcpy, strncpy,

strtol, atol, atoi: convert string to integer.
fuser: identify processes using a file or file structure. • • • • • • • • • • • • •

stty: set the options for a terminal.
su: become superuser or another user.

intro: introduction to subroutines and libraries. •
plot: graphics interface subroutines. • • • • • • •

paste: merge same lines of several files or subsequent lines of one file.
index: return location of FORTRAN substring. • • • • . • • •

vlOgraph - VME/10 graphics subsystem interface.
sum: print checksum and block count of a file.

du: summarize disk usage. • • • • • • • • • • •
acctcms: command summary from per-process accounting records.

sync: update the super block. • • • • . • . • • • • • • • •
sync: update super-block. • • • • • • • • • • • • • • • •

su: become superuser or another user. • • • • • • • • •
ud: general driver for all disk units support~ by the M68KVM21 disk controller.

vm21: default general driver for all disk units supported by the M68KVM21 disk controller.
vm22: default general driver for all disk units supported by the M68KVM22 disk controller.

sleep: suspend execution for an interval.
sleep: suspend execution for interval.
pause: suspend process until signal.

swab: swap bytes.
swab: swap bytes. ••• • •••••

sxt: pseud<Hievice driver. • •
file. strip: strip symbol and line number information from an obj:ict

ldgetname: retrieve symbol name for obj.let file. • • • • • • •
ldtbindex: compute the index of a symbol table entry of a common obj.let file.

ldtbread: read an indexed symbol table entry of a common obj.let file.
syms: common obj.let file symbol table format. • • • • • • • • • •

ldtbseek.: seek to the symbol table of a common objlct file.
sdb: symbolic deoogger. • • • • • • • • • • •

syms: common obj.let file symbol table format.
sync: update super-block.. • • • • • • • • •
sync: update the super block. • ••••••
sysdef: system definition. • • • • • • • •

perror, errno, sysJ)rrlist, sys....llerr: system error messages.
perror, errno, sys_urlist, sys....llerr: system error messages. •••

uuto, unpick: public UNX System-to-UNIX.System file copy. • •
ldtbindex: compute the index of a symbol table entry of a common objlct file.

ldtbread: read an indextrl symbol table entry of a common objlct file.

xxxii

string(3C)
strl(I)
fclosr(3S)

• fopen(3S)
• fseek(3S)
• getc(3S)

gets(3S)
• putc(3S)

puts(3S)
setbuf(3S)
ferror(3S)
ungttc(3S)
a641(3C)
strcmp(3F)
ctime(3C)
ecvt(3C)
gp:>(4)
gets(3S)
len(3F)
puts(3S)
string(3C)
strtod(3C)
atof(3C)
strtol(3C)
strip(l)
strip(I)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
strtod(3C)
string(3C)
strtol(3C)
fuser(IM)
stty{l)
su(l)
intra())
plot(3X)
paste(!)
inde:z(3F)
vl~ph(7)
sum(I)
du(I)
acctcms(l.M)
sync(I)
sync(2)
su(l)
ud(7)
vm21(7)

• vm22(7)
sleep(!)

• sleep(3C)
• pausc(2)

swab(3C)
swab(3C)

• sxt(7)
strip(I)
ldgetnamt(3X)
ldtbinde:z(3X)
ldtbnlad(3Xl

• syim(4)
ldtblrS.(3X)
sdb(I)
syms(4)
sync(2)
sym:(l)
sysidef{l.M)
perror(3C)
perror(3C)
uuw(lC)
ldtbinde:z(3X)
ldtbmui(3Xl

syms: common objlct file symbol
master: master device information

mnttab: mounted file system
ldtbseek: seek to the symbol

toe: graphical
setmnt: establish mount

hsearch, hcreate, hdestroy: manage hash search
tabs: set

functions. sin, cos,

tan, dtan: FORTRAN
tanh, dtanh: FORTRAN hyperbolic

function.
sinh, cosh,

tar:
free: recover files from a backup

filesave,

lex: generate programs for simple lexical
hpd, erase, hardcopy, tekset,

tsearch, tfi.nd,

hpd, erase, hardcopy,
4014: paginator for the

init,
tmpnam,

tmpfile: create a
tmpnam, tempnam: create a name for a

term: format of compiled

4014: paginator for the Tektronix 4014
450: handle special functions of the DASI 450

term info:
ct: spawn getty to a remote

ctermid: generate filename for
greek: select

termio: general
tty: controlling

dial: establish an out-Eoing
gettydefs: speed and

stty: set the options for a
tabs: set tabs on a

ttyname, isatty: find name of a
getty: set

300s: handle special functions of DASI 300 and 300s
handle special functions of HP 2640 and 2621-series

tty: get the
pg: file perusal filter for soft-copy

term: conventional names for
kill:

shutdown:
abort:

exit, ~xit:
errstop:

wait: wait for child process to stop or
tic:

tput: query

quiz:
ed, red:

ex:
edit:

newform: change the format of a
fspec: format specification in

plock: lock process,
tsearch,

ttt, cubic:
activity. timex:

time:

Permuted Index

table format. syms(4)
table. • • • • master.decC4)
table. • • • • mnttabC4)
table of a common objlct file. ldtbseek(3X)
table of contents routines. toc(lG)
table. • • • • • • setmnt(1M.)
tables. • • • • • • • • hsearch(3C)
tabs on a terminal. • • • tabsCl)
tabs: set tabs on a terminal. tabs(l)
tail: deliver the last part of a file. tail(l)
tan, asin, acos, atan, atan2: trigonometric trig(3M)
tan, dtan: FORTRAN tangent intrinsic function. tan(3F)
tangent intrinsic function. • • • • • • • • • • tan(3F)
tangent intrinsic function. • • • • • • • • • • tanh(3F)
tanh, dtanh: FORTRAN hyperbolic tangent intrinsic tanh(3F)
tanh: hyperbolic functions. • • • • • • • • • • • sinh(3M)
tape file archiver. • • • • • • • • • • • • • • • tarCO
tape. • frec(lM)
tapesave: daily/weekly SYSfEM V/68 file system backup. filesave(lM)
tar: tape file archiver. • • • • • • • • tarCl)
tasks. • • • • • • • • • • • • • • • • • lex(l)
td: graphical device routines and filters. gdev(lG)
tdelete, twalk: manage binary search trees. tsearch(3C)
tee: pipe fitting. • • • • • • • • • • • • tee(l)
tekset, td: graphical device routines and filters. gdev(lG)
Tektronix 4014 terminal. • • • • • • • • • 4014(1)
telinit: process control initialization. • • • • init(lM)
tempnam: create a name for a temporary file. tmpnam(3S)
temporary file. • • . • • • • • • • • • tmpfileC3S)
temporary file. • • . • • • • • • • • • tmpnam(3S)
term: conventional names for terminals. term(S)
term file. • • • • • • • • • • • • term(4)
term: format of compiled term file. term(4)
terminal. • • • • • • • • • 4014(1)
terminal. • • • • • • • • • 450(1)
terminal capability data base. terminfo(4)
terminal. ct(lC)
terminal. ctermid(3S)
terminal filter. gre.ek.(l)
terminal interface. termio(7)
terminal interface. tty(7)
terminal line connection. dial(3C)
terminal settings used by getty. gettydefs(4)
terminal. stty(l)
terminal. • • • • • • • • • • tabsCl)
terminal. • • • • • • • • • • ttynameC3C)
terminal type, modes, speed, and line discipline. getty(lM)
terminals. 300, 3o0(1)
terminals. hp: • hp(l)
terminal's name. tty(l)
terminals. • • • pg(l)
terminals. • • • term(S)
terminate a process. kill(l)
terminate all processing. shutdown(lM>
terminate FORTRAN program. abort(3F)
terminate process. • • • • • • exit(2)
terminate the errcr-logging daemcn. errstop(lM)
terminate. • • • • wait(2)
terminfo compiler. • • • • • • • • tic(lM)
terminfo database. . • • • • • • • tput(l)
terminfo: terminal capability data base. terminfo(4)
termio: general terminal interface. • • termioC7)
test: condition evaluation oommand. test(l)
test your knowledge. • • • • • • • quiz(6)
text editor. • • • • • • • • • • • ed(l)
text editor. • • • • • • • • • • • • • ex(l)
text editor (variant of ex for casual users). edit(l)
text file. • • • • • • • newform(l)
text files. • • • • • • • • • • • • • • • fspec(4)
text, or data in memory. • • • • • • • • plock(l)
tfi.nd, tdelete, twalk: manage binary search trees. tsearch(3C)
tic: terminfo compiler. • • • • • • • • • • • • tic(lM)
tic-tac-toe. • • • • • • • • • • • • • • • • • ttt(6)
time a command; report pnx:e.:w data and system timeld'.1)
time a command. • • • • • • • • • • • • • • time(!)

Permuted I nde:x

mclock: return FORI'RAN time accounting.
at, batch: execute commands at a later time. • • • • •

dcopy: copy file systems for optimal access time. • • • • •
time: get time.

profil: e:xecution time profile. • •
profile: setting up an environment at login time. • • • • •

stime: set time. • • • ••
time: time a command.

time: get time. • • • • • • • •
local time, gmtime, asctime, tzset: convert date and time to string. ctime,

clock: report CPU time used. • • • • • •
times: get process and child process times.

touch: update access and modification times of a file.
times: get process and child p~ -times. • • • • • • • • • • • • • • • • •

utime: set file access and modification times. • • • • • • • • • • • • • • • • •
system activity. timex: time a command; report process data and

tmpfile: create a temporary file. • ••••••
file. tmpnam, tempnam: create a name for a temporary

toupper, tolower, ..J;Oupper, _tolower, toascii: translate characters. • • • • • •
toe: graphical table of contents routines.

popen, pclose: initiate pipe to/from a process. • • • • • • • • • •
toupper, tolower, _toupper, _tolower, toascii: translate characters.

characters. toupper, tolower, _toupper, _tolower, toascii: translate
tsort: topological sort. • • • • • • • • • • • • •

acctmerg: merge or add total accounting files. •••••••••••
file. touch: update aCCESS and modification times of a

toupper, tolower, _toupper, _tolower, toascii: translate characters.
translate characters. toupper, tolower, ..J;Oupper, _tolower, toascii:

tplot: graphics filters. • • • • •

ptrace:p~

sign, isign, dsign: FORI'RAN
toupper, tolower, _toupper, _tolower, toascii:

tr:
ftw: walk a file

tfind, tdelete, twalk: manage binary search

sin, cos, tan, asin, acos, atan, atan2:
trenter: enter a

pdpll, u3b, vaX, m68k: provide
true, false: provide

search trees.

current user.
prdaily, prtacct, runacct, shutacct, startup,

tsearch, tfind, tdelete,
dble, cmplx, dcmplx, ichar, char: explicit FORI'RAN

file: determine file
vax, m68k: provide truth value about your processor

getty: set terminal

types: primitive system data
ctime, localtime, gmtime, asctime,

processor type. pdpll,
the M68KVM21 disk controller

getpw: get name from

mount,

unget:

/jrand48, srand48, sem48, lcong48: generate

mktemp: make a

tput: query terminfo database.
tr: translate characters. • •••
trace. • • • • • • • • • •••
transfer-of-sign intrinsic function.
translate characters.
translate characters.
tree. •••••••
trees. tsearch, • • •
trenter: enter a trouble report.
trigonometric functions.
trouble report. • • • • • • •
true, false: provide truth values.
truth value about your processor type.
truth values. • • • • • • • • • • •
tsearch, tfind, tdelete, twalk: manage binary
tsort: topological sort. • • • • • •
ttt, cubic: tic-tac-toe. • • • • • • • • •
tty: controlling terminal interface.
tty: get the terminal's name. • • • • •
ttyname, isatty: find name of a terminal.
ttyslot: find the slot in the utmp file of the
turnacct: shell procedures for accounting. /prctmp,
twalk: manage binary search trees.
type conversion. /Hix, idint, real, float, sngl,
type •••••• -••••••••••
type. pdpll, u3b, • • • • • • • • •
type, modes, speed, and line discipline.
types: primitive system data types.
types. •••••••••••••••
t?llet: convert date and time to string.
u3b, vax, m68k: provide truth value about your
ud: general driver for all disk units supported by
um. _,.
ulimit: get and set user limits.
umask: set and get file creation mask.
uinask: set file-creation mode mask.
umount: mount and dismount file system.
umount: unmount a file system ••••••
uname: get name of current operating system.
uname: print name of current UNX System. • •
undo a previous get of an SCCS file. • ••••
unget: undo a previous get of an S(XjS file. • •
ungetc: push character back into input stream.
uniformly distributed pseudo-random numbers. •
uniq: report repeated lines in a file.
unique filename •••••••••••••••

xxxiv

mclock(3F)
• at(l)

•• dcopy(lM)
timeC2)
profil(2)

• profileC4)
stime(2)
time(l)
time(2)

•• ctime(3C)
• clock(3C)
• times(2)

touch(l)
times(2)
utime(2)

• timex(l)
tmpfile(3S)
tmpnam(3S)
conv(3C)
toc(lG)

• • popen(3S)
conv(3C)
conv(3C)
tsortCl)
acctmerg(lM)
touch(l)
conv(3C)
conv(3C)
tplot(lG)

• • tput(l)
trCl)
ptrace(2)
sign(3F)
conv(3C)
trCl)
ftw(3C)
tsearch(3C)
trenterClM)
trig(3M)
trenterCIM)
true(l)
machid(l)

• • true(!)
tsearch(3C)
tsort(l)

• • ttt(6)
• • tty(7)

tty(l)
ttyname(3C)

• • ttyslot(3C)
• • acctsh(lM)
•• tsearch(3C)

ftype(3F)
•• file(l)

• •• machid(l)
• • getty(lM)

types(S)
types(S)

• •• ctime(3C)
• •• machid(l)

• ud(7)
• • getpw(3C)

ulimit(2)
umask(2)

• umask(l)
• mount(lM)

•• umount(2)
• uname(2)

• • uname(l)
• unget(l)

unget(l)
• ungetc(3S)

drand48(3C)
uniq(l)
mktemp(3C)

ud: general driver for all disk
vm21: default general driver for all disk
vm22: default general driver for all disk
cml6: 16.Mb Cartridge Mxlule Drive for
cm80: 80.Mb Cartridge Mxlule Drive for

fl8: 8-inch Floppy Disk Drive for
lrk.25: 25.Mb LARK Mxlule Drive for

uux:
link.,

link, unlink.: exercise link and
umount:

pack., peat,
touch:

mak.e: maintain,
lsearch, lfind: linear search and

sync:
sync:

du: summarize disk.
stat: statistical network.

id: print
setuid, setgid: set

crontab:
cuserid: get character login name of the

group/ getuid, geteuid, getgid, geteigid: get real
environ:

diskusg: generate disk. accounting data by
ulimit: get and set

logname: return login name of
geteuid, getgid, getegid: get real user, effective

su: become superuser or another
find the slot in the utmp file of the current

write: write to another
edit: text editor (variant of ex for casual

mail, rmail: send mail to
wall: write to all

fuser: identify processes

gutil: graphical

utmp,wtmp:
pututline, setutent, endutent, utmpname: access

ttyslot: find the slot in the

getutid, getutline, pututline, setutent, endutent,

uusub: monitor
uuclean:

uustat:

uucp,
uucp, uulog,
copy. uuto,

file copy.

val:
pdpl 1, u3b, vax, m68k: provide truth

abs: return integer absolute
abs, iabs, dabs, cabs, zabs: FORTRAN absolute

getenv: return
fmod, falB: floor, ceiling, remainder, absolute

putenv: change or add

true, false: provide truth
values: machine-dependent

vfprintf, vsprintf: print formatted output of a

varargs: handle
getenv: return FORTRAN environment

edit: text editor

Permuted Index

units: conversion program. • • • • • • • • • • • •
units supported by the M68KVM2 l disk controller.
units stlpported by the .M68KVM2 l disk controller.
units supported by the M68KVM22 disk controller.
Universal Disk Driver.

units(l)
ud(7)
vm21(7)

• vm22(7)
cml6(7)
cm80(7)
fl8(7)
lrk.25(7)
uux(lC)

Universal Disk Driver. • ••••••••••
Universal Disk Driver. • ••••••••••
Universal Disk Driver. • • • • • • • • • • •
UNX-to-UNXsystem command execution.
unlink.: exercise link and unlink. system calls.
unlink.: remove directory entry. • • • •

•• link.(lM)

unlink. system calls. • • • • • • • • • • •
unmount a file system. • •••••••••
unpack.: compre'ss and expand files. •••••
update access and modification times of a file.
update, and regenerate groups of programs.
update. •••••••
update super-block.. • •••••
update the super block.. • • • • •
usage. •••••••••••••
useful with graphical commands.
user and group IDs and names.
user and group IDs. • • • • • •
user crontab file •••••••••
user. • ••••••••••••
user, effective user, real group, and etrective
user environment.
user ID. • • • • • • • • • • • • • • • • • •
user limits. • • • • • • • • • • • • • • •
user. • ••••••••••••••••••
user, real group, and effective group IDs. getuid,
user. • •••
user. ttyslot:
user. • •••
users).
users or read mail.
users. ••••••
using a file or file structure. •
ustat: get file system statistics.
utilities. • • • • • • • • • •
utime: set file access and modification times.
utmp and wtmp entry formats. ••••••
utmp file entry. getutent, getutid, getutline,
utmp file of the current user. • •••••••
utmp, wtmp: utmp and wtmp entry formats.
utmpname: access utmp file entry. getutent,
uuclean: uucp spool directory clean-up.
uucp network.. • • • • • • • • • • • •
uucp spool directory clean-up ••••••
uucp status inquiry and j.'>b control. •••
uucp, uulog, uuname: unix to unix copy.
uulog, uuname: unix to unix copy. • • •
uuname: unix to unix copy. • • • • • •
uupick.: public UNXSystem-to-UNXSystem file
uustat: uucp status inquiry and j.'>b control.
uusub: monitor uucp network.. • • • • • • • •
uuto, uupick: public UNXSystem-to-UNX~
uux: UNX-to-UNXsystem command execution. •
vlOgraph - VME/10 graphics subsystem interface.
val: validate ~ file. • • • • •
validate ~file. • • • • • • •
value about your processor type.
value. • ••••••••••
value. •••••••••••
value for environment name.
value functions. floor, ceil, •
value to environment. • • •
values: machine-dependent values.
values. • • • • • • • • • • • •
values. ••••••••••••
varargs argument list. vprintf, •
varargs: handle variable argument list.
variable argument list. • • • •
variable. • •••••••••
(variant of ex for casual users).

xxxv

• unlink(2)
link.(lM)
umount(2)
pack.(l)
touch(l)
mak.c(l)
lsean:h(3C)
sync(2)

• sync(l)
du(l)
stat(lG)
id(l)

• setuid(2)
crontab(l)
cuserid(3S)

• getuid(2)
environ(5)

• diskusg(lM)
ulimit(2)
lognameC3X>
getuid(2)
Su(l)
ttyslot(3C)
writeCl)
edit(l)
mail(l)
wall(lM)
fuser(lM)
ustat(2)
gutil(lG)
utimeC2)
utmp(4)
getut(3C)
ttyslot(3C)
utmp(4)

• getut(3C)
• uuclean(lMl
• uusub(lM)
• uuclean(lMl

uustat(lC)
uucp(lC)

• uucp(lC)
uucp(lC)
uuto(lC)
uustat(lC)
uusub(lM)
uuto(lC)
uux(IC)
v10graph(7)
val(l)

• val(l)
machid(l)
abs(3C)

• abs(3F)
getenv(3C)
fioor(3M)
putenv(3C)

• values(5)
• truc(l)
• values(5)

vprintf(3S)
varargs(5)
varargs(5)
getenv(3F)

• edit(l)

Permuted Index

type. pdpl 1, u3b, vax, m68k: provide truth value about your processor
fscv: convert files between M68000 and V AX-11/780 proefSSOrs.

vc: version control. • • •
getopt: get option letter from argument vector. • •••••••

assert: verify program assertion.
vc: version control.

get: get a version of an SCCS file. •
sccsdiff: compare two versions of an SCCS file.

varargs argument list. vprintf, vfprintf, vsprintf: print formatted output of a
on ex. vi: screen-oriented (visual) display editor based

vi: screen-oriented (visual) display editor based on ex. •••••
supported by the M68KVM21 disk controller. vm21: default general driver for all disk units

cmd16: 16Mb Cartridge .Mxiule Drive for VM21 Driver and VM22 Driver.
cmd80: 80Mb Cartridge .Mxiule Drive for VM21 Driver and VM22 Driver.

lark2:5: :50Mb LARK .Mxiule Drive for VM21 Driver and VM22 Driver.
lark8: 16Mb LARK .Mxiule Drive for VM21 Driver and VM22 Driver.

sa800fl21: 8-inch Floppy Disk Drive for VM21 Driver. • ••••••••
supported by the M68KVM22 disk controller. vm22: default general driver for all disk units

vm22fmt: format disks on the VM22 disk controller.
16:Mb Cartridge .Mxiule Drive for VM21 Driver and VM22 Driver. cmd16:
80:Mb Cartridge .Mxiule Drive for VM21 Driver and VM22 Driver. cmd80:

lark2:5: :50:Mb LARK .Mxiule Drive for VM21 Driver and VM22 Driver.
lark8: 16:Mb LARK .Mxiule Drive for VM21 Driver and VM22 Driver.

sa400fl22: :5114-inch Floppy Disk Drive for VM22 Driver.
sa800fi22: 8-inch Floppy Disk Drive for VM22 Driver.

vm22fmt: format disks on the VM22 disk controller.
bootstrap operating procedure for system restart on VME/10. bo.vme: •••••••••

vlOgraph - VME/10 graphics subsystem interface. • • •
wffmt: format floppies for the ~ VME/10 processor. • • • • • • • • • • • •

checking. volcopy, labelit: copy file systems with label
file system: format of system volume. • • • • • • • • • • • • • • • • •

of a varargs argument list. vprintf, vfprintf, vsprintf: print formatted output
argument list. vprintf, vfprintf, vsprintf: print formatted output of a varargs ••

wait: await completion of process. • • • • • • •
wait: wait for child process to stop or terminate. • ••

wait: wait for child process to stop or terminate.
ftw: walk a file tree. •••

wall: write to all users. • • • • • •
we: word count. • • • • • • • • •
wdl:S: 1:5Mb Winchemer Disk Drive.
wd40: 40Mb Winchemer Disk Drive.
wffmt: format floppies for the VME/10 processor.
what: identify SCCS files. • • • • •

signal: specify what to do upon receipt of a signal. •
crash: what to do when the system crashes.

whodo: who is doing what.
who: who is on the system.

who: who is on the system.
whodo: who is doing what.

wd1:5: l:S:Mb Winchester Disk Drive ••
wd40: 40Mb Winchester Disk Drive. • •

sa400flwd: :5114-inch Floppy Disk Drive for the Winchester Disk Driver.
cd: change working directory .•• ,.

chdir: change working directory. • • •
getcwd: get pathname of current work..ing directory. • • •

pwd: working directory name.
write: write on a file.

putpwent: write password file entry.
wall: write to all users.

write: write to another user.
write: write on a file.
write: write to another user.

open: open for reading or writing. • • • • • • • • •
utmp, wtmp: utmp and wunp entry formats.

utmp, wtmp: utmp and wtmp entry formats.
fwtmp, wtmpfix: manipulate connect accounting records.

wump: the game of hunt-the-wumpus. •••••
command. xargs: construct argument list(s) and execute • •

functions. and, or, xor, not, !shift, rshift: FORTRAN bitwise Boolean
p, jl, ji, yO, y l, yn: Bessel functions.

p, jl, ji, yo, yl, yn: Bessel functions. •••••
yacc: yet another compiler-compiler.

J>, jl, jn, yO, yl, yn: Bessel functions. •••••
abs, iabs, dabs, cabs, z:abs: FORTRAN absolute value.

xxxvi

machid(l)
fscv(lM)
vc(l)
getopt(3C)
assert(3X)
vcCl)
get(l)
sccsdiff(1)
vprintfC3S)
vi(l)
vi(l)
vm21(7)
cmd16(7)
cmd80(7)
lark25(7)
lark8(7)
sa8001!21(7)
vm22(7)
vm22fmt(IM)
cmdl6(7)
cmd80(7)
lark25C7)
lark8(7)
sa400fl22(7)
sa8001!22(7)
vm22fmt(IM)
bo.vme(8)
vlOgraph(7)
wffmt(lM)
volcopy(lM)
fs(4)
vprintf(3S)
vprintf(3S)
wait(!)
wait(2)
waitC2)
ftw(3C)
wall(IM)
wc(l)
wdl:5(7)
wd40(7)
wffmt(lM)
what(l)
signa1(2)
crasb.macs(8)
whodo(IM)
who(l)
who(l)
whodo(IM)
wd15C7)
wd40(7)
sa400flwd(7)
cd(l)
chdir(2)
getcwd(3C)
pwd(l)
write(2)
putpwent(3C)
walI(lM)
write(l)
write(2)
write(l)
open(2)
utmp(4)
utmp(4)
fwtmp(lM)
wump(6)
xatg!l(l)
bool(3F)
bessel(3M)
bessel(3M)
yaa:(I)
bessel(3M)
ah\(3F)

INTRO(IM) INTRO(IM)

NAME
intro - introduction to system maintenance commands and application programs

DESCRIPTION
This section describes, in alphabetical order, commands that are used chiefly for system
maintenance and administration purposes. The commands in this section should be used along
with those listed in Section 1 of the SYSTEM V/68 User's Manual. References to other
manual entries not of the form name(lM), name(7) or name(8) refer to entries of that
manual.

COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept options and other argu­
ments according to the following syntax:

name [option(s)] [cmdarg(s)]
where:

name

option

noargletter

argletter

optarg

cmdarg

The name of an executable file.

- noargletter(s) or,
- argletter < >optarg
where < > is optional white space.

A single letter representing an option without an argument.

A single letter representing an option requiring an argument.

Argument (character string) satisfying preceding argletter.

Pathname (or other command argument) not beginning with - or, - by itself
indicating the standard input.

SEE ALSO
getopt(1), getopt(3C).
SYSTEM V 168 User's Manual.
SYSTEM v I 68 Administrator's Guide.

DIAGNOSTICS

BUGS

Upon termination, each command returns two bytes of status, one supplied by the system and
giving the cause for termination, and Cin the case of "normal" termination) one supplied by
the program (see wait (2) and exit (2)). The former byte is 0 for normal terminaticm; the latter
is customarily 0 for successful execution and non-zero to indicate troubles such as erroneous
parameters, bad or inaccessible data, or other inabilities to cope with the task at hand. It is
called variously "exit code", "exit status", or "return code", and is described only where special
conventions are involved.

Some commands do not adhere to the syntax mentioned above.

- 1 -

ACCEPT(IM) ACCEPT(IM)

NAME
accept, reject - allow/prevent LP requests

SYNOPSIS
/usr /lib/ accept destinations
/usr/lib/reject [-r[reason]] destinations

DESCRIPTION

FILES

Accept allows Zp(l) to accept requests for the named destinations. A destination can be
either a printer or a class of printers. Use lpstat(1) to find the status of destinations.

Reject prevents lp(1) from accepting requests for the named destinations. A destination can
be either a printer or a class of printers. Use lpstat(1) to find the status of destinations. The
following option is useful with reject.

-r[reason] Associates a reason with preventing lp from accepting requests. This reason
applies to all printers mentioned up to the next -r option. Reason is reported
by lp when users direct requests to the named destinations and by lpstat(l). If
the -r option is not present or the -r option is given without a reason, then a
default reason will be used.

/usr /spool/Ip/*

SEE ALSO
enable(l), lp(l), lpadmin(lM), lpsched(lM), lpstat(l).

- 1 -

ACCT(lM) ACCT(lM)

NAME
acctdisk, acctdusg, accton, acctwtmp - overview of accounting and miscellaneous accounting
commands

SYNOPSIS
/usr /lib/ acct/ acctdisk

/usr/lib/acct/acctdusg [-u file] [-p file]

/usr/lib/acct/accton [file]

/usr/lib/acct/acctwtmp "reason"

DESCRIPTION

FILES

Accounting software is structured as a set of tools (consisting of both C programs and shell
procedures) that can be used to build accounting systems. Acctsh(1M) describes the set of
shell procedures built on top of the C programs.

Connect time accounting is handled by various programs that write records into
/usr/adm/utmp, as described in utmp(4). The programs described in acctcon(1M) convert
this file into session and charging records, which are then summarized by acctmerg(1M).

Process accounting is performed by the SYSTEM v/68 kernel. Upon termination of a process,
one record per process is written to a file (normally /usr/adm/pacct). The programs in
acctprc(lM) summarize this data for charging purposes; acctcms(1M) is used to summarize
command usage. Current process data may be examined using acctcom(l).

Process accounting and connect time accounting (or any accounting records in the format
described in acct(4)) can be merged and summarized into total accounting records by
acctmerg (see tacct format in acct(4)). Prtaccl (see acctsh(1M)) is used to format any or all
accounting records.

1\cctdisk reads lines that contain user ID, login name, and number of disk blocks and converts
them to total accounting records that can be merged with other accounting records .

. ·\cc1dusg reads its standard input (usually from find I -print) and computes disk resource
consumption (including indirect blocks) by login. If -u is given, records consisting of those
filenames for which acctdusg charges no one are placed in file (a potential source for finding
users trying to avoid disk charges). If -p is given, file is the name of the password file. This
option is not needed if the password fi1e is /etc/passwd (refer to diskusg(1M) for more
details).

Accton alone turns process accounting off. If file is given, it must be the name of an existing
file, to which the kernel appends process accounting records (see acct(2) and acct(4)).

Acctwtmp writes a utmp(4) record to its standard output. The record contains the current
time and a string of characters that describe the reason. A record type of ACCOUNTING is
assigned (see utmp(4)). Reason must be a string of 11 or less characters, numbers, $,or spaces.
For example, the following is a suggestion for use in shutdown procedures:

acctwtmp "file save" >> /etc/wtmp

/etc/passwd
/usr /lib/acct

/usr/adm/pacct
/etc/wtmp

used for login name to user ID conversions
holds all accounting commands listed in
sub-class 1 M of this manual
current process accounting file
login/1ogoff history file

SEE J\LSO
acctcms(J:V1), acctcom(l), acctcon(lM), acctmerg(lM), acctprc(l!\1), acctsh(lM), fwtmp(lM),
ru nacct(1 \1), acct(2), acct(4), u tm p(4).
"Accounting" in the SVS!Ef\.1 \i/fJ8 .·\dn11ni111u101 '1 (;11ide.

ACCTCMS(IM) ACCTCMS(lM)

NAME

acctcms - command summary from per-process accounting records

SYNOPSIS
/usr/lib/acct/acctcms [options] files

DESCRIPTION
Acctcms reads one or more files, normally in the form described in acct(4). It ad~ all
records for processes that executed identically-named commands, sorts them, and writes them
to the standard output, normally using an internal summary format. The options are:

-a Print output in ASCII rather than in the internal summary format. The output
includes command name, number of times executed, total kcore-minutes, total CPU
minutes, total real minutes, mean size (in K), mean CPU minutes per invocation, "hog
factor", characters transferred, and blocks read and written, as in acctcom(l). Output
is normally sorted by total kcore-minutes.

-c Sort by total CPU time, rather than total kcore-minutes.
-j Combine all commands invoked only once under "***<>ther".
-n Sort by number of command invocations.
-s Any file names encountered hereafter are already in internal summary format.
-t Process all records as total accounting records. The default internal summary format

splits each field into prime and non-prime time parts. This option combines the prime
and non-prime time parts into a single field that is the total of both, and provides
upward compatibility with old (i.e., UNIX System V) style acctcms internal summary
format records.

The following options may be used only with the -a option:

-p Output a prime-time-only command summary.

-o Output a non-prime (offshift) time only command summary.

When -p and -o are used together, a combination prime and non-prime time report is pro­
duced. All the output summaries will be total usage except number of times executed, CPU
minutes, and rea·l minutes, which will be split into prime and non-prime.

A typical sequence for performing daily command accounting and for maintaining a running
total is:

SEE ALSO

acctcms file •.• >today
cp total previoustotal
acctcms -s today previoustotal >total
acctcms -a -s today

acct(lM), acctcom(l), acctcon(lM), acctmerg(lM), acctprc(lM), acctsh(lM), fwtmp(tM),
runacct(lM), acct(2), acct(4), utmp(4).

CAUTION

The current acctcms can still read, process, and generate command accounting records compa­
tible with previous SYSTEM v/68 releases if the -t option is used. Note, however, that inter­
nal summary records generated with the -t option (or by the SYSTEM V /68 Release 1 ver­
sion) are not compatible with those created by the Release 2 acctcms without this option.

- l -

ACCfCON(IM) ACCTCON(IM)

NAME
acctcont, acctcon2 - connect-time accounting

SYNOPSIS
/usr /lib/ acct/ acctcon 1 [options]

/usr /lib/ acct/ acctcon2

DESCRIPTION
Acctconl converts a sequence of login/logoff records read from its standard input to a
sequence of records, one per login session. Its input should normally be redirected from
/etc/wtmp. Its output is ASCII, giving device, user ID, login name, prime connect time
(seconds), non-prime connect time (seconds), session starting time (numeric), and starting date
and time. The options are:

-p Print input only, showing line name, login name, and time (in both numeric and
date/time formats).

-t Acctconl maintains a list of lines on which users are logged in. When it reaches the
end of its input, it emits a session record for each line that still appears to be active.
It normally assumes that its input is a current file, so that it uses the current time as
the ending time for each session still in progress. The -t flag causes it to use,
instead, the last time found in its input, thus assuring reasonable and repeatable
numbers for non-current files.

-1 file File is created to contain a summary of line usage showing line name, number of
minutes used, percentage of total elapsed time used, number of sessions charged,
number of logins, and number of logoffs. This file helps track line usage, identify
bad lines, and find software and hardware oddities. Hang-up, termination of
login(l) and termination of the login shell generate logoff records, so that the
number of logoffs is often three to four times the number of sessions. See init(1M)
and utmp(4).

-o file File is filled with an overa11 record for the accounting period, giving starting time,
ending time, number of reboots, and number of date changes .

.4cctcon2 expects as input a sequence of login session records and converts them into total
accounting records (see tacct format in acct(4)).

EXAMPLES

FILES

These commands are typically used as shown below. The file ctmp is created only for the use
of acctprc(1M) commands:

acctconl -t -1 lineuse -o reboots <wtmp I sort +ln +2 >ctmp
acctcon2 < ctmp I acctmerg > ctAcct

/etc/wtmp

SEE ALSO

BUGS

acct(tM), acctcms(lM), acctcom(l), acctmerg(lM), acctprc(lM), acctsh(tM), fwtmp(lM),
runacct(tM), acct(2), acct(4), utmp(4).

The line usage report is confused by date changes. Use wtmpfix (see fwtmp(1M)) to correct
this situation.

- 1 -

ACCTMERG(lM) ACCTMERG(lM)

NAME
acctmerg - merge or add total accounting files

SYNOPSIS
/usr /lib/ acct/ acctmerg [options] [file] ...

DESCRIPTION
Acctmerg reads its standard input and up to nine additional files in the tacct format (see
acct(4)) or in an ASCII version. It merges these inputs by adding records whose keys (nor­
mally user ID and name) are identical and expects the inputs to be sorted on those keys.
0 ptions are:

-a Produce output in ASCII version of tacct.
-i Input files are in ASCII version of tacct.
-p Print input with no processing.
-t Produce a single record that totals all input.
-u Summarize by user ID, rather than user ID and name.
-v Produce output in verbose ASCII format, with more precise notation for floating point

numbers.

The following sequence is useful for making repairs to any file kept in this format:

acctmerg ~v <file 1 > file2

Perform edit on file2, then enter:

acctmerg -i <file2 >filel

SEE ALSO
acct(lM), acctcms(lM), acctcom(1), acctcon(1 M), acctprc(lM), acctsh(lM), fwtmp(lM),
runacct(lM), acct(2), acct(4), utmp(4).

- 1 -

ACCTPRC(IM) ACCTPRC(lM)

NAME
acctprcl, acctprc2 - process accounting

SYNOPSIS
/usr /lib/ acct/acctprc 1 [ctmp]

/usr/lib/acct/acctprc2

DESCRIPTION

FILES

Acctprcl reads input in the form described by acct(4), adds login names corresponding to
user IDs, then writes for each process an ASCII line giving user ID, login name, prime CPU time
(tics), non-prime CPU time (tics), and mean memory size (in 64-byte units). If ctmp is given,
it is expected to contain a list of login sessions, in the form described in acctron(1M), sorted by
user ID and login name. If this file is not supplied, it obtains login names from the password
file. The information in ctmp helps it distinguish among different login names-that share·the
same user ID.

Acctprc2 reads records in the form written by acctprcl, summarizes them by user ID and
name, then writes the sorted summaries to the standard output as total accounting records.

These commands are typically used as shown below:

acctprcl ctmp </usr/adm/pacct I acctprc2 >ptacct

/etc/passwd

SEE ALSO

BUGS

acct(1M), acctcmsCtM), acctcom(l), acctcon(tM), acctmerg(lM), acctsh(lM), fwtmp(lM),
runacct(tM), acct(2), acct(4), utmp(4).

Although it is possible to distinguish among login names that share user IDs for commands run
normally, it is difficult to do this for those commands run from cron(1M), for example. More
precise conversion can be done by faking login sessions on the console via the acctwtmp pro­
gram in acct(lM).

CAUTION
A memory segment of the mean memory size is a unit of measure for the number of bytes in
a logical memory segment on a particular processor. For example, on a PDP-11170 this meas­
ure would be in 64-byte units; on a V AXl 11780, EXORmacs, or VMFllO it would be in 512-
byte units.

- 1 -

ACCTSB(lM) ACCTSB(lM)

NAME
chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp, prdaily, prtacct, runacct, shu­
tacct, startup, turnacct - shell procedures for accounting

SYNOPSIS
/usr /lib/ acct/ chargefee login-name number

/usr/lib/acct/ckpacct [blocks]

/usr /lib/ acct/ dodisk [-o] [files _]

/usr /lib/ acct/lastlogin

/usr/lib/acct/monacct number

/usr /lib/ acct/nulladm file

/usr /lib/ acct/prctmp

/usr/lib/acct/prdaily [-1] [--c] [mmdd]

/usr/lib/acct/prtacct file [•heading•]

/usr/lib/acct/runacct [mmdd] [mmdd state]

/usr/lib/acct/shutacct [•reason•]

/usr /lib/ acct/startup

/usr/lib/acct/turnacct on I off I switch

DESCRIPTION
Chargefee can be invoked to charge a number of units to logi,n-name. A record is written to
/usr/adm/fee, to be merged with other accounting records during the night.

Ckpacct should be initiated via cron(1M). It periodically checks the size of /usr/adm/pacct.
If the size exceeds blocks, 1000 by default, turnacct is invoked with argument switch. If the
number of free disk blocks in the /usr file system falls below 500, ckpacct automatically
turns off the collection of process accounting records via the off argument to turnacct. When
at least this number of blocks is restored, accounting is reactivated. This feature is sensitive to
the frequency at which ckpacct is executed, usually by cron.

Dodisk should be invoked by cron to perform the disk accounting functions. By default, it
will do disk accounting on the special files in /etc/checklist. If the -o flag is used, it will
do a slower version of disk accounting by login directory. Files specify the one or more
filesystem names where disk accountiri.g will be done. If files are used, disk accounting will
be done on these filesystems only. If the -o flag is used, files should be mount points of
mounted filesystems. If omitted, they should be the special filenames of mountable filesys­
tems.

Lastlogin is invoked by runacct to update /us;r/adm/acct/sum/loginlog, which shows the
last date on which each person logged in.

Monacct should be invoked once each month or each accounting period. Number indicates
which month or period it is. If number is not given, it defaults to the current month
(01-12). This default is useful if nwnacct is to be executed via cron(1M) on the first day of
each month. Monacct creates summary files in /usr/adm/acct/ftscal and restarts summary
files in /usr/adm/acct/sum.

Nulladm creates file with mode 664 and insures owner and group are adm. It is called by
various accounting shell procedures.

Prctmp can be used to print the session record file (normally /usr/adm/acct/nite/ctmp
created by acctconl (see acctcon(1M)).

Prdaily is invoked by runacct to format a report of the previous day's accounting data. The
report resides in /usr/adm/acct/sum/rprtmmdd, where mmdd is the month and day of the

- 1 -

ACCTSH(IM) ACCTSB(lM)

FILES

report. The current daily accounting reports may be printed by typing prda:ily. Previous
days' accounting reports can be printed by using the mmdd optioo and specifying the exact
report date desired. The -1 flag prints a report of exceptional usage by login id for the
specified date. Previous daily reports are cleaned up and, therefore. inaccessible after each
invocation of monacct. The -c :flag prints a report of exceptional resource usage by command
and may be used on current day's accounting data only.

Prtacct can be used to format and print any total accounting (tacct) file.

Runacct performs the accumulation of connect, process, fee, and disk accounting on a daily
basis. It also creates summaries of command usage. For more information, see runacct(1M).

Shutacct should be invoked during a system shutdown (usually in /etc/shutdown) to turn
process accounting off and append a "reason" record to /etc/wtmp.

Startup should be called by /etc/re to turn the accounting on whenever the system is
brought up.

Turnacct is an interface to accton (see acct(1M)) to turn process accounting on or off. The
switch argument turns accounting off, moves the current /usr/adm/pacct to the next free
name in /usr/adm/pacctincr (where incr is a number starting with 1 and incrementing by
one for each additional pacct file), then turns accounting back on again. This procedure is
called by ckpacct and thus can be taken care of by the cron and used to keep pacct to area­
sonable size.

/usr I adm/f ee
/usr I adm/pacct
/usr/adm/pacct*

/etc/wtmp
/usr/lib/acct/ptelus.awk

/usr/lib/acct/ptecms.awk

/usr /adm/acct/ nite
/usr/lib/acct

/usr/adm/acct/sum

accumulator for fees
current file for per-process accounting
used if pacct gets large and during
execution of daily accounting procedure
login/logoff summary
contains the limits for exceptional
usage by login id
contains the limits for exceptional
usage by command name
working directory
holds all accounting commands listed in
sub-class lM of this manual
summary directory, should be saved

SEE ALSO
acct(lM), acctcmsClM), acctcom(l), acctcon(lM), acctmerg(lM), acctprc(lM), fwtmp(lM),
runacct(lM), acct(2), acct(4), utmp(4).

- 2 -

BCOPY(lM)

NAME
l:x:opy - interactive block copy

SYNOPSIS
/etc/bcopy

DESCRIPTION
Bcopy copies from and to files starting at arbitrary block (512-byte) boundaries.

The following questions are asked:

to: (you name the file or device to be copied to)

offset: (you provide the starting "to" block number)

from: (you name the file or device to be copied from)

offset: (you provide the starting "from" block number)

count: (you reply with the number of blocks to be copied)

BCOPY(lM)

After count is exhausted, the from question is repeated (providing the ability to concatenate
blocks at the to+offset+count location). If from is answered with a carriage return, every­
thing starts over.

Two consecutive carriage returns terminate bcopy.

SEE ALSO
cpio(1), dd(1).

- 1 -

BRC(lM) BR.C(lM)

NAME
brc, bcheckrc, re, powerfail - system initialimtion shell scripts

SYNOPSIS
/etc/brc

/etc/bcheck.rc

/etc/re

/etc/powerfail

DESCRIPTION
Except for power fail, these shell procedures are executed via entries in /etc/inittab by
init(tM) when the system is changed out of single-user mode. Powerfail is executed when­
ever a system power failure is detected.

The bre procedure clears the mounted file system table /etc/mnttab (see mnttab(4)) and
loads any programmable microprocessors with their appropriate scripts.

The bcheekre procedure performs all the necessary consistency checks to prepare the system to
change into multi-user mode. It will prompt to set the system date and to check the file sys­
tems with fsek(tM).

The re procedure starts all system daemons before the terminal lines are enabled for multi­
user mode. In addition. file systems are mounted and accounting, error logging, and system
activity logging are activated in this procedure.

The power fail procedure is invoked when the system detects a power failure condition. Its
chief duty is to reload any programmable microprocessors with their appropriate scripts, if
suitable. It also logs the fact that a power failure occurred.

These shell procedures, in particular re, may be used for several run-level states. The whoCt)
command may be used to get the run-level information.

SEE ALSO
fsck(tM), init(tM), shutdown(tM), who(t), inittab(4), mnttabC4).

- 1 -

CHECKALL(lM) CHECK.ALL(IM)

NAME
checkall - faster file system checking procedure

SYNOPSIS
I etc/ checkall

DESCRIPTION
The checkall procedure is a prototype and must be modified to suit local conditions. The fol­
lowing will serve as an example:

check the root file system by itself
fsck /dev/rdsklcntrlr _OsO

dual fsck of drives 0 and 1
dfsck /dev/rdsk/cntrlr_Os[12345] - /devlrdsklcntrlr_lsO

If /devlrdsklcntrlr _lsO is 320K blocks and /dev/rdsk/cntrlr_Os[1234S] are each 65K or
less, a previous sequential f sck took 19 minutes. The checkall procedure takes 11 minutes.

Dfsck is a program that permits an operator to interact with two fsck(lM) programs at once.
To aid in this, dfsck will print the file system name for each message to the operator. When
answering a question from dfsck, the operator must prefix the response with a 1 or a 2 (indi­
cating that the answer refers to the first or second file system group).

Due to the file system load balancing required for dual checking, the dfsck command should
always be executed through the checkall shell procedure.

In a practical sense, the file systems are divided as follows:

dfsck file_systems_on_drive_O - file_systems_on_drive_l
dfsck file_systems_on_drive_2 - file_systems_on_drive_3

A three-drive system can be handled, as shown in the following example (assumes two large
file systems per drive):

dfsck ldev/dsklcntrlr_3s1 ldev/dsk/cntrlr _Os[14] - /devldsklcntrlr_ls[14] /dev/dsklcntrlr _3s4

Note that the first file system on drive 3 is first in the filesystemsl list and is last in the
filesystems2 list, assuring that references to that drive will not overlap at execution time.

WARNINGS
1. Do not use d f sck to check the root file system.

2. On a check that requires a scratch file (refer to the -t option of df sck), be careful not to
use the same temporary file for the two groups (this is sure to scramble the file systems).

3. The dfsck procedure is useful only if the system is set up for multiple physical VO
buffers.

SEE ALSO
fsck(lM).
"Setting up SYSTEM V/68" in the SYSTEM .v/68 Administrator's Guide.

- 1 -

IK(IM) (Motorola Inc. Only) CHK(lM)

o\ME
chk - check a file system

'NO PSIS
/mot/bin/chk [disk] [-y -n]

ESCRIPTION

[LES

Chk(IM) checks a file system using fsck(IM). The argument disk and the permissions file are
used to determine the device to check and whether it should be checked '-n' (NO WRITE),
as when Write permission has not been granted. This device will be the first match of disk
and the real device or alias entries in the permissions file. If the disk argument is not given
then the first alias of default in the permissions file will be used

Chk actually uses the raw version of the listed real device (by prepending an 'r' to the name).

The -y (always answer yes) and -n·(always answer no; ie. NO WRITE) options are passed to
fsck if present They are mutually exclusive.

/etc/fsck
/mot/bin/fs
/mot/etc/perms permissions file

~E ALSO
fs(4), fsck(lM), perms(4)
SYSTEM V / 68 Administrator's Guide.

963-51 - I - 09/09/86

CHROOT(lM) CHROOT(lM)

NAME
chroot - change root directory for a command

SYNOPSIS
/etc/chroot newroot command

DESCRIPTION
The given command is executed relative to the new root. The meaning of any initial slashes
(/) in pathnames is changed for a command and any of its children to newroot. Furthermore,
the initial working directory is newroot.

Notice that:

chroot newroot command > x

will create the file x relative to the original root, not the new one.

This command is restricted to the superuser.

The new root pathname is always relative to the current root; even if a chroot is currently in
effect, the newroot argument is relative to the current root of the running process.

SEE ALSO
chdir(2).

BUGS
One should exercise extreme caution when referencing special files in the new root file sys­
tem.

- 1 -

CLRI(IM) CLRI(IM)

NAME
clri - clear inode

SYNOPSIS
/etc/clri file-system i-number ...

DESCRIPTION
Clri writes zeros on the 64 bytes occupied by the inode numbered i-numher. File-system
must be a special filename referring to a device containing a file system. After clri is exe­
cuted, any blocks in the affected file will show up as missing in an fsck(tM) of the file­
system. This command should only be used in emergencies, and extreme care should be exer­
cised.

Read and write permission is required on the specified file-system device. The inode becomes
allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no
directory. If it is used to delete an inode which does appear in a directory, care should be
taken to track down the entry and remove it. Otherwise, when the inode is reallocated to
some new file, the old entry will still point to that file. At that point, removing the old
entry will destroy the new file. The new entry will again point to an unallocated inode;
therefore, the whole cycle is likely to be repeated again and again.

SEE ALSO
fsck(1 M), fsdb(1 M), ncheck(lM), fs(4).

HUGS
If the file is open, clri is likely to be ineffective.

- 1 -

CONFIG.68(lM) CONFJG.61(lM)

NAME
config.68 - configure SYSTEM V/68

SYNOPSIS
/etc/config [-t] [-v file] [-1 file] [-c file] [-m file] dfile

DESCRIPTION

• FILES

Con fig is a program that takes a description of SYSTEM V /68 and generates three files. One
file provides information regarding the interface between the hardware and device handlers
(Iow.s). A second file is a C program defining the configuration tables for the various devices
on the system (conf .c). A third file contains exception vector assignments (m68kvec.s).

The -v option specifies the name of the exception vector file; m68kvec.s is the default name.

The -1 option specifies the name of the hardware interface file; low.sis the default name.

The -c option specifies the name of the configuration table file; conf.c is the default name.

The -m option specifies the name of the file that contains all the information regarding sup­
ported devices; /etc/master is the default name. This file is supplied with SYSTEM v/68 and
should not be modified unless the user fully understands its construction.

The -t option requests a short table of major device numbers for character and block type
devices. This can facilitate the creation of special files.

The user must supply dfile; it must contain device information for the user's system. This
file is divided into three parts. The first part contains physical device specifications. The
second part contains system-dependent information. The third part contains microprocessor­
specific information. The first two parts are required, the third part is optional. The format
and contents of the dfile are provided in dfile(4) in the SYSTE.\l ,.168 User's Manual. To
obtain an example configuration, the user can run the sysde/(11\1) utility.

· etc.1 master
m68kvec.s
low.s
conf.c

default input master device table
default output exception vector file for m68k
default output hardware interface file for m68k
default output configuration table file

SEE ALSO
sysdef(lM), dfile(4), master(4).
"Setting up SYSTEM \'/68" in the SYSTEM \'/68 Administrator's Guide.

DIAGNOSTICS
Diagnostics are routed to the standard output and are self::explanatory.

-1-

CPSET(IM) CPSET(lM)

NAME
cpset - install object files in binary directories

SYNOPSIS
cpset [-o] object directory [mode owner group]

DESCRIPTION
Cpset is used to install the specified object file in the given directory. The mode, owner, and
graup of the destination file may be specified on the command line. If this data is omitted,
two results are possible:

1. If the user of cpset has administrative permissions (i.e., the user's numerical ID is less than
100), the following defaults are provided:
mode- 0755
owner - bin
group - bin

2. If the user is not an administrator, the default owner and group of the destination file
will be that of the invoker.

An optional argument of -o will force cpset to move object to OLDobject in the destination
directory before installing the new object.

For example:

cpset echo /bin 0755 bin bin

cpset echo /bin

cpset echo /bin/echo

All the examples above have the same effect (assuming that the user is administrator). The
file echo will be copied into /bin and will be given 0755, bin, and bin as the mode, owner,
and group, respectively.

Cpset utilizes the file /usr/src/destinations to determine the final destination of a file;. The
locations file contains pairs of pathnames separated by spaces or tabs. The first name is the
"official" destination (e.g., /bin/echo). The second name is the new destination. For example,
if echo is moved from /bin to /usr/bin, the entry in /usr/src/destinations would be:

/bin/echo /usr/bin/echo

When the actual installation is performed, cpset verifies that the "old" pathname does not
exist. If a file exists at that location, cpset issues a warning and continues. This file does not
exist on a distribution tape; it is used by sites to track local command movement. The pro­
cedures used to build the source will be responsible for defining the "official" locations of the
source.

Cross Generation
The environment variable ROOT will be used to locate the destination file (in the form
$ROOT/usr/src/destinations). This is necessary in the cases where cross generation is being
done on a production system.

SEE ALSO
install(lM), make(l), mk(8).

- 1 -

CRASH(lM) CR.ASH(lM)

NAME
crash - examine system images

SYNOPSIS
/etc/crash [system] [namelist]

DESCRIPTION
Crash is an interactive utility for examining an operating system core image. It has facilities
for interpreting and formatting the various control structures in the system and certain mis­
cellaneous functions that are useful when pei:using a dump.

The arguments to crash are the file name where the system image can be found and a namel­
ist file to be used for symbol values.

The default values are /dev/mem and /unix; hence, crash with no arguments can be used to
examine an active system. If a system image file is given, it is assumed to be a system core
dump and the default process is set to be that of the process running at the time of the crash.
This is determined by a value stored in a fixed location by the dump mechanism.

COMMANDS
Input to crash is typically of the form:

command [options] [structures to be printed]

When allowed, options modifies the format of the printout. If no specific structure elements
are specified, all valid entries are used. As an example, proc - 12 15 3 would print process
table slots 12, 15 and 3 in a long format, while proc would print the entire process table in
standard format.

In general, those commands that perform I/O with addresses assume hexadecimal on 32-bit
machines and octal on 16-bit machines.

The current list of commands includes:

user [list of process table entries]
Aliases: uarea, u_area, u.
Print the user structure of the named process as determined by the information con­
tained in the process table entry. If no entry number is given, the information of the
last executing process is printed. Swapped processes produce an error message.

trace [-r] [list of process table entries]
Aliases: t.
Generate a kernel stack trac~ of the current process. If the -r option is used, the
trace begins at the saved stack frame pointer in kfp. Otherwise the trace starts at the
bottom of the stack and attempts to find valid stack frames deeper in the stack. If no
entry number is given, the information on the last executing process is printed.

kfp [stack frame pointer]
Aliases: fp.
Print the start of the current stack frame (set initially from a fixed location in the
dump) if no argument is given, or set the frame pointer to the supplied value.

stack [list of process table entries]
Aliases: stk, s, kernel, k.
Format a dump of the kernel stack of a process. The addresses shown are virtual sys­
tem data addresses rather than true physical locations. If no entry number is given,
the information on the last executing process is printed.

proc [-{r]] [list of process table entries]
Aliases: ps, p.
Format the process table. The -r option causes only runnable processes to be printed.

- 1 -

CRASH(IM)

The - alone generates a longer listing.

inode [-] [list of inode table entries]
Aliases: ino, i.

CR.ASH(IM)

Format the inode table. The - option also prints the inode data block addresses.

file [list of file table en tries]
Aliases: files, f.
Format the file table.

mount [list of mount table entries]
Aliases: mn t, m.
Format the mount table.

text [list of text table entries]
Aliases: txt, x.
Format the text table.

tty [type] [-] [list of tty entries]
Aliases: term, acia, m400.
Print the tty structures. The type argument determines which structure is used
(such as acia). No default type is provided; however, once specified, the last type is
remembered. The - option prints the stty(l) parameters for the given line.

stat Print certain statistics found in the dump. These include the panic string (if a panic
occurred), time of crash, system name, and the registers saved in low memory by the
dump mechanism.

var Aliases: tunables, tunable, tune, v.
Print the tunable system parameters.

buf [list of buffer headers]
Aliases: hdr, bufhdr.
Format the system buffer headers.

buffer [format] [list of buffers]
Alias: b.

callout

Print the data in a system buffer according to format. If format is omitted, the pre­
vious format is used. Valid formats include decimal, octal, hex, character, byte,
directory, inode, and write. The last creates a file in the current directory (see
"FILES") containing the buffer data.

Aliases: calls, call, c, timeout, time, tout.
Print all entries in the callout table.

map [list of map names]
Format the named system map structures.

nm [list of symbQls]
Print symbol value and type as found in the namelist file.

ts [list of text addresses]
Find the closest text symbols to the given addresses.

ds [list of data addresses]
Find the closest data symbols to the given addresses.

od [symbol name or address) [count) [format]
Aliases: dump, rd.
Dump count data values starting at the symbol value or address given according to
format. Allowable formats are octal, longoct, decimal, longdec, character, hex, or
byte.

- 2 -

CRASH(lM) C:RASH(lM)

mmu [process slot number(s)]
The mmu command displays the contents of each entry in the mmu_table[]. When
the optional argument is given, the command will display the mmu_table entry asso­
cia.ted with the given process slot number. Multiple process slot numbers should be
separated with blanks.

Escape to shell.

q Exit from crash.

? Print synopsis of commands.

ALIASFS

FILFS

There are built-in aliases for many of the formats as well as those listed for the commands.
Some of them are:

byte b.
character char, c.
decimal dee, e.
directory direct, dir, d.
hexadecimal hexadec, hex, h, x.
in ode
longdec
longoct
octal
write

ino, i.
ld, D.
lo,O.
oct, o.
w.

/usr/include/sys/*.h header files for table and structure info
/dev/mem default system image file
/unix default namelist file
buf.# files created containing buffer data

SEE ALSO

BUGS

mount(lM), nm(l), ps(l), sh(l), stty(l), crash.macs(8).

Most flags are abbreviated and have little meaning to the uninitiated user. A source listing of
the system header files at hand would be most useful while using crash.

Stack tracing of the current process on a running system doesn't work.

- 3 -

CRON(lM) CRON(1M)

NAME
cron - clock daemon

SYNOPSIS
/etc/cron

DESCRIPTION

FILES

Cron executes commands at specified dates and times. Regularly scheduled commands can be
specified according to instructions found in crontab files; users can submit their own crontab
file via the crontab(1) command Commands that are to be executed only once may be sub­
mitted via the at command Since cron never exits, it should only be executed once. This is
best done by running cran from the initialization process through the file /etc/re.

Cron only examines crontab files and at command files during process initialization and when
a file changes. This reduces the overhead of checking for new or changed files at regularly
scheduled intervals.

/usr /lib/ cron
/usr/lib/cron/log
/usr/spool/cron

main cron directory
accounting information
spool area

SEE ALSO
at(t), crontab(l), sh(t).
"Administrative Guidelines" in the SY ST EM V 168 Administrator's Guide.

DIAGNOSTICS
A history of all actions taken by cron are recorded in /usr/lib/cron/Iog.

- 1 -

RC(IM) (Motorola Inc. Only) CRC(IM)

'AME
ere - a tool to generate cyclic redundancy checksums (ere) of files

YNOPSIS
ere [-frcld) - I file_list

1ESCRIPTION
The ere shell comriland utility is a versatile tool for use in generating 16-bit ere values of an
input stream. The input stream can consist either of data or of names of files to be checked.
There are four different display options available.

If the file to be checked is an object file, ere will ignore the compiler-generated time stamps ·
embedded in the file.

The various options arc defined as follows:

-f Selects file mode operation. The input stream is interpreted as a list of the names of the
files to be processed rather than as the data itself.

-r Selects a raw mode of operation. This option is used mainly to determine if two ver­
sions of an executable file are exactly the same. This switch causes ere to include the
compiler-generated time stamps in the co// file image when computing the ere.

-e Changes the output to include the byte count of each file processed.

-d Adds the time of the file's modification to the output.

-1 Computes the ere in decimal for each line of the input file rather than for the whole file

963-51

itself. Use of this option overrides all others!

Note that the first four options can be used in any combination.

There are three general forms of output. The first form .is produced without the -c
option: -

$nnnn for filename (time stamp)

where $nnnn is the 16-bit checksum in hexadecimal ~epresentation; and time stamp is
-the time of the file's modification (displayed if the -d option is selected). The fields are
separated by space (20h) characters.

The second output form is generated when the -c option is selected:

$nnnn length time stamp filename

where length is the true size of the file, regardless of whether or not raw mode (-r) is
selected; and time stamp is the time of the file's modification (displayed if the -d option
is selected). All fields of this second form are delimited by tab (\t) characters.

The third form of output is produced by the line mode option (-I). It replaces each line
of input with its corresponding ere in the form nnnn.

- 1 - 09/09//86

CRC(lM) (Motorola Inc. Only) CRC(lM)

DIAGNOSTICS _
ere: bad option letter. • an invalid option letter was specified.

ere: argument count. - at least one file name (or'·') must be provided ·

ere: can't open file for reading. - file cannot bo opened for some reason.

ere: can't read fife. - .input file cannot be read for some reason.

EXAMPLES

FILES

Suppose that a touch •; Is -101 command produces the following directory listing:

-rwxrwxrwx 1
-rwxrwxrwx 1
-rwxrwxrwx 1
-rwxrwxrwx 1

23 Apr 8 12:39
8307 Apr 8 12:39
1280 Apr 8 12:39

771 Apr 8 12:39

apple
peaches

• pears
plums

Note that ls I ere -fd~ - is equivalent to ere -de•, and both would produce output similar to:

$8AC3
$FD06
SC3BO
$0202

23
8307
1280
771

Apr 8 12:39:51 1986
Apr 8 12:39:51 1986
Apr 8 12:39:51 1986
Apr 8 12:39:51 1986

apple
peaches
pears
plums

A means of generating checksums for an entire directory hierarchy is:

find root_path -type f-print I ere -fed-

Use of the '·type f' option on find is recommended because ere will generate the ere for the
directory files themselves if presented with their names.

You can extract just the ere and length from a stream of crc's by using the cut command.
When appended to the above command,

find args -type f -print I ere ~f cd - I cut -fl,2

produces an output of two colu~: th~ ere and the file's length.

/usr /bin/ ere

41963-51 ... 2 - 09/09//86

REATE(IM) (Motorola Inc. Only) CREATE(IM)

.AME
create - create master release media utility, R3.1

1ESCRIPTION
The "create" program is designed to be used to create a set of master distribution media for
application software products. The new version, R3.1, is similar to previous versions,
although it has been completely re-designed and re-implemented to make it much more
robust and tolerant of operator errors.

One new feature of particular interest is the automatic creation of a file containing the ere,
length, and modification time for each file included on the distribution media. A copy of this
file is put on the media and transferred to a customer's system, while another version is
derived by upgrade for cross-checking purposes.

MEDIA CREATED WITH THIS RELEASE OF CREATE CAN
ONLY BE READ BY R3~1 AND LATER VERSIONS OF UPGRADE!

OLD VERSIONS OF UPGRADE WON'T WORK.

All user responses are limited to a specific length; some are limited to a specific set of valid
responses (shown in the dialogue below in curly braces, eg. {Yes, No}). Any responses that
exceed the valid internal lengths are truncated. The user is, however, now given the oppor­
tunity to verify what was entered before creating the media so as to correct any errors before
they are committed to disk. (Previous versions didn't allow verification except by running
Upgrade.)

Since create is primarily an interactive program, it's use is explained in the next section by
examining a typical dialogue that a user would encounter. The last section describes the
error messages that create produces, divided into most-likely and least-likely-to-be­
encountered sections.

~TERACTING WITH CREA TE
This section describes the interactive dialogue that a user encounters when using create.
Lines shown in boldface typefont represent what the create program displays to the user.
Text shown in italics is commentary intended to supplement the discussion; it never appears
on the screen. User responses are underlined; they are examples of what a user might typi­
cally enter.

Create is invoked by typing "create" at the system prompt level.

The screen is now cleared via 'tput clear'

Create Master Release Media Utility; R3.1
Copyright 1984,86 by Motorola Computer Systems, Inc.

What type of media is this product distributed on?
{Floppy disk, 1.2MB floppy, Tape cartridge, Cartridge disk, 9-track tape}
--> xxx

968-51 - 1 - 09/09//86

CREATE(IM) (Motorola Inc. Only) CREATE(lM)

Enter one of these media types here. An invalid input, eg. "xxx" shown here, produces
the message:

You must enter the first letter of one of the choices and a RETURN,
or just a RETURN to select the first choice.

What type of media is this product distributed on?
{Floppy disk, 1.2MB floppy, Tape cartridge, Cartridge disk, 9-track tape}
--> .£. (identifies a cartridge disk for use)

If the media needs to be formatted be/ ore it can be used, the following questions are
asked: ·

If you like, I will automatically format the media for you.
Would you like this?
{Yes, No}
--> .Y

Enter the shell command needed to format this type of media:
-->

The particular command needed here will vary, depending upon the device type, the
system in use, its configuration, etc. The following virtual device names are normally
linked to their respective raw device names in / dev, and should be allowable in the
response:

I dev I FLOPPY
I dev I FLOPPY.MB
I dev I IOMEGA

for 640K floppy disk
for 1.2MB floppy disk
for 5MB IQmega cartridge disks

If specified, this command is issued to the shell each time a new volume of media is
mounted.

Mount media volume #l, then hit RETURN ...

If automatic formatting was requested, then the specified format command is
displayed now (not shown) as it is invoked.

What is the name of this product? --> example

What is this product's new release identifier? -> EXANrPLE 3.0

Enter a file name (<11 chars; similar to the product name) for auditing needs
--> example (#2)

This name is used for auditing purposes and must conform to UNIX file system nam­
ing conventions. It is a good idea to use some variant of the product's name here, only
without any embedded spaces or other funny characters. If illegal characters ar?
entered, the following warning message is displayed and the prompt is re-issued:

This name must conform to UNIX file naming conventions!!!

41968-51 . - 2 - 09/09//86

'.REA TE(IM) (Motorola Inc. Only)

Enter a file name (<11 chars; similar to ~he product name) for auditing needs
-->example

Enter the pathname for the directory where this product is found
(you're now in <name-of-current-working-directory>)
--> xyz

CREATE(IM)

Any absolute or valid relative pathname is legal here. If you're already in the root
directory for the product, just enter a " . " (dot). If an invalid directory name is
entered, eg. the "xyz" shown, then the following message is displayed:

create: warning -- 'xyz' is an invalid.directory path!!!
(errno = 2)

Enter the pathname for the directory where this product is found
(you're now in /usr/local/src/example/common)
--> ••
(The product's root pathname is /usr/local/src/example)

Into what directory (on the TARGET SYSTEM) should Upgrade copy this product?
-->

This is where the product will be installed in a user's system when he runs Upgrade.
A null response is not allowed, and simply causes the prompt to be repeated. There
are two other types of invalid responses:

Into what directory (on the TARGET SYSTEM) should Bpgrade copy this product?
--> example (invalid response type 1)

create: warning -- The target directory name .must begin with a '/'!

Into what directory (on the TARGET SYSTEM) should Upgrade copy this product?
--> L (invalid response type 2)

create: warning -- The target directory name cannot be just '/'!

Into what directory (on the TARGET SYSTEM) should Upgrade copy this product?
--> /d31/stuff/example

Note that if this directory path doesn't exist in the USER'S SYSTEM, Upgrade will
create it, if possible.

Enter a command string (<128 chars) to be executed at START of upgrade:
-->date

968-51

This command, if specified, is simply submitted to the shell by Upgrade before any of
the product's files are read from the distribution media.· In this example, the date
command is given, although any sequence of commands and/or scripts is legal.

- 3 - 09/09//86

CREATE(IM) (Motorola Inc. Only) CREATE(IM)

.
Enter a command string (<128 chars) to be executed and END of upgrade:
-->

Similarly, this optional command string is executed by Upgrade after all of the
product's files have been copied into the specified TARGET SYSTEM directory. For
either command string. a null response is accepted, as in this example,

Please stand-by for a moment while I figure some things out •••

(nnnn media blocks needed) ...
(deriving an audit file now) •••

As create computes how much space will occupy on the distribution media, the first
line above is displayed and updated periodically to show its progress. After most of
the media blocks have been counted, the second line above is displayed while create
generates .a ere file. When this is done, the first line is redisplayed showing the total
block count for the media.

NOTE THAT THE AUDIT FILE DERIVATION CAN TAKE A MINUTE OR MORE!
BE PATIENT!

The audit files are placed into the /usr /AUDITS directory for use by Upgrade.
Specifically, the "'.crO file is copied to the distribution media for later installation into
a user's system for auditing needs.

When this phase is finished, the screen is cleared via 'tput clear'.

Create Master Release Media Utility, R3.1

This product's name is 'example'
It's release identifier is: EXAMPLE 3.0
(Auditing facilities will use the name: example)
It is located in the directory rooted at '/usr/local/src/example'.
It occupies about 292 x 1024-byte disk blocks in the file system,

and requires 268 (1024-byte) blocks of distribution media.

The distribution media was specified as Cartridge disk.
So, 1 volume(s) of this media will be needed to distribute this product.

Upgrade will execute this command string prior to installation:
date

It will then install the product into the directory named:
/d3/stuff/example

Finally, this command string will be invoke~d after installation:
--- none specified --

Are these input parameters correct?
{Yes, No}
-->

41968-51 - 4 - 09/09//86

lEATE(lM) (Motorola Inc. Only) CREATE(IM)

At this point, a 'no' response will allow the user to re-define everything. A 'y' or null
response will start the creation of the distribution media.

(Note that the byte count shown in the forth line above (i.e., "292 x 1024-byte blocks")
will vary, depending upon whether the file system containing the produc.t's files uses
512 or 1024 byte blocks -- both create and upgrade automatically detect and adjust
for any variations here. The distribution media is always written with 1024 byte
blocks.)

- FILE COPY IN PROGRESS ------

nnnn blocks written to vol #l from /usr/local/src/example.
nnnn blocks being verified on media ••.

The above two lines display create's progress as it copies the product's files to the
media (top line), and then as it re-reads the media to verify its integrity.

In situations where more than one media volume is needed, the fallowing prompt is
issued after each volume has been filled:

Mount media volume #n, then hit RETURN •••

Automatic formatting is performed now, if specified (not shown).

nnnn blocks written to volume #n from <source_directory> ...
nnnn blocks being verified on media .••

and so on, until the entire product has been written to media.

Now creating an audit file for this product ...

Finished creating master(s) for 'example (EXAMPLE 3.0)'.

(A table-of-contents listing of this product with crc's is contained" in:
'<audit_ file_ name>'

Do you wish to create a master copy of another product?
{No, Yes}
-->, -

· If you're done, you can just hit RETURN now.

$ This ends the example dialog!

1IAGNOSTICS
Most parameters are validated before being committed for use, either by the program or by
the user via the status display. It is possible, however, for an internally executed shell com­
mand to die, in which case an error message may or may not be produced. Known error con­
ditions fall into two categories: warnings and fatal errors. Warnings produce a message, but
allow for continued execution. Fatal errors include any error that would prevent a complete

1968-51 - 5 - 09/09//86

CREATE(IM) (Motorola Inc. Only) CREATE(IM)

creation of the distribution media. The defined warning and fatal error .messages are
enumerated below.

Note that if the /usr/bin/crc program is missing, create should be aborted and re-run after

FILES

ere is located and installed. ·

--- WARNING MESSAGES --­
Warnings likely to be encountered:

The target directory name must begin with a '/'
The target directory cannot be just a '/'
The media failed verification
'<pathname>' is an invalid directory path

Warnings unlikely to be encountered:

can't determine size of audit file
· can't read/verify end-of-volume flag from media
can't read/verify checksum block from media

••• FATAL ERROR MESSAGES --·
Fatal errors likely to be encountered:

You must be logged in as r?ot or have root's setuid permission set!

Fatal errors unlikely to be encountered:

can't open device {<dev _name>} for writing
error encountered while writing header info
error writing to output media
error reading from input data stream
error en~ountered while writing end-of-volume flag
error encountered while writing checksum to.the media
unable to open output media for reading
error encountered while reading header
error occurred attempting to read data from media
The end-of-volume flag block is corrupted
cannot chdir to '<source_root_directory>'

tput
/usr/bin/crc
/usr/ AUDITS/*

SEE ALSO
upgrade(lM), tput(lM), crc(IM), create(4)

41968-51 - 6 - 09/09//86

DCOPY(lM) DCOPY(lM)

NAME
dcopy - copy file systems for optimal access time

SYNOPSIS
/etc/dcopy [-sX] [-an] [-d] [-v] [-ffsize:isize] inputfs outputfs

DESCRIPTION
Dcopy copies file system input/s to outputfs. Jnputfs is the existing file system; outputfs is
an appropriately sized file system, to hold the reorganized result. For best results inputfs
should be the raw device and output/s should be the block device. Dcopy should be run on
unmounted file systems (in the case of the root file system, copy to a new pack). With no
arguments, dcopy copies files from input/s compressing directories by removing vacant
en tries, and spacing consecutive blocks in a file by the optimal rotational gap. The possible
options are:

-sX supply device information for creating an optimal organization of blocks in a file.
The forms of X are the same as the -s option of /sck(lM).

-an place the files not accessed in n days after the free blocks of the destination file
system (default for n is 7). If non is specified then no movement occurs.

-d leave order of directory entries as is (default is to move sub-directories to the
beginning of directories).

-v reports how many files were processed, and how big the source and destination
freelists are.

-ff size [:isize]
specify the outputfs file system and inode list sizes (in blocks). If the option (or
:isize) is not given, the values from the input fs are used.

Dcopy caJ~-es interrupts and quits and reports on its progress. To terminate dcopy, send a
quit signal;1nd dcopy will no longer catch interrupts or quits. Dcopy also attempts to modify
its commandline arguments so its progress can be monitored with ps(l).

SEE ALSO

BUGS

fsck(lM), mkfs(IM), ps(l).

If a non'""zero length fifo file (named pipe) is present on the input (source) file system, the out­
put (target) file system will be corrupted. To work around this problem, find the fifo file on
the input file system and either delete it or zero it out. The error that fsck finds on the out­
put file system is a duplicate block error, which will require elimination of files on that file
system to correct. Under normal circumstances this error should not be encountered, because
a fifo file goes to zero length if no processes have it open, which is the usual case if the input
file system can be unmounted.

- 1 -

DCPY(IM) (Motorola Inc. Only) DCPY(IM)

NAME
dcpy - copy file systems for optimal access time

SYNOPSIS
/motjbin/dcpy in-alias out-alias

DESCRIPTION

FILES

Dcpy uses the permissions file to change in-alias (a block device) and out-alias (a block
device) into inputfs and outputfs. Dcpy then copies file system inputfs to outputfs. lnputfs is
the existing file system; outputfs is a file system appropriately sized to hold the reorganized
result. Dcpy uses the /size parameter in the permissions file for the size of the file system on
outputfs. Dcpy should be run on unmounted file systems (in the case of the root file system,
copy to a new pack). With no arguments, dcpy copies files from inputfs, compressing direc­
tories by removing vacant entries, and spacing consecutive blocks in a file by the optimal
rotational gap. Dcpy places files not accessed in 7 days after the free blocks of outputfs.
Dcpy moves subdirectories to the beginning of directories. Dcpy catches interrupts and quits
and reports on its progress. To terminate dcpy, send a quit signal, and dcpy will no longer
catch interrupts or quits.

/etc/dcopy
/mot/bin/ dcpy
/mot/etc/perms permission file

SEE ALSO

BUGS

dcopy(lM), fsck(lM), mkfs(IM), ps(l).

If a non-zero length fifo file (named pipe) is present on the input (source) file system, the
output (target) file system will be corrupted. To work around this problem, find the fifo file
on the input file system and either delete it or zero it out. The error that fsck(lM) finds on
the output file system is a duplicate block error, which will require elimination of files on
that file system to correct. Under normal circumstances this error should not be encoun­
tered, because a fifo file goes to zero length if no processes have it open, which is the usual
case if the input file system can be unmounted.

-1-

DEVNM(lM) DEVNM(lM)

NAME
devnm - device name

SYNOPSIS
/etc/devnm [names]

DESCRIPTION
Devnm identifies the special file associated with the mounted file system where the argument
name resides. (As a special case, both the block device name and the swap device name are
printed for the argument name I if swapping is done on the same disk section as the root file
system.) Argument names must be full pathnames.

This command is most commonly used by /etc/re (see bcheckrc(1M)) to construct a mount
table en try for the root device.

EXAMPLE
The command:

/etc/devnm /usr
produces

dsk./ cntrlr _ lsO /usr
if /usr is mounted on /dev/dsklcntrlr _lsO.

FILES
/dev/dsk/•
/etc/mnttab

SEE ALSO
bcheckrc(lM), setmnt(lM).

- 1 -

DF(lM) DF(lM)

NAME
df - report number of free disk blocks

SYNOPSIS
df [-t] [-f] [file-systems]

DESCRIPTION

FILES

D f prints out the number of free blocks and free inodes available for online file systems by
examining the counts kept in the super-bloc.ks; file-systems may be specified either by device
name (e.g., /dev!dsklcntrlr _Os1) or by mounted directory name (e.g., /usr). H the file­
systems argument is unspecified, the free space on all of the mounted file systems is printed.

The -t flag causes the total allocated block figures to be reported as well

If the -f flag is given, only an actual count of the blocks in the free list is made (free inodes
are not reported). With this option, df reports on raw devices.

/dev/dsk/•
/etc/mnttab

SEE ALSO
fs(4), mnttab(4).

- 1 -

DINIT(IM) DINIT(IM)

'l"AME
dinit - disk initializer

iYNOPSIS
/etc/dinit [-force] [-T] [-d desc] [-b file] [-t file] type rdev

DESCRIPTION
Dinit can be. used to initialize specified disk types. The type must be one from the file
/etc/diskdefs. Current values are shown in the following tables:

VM21 CONTROLLER
Drive Name type Value
50Mb Lark Module Drive
l 6Mb Lark Module Drive
80Mb Cartridge Module Drive
l 6Mb Cartridge Module Drive
Double-sided 8" Floppy Diskette
Single-sided 8" Floppy Diskette

vm2llark25
vm2llark8
vm21cmd80
vm21cmd16
vm2ldssd8
vm21sssd8

VM22 CONTROLLER
Drive Name
Removable 25Mb Lark
Fixed 25Mb Lark
Removable 8Mb Lark
Fixed 8Mb Lark
Removable l 6Mb Cmd
Fixed l 6Mb CMD
Fixed 80Mb CMD
*Double-sided Double Density 8" Floppy
*Single-sided Double Density 8" Floppy
*Double-sided Single Density 8" Floppy
*Single-sided Single Density 8" Floppy
**Double-sided Double Density 5 1/4' Floppy
**Single-sided Double Density 5 1/4' Floppy
**Double-sided Single Density 5 1/4' Floppy
**Single-sided Single Density 5 1/4' Floppy

type Value
vm22R25L
vm22F25L
vm22R8L
vm22F8L
vm22R16C
vm22F16C
vm22F80C
vm22dsdd8
vm22ssdd8
vm22dssd8
vm22sssd8
vm22dsdd5
vm22ssdd5
vm22dssd5
vm22sssd5

*Motorola 8" Format
** IBM 5 1/4' Format

MVME319 CONTROLLER (ID CONTROLLER)
Drive Name
40Mb Micropolis Winchester
**Double-sided Double Density 5 1/4' Floppy
*Double-sided Single Density 8" Floppy
*Cipher Data Products CT525 FloppyTape

* Motorola 8" Format
** IBM 5 1/4' Format

l 963-51 :.. 1 · -

type Value
idwm40
iddsdd5
iddssd8

· idftape

09/09//86

I

I

DINIT(IM)

MVME320 CONTROLLER·
Drive Name
40Mb Vertex Winchester
l 5Mb Computer Memories Winchester
40Mb Micropolis Winchester
70Mb Micropolis Winchester
40Mb Miniscribe Winchester
40Mb Toshiba Winchester
70Mb Toshiba Winchester
70Mb Priam Winchester
140Mb MAXTOR Winchester
**Double-sided Double Density 5 1/l Floppy

type Value
m32040v
m32015
m32040m
m32070m
m32040s
m32040t
m32070t
m32070p
m320140
m320dsdd5

DINIT(IM)

** IBM 5 1/J: Format
MVME360 CONTROLLER

Drive Name type Value
337Mb Fujitsu SMD m360337

For disk types with software or hardware bad track handling, the alternate track numbers
will be taken from the file /etc/diskalts/type, where type is the type name given in
/etc/diskdefs. If no file /etc/diskalts/type exists, the user will be prompted to enter the alter­
nate track numbers interactively. There is no software bad tr;ick support for floppy diskettes.

The rdev argument specifies a raw device, which must be of the form /dev/rstring. There
must be a corresponding block device /dev/string with the same minor device number as the
character device. Dinit must be executed over slice 7 of the raw device.

The following options are provided for dinit:

-f Format disk. When formatting an unformatted disk, two read errors appear on the
screen. These errors occur because the controller is trying to read configuration
information from the disk. The messages can be ignored; the disk will be format-

-o

-r

-c

-e

-ddesc

-bfile

41963-51

ted as requested. · ·

Override disk contents, including type and bad tracks.

Read the current bad track list from the disk. By default, it is printed in <head>
<cylinder> format If the -T option is in effect, track numbers are· printed instead.
The actual list is printed to standard output, the header to standard error.

Check for new bad tracks. A read/write pass is executed for each track on the
device. If a read or write error occurs for a track, the track number is stored in a
list of bad tracks for the device (if -o was NOT specified, it is added to the
current list read from the d~vice). After the pass, any new bad tracks found are
printed. As ~ith -r above, the format of the list is controlled by the -T option.

Use EXORMACS instead of MOTOROLA in sector 0, for compatibility with
VM03 and EXORmacs bootloaders.

Use des'c as description string in sector 0.

Use file (a.out format)~ the bootloader program.

. 2. 09/09//86

~INIT(IM) DINIT(IM)

-tfile Take bad track information from file, instead.of interactively. By default, file is
assumed to contain some number of lines of the form:

head cylinder

indicating the location of manufacturer specified defects. If, however, the -T
option is in effect, the file is assumed to contain track numbers.

Unless the -for -o options are given, dinit will examine the disk to ensure the disk type is
not being changed (i.e. from m32070m to m32070t). Also, it will read the previous bad track
list. Therefore, it is not necessary to re-enter bad track numbers on subsequent use of dinit
on a disk. This is useful for changing the bootloader, description string, etc. (For calcula­
tions of bad track numbers, refer to the specific format utility, e.g., m320fmt(lM).)

Whenever new bad tracks are given to dinit, the layout of the areas of the disk provided for
file systems may be arbitrarily remapped. Therefore, all useful information from the disk
should be copied to backup media before adding bad tracks and then copied back when dinit
has finished.

XAMPLE

ILES

/etc/dinit -f -o -t /etc/badtracks/00 -b /stand/m68k/boots/vmeboot m32070m /dev/r00s7

This command formats the first 70MB disk attached to the first MVME320 controller using a
disk defect list entered into /etc/badtracks/00. All data on the disk is destroyed. The disk
contains a bootloader file that ·will boot the operating system after it is installed. Note: This
particular command could only be run while booted on a floppy or winchester drive other
than 00.

/etc/diskdefs disk definition file
/etc/diskalts/* alternate track numbers

EE ALSO
m320fmt(IM)
SYSTEM VI 68 Administrator's Guide. I

963-51 - 3 - 09/09//86

DISK USG(IM) DISK USG(IM)

NAME
diskusg - generate disk accounting data by user ID

SYNOPSIS
/usr/lib/acct/diskusg [options] [files]

DESCRIPTION
Diskusg generates intermediate disk accounting information from data in files, or the standard
input if the files argument is omitted. Diskusg outputs lines on the standard output, one per
user, in the following format:

uid login #blocks

where

uid is the numerical user ID of the user; login is the login name of the user; and #blocks is the
total number of disk blocks allocated to this user.

Diskusg normally reads only the inodes of file systems for disk accounting. In this case, files
are the special filenames of these devices.

Diskusg recognizes the following options:

-s The input data is already in diskusg output format. Diskusg combines all lines
for a single user into a single line.

-v Verbose. Print a list on standard error of all files that are charged to no one.

-ifnmlist

-pfile

Ignore the data on those file systems whose file system name is in fnmlist.
Fnmlist is a list of file system names, separated by commas or enclosed within
quotes. Diskusg compares each name in this list with the file system name
stored in the volume ID (refer to labelit in volcopy(lM)). For example, sites that
want to account only for disk blocks allocated to non-administrative users can
use the -i option to ignore certain file systems, e.g., root and usr. In this case,
the administrator should use the fsname field reported by labelit as the argu­
ments of the -i option to diskusg in the shell script dodisk. To ignore root and
usr, line 31 in dodisk would be changed to:
diskusg -i root,usr $args > dtmp

Use file as the name of the password file to generate login names. The file
/etc/passwd is used by default.

-ufile Write records to file of files that are charged to no one. Records consist of the
special filename, the inode number, and the user ID.

The output of diskusg is normally the input to acctdisk (refer to acct(IM)) which generates
total accounting reocrds that can be merged with other accounting records. Diskusg is nor­
mally run in the shell script dodisk (refer to acctsh(lM)). Note that in previous releases the
disk blocks of a file were charged to the user whose login directory hierarchy contained the
file. In the current release, diskusg charges disk blocks to the file's owner. This change may
result in slightly different disk block usage reports when run on the same data. The previous
method of disk accounting may be invoked with the -o option of dodisk.

EXAMPLES
The following will generate daily disk accounting information:

for i in /dev/rpOO /dev/rpOl /dev/rplO /dev/rpll; do
diskusg $i > dtmp.'basename $i'&

done

-1-

DISK USG(IM) DISK USG(IM)

wait
d.iskusg -s dtmp. • I sort +On + 1 I acctdisk > disktacct

FILES
/etc/passwd used for conversions of user ID to login name

SEE ALSO
acct(lM), acctsh(lM), acct(4).

-2-

ERRDEAD(lM) ERRDEAD(lM)

NAME
errdead - extract error records from dump

SYNOPSIS
/etc/errdead dumpfile [namelist]

DESCRIPTION

FILES

When hardware errors are detected by the system, an error record that contains information
pertinent to the error is generated. If the error-logging daemon errdemon(1M) is not active or
if the system crashes before the record can be placed in the error file, the error information is
held by the system in a local buffer. Errdead examines a system dump (or memory), extracts
such error records, and passes them to errpt(1M) for analysis.

The dump file specifies the file (or memory) that is to be examined. The system namelist is
specified by namelist; if not given, /unix is used.

/unix
I usr /bin/ err pt
/usr/tmp/errXXXXXX

system namelist
analysis program
temporary file

DIAGNOSTICS
Diagnostics may come from either errdead or errpt. In either case, they are self-explanatory.

SEE ALSO
errdemon(l M), err pt(1 M).

- 1 -

ERRDEMON (IM) ERRDEMON(IM)

NAME
errdemon - error-logging daemon

SYNOPSIS
/usr/lib/errdemon [file]

DESCRIPTION

FILES

The error logging daemon errdemon collects error records from the operating system by read­
ing the special file /dev/error and places them in file. If file is not specified when the dae­
mon is activated, /usr/adm/errfile is used. Note that file is created if it does not exist; other­
wise, error records are appended to it, so that no previous error data is lost. No analysis of
the error records is done by errdemon; that responsibility is left to errpt(lM). The error­
logging daemon is terminated by using errstop (see errstop(lM)). Only the superuser may
start the daemon, and only one daemon may be active at any time.

/ dev /error source of error records
/usr/adm/errfile repository for error records

DIAGNOSTICS
The diagnostics produced by errdemon are self-explanatory.

SEE ALSO
errpt(IM), errstop(IM), kill(l), err(7).

-1-

ERRPT(lM) ERRPT(lM)

NAME
errpt - process a report of logged errors

SYNOPSIS
errpt [options] [files]

DESCRIPTION

FILE'S

Err pt processes data collected by the error logging mechanism (errdemon (IM)) and generates
a report of that data. The default report is a summary of all errors posted in the files named.
Options apply to all files and are described below. If no files are specified, errpt attempts to
use /usr/adm/errfile as file.

A summary report notes the options that may limit its completeness, records the time stamped
on the earliest and latest errors encountered, and gives the total number of errors of one or
more types. Each device summary contains the total number of unrecovered errors, recovered
errors, errors unabled to be logged, 1/0 operations on the device, and miscellaneous activities
that occurred on the device. The number of times that errpt has difficulty reading input data
is included as read errors.

Any detailed report contains, in addition to specific error information, all instances of the error
logging process being started and stopped, and any time changes (via date (1)) that took place
during the interval being processed. A summary of each error type included in the report is
appended to a detailed report.

A report may be limited to certain records in the following ways:

-s date

-e date

-a

-d devlist

-pn

-f

/usr/adm/errfile

Ignore all records posted earlier than date, where date has the form
mmddhhmmyy, consistent in meaning with the date(l) command.

Ignore all records posted later than date, whose form is as described above.

Produce a detailed report that includes all error types.

A detailed report is limited to data about devices given in devlist, where
devlist can be one of two forms: a list of device identifiers separated from
one another by a comma, or a list of device identifiers enclosed in double
quotes and separated from one another by a comma and/or more spaces.
Err pt is familiar with the common form of identifiers. For the EXORmacs,
the device for which errors are logged is ud(7). For the VME/10, the device
is wd(7). For 3B20S, the devices are DFC, IOP, and MT. For Digital Equip­
ment Corporation machines, the (block) devices for which errors are logged
are RP03, RP04, RP05, RP06, RP07, RS03, RS04, TSll, TUlO, TU16, TU78, RK05,
RK06, RK07, RM:>5, RM80, and RFl 1. Additional identifiers are int and mem
which include detailed reports of stray-interrupt and memory-parity type
errors respectively.

Limit the size of a detailed report to n pages.

In a detailed report, limit the reporting of block device errors to unrecovered
errors.

default error file

SEE ALSO
errdead(1 M), err demon(1 M), err file(4), date(1).

- 1 -

ERRSTOP(lM)

NAME
errstop - terminate the error-logging daemon

SYNOPSIS
/etc/errstop [namelist]

DESCRIPTION

ERRSTOP (lM)

The error-logging daemon errdenwn(lM) is terminated by using errstop. This is accomplished
by executing ps(1) to determine the daemon's identity and then sending it a software kill
signal (see signal(2}); /unix is used as the system namelist if none is specified. Only the
superuser may use errstop.

FILES
/unix

DIAGNOSTICS

default system namelist

The diagnostics produced by errstop are self-explanatory.

SEE ALSO
errdemon(lM), ps(1), ki11(2), signal(2).

- 1 -

FF(lM) FF(IM)

NAME
ff - list filenames and statistics for a file system

SYNOPSIS
/etc/ff [options] special

DESCRIPTION
Ff reads the i-list and directories of the special file, assuming it to be a file system, saving
inode data for files that match the selection criteria. Output consists of the pathname for each
saved inode, plus any other file information requested (refer to the print options below). Out­
put fields are positional. The output is produced in inode order; fields are separated by tabs.
The default line produced by ff is:

pathname i-number

With all options enabled, output fields would be:

pathname i-number size uid

The argument n in the option descriptions that follow is used as a decimal integer (optionally
signed), where +n means more than n, -n means less than n, and n means exactly n. A day
is defined as a 24-hour period.

-I Do not print the inode number after each pathname.

-1 Generate a supplementary list of all pathnames for multiple linked files.

-p pre /ix The specified pre fix is added to each generated pathname. The default is ..

-s Print the file size, in bytes, after each pathname.

-u Print the owner's login name after each pathname.

-a n Select if the inode has been accessed in n days.

-m n Select if the inode has been modified in n days.

-c n Select if the inode has been changed in n days.

-n file Select if the inode has been modified more recently than the argument file.

-i inode-list Generate names for only those inodes specified in inode-list.

EXAMPLES
To generate a list of the names of all files on a specified file system:

ff -I /dev/diskroot

To produce an index of files and i-numbers that are on a file system and have been modified
in the last 24 hours:

ff -m -1 /dev/diskusr > /log/incbackup/usr/tuesday

To obtain the pathnames for inodes 451 and 76 on a specified file system:
ff -i 451,76 /dev/rdsk/cntrZr_lsO

SEE ALSO

BUGS

finc(lM), find(l), frec(lM), ncheck(lM).

Only a single pathname is generated for a multiply linked inode, unless the -1 option is speci­
fied. When -1 is specified, no selection criteria apply to the nam~s generated; all possible
names for every linked file on the file system are included in the output.

On very large file systems, memory may run out before ff does.

- 1 -

FILESAVE(lM) FILESAVE(lM)

NAME
filesave, tapesave - daily/weekly SYSTEM V/68 file system backup

SYNOPSIS
/etc/filesave.?
/etc/tapesave

DESCRIPTION
These shell scripts are provided as models. They are designed to provide a simple, interactive
operator environment for file backup. Filesave.? is for daily disk-to-disk backup, and
tapesave is for weekly disk-to-tape.

The suffix .? can be used to name another system where two (or more) machines share disk
drives (or tape drives) and one or the other of the systems is used to perform backup on both.

SEE ALSO
shutdown(1M), volcopy(1M).

- 1 -

INC(IM) FINC(IM)

rAME
fine - fast incremental backup

YNOPSIS
fine [selection-criteria] file-system raw-tape

1£SCRIPTION
Fine selectively copies the input file-system to the output raw-tape . Mount the input file­
system read-only to insure an accurate backup, although acceptable results can be obtained in
read-write mode. The tape must be previously labelled by labelit (see volcopy(IM)). The
selection is controlled by the selection-criteria, accepting only those inodes/files for whom the
conditions are true.

It is recommended that production of a fine tape be preceded by the ff command, and the
output of ff be saved as an index of the tape's contents. Files on a fine tape may· be
recovered with the free command.

The argument n in the selection-criteria which follow is used as a decimal integer (optionally
signed), where +n means more than n, -n means less than n, and n means exactly n. A day is
defined as 24 hours.

-an
-mn

-en

-nfile

XAMPLES

True if the file has been accessed in n days.

True if the file has been modified in n days.

True if the inode has been changed in n .days.

True for any file which has been modified more recently than the argument
file.

To write a tape consisting of all files from file-system /usr modified in the last 48 hours:

fine -m -2 /dev/rdiskusr /dev/rmtjcntrlr_Om

~E ALSO
cpio(1), ff(IM), free(IM), volcopy(IM).

}63-51 - I - . 09/09/86

FMT(lM) · (Motorola Inc. Only) FMT(IM)

NAME
format - disk· initializer

SYNOPSIS
/mot/bin/fmt [options] alias

DESCRIPTION

FILES

Fmt(lM) checks to see that alias is in the permissions file and that format permission is given.
It then lists the action it is going to take (i.e. what program it is going to execute over what
device) and asks for confirmation. Any character other than 'y' is taken as a negative
response and no action is taken. Otherwise, /mt(lM) passes on any options given and slice 7
of the raw device round in the permissions file to the format-program specified in the permis­
sions file.

/etc/diskdefs disk definition file
/etc/diskalts/* alternate track numbers
/etc/dinit
/mot/bin/fs
/mot/etc/perms permissions file ·

SEE ALSO
dinit(lM),
SYSTEM V / 68 Administrator's Guide.

41963-51 . I . 09/0~//86

I

;REC(IM) FREC(IM)

iAME
free - recover files from a backup tape

YNOPSIS
/etc/free [-p path] [-f reqfile] raw-tape i-number:name •.•

>ESCRIPTION
Free recovers files from the specified raw-tape backup tape written by volcopy(lM) or
finc(IM), given the i-numbers. The data for each recovery request is written into the file
given by name.

The -p option allows specification of a default prefixing path different from the current
working directory. This is prefixed to any names that are not fully qualified, i.e., that do not
begin with / or ./. If any directories are missing in the paths of recovery names, they are
created.

-ppath

-f reqfile

Specifies a prefixing path to be used to fully qualify any names that do not
start with / or ./. ·

Specifies a file which contains recovery requests. Using only one entry per
line, the format is: i-number:newname

XAMPLES
To recover file i-number 1216, when backed up into a file named junk in your current work­
ing directory:

free /dev/rmt/cntrl_mO 1216:junk

To recover files with i-numbers 14156, 1232, and 3141 into files /usr/src/cmd/a,
/usr/src/cmd/b and /usr/drane/a.c:

free -p /usr/src/cmd /dev /rmt/cntrlr _mO 14156:a 1232:b 3_141:/usr/drane/a.c

~E ALSO

UGS

cpio{l), ff(IM), finc(lM), volcopy(lM).

While creating the intermediate directories contained in a pathname, free can only recover
inode fields for those directories contained on the tape and requested for recovery.

163-51 - I - 09/09/86

..

FS(IM) (Motorola Inc. Only) FS(lM)

NAME .
. fs - construct a file system

SYNOPSIS
/mot/bin/fs [disk [blocks [: inodes]]]

DESCRIPTION

FILES

Fs(lM) builds a file system with a single empty directory on it. The argument disk and the_
permissions file are used to determine the device to build a file system on. This device will
be the first match of disk and the real device or alias entries in. the permissions file. If the
disk argument is not given then the first alias of default in the permissions file will be used.

Fs actually uses the raw version of the listed real device (by prepending an 'r' to the name). I
The size of the file system is the value of blocks interpreted as a decimal number. This is the
number of physical disk blocks the file system occupies. This value may not be larger than
the default value specified in the permissions file. If the number of blocks is not specified the
default value in the permissions file is used. The boot program is left uninitialized. If the
optional number of inodes is not given, the default is the number of logical blocks divided by
four.

/etc/mkfs
/mot/bin/fs
/mot/etc/perms permissions file

SEE ALSO
dir(4), fs(4), mkfs(lM), perms(4)
SYSTEM V. / 68 Administrator's Guide. I

. 41963-51 . ':- 1 - 09/09//86

FSBA(lM) FSBA(lM)

NAME
fsba - file system block analyzer

SYNOPSIS
fsba file-system _

DESCRIPTION
Fsba determines the number of extra sectors (1 sector has 512 bytes) needed when the file
system logical block size is increased from 512 bytes per block to 1024 bytes/block. File­
system should be specified by device name (e.g., /dev/dsk/cntrlr _lsl).

Fsba determines how many sectors are currently allocated for the 512 bytes/block file sys­
tem, and how many sectors are required for the 1024 bytes/block converted file system.
Fsba also prints out the number of allocated and free inodes for each file-system.

If the number of free sectors for the 1024 bytes/block file system is negative, the file system
is too large to convert to 1024 bytes/block.

SEE ALSO
fi4).

- 1 -

FSCK(lM) FSCK(lM)

NAME
fsck, dfsck - file system consistency check and interactive repair

SYNOPSIS
/etc/fsck [-y] [-n] [-sx] [-sx] [-t file] [-q] [-D] [-f] [file-systems]

/etc/dfsck [optionsl] filsysl •.• - [options2] filsys2

DESCRIPTION
Fsck

F sck audits and interactively repairs inconsistent conditions for SYSTEM V /68 files. If the file
system is consistent then the number of files, number of blocks used, and number of blocks
free are reported. If the file system is inconsistent, the operator is prompted for concurrence
before each correction is attempted. It should be noted that most corrective actions result in
some loss of data. The amount and severity of data lost may be determined from the diagnos­
tic output. The default action for each consistency correction is to wait for the operator to
respond yes or no. If the operator does not have write permission fsck defaults to a -n
action.

Fsck has more consistency checks than its predecessors check, dcheck, [check, and icheck
combined.

The following options are interpreted by f sck.

-y Assume a yes response to all questions asked by fsck.

-n Assume a no response to all questions asked by fsck; do not open the file system for
writing.

-sX Ignore the actual free list' and (unconditionally) reconstruct a new one by rewriting the
superblock of the file system. The file system should be unmounted while this is done;
if this is not possible, care should be taken that the system is quiescent and that it is
rebooted immediately afterwards. This precaution is necessary so that the old, bad, in­
core copy of the superblock does not continue to be used, or written on the file system.

The -sX option allows for creating an optimal free-list organization. The following
forms of X are supported for the following devices:

-sBlocks-per-cylinder:Blocks-to-skip

If X is not given, the values used when the file system was created are used. If these
values were not specified, then the value 400:7 is used.

-SX Conditionally reconstruct the free list. This option is like -sX above, except that the
free list is rebuilt only if there were no discrepancies discovered in the file system.
Using -S forces a no response to all questions asked by fsck. This option is useful for
forcing free list reorganization on uncontaminated file systems.

-t If f sck cannot obtain enough memory to keep its tables, it uses a scratch file. If the -t
option is specified, the file named in the next argument is used as the scratch file, if
needed. Without the -t flag, fsck prompts the operator for the name of the scratch
file. The file chosen should not be on the file system being checked, and if it is not a
special file or did not already exist, it is removed when f sck completes.

-q Quiet fsck. Do not print< size-check messages in Phase 1. Unreferenced fifos are
silently removed. If fsck requires it, counts in the superblock are automatically fixed
and the free list salvaged.

-D Directories are checked for bad blocks (useful after system crashes).

-f Fast check. Check block and sizes (Phase 1) and check the free list (Phase 5). The free
list is reconstructed (Phase 6) if it is necessary.

- 1 -

FSCK(lM) FSCK(lM)

If no file-systems are specified, fsck reads a list of default file systems from the file
I etc/ checklist.

Inconsistencies checked are as follows:
1. Blocks claimed by more than one inode or the free list.
2. Blocks claimed by an inode or the free list outside the range of the file system.
3. Incorrect link counts.
4. Size checks:

Incorrect number of blocks.
Directory size not 16-byte aligned.

5. Bad inode format.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated inode.
lnode number out of range.

8. Super Block checks:
More than 65536 inodes.
More blocks for inodes than there are in the file system.

9. Bad free block list format.
10. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the operator's con­
currence, reconnected by placing them in the lost+found directory, if the files are not empty.
The user is notified if the file or directory is empty or not. If it is empty, f sck silently
removes it. Fsck forces the reconnection of directories which are not empty. The name
assigned is the inode number. The only restriction is that the directory lost+found must
pre-exist in the root of the file system being checked and must have empty slots in which
entries can be made. This is accomplished by making lost+found, copying a number of files
to the directory, and then removing them (before fsck is executed).

Checking the raw device is almost always faster and should be used with everything but the
root file system.

Dfsck

FILES

Dfsck allows two file system checks on two different drives simultaneously. Options] and
options2 are used to pass options to fsck for the two sets of file systems. A - is the separator
between the file system groups.

The dfsck program permits an operator to interact with two fsck(1M) programs at once. To
aid in this, dfsck prints the file system name for each message to the operator. When answer­
ing a question from dfsck, the operator must prefix the response with a 1 or a 2 (indicating
that the answer refers to the first or second file system group).

Do not use dfsck to check the root file system.

I etc/ checklist
/etc/checkall

contains default list of file systems to check.
optimizing dfsck shell file.

SEE ALSO

BUGS

checkall(lM), clri(lM), ncheck(lM), checklist(4), fs(4), crash.macsC8).
"Setting up SYSTEM V/68" in the SYSTEM V/68 Administrator's Guide.

Inode numbers for. and •• in each directory should be checked for validity.
Unless explicitly called with the -n flag, f sck will automatically clear unreferenced inodes.
This will damage a mounted file system.

DIAGNOSTICS

The diagnostics produced by fsck are self-explanatory.

-2-

FSCV(lM) FSCV(lM)

NAME
fscv - convert files between M68000 and V AX-11/780 processors

SYNOPSIS
/etc/fscv -v ispecial [ospecial]
/etc/fscv -m ispecial [ospecial]

DESCRIPTION
F scv converts file systems between M68000 and v AX-111780 formats. The super block, free
list, and inodes are converted to the format of the output file. F scv may be executed on
M68000 and v AX processors. The mandatory flag specifies the format of the converted file
system:

-v Convert file system from M68000 to VAX format.

-m Convert file system from VAX to M68000 format.

Is pecia/, is the name of a special file containing a file system to be converted (e.g.,
/dev/rdsk/cntrZr_lsO). The optional ospecial is the name of the special file to receive the
results of the conversion. If ospecial is specified, the entire contents of ispecial are copied to
os pecial before the conversion is performed. If os pecial is not specified, an in-place conversion
of ispecial is performed. The following items should be noted before executing fscv:

1. A file system consistency check (f sck(lM)) should be performed on ispecial immedi­
ately prior to executing fscv.

2. Neither is pecial nor the optional os pecial should contain a mounted file system during
execution of f scv. Modification to either the input or the output file system while
f scv is executing will probably corrupt the converted file system.

3. A backup of ispecial (see volcopy(lM)) is highly recommended if an in-place conver­
sion is to be performed. System crashes, 110 errors, etc., during execution of fscv may
destroy the file system contained in ispecial. Also, if the optional ospecial is specified,
any data contained in that special file is over written.

4. If the optional os pecial is specified, this special file must be large enough to contain the
entire contents of ispecial. See the appropriate special files in section 4.

EXAMPLES

BUGS

Copy and convert a file system from M68000 to VAX format:

/etc/fscv -v /dev/rdsk/cntrlr _OsO /devlrdsklcntrlr_lsO

Perform an in-place conversion from VAX to M68000 format:

/etc/fscv -m /devlrdsklcntrlr _lsO

The boot block is not modified during conversion; the resulting file system is not bootable. No
data contained in the files of the file system are modified.

SEE ALSO
fsck(lM), volcopy(1M).

- 1 -

FSDB(lM) FSDB(lM)

NAME
fsdb - file system debugger

SYNOPSIS
/etc/fsdb special [-]

DESCRIPTION
Fsdb can be used to patch up a damaged file system after a crash. It has conversions to
translate block and i-numbers into their corresponding disk addresses. Also included are
mnemonic offsets to access different parts of an inode. These greatly simplify the process of
correcting control block entries or descending the file system tree.

F sdb contains several error checking routines to verify inode and block addresses. These can
be disabled if necessary by invoking fsdb with the optional - argument or by the use of the
0 symbol. (Fsdb reads the i-size and f-size entries from the superblock of the file system as
the basis for these checks.)

Numbers are considered decimal by default. Octal numbers must be prefixed with a zero.
During any assignment operation, numbers are checked for a possible truncation error due to a
size mismatch between source and destination.

Fsdb reads a block at a time and, therefore, works with raw as well as block I/O. A buffer
management routine is used to retain commonly used blocks of data in order to reduce the
number of read system calls. All assignment operations result in an immediate write-through
of the corresponding block.

The symbols recognized by fsdb are:
absolute address
i
b
d
+,-
q
>,<

=+

•
0
p
f
B
w
D

convert from i-number to inode address
convert to block address
directory slot offset
address arithmetic
quit
save, restore an address
numerical assignment
incremental assignment
decremental assignment
character string assignment
error checking flip flop
general print facilities
file print facility
byte mode
word mode
double word mode
escape to shell

The print facilities generate a formatted output in various styles. The current address is nor­
malized to an appropriate boundary before printing begins. It advances with the printing and
is left at the address of the last item printed. The output can be terminated at any time by
typing the delete character. If a number follows the p symbol, that many entries are printed.
A check is made to detect block boundary overflows, since logically sequential blocks are gen­
erally not physically sequential. If a count of zero is used, all entries to the end of the
current block are printed. The print options available are:

i print as inodes
d print as directories
o print as octal words
e print as decimal words

- 1 -

FSDB(lM)

c
b

print as characters
print as octal bytes

FSDB(lM)

The f symbol is used to print data blocks ~iated with the current inode. If followed by a
number, that block of the file is printed. (Blocks are numbered from zero.) The desired print
option letter follows the block number, if present, or the f symbol. This print facility works
for small as well as large files. It checks for special devices and that the block pointers used
to find the data are not zero.

Dots, tabs and spaces may be used as function delimiters but are not necessary. A line with
just a newline character increments the current address by the size of the data type last
printed. That is, the address is set to the next byte, word, double word, directory entry or
inode, allowing the user to step through a region of a file system. Information is printed in a
format appropriate to the data type. Bytes, words and double words are displayed with the
octal address followed by the value in octal and decimal. A .B or .D is appended to the
address for byte and double word values, respectively. Directories are printed as a directory
slot offset followed by the decimal i-number and the character representation of the entry
name. !nodes are printed with labeled fields describing each element.

The following mnemonics are used for inode examination and refer to the current working
in ode:

EXAMPLES
386i

ln=4

ln=+l

fc

2i.fd

d5i.fc

md
ln
uid
gid
sz
a#
at
mt
maj
min

512B.p0o

2i.a0b.d7=3

d7.nm="name"

a2b.p0d

SEE ALSO

mode
link count
user ID number
group ID number
file size
data block numbers (0 - 12)
access time
modification time
major device number
minor device number

prints i-number 386 in an inode format. This now becomes the current
working inode.

changes the link count for the working inode to 4.

increments the link cour,t by 1.

prints, in ASCII, block zero of the file associated with the working inode.

prints the first 32 directory entries for the root inode of this file system.

changes the current inode to that associated with the 5th directory entry
(numbered from zero) found from the above command. The first logical
block of the file is then printed in ASCII.

prints the superblock of this file system in octal.

changes the i-number for the seventh directory slot in the root directory to
3. This example also shows how several operations can be combined on one
command line.

changes the name field in the directory slot to the given string. Quotes are
optional when used with nm if the first character is alphabetic.

prints the third block of the current inode as directory entries.

fsck(lM), dir(4), fs(4).

- 2 -

FUSER(lM) FUSER(lM)

NAME
fuser - identify processes using a file or file structure

SYNOPSIS
/etc/fuser [-ku] files [-] [[-ku] files]

DFSCRIPTION
Fus er lists the process IDs of the processes using the files specified as arguments. For block
special devices, all processes using any file on that device are listed. The process ID is fol­
lowed by c, p or r if the process is using the file as its current directory, the parent of its
current directory Conly when in use by the system), or its root directory, respectively. If the
-u option is specified, the login name, in parentheses, also follows the process ID. In addition,
if the -k option is specified, the SIGKILL signal is sent to each process. Only the superuser
can terminate another user's process (see kill(2)). Options may be respecified between groups
of files. The new set of options replaces the old set, with a lone dash canceling any options
currently in force.

The process IDs are printed as a single line on the standard output, separated by spaces and ter­
minated with a single new line. All other output is written on standard error.

EXAMPLFS

FILFS

fuser -ku ldevldsk/cntrlr Js?
terminates all processes that are preventing disk drive one from being unmounted if
typed by the superuser, listing the process ID and login name of each as it is killed.

fuser -u /etc/passwd
lists process IDs and login names of processes that have the password file open.

fuser -ku ldev/dsklcntrlr Js? -u /etc/passwd
does both of the above examples in a single command line.

/unix
/dev/kmem
/dev/mem

for namelist
for system image
also for system image

SEE ALSO
mount(lM), ps(l), ki11(2), signal(2).

- 1 -

FWTMP(lM) FWTMP(lM)

NAME
fwtmp, wtmpfix - manipulate connect accounting records

SYNOPSIS
/usr/lib/acct/fwtmp [-ic]
/usr/lib/acct/wtmpfix [files]

DESCRIPTION
Fwtmp

Fwtmp reads from the standard input and writes to the standard output, converting binary
records of the type found in 'wtmp to formated ASCII records. The ASCII version is useful to
enable editing, via ed(l), bad records or general purpose maintenance of the file.

The argument -ic is used to denote that input is in ASCII form, and output is in binary form.

Wtmpfix

FILES

Wtmpfix examines the standard input or named files in wtmp format, corrects the time/date
stamps to make the entries consistent, and writes to the standard output. A - can be used in
place of files to indicate the standard input. If time/date corrections are not performed, acct­
conl faults when it encounters certain date change records.

Each time the date is set, a pair of date change records are written to /etc/wtmp. The first
record is the old date denoted by the string old time placed in the line field and the flag
OLD_TIME placed in the type field of the <utmp.h> structure. The second record specifies
the new date and is denoted by the string new time placed in the line field and the flag
NEW_ TIME placed in the type field. W tmp fix uses these records to synchronize all time
stamps in the file.

In addition to correcting time/date st.amps, wtmpfix checks the validity of the name field to
ensure that it consists solely of alphanumeric characters, a $, or spaces. If it encounters a name
that is considered invalid, it changes the login name to INVALID and writes a diagnostic to the
standard error. In this way, wtmpfix reduces the chance of acctconl failure, when processing
connect accounting records.

/etc/wtmp
/usr /include/utmp.h

SEE ALSO
acct(lM), acctcms{tM), acctcom(t), acctcon(tM), acctmerg(tM), acctprc(tM), acctsh(tM),
runacct(tM), acct(2), acct(4), utmp(4).

- 1 -

GETTY(lM) GETTY(lM)

NAME
getty - set terminal type, modes, speed, and line discipline

SYNOPSIS
/etc/getty [-h] [-t timeout] line [speed [type [linedisc]]]
I etc/ getty -c file

DESCRIPTION
Getty is a program that is invoked by init(1M). It is the second process in the series Cinit­
getty-login-shell) that ultimately connects a user with SYSTEM V/68. Initially getty prints
the login message field for the entry it is using from /etc/gettydefs. Getty reads the user's
login name and invokes the login(l) command with the user's name as argument. While
reading the name, getty attempts to adapt the system to the speed and type of terminal being
used.

Line is the name of a tty line in /dev to which getty is to attach itself. Getty uses this string
as the name of a file in the /dev directory to open for reading and writing. Unless getty is
invoked with the -h flag, getty forces a hangup on the line by setting the speed to zero
before setting the speed to the default or specified speed. The -t flag plus timeout in seconds,
specifies that getty should exit if the open on the line succeeds and no one types anything in
the specified number of seconds. The optional second argument, speed, is a label to a speed
and tty definition in the file /etc/gettydefs. This definition tells getty what speed to ini­
tially run at, what the login message should look like, what the initial tty settings are, and
what speed to tr.v next should the user indicate that the speed is inappropriate (by typing a
<break> character.) The default speed is 9600 baud. The optional third argument, type, is a
character string describing to getty what type of terminal is connected to the line in question.
Getty understands the following types:

none default
vt61 DEC vt61
vtlOO DEC vtlOO
hp45 Hewlett-Packard HP45
clOO Concept 100

The default terminal is none, i.e., any crt or normal terminal unknown to the system. Also,
for terminal type to have any meaning, the virtual terminal handlers must be compiled into
the operating system. They are available, but not compiled, in the default condition. The
optional fourth argument, linedisc, is a character string describing which line discipline to use
in communicating with the terminal. Again the hooks for line disciplines are available in the
operating system, but there is only one presently available, the default line discipline, LDISCO.

When given no optional arguments, getty sets the speed of the interface to 9600 baud, speci­
fies that raw mode is used (awaken on every character), echo is suppressed, either parity is
allowed, newline characters are converted to carriage return-line feed, and tab expansion is
performed on the standard output. It types the login message, then reads the user's name, a
character at a time. If a null character (or framing error) is received, it is assumed to be the
result of the user pressing the "break" key. This causes getty to attempt the next speed in the
series. The series that getty tries is determined by what it finds in /etc/gettydefs.

The user's name is terminated by a newline or carriage-return character. The latter results in
the system being set to treat carriage returns appropriately (see termio(7)).

The user's name is scanned to see if it contains any lowercase alphabetic characters; if not, and
if the name is not empty, the system is told to map any future uppercase characters into the
corresponding lowercase characters.

Finally, login is called with the user's name as an argument. Additional arguments may be
typed after the login name. These are passed to login, which places them in the environment
(see login(1)).

- 1 -

GETTY(IM) GETTY(IM)

FILES

A check option is provided. When getty is invoked with the -c option and fil.e, it scans the
file as if it were scanning /etc/gettydefs and prints the results to the standard output. If
there are any unrecognized modes or improperly constructed entries, it reports these. If the
entries are correct, it prints out the values of the various flags. See termio(7) to interpret the
values. Note that some values are added to the flags automatically.

/etc/gettyd_efs

SEE ALSO

BUGS

ct(lC), init(lM), login(l), termici7), gettydefs(4), inittab(4), tty(7), "Setting up SYSTEM V/6811

in the SY STEM \'/68 Administrator's Guide.

While getty does understand simple single-character quoting conventions, it is not possible to
quote the special control characters that getty uses to determine when the end of the line has
been reached, which protocol is being used, and what the erase character is. Therefore, it is
not possible to log in via getty and type a #, @, /, !, _J backspace, AU, AD, or & a,s part of the
login name or arguments. They will always be interpreted as having their special meanings as
described above.

- 2 -

INIT(IM) INIT(lM)

NAME
init, telinit - process control initialization

SYNOPSIS
/etc/init [01234S6SsQq]

/bin/telinit [01234S6sSQqabc]

DESCRIPTION
Init

The primary role of init is to create processes from a script stored in the file /etc/inittab (see
inittab(4)). This file usually has init generate getty•s on each line that a user may log in on. It
also controls autonomous processes required by any particular system.

!nit considers the system to be in a run-level at any given time. A run-level can be viewed as
a software configuration of the system where each configuration allows only a selected group
of processes to exist. The processes generated by init for each of these run-levels is defined
in the inittab file. !nit can be in one of eight run-levels, 0-6, and S or s. The run-level is
changed by having a privileged user run /etc/init (which is linked to /bin/telinit and
/etc/init8). This user-generated init sends appropriate signals to the orginal init created by
the operating system when the system was rebooted, telling it which run-level to change to.

!nit is invoked inside the SYSTEM V /68 operating system as the last step in the boot pro­
cedure. The first thing init does is to look for /etc/inittab and see if there is an entry of the
type initdefault (see inittab(4)). If there is, init uses the run-level specified in that entry as the
initial run-level to enter. If this entry is not in inittab or inittab is not found, init requests that
the user enter a run-level from the virtual system console, /dev/syscon. If an S (s) is entered,
init goes into the SINGLE USER level. This is the only run-level that doesn't require the
existence of a properly formatted inittab file. If /etc/inittab doesn't exist, then by default the
only legal run-level that init can enter is the SINGLE USER level. In the SINGLE USER
level, the virtual console terminal /dev /syscon is opened for reading and writing, and the
command /bin/su is invoked immediately. To exit from the SINGLE USER run-level, one of
two options can be selected. First, if the shell is terminated (via an end-of-file}, init reprompts
for a new run-level. Second, the init or telinit command can signal init and force it to change
the run-level of the system.

When attempting to boot the system, failure of init to prompt for a new run-level may be due
to the fact that the device /dev /syscon is linked to a device other than the physical system
teletype (/dev/systty). If this occurs, init can be forced to relink /dev/syscon by typing a
delete on the system teletype which is located with the processor.

When init prompts for the new run-level, the operator may only enter one of the digits 0
through 6 or the letters Sor s. If S is entered, init operates as previously described in SIN­
GLE USER mode with the additional result that /dev/syscon is linked to the user's terminal
line, thus making it the virtual system console. A message is generated on the physical con­
sole, /dev/systty, saying where the virtual terminal has been relocated.

When init comes up initially and whenever it switches out of SlNGLE USER state to normal
run states, it sets the ioct/(2) states of the virtual console, /dev /syscon, to those modes saved
in the file /etc/ioctl.syscon. This file is written by init whenever SINGLE USER mode is
entered. If this file doesn't exist when init wants to read it, a warning is printed and default
settings are assumed.

If a 0 through 6 is entered, init enters the corresponding run-level. Any other input is
rejected and the user is reprompted. If this is the first time init has entered a run-level other
than SINGLE USER, init first scans inittab for special entries of the type boot and bootwait.
These entries are performed, providing the run-level entered matches that of the entry before
any normal processing of inittab takes place. In this way, any special initialization of the

- I -

INIT(IM) INIT(IM)

operating system (such as mounting file systems) can take place before users are allowed onto
the system. The inittab file is scanned to find all entries that are to be processed for that
run-level.

Run-level 2 is usually defined by the user to contain all of the terminal processes and dae­
mons that are generated in the multi-user environment.

In a multi-user environment, the inittab file is usually set up so that init creates a process for
each terminal on the system.

For terminal processes, ultimately the shell terminates because of an end-of-file either typed
explicitly or generated as the result of hanging up. When init receives a signal telling it that a
process it created has died, it records the fact and the reason it died in /etc/utmp and
/etc/wtmp if it exists (see who(l)). A history of the processes generated is kept in /etc/wtmp
if such a file exists.

To create each process in the inittab file, init reads each entry and for each entry that should
be regenerated, it creates a process. After it has generated all of the processes specified by
the inittab file, init waits for one of its descendant processes to die, a powerfail signal, or until
init is signaled by init or telinit to change the system's run-level. When one of the above three
conditions occurs, init re-examines the inittab file. New entries can be added to the inittab
file at any time; however, init still waits for one of the above three conditions to occur. To
provide for an instantaneous response the init Q or init q command can wake init to re­
examine the inittab file.

If init receives a power/ail signal (SIGPWR) and is not in SINGLE USER mode, it scans init­
tab for special powerf ail entries. These entries are invoked (if. the run-levels . permit) before
any further processing takes place. In this way, init can perform various cleanup and record­
ing functions whenever the operating system experiences a power failure. It is important to
note that the powerfail entries should not use devices that must first be initialized after a
power failure has occurred.

When init is requested to change run-levels (via telinit), init sends the warning signal
(SIGTERM) to all processes that are undefined in the target run-level. /nit waits 20 seconds
before forcibly terminating these processes via the kill signal (SIGKILL).

Telinit

FILES

Telinit, which is linked to /etc/init, is used to direct the actions of init. It takes a one charac­
ter argument and signals init via the kill system call to perform the appropriate action. The
following arguments serve as directives to init.

0-6 place the system in one of the run-levels 0-6.

a,b,c process only those /etc/inittab file entries having the a, b or c run-level set.

Q,q re-examine the /etc/inittab file.

s,S enter the single-user environment. When this level change is effected, the
virtual system teletype, /dev /syscon, is changed to the terminal from which
the command was executed.

Telinit can only be run by someone who is superuser or a member of group sys.

/etc/inittab
/etc/utmp
/etc/wtmp
I etc /ioctl.syscon
/dev/syscon
/dev/systty

- 2 -

INIT(IM) INIT(lM)

SEE ALSO
getty(lM), login(l), sh(l), who(l), kil1(2), inittab(4), utmp(4).
"Setting up SYSTEM V /68" in the SYSTEM V / 68 Administrator's Guide .

DIAGNOSTICS

BUGS

If init finds that it is continuously regenerating an entry from /etc/inittab more than 10 times
in 2 minutes, it assumes that there is an error in the command string, and generates an error
message on the system console. It does not regenerate this entry until either 5 minutes has
elapsed or it receives a signal from a user init (telinit). This prevents init from eating up sys­
tem resources when someone makes a typographical error in the inittab file or a program is
removed that is referenced in the inittab.

When changes to the init state of the system are made, a condition could develop where one
process opened the console for 1/0 while another process closed it. The process that had
opened the console would be unable to proceed and the sytem would hang, necessitating a
reboot. This problem would be encountered only when using single-user mode for other than
normal startup and then switching to multi-user mode.

- 3 -

INSTALL(lM) INSTALL(lM)

NAME
install - install commands

SYNOPSIS
/etc/install [-c dira] [-f dirb] [-i] [-n dire] [-o] [-s] file [dirx ...]

DESCRIPTION
Install is a command most commonly used in "makefiles" (see make(1)) to install a file
(updated target file) in a specific place within a file system. Each file is installed by copying
it into the appropriate directory, thereby retaining the mode and owner of the original com­
mand. The program prints messages telling the user exactly what files it is replacing or creat­
ing and where they are going.

If no options or directories (dirx .. .) are given, install searches a set of default directories
(/bin, /usr/bin, /etc, /lib, and /usr/lib, in that order) for a file with the same name as file.
When the first occurrence is found, install issues a message saying that it is overwriting that
file with file, and proceeds to do so. If the file is not found, the program states this and exits
without further action.

If directories (dirx ...) are specified after file, they are searched before the directories speci­
fied in the default list.

The meanings of the options are:

SEE ALSO

-c dira Installs a new command (file) in the directory specified by dira, only
if it is not found. If it is found, install issues a message saying that the
file already exists, and exits without overwriting it. May be used alone
or with the -s option.

-i

-n dire

-o

-s

Forces file to be installed in a given directory, whether or not one
already exists. If the file being installed does not already exist, the
mode and owner of the new file is set to 755 and bin, respectively. If
the file already exists, the mode and owner is that of the already exist­
ing file. May be used alone or with the -o or -s options.

Ignores default directory list, searching only through the given direc­
tories (dirx ...). May be used alone or with options other than -c and
-f.

If file is not found in any of the searched directories, it is put in the
directory specified in dire. The mode and owner of the new file is set
to 755 and bin, respectively. May be used alone or with options other
than -c and -f.

If file is found, this option saves the "found" file by copying it to OLD­
file in the directory in which it was found. This option is useful when
installing a normally text busy file such as /bin/sh or /etc/getty,
where the existing file cannot be removed. May be used alone or with
options other than -c.

Suppresses printing of messages other than error messages. May be used
alone or with any other options.

make(l), mk(8).

- l -

KILLALL(lM) K.ILLALL (lM)

NAME
killall - kill all active processes

SYNOPSIS
/etc/killall [signal]

DESCRIPTION

FILES

Killall is a procedure used by /etc/shutdown to kill all active processes not directly related
to the shutdown procedure.

Killall is chiefly used to terminate all processes with open files so that the mounted file sys­
tems can be unmounted.

Killall sends signal (see kill(l)) to all remaining processes not belonging to the above group of
exclusions. If no signal is specified, a default of 9 is used.

/etc/shutdown

SEE ALSO
fuser(lM), kill(l), ps(l), shutdown(lM), signa1(2).

- 1 -

LINK.(IM)

NAME
link, unlink - exercise link and unlink system calls

SYNOPSIS
/etc/link filel file2
/etc/unlink file

DESCRIPTION

LINK(IM)

Link and unlink perform system calls on their arguments, abandoning all error checking.
These commands may only be executed by the superuser.

SEE ALSO
rm(l), link(2), unlink(2).

- 1 -

LPADMIN(IM) LPADMIN(IM)

NAME
lpadmin - configure the LP spooling system

SYNOPSIS
/usr/lib/lpadmin -p printer [options]
/usr/lib/lpadmin -x dest
/usr/lib/lpadmin -d[dest]

DESCRIPTION
Lpadmin configures LP spooling systems to describe printers, classes and devices. It is used to
add and remove destinations, change membership in classes, change devices for printers,
change printer interface programs, and change the system default destination. Lpadmin may
not be used when the LP scheduler, lpsched(1M), is running, except where noted below.

One of the -p, -d or -x options must be present for every legal invocation of lpadmin.

-d[dest] makes dest, an existing destination, the new system default destination. If dest
is not supplied, then there is no system default destination. This option may be
used when lpsched(1M) is running. No other options are allowed with -d.

-xdest

-pprinter

removes destination dest from the LP system. If dest is a printer and is the
only member of a class, then the class is deleted, too. No other options are
allowed with -x.

names a printer to which all of the options below refer. If printer does not
exist then it is created.

The following options are only useful with -p and may appear in any order. For ease of dis­
cussion, the printer will be referred to as P below.

-cclass

-eprinter

inserts printer P into the specified class. Class is created if it does not already
exist.

copies an existing printer's interface program to be the new interface program
for P.

-h indicates that the device associated with Pis hardwired. This option is assumed
when creating a new printer, unless the -1 option is supplied.

-iinterface establishes a new interface program for P. Interface is the pathname of the

-1

-mmodel

-rclass

-vdevice

Restrictions.

new program.

indicates that the device associated with P is a login terminal. The LP
scheduler, lpsched, disables all login terminals automatically each time it is
started. Before re-enabling P, its current device should be established using
lpadmin.

selects a model interface program for P. Model is one of the model interface
names supplied with the LP software (see Models below).

removes printer P from the specified class. If P is the last member of the
class, then the class is removed.

associates a new device with printer P. Device is the pathname of a file that is
writable by the LP administrator, lp. Note that there is nothing to stop an
administrator from associating the same device with more than one printer. If
only the -p and -v options are supplied, then lpadmin may be used while the
scheduler is running.

When creating a new printer, the -v option and only one of the -e, -i or -m options must
be supplied. The -h artd -1 keyletters are mutually exclusive. Printer and class names may
be no longer than 14 characters and must consist entirely of the characters A-Z, a-z, 0-9 and

- 1 -

LPADMIN(IM) LPADMIN(lM)

_(underscore).

Models.
Model printer interface programs are supplied with the LP software. They are shell pro­
cedures which interface between lpsched and devices. All models reside in the directory
/usr/spool/lp/model and may be used as is with lpadmin -m. Alternatively, LP adminis­
trators may modify copies of models and then use lpadmin -i to associate them with printers.
The following list describes the models and lists the options which they may be given on the
lp command line using the -o keyletter:

dumb interface for a line printer without special functions and protocol. Form feeds are
assumed. This is a good model to copy and modify for printers which do not have
models.

1640 Diablo 1640 terminal running at 1200 baud, using XON/XOFF protocol. Options:

-12 12-pitch (10-pitch is the default)
-f don't use the 450(1) filter. The output has been pre-processed by either

450(1) or the nroff 450 driving table.

hp Hewlett Packard 2631A line printer at 2400 baud. Options:

-c compressed print
-e expanded print

prx Printronix P300 or P600 printer using XON/XOFF protocol at 1200 baud.

EXAMPLES

FILES

1. Assuming there is an existing Hewlett Packard 2631A line printer named hp2, it uses the
hp model interface after the command:

/usr/lib/lpadmin -php2 -mhp

2. To obtain compressed print on hp2, use the command:

lp -dhp2 -o-c files

3. A Diablo 1640 printer called st 1 can be added to the LP configuration with the command:

/usr/lib/lpadmin -pstl -v/dev/tty20 -m1640

4. An nroff document may be printed on stl in any of the following ways:

nroff -T450 files I lp -dstl -of
nroff -T450-12 files I lp -dstl -of
nroff -T37 files I col I lp -dstl

5. The following command prints the password file on stl in 12-pitch:

lp -dstl -012 /etc/passwd

NOTE: the -12 option to the 1640 model should never be used in conjunction with
nroff.

/usr/spool/lp/*

SEE ALSO
450(1), accept(lM), enable(!), lp(t), lpsched(lM), lpstat(l), "LP Spooling System" in SYSTEM
v I 68 Administrator's Guide.

- 2 -

LPSCHED(IM) LPSCHED(IM)

NAME
lpsched, lpshut, lpmove - start/stop the LP request scheduler and move requests

SYNOPSIS
/usr/lib/lpsched
/usr/lib/lpshut
/usr/lib/lpmove requests dest
/usr/lib/lpmove destl dest2

DESCRIPTION

FILm

Lpsched schedules requests taken by lp(l) for printing on line printers.

Lpshut shuts down the line printer scheduler. All printers that are prmtmg at the time
lpshut is invoked stop printing. Requests that were printing at the time a printer was shut
down are reprinted in their entirety after lpsched is started again. All LP commands perform
their functions even when lpsched is not running.

Lpmove moves requests that were queued by lp(l) between LP destinations. This command
may be used only when lpsched is not running.

The first form of the command moves the named requests to the LP destination, dest.
Requests are request ids as returned by lp. The second form moves all requests for destina­
tion dest 1 to destination dest2. As a side effect, lp rejects requests for dest 1.

Note that lpmove never checks the acceptance status (see accept(lM)) for the new destination
when moving requests.

/usr/spool/lp/*

SEE ALSO
accept(lM), enable(!), lp(l), lpadmin(lM), lpstat(l), "LP Spooling System" in SYSTEM v 168
Administrator's Guide.

- 1 -

M320FMT (IM) M320FMT (IM)

NAME
m320fmt - format disks on the MVME320 disk controller

SYNOPSIS
m320fmt [hard_disk_enable -h heads -c cylinders] rawdev

DESCRIPTION
The m320fmt utility is used to format disks on the MVME320 controller. Winchester
("hard") disks are formatted in a continuous operation which will keep the controller busy
until it completes. Floppy disks are formatted track-by-track, permitting other I/O operations
to intervene. Support for bad track handling on the MVME320 controller is done in software
only. Therefore the m320fmt utility should be used only for diskettes or for media that has
no defects listed on the Winchester verification report. To format any media that contains
imperfections or that is to be booted, use the dinit(IM) utility. Refer to dinit(IM). To per­
form the calculations needed to enter the media imperfections with the dinit utility, use the
conversion procedures described below.

The following options are available:

The string hard_disk_enable must appear as shown to enable formatting of a hard
disk. It may not appear if the target disk is a floppy.

-h The number of heads (surfaces per cylinder) on the target hard disk.

-c The number of cylinders;on the target hard disk.

rawdev must be a raw device defined on the target unit (/ dev /rdsk/m320 ...) . The slice
number is irrelevant for hard disks, but must be one which spans the entire
volume for floppy disks. By convention, slice 7 is thus defined M320fmt gen­
erates a warning message if it finds a floppy slice other than 7.

The dinit(IM) utility invokes m320fmt(IM), a disk formatter for MVME320 devices. Dinit
enters an interactive mode and prompts the user for bad track entries. Check the Winchester
verification report supplied by the disk manufacturer for a list of bad blocks or imperfections
on the disk. If no bad blocks are listed, type a period (.) to terminate the bad track han­
dling phase of disk initialization. The device is assumed to be perfect.

If imperfections are listed on the verification report, you must perform some calculations to
convert the information on the report into a form recognized by the utility. The dinit utility
expects a list of bad tracks. The Winchester verification report lists media imperfections in
one of two ways: either the report gives the sector number of the first bad sector on a track,
or the report identifies the problem area by head number, cylinder number, and byte offset.
To calculate the bad tracks from the information provided on the verification report, use one
of the following methods, whichever is appropriate to your disk:

METHOD 1: Calculate Bad Tracks from Sector Numbers

To obtain the bad track numbers, divide each sector number listed in the Winchester
verification report by the number of sectors per track. Since all supported drives (Computer
Memories, Micropolis, and Vertex) contain 32 sectors per track, the conversion equation
becomes:

track number = (sector number) / 32

METHOD 2: Calculate Bad Tracks from Head and Cylinder Numbers

(cylinder number) x (total# of heads) +(head number)= track number

-1-

M320FMT (lM) M320FMT(IM)

BUGS

The l 5Mb Computer Memories drive and the 40Mb Micropolis drive have 6 heads. The
Vertex 40Mb drive has 5 heads.

After m320fmt has formatted the device, dinit sets up the volume-id and the configuration
sectors, records the bad track information, and installs the boot loader on the drive.

(NOTE: If a Winchester disk is formatted without making the required bad track entries,
proper operation cannot be guaranteed.)

An error in specifying heads or cylinders for a hard disk may result in a disk which appears
to be correctly formatted but generates physical 1/0 errors in high cylinders (bad precomp
values) or seems to have "lost" some of its space (surface mapped out). Dinit(IM) references
a Motorola-prepared file which contains accurate values for these parameters.

SEE ALSO
dinit(lM), m320(7).

-2-

M350CTL(IM) UNIX 5.0 M350CTL(IM)

NAME
m350ctl - MVME350 control program

SYNOPSIS
m350ctl (-retwg] [-fx] [-s[n[kb]]] [special]

DESCRIPTION

FILES

M350ctl controls function of the MVME350 streaming tape device. The following options are
interpreted by m350ctl:

-r Rewind tape.

-e Erase tape.

-t Retension tape.

-w Open tape for writing (with filemark).

-fx Position tape at the front of file x.

-g Print DMA buffer size.

-sn Set DMA buffer size. The buffer size is set to n bytes, nb (or nB) blocks, or nk (or
nK) Kbytes. If n is not specified, the buffer size set to default value of 128 Kbytes.
If n is zero, then double buffering is turned off.

If the special file is not given, standard input will be used. For example, the command

m350ctl -e /dev/rmt/m350_0a

is identical to

m350ctl -e < /dev/rmt/m350_oa

If the -w option is used, the default special file is standard output. Thus, the command

m350ctl -ew /dev/rmt/m350_0t

is identical to

m350ctl -ew > /dev/rmt/m350_0t

See mvme350(1) for more information regarding special file naming conventions.

/dev/rmt/m350_*

SEE ALSO
mvme350(7).

- 1 -

MKFS(IM) MKFS(IM)

NAME
mkfs - construct a file system

SYNOPSIS
/etc/mkfs special blocks[:inodes] [gap blocks/cyl]
/etc/mkfs special proto [gap blocks/cyl]

D~CRIPTION

Mkjs constructs a file system by writing on the special file according to the directions found
in the remainder of the command line. The command waits 10 seconds before starting to con­
struct the file system. If the second argument is given as a string of digits, mkjs builds a file
system with a single empty directory on it. The size of the file system is the value of blocks
interpreted as a decimal number. This is the number of physical disk blocks the file system
occupies. The boot program is left uninitialized. If the optional number of inodes is not given,
the default is the number of logical blocks divided by 4.

If the second argument is a filename that can be opened, mkjs assumes it to be a prototype file
proto, and takes its directions from that file. The prototype file contains tokens separated by
spaces or newlines. The first token is the name of a file to be copied onto block zero as the
bootstrap program (see opsmacs(S)). The second token is a number specifying the size of the
created file system in physical disk blocks. Typically, it is the number of blocks on the dev­
ice, perhaps diminished by space for swapping. The next token is the number of inodes in the
file system. The maximum number of inodes configurable is 65500. The next set of tokens
comprise the specification for the root file. File specifications consist of tokens giving the mode,
the user ID, the group ID, and the initial contents of the file. The syntax of the contents field
depends on the mode.

The mode token for a file is a 6-character string. The first character specifies the type of the
file. (The characters -bed specify regular, block special, character special and directory files
respectively.) The second character of the type is either u or - to specify set-user-id mode or
not. The third is g or - for the set-group-id mode. The rest of the mode is a three-digit octal
number giving the owner, group, and other read, write, execute permissions (see chmod(l)).

Two decimal number tokens come after the mode; they specify the user and group m's of the
owner of the file.

If the file is a regular file, the next token is a pathname from which the contents and size are
copied. If the file is a block or character special file, two decimal number tokens follow,
which give the major and minor device numbers. If the file is a directory, mkjs makes the
entries • and - and then reads a list of names and (recursively) file specifications for the
entries in the directory. The scan is terminated with the token$.

A sample prototype specification follows:

/stand/ diskboot
4872 110
d-777 31
usr d--777 3 1

sh --755 3 1 /bin/sh
ken d-755 61

$
bO b--644 3 1 0 0
cO c--644 3 1 0 0
$

$

In both command syntaxes, the rotational gap and the number of blocks per cyde can be
specified. Default values are 7 for gap size and 400 blocks per cycle. The default will be used
if the supplied gap and blocks/cycl.e are considered illegal values or if a short argument count

- 1 -

MKFS(IM) MKFS(IM)

occurs.

SEE ALSO
chmod(l), dir(4), fs(4), bo.macs(8), bo.vme(8), ops.macs(8).
"Setting up SYSTEM V /68" in the SY ST EM V 168 Administrator's Guide.

BUGS
If a prototype is used, it is not possible to initialize a file larger than 64Kb, nor is there a way
to specify links.

- 2 -

MK.NOD(IM) MK.NOD(IM)

NAME
mknod - build special file

SYNOPSIS
/etc/mknod name c I b major minor
/etc/mknod name p

DESCRIPTION
Mknod makes a directory entry and corresponding inode for a special file. The first argu­
ment is the name of the entry. In the first case, the second is b if the special file is block­
type (disks, tape) or c if it is character-type (other devices). The last two arguments are
numbers specifying the major device type and the minor device, e.g., unit, drive, or line
number, which may be either decimal or octal.

The assignment of major device numbers is specific to each system and found in the system
source file: conf.c.

Mknod can also be used to create fifo's (pipes). (See the second case in the above SY NOPSI s .)
SEE ALSO

mknod(2).

- 1 -

.1NT(IM) (Motorola Inc. Only)

~AM:E
mnt, umnt - mount and dismount file system

,YNOPSIS
/mot/bin/mnt [name [directory]] [-r]

/motjbin/umnt [name]

>ESCRIPTION

MNT(lM)

Mnt (umnt) has an optional argument, name. This argument is used to search the permissions
file to determine the real device to mount (unmount). The file is searched and when name
matches either the real device or the alias entry on a line, the real device entry is then used
as the special cJevice to be mounted (unmounted). -

The default value for alias is default. The default value for directory is whatever directory is I
listed in the mntpt entry of the permissions file.

ILES

Mnt announces to the system that a removable file system is present on the special device.
The directory must exist already; it becomes the name of the root of the newly mounted file
system.

The optional last argument indicates that the file is to be mounted read-only. Write-protected
and magnetic tape file systems must be mounted in this way or errors will occur when access
times are updated, whether or not any explicit write is attempted. If the user has not been
granted Write permission for the alias (as controlled by the perms entry of the permissions
file), the device will be mounted read-only.

Umnt announces to the system that the removable file system previously mounted on a special
device is to be removed.

By convention mount(IM) and umount(IM) require root permission to execute. Normal users
must use mnt when dealiQg with mountable media.

/etc/mnttab moun~ table
/etc/mount
/etc/umount
/mot/bin/mnt
/mot/bin/umnt
/mot/etc/perms permissions file

EE ALSO
mount(1 M), mnttab(4), perms(4).

1IAGNOSTICS

UGS

Mnt issues a warning if the file system to be mounted is currently mounted under another
name. -
Umnt complains if the special file is not mounted or if it is busy. The file system is busy if it
contains an open file or a user's working directory.

The permissions file is not checked for read permission, before mounting a disk.

Some degree of validation is done on the file system; however, it is generally unwise to mount
garbage file systems.

963-51 - 1 - 09/09//86

I

I

MOUNT(IM) MOUNT(lM)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
/etc/mount [special directory [-r)]

/etc/umount special

DESCRIPTION

FILES

Mount announces to the system that a removable file system is present on the device special.
The directory must exist already; it becomes the name of the root of the newly mounted file
system.
These commands maintain a table of mounted devices. If invoked with no arguments, mount
prints the table.

The optional last argument indicates that the file is to be mounted read-only. Write-protected
and magnetic tape file systems must be mounted in this way or errors will occur when access
times are updated, whether_ or not any explicit write is attempted.

Umount announces to the system that the removable file system previously mounted on dev­
ice special is to be removed

/etc/mnttab mount table

SEE ALSO
setmnt(lM), mount(2), mnttab(4).

DIAGNOSTICS

BUGS

Mount issues a warning if the file system to be mounted is currently mounted under another
name.

Umount complains if the special file is not mounted or if it is busy. The file system is busy if
it contains an open file or a user's working directory.

Some degree of validation is done on the file system; however, it is generally unwise to
mount garbage file systems.

41963-51 " - I - 09/09/86

MVDIR(lM)

NAME
mvdir - move a directory

SYNOPSl'.S
/etc/mvdir dirname name

DESCRIPTION

MVDIR(lM)

Mvdir renames directories within a file system. mmame must be a directory; no.me must
not exist. Neither name may be a sub-set of the other (/x/y cannot be moved to /x/y/z, nor
vice versa).

Only superuser can use mvdir.

SEE ALSO
mkdir(t).

- 1 -

NCHECK(IM) NCHECK(IM)

NAME
ncheck - generate names from i-numbers

SYNOPSIS
/etc/ncheck [-i numbers] [-a] [-s] [file-system]

DESCRIPTION
Ncheck generates· a list of pathnames and i-numbers of all files on a set of default file systems.
Names of directory files are followed by / .. The -i option reduces the report to only those
files whose i-numbers follow. The -a option allows printing of the names . and . ., which are
ordinarily suppressed. The -s option reduces the report to special files and files with set­
user-ID mode; it is intended to discover concealed violations of security policy.

A file system may be specified.

The report is in no useful order. The user can pipe ncheck to the sort(I) utility to obtain the
report in a specified order. For example,

ncheck file_system I sort -n -onchecklist

will produce a list which sorts the i-node numbers numerically; or

ncheck file _system I sort +l -f -onchecklist

will produce a list which sorts files (in the second column of output) alphabetically by name.

SEE ALSO
f sck(IM), sort(I).

DIAGNOSTICS
When the file system structure is improper, ?? denotes the "parent" of a parentless file, and a
pathname beginning with ... denotes a loop.

-1-

PROFILER(lM) PROFILER(lM)

NAME
prfld, prfstat, prfdc, prf snap, prfpr - operating system profiler

SYNOPSIS
/etc/prfld [namelist]
/etc/prfstat [on]
/etc/prfstat [off]
/etc/prfdc file [period [off_hour]]
/etc/prfsnap file
/etc/prfpr file [cutoff [namelist]]

DESCRIPTION

FILES

Prfld, prfstat, prfdc, prfsnap, and prfpr form a group of programs to facilitate an
activity study of the operating system.

Pr fld initializes the recording mechanism in the system. It generates a table containing the
starting address of each system subroutine as extracted from namelist.

Pr f stat enables or disables the sampling mechanism. Profiler overhead is less than 1 % as cal­
culated for 500 text addresses. Pr [stat also reveals the number of text addresses being meas­
ured.

Pr fdc and pr [snap perform the data collection function of the profiler by copying the
current value of all the text address counters to a file where the data can be analyzed.
Prfdc stores the counters in file every period minutes and turns off at off_hour (valid
values for off _jwur are 0-24). Prfsnap collects data at the time of invocation only,
appending the counter values to file.

Prfpr formats the data collected by prfdc or prfsnap. Each text address is converted to the
nearest text symbol (as found in namelist) and is printed if the percent activity for that range
is greater than cutoff.

/dev/prf
/unix

interface -:o profile data and text addresses
default fo::- namelist file

SEE ALSO
prf(7).

- 1 -

PWCK(lM) PWCK(lM)

NAME
pwck, grpck - ~ord/group file checkers

SYNOPSIS
/etc/pwck [file]
/etc/grpck [file]

DESCRIPTION

FILES

Pwck scans the password file and notes any inconsistencies. The checks include validation of
the number of fields, login name, user ID, group ID, and whether the login directory and
optional program name exist. The criteria for determining a valid login name are derived
from "Setting up SYSTEM v/68" in the SYSTEM V/68 Administrator's Guide. The default
password file is /etc/passwd.

Grpck verifies all entries in the group file. This verification includes a check of the number
of fields, group name, group ID, and whether all login names appear in the password file. The
default group file is /etc/group.

/etc/group
/etc/passwd

SEE ALSO
group(4), passwd(4).
"Setting up SYSTEM V/68" in the SYSTEM V/68 Administrator's Guide.

DIAGNOSTICS
Group entries in /etc/group with no login names are flagged.

- 1 -

RUNACCT(IM) RUNACCT (IM)

NAME
runacct - run daily accounting

SYNOPSIS
/usr/lib/acct/runacct [mmdd [state]]

DESCRIPTION
Runacct is the main daily accounting shell procedure. It is normally initiated via cron (lM).
Runacct processes connect, fee, disk, and process accounting files. It also prepares summary
files for prdaily or billing purposes.

Runacct takes care not to damage active accounting files or summary files in the event of
errors. It records its progress by writing descriptive diagnostic messages into active. When
an error is detected, a message is written to /dev/console, mail (see mail(l)) is sent to
root and adm, and runacct terminates. Runacct uses a series of lock files to protect against
re-invocation. The files lock and lockl are used to prevent simultaneous invocation, and
lastdate is used to prevent more than one invocation per day.

Runacct breaks its processing into separate, restartable states using statefile to remember the
last state completed. It accomplishes this by writing the state name into statefile. Runacct
then looks in statefile to see what it has done and to determine what to process next. States
are executed in the following order:

SEI'UP

WTMPFIX

CONNECTl

CONNECT2

PROCESS

MERGE

FEES

DISK

MERGETACCT

CMS

USEREXIT

CLEANUP

Move active accounting files into working files.

Verify integrity of wtmp file, correcting date changes if necessary.

Produce connect session records in ctmp.h format.

Convert ctmp.h records into tacct.h format.

Convert process accounting records into tacct.h format.

Merge the connect and process accounting records.

Convert output of chargefee into tacct.h format and merge with
connect and process accounting records.

Merge disk accounting records with connect, process, and fee account­
ing records.

Merge the daily total accounting records in daytacct with the sum­
mary total accounting records in /usr/adm/acct/sum/tacct.

Produce command summaries.

Include any installation-dependent accounting programs here.

Cleanup temporary files and exit.

To restart runacct after a failure, first check the active file for diagnostics, then fix any cor­
rupted data files such as pacct or wtmp. The lock files and lastdate file must be removed
before runacct can be restarted. The argument mmdd is necessary if runacct is being res­
tarted, and specifies the month and day for which runacct reruns the accounting. Entry
point for processing is based on the contents of statefile; to override this, include the desired
state on the command line to designate where processing should begin.

EXAMPLES
To start runacct:

nohup runacct 2> /usr/adm/acct/nite/fd2log &

To restart runacct:
nohup runacct 0601 2> > /usr/adm/acct/nite/fd2log &

- 1 -

RUNACCT (lM) RUNACCT (lM)

FILEi

To restart runacct at a specific state:
nohup runacct 0601 MERGE 2> > /usr/adm/acct/nite/fd2log &

/etc/wtmp
/usr/adm/pacct*
/usr/src/cmd/acct/tacct.h
/usr/src/cmd/acct/ctmp.h
/usr I adm/ acct/ ni te/ active
I usr I adm/ acct/ ni tel da ytacct
/usr/adm/acct/nite/lock
/usr/adm/acct/nite/lockl
/usr/adm/acct/nite/lastdate
/usr/adm/acct/nite/statefile
/usr/adm/acct/nite/ptacct*.mmdd

SEE ALSO
acct(lM), acctcms(lM), acctcom(l), acctcon(lM), acctmerg(lM), acctprc(lM), acctsh(lM),
cron(lM), fwtmp(lM), acct(2), acct(4), utmp(4).
"Accounting" in the SYSTEM VI 68 Administrator's Guide.

DIAGNOSTICS

BUGS

The accounting system starts complaining with ***RECOMPILE pnpsplit Wim NEW
HOLIDAYS*** after the last holiday of the year. See "Accounting" in the SYSTEM V 168
Administrator's Guide for more on how to correct this condition. Other diagnostics are placed
in various error and log files.

Normally it is not a good idea to restart runacct in the SETUP state. Run SETUP manually
and restart via:

runacct m!lldd WTMPFIX

If runacct failed in the PROCESS state, remove the last ptacct file because it is not complete.

- 2 -

SADP(lM) SADP(lM)

NAME
sadp - disk access profiler

SYNOPSIS
sadp [-th] [-d device[-drive]] s [n]

DESCRIPTION
Sad p reports disk access location and seek distance, in tabular or histogram form. It samples
disk activity once every second during an interval of s seconds. This is done repeatedly if n is
specified Cylinder usage and disk distance are recorded in units of eight cylinders.

The only valid value of device is disk. Drive specifies the disk drives and it may be: a drive
number in the range supported by device, two numbers separated by a minus (indicating an
inclusive range), or a list of drive numbers separated by commas.

Up to eight disk drives may be reported. The -d option may be omitted, if only one device is
present.

The -t flag causes the data to be reported in tabular form. The -h flag produces a histogram
of the data on the printer. Default is -t.

EXAMPLE

FILES

The command:

sadp -d disk -0 900 4

generates 4 tabular reports, each describing cylinder usage and seek distance of disk drive 0
during a 15-minute interval.

/dev/kmem

- 1 -

SAR(lM) SAR(lM)

NAME
sal, sa2, sadc - system activity report package

SYNOPSIS
/usr/lib/sa/sadc [t n] [ofile]

/usr/lib/sa/sal [t n]

/usr/lib/sa/sa2 [-ubdycwaqvmA] [-s time] [-e time] [-i sec]

DESCRIPTION
System activity data can be accessed at the special request of a user (see sar(l)) and
automatically on a routine basis as described here. The operating system contains a number of
counters that are incremented as various system actions occur. These include CPU utilization
counters, buffer usage counters, disk and tape 1/0 activity counters, TTY device activity
counters, switching and system-call counters, file-access counters, queue activity counters, and
counters for inter-process communications.

Sade and shell procedures sal and sa2 are used to sample, save, and process this data.

Sade, the data collector, samples system data n times every t seconds and writes in binary
format to o file or to standard output. If t and n are omitted, a special record is written. This
facility is used at system boot time to mark the time at which the counters restart from zero.
The /etc/re en try:

su sys -c "/usr/lib/sa/sadc /usr/adm/sa/sa'date +%d'"

writes the special record to the daily data file to mark the system restart.

The shell script sal, a variant of sadc, is used to collect and store data in binary file
/usr/adm/sa/sadd where dd is the current day. The arguments l and n cause records to be
written n times at an inter va 1 of t seconds, or once if omitted. The en tries in
/usr/spool/cron/crontabs/sys (see cron(1 l\1)):

0 * * * 0,6 /usr/lib/sa/sal
0 8-17 * * 1-5 /usr/lib/sa/sal 1200 3
0 18-7 * * 1-5 /usr/lib/sa/sal

produces records every 20 minutes during working hours; otherwise; it is on an hourly basis.

The shell script sa2, a variant of sar(l), writes a daily report in file /usr/adm/sa/sardd.
The options are explained in sar(l). The /usr/spool/cron/crontabs/sys entry

5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 3600 -A

reports important activities hourly during the working day.

- 1 -

SAR(lM)

FILES

The structure of the binary daily data file is:

struct sa {
struct sysinfo si; /*see /usr/include/sys/sysinfo.h *I
int szinode; I* current entries of inode table */
int szfile; /*current entries of file table *I
int sztext; I* current entries of text table */
int szproc; I* current entries of proc table *I
int mszinode; I* size of inode table *I
int mszfile; /* size of file table */
int msztext; I* size of text table *I
int mszproc; I* size of proc table *I
long inodeovf; /* cumul. over flows of inode table */
long inodeovf; I* cumul. over flows of file table *I
long textovf; I* cumul. over flows of text table */
long procovf; /* cumul. over flows of proc table *I
time_t ts; I* time stamp, seconds */
long devio[NDEVS}4]; I* device info for up to NDE\'S units *I

#define IO_OPS 0 /* cumul. I lo requests *I
#define IO_RCNT 1 /* cumul. blocks transferred*/
#define IO_ACT 2 I* cumul. drive busy time in ticks */
#define IO_RESP 3 I* cumul. IIO resp time in ticks */
};

/usr1adm/sa/sadd
/usr/adm/sa/sardd
/tm p1sa.adrfl

daily data file
daily report file
address file

SEE ALSO
cron(1 i\1), sag(HJ), sar(1), timex(1).
"System Activity Package" in SY STEM \ •/68 Admirtinstrator's Guide.

- 2 -

SAR(lM)

SETMNT(IM) SETMNT(lM)

NAME

setmnt - establish mount table

SYNOPSIS
/etc/setmnt

DESCRIPTION

FILES

Setmnt creates the /etc/mnttab table (see mnttab(4)), which is needed for both the
mount(1M) and umount commands. Setmnt reads standard input and creates a mnttab entry
for each line. Input lines have the format:

filesys node

where filesys is the name of the file system's special file (e.g., "dsk/?s?") and node is the root
name of that file system. Thus, filesys and node become the first two strings in the
mnttab(4) entry.

/etc/mnttab

SEE ALSO
mount(lM), mnttab(4).

BUGS
Filesys or node can be no longer than 10 characters.
Setmnt silently enforces an upper limit on the maximum number of mnttab entries.

- 1 -

SHUTDOWM(lM) SHUTDOWN(IM)

NAME
shutdown - terminate all processing

SYNOPSIS
/etc/shutdown

DESCRIPTION
Shutdown is part of the SYSTEM V /68 operation procedures. Its primary function is to ter­
minate all currently running processes in an orderly and cautious manner. The procedure is
designed to interact with the operator, i.e., the person who invoked shutdown. Shutdown may
instruct the operator to perform some specific tasks, or to supply certain responses, before exe­
cution can resume. Shutdown goes through the following steps:

All users logged on the system are notified to log off the system by a broadcasted message.
The operator may display his/her own message at this time; otherwise, the standard file­
save message is displayed.

If the operator wishes to run the file-save procedure, shutdown unmounts all file systems.

The super blocks of all file systems are updated before the system is to be stopped (see
sync(1)). This must be done before re-booting the system, to insure file system integrity.

DIAGNOSTICS
The most common error diagnostic that occurs is device busy. This happens when a particu­
lar file system could not be unmounted.

SEE ALSO
mount(lM), sync(l).

- 1 -

SYSDEF(IM) SYSDEF(IM)

NAME
sysdef - system definition.

SYNOPSIS
/etc/sysdef [opsys [master]]

DESCRIPTION

FILES

Sysdef analyzes the named operating system file and extracts configuration information; this
includes all hardware devices as well as system devices and all tunable parameters.

The output of sysdef can usually be used directly by config.68(1M) to regenerate the
appropriate configuration files.

/unix default operating system file
I etc/ master default table for hardware specifications

SEE ALSO

BUGS

config.68(1M), master(4).

For devices that have interrupt vectors but are not interrupt-driven, the output of sysdef
cannot be used for config. Because information regarding config aliases is not preserved by
the system, device names returned might not be accurate.

- I -

TIC(IM) TIC(IM)

NAME
tic - terminfo compiler

SYNOPSIS
tic [-v[n]] file •.•

DESCRIPTION

FILES

Tic translates terminfo files from the source format into the compiled format. The results are
placed in the directory /usr/lib/terminfo.

The -v (verbose) option causes tic to out9ut trace information showing its progres.5. If the
optional integer is appended. the level of verbosity can be increased.

Tic compiles all terminf o descriptions in the given files. When a use= field is discovered. tic
searches first the current file, then the master file, which is ./terminfo.src.

If the environment variable TERMINFO is set, the results are placed there instead of in
/usr /lib/terminf o.

Tic has the following limitations: total compiled entries cannot exceed 4096 bytes; the name
field cannot exceed 128 bytes.

/usr/lib/terminfo/*/* compiled terminal capability data base

SEE ALSO
curses(3X), terminf o(4).

BUGS
Instead of searching . /terminfo.src, tic should check for an existing compiled entry.

- 1 -

TRENTER(JM) TR.ENTER (IM)

NAME
trenter - enter a trouble report

SYNOPSIS
tren ter [-s]

DESCRIPTION
Trenter resides on any machine that must submit machine-readable trouble reports to Custo­
mer Support. It prompts the user for the data needed to enter the report, and allows for
correction of previously entered data, either in-line, or by invoking a text editor. Trenter also
allows users to specify (in a file) default values for fields that will likely remain constant
across reports, such as name, address, and company name. In addition, facilities are provided to
assist local administrators in handling trouble report flow on their systems.

Fields and Values
Trouble reports consist simply of fields and associated values. Each field has a field name, by
which it may be referenced. When invoked, trenter prompts for values for the trouble
report's fields. The following table lists the prompts that are issued, along with their
corresponding field names. All fields accept one line of input, except for the problem descrip­
tion, which is a multi-line field, terminated with a line consisting of only a period. The items
marked with an asterisk (*) are explained below.

The first nine fields identify the originator of the report.

• Name (NAME) (*)

• Company (CO)(*)

• Phone (PHONE)(*)

• Room Number (ROOM) (*)

• Address (ADDR) (*)

• City (OTY) (*)

• State (STATE)(*)

• Zip Code (ZIP) (*)

• Country (COUNTRY) (*)

The next two fields are AT&T-assigned numbers to identify the customer and the specific site.

• Customer ID (CID) (*)

• Site ID (SID)(*)

The next two fields identify the processor on which the problem occurred.

• CPU Serial Number (CPUNO) (*)

• Machine type (MACH)

The following fields identify the area in which the problem occurred.

• Trouble Report Type (TYPE)
Valid responses: doc (documentation), enh (enhancement), cs (customer support),fw
(firmware), hdw (hardware), sw (software), unk (unknown).

• WECo Product Name (PROD)
Examples: UNIX, BASIC

• Operating System Release (OS-REL) (*)
The release of SYSTEM V /68 on which the problem occurred.

e Product Release (PROD-REL)
The release of the product given in reponse to the WECo product prompt. If product is

- 1 -

TRENTER(lM) TRENI'ER(lM)

unix, this prompt is not issued.

The remaining fields define the body of the trouble report.

• Severity (SEV)
The severity of the problem (1-4).

e Required Date (RDA TE)
If the severity of the report is 2, the required date for the fix is prompted. The date
given must be at least one week from the date of the trouble report.

e Abstract (ABS)
One-line description of the problem.

• Description (DESC)
Full description of the problem. Note that description input will not be passed through
nroff; however, trenter will recognize the macros .ES and .EE (example start, example
end), indicating an indented example (these may be nested).

• Attachments (yes or no) CATT)

If? is given in response to a prompt, a message explaining the field will be printed.

If trenter receives an interrupt during prompting, the trouble report will be aborted.

After a trouble report has been completed, the user is given an opportunity to edit any data
that has been supplied. Next, a reprint of the trouble report just entered may be requested.
Finally, the user is asked whether another report is to be entered. If so, the values for the
starred items in the field table above will be carried over from the first report.

Editing Field Values
In order to provide editing while responding to prompts, the following escapes are recognized
on input:

• -field
Return to a field for which data has previously been supplied. If the field name is not
specified, return to the previous field. The value already assigned to the field is printed
and the user may enter either new data or another editing command.

• !e
Invoke the editor ed(1) with any text already supplied for the current prompt in the
edit buffer (an alternate editor can be specified; refer to "Specifying Default Values"
below).

• >
Move down to the first unfilled field. This is useful, for example, when the - com­
mand has been used to fix a single field near the top of the report and the user wishes to
quickly return to the point where he/she left off.

• =field
Print the value currently assigned to the given field.

• ??
Print a summary of editing functions.

Editing commands are only recognized when they appear at the beginning of the input line;
they may be escaped using a backslash (\).

Specifying Default Values
Users may provide default values for any fields marked with an asterisk (*) above .. These
values are specified in a file .trdef in the user's home directory. Entries in this file are of the
form:

field=value
where field is a field name from the table above.

- 2 -

TRENTER(IM) TllENTER (IM)

FILffi

The editor to be used for field editing can be overridden with a .trdef entry be assigning the
name of the desired program to the field EDITOR.

During prompting, trenter will print any values supplied for fields from a .trdef file. By
default, it will stop at each such field and wait for either a carriage return (indicating confir­
mation) , an edit command, or new data. If invoked with a -s option, trenter will print the
supplied values, but will not stop for confirmation.

Default values specified in .trdef files may be changed, on a per-report basis, using the edit­
ing functions described above.

.trdef
I usr I spool/tren ter

default value file
spool directory

- 3 -

rPGRADE(IM) (Motorola Inc. Only) UPGRADE(IM)

rAME
upgrade - software product field upgrade utility

tESCRIPTION
The upgrade program is used to install application software products on a computer system
running SYSTEM V /68, Release 2 or later.

XAMPLE

THIS VERSION OF UPGRADE CANNOT BE USED TO
INST ALL SOFTWARE DISTRIBUTED ON MEDIA
CREATED WITH OLDER VERSIONS OF CREATE.

This section describes the interactive dialogue between a user and the upgrade program.
Indented text represents the program display screens; indented boldface text represents sam­
ple user input; italicized text represents variable items. Text shown in braces (for example,
{Yes, No}) represents a choice of responses to the prompts. Any response that is too long is
truncated; you are then prompted to verify what was entered. Text shown in square brackets _
([]) is commentary that never appears on the screen.

The upgrade program can only be run by the superuser (root) or by setting the owner of the
upgrade program to root and turning the setuid bit on. Put the system into single-user mode
and mount the file systems before executing the upgrade program. If you choose to execute
the upgrade program in multi-user mode, be sure that no other users· are logged on.

To execute the upgrade program, type:

upgrade

The screen displays:

Software Product Field Upgrade Utility, R3.1
Copyright 1984,86 by Motorola Computer Systems, Inc.

What type of media is this product distributed on?
{Floppy disk, 1.21\.ffi floppy, Tape cartridge, Cartridge disk, 9-track tape}
--> xxx

Choose the appropriate device name from the list shown in braces; type the device name (or
the first character of the name), followed by RETURN. Pressing only RETURN causes the
program to select the first item in the list. An invalid input, such as xxx shown here, pro­
duces the following error message:

l 968-51

You must enter the first letter of one of the choices and a RETURN,
or just a RETURN to select the first choice.

- 1 - 09/09//86

UPGRADE(IM) (Motorola Inc. Only) UPGRADE(IM)

The previous message is theri redisplayed.

What type of media is this product distributed on?
{Floppy disk, l.2MB floppy, Tape cartridge, Cartridge disk, 9-track tape}
-·> c [for a cartridge disk]

Mount distribution media volume #l, then hit RETURN ...

Insert the media into the proper drive and press return.

A temporary directory is usually created within a file system with enough free space to hold
the product; by default, /tmp, or /usr/tmp, is used. If there is not enough space, the upgrade
program asks for another location. Refer to "Selecting a Temporary Directory," below for
details.

If the target device does not have enough space, the following message is displayed, and the
program terminates:

The file system containing the intended target directory
(target_directory_name) doesn't have room to hold the product!
Delete some files, then invoke Upgrade again.

·If enough space is available, a subdirectory is created within the temporary directory,
"_upgrade_dir,'' which in most cases already exists. The screen briefly displays:

mkdir /temp_dir_name/ _upgrade_dir

followed by:

[1]

[5]

[10]

.£15]

41968-51

Software Product Field Upgrade Utility, R3.l

This product's name is 'product name'
Its release identifier is: release Tct
(Auditing facilities use the name: audit _name)
It will occupy about nnnn x [512 110 24]-byte disk blocks in a file system.

The distribution media is a media_type,
The product uses nnnn blocks of the media,

and you should have nn volurne(s) of this media.

Upgrade will execute this command string prior to installation:
command_siring_l ·

The product will be copied into the temporary directory:
temp _dir _flame

Then it will be moved into the target directory:
target _!.ir _name

Finally, this command string will be invoked after installation:
command _string_ 2

Continue ...
{Yes, No}
-->

- 2 - 09/09//86

PGRADE(lM) (Motorola Inc. Only) · UPGRADE(lM)

NOTES:
1. The byte count shown in line 4 displays either 512- or 1024-byte blocks depending on

which block size the system uses; the upgrade program automatically selects the appropri­
ate number for the system.

2. The media _Jype in line 5 corresponds to the media type you selected at the first prompt.

3. The block count (nnnn) in line 6 is based on 1024-byte blocks used on the media. It usu­
ally does not equal the file system block count shown in line 4.

4. Lines 8 through 15 may vary from what is shown here. If either command_string_J or
command _§tring_2 is empty, nothing is shown. If there is not enough space for a tem­
porary copy of the product, lines 10 through 13 are replaced by the statement:

The product will be copied straight into the directory:
target_directory_name

To continue with the upgrade program, type y or press RETURN in response to the "Con­
tinue ... {Yes.No}" prompt. A no (n) response terminates the program. If you type y to con­
tinue, the screen displays:

------ PRODUCT UPGRADE IN PROGRESS ------

Any messages produced by pre-installation commands (command ..§tring_l) are displayed,
followed by:

nnnn blocks transferred from volume #l to temp_dir ..!Jame ...

If more than one volume' is needed, the screen displays:

·Mount media volume #n for 'product name release id',
then hit RETURN . . . - -

nnnn blocks transferred from volume #2 to temp _dir ..!Jame ...

and so on for each volume-of distribution media.

When all files have been copied into the temporary directory, .they are moved into the target
directory.

Now moving files into the target directory.
The name of, each file will be displayed as it is copied ...

Individual file names are displayed on the screen:

file_name_l

[An nnnn blocks message is also displayed. here but should be ignored!]

.968-51 - 3 - 09/09//86

UPGRADE(IM) (Motorola Inc. Only) UPGRADE(IM)

The temporary directory created earlier is removed, and the screen displays:

rm -rf /temp_dir _name/ _upgrade_dir

A table-of-contents listing for this product is contained in:
'audit_name'

·Would you like me to generate audit files for this product installation now?
{Yes, No}
-> n

A yes (y) response causes the program to generate audit files; for details on auditing, refer to
"Performing an Installation Audit," below.

A no (n) response produces the following message:

You can use 'upgrade -a' to do the audit later!

For details ort using upgrade -a, refer to "Performing an Installation Audit," below.

When the upgrade is complete, the screen displays:

Finished upgrading 'product_name (release .Jd)'.

Do you wish to upgrade another product?
{No, Yes}
--> . ·[A RETURN is sufficient to terminate program execution.]

SELECTING A TEMPORARY DIRECTORY
This section describes how the upgrade program responds when there is not enough space in
either /tmp or /usr (for /usr/tmp) to hold a temporary copy of the product. (NOTE: /tmp is
selected as a temporary directory oµly if it is a SEP ARA TE FILE SYSTEM in the system! If
it is a directory beneath root, it cannot be selected! Use the df command to display all file
system names.)

I. This first dialogue occurs if none of the file systems have enough space:

41968-51

Does a previous version of this product already exist in your system?
{No, Yes}
--> y [If you answer no (n), the product cannot be loaded, and the program

terminates.]

In order to install this new version, I'll have to write over
the old version. Do you want to do this?
{Yes, No}
-·> y [A no (n) terminates the program.]

- 4 - 09/09//86

rPGRADE(IM) (Motorola Inc. Only) UPGRADE(IM)

Is the old version located in the 'target_dir' directory?
{Yes, No}
--> n [Type no (n) if the old version of the product's files was moved since it was

installed.]

Enter the name of the. directory where it is located:
--> xyz [Enter a directory pathname.]

This response is checked to be sure that a valid directory was specified. If not, an error
message and the previous message are displayed:

'xyz' is not a valid directory!

Enter the name of the directory where it is located:
--> [A valid directory pathname must be entered.]

2. The following dialogue occurs if at least one file system (other than /tmp and /usr)
has enough space to hold a temporary copy of the product.

These file systems have enough room to install this product
(>blocks needed):

file sys I blocks _free

[Other names are shown if applicable.]

For each file system shown, you are prompted:

Do you want to use 'file_sys_n' for. holding a temporary copy of the product?
{No, Yes}
:-->

A no (n) response or RETURN .causes the next possible choice to be offered. If all choices
are declined, the following prompt is displayed and the process repeats:

YOU MUST SELECT ONE OF THESE DEVICES!

If you select a file system other than root (/), you can specify a subpath within the selected
filesystem.

Enter a subdirectory within this file system, if desired. ·.
-->/file ...§YS_name/xyz

[The selected file_sys_name is shown as part of the prompt.

RETURN is usually a sufficient response because the name, '/_upgrade~dir,' is appended
to the end of the resulting name. ·

968-51 - 5 - 09/09//86

UPGRADE(IM) (Motorola Inc. Only) UPGRADE(IM)

If a nonexistent directory name, such as xyz is entered, the screen displays:

'xyz' is not a valid directory!

Enter a subdirectory within this file system, if desired.
--> I file ..§YS _name I

PERFORMING AN INSTALLATION AUDIT .
If the audit files have not been deleted, an audit can be performed by executing upgrade -a
once the product has been installed. The upgrade -a program asks for the type of media the"
product is distributed on and for the first volume to be installed. .The program then moves
directly to the audit section and displays:

--- NOW EXTRACTING CRC'S FROM PRODUCT FILES ---

This may take a minute or two . . . please be patient!

The following files contain auditing data for this product:

The names of three files appear on the screen in Is -I format. The information in them will be
needed if you ever call the Customer Support Operation for ~sistance. The files should be
printed and saved in a convenient place (for example, with the distribution media), then
deleted. ~ey can be reconstructed by executing upgrade again.

The three files are named after. the audit_name identified in the status display:
audit name.crO, audit name.ere, and audit name.ls. For simplicity, they are referred to here
as *.crO, *.ere, and *.ls:-respectively. (Note that the audit_name is different for each product.)

These files use two different formats. The *.ls file format is similar to that produced by an Is
command. It contains the name of every file installed as part of the product. The *.crO and
*.ere files use the following format:

$ere length modification time-stamp file name

for each of the files identified in the corresponding *.ls file. The *.crO file is created at the
factory when the distribution media is created. The *.ere file is created by this part of the
program when the upgrade program is run or when executing upgrade -a. It can also be
created by typing:

ere -cdf /usr/AUDITS/audit name.ls >/usr/AVDITS/audit_name.ere

The first three fields of the *.crO and *.ere files should be identical for every corresponding
file name (see NOTE below)." The fourth columns ·should differ only in their path prefixes;
that is, the *.crO file might display its file names as /x/y/example, while the *.ere file shows
/a/b/c/example for every file example. This causes corresponding *.crO and *.ere files to·
have different lengths, even when the data in the first three columns is identical for each
entry.

NOTE: Due to the operation of cpio, the *.ls and *.ere files may contain a few more entries
than their corresponding *.crO file. If present, these entries represent DIRECTORY
NAMES rather than file names.

41968-51 - 6 - 09/09//86

fPGRADE(iM) (Motorola Inc. Only) UPGRADE(IM)

A short shell (unction, audit, can be used to perform a simple audit of these files. To create
audit, type the following lines after a shell prompt.

#audit() {
> sort /usr/ AUDITS/$1.cr? I
> awk 'BEGIN { FS = "\t" } _
> (print $4 "\t" $1 "\t" $2 "\t" $3 } ' I
> uniq -u -1 [Use the digit one, not the lowercase letter L.]
>}

This shell function is executed as if it were a shell script and is stored in memory rather than
in a file. It disappears after you log off, and cannot be exported to nested shells. It is
invoked by typing a'udit audit_name to the shell, where audit 21ame is the name given in line
3 of the status display (see page 2). For example, audit can be used to audit the files for a
product named "menus" by typing:

audit menus

If the upgrade installation executes properly, this command returns a shell prompt. Any file
that doesn't transfer properly has its name, ere, length, and modification date displayed. If
just one line for each name appears, it will usually be from the *.crO file and indicate that the
corresponding file was not installed in the system properly or was erased. If two lines for
each name appear, then one or more of the last three fields differs-. Generally, it will be the
modification time-stamp field that differs. However, if an error occurred during installation,.
the ere and/or length fields may differ; in this case, do a complete reinstallation.

1IAGNOSTICS
Most parameters are validated before being used, either by the program or by the user via the
status display. It is possible, however, for an internally executed shell command to die, in
which case an error message may or may not be produced. Known error conditions fall into
two categories: warnings and fatal errors. Warnings produce a message but allow for contin­
ued execution. Fatal errors prevent complete installation from the distribution media. Warn­
ing and fatal error messages are listed below.

If the /usr/bin/erc program is missing, abort upgrade and rerun after the ere program is
located and installed.

Warnings
The checksums don't match for this volume!

error eric'ountered while reading checksum from distribution media!

popen failed; can't determine available space!

can't accurately determine block-size of target device!

968-51 - 7 - 09/09//86

UPGRADE(IM) (Motorola Inc. Only) UPGRADE(IM)

Fatal Errors .

FILES

Ycru must be logged in as root or have root's setuid permission set!

There is NOT SUFFICIENT SP ACE on your system to install tl:Us product!

I can't read this media! (incompatible internal structure)
The media was created with an earlier version of the create program.

Can't open device {dev_name} for reading!
Verify that the virtual device names are linked properly:

/dev/FLOPPY for raw floppy device (640K bytes)
/dev/FLOPPY.MB for raw l.2MB floppy device
/dev/IOMEGA for raw 5MB Iomega cartridge disk
/ dev /TAPE.CART for cartridge tape drive
/dev/TAPE.9TRK. for 9-track tape drive

You'll have to (re)install this product before auditing!
Some audit fi~es are missing. Run upgrade again without the -a switch.

can't read header from distribution media!

error reading from distribution media!

error writing to cpio data stream!

can't popen output stream!

tput(l)
/usr/bin/crc

41968-51 - 8 - 09/09//86

UUCLEAN (IM) UUCLEAN (IM)

NAME
uuclean - uucp spool directory clean-up

SYNOPSIS
/usr/lib/wucp/uuclean [options]

DESCRIPTION

FILES

Uuclean scans the spool directory for files with the specified prefix and deletes all those
which are older than the specified number of hours.

The following options are available.

-ddirectory Cleans directory instead of the spool directory.

-ppre Scans for files with pre as the file prefix. Up to 10 -p arguments may be

-ntime

specified. A -p without any pre following causes all files older than the
specified time to be deleted.

Deletes files whose age is more than time hours, if the prefix test is satisfied.
(default time is 72 hours)

-wfile time Finds files which are older than time hours; however, the files are not deleted.
If the argument file is present, the warning is placed in file; otherwise, the warn­
ings go to the standard output.

-ssys Examines only files destined for system sys. Up to 10 -s arguments may be
specified.

-mfile Sends mail to the owner of the file when it is deleted. If a file is specified, then
an entry is placed in file.

This program is typically started by cron(IM).

/usr/lib/uucp (directory with commands used by uuclean internally)

/usr/spool/uucp (spool directory)

SEE ALSO
cron(lM), uucp(IC), uux(IC).

-1-

UUSUB(lM) UUSUB(lM)

NAME
uusub - monitor uucp network

SYNOPSIS
/usr/Iib/uucp/uusub [options]

DESCRIPTION

FILES

Uusub defines a uucp subnetwork and monitors the connection and traffic among the
members of the subnetwork. The following options are available:

-asys Add sys to the subnetwork.
--dsys Delete sys from the subnetwork.
-1 Report the statistics on connections.
-r Report the statistics on traffic amount.
-f Flush the connection statistics.
-uhr Gather the traffic statistics over the past hr hours.
-csys Exercise the connection to the system sys. If sys is specified as all. then exercise the

connection to all the systems in the subnetwork.

The meanings of the connections report are:

sys #call #ok time #dev #login #nack #other

where sys is the remote system name, #call is the number of times the local system tries to
call sys since the last flush was done, #ok is the number of successful connections, time is the
latest successful connect time, #dev is the number of unsuccessful connections because of no
available device (e.g., ,\ct:), #login is the number of unsuccessful connections because of login
failure, #nack is the number of unsuccessfu 1 connections because of no response (e.g., line
busy, system down), and #other is the number of unsuccessful connections because of other
reasons.

The meaning~ or the traffic statistics are:

1} ilc sby1e rjile rbyte

where sjile is the- number of files sent and sbyte is the number of bytes sent over the period
of time indicated in the latest uusub command with the -uhr option. Similarly, r file and
rbyte are the numbers of files and bytes received.

The command:

uusub -c all -u 24

is typically started by cron(1M) once a day.

/usr/spool/uucp/SYSLOG
/usr/lib/uucp/L_sub
/usr/lib/uucp/R_sub

system log file
connection statistics
traffic statistics

SEE ALSO
uucp(lC), uustat(lC).

- l -

VM22FMI' (lM) VM22FMI'(lM)

NAME
vm22fmt - format disks on the VM22 disk controller

SYNOPSIS
/etc/vm22fmt [-h starthead] [-t trkcyl] [-e sectrk] [-r steprate] [-a attr]
[-g gpl3] [-1 spiral] [-c cyls] [-p precomp] [-s secsiz] [-x] [-F] special

D~CRIPTION

Vm22fmt is used to format disks on the VM22 disk controller. This disk controller requires
the following information to format the disk:

• starting head number of the drive.
• tracks per cylinder.
• drive step rate.
• drive 1/0 attribute byte.
• drive GPL3 code.
• spiral offset to use.
• cylinders per drive.
• precompensation cylinder.
• sector size in bytes per sector.

Each of these parameters can be set by the appropriate command option. The options are:

-h Starting head number. All drives have starting head number zero except the fixed disk
on LMD (Lark) and CMD drives. Default: 0. The fixed LMD drive has starting head
number 2. The fixed CMD drive has starting head number 16.

-t Tracks per cylinder (heads). Default: 2. LMD disks all have 2 heads. All 16Mb CMD
drives have 1 head. The 80Mb CMD drive has 5 heads. Single-sided floppies have 1
head while double-sided ones have 2.

-e Sectors per track. Default: 64. All hard disks have 64 sectors per track. The 8-inch
floppies have 26 sectors per track. while 51/4 inch floppies have 16 sectors per track.

-r Step rate. A step rate of zero informs the VM22 to use its built-in default step rate for
that drive. Default: 0. Only specify a different step rate after carefully studying the
VM22 User's Manual.

-a Attribute byte. The attribute byte is used during normal read and write commands to
the VM22. Default: 9. The bits of the attribute byte are shown in the table at the end
of this section (refer also to the VM22 User's Manual).

-g VM22 GPL3 parameter (floppy only). This parameter determines the number of bytes
inserted after the data field on each sector to compensate for motor speed variation. If
this parameter is zero, the controller will use the correct default for the present confi­
guration. Default: 0. Only specify a different gpl3 after carefully studying the VM22
User's Manual.

-1 Spiral offset. Defines the physical sector in which the first logical sector of a track
appears. Default: 0.

-c Cylinders. Default: 624. The LMD drives have 624 cylinders. The CMD drives have
823 cylinders. The 8-inch floppies have 77 cylinders. The 51/4-inch floppies have 80
cylinders.

-p Precompensation cylinder (Floppy only). Default: 0. The precompensation cylinder is
usually set to be the number of cylinders divided by two.

-s Sector size. Default: 256. On floppies, the sector size for single-density is 128 bytes.
Double-density sector size is 256 bytes.

In addition, the -x option will print out example command line options for various VM22
compatible disk drives and .a list of the default settings. Lastly, the -F option tells vm22fmt

- 1 -

VM22FMr(IM) VM22FMI'(IM)

FILES

to set the disk configuration but not format the disk. This option is used when the disk confi­
guration block on the disk is incorrect and needs to be overwritten. When formatting flop­
pies, vm22fmt will always format the first track of the floppy as single-density, 128 bytes
per sector. This track is used for holding the disk configuration information. The default set­
tings are for a CDC 9457 25Mb LMD (Lark) cartridge.

/dev/dsk/*
I dev I rdsk/*
/etc/diskdefs

BIT#
7

6

5

4,3

2

1

0

I etc/ diskal ts/vm22*

NAME
FTD

FSN

FMF

SSC

FDS

FDR

IBS

BITS OF ATTRIBUTE BYTE
USE
Floppy Track Density (Floppy Only).
if 0 - drive and media density the same.
if l - media is 112 drive density
(i.e.,. 96 TPI drive and 48 TPI media).

Floppy Sector Numbering (Floppy Only).
if 0 - sectors number 1-N on both sides (IBM).
if 1 - Motorola format, 1 to Non side 0
and N+ 1 to 2N on side 1.

Floppy recording method (Floppy Only).
if 0 - FM (single-density).
if l - MFM (double-density).

Sector Size Code.
if 00 - 128 bytes per sector.
if 01 .., 256 bytes per sector.
if 10 - 512 bytes per sector.
if 11 - 1024 bytes per sector.

Floppy Diskette Sides (Floppy Only).
if 0 - single-sided.
if 1 - double-sided.

Floppy Data Rate (Floppy Only).
if 0 - 51/4-inch data rate (250 kilobits per second).
if 1 - 8-inch data rate (500 kilobits per second).

Im bedded Servo Drive (SMD only).
if 0 - Drive does not require a seek when a
head switch is performed.
if 1 - Drive requires a seek when a head switch
is performed. (Used for LARK and
LARK~m__E_atible drive.)

SEE ALSO
dinit(lM), cm16(7), cm80(7), fl8(7), lrk(25), vm22(7).
Storage Module Drive Disk Controller User's Manual, M68KVM22/Dl

- 2 -

VM22FMf (IM) VM22FMf (IM)

DIAGNOSTICS

BUGS

DIAGNOSTIC

Can't stat <special>

<special> not a raw disk

Can't open <special>

vm22fmt: configuration error

vm22fmt: format unit failure

PROBLEM

Special file given on command
line nonexistent. Create file.

Special file given on command
line must be a character special
file. Be sure the correct file is
being used.

Could not open special file given
on command line for read/write.
Check modes of special file.

Could not successfully set the
drive configuration. Check com­
mand line options for incompati­
ble configuration information
(e.g., if the sector size information
in the attribute byte disagrees
with the sector size option, then
the configuration will fail).

The "format unit" command to
format the en tire disk failed. The
system console should have an
error message on it that will indi­
cate the nature of the problem.
That message is generated by the
disk driver's error message rou­
tine. Refer to the SYSTEM v 168
Error Message Manual for more
information.

vm22fmt: format track failure The "format track" command to
format the first track failed. The
system console should have an
error message on it that will indi­
cate the nature of the problem.
That message is generated by the
disk driver's error message rou­
tine. Ref er to the SYSTEM VI 68
Error Message Manual for more
information.

The default setting on the configuration items is for a 25Mb LMD cartridge. When format­
ting any other media type, be careful to supply the correct options. Use the -x option for
some examples; also, refer to the VM22 User's Manual for more details.

- 3 -

VOLCOPY (lM) VOLCOPY (lM)

NAME
volcopy, labelit - copy file systems with label checking

SYNOPSIS
/etc/volcopy [options] fsname speciall volnamel special2 volname2

/etc/labelit special [fsname volume [-n]]

DESCRIPTION

FILES

Volcopy makes a literal copy of the file system using a blocksize matched to the device.
0 ptions are:

-a invoke a verification sequence requiring a positive operator response instead of
the standard 10 second delay before the copy is made,

-s (default) invoke the DEL if wrong verification sequence.

Other options are used only with tapes:
-bpidensity bits-per-inch (i.e., 800/1600/6250),
-feetsize size of reel in feet (i.e., 1200/2400),
-reelnum beginning reel number for a restarted copy,
-buf use double buffered 1/0.

The program requests length and density information if it is not given on the command line
or is not recorded on an input tape label. If the file system is too large to fit on one reel, vol­
copy prompts for additional reels. Labels of all reels are checked. Tapes may be mounted
alternately on two or more drives. If volcopy is interrupted, it will ask if the user wants to
quit or wants a shell. In the latter case, the user can perform other operations (e.g., labelit)
and return to volcopy by exiting the new shell.

The f sname argument represents the mounted name (e.g., :root, ul) of the file system being
copied.

The special argument should be the physical disk section or tape (e.g., /dev/rdsk/cntrlr _ls5
or /dev/rmt/cntrlr_Om).

The volname is the physical volume name (e.g., pk3, t0122, etc.) and should match the exter­
nal label sticker; such label names are limited to six or fewer characters. Volname may be -
to use the existing volume name.

Speciall and volnamel are the device and volume from which the copy of the file system is
being extracted. Special2 and volname2 are the target device and volume.

Fsname and volume are recorded in the the superblock (char fsname[6], volname[6];).

Labelit can be used to provide initial labels for unmounted disk or tape file systems. With
the optional arguments omitted, labelit prints current label values. The -n option provides
for initial labeling of new tapes only (this destroys previous contents).

I etc/log/filesa ve.log

SEE ALSO

(a record of file systems/volumes copied)

fs(4).

BUGS

If the -buf option is selected, volcopy will core dump if it gets to the end-of-tape.

- 1 -

WALL(lM)

NAME
wall - write to all users

SYNOPSIS
/etc/wall

DESCRIPTION

WALL(lM)

Wall reads its standard input until an end-of-file. It then sends the message to all currently
logged in users preceded by:

FILES

Broadcast Message from •..

It is used to warn all users, typically prior to shutting down the system.

The sender must be superuser to override any protections the users may have invoked (see
mesg(l)).

/dev/tty*

SEE ALSO
mesg(1), write(1).

DIAGNOSTICS
"Cannot send to ... " when the open on a user's tty file fails.

- 1-

WFFMT(IM) WFFMT(IM)

NAME
wffmt - format floppies for the VME/10 processor

SYNOPSIS
wffmt device

DESCRIPTION

FILES

The w ff mt utility is used to format 51/4-inch floppy diskettes for the VME/10. The user
specifies a raw device that is a floppy drive. In the basic configuration, this will be
ldevlrdsk/cntrlr _2s7. If a second floppy drive is connected, it has the device name
/dev/rdsk/cntrlr_3s7. When the command

wffmt /dev/rdsklcntrlr _2s7
is given, the following message appears on the screen:

Formatting floppy in /dev/rdsk/cntrlr_2s7
When the SYSTEM V /68 prompt appears on the screen, formatting is complete.

W ff mt checks to make sure that a correct device name is specified. The following diagnostic
messages may appear if the command is incorrect:

Cannot stat/access ldevldevice name The device specified is not connected
or permissions are incorrect.

Not a floppy drive.

Must use a raw/character device.

/etc/wffmt

The number given was not
rdsk/ cntrlr2s1 or rdsk/ cntrlr _3s1.

The correct specification is
rdsk/, not dsk/.

- 1 -

WHODO(lM)

NAME
whodo - who is doing what

SYNOPSIS
/etc/whodo

DESCRIPTION

WHODO(lM)

Whodo produces merged, reformatted, and dated output from the who(l) and ps(1) com­
mands.

SEE ALSO
ps(l), who(l).

- l

INTRO(7) INTRO(7)

NAME
intro - introduction to special files

DFSCRIPTION
This section describes various special files that refer to specific hardware peripherals and
SYSTEM V /68 device drivers. The names of the entries are generally derived from names for
the hardware, as opposed to the names of the special files themselves. Characteristics of both
the hardware device and the corresponding SYSTEM V/68 device driver are discussed where
applicable.

SYSTEM V /68, Release 2, Version 1 incorporates a new convention for naming disk and tape
devices. In earlier releases, the standard format for naming disk devices was /dev/dkxy
where x referred to the disk device number and y referred to the disk section or partition.
Raw access to a disk device was indicated with an r, e.g., /dev/rdkOl. Standard format for
naming tape devices was /dev/mtx where x referred to the magnetic tape device number.
Raw access to a tape device was indicated with an r, e.g., /dev/rmtO.

The new naming convention creates separate subdirectories under /dev for each type of disk
or tape device. The new format for disk devices is:

/dev/ {r} dsk/ [r] [cntrlr _] [controUer ...numberd] drive...numberssection...number

Fields in square brackets are entirely optional: they do not affect the operation of any
software or hardware; they are for informational purposes only, for the convenience of
administrators, operators, and users. Fields in curly brackets represent options that affect
software; they must be present if that option is being selected.

r (Not Required) (The first r) indicates a raw interface to the disk.

dsk/

r

cntrlr_

controller...numberd

drive...number

ssection...number

The default is normal system buffering.

(Required) Indicates that the device is a disk.

(Not Required) (The second r) indicates that this disk is on a remote
system.

(Not Required) Indicates the appropriate disk device in systems with
multiple disk drivers. In Release 2, Version 1 of SYSTEM V /68, the
controller names are present and must be used on command lines
that specify a disk device. The disk devices available are:

vm2L Intelligent Universal Disk Controller, M68KVM21

vm22_ Intelligent SMD Disk Controller with Floppy Disk,
M68KVM22

wd_ Winchester Disk Controller, M68RWIN1

ud_ General Universal Disk Controller

c Generic Controller

(Not Required) System administrators decide whether or not to
specify the controller number in the disk device name. If the con­
troller number is specified, the d introduces the drive number.

(Required) The drive number. The field is free format; there is no
default drive number.

(Required) The section number. The field is free format; there is no
default section number.

- 1 -

INfR.0(7) INfR.O(7)

BUGS

AB an example, the name for disk drive 0, section 0 might be /dev/dsk/vm22_0s0.

The new format for tape device names is:

/dev/ {r} mt/ [ccontroller JUtmberd] driveJUtmberdensity { n)

where:

r

mt/

ccontrollerJUtmheid

devke..JLUmber

denshy

n

(Not Required) Indicates a raw device. The default is a blocked dev­
ice.

(Required) Indicates a magnetic tape device.

(Not Required) The c introduces the controller number. System
administrators decide whether or not to specify the controller
number in the tape device name. H the controller number is speci­
fied, the d introduces the device number.

(Required) The drive number. The drive number is followed
immediately by the density value of the tape.

(Required) Tape density must be specified for each drive. The den­
sity is indicated with an h, m, or I. where:

h (high) is a tape density of 6250 bpi

m (medium) is a tape density of 1600 bpi

l (low) is a tape density of 800 bpi

(Not Required) Indicates no rewind on close. The default condition is
to rewind.

As an example, the name for a 6250 bpi magnetic tape drive might be /dev/mt/Oh.

To ensure a smooth transition, old device names are accepted by the SYSTEM V /68 Release 2
software. However, all documentation and sample shell scripts distributed with this release
use the new naming convention. System administrators are encouraged to rename existing
devices and incorporate the new names into shell scripts as soon as possible.

The following table compares existing device filenames with the new filenames that will be
found in the documentation.

Disk. Devices Tape Devices
Old Disk Name New Disk Name Old Tape Name New Tape Name
/dev/dkOO I dev I dsk/ cntrlr _0so /dev/mt01 /dev/mt/01
/dev/dklO /dev/dsk/cntrlr_tsO /dev/mtS /dev/mt/Smn
/dev/rdkOO I dev /rdsk/ cntrlr _0so

While the names of the entries generally refer to vendor hardware names, in certain cases
these names are seemingly arbitrary for various historical reasons.

-2-

ACIA(7) ACIA(7)

NAME
acia - Asynchronous Communications Interface Adapter

DESCRIPTION

FILES

Each line attached to an acia behaves as described in termio(7). The EXORmacs debug module
and up to five quad communications modules (M68KV7) are supported. The line speed of the
EXORmacs debug module can be changed under software control (output speed = input
speed). while the line speed of the quad communications modules can be changed by hardware
strapping. Eight combinations of data bit, stop bit. and parity bit options are supported (refer
to stty(l)).

I dev I console I dev /tty*

SEE ALSO
stty(1), termio(7).

- l -

CM16(7) CM16(7)

NAME
cm16 - 16Mb Cartridge Module Drive for Universal Disk Driver

DESCRIPTION

FILES

The files dsklcntrlr_OsO ... dsklcntrlr_Os7 refer to sections of the CM16 disk drive 0. The
files dsk.lcntrlr_1s0 ... dsklcntrlr_1s7 refer to sections of drive 1. This slicing allows the
pack to be broken up into more manageable pieces.

The origin and size of the sections on each drive are as follows:

sectwn start length
0 0 26336
1 3292 23044
2 6584 19752
3 9876 16460
4 13168 13168
5 16460 9876
6 19752 6584
7 23044 3292

The start address is a block address, with each block containing 512 bytes. Since there is over­
lap, it is unwise for all of these files to be present in one installation.

The dsk/* files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a "raw" interface which.
provides for direct transmission between the disk and the user's read or write buffer. A sin­
gle read or write call results in exactly one I/O operation and therefore raw 1/0 is consider­
ably more efficient when many words are transmitted. The names of the rnw files begin
with rdsk/ and end with a number that selects the same disk section as the corresponding
dsk file.

In raw I/O the buffer must begin on a word boundary, and counts must be a multiple of 512
bytes (a disk block). Likewise, lseek(2) calls should specify a multiple of 512 bytes.

/dev/dsk/*, /dev/rdsk/*

SEE ALSO
ud(7), cm80(7), lrk25(7), f18(7).

- 1 -

CM80(7) CM80(7)

NAME
cm80 - 80Mb Cartridge Module Drive for Universal Disk Driver

DESCRIPTION

FILES

The files dsklcntrlr _OsO •.. dsklcntrlr _Os7 refer to sections of the CM80 disk drive 0. The
files dsk/ cntrlr _lsO ••. dsk/ cntrlr _ls7 refer to sections of drive 1. This slicing allows the
pack to be broken up into more manageable pieces.

The origin and size of the sections on each drive are as follows:

section start length
0 0 26336
1 26336 26336
2 52672 26336
3 79008 13168
4 92176 13168
5 105344 13168
6 118512 13168
7 0 131680

The start address is a block address, with each block containing 512 bytes. Since there is over­
lap, it is unwise for all of these files to be present in one installation.

The dsk/* files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a "raw" interface which
provides for direct transmission between the disk and the user's read or write buffer. A sin­
gle read or write call results in exactly one I/O operation and therefore raw I/O is consider­
ably more efficient when many words are transmitted. The names of the raw files begin
with rdsk and end with a number which selects the same disk section as the corresponding
dsk file.

In raw I/O the buffer must begin on a word boundary, and counts must be a multiple of 512
bytes (a disk block). Likewise, lseek(2) calls should specify a multiple of 512 bytes.

/dev/dsk/*, /dev/rdsk/*

SEE ALSO
ud(7), cm16(7), lrk25(7), f18(7).

- 1 -

CMD16(7) CMD16(7)

NAME
cmdl6 - 16Mb Cartridge Module Drive for VM21 Driver and VM22 Driver

DESCRIPTION

FILES

The files dsklcntrlr _OsO ••• dsk/cntrlr _Os1 refer to sections of the CMD16 disk drive 0. The
files dsklcntrlr_lsO ... dsk/cntrlr_ls1 refer to sections of drive 1. This slicing allows the
pack to be broken up into more manageable pieces. This new slicing also allows space on the
disk for replacement tracks to be used by the software bad track replacement scheme.

The origin and size of the sections on each drive are as follows:

section start length
0 7 25984
1 107 22784
2 207 19584
3 307 16384
4 407 13184
5 507 9984
6 607 6784
7 0 26336

The start address is a cylinder address. The length is expressed in blocks, with each block con­
taining 512 bytes. Since there is overlap, it is unwise for all of these files to be present in one
installation. Information about recommended file system partitioning is provided in the
"Administrative Guidelines" section of the SYSTEM v 168 Administrator's Guide.

The dsk/* files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a "raw" interface which
provides for direct transmission between the disk and the user's read or write buffer. A sin­
gle read or write call results in exactly one I/O operation and therefore raw I/O is consider­
ably more efficient when many words are transmitted. The names of the raw files begin
with rdsk and end with a number that selects the same disk section as the corresponding dsk
file.

In raw I/O, the buffer must begin on a word boundary, and counts must be a multiple of 512
bytes (a disk block). Lseek(2) calls should specify a multiple of 512 bytes.

/dev/dsk/•,/dev/rdsk/•

SEE ALSO
cmd80(7), lark25(7), lark8(7), sa800f121(7), sa800fl22(7), vm21(7), vm22(7).

- 1 -

CMD80(7) CUD80(7)

NAME
cmd80 - 80Mb Cartridge Module Drive for VM21 Driver and VM22 Driver

DFSCRIPTION

FILES

The files d.sk/cntrlr _OsO ... d.sk/cntrlr _Os7 refer to sections of the CMD80 disk drive 0. The
files d.sk/cntrlr_tsO ... d.sk/cntrlr_ls1 refer to sections of drive 1. This slicing allows the
pack to be broken up into more manageable pieces. This new slicing also allows space on the
disk for replacement tracks to be used by the software bad track replacement scheme.

The origin and size of the sections on each drive are as follows:

section start length
0 6 130080
1 126 110880
2 333 77760
3 495 51840
4 576 38880
5 657 25920
6 738 12960
7 0 131680

The start address is a cylinder address. The length is expressed in blocks, with each block con­
taining 512 bytes. Since there is overlap, it is unwise for all of these files to be present in one
installation. Information about recommended file system partitioning is provided in the
"Administrative Guidelines" section of the SYSTEM V 168 Administrator's Guide.

The dsk/* files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a "raw" interface which
provides for direct transmission between the disk and the user's read or write buff er. A sin­
gle read or write call results in exactly one 1/0 operation and therefore raw 1/0 is consider­
ably more efficient when many words are transmitted. The names of the raw files begin
with rdsk and end with a number which selects the same disk section as the corresponding
dsk file.

In raw 1/0, the buffer must begin on a word boundary, and counts must be a multiple of 512
bytes (a disk block). Lseek (2) calls should specify a multiple of 512 bytes.

/dev/dsk/•,/dev/rdsk/•

SEE ALSO
cmd16(7), lark25(7), lark8(7), sa800fl21(7), sa800fl22(7), vm21(7), vm22(7).

- 1 -

ERR(7) ERR(?)

NAME
err - error-logging interface

DESCRIPTION

FILES

Minor device 0 of the err driver is the interface between a process and the system's error­
record collection routines. The driver may be opened only for reading by a single process
with superuser permissions. Each read causes an entire error record to be retrieved; the record
is truncated if the read request is for less than the record's length.

/dev/error special file

SEE ALSO
errdemon(lM).

- 1 -

FL8(7) FL8(7)

NAME
f18 - 8-inch Floppy Disk Drive for Universal Disk Driver

DESCRIPTION

FILES

Although it is possible to have 8 devices for each floppy disk drive, only two devices per
floppy disk drive are currently defined: dsklcntrlr_xsO and dsklcntrlr_xsl

Dsklcntrlr _xsO is defined for single-sided drives or single-sided disks in double-sided drives.
Dsklcntrlr _xsl is defined for double-sided disks in double-sided drives.

The origin and size of the sections on each drive are as follows:

section start length
0 0 500
1 0 1000
2
3
4
5
6
7

The start address is a block address with each block containing 512 bytes. Since there is over­
lap, it is unwise for all of these files to be present in one installation.

The dsk/* files access the disk via the system's normal buffering mechanism and ma_\' be read
and written without regard to physical disk rernrds. There is also a "raw" interrace which
provides for direct transmission between the disk and the usrr's read or writr buffer. A sin­
gle read or write call results in exactly one 1/0 operation and therefore raw 1/0 is consider­
ably more efficient when many words are transmitted. The names of' the raw files begin
with rdsk and end with a number that selects the same disk section as the corresponding dsk
ri It>.

In raw 110 the buffer must begin on a word boundary, and counts must be a multiple of 512
bytes (a disk block). Likewise, lseek(2) calls should specify a multiple of 512 bytes.

/dev/dsk/*, /dev/rdsk/*

SEE ALSO
ud(7), cm16(7), cm80(7), lrk25(7).

- 1 -

LARK.8(7) LARKS(7)

NAME
lark8 - 16Mb LARK Module Drive for VM21 Driver and VM22 Driver

DESCRIPTION

FILES

The files dsk/ cntrlr _OsO ... dsk/ cntrlr _Os7 refer to sections of the LARK25 disk drive 0.
The files dsklcntrlr _tsO ... dsklcntrlr _ls7 refer to sections of drive 1. This slicing allows
the pack to be broken up into more manageable pieces. This new slicing also allows space on
the disk for replacement tracks to be used by the software bad track replacement scheme.

The origin and size of the sections on each drive are as follows:

section start length
0 4 12736
1 29 11136
2 54 9536
3 79 7936
4 104 6336
5 129 4736
6 154 3136
7 0 13184

The start address is a cylinder address. The length is expressed in blocks, with each block con­
taining 512 bytes. Since there is overlap, it is unwise for all of these files to be present in one
installation. Information about recommended file system partitioning is provided in the
"Administrative Guidelines" section of the SYSTEM V 168 Administrator's Guide.

The dsk/* files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a "raw" interface which
provides for direct transmission between the disk and the user's read or write buffer. A sin­
gle read or write call results in exactly one 1/0 operation and therefore raw 1/0 is consider­
ably more efficient when many words are transmitted. The names of the raw files begin
with rdsk and end with a number which selects the same disk section as the corresponding
dsk file.

In raw 1/0, the buffer must begin on a word boundary, and counts must be a multiple of 512
bytes (a disk block). Lseek(2) calls should specify a multiple of 512 bytes.

/dev/dsk/•,/dev/rdsk/•

SEE ALSO
cmdl6(7), cmd80(7), lark8(7), sa800f121(7),~sa800fl22(7), vm21(7), vm22(7).

- 1 -

LARK25(7) LARK25(7)

NAME
lark25 - 50Mb LARK Module Drive for VM21 Driver and VM22 Driver

DFSCRIPTION

FILFS

The files dsk/cntrlr _OsO .•. dsk/cntrlr _Os7 refer to sections of the LARK25 disk drive O.
The files dsklcntrlr_lsO ... dsk/cntrlr_ls7 refer to section of drive 1. This slicing allows
the pack to be broken up into more manageable pieces. This new slicing also allows space on
the disk for replacement tracks to be used by the software bad track replacement scheme.

The origin and size of the sections on each drive are as follows:

section start length
0 15 38144
1 90 33344
2 165 28544
3 240 23744
4 315 18944
5 390 14144
6 465 9344
7 0 39936

The start address is a cylinder address. The length is expressed in blocks, with each block con­
taining 512 bytes. Since there is overlap, it is unwise for all of these files to be present in one
installation. Information about recommended file system partitioning is provided in the
"Administrative Guidelines" section of the SYSTEM v 168 Administrator's Guide.

The dsk/* files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a "raw" interface which
provides for direct transmission between the disk and the user's read or write buffer. A sin­
gle read or write call results in exactly one 1/0 operation and therefore raw 1/0 is consider­
ably more efficient when many words are transmitted. The names of the raw files begin
with rdsk and end with a number that selects the same disk section as the corresponding dsk
file.

In raw 1/0, the buffer must begin on a word boundary, and counts must be a multiple of 512
bytes (a disk block). Lseek(2) calls should specify a multiple of 512 bytes.

/dev/dsk/:t,/dev/rdsk/*

SEE ALSO
cmd16(7), cmd80(7), lark8(7), sa800fl21(7), sa800fl22(7), vm21(7), vm22(7).

- 1 -

LP(7) LP(7)

NAME
lp - MVME410 line printer interface

D~CRIPTION

FILffi

Lp provides the interface to any of the standard Printronix-type line printers or to any of the
standard Centronics line printers. When opened or closed, a suitable number of page ejects are
generated. Bytes written are printed.

An internal parameter within the driver determines whether or not the device is treated as
having a 96- or 64-character set. In half-ASCII mode, lowercase letters are turned into upper­
case letters and certain characters are escaped according to the following table:

+­
-}

+

The driver correctly interprets carriage returns, backspaces, tabs, and form-feeds. A new-line
that extends over the end of a page is turned into a form-feed. The default line length is 132
characters, indent is 4 characters and lines per page is 66. Lines longer than the line length
minus the indent (i.e., 128 characters, using the above defaults) are truncated.

Two ioctl(2) system calls are available:

#include <sys/lprio.h>
ioctl (Jildes, command, arg)
struct lprio sarg;

The commands are:

LPRGET
Get the current indent, columns per line, and lines per page and store in the
lprio structure referenced by arg.

LPRSET Set the current indent, columns per line, and lines per page from the struc­
ture referenced by arg.

Thus, indent, page width, and page length can be set with an external program.

/dev/lp*

SEE ALSO
Ip(1), ioctl(2).

- 1 -

LP050(7) LP050(7)

NAME
lp050 - MVME050 line printer interface

DESCRIPTION

FILES

SYSTEM V /68 supports the parallel port on the MVME050 System Controller Module as the
printer port. Lp050 provides the interface to any of the standard Printronix-type parallel line
printers or the standard Centronics-type parallel line printers. When the device is opened or
closed, a suitable number of page ejects are generated. Bytes written are printed using a
buffered interface.

The driver supports the printable ASCII character set (96 characters) and correctly interprets
carriage returns, backspaces, tabs, and form-feeds. The defaults for line length, indent, and
lines per page are 132, 4, and 66, respectively. Lines longer than the line length minus the
indent (i.e., 128 characters, using the above defaults) are truncated. These defaults can be
accessed and modified with an external program using the following calls.

The two ioct/(2) system calls available are of the following form:

#include <sys/Iprio.h>
ioctl(fildes, command, arg)
struct lprio •arg;

The commands are:

LPRGET

LPRSET

Get the current indent, columns per line, and lines per page and store in the
lprio structure referenced by arg.

Set the current indent, columns per line, and lines per page from the struc­
ture referenced by arg.

This driver does not support unbuffered parallel-to-serial-port conversion utilizing the paral­
lel port on the MVME050 module.

/dev/lp*

SEE ALSO
lp(l), ioct1(2), mvme050(7), m050(7).
MVMEOSO System Controller Module and MVME701 I/0 Transition Module User's Manual.

-l-

LRK2S(7) LRK2S(7)

NAME
lrk25 - 25Mb LARK Module Drive for Universal Disk Driver

DESCRIPTION

FILES

The files dsk.lcntrlr _OsO ••• dsk/cntrlr _Os7 refer to sections of the LRK25 disk drive 0. The
files dsk/cntrlr_1s0 ... dsklcntrlr_1s7 refer to sections of drive 1. This slicing allows the
pack to be broken up into more manageable pieces.

The origin and size of the sections on each drive are as follows:

section start length
0 0 39936
1 4992 34944
2 9984 29952
3 14976 24960
4 19968 19968
5 24960 14976
6 29952 9984
7 34944 4992

The start address is a block address, with each block containing 512 bytes. Since there is over­
lap, it is unwise for all of these files to be present in one installation.

The dsk/* files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a "raw" interface which
provides for direct transmission between the disk and the user's read or write buffer. A sin­
gle read or write call results in exactly one 1/0 operation and therefore raw 1/0 is consider­
ably more efficient when many words are transmitted. The names of th~ raw files begin
with rdsk and end with a number that selects the same disk section as the corresponding dsk
file.

In raw 1/0 the buffer must begin on a word boundary, and counts must be a multiple of 512
bytes (a disk block). Likewise, lseek(2) calls should specify a-multiple of 512 bytes.

/dev/dsk/a,/dev/rdsk/•

SEE ALSO
ud(7), cm16(7), cm80(7), f18(7).

- 1 -

M050(7) M050(7)

NAME
m050 - MVMEOSO Serial Port

DESCRIPTION

FILES

Each MVME050 board supports two devices. Each line attached to an m050 behaves as
described in termio(1). The line speed of each device can be changed under software control
(output speed = input speed). The number of data bits (5, 6, 7, or 8), parity (even, odd, or
no), and the number of stop bits (I or 2) are also software selectable (refer to stty(l)).

/dev/mpccO,/dev/mpccl

SEE ALSO
stty(I), termio(7).

-1-

M320(7) M320(7)

NAME
m320 - general disk driver for the MVME320

DESCRIPTION
The m320 driver provides support for Winchester Disks and S 114' IBM format floppy disks.

Winchester support includes a provision for mapping bad tracks to alternates on the disk. The
dinit(lM) program must be used to record bad track information for the use of the driver.

The driver interprets the minor device number as follows:
bit 7 bit 0
+---+---+---+---+---+---+---+---+
0 0
+---+---+---+---+---+---+---+---+

+------------+
Partition Number

+--------+
Unit Number

+----+
Controller Number

(Zeros required)
The controller number defines one of two MVME320 controllers, 0 or 1.

The unit number defines one of four units on the controller. These assignments are fixed as
follows:

unit 0 Winchester Disk

unit l Winchester Disk

unit 2 S l/l IBM format floppy disk

unit 3 S 1/4' IBM format floppy disk

The partition number (also referred to as a "slice") defines one of eight partitions (0 to 7).
The m320 driver uses the same slicing defined for the wd(7) driver.

Two ioct/(2) calls are available.
int fildes;
int command;
union
{

int blkno;
struct
{

int heads;
int cylinders;

}
volfmt;

}
arg;

ioctl (flldes, command, &arg);
Fi/des must be an opened file descriptor (as from open(2)) for a raw device.

-1-

M320(7) M320(7)

Command may be 1 or 2. When command is 1, a single track is formatted. Arg.blkno specifies
a block in the track to be formatted relative to the origin of the slice opened as fildes. When
command is 2, the entire volume is formatted. If the target disk is a Winchester,
arg.volfmtheads and arg.volfmt.cylinders must be the number of heads and cylinders, respec­
tively, on the target disk. This parameter is not required for a floppy disk, but &arg must be
a valid user memory address.

It is strongly recommended that dinit(lM) or m320fmt(lM) be used instead of direct calls to
ioct/(2).

NOTES

FILES

A volume format request keeps the controller busy until the format completes.

On IBM format 51/4' floppy disks, track 0 contains 4 UNIX (512-byte) blocks (FM record­
ing). Tracks 1 through 159 contain 8 blocks (MFM recording).

/dev/dsk/m320 *
I dev /rdsk/m320- *
<sys/mvme320.h>
<sys/io/m320io.h>
<sys/io/win.h>
<sys/io/sa400.h>
<sys/space/m320space.h>

SEE ALSO
config(lM), master(4), dinit(IM), m320fmt(IM).

-2-

M400(7) M400(7)

NAME
m400 - MVME400 Dual RS-232C Serial Port Module

DESCRIPTION

FILES

Each MVME400 board supports two devices, with a maximum configuration of eight devices
(four boards). Each line attached to an m400 behaves as described in termi,o(1). The line
speed of each device can be changed under software control (output speed = input speed). The
number of data bits (5, 6, 7, or 8), parity (even, odd, or no) and the number of stop bits (1 or
2) are also software selectable (refer to stty(l)).

I dev I console I dev /tty 40*

SEE ALSO
stty(l), termio(7).

- 1 -

M564(7) M564(7)

NAME
m564 - serial ports on the MVMESYS 131

DESCRIPTION

FILES

Each MVMESYS 131 module supports two serial ports. The lines behave as described in ter­
mio(1). The line speed of each device can be changed under software control (output speed
= input speed). The number of data bits (5, 6, 7, or 8), parity (even, odd, or no), and the
number of stop bits (I or 2) are also software selectable (refer to stty(I)).

I dev /ttyOO, / dev /ttyO I

SEE ALSO
stty(I), termio(7).

-1-

MEM(7) MEM(7)

NAME
mem. kmem - core memory

DESCRIPTION

FILES

BUGS

Mem is a special file that is an image of the core memory of the computer. It may be used,
for example, to examine and even to patch the system.

Byte addresses in mem are interpreted as memory addresses. References to non-existent loca­
tions cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results when read­
only or write-only bits are present.

The file kmem is the same as mem except that kernel virtual memory rather than physical
memory is accessed.

/dev/mem, /dev/kmem

M em does not access addresses outside of physical ram memory; hence, no device registers are
available.

- 1-

MVME050(7) MVME050(7)

NAME
mvme050 - driver for the MVME050 controller

DESCRIPTION

FILES

Mvme050 provides initialization of and an interface to the MVME050 System Controller
Module. Separate drivers and appropriate special devices exist for the system clock, two
serial ports and parallel port which also exist on the MVME050 board.

Reading one byte from this device returns the current state of the switch bank accessible
from the front of the controller. Each bit represents the state of one of the eight switches
(ON=l, OFF=O).

Writing one byte to this device will cause the hex value of the byte to be displayed on the
front panel display. Refer to the chapter "Operating Instructions" in the MVME050 System
Controller Module and MVME701 I/O Transition Module User's Manual for additional
information.

Two ioct/(2) system calls are available, which are of the form:

#define DSPL Y _ON 0
#define DSPL Y _OFF 1
ioctl(fildes, command, arg)

The argument arg is ignored.

The commands are:

DSPLY_ON Tums on the display.

DSPL Y _OFF Tums off the hex display. The default condition of the display is ON.

/dev /mvme050

SEE ALSO
m050(7), lp050(7), ioctl(2).

-1-

MVME350(7) UNIX 5.0 MVME350(7)

NAME
mvme350 - MVME350 Streamer Tape Controller VMEmodule Interface

DESCRIPTION
The MVME350 driver controls one streaming tape drive per controller. It provides advanced
read/write access and tape control. Though the user interface is similar to that of 9-track
tapes, the QIC-02 Streaming Tape Interface prevents some forms of tape accesses. In partic­
ular, streaming tapes may be completely rewritten (truncated) or files may be appended at
the end-of-data. Unlike 9-track tapes, streaming tapes may not be overwritten in the middle
of a tape file (terminated by a filemark). For this reason, the MVME350 driver only sup­
ports two types of writing: truncating (the O_TRUNC open(2) option), and appending (the
0-APPEND open(2) option). If O_TRUNC and O.APPEND are both missing from an
open(2) request, the MVME350 driver will supply the appropriate one depending upon the
tape's minor number.

To support the "append" and "truncate" functions, two forms of MVME350 special files are
defined: append devices and truncate devices. When an open(2) occurs with neither
O_TRUNC nor O_APPEND present, then the file will be opened for truncation on the trun­
cate device and for append on the append device. If the O_TRUNC or O_APPEND flags
are present, it does not matter whether the truncate device or append device is used.

CAUTION: the O_TRUNC and 0-APPEND options to open(2) override the truncate and
append special file designations. Therefore, if a program opens a truncate device with the
0-APPEND option, then data will be appended. If a program opens a append device with
the 0 .JRUNC option, then the tape will be rewritten. When using an unknown or untried
program with the MVME350, first experiment by writing small amounts of information to
determine whether the program uses the Q_APPEND or 0 .JRUNC options, or neither.
Some utilities may use both options in different situations; that is, some open(2) calls will use
O_APPEND while others in the same program will use O_TRUNC, depending upon context.
Most commonly used utilities are discussed below.

Double Buffering.
The MVME350 driver has been implemented with double buffering I/0 processing. When
making an open(2) system call on a character (or raw) tape device, the MVME350 will nor­
mally allocate two large system buffers to use during I/O. (See the section below regarding
open(2) processing for exceptions.) These buffers will then be used for all direct .memory
accesses (DMA) to and from the MVME350 Streaming Tape Controller. When making a
read(2) system call, the data will first be read into one of the buffers, and then transferred to
the reading program. When make a write(2) system call, the data will first be transferred
from the writing program into one of the buffers. Only when the buffer is full will it be writ­
ten to a streaming tape.

The advantage of this double buffering scheme is that most MVME350 DMA transfers will be
done very efficiently, thus keeping the tape "streaming" and wasting little or no space on the
tape due to streaming tape underruns. The default buff er size of the double buffers is 128
Kbytes for each buffer.

When reading using the double buffers, the double buffering software will attempt to read
ahead of the current read point. Therefore, when the first buff er is finally exhausted, it's
likely that the second buffer has already been filled. In this case, the new read(2) request
may be completed immediately and a new read ahead may begin. The double buffering
scheme will then stay ahead of the program that is reading the tape, and provide enough I/O
overlap to permit efficient tape reading.

When writing using the double buffers, the double buffering software will accept new
write(2) requests until the current buffer is full. The software will then write out the full
buff er and switch to the other buff er to accept more output. If the other buff er has not yet

- 1 -

MVME350(7) UNIX 5.0 MVME350(7)

been completely written to tape, then the request will hold up the writing program until the
I/O request is completed.

The double buffering software may be permanently disabled, or the double buffering buff er
sizes may be changed, using the m350ctl(IM) control program.

Opcn(2) Processing.
When the open(2) system call is made on an MVME350 streaming tape, the following process­
ing will occur:

I. If the minor device number is illegal, then the open(2) will fail, returning the error
status ENXIO.

2. If the tape unit is already open, then the open(2) will fail, returning the error status
ENXIO.

3. If the tape unit is not "on line'', and if an open(2) call is made without the
O_NDELA Y option, then the system call will fail, returning the error status ENXIO.
If an I/O request is made prior to the device coming "on line", then a device 1/0
error will occur.

4. If the tape unit is being opened for writing and the tape is write-protected, then the
open(2) will fail, returning the error status ENXIO.

5. If the open(2) call is made with the O_NDELA Y option, then no DMA buffers will
be allocated and all character I/0 will occur unbuffered by the MVME350 driver.

6. If the open(2) call is not made with the O_NDELA Y option, and if the driver is
unable to allocate DMA buffers on a character device open, then the open(2) will fail,
returning the error status ENXIO.

7. When a tape is being opened for writing, it must be opened for rewrite or for append.
If the open request is made with the O.JRUNC flag (to truncate), the tape will be
rewound and the tape will be rewritten. If the open request is made with the
O_APPEND flag (to append), the tape will be positioned following the last data writ­
ten onto the tape (end-of-data). If the open . request is not made with either
O_TRUNC or O_APPEND, the device minor number will be used to determine
which one to use. If the open request is made with both Q_TRUNC and
O_APPEND, Q_TRUNC will override and the tape will be rewritten.

Close(2) Processing.
The following processing will occur upon a close(2) of a tape device:

I. If the device was opened for writing, a filemark will be written onto the tape.

2. If the special file indicated that the tape needs to be rewound, then the tape will be
rewound ("rewind on close").

3. If the special file indicated that the tape is not to be rewound, and the device was
opened for reading, then the tape will be positioned following the next filemark.

When a character (raw) device is closed, the double buffers (if any) will normally be deallo­
cated. The only exception to this rule occurs when an end-of-media is encountered while
writing a streamer tape. This condition occurs when the program attempts to write off the
end of a tape. The operator is notified of the condition by a message printed on the· system
console. The MVME350 driver will then retain the double buffers and all data currently
residing in them (which is not yet written to tape). If the same process then makes an
open(2) request (for writing) on the same tape, then all remaining data in the double buffers
will be written to tape prior to any new I/0 requests. In this way, programs like cpio(I) may
be used to write files that span more than one tape. If any other process opens the device
next, or if the device is not opened for writing, then the double buffers will be flushed (with

- 2 -

MVME350(7) UNIX 5.0 MVME350(7)

an error message printed on the system console).

In all cases, the MVME350 driver will not complete close(2) processing until all streaming
tape operations are done. Thus, the streaming tape should not be ejected before the program
that is using the streaming tape is done.

loct1(2) Processing
The MVME350 driver supports several ioct/(2) functions on the character or raw device.
These functions permit control functions beyond the normal open(2), close(2), read(2), and
write(2) system calls. The following functions are supported:

M350REWIND
rewinds the tape.

M350ERASE
erases and then rewinds the tape.

M350RETENSION
retensions the tape (needed whenever a tape has not been used for some time).

M350WRTFM
writes a filemark onto the tape. A filemark can only be written immediately after
data has been written using the write(2) system call.

M350RDFM
reads the tape (and discards the data) up to and including the next filemark.

M350SETDMA
sets the character device DMA buffering size. The ioctl(2) argument parameter is the
new buff er size. A buffer size of zero disables double buffering. Only the superuser
may set the DMA buffer size.

M350GETDMA
returns the character device DMA (double) buffering size. The ioct/(2) argument
parameter is the address (in the user program) of the memory location to put the
DMA buffering size. If double buffering is currently enabled, this function returns
the size of the smallest of the two buffers.

Human Interfaces.
The filenames used for the MVME350 incorporate the drive number, whether the device is a
"rewind-on-close" device, and the DEFAULT write action. The general form for
MVME350 file names is:

/dev /{r}mt/m350_#[ta]{n}

where:

{r} is optional r
is the drive number
[ta] is one oft or a
{n} is optional n

If the optional r is present, then the device is the raw (or character) .interface. If the t is
present, and if the tape is opened for writing with neither Q_TRUNC nor Q_APPEND
specified, then the tape will be opened with O_TRUNC. Similarly, if the a is present, and if
the tape is opened for writing with neither Q_TRUNC nor O_APPEND specified, then the
tape will be opened with O_APPEND (called the append device). If the n is present, then
the tape will not be rewound when the tape is closed. The filenames to use for the
MVME350 block and character (raw) devices are:

- 3 -

MVME350(7)

Truncate Device
Append Device

Truncate Device
Append Device

where:

UNIX 5.0 MVME350(7)

BLOCK DEVICES
REWIND ON CLOSE NO REWIND ON CLOSE

/dev/mt/m35Q_Ct / dev /mt/m35Q_Ctn
/ dev /mt/m35Q_Ca / dev /mt/m350 -L:an

CHARACTER (OR RAW) DEVICES
REWIND ON CLOSE NO REWIND ON CLOSE

/dev/rmt/m35Q_Ct / dev /rmt/m35Q_Ctn
/ dev /rmt/m35Q_Ca /dev/rmt/m350-L:an

C is the controller number to which the
tape drive is attached.

For example, to use the dd(l) command to copy a filesystem from disk OsO to the tape on the
MVME350 controller zero, rewrite the tape, and to rewind the tape when done, execute:

$ dd if=/dev /rdsk/OsO of=/dev /rmt/m350_0t

This command will perform a "raw" copy of the filesystem on disk OsO to the tape. The tape
driver will prohibit accidental sharing of a tape drive by only permitting one open per drive
at a time.

Tape Usage.
Due to the append or truncate restrictions on writing a tape, the normal tape compatible utili­
ties need some special handling. If the tape is being accessed through I/0 redirection in the
shell (sh(I)), then the append device should be used. If the tape is being opened by the util­
ity, then the truncate device should normally be used. When writing new utilities to use the
MVME350, explicit uses of O_TRUNC and 0--APPEND in the open(2) should be made.
The normal tape utilities need to be used in special ways:

dd(l): The dd(I) program will always open the output file specified by the of= option, with
the O_TRUNC flag. If no such option is specified, dd(l) will use its standard out­
put. Therefore, to append to a tape using dd(l), redirect standard output using the
shell append redirection (>) with the append device; do not use the of= option. For
example, to dump I dev /rdsk/OsO onto the tape followed by / dev /rdsk/lsO. execute:

cpio(l):

$ dd if=/dev/rdsk/OsO of=/dev/rmt/m350_0t
$ dd if=/dev/rdsk/lsO >/dev/rmt/m350_0a

Since cpio(I) uses its standard output to write tapes, simply use the shell's redirection
with the append device. For example, to rewrite a tape using cpio(l):

$ cpio -oBv <filelist >/dev/rmt/m350 ...Da

To append to a tape using cpio(l):

$ cpio -oBv <filelist >/dev/rmt/m350...Da

tar(I): To specify the output tape, tar(l) requires the -f option on the command line. If the
filename supplied via the -f option is -, then tar(l) will use its standard output. In
this mode, tar(l) may be used in the same manner as cpio(l). For example, to rewrite

- 4 -

MYME350(7) UNIX 5.0 MVME350(7)

a tape using tar(l):

$ tar -cf /dev /rmt/m350_0t files ...

or

$tar -cf - files ... >/dev/rmt/m350_0t

To append to a tape using tar(l):

$tar -cf /dev/rmt/m350...Da files ...

or

$tar -cf - files ... >/dev/rmt/m350...Da

finc(lM):
To write a tape using finc(lM), it is first necessary to label the tape by using
labelit(IM). For this purpose, it is better to use the truncate device. To label a tape
and then write the tape using finc(lM), execute:

$ labelit /dev /rmt/m350 ...Dt fsname volname -n
$fine -m -10 /dev/rdsk/OsO /dev/rmt/m350_0t

The above example copies all files on the device /dev /rdsk/OsO that have been
modified in the last 10 days onto the streamer tape.

frec(lM):
Since frec(lM) does not write tapes, it does not matter whether the truncate device or
append device is used.

volcopy(IM):
Like finc(IM), volcopy(IM) requires the tape to have a labelit(JM) label at the begin­
ning. For this purpose the truncate device is the best to use. To label a tape and then
use volcopy(IM) to write it, execute:

$ Iabelit /dev /rmt/m350_0t fsname volname -n
$ volcopy fsname /dev/rdsk/OsO volname /dev/rmt/m350_0t volname

The above example copies the filesystem on device /dev /rdsk/OsO onto streamer tape.

When reading tapes, either the append or truncate devices may be used. To begin reading
from the second or subsequent file on a tape, the tape must be spaced to that file using the
"no-rewind-on-close" device. For example, to space the tape to the second file on a tape,
execute:

$ dd if=/dev /rmt/m350_0tn of=/dev /null

When the dd(l) completes, the tape will be left at the beginning of the second file on the
tape. If another read is attempted, it will read from the second file. If there is no second
file, the MVME350 will generate an error.

M350ctl(IM) Usage.
The m350ctl(lM) utility is used to gain quick access to the MVME350 devices. See the
m350ctl(IM) manual page for more details. The program supports the following functions:

- 5 -

MVME350(7) UNIX 5.0 MVME350(7)

rewind, retension, erase, tape positioning, and OMA buffer size get and set.

Error Messages
The MVME350 generates many different error messages. These error messages, printed in
English, attempt to provide enough information to permit the operator to diagnose tape prob­
lems. Most error messages start with a line that prints out the controller and drive number
that has the error. The first line of the error message looks like:

MVME350: Error on controller 0, drive 0

The second and subsequent lines of the error message describe the symptoms encountered:

Filemark detected.
The last operation encountered a filemark. When encountered, a filemark will nor­
mally terminate reading and return without an error status.

Unrecoverable data error.
Some form of unrecoverable error has occurred. The operation should be retried. If
the operation continues to get this error, then the tape is probably damaged.

End of Media.
The tape has encountered the end-of-media indicator. Further reading or writing of
this tape is not allowed without rewinding.

Write Protected.
The tape's write-protect switch is set to SAFE. Normally, the open(2) will fail when
attempting to open a write-protected tape for write.

Drive not online.
The MVME350 does not detect an "on-line" status from the streamer tape drive.
Check that all cables are properly attached. If so, then retry the operation. If the
problem persists, then the streamer tape drive is probably damaged.

Cartridge not in place.
No streamer tape cartridge has been loaded into the selected tape drive. Check to be
sure the proper special file has been used to access the tape. If this problem persists,
then the streamer tape drive is probably damaged.

Beginning of Media.
The beginning-of-media has been encountered. The tape is now rewound correctly.

No data detected.
The MVME350 has not detected any data on the tape during a read operation. A
read has probably been attempted past the end-of-media.

No file mark encountered
An attempt to find a filemark has failed. The desired filemark appears not to be on
the tape.

Not a beginning of tape.
The tape is not at the beginning-of-tape as expected.

Tape reset did not occur.
After every reported error, the MVME350 attempts to reset the tape drive. If the
reset fails, this error message will be printed.

Timeout.
Some internal timeout has occurred, aborting the operation. Try the operation again.
If the problem persists, then try a new tape or tape drive.

- 6 -

MVME350(7) UNIX 5.0 MVME350(7)

FILES

Bad Unit.
A tape drive unit failed to respond. Try the operation again. If the error persists,
then the cables or tape drive are probably damaged.

Bad Drive.
A tape drive unit failed to respond. Try the operation again. If the error persists,
then the cables or tape drive is probably damaged.

If an error message has only the first line, then retry the operation. If the error persists, then
the MVME350 controller, the MVME350 driver software, or the streaming tape drive may be
damaged or confused. In persistent errors, resetting the machine or cycling power will some­
times clear the problem.

The MVME350 driver also produces some warning messages. These warning messages are
not fatal errors but are important to the operator. The warning messages are:

DMA buffers still active.
The last write onto the tape (using double buffering) encountered the end-of-media.
The buffers are being retained for subsequent write operations (See the section on
Double Buffering above).

DMA buffers discarded.
The new open(2) request is by a different program or is not requesting to write. The
retained buffers are discarded (See the section on Double Buffering above).

Initialization error.
The MVME350 initialization sequence did not succeed. The hexadecimal value fol­
lowing the error message should be reported to the system administrator.

/ dev /rmt/m35Q_• /usr /include/sys/mvme350.h

SEE ALSO
m350ctl(IM), cpio(l), dd(l), tar(l), finc(IM), frec(lM), volcopy(IM), open(2), close(2),
ioctl(2).

- 7 -

NULL(7)

NAME
null - the null file

DESCRIPTION
Data written on a null special file is discarded

Reads from a null special file always return 0 bytes.

FILES
/dev/null

- 1 -

NULL(7)

PRF(7) PRF(7)

NAME
prf - operating system profiler

DESCRIPTION

FILES

The file pr f provides access to activity information in the operating system. Writing the file
loads the measurement facility with text addresses to be monitored. Reading the file returns
these addresses and a set of counters indicative of activity between adjacent text addresses.

The recording mechanism is driven by the system clock and samples the program counter at
line frequency. Samples that catch the operating system are matched against the stored text
addresses and increment corresponding counters for later processing.

The file pr f is a pseudo-device with no associated hardware.

/dev/prf

SEE ALSO
config.68(1 M), profiler(1 M).

- 1 -

SA400FL22 (7) SA400FL22 (7)

NAME
sa400fl22 - 51/4-inch Floppy Disk Drive for VM22 Driver

DESCRIPTION

FILES

Although it is possible to have eight devices for each floppy disk drive, only five devices per
floppy disk drive are currently defined: dsk/vm22_xs0, dsk/vm22_xs1, dsk/vm22_xs2,
dsk/vm22_xs3, and dsk/vm22_xs7.

Dsk/vm22_xs1 and dsk/vm22_xs3 are defined for single-sided drives or single-sided disks in
double-sided drives. Dsk/vm22_xs0 and dsk/vm22_xs2 are defined for double-sided disks
in double-sided drives. Dsk/vm22-Xs7 is defined to cover the entire contents of the largest
supported disk. These slices are created to be compatible with the slicing definition needed by
the hard disk when using the software bad track replacement scheme.

The origin and size of the sections on each drive are as follows:

section start length description
0 1 632 double-sided, single density
1 1 316 single-sided, single density
2 1 1264 double-sided, double density
3 1 632 single-sided, double density
4
5
6
7 0 1276 largest floppy size

The start address is a cylinder address. The length is expressed in blocks, with each block con­
taining 512 bytes. Information about recommended file system partitioning is provided in the
"Administrative Guidelines" section of the SYSTEM V 168 Administrator's Guide.

The dsk/* files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a "raw" interface which
provides for direct transmission between the disk and the user's read or write buffer. A sin­
gle read or write call results in exactly one 1/0 operation and therefore raw 1/0 is consider­
ably more efficient when many words are transmitted. The names of the raw files begin
with rdsk and end with a number which selects the same disk section as the corresponding
dsk file.

In raw 1/0, the buffer must begin on a word boundary, and counts must be a multiple of 512
bytes (a disk block). Lseek(2) calls should specify a multiple of 512 bytes.

/dev/dsk/*, /dev/rdsk/*

SEE ALSO
cmd16(7), cmd80(7), lark25(7), lark8(7), sa800f122, vm22(7).

- 1 -

SA400FL WD (7) SA400FLWD(7)

NAME
sa400flwd - 5 1/-t-inch Floppy Disk Drive for the Winchester Disk Driver and the general disk
driver for the MVME319 and MVME320 Disk Controllers

DESCRIPTION

FILES

Although it is possible to have eight devices for each floppy disk drive, only two devices per
floppy disk drive are currently defined: dsk/[cntrlr _JxsO and dsk/[cntrlr_]xs1.

Dsk/[cntrlr _]xsO and dsk/[cntrlr _]xs1 are defined for double-sided disks in double-sided
drives. These slices are created to be compatible with a double-sided, double density floppy
created on a VME/10. A floppy created in wd_OsO on a RWINl (VME/10) can be read
directly in [cntrlr]xsO on a M320 or ID.

The origin and size of the sections on each drive are as follows:
section start length description
0 12 1264 double-sided double density
1
2
3
4
5
6
7 0 1276 Largest floppy size

The start address is a block address. The length is expressed in blocks, with each block con­
taining 512 bytes. Information about recommended file system partitioning is provided in the
"Administrative Guidelines" section of the
Administrator's Guide.

The dsk/* files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a "raw" interface which
provides for direct transmission between the disk and the user's read and write buffer. A
single read or write call results in exactly one I/0 operation and therefore raw I/O is consid­
erably more efficient when many words are transmitted. The names of the raw files begin
with rdsk and end with a number which selects the same disk section as the corresponding
dsk file.

In raw I/0, the buffer must begin on a word boundary and counts must be a multiple of 512
bytes (a disk block). Lseek(2) calls should specify a multiple of 512 bytes.

/dev/dsk/*,/dev/rdsk/*

SEE ALSO
id(7), m320(7), wd 15(7), wd40(7).

-1-

SA800FL21 (7) SA800FL21 (7)

NAME
sa800fl21 - 8-inch Floppy Disk Drive for VM21 Driver

DESCRIPTION

FILES

Although it is possible to have eight devices for each floppy disk drive, only four devices per
floppy disk drive are currently defined: dsklvm21Js0, dsklvm21Js1, dsklvm21Js6, and
dsklvm21Js1.

Dsklvm21Js0 and dsklvm21Js6 are defined for single-sided drives or single-sided disks in
double-sided drives. Dsklvm21Js1 and dsk/vm21Js7 are defined for double-sided disks in
double-sided drives. These slices are created to be compatible with the slicing definition
needed by the hard disk when using the software bad track replacement scheme.

The origin and size of the sections on each drive are as follows:

section start length description
0 1 988 double-sided, single density
1 2 487 single-sided, single density
2
3
4
5
6
7

0
0

500
1000

The start address is a cylinder address. The length is expressed in blocks, with each block con­
taining 512 bytes. Information about recommended file system partitioning is provided in the
"Administrative Guidelines" section of the SYSTEM V 168 Administrator's Guide.

The dsk/* files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a "raw" interface which
provides for direct transmission between the disk and the user's read or write buffer. A sin­
gle read or write call results in exactly one 110 operation and therefore raw I/O is consider­
ably more efficient when many words are transmitted. The names of the raw files begin
with rdsk and end with a number which selects the same disk section as the corresponding
dsk file.

In raw I/O, the buffer must begin on a word boundary, and counts must be a multiple of 512
bytes (a disk block). Lseek(2) calls should specify a multiple of 512 bytes.

/dev/dsk/*, /dev/rdsk/*

SEE ALSO
cmd16(7), cmd80(7), lark25(7), lark8(7), vm21(7).

- 1 -

SA 800FL22 (7) SABOOFL22 (7)

NAME
sa800fl22 - 8-inch Floppy Disk Drive for VM22 Driver

DFSCR1PTION

FILES

Although it is possible to have eight devices for each floppy disk drive, only five devices per
floppy disk drive are currently defined: dsk/vm22....xs0, dsk/vm22....xsl, dsk/vm.22....xs2,
dsk/vm22....xs3, and dsk/vm22....xs7.

Dsk/vm22_xs1 and dsk/vm22....xs3 are defined for single-sided drives or single-sided disks in
double-sided drives. Dsk/vm22....xs0 and dsk/vm22_xs2 are defined for double-sided disks
in double-sided drives. Dsk/vm22....xs7 is defined to cover the entire contents of the largest
supported disk. These slices are created to be compatible with the slicing definition needed by
the hard disk when using the software bad track replacement scheme.

The origin and size of the sections on each drive are as follows:

section start length description
0 1 988 double-sided, single density
1 2 487 single-sided, single density
2 1 1976 double-sided, double density
3 2 975 single-sided, double density
4
5
6
7 0 2002 largest ·floppy size

The start address is a cylinder address. The length is expressed in blocks, with each block con­
taining 512 bytes. Information about recommended file system partitioning is provided in the
"Administrative Guidelines" section of the SYSTEM V 168 Administrator's Guide.

The dsk/* files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a "raw" interface which
provides for direct transmission between the disk and the user's read or write buffer. A sin­
gle read or write call results in exactly one 1/0 operation and therefore raw 1/0 is consider­
ably more efficient when many words are transmitted. The names of the raw files begin
with rdsk and end with a number which selects the same disk section as the corresponding
dsk file.

In raw 110, the buffer must begin on a word boundary, and counts must be a multiple of 512
bytes (a disk block). Lseek(2) calls should specify a multiple of 512 bytes.

/dev/dsk/*,/dev/rdsk/*

SEE ALSO
cmd16(7), cmd80(7), lark25(7), lark8(7), sa400fl22(7), vm22(7).

- 1 -

SXT(7) SXT(7)

NAME
sxt - pseudo-device driver

DESCRIPTION
Sxt is a pseudo-device driver that interposes a discipline between the standard tty line discip­
lines and a real device driver. The standard disciplines manipulate virtual tty structures
(channels) declared by the sxt driver. Sxt acts as a discipline manipulating a real tty struc­
ture declared as a real device driver. The sxt driver is currently only used by the shl(l)
command.

Virtual ttys are named by inodes in the subdirectory /dev/sxt and are allocated in groups of
up to eight. To allocate a group, a program should exclusively open a file with a name of the
form /dev/sxt/??O (channel 0) and then execute a SXTIOCLINK i.octl(2) call to initiate the
multiplexing.

Only one channel, the "controlling" channel, can receive input from the keyboard at a time;
others attempting to read will be blocked.

There are two groups of ioctl(2) commands supported by sxt. The first group contains the
standard ioctl commands described in termid...1), with the addition of the following:

TIOCEXCL Set exclusive use mode: no further opens are permitted until the file has
been closed.

TIOCNXCL Reset exclusive use mode: further opens are once again permitted.

The second group are directives to sxt itself. Some of these may only be executed on channel
0.

SXTIOCLINK

SXTIOCSWTCH

SXTIOCWF

SXTIOCUBLK

SXTIOCSTAT

Allocate a channel group and multiplex the virtual ttys onto the
real tty. The argument is the number of channels to allocate.
This command may only be executed on channel 0. Possible
errors include:

EINV AL The argument is out of range.

ENOTTY The command was not issued from a real tty.

ENXIO linesw is not configured with sxt.

EBUSY An SXTIOCLINK command has already been issued for
this real tty.

EN OM EM
There is no system memory available for allocating the
virtual tty structures.

EBADF Channel 0 -.vas not opened before this call.

Set the controlling channel. Possible errors include:

EINV AL An invalid channel number was given.

EPERM The command was not executed from channel 0.

Cause a channel to wait until it is the controlling channel. This
command will return the error, EINV AL, if an invalid channel
number is given.

Turn off the loblk control flag in the virtual tty of the indicated
channel. The error EINV AL will be returned if an invalid
number or channel 0 is given.

Get the status (blocked on input or output) of each channel and
store in the sxtblock structure referenced by the argument. The
error EFAULT will be returned if the structure cannot be

- 1 -

SXT(7)

FILES

SXT(7)

written.

SXTIOCTRACE Enable tracing. Tracing information is written to /dev/osm on
the 3B 20 computer or to the console on the VAX. This command
has no effect if tracing is not configured.

SXTIOCNOTRACE Disable tracing. This command has no effect if tracing is not con­
figured.

/dev/sxt/??[0-7] Virtual tty devices
/usr /include/sys/sxt.h Driver specific definitions.

SEE ALSO
shl(t), stty(t), ioctl(2), open(2), termio(7).

- 2 -

TERMI0(7) TERMI0(7)

NAME
termio - general terminal interface

DESCRIPTION
All of the asynchronous communications ports use the same general interface, no matter what
hardware is involved. Common features of this interface are presented in this section.

When a terminal file is opened, it normally causes the process to wait until a connection is
established. In practice, users~ programs seldom open these files; they are opened by getty and
become a user's standard input, output, and error files. The first terminal file opened by the
process group leader of a terminal file not already associated with a process group becomes the
control terminal for that process group. The control terminal plays a special role in handling
quit and interrupt signals, as discussed below. The control terminal is inherited by a child
process during a fork (2). A process can break this association by changing its process group
using setpgrp(2).

A terminal associated with one of these files ordinarily operates in full-duplex mode. Charac­
ters may be typed at any time, and are only lost when the system's character input buffers
become completely full, or when the user has accumulated the maximum allowed number of
input characters that have not yet been read by some program. Currently, this limit is 256
characters. When the input limit is reached, all the saved characters are discarded without
notice.

Normally, terminal input is processed in units of lines. A line is delimited by a newline
(ASCII LF) character, an end-of-file (ASCII EOT) character, or an end-of-line character. This
means that a program attempting to read is suspended until an entire line has been typed.
Also, no matter how many characters are requested in the read call, one line at most is
returned. It is not necessary, however, to read a whole line at once; any number of characters
may be requested in a read, even one, without losing information.

During input, erase and kill processing is normally done. By default, the character # erases
the last character typed, except that it does not erase beyond the beginning of the line. By
default, the character @ kills (deletes) the entire input line, and optionally outputs a newline
character. Both these characters operate on a: key-stroke basis, independently of any backspac­
ing or tabbing that may have been done. Both the erase and kill characters may be entered
literally by preceding them with the escape character (\). In this case, the escape character is
not read. The erase and kill characters may be changed ..

Certain characters have special functions on input. These functions and their default charac­
ter values are summarized as follows:

INI'R (Rubout or ASCII DEL) generates an interrupt signal which is sent to all processes
with the associated control terminal. Normally, each such process is forced to ter­
minate, but arrangements may be made either to ignore the signal or to receive a
trap to an agreed-upon location; see signal (2).

QUIT (Control-I or ASCII FS) generates a quit signal. Its treatment is identical to the inter­
rupt signal except that, unless a receiving process has made other arrangements, it is
not only terminated but a core image file (called core) is created in the current
working directory.

SWTCH ASCII NUL is used by th'e job control facility, shl(l), to change the current layer to
the control layer.

ERASE (#)erases the preceding character. It does not erase beyond the start of a line, as del­
imited by a NL, EOF, or EOL character.

KILL (@)deletes the entire line, as delimited by a NL, EOF, or EOL character.

EOF (Control-d or ASCII EOT) may be used to generate an end-of-file from a terminal.
When received, all the characters waiting to be read are immediately passed to the

- 1 -

TERMI0(7) TERMIO(7)

program, without waiting for a newline, and the EOF is discarded. Thus, if there are
no characters waiting, i.e., the EOF occurred at the beginning of a line, zero charac­
ters are passed back, which is the standard end-of-file indication.

NL (ASCII LF) is the normal line delimiter. It can not be changed or escaped.

EOL (ASCII NUL) is an additional line delimiter, similar to NL. Normally, it is not used.

STOP (ControJ-s or ASCII DC3) can be used to temporarily suspend output. It is useful
with CRT terminals to prevent output from disappearing before it can be read.
While output is suspended, STOP characters are ignored and not read.

START (Control-q or ASCII DCl) is used to resume output that has been suspended by a STOP
character. While output is not suspended, START characters are ignored and not
read. The start/stop characters can not be changed or escaped.

The character values for INTR, QUIT, SWTCH, ERASE, KILL, EOF, and EOL may be changed to
suit individual tastes. The ERASE, KILL, and EOF characters may be escaped by a preceding \
character, in which case no special function is done.

When the carrier signal from the data-set drops, a hangup signal is sent to all processes that
have this terminal as the control terminal. Unless other arrangements have been made, this
signal causes the processes to terminate. If the hangup signal is ignored, any subsequent read
returns with an end-of-file indication. Thus, programs that read a terminal and test for end­
of-file can terminate appropriately when hung up on.

When one or more characters are written, they are transmitted to the terminal as soon as
previously-written characters have finished printing. Input characters are echoed by putting
them in the output queue as they arrive. If a process produces characters more rapidly than
they are printed, it is suspended when its output queue exceeds some limit. When the queue
has drained to some threshold, the program is resumed.

Several ioctl(2) system calls apply to terminal files. The primary calls use the following
structure, defined in < termio.h >:

#define NCC 8
struct termio {

unsigned short c__iflag; I• input modes•/
unsigned short C_ilflag; I• output modes *I
unsigned short c__gflag; I• control modes •I
unsigned short c_jflag; I• local modes •I
char c_jfae; I* line discipline *I
unsigned char c_s:c[NCCl I• control chars *I

};

CONTROL CHARACTERS
The special control characters are defined by the, array c~c. The relative positions and initial
values for each function are as follows:

0 VINTR DEL
1 VQUIT FS
2 VERASE #
3 VKILL @

4 VFDF IDT
5 VFDL NUL
6 reserved
7 VSWTCH NUL

Refer to the section "LOCAL MODES" for information about enabling and disabling the func­
tions of these characters. As stated in that section and shown in termio.h, if canonical pro­
cessing is not set, positions 4 and 5 contain values for VMIN and VTI.ME, respectively.

- 2 -

TERMI0(7) TERMIO(7)

INPUT MODES
The c_iflag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.
BRKINT 0000002 Signal interrupt on break.
!GNP AR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.
INPCK 0000020 Enable input parity check.
!STRIP 0000040 Strip character.
I NL CR 0000100 Map NL to CR on input.
IGNCR 0000200 Ignore CR.

I CR NL 0000400 Map CR to NL on input.
IUCLC 0001000 Map uppercase to lowercase on input.
IXON 0002000 Enable start/stop output control.
IX ANY 0004000 Enable any character to restart output.
IX OFF 0010000 Enable start/stop input control.

If IGNBRK is set, the break condition (a character framing error with data all zeros) is ignored,
that is, not put on the input queue and, therefore, not read by any process. Otherwise, if
BRKINT is set, the break condition generates an interrupt signal and flushes both the input and
output queues. If IGNPAR is set, characters with other framing and parity errors are ignored.

If PARMRK is set, a character with a framing or parity error which is not ignored is read as
the three-character sequence: 0377, 0, X, where X is the data of the character received in
error. To avoid ambiguity in this case, if !STRIP is not set, a valid character of 0377 is read as
0377, 0377. If PARMRK is not set, a framing or parity error which is not ignored is read as the
character NUL (0).

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity checking is
disabled. This allows output parity generation without input parity errors.

If ISTRIP is set, valid input characters are first stripped to 7 bits; otherwise, all 8 bits are pro­
cessed.

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is set, a
received CR character is ignored (not read). Otherwise, if ICRNL is set, a received CR character
is translated into a NL character.

If IUCLC is set, a received uppercase alphabetic character is translated into the corresponding
lowercase character.

If IXON is set, start/stop output control is enabled. A received STOP character suspends output,
and a received START character restarts output. All start/stop characters are ignored and not
read. If IXANY is set, any input character restarts output that has been suspended.

If IX OFF is set, the system transmits ST ART /STOP characters when the input queue is nearly
empty/full.

The initial input control value is all bits clear.

OUTPUT MODES
The c_oflag field specifies the system treatment of output:

OPOST 0000001 Postprocess output.
OLCUC 0000002 Map lowercase to uppercase on output.
ONLCR 0000004 Map NL to CR-NL on output.
OCRNL 0000010 Map CR to NL on output.
ONOCR 0000020 No CR output at column 0.
ONLREf 0000040 NL performs CR function.
OFILL 0000100 Use fill characters for delay.
OFDEL 0000200 Fill is DEL, else NUL.

- 3 -

TER.MI0(7) TERMIO(7)

NLDLY 0000400 Select newline delays:
NLO 0
NLI 0000400
CRDLY 0003000 Select carriage-return delays:
CRO 0
CRl 0001000
CR2 0002000
CR3 0003000
TABDLY 0014000 Select horizontal-tab delays:
TABO 0
TABl 0004000
TAB2 0010000
TAB3 0014000 Expand tabs to spaces.
BSDLY 0020000 Select backspace delays:
BSO 0
BSl 0020000
VTDLY 0040000 Select vertical-tab delays:
VTO 0
VTl 0040000
FFDLY 0100000 Select form-feed delays:
FFO 0
FFl 0100000

If OPOST is set, output characters are post-processed as indicated by the remaining flags; other­
wise, characters are transmitted without change.

If OLCUC is set, a lowercase alphabetic character is transmitted as the corresponding uppercase
character. This function is often used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If OCRNL is set,
the CR character is transmitted as the NL character. If ONOCR is set, no CR character is
transmitted when at column 0 (first position). If ONLREI' is set, the NL character is assumed
to do the carriage-return function; the column pointer is set to 0 and the delays specified for
CR are used. Otherwise, the NL character is assumed to do just the line-feed function; the
column pointer remains unchanged. The column pointer is also set to 0 if the CR character is
actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other move­
ment when certain characters are sent to the terminal. In all cases, a value of 0 indicates no
delay. If OFILL is set, fill characters are transmitted for delay instead of a timed delay. This
is useful for high baud rate terminals which need only a minimal delay. If OFDEL is set, the
fill character is DEL; otherwise, it is NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

Newline delay lasts about 0.10 seconds. If ONLREI' is set, the carriage-return delays are used
instead of the newline delays. If OFILL is set, two fill characters are transmitted.

Carriage-return delay type 1 is dependent on the current column position, type 2 is about 0.10
seconds, and type 3 is about 0.15 seconds. If OFILL is set, delay type 1 transmits two fill char­
acters and type 2 transmits four fill characters.

Horizontal-tab delay type 1 is dependent on the current column position. Type 2 is about 0.10
seconds. Type 3 specifies that tabs are to be expanded into spaces. If OFILL is set, two fill
characters are transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character is transmitted.

The actual delays depend on line speed and system load.

- 4 -

TERMI0(7) T~MIO(7)

The initial output control value is all bits clear.

CONTROL MODES
The c_s;flag field describes the hardware control of the terminal:

CBAUD 0000017 Baud rate:
BO 0 Hang up
B50 0000001 50 baud
B75 0000002 75 baud
BllO 0000003 110 baud
B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B1200 0000011 1200 baud
B1800 0000012 1800 baud
B2400 0000013 2400 baud
B4800 0000014 4800 baud
B9600 0000015 9600 baud
EXTA 0000016 External A
EXTB 0000017 External B
CSIZE 0000060 Character size:
CS5 0 5 bits
CS6 0000020 6 bits
CS7 0000040 7 bits
CS8 0000060 8 bits
CSTOPB 0000100 Send two stop bits, else one.
CREAD 0000200 Enable receiver.
PARENB 0000400 Parity enable.
PARODD 0001000 Odd parity, else even.
HUPCL 0002000 Hang up on last close.
CLOCAL 0004000 Local line, else dial-up.

The CBA UD bits specify the baud rate. The zero baud rate, BO, is used to hang up the connec­
tion. If BO is specified, the data-terminal-ready signal is not asserted. Normally, this discon­
nects the line. For any particular hardware, impa;sible speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission and reception. This size
does not include the parity bit, if any. If CSTOPB is set, two stop bits are used; otherwise, one
stop bit is used. For example, at 110 baud, two stops bits are required.

If PARENB is set, parity generation and detection is enabled, and a parity bit is added to each
character. If parity is enabled, the PARODD flag specifies odd parity if set; otherwise, even
parity is used.

If CREAD is set, the receiver is enabled; otherwise, no characters are received.

If HU PCL is set, the line is disconnected when the last process with the line open closes it or
terminates, i.e., the data-terminal-ready signal is not asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection with no modem control.
If it is not set, modem control is assumed.

The initial hardware control value after open is B300, CS8, CREAD, HUPCL.

LOCAL MODES
The c_lflag field of the argument structure is used by the line discipline to control terminal
functions. The basic line discipline (0) provides the following:

- 5 -

TERMI0(7) TERMIO(7)

ISIG 0000001 Enable signals.
!CANON 0000002 Canonical input (erase and kill processing).
XCASE 0000004 Canonical upper /lower presentation.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as BS-SP-BS.
ECHOK 0000040 Echo NL after kill character.
ECHONL 0000100 Echo NL.
NOFLSH 0000200 Disable flush after interrupt or quit.

If ISIG is set, each input character is checked against the special control characters INTR and
QUIT. If an input character matches one of these control characters, the function associated
with that character is performed. If ISIG is not set, no checking is done. Thus, these special
input functions are possible only if ISIG is set. These functions may be disabled individually
by changing the value of the control character to an unlikely or impossible value (e.g., 0377).

If !CANON is set, canonical processing is enabled. This enables the erase and kill edit func­
tions, and the assembly of input characters into lines delimited by NL, EOF, and EOL. If
ICANON is not set, read requests are satisfied directly from the input queue. A read is not
satisfied until at least VMIN characters have been received or the timeout value VTIME has
expired. This allows fast bursts of input to be read efficiently while still allowing single
character input. The VMIN and VTIME values are stored in the positions for the EOF and EOL
characters, respectively. The VTIME value represents tenths of seconds.

If XCASE is set, and if !CANON is set, an uppercase letter is accepted on input by preceding it
with a\ character, and is output preceded by a\ character. In this mode, the following escape
sequences are generated on output and accepted on input:

f, or: use:
\'

l
{
}
\

\!
\A

\(
\)

\\
For example, A is input as \a, \n as \\n, and \N as\\ \n.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible. If :ECHO and ECHOE are set,
the erase character is echoed as ASCII BS SP BS, which clears the last character from a CRT
screen. If ECHOE is set and :ECHO is not set, the erase character is echoed as ASCII SP BS. If
ECHOK is set, the NL character is echoed after the kill character to emphasize that the line is
deleted. Note that an escape character preceding the erase or kill character removes any spe­
cial function. If ECHONL is set, the NL character is echoed even if ECHO is not set. This is
useful for terminals set to local echo (so-called half duplex). Unless escaped, the EOF charac­
ter is not echoed. Because EOT is the default EOF character, this prevents terminals that
respond to EDT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues associated with the quit
and interrupt characters is not done.

The initial line-discipline control value is all bits clear.

1/0 SYSTEM CALLS
The primary ioctl(2) system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg:

- 6 -

TERMI0(7) TERMI0(7)

FIL~

The commands using this form are:

TCGET A Get the parameters associated with the terminal and store in the termio
structure referenced by arg.

TCSETA Set the parameters associated with the terminal from the structure refer­
enced by arg. The change is immediate.

TCSEl'A\V Wait for the output to drain before setting new parameters. This form
should be used when changing parameters that affect output.

TCSEI'AF Wait for the output to drain, then flush the input queue and set the
new 'parameters.

Additional ioctl (2) calls have the form:

ioctl (fildes, command, arg)
int arg;

The commands using this form are:

TCSBRK Wait for the output to drain. If arg is 0, then send a break (zero bits for
0.25 seconds).

TCXONC

TCFLSH

Start/stop control. If arg is 0, suspend output; if 1, restart suspended
output.

If arg is 0, flush the input queue; if 1, flush the output queue; if 2,
flush both the input and output queues.

/dev/tty*

SEE ALSO
stty(1), fork(2), ioctl(2), setpgrp(2), signal(2).

- 7 -

TTY(7) TTY(7)

NAME
tty - controlling terminal interface

DESCRIPTION

FILES

The file /dev/tty is a synonym for the control terminal associated with the process group of
each process. It is useful for programs or shell sequences that require written messages on the
terminal, no matter how output has been redirected. It can also be used for programs that
need the name of a file for output, when typed output is desired.

/dev/tty
/dev/tty*

- 1 -

UD(7) UD(7)

NAME
ud - general driver for all disk units supported by the M68KVM21 disk controller

DESCRIPTION

FILES

Ud provides a general interface to M68KHDS32-1 (32Mb Cartridge Module Drive; refer to
cm16(1)), M68KHDS50-1 (50Mb Lark Module Drive; refer to lrk25(1)), and the
M68KHDS96-1 (Cartridge Module Drive; refer to cm8<X..1)). The driver can be modified to
support other disk units compatible with the M68KVM21 controller.

Drive dependent partitioning must be selected when the system is configured (config.68(1M)).
Also, manual entries describing the above disk drives should be referred to for information
regarding those particular drives.

/dev/dsk, /dev/rdsk

SEE ALSO
config.68(1M), master(4), cm16(7), cm80(7), f18(7), lrk25(7).

- 1 -

vl Ograph (7) vlOgraph(7)

NAME
vlOgraph - VME/10 graphics subsystem interface

DF5CRIPTION
The VME/10 System Control Module (SCM) contains an MC68010, time-of-day clock with
battery backup, a keyboard interface, an I/O Channel interface, a VMEbus interface, a color or
monochrome video interface, and an operator panel interface. The 384Kb RAM in the SCM
has the dual purpose of general software storage and graphics data storage. The RAM may be
accessed by the MPU or by a VMEbus device; both the MPU and the VMEbus device use the
SCM local bus to access RAM.

If the graphics(1G) program is not being used, all the RAM on the SCM is available as system
RAM. In this mode, RAM appears at locations OxOOOOO through Ox5ffff. If the graphics pro­
gram is being used and the SCM is in low resolution graphics mode, system RAM appears at
locations OxOOOOO through Ox47fff, and the graphics RAM appears at locations Ox48000
through Ox5ffff (96Kb). If the graphics program is being used and the SCM is in the high
resolution graphics mode, system RAM appears at locations OxOOOOO through Ox2ffff, and the
graphics RAM appears at locations Ox30000 through Ox5ffff (192Kb).

The graphics RAM is divided into three banks. Each bank is color for color monitors and an
intensity for monochrome monitors.

The graphics RAM block in the memory map is organized so that the first third of the graph­
ics RAM locations is bank 3, the second third is bank 2, and the last third is bank 1. This
allows the MPU to change 8 or 16 pixels at a time in one bank (color/intensity) on the screen.

For example, if the monitor is a color monitor, then bank 3 is green, bank 2 is blue, and bank
1 is red. When the graphics RAM is zeroed, the screen is blank. If the MPU, using word
writes, sequentially fills the graphics RAM from the lowest address to highest addr~ with
Oxffff's, the screen fills with green from top to bottom, 16 pixels at a time, until bank 3 is all
f's. Next, the screen fills with cyan (green and blue mixed) from top to bottom, 16 pixels at a
time, until bank 2 is all f's. Then, the screen fills with white (green, blue and red mixed)
from top to bottom, 16 pixels at a time, until bank 1 is all f's. This is useful when drawing
bar graphs, color filling an object, or changing a background color.

The graphics RAM is accessible in another mode, called the pixel access mode. In pixel access
mode, read/write hardware enables the processor to change one pixel at a time in all three
banks (in one memory cycle). The processor uses only word accesses, and writes a special
pixel access word to addresses defined in non-existent memory. This mode is oriented toward
drawing lines or changing a portion of the display. A 3-bit mask field allows the user to
avoid disturbing the contents of a given plane (or planes) while changing the contents of
another plane (or planes). It eliminates rewriting data into bank address when the data
remains unchanged. The lower three bits of a pixel access word affect the three banks of the
pixel, where bit 0 is bank l, bit 1 is bank 2, and bit 2 is bank 3. Bits 3 through 7 and 11
through 15 have no function, and bits 8 through 10 are mask bits. Bit 8, when low, disallows
any effect by bit 0 on bank 1 of the pixel accessed. Bit 9, when low, disallows any effect by
bit 1 on bank 2 of the pixel accessed. Bit 10, when low, disallows any effect by bit 2 on bank
3 of the pixel accessed. Bits 8 through 10, when high, have no effect on their corresponding
bank bit. For example, if the graphics RAM is zero, the screen is blank. If the MPU writes
Ox0707, starting at the lowest address of the pixel access block of the memory map to the
highest address, the screen fills with white, one pixel at a time from top to bottom. The pixel
access block appears at locations OxeOOOOO through Oxe7ffff in low resolution graphics mode,
and at locations OxeOOOOO through Oxefffff in high resolution graphics mode.

The VME/10 also includes 8Kb of static RAM for storage of user definable character sets and
display attributes. The character generator RAM is initialized with the standard ASCII char­
acter definitions, but can be modified by the user to define alternative symbols required by an
application. The font is 8 x 16 in a 10 x 24 character field for the high resolution,

- 1 -

vlOgraph(7) vl Ograph (7)

monochrome display, and 8 x 10 in a 10 x 12 character field for low resolution, color dislay.
Characters or individual pixels can be displayed on any one of seven levels of grey scale on
the monochrome display. For more information on the VME/10 hardware, refer to V MEI JO
Microcomputer System System Control Module User's Manual.

The fastest access to the VME/10 graphic subsystem is through shared memory, but the special
shared memory segments must be at fixed addresses. This requirement necessitates a special
system configuration and initialization. When the system is booted with a graphics kernel,
196Kb of graphics RAM is automatically. reserved. All or part of this memory may be
returned after the graphics driver determines which shared memory segments are to be pre­
allocated, as configured in the graphics dfile. For more information on building and installing
a graphics dfile and graphics kernel, refer to the SYSTEM V 168 Graphics Guide, "Installing
Graphics." If the dfile specifies that only the character and attribute shared segment is to be
pre-allocated, 196Kb of RAM is returned to the coremap. If the dfile specifies that the banks'
area and pixel access area are to be pre-allocated, the resolution of the VME/10 is checked. If
the VME/10 is in low resolution mode, 96Kb of RAM is returned .to the coremap. If high
resolution is set, 196Kb of RAM remains reserved.

WARNING

The resolution mode must be set by a TENbug Video Map (VM) command BEFORE
the system is booted. For more information on the TENbug, refer to TENbug Debug­
ging Package User's Manual.

User access to the VME/10 graphics subsystem is provided through shared memory system
calls and the ioctl(2) system calls. These three segments are owned by root; read and write
permissions are available for group users and all others. A user accesses a particular segment
by issuing a shmget(2) with a pre-defined key for the segment, and then issues a shmat(2)
system call with the shared memory identifier returned by the shmget system call. When a
user is finished with the the shared memory segment, a shmdt(2) system call must be issued.

The shmget system call has the form:

int shmget(key, size, shmflg)
key_t key
int size, shmflg

The predefined keys for shared memory graphics are:

#define CGENKEY -1 /*character and attribute shared memory key*/
#define PIXKEY -2 /*pixel access area shared memory key*/
#define BANKKEY -3 /*color banks shared memory key*/

For normal shared memory segments, the size and shmflg are normally supplied by the user
process. However, for the special segments, these values are not used since the segments have
been pre-allocated. A recommended value for both of these arguments is 0.

The shmat(2) system call attaches the shared memory segment associated with the shared
memory identifier specified by shmid(2) to the data segment of the calling process. The seg­
ment is attached at the address specified by shmaddr(2).

The shmat system call has the form:
char* shmat(shmid,.shmaddr ,.shmflg)

int shmid
char *shmaddr
int shmflg

- 2 -

vlOgraph(7) vl Ograph (7)

The shmaddr value supplied in the user's shmat(2) call will affect the speed of graphics out­
put, due to the operation of the M68451 Memory Management Unit (MMU). The fewer MMU
descriptors that are required to describe the segment, the less time spent in address translation
by the MMU. Experimentation on the VME/10 shows that performance is enhanced if one of
the constants listed below is selected for the input parameter, shmaddr, in the shmat(2)
system call.

Suggested Shmaddr Value for Color/Intensity Banks Shared Se_g_ment
Ox810000 (for high resolution only)
Ox818000 (for low resolution only)

Suggested Shmaddr Value for Pixel Access Shared Memory S~ment
Ox880000 (for high'resolution only)
Ox840000 (for low resolution only)

Su ested Shmaddr Value for Character/ Attribute Generator Shared Se ment
Ox801000 (for both hi h and low resolution)

The shmdt(2) system call detaches the shared memory segment from the calling process's data
segment. The shared memory segment is located at an address specified by shma.ddr.

The shmdt(2) system call has the form:

int shmdt(shmaddr)
char *shmaddr

The shared memory segment used to access the color banks may be removed using the
shmctl(2) call which frees the associated graphics memory, making it available for general
system use. Once removed, graphics capability may be regained only by re-booting the system.
In addition, access to the pixel access shared memory segment after the memory is released
will have unpredictable and potentially disastrous effects. To protect against this possibility,
the pixel access shared memory segment can be made unreadable and unwritable before the
color bank segment is removed.

The shared memory segments associated with the pixel access area and the character generator
RAM should never be removed using the shmctl(2) call. ~ing so will place the special
hardware addresses into the available memory pool. The system may then try to load pro­
grams or data into these areas, causing unpredictable behavior.

The shmctl system call has the following form:

int shmctl(shmid, cmd, buf)
int shmid, cmd
struct shmid_ils*buf

To remove the shared memory identifier for a color/intensity bank segment, the cmd is
IPC_RMID. Only the super user is permitted to free this segment. Shmctl can also be used to
change the access permissions of the special segments.

Access to some of the VME/10 graphic hardware registers has been provided through the
i,octl(2) system call on the special device, /dev/vlOgraph. An open(2) system call on this
device returns a file descriptor. This file descriptor is necessary for the ioctl system calls for
graphics.

-3-

vlOgraph(7) vlOgraph(7)

Control register 0 and control register 1 affect the display of graphics. Control register 0 is
cleared to 0 when any of the four VME/10 reset conditions occur. Control register 1 is cleared
to 0 only when the power-on-reset condition occurs. Control registers 0 and 1 are writable
and readable by the. MPU when it is in the user state. However, the data read is not reliable
unless the control register has been written to by the processor at least once since the last
reset condition occurred.

The MC6845 (CRTC) registers and the graphics offset registers have fixed values for high and
low resolution graphics display. The ioctl commands SETHIRES and SETLORES set these
registers at their fixed values.

Two separate registers control horizontal and vertical cursor display. The vertical graphics
cursor register is set to display a vertical line on the screen. The horizontal graphics cursor
register is set to display a horizontal line on the screen.

The graphics ioctl calls use the following structure types, defined in sys/vlOgr.h:

typedef struct (

} vlO_crO;

unsigned char
unsigned char
unsigned char
unsigned
unsigned char

cdis:3;
curbk:l;
dutycycle:l;
ivs:l;
:2

The values of the bit fields are:
cdis:3 Character disable: This 3-bit field disables the

display of the red/green/blue portions of the
character. Permissible values range from 0 to
7 where:

curbk:l

dutycycle:l

ivs:l

:2

001 disables red portion of the character
010 disables blue portion of the character
100 disables green portion of the character

Cursor blink: The character cursor will
blink when set(l) and will be steady when
reset(O).

Display dutycycle: This bit selects the
display dutycycle of 50o/o when set(l) and
100% when reset(O). When high, this bit will
prevent every other dot on each line from
being displayed. This prevents horizontal
lines, such as those in the letter B, from stand­
ing out more than non-horizontal lines, such as
those in the letter X.

Invert video screen: When set(l), all charac­
ters on the screen are inverted. When low, all
characters are normal.

An unnamed bit field. These bit fields are not
used for graphics.

-4-

vl Ograph (7)

typedef struct

} vlO~rl;

unsigned char
unsigned char
unsigned char
unsigned
unsigned char

:1;
sel:2;
hires;
gre:3;
:1

vlOgraph(7)

The values of the bit fields are:

:1

sel:2

hires:l

gre:3

:1

typedef struct

An unnamed bit field. This bit field is not
used for graphics.
Character cursor: This field selects the style
of character cursor. It may be any value from
Oto 3.
High resolution: This bit field is read-only.
Memory has been mapped to high resolu ton
when set(l) and mapped to low resolution
when reset(O).
Graphics enable: This bit field enables the
display of graphics in each of the three color
banks. Permissible values range from 0 to 7
where:

001 enables graphics in color bank 1 (red)
010 enables graphics in color bank 2 (blue)
100 enables graphics in color bank 3 (green)

An unnamed bit field. This bit field is not
used for graphics.

short h;
short v;

} vlO_i:ursor;
h Horizontal line pos1t1oning: This 16-bit field

will move the horizontal component of the
cursor top to bottom for 300 positions.

Oxff ff (-1) is the top-most position.
Oxfed4 (-300) is ~he bottom-most position.
0 turns off the horizontal component of
the cursor.

v Vertical line positioning: This 16-bit field
will move the vertical component of the cur­
sor left to right for 800 positions.

Oxff ff (-1) is the left-most position.
Oxfed4 (-800) is the right-most position.
0 turns off the vertical component of the
cursor.

- 5 -

vlOgraph(7) vl Ograph (7)

The VMFJlO graphics kernel supports 6 ioctl commands for controlling the display hardware
These commands and the type of argument they require are listed below:

#include <sys/vlOgr.h>
ioctl(fildes, command, arg)
v 10 srO *arg;

The commands using this form are:

SETCRO
GETCRO

Set the contents of control register 0.
Get the contents of control register 0.

#include <sys/vlOgr.h>
ioctl(fildes, command, arg)
v10srl *arg;

The commands using this form are:

SETCRl
GETCR1

Set the contents of control register 1.
Get the contents of control register 1.

#include <sys/v10gr.h >
ioctl(fildes, command, arg)
v10sursor *arg;

The commands using this form are:
SETCUR Set the contents of the cursor registers.
GETCUR Get the contents of the cursor registers.

#include < sys/vl Ogr.h >
ioctl(fildes, command, NULL)

The commands using this form are:
SETLORES Change the CRTC registers and graphics offset registers to standard
low resolution values.
SETHIRES Change the CRTC registers and graphics offset registers to defaults
for high resolution values.

It should be noted that this command changes the resolution of the display only and does not
affect the mapping of memory. The default resolution of the display at system initialization
is low resolution.

FILES
/dev/vlOgraph dfile

SEE ALSO
graph(lG), ioctl(2), shmget(2), shmat(2), shmdt(2), shmctl(2)

- 6 -

VM21 (7) VM21(7)

NAME
vm21 - default general driver for all disk units supported by the M68KVM21 disk con­
troller

D~CRIPTION

FILES

Vm21 provides a general interface to M68KHDS32-1 (32Mb Cartridge Module Drive),
M68KHDS50-1 (50Mb Lark Module Drive), M68KHDS16-1 (16Mb Lark Module Drive), and
M68KHDS96-1 (Cartridge Module Drive). The driver can be modified to support other disk
units compatible with the M68KVM21 controller.

Drive dependent partitioning must be selected when the system is configured (config(lM)).
Manual entries describing the above disk drives should be referred to for information regard­
ing those particular drives. The partitioning and driver provide a mechanism for software bad
track replacement. This set supercedes the ud(7) driver and disk drive partitioning.

The vm21 accepts ioctlf..2) calls of the form:

ioctl ([ii.des, command, arg)
int arg;

The following command is available:

UDFMT: Formats the track starting at the block number specified in arg.

/dev/dsk/•,/dev/rdsk/•

SEE ALSO
cmd16(7), cmd80C7), lark25(7), lark8(7), sa800fl21(7)

- 1 -

VM22(7) VM22(7)

NAME
vm22 - default general driver for all disk units supported by the M68KVM22 disk con­
troller

D~CRIPTION

FIL~

V m22 provides a general interface to M68KHDS32-1 (32Mb Cartridge Module Drive),
M68KHDS50-1 (50Mb Lark Module Drive), M68KHDS16-1 (16Mb Lark Module Drive), and
M68KHDS96-1 (Cartridge Module Drive). The driver can be modified to support other disk
units compatible with the M68KVM22 controller.

Drive dependent partitioning must be selected when the system is configured (config(JM)).
Manual entries describing the above disk drives should be referred to for information regard­
ing those particular drives. The partitioning and driver provide a mechanism for software bad
track replacement.

Primary ioctl(2) system calls accepted by vm22 are of the form:

ioctl(flldes,command ,arg)
struct vm22config *arg

As defined in the include file <vm22.h>, commands using this form are:

VM22GET: Gets the configuration information associated with the drive and places it into
the location specified by arg.

VM22SET: Sets the drive's configuration to that specified by the arg parameter. This
command will execute a vm22 controller "configure" command.

Additional ioctl(2) calls have the form:

ioctl (flldes, command, arg)
int arg;

As defined in < vm22.h >, commands using this form are:

VM22FMTT: Formats the track starting at the block number specified in arg.

VM22FMTU: Formats the entire logical unit.

/dev/dsk/•,/dev/rdsk/•

SEE ALSO
cmd16(7), cmd80(7), lark25(7), lark8(7), sa800fl22(7), sa400fl22(7), ioctl(2).

- 1 -

WDI5(7) WD15(7)

NAME
wdl5 - 15Mb Winchester Disk Drive

DESCRIPTION

FILES

The files dsk/cntrlr _OsO ... dsk/cntrlr _Os1 refer to sections of the wd15 disk drive 0. The
files dsk/ cntrlr .JsO ... dsk/ cntrlr _ ls7 refer to sections of drive 1. This slicing allows the dev­
ice to be broken up into more manageable pieces.

The origin and size of the sections on each drive are as follows:

section start length
0 192 24504
1 7056 21168
2 10584 17640
3 14112 14112
4 17640 10584
5 21168 7056
6 24696 3528
7 0 28224

Slice 0 follows a 192-block reserved area used for tables and tracks for disk diagnostics.

The start address is a block address, with each block containing 512 bytes. It is extremely
unwise for all of these files to be present in one installation because there is overlap in
addresses, and protection becomes a problem.

The dsk/* files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a "raw" interface which
provides for direct transmission between the disk and the user's read or write buffer. A sin­
gle read or write call results in exactly one I/0 operation and therefore raw I/O is consider­
ably more efficient when many words are transmitted. The names of the raw files begin with
rdsk and end with a number which selects the same disk section as the corresponding dsk
file.

In raw I/0 the buffer must begin on a word boundary, and counts must be a multiple of 512
bytes (a disk block). Likewise, /seek(2) calls should specify a multiple of 512 bytes.

/dev/dsk/•,/dev/rdsk/•

SEE ALSO
cml6(7), cm80(7), fl8(7), id(7), lrk25(7), m320(7), ud(7), wd40(7).

-1-

WD40(7) WD40(7)

NAME
wd40 - 40Mb Winchester Disk Drive

DESCRIPTION

FILES

The files dsk/cntrlr_OsO ... dsk/cntrlr_Os7 refer to sections of the wd40 disk drive 0. The
files dsk/cntrlr .J.sO ... dsk/cntrlr _ls7 refer to sections of drive 1. This slicing allows the dev­
ice to be broken up into more manageable pieces.

The origin and size of the sections on each drive are as follows:

section start length
0 192 77328
I 18792 58728
2 24192 53328
3 28224 49296
4 38640 38880
5 46824 30696
6 63072 14448
7 0 77520

Slice O follows a 192-block reserved area used for tables and tracks for disk diagnostics.

The start address is a block address. with each block containing 512 bytes. It is extremely
unwise for all of these files to be present in one installation because there is overlap in
addresses and protection becomes a problem.

The dsk/* files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a "raw" interface which
provides for direct transmission between the disk and the user's read or write buff er. A sin­
gle read or write call results in exactly one 1/0 operation and therefore raw 1/0 is consider­
ably more efficient when many words are transmitted. The names of the raw files begin with
rdsk and end with a number that selects the same disk section as the corresponding dsk file.

In raw 1/0 the buffer must begin on a word boundary, and counts must be a multiple of 512
bytes (a disk block). Likewise, lseek(2) calls should specify a multiple of 512 bytes.

/dev/dsk/•,/dev/rdsk/•

SEE ALSO
id(7), wd 15(7), m320(7).

- 1 -

WD70(7) WD70(7)

NAME
wd70 - 70Mb Winchester Disk Drive

DESCRIPTION

FILES

The files dsk/cntrlr OsO ... dsk/cntr/r Os7 refer to sections of the wd70 disk drive 0. The
files dsk/cntrlr _JsO ~. dsk/cntrlr _1s1 refer to sections of drive 1. This slicing allows the dev­
ice to be broken up into more manageable pieces.

The origin and size of the sections on each drive are as follows:

section start length
0 1280 128640
1 28160 101760
2 45440 84480
3 60800 69120
4 76160 53760
5 92160 37760
6 111360 18560
7 0 130944

Slice 0 follows a 1280-block reserved area used for drive-specific tables and tracks for disk
diagnostics.

The start address is a block address, with each block containing 512 bytes. It is extremely
unwise for all of these files to be present in one installation because there is overlap in
addresses and protection becomes a problem.

The dsk/* files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a "raw" interface which
provides for direct transmission between the disk and the user's read or write buff er. A sin­
gle read or write call results in exactly one I/0 operation and therefore raw I/0 is consider­
ably more efficient when many words are transmitted. The names of the raw files begin with
rdsk and end with a number that selects the same disk section as the corresponding dsk file.

In raw I/O the buffer must begin on a word boundary, and counts must be a multiple of 512
bytes (a disk block). Likewise, lseek(2) calls should specify a multiple of 512 bytes.

/dev/dsk/•,/dev/rdsk/•

SEE ALSO
sa400flwd(7), wd15(7), wd40(7).

? 00flwd(7), wd15(7), wd40(7).

-1-

WD140(7) WD140(7)

NAME
wdl40 - 140Mb Winchester Disk Drive

DESCRIPTION

FILES

The files dsk/cntrlr _OsO ... dsk/cntrlr _Os? refer to sections of the wd140 disk drive 0. The
files dsk/cntrlr _JsO ... dsk/cntrlr _ls7 refer to sections of drive 1. This slicing allows the dev­
ice to be broken up into more manageable pieces.

The origin and size of the sections on each drive are as follows:

section start length
0 1680 217200
I 32400 186480
2 64800 154080
3 93600 125280
4 122400 96480
5 151200 67680
6 180000 38880
7 0 220320

Slice 0 follows a 1680-block reserved area used for drive-specific tables and tracks for disk
diagnostics.

The start address is a block address, with each block containing 512 bytes. It is extremely
unwise for all of these files to be present in one installation because there is overlap in
addresses and protection becomes a problem.

The dsk/* files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a "raw" interface which
provides for direct transmission between the disk and the user's read or write buff er. A sin­
gle read or write call results in exactly one I/O operation and therefore raw 1/0 is consider­
ably more efficient when many words are transmitted. The names of the raw files begin with
rdsk and end with a number that selects the same disk section as the corresponding dsk file.

In raw I/0 the buffer must begin on a word boundary, and counts must be a multiple of 512
bytes (a disk block). Likewise, lseek(2) calls should specify a multiple of 512 bytes.

/dev/dsk/•,/dev/rdsk/*

SEE ALSO
sa400flwd(7), wdl5(7), wd40(7), wd70(7).

-1-

INTR0(8)

NAME
intro - introduction to system maintenance procedures

DESCRIPTION

INTR0(8)

This section outlines procedures for those charged with the task of system maintenance.
Included are discussions on boot procedures, recovery from crashes, and file backups.

- 1 -

BO.MACS(8) BO.MACS(8)

NAME
bo.macs - bootstrap operating procedure for system restart on EXORmacs

SYNOPSIS
bo [<device>] [,<controller>] [,<string>]

Options
device a single hexadecimal digit (O-F) specifying the device to be used (default = 0).

controller a single hexadecimal digit (0-F) specifying the controller to which the device is
connected (default= 0).

string

DESCRIPTION

an optional ASCII character string (maximum of 18 characters) that is passed
to the program being loaded from the specified device and controller. This
string may be the pathname of the SYSTEM V /68 program to be booted (default
= /stand/unix).

When the system is turned on, the front panel status should be 01. Perform the system self­
test by holding the system reset and the system test buttons depressed. Release first the sys­
tem reset button and then release the system test button. The status changes to EA while
memory is initialized, then to 01 when the test is complete. The prompt P* appears after the
Return key is pressed. After receiving the prompt, type: bo (drive 0 is the default and
accesses the fixed media). If the system resides on the removable media, type: bo 1 (drive 1 is
accessed). The CRT displays:

INIT: SINGLE USER MODE

Enter: init 2

The CRT displays:

INIT: New run level: 2
Is the date <day> <month> <date> <time> <year> correct? (y or n)

If the date is incorrect, type: n and set the date and time. For the correct date and time, the
following format is required: mmddhhmm[yy], where mm=month, dd=day, hh=hour,
mm=minute, yy=year (refer to date (1)). For example:

Sept. 28, 1983 at 7:30am is 0928073083

If the date is correct, type: y ; the CRT displays:

Do you want to check the file system? (y or n)

To prevent possible system damage, a file system check is recommended. Enter: y • The fol­
lowing is an example of a file system check display:

/dev/dsk/vm21_Js0
File System: /dO Volume: fixed

** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
**Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase S - Check Free List < n > files < n > blocks < n > free

- 1 -

BO.MACS(8) BO.MACS(8)

SYSTEM MULTI-USER <day> <month> <date> <time> <year>

If a file system check is not required, enter: n; the "SYSTEM MULTI-USER" display is printed.

A login prompt now appears on activated CRT terminals.

FILRi
/stand/unix

SEE Al.SO
date(l), fsck(lM), init(lM), ops.macs(8).

WARNINGS
Memory initialization must be completed before this boot procedure is used.

- 2 -

BO.VME(8) BO.VME(8)

NAME
bo.vme - bootstrap operating procedure for system restart on VME/10

SYNOPSIS
ho [<device>] [,<controller>] [,<string>]

Options
device a single hexadecimal digit (O-F) specifying the device to be used (default = 0).

controller a single hexadecimal digit (O-F) specifying the controller to which the device is
connected (default= 0).

string

DESCRIPTION

an optional ASCII character st~ing (maximum of 18 characters) that is passed
to the program being loaded from the specified device and controller. This
string may be the pathname of the SYSTEM V /68 program to be booted (default
= /stand/unix).

When the system is turned on and the KYBD LOCK switch is in the horizontal position, the
system self-test is automatically performed. The first message to appear will be:

Power-up test in progress.
Waiting for disk to spin up.

After the message
Power-up test complete.

has been received, the TENbug prompt will appear. This prompt should be:
TENhug 2.0 >

If the serial port (MVME400) is connected, however, the prompt that will appear on the
screen is:

TEN hug
Type a carriage return to obtain the TENhug 2.0 > prompt. If theTENhug 2.0 > prompt
does not appear, unplug the serial port, press the RESET button, and boot the system before
plugging in the serial port again.

After receiving the prompt, type: ho (drive 0 is the default and accesses the fixed media). If
the system resides on the removable media, type: ho 1 (drive 1 is accessed). The CRT
displays:

INIT: SINGLE USER MODE

Enter: init 2

The CRT displays:

INIT: New run level: 2
Is the date <day> <month> <date> <time> <year> correct? (y or n)

If the date is incorrect, type: n and set the date and time. For the correct date and time, the
following format is required: mmddhhmm[yy], where mm=month, dd=day, hh=hour,
mm=minute, yy=year (refer to date(t)). For example:

Sept. 28, 1983 at 7:30am is 092807 3083

If the date is correct, type: y ; the CRT displays:

Do you want to check the file system? (y or n)

- 1 -

BO.VME(8) BO.VME(8)

To prevent possible system damage, a file system check is recommended. Enter: y . The fol­
lowing is an example of a file system check display:

/dev/dsk/w-d_JsO
File System: /do Volume: fixed

** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase S - Check Free List < n > files < n > blocks < n > free

SYSTEM MULTI-USER <day> <month> <date> <time> <year>

If a file system check is not required, enter: n ; the "SYSTEM MULTI-USER" display is printed.

A login prompt now appears on activated CRT terminals.

FIL~

/stand/unix

SEE ALSO
date(l), fsck(lM), init(lM).

WARNINGS

Memory initialization must be completed before this boot procedure is used.

- 2 -

CRASH(8) CRASH(8)

NAME
crash - what to do when the system crashes

DESCRIPTION
This entry gives at least a few clues about how to proceed if the system crashes. It can't pre­
tend to be complete.

In restarting after a crash, always bring up the system single-user, as specified in bo.macs(8)
for the EXORmacs Development System or bo.vme(8) for the VME/10, as modified for your
particular installation. Then perform an Jsck(1M) on all file systems that could have been in
use at the time of the crash. If any serious file system problems are found, they should be
repaired. When you are satisfied with the health of your disks, check and set the date if
necessary, then come up multi-user.

To even boot the SYSTEM V /68 at all, three files (and the directories leading to them) must be
intact. First, the initialization program /etc/init must be present and executable. For init to
work correctly, /dev/console and /bin/sh must be present. If either does not exist, the
symptom is best described as thrashing. lnit goes into a fork/exec loop trying to create a
shell with proper standard input and output.

If you cannot get the system to boot, a runnable system must be obtained from a backup
medium. The root file system may then be doctored as a mounted file system as described
below. If there are any problems with the root file system, it is probably prudent to go to a
backup system to avoid working on a mounted file system.

Repairing disks. The first rule to keep in mind is that a disk in need of repair should be
treated gently; it shouldn't be mounted unless necessary, and if it is very valuable yet in quite
bad shape, perhaps it should be copied before trying surgery on it.

F sck (IM) is adept at diagnosing and repairing file system problems. It first identifies all of
the files that contain bad (out of range) blocks or blocks that appear in more than one file.
Any such files are then identified by name and fsck requests permission to remove them
from the file system. Files with bad blocks should be removed. In the case of duplicate
blocks, all of the files except the most recently modified should be removed. The contents of
the survivor should be checked after the file system is repaired to ensure that it contains the
proper data. (Note that running Jsck with the -n option causes it to report all problems
without attempting any repair.)

Fsck also reports on incorrect link counts and requests permission to adjust any that are
erroneous. In addition, it reconnects any files or directories that are allocated but have no file
system references to a "lost+found'" directory. Finally, if the free list is bad (out of range,
missing, or duplicate blocks) fsck constructs a new one, with the operator's concurrence.

Why did it crash? SYSTEM V/68 types a message on the console when a crash occurs. Here is
the current list of such messages, with enough information to provide a possible remedy. The
message has the form "panic: ... ", usually accompanied by other information. Left unstated in
all cases is the possibility that hardware or software error produced the message in some
unexpected way.

blkdev
The getblk routine was caVed with a nonexistent ma.Pr device as argument. Definitely
hardware or software error.

devtab

iinit

Null device table entry for the major device used as argument to getblk. Definitely
hardware or software error.

An l/O error reading the superblock for the root file system during initializaticm.

- 1 -

CRASH(8)

no fs

CRASH(8)

A device has disappeared from the mounted-device table. Definitely hardware or
software error.

no imt
Similar to "no fs", but produced elsewhere.

no clock
During initialization, neither the line nor programmable clock was found to exist.

1/0 error in swap
An unrecoverable 1/0 error during a swap. This shouldn't be a panic, but it is hard to
fix.

out of swap space

trap

A program needs to be swapped out, and there is no more swap space. It has to be
increased. This shouldn't be a panic, but there is no easy fix.

An unexpected trap has occurred within the system. This is accompanied by three
numbers: a "ps", which is the user's stack pointer; "pc", which is the user's program
counter; and a "trap type" that encodes which trap occurred. The trap types are:

2 bus error

3 address error

4 illegal instruction

5 zero divide fault

6 CHK instruction fault

7 TRAPV instruction fault

8 privileged instruction fault

9 trace trap

10 line 1010 emulator

11 line 1111 emulator

24 spurious interrupt

32 TRAP 0 - system call

33 TRAP 1 - breakpoint

34 TRAP 2 - simulate DEC JOT instruction

35 TRAP 3 - simulate DEC EMT instruction

36 TRAP 4 - floating point exception

In some of these cases it is possible for hexadecimal 200 to be added into the trap type; this
indicates that the processor was in user mode when the trap occurred. If you wish to examine
the stack after such a trap, dump the system.

Interpreting dumps. (NOTE: This section does not apply for the VME/10.) All file system
problems should be taken care of before attempting to look at dumps. The dump should be
read into the file /usr/tmp/core; cp(l) can be used. At this point, you should execute ps
-el -c /usr/tmp/core and who to print the process table and a list of the users who were
on at the time of the crash.

SEE ALSO
crash(lM), fsck(lM), bo.macs(8), ops.macs(8), bo.vme(8).

- 2 -

MK.(8) MK.(8)

NAME
mk - how to remake the system and commands

DESCRIPTION
All source for SYSTEM V /68 is in a source tree distributed in the directory /usr/src. This
includes source for the operating system, libraries, commands, miscellaneous files necessary to
the running system, and procedures to create everything from this source.

The top level consists of the directories cmd, lib, uts, head, and stand as well as commands
to remake each of these directories. These commands are named :mk, which remakes every­
thing, and :mk dir where dir is the directory to be recreated. Each recreation command
makes all or part of the piece; over which it has control. :mk runs each of these commands
and thus recreates the whole system.

The lib directory contains libraries used when loading user programs. The largest and most
important of these is the C library. All libraries are in sub-directories and are created by a
makefile or runcom. A runcom is a shell command procedure used specifically to remake a
piece of the system. :mklib rebuilds the libraries that are given as arguments. The argument
* causes it to remake all libraries.

The head directory contains the header files, usually found in /usr/include on the running
system. :mkhead installs those header files that are given as arguments. The argument *
causes it to install all header files.

The uts directory contains the source for the operating system. :mkuts (no arguments)
invokes a series of makefiles that recreate the operating system.

The stand directory contains stand-alone commands and boot programs. :mkstand rebuilds
and installs these programs.

The cmd directory contains files and directories. :mkcmd transforms source into a command
based upon its suffix (.1, .y, .c, .s, .sh), or its makefile (see make(l)) or runcom. A directory is
assumed to have a makefile or a runcom that takes care of creating everything associated with
that directory and its sub-directories. Makefiles and runcoms are named command .mk and
command .re respectively.

:mkcmd recreates commands based upon a makefile or runcom if one of them exists; alterna­
tively commands are recreated in a standard way based on the suffix of the source file. All
commands requiring more than one file of source are grouped in sub-directories, and must
have a makefile or a runcom. C programs (.c) are compiled by the C compiler and loaded
stripped with shared text. Assembly language programs (.s) are assembled with
/usr/include/sys.s which contains the system call definitions. Yacc programs (.y) and lex
programs (.1) are processed by yacc(l) and lex(l) respectively before C compilation. Shell
programs (.sh) are copied to create the command. Each of these operations leaves a command
in ./cmd which is then installed by using /etc/install.

The arguments to :mkcmd are either command names, or subsystem names. The subsystems
distributed with SYSTEM V /68 are: acct, graf, secs, and text. Prefacing the :mkcmd instruc­
tion with an assignment to the shell variable $ARGS causes the indicated components of the
subsystem to be rebuilt.

The entire secs subsystem can be rebuilt by:

/usr/src/:mkcmd secs

while the delta component of secs can be rebuilt by:

ARGS=·delta• /usr/src/:mkcmd secs

The log command, which is a part of the stat package, which is itself a part of the graf
package, can be rebuilt by:

- 1 -

MK(8) MK(8)

ARGS=•stat log" /usr/src/:mkcmd graf

The argument\• causes all commands and subsystems to be rebuilt.

Makefiles, both in ./cmd and in sub-directories, have a standard format. In particular
:mkcmd depends on there being entries for install and clchber. Install should cause every­
thing over which the makefile has jurisdiction to be made and installed by /etc/install.
Clobber should cause a complete cleanup of all unnecessary files resulting from the previous
invocation.

Most of the runcoms in ./cmd (as opposed to sub-directories) relate in particular to a need for
separated instruction and data (I and D) space.

Ctime checks the environment (see environ(5)) for the time zone. This results in time zone
conversions possible on a per-process basis. /etc/profile sets the initial environment for each
user, and /etc/re sets it for certain system daemons. These two programs are the only ones
which must be modified outside of the eastern time zone.

An effort has been made to separate the creation of a command from source, and its installa­
tion on the running system. The command /etc/install is used by :mkcmd and most
makefiles to install commands in the proper place on the running system. The use of install
allows maximum flexibility in the administration of the system. Install makes very few
assumptions about where a command is located, who owns it, and what modes are in effect.
All assumptions may be overridden on invocation of the command, or more permanently by
redefining a few variables in install. The object is to install a new version of a command in
the same place, with the same attributes as the. prior version.

In addition, the use of a separate command to perform installation allows for the creation of
test systems in other than standard places, easy movement of commands to balance load, and
independent maintenance of makefiles. The minimization of makefiles in most cases, and the
site independence of the others should greatly reduce the necessary maintenance, and allow
makefiles to be considered part of the standard source.

SEE ALSO
install(lM), mal{..e(l).

- 2 -

OPS.MACS(8) OPS.MACS(8)

NAME
ops.macs - EXORmacs operations

DESCRIPTION
The procedures described include the maj>r operational sequences involved in running
SYSTEM V/68 on the EXORmacs.

INSTALLATION BOOT PROCEDURES
Refer to "Setting Up SYSTEM V/68" in the SYSTEM V/68 Administrator's Guide.

DAILY PROCEDURES
DISK BOOT

For system restart, refer to: bo.macs(8).

BRINGING THE SYSTEM DOWN

The shutdown procedure is designed to turn off all processes and bring the system back to sin­
gle user state with all buffers flushed. To do this the operator should execute shutdown(lM).
If shutdown is not successful, use the following sequence of commands:

kill all
sync
telinit S
fsck (optional)
sync
sync

The system may then be halted by pressing the RESET button on the chassis.

SYSTEM DUMPS

After a crash, the following procedure should be used to get a system dump:

1. Press the SOFTWARE ABORT button on the EXORmacs (pressing the SYSTEM RESET
button also works, but it destroys all of the system interrupt vectors). The prompt P* appears.

2. Enter:

g 400

This starts the dump. After a short period of time, the system responds with:

Dump complete. dd skip=xxx, dd count=yyy

where xxx and yyy are decimal numbers (of blocks) to be used later.

If the system responds instead with:

1/0 error during dump

then some type of 1/0 error has occurred. Try pressing the SYSTEM RESET button and re­
enter g 400 • If the error message appears a second time, consult local lab support personnel.

3. Press the SYSTEM RESET button and boot the system (see bo.macs(8)). DO NOT enter
init 2 when the system comes up; remain in Single User mode.

Should the system not come up, refer to crash.macs(8) for additional information.

4. If the root file system does not have sufficient room for the core dump (at least yyy blocks
free), then a file system with enough room has to be mounted. Refer to mount(lM).

5. If the number yyy from Step 2 is larger than 2048, then the maximum writable file size
has to be increased in order to save the system dump. To increase file size, enter: ulimit n
where n =whatever size is sufficient. For example:

- 1 -

OPS.MACS(8) OPS.MACS (8)

FILES

ulimit 32768

The size should be at least yyy.

6. Since the dump was written to the system swap area, it must be saved in a file for later
analysis. To save the dump in a file, enter:

dd if=/dev/swap of=filename skip=xxx count=yyy

where name is the name of the file that receives the dump; xxx and yyy are the numbers
from Step 2. If xxx is 0, then the skip parameter does not have to be included on the dd com­
mand line.

7. If a file system was mounted in Step 4, unmount it now. Refer to umount in mount(1M).

8. Check the file system by running fsck(1M).

9. Boot the system normally (see bo.macs(8)), assuming f sck completed normally.

10. Once the system is back up, the following command starts crash(1M) so that the dump
can be analyzed:

/etc/crash /fixed/ filename

SYSTEM FAULTS

Refer to MACSbug Monitor Reference Manual (M68KMACSBG).

/etc/shutdown
/stand/*

SEE ALSO
date(l), dd(l), fsck(lM), init(1M), shutdown(1M), sync(l), bo.macs(8), EXORmacs Chassis
User's Guide(M68KCHAS), MACSbug Monitor Reference Manual(M68KMACSBG), "Setting
Up SYSTEM V/68" in the SY STEll-1 V/68 Administrator's Guide(M68KUNAG).

- 2 -

USER'S COMMENTS

SYSTEM V /68 ADMINISTRATOR'S MANUAL

Product Code 72900
Part Number 41963-00

Motorola welcomes your comments and suggestions. Please use this form.

•Does this manual provide the information you need? o Yes o No

- What is missing?

•Is the manual accurate? o Yes o No

- What is incorrect? (Be specific.)

•Is the manual written clearly? DYes DNo

- What is unclear? (Be specific.)

•What other comments can you make about this manual?

•What do you like about this manual?

•Was this manual difficult to obtain? DYes DNo

Please include your name and address if you would like a reply.

Name~~~~~~~~~~~~~~~~~~~~~~~-
Company~~~~~~~~~~~~~~~~~~~~~~
Address

~~~~~~~~~~~~~~~~~~~~~~~ 



•What is your occupation? 

D Programmer 
o Systems Analyst 
DEngineer 

oOperator 
o Instructor 
DStudent 

•How do you use this manual? 

D Reference Manual 
Din a Class 
DSelf Study 

fold 

o Introduction to the Subject 
o Introduction to the System 
DOther _______ _ 

DManager 
D Customer Engineer 
oOther ________ _ 

fold 

-----------------------------------------------------------------~-----------------------------------------------------------------------------· 

Attention: Software Publications, X4 

MOTOROLA INC. 
3013 S. 52nd Street 
Tempe, AZ 85282 

-----------------------------------------------------------------------------------------------------------------------------------------------· 

fold fold 

Staple Here 



® MOTOROLA 
Computer Systems 

3013 S. 52nd St. 
Tempe, AZ 85282 


