
P\ddendum to
ATE Userls Manual

Disk/ATE
A Disk Operating 'System, System Monitor,

Assembler, and Text Editor

Table of Contents

Di s k Commands 1
Changes in the Editor 6
New Assembler Features 11
Personalizing Disk/ATE 13
Disk/ATE Organization 14
Machine Language Interface 17
Internal Disk/ATE References 19

Copyright 8/15/78 Gary Fitts.
All rights reserved.

DISK/ATE

DISK COMMANDS

DISK COMMAND SYNTAX

File Names

May be up to eight characters long, and may use any printing characters
except corruna, colon, leading double-quote, or leading @.

The file will be assumed to be on the current drive (see the CD comma'Od~
unless another drive is indicated by placing a· colon immediately after the
file name, followed by an upper case letter A to H. In standard Disk/ATE,
drives A to D refer to DISCUS drives one to four, drives E to G refer to
North Star drives one to three, and drive H is undefined (and will give an
error "when invoked). To recap,

Drives A to D
Drives E to G
Drive H

= DISCUS drives 1 to 4
= North Star drives 1 to 3
= undefined.

These references can be changed quite easily (see below). Drive A is
current at power-up unless you change that (see below).

Whenever a file name can appear, a double quote II or ditto can be
used instead to refer to the previously-referenced file. The ditto refers
to a name-drive combination; the drive cannot be re-specified with a colon.
See the Save and? commands for more information.

Memory Address Specification

Standard ATE argument format is used here. See below for examples.
Whenever a disk command wants a memory address or interval, one must be

"given. To protect against errors, the missing-argument convention does
not apply to disk commands.

Multiple Arguments

Must be separated by blanks, not commas, as with all ATE corrunands.
(Commas separate commands.)

Copyright 1978 Gary Fitts

DISK COMMANDS

S filename interval "Save"

Save a disk file with the given name, containing the given interval
of memory. The file will be placed on the current drive unless another
drive is specified (see 'filenames' above). If the named file already
existed, then its old contents are lost. If it did not already exist,
it is created. If there is not a large enough space for it on the
disk, but if there are enough free blocks scattered around the disk,
then the used file space will be compacted to make room.

Type assignment is automatic (0 = source file from the source area,
1 = other file), as is "memory address" (called "go address ll by North
Star) assignment. See also th~ W command. . .

Error messages: DISK TOO FULL ON DRIVE if there are not enougH
free blocks, and DIRECTORY FULL ON DRIVE if you are trying to create
'a new file and there are already 64 directory entries.

Examples: S DOS:E 2000H •. 29FFH saves North Star DOS on drive E.
S SYMTAB <T> saves the current symbol table in a file called SYMTAB on
the current drive. S". saves the current memory file in the most recently
referenced disk file. (Caution - see the REF command.)

L filename optional address II Load"

Loads the given file. If an address is given, the file is loaded
there with no further ado. If no address is glven, then the type is
consulted .. If type = 1, it is loaded at the recorded memory address.
If type = 0 ("source"), then itis inserted in the source area at the
position of the entry pointer. In this latter case, it is stripped
of any leading or trailing zeros (it is not necessary to save these
delimiters in the first place) and made part of whatever file it was
placed in (which need not be the current file). Thus, files can be
concatenated or merged. If you want the disk file to occupy a separate
memory file, precede the L with an N or an 0 (q.v.). Caution: make
sure t is within <S>.

Errors: CAN'T FIND ON DRIVE --
Example: L ATETBL <T> will overlay the current symbol table

with the table of internal Disk/ATE references supplied on the disk.

2

GO filename

For type 0 files, this is equivalent to L filename, O<R>.
For type r0 files, this is equivalent to L filename, X<R>.
{Note that <R> gives the beginning and ending addresses of the most

recently loaded record.} It is usually a good idea to do an 0 or N before
GOing an ATE command file. Note that a new load address cannot be speci
field with a GO.

I optional drive letter A to H II Identifyll

Lists the directory on the spcified drive, or on the current drive
"if none is specified.

FS optional drive letter II Free Space"

Gives the number of free blocks on the disk, and the number of
free directory entries.

U filename IlUnsave"

Deletes the named·file from the directory. i

T oldfile newfile IITransferll

Transfers the contents {and directory attribues} from oldfile to
newfile, on" the same or on different drives. This is similar to Save,
except that the information to be saved comes from another disk file
instead of from memory.

TO olddrive newdrive ItTransfer disk ll

This is a selective "disk copyll function. It does the equivalent
of T file:olddrive file:newdrive for each file on the "old drive ll .
So, files that are unique to the old drive are created anew on the new
drive. Files that are common to both are updated from the old drive.
Files that are unique to the new drive are left untouched. If the
disk on the new drive is initially blank, then this is similar to a
Ilcopy disk ll function.

Errors: If the disk on the new drive runs out of room, then the
process termi nates wi th the appropri ate mess"age {ei ther 01 RECTORY FULL ...
or DISK FULLrJ. This is not really an error -- the system has transferred
as much information as possible given the size of the disk on the new
drive. There is nothing wrong with doing a TO command from a full sized
floppy to a mini-fioppy, for example. In no case is a directory entry
created unless there is room to save the entire file.

3

RN oldname newname II Rename"

Renames the specified file .. Any drive specification on rename is
ignored.

W filename address IIWrite address"

Change the memory address (to which the f.ile may be written at
load time) of the specified file to the given value.

CD new drive letter A to H IICurrent Drive ll or "Change Directory"

1"

Changes the default drive to the one given. At power-up~ the
default drive is A.

"What is ditto?"

Prints the value of II, the filename and drive number remembered
from the last command.

4

DISK FILE STRUCTURE

Disk/ATE's disk file and directory structure are logically compatible
with North Star's. Disk/ATE assumes that a disk consists of 256-byte
blocks numbered from 0 up to some maximum value. (The physical configu
ration of the disk may be quite different. See below.) The disk directory
occupies blocks 0 to 3 and consists of 64 sixteen-byte entries. Each entry
is structured as follows:

Directory entry bytes

0-7 file name. Any ASCII characters> blank except comma or colon.
The first character cannot be a double-quote or an @. The entry
is considered empty if the first character is blank. .

8-9 disk address (low byte, high byte). Block number where file
begins.

10-11 length (low, high). Number of consecutive blocks in file. Disk/ATE
1.0 ignores the high byte, limit}ng files' to 64K.

12 ~. Only two types are significant to Disk/ATE: 0 and non-zero.
For loading, type 0 files are considered "source" files and are
loaded into the source area unless otherwise directed. Type non-zero
files are loaded at the recorded memory address unless otherwise
directed. New files are given types 0 and 1.

13-14 memory address (low, high). The address from which the file was
originally saved, unless changed by a W command.

15 Unused. Set to zero for new files, preserved in old files. The
1 command lists the contents of a disk directory. If you want
more information than this provides, you can do the following:

Load the ATE symbo·l table (L ATETBL <T>) and set
X = DISKBUF. (See "Internal Disk/ATE references" below.) Then
do an I command. This leaves a copy of the directory at DISKBUF.
(Disk/ATE does not use this copy for subsequent disk references.)
Now type: R64,-rrx .. X+7,#X+8 .. X+15,X=X+16

This will show you every byte in the directory.

5

CHANGES IN THE EDITOR

Argument evaluation remains unchanged except for the following symbols,
and for the effects of the REF command.

C] Square brackets replace parentheses as the ASCII string delimiters.
On most terminals these can be typed without the shift key (as opposed
to parentheses). Also, square brackets occur less frequently in text
than parentheses~ and this lets you edit a single parenthesis without
unbalancing your delimiters.

% replaces * as the line-expander, and has the same meaning.
2 string % returns the line containing the 2nd occurrance of
string.

replaces / as the search-restrictor, and has the same meaning.
pattern I pattern will search first for pattern 1, and then search
for pattern 2 within pattern 1. The reason for these last two changes
is to free * and / for their traditional meanings.

* and / now mean multiplication and division. As with + and -, all
arithmetic is done mod 216 (so -1 = ~FFFFH). * and / have the same
priority as + and -, and evaluation proceeds from left-to-right.
(Unary minus has highest priority, however.) So, for example:
5-2*4 gives 12, and 1-2*-1 gives 1. Parentheses are not understood.

is a new operation. 123! returns the 123rd line of the current
file. This is similar to 123+%, but it is much faster (since the
latter invokes the general pattern-search mechanism to find the
123rd carriage return). Also, 123! is absolute, in that
MI23! .• 139! will move lines 123 thru 139, while to do the same
thing with pattern-searching requires MI23+% .. 139-123+. Also,
123! gives the 123rd line no matter what the current reference string
is, i.e., ! is not limited to searching within the reference string,
as 123+ is. (Seethe REF command.)

X! will give the Xth line, as will X+%. But! is not as general
as %. For example, t% gives the line containing the entry pointer,
while t! as an argument would give nonsense (it would give the
.(address of t)th line). So in general, use! with absolute line
numbers, and use % otherwise.

Finally, if the file only has 123 lines, then using any larger
number with! will give the zero-byte at the end of the file. Also,
! does not search backwards. So -I! will be the end of the file
(while -1+% is the last line, -2+% is the next to the last line, etc.).
The command t-l! will set the entry pointer to the end of the file, in
a position to append text to the file.

! alone or 01 is equivalent to IJ.

6

? as an argument still has its old meaning, with the following addition:

if ATE is doing output from a \I or P command, and you abort the output
with an Esc, a ? will be left on the screen at the spot where output
was ·terminated. Now, using? as an argument will give the address within
the file where output was terminated. So "?. will continue quoting
the file from the point where you left off, or K?% will kill the line
containing the ?, etc. Caution: if the? is left in place ofa line
number (during a P command), then it will not address the current file.
You can single-step the output (with the S key) to avoid this and put
the ? wherever you want it.

TA and SA stand for the memory address one greater than the top of <T>
and <5>. This is useful for memory space allocation in assembly
language programs, for appending one table to another, etc.

7

Editor commands are unchanged except:

COM no argument II Command"
When used in an ATE edi t macro, thi s vJi 11 type a prompt and accept
and execute an arbitrary command line before returning to its command
string. (Warning:donlt use this in a "command line" since the new
commands will overwrite the old one in the command buffer.) Note that
the new command line could be a multi-line enter, could contain a Do,
etc. An error or an Esc will force a return to the terminal (or to the
calling program if applicable.)

ATE no argument
Same as COM, but will continue to accept command lines, in spite of
errors and Escls, until you force a return with the BYE command.
(Mainly useful with RST 0 from outside ATE. See below.)

BYE no argument
Forces ATE to return to its caller. If you say BYE to the initial
power-up version of ATE, it re-1oads from the disk. BYE is inefficient
with COM, which return anyway_

Y no argument "wi pelt
Executes the user-provided terminal-initialization routine. For
many users, this will blank the screen. You might also want to use
this after an 10 command.

10 value
Changes the device number passed in reg A to the user's 10 routines.
ATE does not use this number -- it is for the convenience of the user
in switching between devices. You might type 101, A DISKF1LE 100
to route an assembly listing to your printer and then return output
to the CRT. 10 prints a carriage return (on the new device) when
invoked.

RENT no argument II Re-enter"
Re-enters ATE at the "ground level" without re-initializing. You might
us~ this in case you have instances of COM or ATE stacked up, or to
re-enter after an error in a user ~ommand (see below).

PAUSE no argument
Causes ATE to enter the "panic state", as if you typed a panic stop.
Everything is frozen while you change disks, think, or whatever.
Then typing Esc will return control to the terminal, IS' will single
step the output, and anything else will continue as if nothing had
happened. "Pause" is printed at the terminal to signal this command.

8

REF [any ATE argument, enclosed by square brackets]
After this is typed, the given argument (the one inside the square
brackets) replaces <F> as the initial reference interval for pattern
searches.

For example, REF [t%] will force' all subsequent command arguments
to do their pattern searches within the line then containing the entry
pointer. As the entry pointer moves from line to line, the intial
reference interval moves with it. (ATE in effect prefixes all subsequent
command arguments with t%1 , except that the previous-argument conven
tions still hold: a missing argument is equivalent to repeating the
previous one, arguments beginning with I use the previous argument as
a reference interval, and < and> refer to-the left and right endpoints
of the previous argument, until modified by the current argument.)

Warning: REF changes 'the meaning of dot. An easy and disasterous
mistake would be to edit a file line-by-line using REF [t%] , and then
type 5"., saving only one line instead of the entire file <F>. Remembe~
that. (or ..•) alone as an argument refers to the reference interval
which mayor may not be all of <F>. .

To see the current reference string, type REF with no argument.
To wipe out the reference string, -type REF C J. This returns •..
to meaning <F>. -

Reference strings have no effect on F, Os or commands, which
continue to use <S>. Reference strings are limited to twenty-four
characters.

OEF [any command string, enclosed in square brackets] .
Sets a DEFault command string to be executed whenever, an empty command

- line'(carriage return only) is typed. Example: REF [t%] ,
DEF [t +l,".J is a useful combination. It lets you edit a file line
by-l i ne, s teppi ng to the next 1 ine by typi ng I return I •

Default strings are limited to twenty-four characters (but may
contain Do commands). DEF, and DEF [J behave as in REF.

E IlEnter"
This is the same old enter function, but. remember that it now uses
[) as ASCII delimiters. Also, if'is now much faster -- it will
keep up with the fastest typist even on large source files.

o "Origin"
Thi's behaves as before, except that when used without an argument"
it collapses the source area to an empty file.

9

V II Eva 1 uate ll

Simply evaluates the argument. This;s mainly useful with machine
language programs, since it returns the beginning and ending addresses
of the argument in HL and DE. See IIr~achine Language Interface."
Nothing is printed at the terminal unless an error occurs.

G "Goto",
Replaces> as the gato command.

10

NEW ASSEMBLER FEATURES

A filel file2 file3... "Assemble"
will do both passes over the concatenation of the named disk files.
Any number of file names, separated by blanks, can be given. In
this case, the files are b'uffered -- they are not loaded. Object
code is still placed in memory in the usual way, however.

Including @ as a file name will suspend the assembly while you
changes disks (or whatever). "Pause" will be printed at the terminal,
after which you are in a paniclstop state: any key will continue the
assembly except Esc, which will abort it. (If the assembler is pro
ducing a listing, then lSI will single step the output. If it is not
producing a listing (see J and Q below). Then IS' will assemble one
line at a time without producing any visible indication of that fact.)

If no file names are given with the A connnand, then the current·;: ,.
memory file is used.

Al and A2 are the same as A, except that they do only pass 1 and pass 2,
- respectively. Both can be used with or without file names.

Q and J Q tells the assembler that from now on, it should suppress
listings ("quite"). This can be used as a prefix to A (QA) or to
A2 (QA2), or it can be separted from A as a distinct command. J
tells the assembler that from now on~ it should produce listings
("jabber") (sorry). Itls use is identical to Q.

INTE can be used either as a command or a pseudo-op. It tells the assembler
that from now on, the source code will be in the Intel assembly language
format: initial blanks are unnecessary, labels are terminated by a
colon, and comment lines begin with a semi-colon (although * will also
work). This format is a bit more economical of memory, since usually
fewer than half the lines have labels.

PROS is used like INTE, and tells the assembler to expect Processor Technology
format. This is the power-up state, unless you change it. Note that
the Pring connnand will not respond to PROS or INTE when these are'used
as pseudo-ops.

IF expression, label (note the comma)
This is an assembler pseudo-opcode that allows conditional assembly.
If the expression evaluates to 0, assembly will skip ahead to the
statement labeled label. Assembly continues normally if the expression
is non-zero.

11

TAB

WID

With no arguments, this will print the current "tab" stops. At power
up, these are 8 15 20 29 21. This means that a Print command will
begin the labels in column 8, the opcodes in 15, the arguments in 20
and the comments in 29. The left-most column is column 0. Finally,
the 21 is the assembly source listing offset, the new "column zero"
relative to which other tab stops are treated when listing an assembly
language program to the right of its object code .

. These tab stops can be changed by following the TAB command with
up to five arguments (separated by blanks). These will change the
appropriate stops.

With no arguments, prints the current terminal width. With an argu
ment, resets the wi dth to the gi ven value. I f your termi na 1 produces,
an automatic newline on line overflow, then you should set the width ~~ ~
to one less than the actual value.

New operations
* and / mean multiplication and division, see "argument evaluation"
above. Evaluation is from left to right; parentheses are not under
stood. (Since all arithmetic is mod 216 , and 8080 memory addressing
is also mod 216 , there is no need to worry about over~low.)

New operands
TA and SA refer to top-of-symbol-table + 1 and top-of~source-area + 1.
These can be used with AORG and SORG pseudo-ops to aid in memory space
allocation. Caution: do not 'use SORG TA if you also use $ as an assembly
argument, since this will have a different value during pass2 than during
passl.

12

PERSONALIZING DISK/ATE

Power up, and then use any of the following commands to bring ATE
to the desired state: 10, CD, B, 0, M<T>, INTE, PROS, &, $, J, Q, TAB
WID, REF, DEF. Finally, install a user command table, if desired (see

. below). Then type L ATETBL <T> followed by SATE BEGIN .. END

From this point on, whenever you power up ATE, it will be in the
state created above. If you type BYE from the tlground level" of ATE, or
if you type X3 from anywhere, ATE will be reloaded in this same configuration.

User Command Table

See the ATE User's Manual for the format of a command table.

There is a small amount of space within ATE itself for a user command
table. This is located between USRCT and ROMEND. (L ATETBL <T> to get
these addresses.) Remember that this table must end with a zero byte,
ATE expects the address of the user command table to be stored at UCTAD.
This is initially set to USRCT, and is brought into memory from the disk
each time ATE is loaded. You can change UCTAD before resaving ATE as
described above. A logical place for a large user command table would
be in the 10 file. Remember that ATE checks the user command table before
its own command tables, so that your table must be in place before you
UCTAD, or before you power up ATE with a changed UCTAD. .

13

DISK/ATE ORGANIZATION

Disk/ATE is stored on the disk in two separate files, called ATE and 10.

ATE is the IO-independent porti~n of Disk/ATE. It may be located anywhere
in memory, de'pending on what version you are using. The standard system
disk provides two versions: one in low memory, and one at the top of 32K.
At power-up, ATE writes the vector JMP ATECOMS at address 0. This lets
other programs execute any Disk/ATE command (see below).

10 contains the terminal and disk drivers, and a loader (using one of the
disk drivers) for the file ATE. Again two versions are provided, but the
source code is also provided so that 10 can be changed and relocated any
where. ATE's only link to 10 is the vector JMP 10 written at address 3
(by the loader; see below). ATE expects 10 to begin with a jump table.
(See the accompanying 10 source. listing for a compl~te ~xample.) The jump
taQle is configured as follows:"

10 JMP LOADER
10+3 JMP character output routine
10+6 JMP character input routine
10+9 JMP terminal initialization routine
10+12 JMP panic detect routine
10+15 MVI C, some drive number

JMP driver for drive A
10+20 MVl C,

JMP dri~er for drive B
10+25 MVl C,

JMP driver for drive C
10+30 MVl C,

JMP driver for drive D
10+35 MVl C,

JMP driver for drive E
10+40 MVI C,

JMP Idri ver for dri ve F
10+45 MVl C,

JMP driver for drive G
10+50 MVI C,

JMP driver for drive H

14

The loader writes the vector JMP 10 at address 3, loads ATE from one of
the disks, and jumps to the first byte of ATE. Since 10 begins with
JMO LOADER, the entire system can be bootstrapped by loading and executing
10. Thereafter, executing address 3 will restart ATE without altering 10.
Thus programs that overwrite ATE can end with a jump to address 3. ATE
itself never executes address 3, but it does pick up the address of the 10
jump table from bytes 4 and 5.

The loader provided in the standard ~ersion of 10 assumes only that
ATE is the second entry in the directory on drive A. It reads this direc
tory entry to find ATE's disk address and memory address. For detailed
comments on the loader, see the 10 source listing.

The terminal 10 routine can use the corresponding North Star 10 routines.,
i.e., the vectors in the 10 jump table can be aimed directly at the corres~
ponding vectors in North Star DOS, But the requirements that ATE makes of
these routines are more relaxed.

In all cases, only SP need be preserved. Also in each case, a "device
number tl is passed to the routine through reg A. This is provided for the
user's convenience; it has no significance to ATE. It is set to 0 at
power-up and can be changed by the 10 command.

The character output routine sends the byte in B to device A. (If you
have only one device, you can of course ignore this device number.)

The character input routine should get a byte from device A and return
~ . it in A.

The terminal initialization routine should initialize device A. This is
called at power-up, wheri ATE is re-initialized, and in response to a Y
command ..

The panic detect routine should determine whether or not a "panic stopll
is being requested, and return with the Z-flag on if so. North Star's
"control-C" detect will work, but it is more convenient to hav~ ~ key
force a panic stop. Again, a device number-is provided in A. This is
called during output, assemblies, and ATE programs.

There are eight (8) disk drive vectors corresponding to drives A to H.
Each vector is preceded by a MVI C instruction that can be used to supply
a drive number to the driver routine. This number has no significance to
ATE itself. If once of the drives does not exist on your system, you
should replace the two-byte MVI C instruction by STC, RET. On return
from any disk call, carry = 1 always indicates a disk error to ATE.

15

The disk command is passed in register B:
B = 3 means that the drive and/or driver should be initialized. If this
is not necessary, simply return. ATE issues this command when a drive
is first accessed after power-up or after a disk. error.

B = 2 requests that the disk size be returned to BC. This is the total
number of 256-byte blocks! on -the disk, including the directory blocks.
(For the North Star, this is 350. For the DISCUS, this is 1000, leaving
1 block for an on-disk bootstrap inaccessible to ATE.) This command should
not perform any disk access. The maximum disk size that ATE can accomodate
is an assembly variable; it is given as MAXBS in ATETBL. Returning with a
larger size will cause a 'disk error'.

B = 1reguests a read, B - 0 requests a write. In this case, A contains the
number of blocks to transfer!, DE contains the beginning memory address, and
HL contains the beginning disk address (i.e., a block number from 0 to
disk size -1). Again, a return wi·th carry = 1 indicates an error.

lAlthough ATE assumes a logical disk configuration of contiguous 256-byte
blocks', the driver routine can translate this into a much different physical
configuration. For instance, the DISCUS is actually layed out in 128-byte
sectors with a 5-sector skew.

16

MACHINE LANGUAGE INTERFACE TO ATE

Any machine language program can execute any string of ATE commands.
Simply load HL with the address of the string (the string must be terminated
by a zero byte) and do a RST 0. Note that one of the commands could be
IATEI, which would continue to read and execute command lines until 'BYE'
forced a return to the calling program. In this case, ATE would use the
caller's stack. To be absolutely safe, 100 bytes should be sufficient.

Writing your own ATE commands

Any machine language program can be an ATE command. There are four
main considerations here: how to invoke the program, how to interface the
program to ATE (if necessary), how to pass arguments, and how to return to·
ATE.

How to invoke the command

Suppose you have written a program called MEMTST. The simplest way
to invoke it would be XMEMTST (as long as MEMTST is the first byte of the
program and is ;-n the symbol table, either after assembling, it or by typing
MEMTST =). Or, MEMTST could be stored on the disk, and could be
invoked by GO MEMTST.

Finally, you could enter MEMTST in the user command table and invoke
it by name. See the ATE User's Manual for the command table format. See
"Personalizing Disk/ATE" for locating the user command table.

How to return to ATE

Any command invoked as above can be part of any ATE command string
as long as it returns normally (with a RET, RZ, etc.). But what shou'ld you
do if your program detects an error and you want to tell ATE to discontinue
whatever command string it is in? The grossest way is to jump to address 3:
this will reload ATE (not 10) and start from scratch. A better way would
be to point HL at a string containing the letters RENT followed by a zero
byte, ground level. The best way would be to jump to the internal ATE
routine WHAT:

Interfacing programs to ATE

A symbol table containing internal references to ATE is provided on
the system disk (see Internal ATE references below). The simplest -way to
use this is to load the table (L ATETBL <T» before assembling your program.
Then your program can reference the internal ATE routines listed in this table.

17

If you are concerned with writing a program that will work without
reassembly with ~ version of ATE, then your program will have to link
itself to ATE. This can be done through the JMP ATECOMS vector at address
@. For example, suppose that you want the address of WHAT. Your program
could contain the following code.

LXI H,COMI
RST B
LXI H,COM2
RST ~

At this point, HL will contain the
address of WHAT.

COMI ASC- LATETBL- T
00 ~

COM2 ASC VWHAT
DB ~

Notes: The V command simply evaluates its argument and returns the beginning
and ending addresses in HL and DE. After a RST ~, carry = 1 indicates an
error. There is no way to suppress printing of error messages (except by
redirecting the 10 with the 10 command).

Argument Passing

Passing arguments from the command level down to machine language
programs is easy. The process of using repeated calls to VCHK and CVALS
is described in the ATE User's Manual. But vice-versa is a bit harder.
Suppose that your program has calculated the beginning and ending adresses
of a file that it would like to save on the disk. One tedious way would
be to construct the ASCII digits and pass S FILENAME 1234 ... 5678 through
RST~. A better way would be to store the desired addresses at PI and P2,
and then use S FILENAME <.>

18

INTERNAL DISK/ATE REFERENCES

The symbol table ATETBL contains the standard 8080 register symbols,
followed by these internal ATE references:

BEGIN

RENT

The first byte of ATE. Entering here will give a minor reinitiali
zation. SP is initialized, a few internal variables are set, the
command string 0, Z, Y is executed, and the initialization message
is printed.

The re-entry point to ATE that avoids reinitialization.

ATECOMS Executes an arbitrary ATE command string beginning at the address
in HL. See "Machine language interface" for details.

WHAT This is the error exit for command routines. See IIMachine lang-,: "
uage interfacel! for details.

READ, Reads a line from the terminal into a buffer of length B beginning
at address HL. Uses the prompt in A, or no prompt if A = 0.

VCHK Returns with the Z flag off if there is an argument after your
command (or after the previous argument).

CVALS Evalutes an argument, returning with the beginning and ending
values in HL and DE. In case of an error, this does not return
it exits thru WHAT back to the routine that initiated the current
command string, printi.ng a ? at the terminal.

VALUS Same as CVALS, but returns with the Z flag off in case of an error.
Also, you must provide the initial search interval in HL ... DE.
(If no search is required, this can be ignored.)

OUT Prints the character in A at the terminal. Preserves all flags
and registers. Takes·care·(}f providing a·linefeed after a
carriage return, and updates the internal print head counter,
providing a cr-lf when this reaches the terminal width.

INECO Gets a character from the terminal and echos it, doing the house-
keeping mentioned above. Preserves all flags and registers except

. A, in which the character is returned.

PHLSB Prints the value in HL in the current base, including any leading
zeros, using four digits for base 16, or 3 digits per byte for
bases less than 16 with a colon between the bytes.

PHLDC Prints the value in HL in base 10, with leading zeros suppressed.

19

USRCT
ROMEND

UCTAD

ASPC

STCTR

BOSAP

SYMTB

END

EOSAP

BOFP

EOFP

TABA

CHPTR

PI

P2

RECAD

RECND

ERSAV

PHD

MAXBS

_ Storage is provided from here to ROMEND for a user command table
(although this is consulted- only if UCTAD = USRCT).

Storage for the address of the current user command table.

See ATE User's Manual.

II

II

II

The end of the part of ATE that is stored on the disk.

See ATE User's Manual.

II

II

"
/I

II

II

II

II

II

II

The maximum disk size (in blocks) that this version of ATE can
handle.

DISKBUF ATE's disk buffer. After a disk command, a copy of the disk directory
is left here (but is not subsequently used by ATE). The first 1024

. bytes are used only during disk command, but the rest is shared by
some other ATE buffers.

RAMEND End of ATE's internal RAM. Memory above this point is free.

20

