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P R E F A C E 

The Multics project was begun in 1964 by the Computer 
Systems Research group of M.l.T. Project MAC. The goal was 
to create a prototype of a computer ut I 11 ty. In 1965, the 
project became a cooperative venture of M.t.T. Project MAC, 
the General Electric Company Computer Department (now 
Honeywell Information Systems Inc.) and the Bell Telephone 
Laboratories. In 1969, at the end of the research phase of 
the project, Bell Telephone Labo~atories ended Its active 
involvement. Also in 1969, the M.LT. Information 
Processing Center began to offer· Multics as a computing 
service within the M.l.T. convnunity •. In 1973, after 
developing a new hardware base for Multics, Honeywell 
announced that it would market Multics as a convnerctal 
product. 

The Multics system owes its genesis to a small team of 
computer scientists who had the vision to lay out a plan 
which for 1965 was startlingly ambitious. This team 
consistedJof the authors of a set of landmark papers 
published in the 1965 Fall Joint Computer Conference. Since 
that time literally hundreds of individuals have contributed 
to the Multics project, but no individual stands out so 
clearly in contribution as does Professor Fernando J. 
Corbato, who took responsibility for guiding the design and 
implementation of Multics from its initial proposal through 
to the time when Honeywell began to market the system. 

The project would not have been possible without the 
considerable convnitments of resources and talent made by the 
several organizations. These convnltments were made on the 
reconmendations of Professor Robert M. Fano, then director 
of Project MAC, Dr. John W. Weil, then of General Electric, 
and Dr. Edward E. David, Jr., then of the Bell Telephone 
Laboratories. The Information Processing Techniques office 
of the Advanced Research Projects Agency provided the 
primary financial support 'to Project MAC, and the Office of 
Naval Research provided contract supervision. 

This technical report is a snapshot of The Introduction 
to the users' manual for the Multics system. It is being 
published in this form as a convenient method of 
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communication with researchers and students of computer 
system design. The complete current users' manual is 
available in three updateable volumes from the M.l.T. 
Information Processing Center, or in a five-volume package 
from Honeywell. The present report represents Volume I of 
the three-volume version. The construct~on of the users' 
manual was also a team effort, with dozens of contributors. 
This manual has had the good fortune to have been maintained 
by a succession of three excellent editors, Michael A. 
Padlipsky, Laurie J. Haron, and Karolyn J. Martin, each of 
whom put in endless hours developing a general consistency 
of style, format, and presentation, so as to make the 
usefulness of the manual evenly predictable. 

This preface can acknowledge only a few particular 
contributions. More detailed acknowledgements for specific 
contributions will be found among the 29 technical papers 
that have been published about Multics, some of which· are 
reproduced in chapter two of this report. Unfortunately, in 
a team effort, complete and accurate acknowledgement ls 
impossible, except by thanking all the members of the team 
for their intense devotion to the business of getting 
Multics designed and implemented. 

Jerome H. Saltzer, Head 
Computer Systems Research Division 

M.l.T. Project MAC 
September 21, 1973 
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PLAN OF THE MULTICS PROGRAMMERS' MANUAL 

September 30, 1973 

The Multics Programmers' Manual (MPM) Is the primary 
reference manual for user and subsystem programming on the 
t1ultlcs system. It is divided Into three major parts: 

Part I: Introduction to Multics 

Part II: Reference Gulde to Multics 

Part Ill: Subsystem Writers' Gulde to Multics 

Part I is an introduction to the properties, concepts, and 
.. usage of the Multics system. Its four chapters are designed for 
reading continuity rather than for reference or completeness. 
Chapter 1 provides a broad overview. Chapter 2 goes Into the 
concepts underlying Multics. Chapter 3 ts a tutorial guide to 
the mechanics of using the system, with Illustrative examples of 
terminal sessions. Chapter 4 provides a series of examples of 
programming in the Multics environment. 

Part I I is a self-contained comprehensive reference guide to 
the use of the Multics system for most users. In contrast to 
Part I, the Reference Guide Is intended to document every detail 
and to permit rapid location of desired Information, rather than 
to facilitate cover-to-cover reading. 

Part II is organized into ten sections, of which the first 
eight systematically document the overall mechanics, conventions, 
and usage of the system. The last two sections of the Reference 
Guide are alphabetically organized lists of standard Multics 
commands and subroutines, respectively, giving details of the 
calling sequence and the usage of each. 
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Several cross-reference facilities help locate information 
in the Reference Guide: 

• The table of contents, at the front of the manual, 
provides the name of each section and subsection and an 
alphabetically ordered list of command and subroutine 
names • 

• A comprehensive index (of Part II only) lists items by 
subject. 

• Reference Guide sections 1.1 
commands and subroutines, 
category. 

and 2.1 provide 
respectlvely, by 

lists of 
functional 

Part Ill Is a reference guide for subsystem writers. It Is 
of interest to compiler writers and writers of sophisticated 
subsystems. It documents user-accessible modules which allow a 
user to bypass standard Multics facilities. The Interfaces thus 
documented are a level deeper Into the system than those required 
by the casual user. 

Examples of specialized subsystems for which construction 
would require reference to Part Ill are: 

1) a subsystem which precisely Imitates the conl118nd environment 
of some system other than Multics (e.g., an imitation of the 
Dartmouth Time-Sharing System); 

2) a subsystem which is intended to enforce restrictions on the 
services available to a set of users Ce.g., an APL-only 
subsystem for use in an academic class); 

3) a subsystem which Is protecting some kind of Information in 
a way not easily expressible with ordJnary access control 
lists <e.g., a proprietary linear prggr1mmfn1 system, or an 
administrative data base syste111 wh.ich permits access only to 
program-def lned aggregated Information such as averages and 
correl at Ions). 

Each of the three parts of the MPM has Its own table of contents 
and is updated separately, by adding and replacing Individual 
sections. Each section Is separately dated, both on the section 
itself, and in the appropriate table of contents. The title page 
and table of contents are replaced as part of each update, so one 
can quickly determine If his manual ls properly up-to-date. The 
Multics on-line "message of the day" or local Installation 
bulletins should provide notice of availability of new updates. 
In addition, the Multics command "help mpm" provides on-line 
information about known errors and the latest MPM update level. 

In addition to this manual, users who will write programs 
for Multics will need a manual giving specific details of the 
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language they will use; such manuals are currently available for 
PL/I, FORTRAN, and BASIC. A separate, specialized supplement to 
the MPM is also provided for users of graphic displays. The 
bibliography at the end of Part I, Chapter 1, describes these and 
other references In more detail. 

Multics provides the ability for a local Installation to 
develop an Installation-maintained or author-maintained library 
of commands and subroutines which are tailored to local needs. 
The Installation may also document these facilities in the same 
format as used In the MPM; the user can then interfile these 
locally provided write-ups In the command and subroutine sections 
of his MPM. 

Finally, access to Multics requires authorization. The 
prospective user must negotiate with the administration of his 
local installation for permission to use the system. The 
Installation may find it useful to provide the new user with a 
documentation kit describing available documents, telephone 
numbers, operational schedules, consulting services, and other 
local conventions. 
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HIGHLIGHTS OF THE MULTICS SYSTEM 

September 20, l973 

iotroduct ion 

Multics (from ~iplexed J_nformation and .&,omput-tng .Service) 
is the name of a new, general-purpose computer system developed 
by the Computer Systems Research Otvlston of M.l.T. Project MAC, 
in cooperation with Honeywell Information Systems (formerly the 
General Electric Company computer department) and the Bell 
Telephone Laboratories. This system is designed to be a 
"computer utillty0

, extending the baste concepts and philosophy 
of earlier time-sharing systems in many directions. Multics was 
imp 1 emented in it i a 11 y on · the Honeywe 11 645 computer sys tern, an 
enhanced relative of the Honeywell 635 computer. It currently 
uses a Honeywe11 6180 computer system. 

lli. Goals 

The goals 
paper by Corbat6 
only partially 
been realized. 

of the Multics system were set out In 1965 fn a 
and Vyssotsky. Wh11e those goals have been met 
in some cases, most of the original plans have 

The 1965 paper described those goals as follows:* 

"One of the overall design goals of Multics is to create a 
computing system which is capable of meeting almost all of the 
present and near future requirements of a large computer utility. 
Such systems must run continuously and reliably 7 days a week, 24 
hours a day, in a way similar to telephone or power systems, and 
must be capable of meeting wide servtce demands: from multiple 
man-machine Interaction to the sequential processing of absentee 
user jobs; from the use of the system wjth dedicated languages 
and subsystems to the programming of the system ltself; and from 

* From a modified version of: Corbat&, F.J., and Vyssotsky, 
V.A., "Introduction and Overview of the Multics System", AFIPS 
~ • .f.r.Qk. 1.1. (1965 FJCC), Spartan Books, Washlngton, D.C., 
1965, pp. 185-196. Copyright 1965 by AFIPS Press, reprinted by 
permission. 
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centralized bulk card, tape, and printer facilities to remotely 
located terminals. Such information processing and communication 
systems are believed to be essential for the future growth of 
computer use in business, In industry, in government and In 
scientific laboratories, as well ·as stimulating applications 
which would otherwise be untried. 

"Because the system must ultimately be comprehensive and 
able to adapt to unknown future requirements, lts framework must 
be general, and capable of evolving with time. As brought out in 
the sequel, this need for an evolt.Jt ionary framework influences 
and contributes to much of the system design and is a major 
reason why most of the programming of the system has been done in 
a subset of the PL/ I 1 anguage. Because the PL/ I 1 anguage is 
largely machine-independent (e.g., data descriptions refer to 
logical items, not physical words), the system should also be. 
Specfftcally, it is hoped that future hardware Improvements will 
not make system and user programs obsolete and . that 
implementation of the entire system on other suitable computers 
will require only a moderate' amount of additional programming •••• 

"As computers have matured during the last two decades from 
curiosities to calculating machines to information processors, 
access to them by users has not improved, and, in the case of 
most large machines, has retrogressed. Principally for economic 
reasons, batch processing of computer jobs has been 4eveloped and 
is currently practiced by most large computer instalfations, and 
the concomitant isolation of the user from elementary 
cause-and-effect relationships has been either reluctantly 
endured or rationalized. For several years a solution has been 
proposed to the access problem. This solution, usually called 
time-sharing, is basically the rapid time-division multfplexfng 
of a central processor unit among the jobs of several users, each 
on-line at a typewriter-like terminal. The rapid switching of 
the processor unit among user programs is, of course, nothing but 
a particular form of nwl t iprogranming •••• 

"The impetus for time-sharing first arose from professional 
programmers because of their constant frustration in debu&&ing 
programs at batch processing installations. Thus, the odginal 
goal was to time-share computers to allow stmultaneous access by 
several persons while giving to each of them th~ illusion of 
having. the whole machine at his disposal. This goal led to the 
development of the Compatible Time-Sharing System (CTSS) at 
M.l.T. Project MAC. However, at Project ~AC it has turned out 
that simultaneous access to the machine, while obviously 
necessary to the objective, has not been the major ensuing 
benefit. Rather, it is the avai labi 1 ity at one's fingertips of 
facilities for editing, compiling, debugging, and running 
programs In one continuous Interactive session that has had the 
greatest effect on programnlng. Professional programners are 
encouraged to be more imaginative in their work and to 
investigate new programning techniques and new problem approaches 
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because of the much smaller penalty for failure. But, the most 
significant effect that CTSS has had on the M.l.T. community is 
seen in the achievements of persons for whom computers are tools 
for other objectives. The availability of CTSS not only has 
changed the way problems are attacked, but has caused Important 
research to be undertaken that otherwise would not have been 
done. As a consequence, the objective of the current and future 
development of time-sharing extends beyqnd the improvement of 
computational facilities with respect to 'tradftional computer 
applications. Rather, It is the on-line use of computers for new 
purposes and in new fields which provides the challenge and the 
motivation to the system destgner. In other words, the major 
goal is to provide suitable tools for' what ls currently being 
called machine-aided cognition. 

"More specifically, the importance of a multiple-access 
system operated as a computer utility ls that it a1lows 1 a vast 
enlargement of the scope of computer-based activitles, which can, 
in turn, stimulate a corresponding enrichment of many areas of 
our society. Over ten years of experience Indicates that 
continuous operation in a utility-like manner, with flexible 
remote access, encourages users to view the system as a thinking 
tool in their daily intellectual work. Mechanistically, the 
qUal itative change from the past results from the drastic 
improvement in access time and convenience. Objectively, the 
change lies in the user's ability to control and affect 
Interactively the course of a process whether it involves 
numerical computation or manipulat1on of symbols. Thus, 
parameter studies are more intelligently guided; new 
problem-oriented languages and subsystems are developed to 
exploit the interactive capability; many complex analytical 
problems, as in magnetohydrodynamics, whlch have been too 
cumbersome to be tackled in the past, are now being successfully 
pursued; even more, new, imaginative approaches to baste research 
have been developed as in the decoding of protein structures. 
These are examples taken from an academic environment; the 
effect of multiple-access systems on business and industrial 
organizations can be equally dramatic. It is with such new 
applications in mind that the M~ltics system has been d~veloped. 
Not that the traditional uses of computers are being disregarded·: 
rather, these traditional needs are viewed as a subset of the 
broader, more demanding, new requirements. 

"To meet the above objectives, issues such as response time, 
convenience of manipulating data and programs, ease of 
controlling processes during execution, and, above all, 
protection of private information and isol~tion of independent 
processes, become of critical importance. The.se issues demand 
departures from traditional computer systems. While these 
departures are deemed to be desirable with re~pect to traditional 
computer applications, they are essential for· rapid man-machine 
interaction. 
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Svstem Requirements 

"In the early days of computer design, there was the concept 
of a single program on which a single processor computed for long 
periods of time with almost no fnteraction with the outside 
world. Today such a view is considered incomplete. The effective 
boundaries of an Information processing system extend beyond the 
processor, beyond the card reader and printer, and even beyond 
the typing of input and the printing of output. In fact, they 
encompass the goals of many people. To· better understand the 
effect of this broadened design sco~e, ft is h~lpful to examine 
several phenomena characteristic of large, servlce·orfented 
computer installations. 

"First, there are incentives for ~ny organization to have 
the bi&&est possible computer system that it can afford. It is 
usually only on the biggest computers that there are elaborate 
prografIIJling systems, compilers, and featvres which make a 
computer "powerful". This results partly because it is more 
difficult to prepare system programs for sm~11er computers when 
limited by speed or memory size, and partly because large systems 
involve more persons and, hence, permit more attention to be 
given to system programs. Moreover, by combining resources in a 
single computer system rather than In several, bulk economies and 
therefore lower computing costs can be achieved. Finally, as a 
practical matter, considerations of floor space, management 
efficiency, and operating personnel provide a strong Incentive 
for centraliztng computer facilities In a single large 
installation. 

"Second, the capacity of a contemporary computer 
installation, regardless of the sector of applications it serves, 
must be capable of growing to meet continuously increasing 
demand. A doubling of demand every two years is not uncommon. 
Multiple-access computers promise to accelerate this growth 
further since they allow a man-machine interaction rate which is 
faster by at least two orders of magnitude than other types of 
computing systems. Present indications are that multiple-access 
systems for only a few hundred users can generate a demand for 
computation exceeding the capacity of the fastest existing single 
processor system. Since the speed of light, the physical sizes 
of computer components, and the speeds of memories are intrinsic 
1 imitations on the speed of any single processor, it is clear 
that systems with multiple processors and multiple memory units 
are needed to provide greater capacity. This is not to say that 
fast processor units are undesirable, but that extreme system 
complexity to enhance this single parameter among many appears 
neither wise nor economic. 

"Third, computers are no longer a luxury used when and if 
available, but are primary working tools in business, government, 
and research laboratories. The more reliable computers become, 
the more their availability is depended upon. A system structure 



SYSTEM REQUIREMENTS 1-5 

including pools of functionally identical units (processors, 
memory modules, input/output controllers, etc.) can provide 
continuous service without significant inte.rruption for equipment 
maintenance, as well as provide growth capability through the 
addition of appropriate units. 

"Fourth, user programs, especially in a time-sharing system, 
interact frequently with secondary storage devices and terminals. 
This communication traffic produces a need for multiprogranvning 
to avoid wasting main processor time while an input/output 
request is being completed. It is important to note that an 
individual user ls ordinarily not in a position to do an adequate 
job of multiprogramming since his program lacks proper balance, 
and he probably lacks the necessary dynamic information, 
ingenuity, or patience. 

"Finally, as noted earlier, the value of a time-sharing 
system 1 ies not only in providing, in effect, a private computer 
to a number of people simultaneously, but, above all, in the 
services that the system places at the fingertips of the users. 
Moreover, the effectiveness of a system increases as 
user-developed facilities are shared by other users. This 
increased effectiveness because of sharing ts due not only to the 
reduced demands for core and secondary memory, but also to the 
cross-fertilization of user ideas. Thus, a major goal of the 
present effort is to provide multiple access to a growing and 
potentially vast structure of shared data and shared program 
procedures. In fact, the achievement of multiple access to the 
computer processors should be viewed as but ·a necessary subgoal 
of this broader objective. Thus, the primary and secondary 
memories where programs reside play a central role in the 
hardware organization, and the presence of ·independent 
communication paths between memories, processors, and terminals 
Is of critical importance. 

"From the above it can be seen that the system requirements 
of a computer installation are not for a single program on a 
single computer, but, rather, for a large system of many 
components serving a community of users. Moreover, each user of 
the system asynchronously initiates jobs of arbitrary and 
indeterminate duration which subdivide into sequences of 
processor and input/output tasks. It is out of this seemingly 
chaotic, random environment that one arrives at a uti lity-1 ike 
view of a computing system. For instead of chaos, one can 
average over the different user requests to achieve high 
utilization of all resources. The task of multiprogranvning 
required to do this need only be organized once in a central 
supervisor program. Each user thus enjoys the benefit of 
efficiency without having to average the demands of his own 
particular program. 

"With the above view of computer use, where tasks start and 
stop every few milliseconds, and where the memory requirements of 
tasks grow and shrink, it is apparent that one of the major jobs 
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of the supervisor program (i.e., monitor, executive, etc.) is the 
allocation and scheduling of computer resources. The general 
strategy is clear. Each user's job is subdivided into tasks, 
usually as the job proceeds, each of which is placed in an 
appropriate queue Ci .e., for a processor or an input/output 
controller). Processors. or input/output controllers are, in 
turn, assigned new tasks as they either complete or are removed 
from old tasks. Alt processors are treated equivalently in an 
anonymous poo 1 and are assigned to ta.sks as needed. In 
particular, the supervisor does not have a special processor. 
Further, processors can be added or deleted without significant 
change in either the user or system. programs. Similarly, 
input/output controllers are directed from queues independently 
of any particular processor. Again, as with the processors, one 
can add or delete input/output capacity according to system load 
without significant reprogramming required • 

..I.bJ:. Multics Svstem 

"The overall design goal of the Multics system Is to create 
a computing system which is capable of comprehensively meeting 
almost all of the pres.ent and near future requirements of a large 
computer service installation. It is not expected that the 
initial system, although useful, will reach the objective; 
rather, the system will evolve with time in a general framework 
which permits continual growth to meet · unknown future 
requirements. The use of the PL/I languag.e will allow major 
system software changes to be developed on a schedule separate 
from that of hardware changes. Since most organizations can no 
longer afford to overlap old and new equipment during changes, 
and since software development is at best dififlc.ult to schedule, 
this relative machine-Independence should be a rnaJor asset." 

Oyeryiew of Multics Caoabjlltjes 

An ability to share data contained within the framework of a 
general purpose time-sharing system Is a unique feature of 
Multics, and ts directly applicable to administrative problems, 
research requiring a multi-user accessible data base, and general 
application of the computer to very compl(C:ated research 
problems. The attention paid to mechanisms to provide and 
control privacy is of direct interest for sev.er-al of the same 
applications as wel 1 as, for example, medical data. Multics can 
thus be a valuable tool which provides op·portunities for 
important new research in these areas. 

Multics offers a number of additional capabll ities which go 
well beyond those provided by many other systems. Those which 
are most significant from the user's point of view are described 
here. Perhaps the most interesting aspect of all is that a 
single system encompasses all of these capabilities 
simultaneously. 
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1. The ability to be a small user of Multics. 

An underlying consideration throughout the Multics design 
has been that the simple user should not pay a noticeable 
extra price for a system which also accomodates the 
sophisticated user. For example, a student can be handed a 
1 imited set of tools, can do limited work (perhaps debugging 
and running small BASIC programs), and expect to receive a 
bill for resource usage which is proportional to the limited 
work done. If all users are small, of eourse, the number of 
users can be increased in proportion to their smallness. As 
an administrative aid, facll ities are provided so that 'one 
can restrict any particular user to~ •pecific set of tools 
and thereby limit his ability to use up resources. 

2. The ability to control sharing of information. 

There are a variety of applications for a computer system 
which Involve building up a base of information which ts to 
be shared among several individuals. Multics provides 
facilities in two directions. 

Sharing: 

Control: 

Links to other users' programs and data. 

Ability to move one 1 s base of operation Into another 
user's directory (with hts permission). 

Direct access with uniform conventions to any 
information stored in the system. 

Ab i1 i ty for two or more users to share a single copy 
of a program or data in core memory. 

Ability to specify precisely to whom, and with what 
access mode (e.g., read, write, and execute 
permissions are separate and per-user) a piece of 
data or the entire contents of a subdirectory are 
avai table. 

Ability to revoke access at any time. 

Ability, using the Multics protection ring 
structure, to force access to a data base to be only 
via a program supplied by the data base owner. This 
facility may be used to allow access to aggregate 
information, such as averages or counts, or 
specified data entries, without simultaneously 
giving access to the entire file of raw data, which 
may be confidential. There are a large number of 
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potential administrative applications of this 
feature, and as far as is known, t·iultics is the only 
general-purpose system which provides it. 

3. The virtual memory approach. 

In the opposite direction of the little user Is the person 
with a difficult research problem requiring a very large 
addressable memory. The Multics storage system, with the 
aid of a high-performance paging system, provides this 
facility in what Is often called a virtual memory of an 
extent limited only by the total of secondary storage 
devices (drums, disks, etc.) attached to the system. An 
interesting property of the Multics Implementation Is that a 
procedure may be written to operate in a very large virtual 
memory, but primary memory resources are used only for those 
parts of the virtual memory actually touched by the program 
on that execution, and disk and drum resources are used only 
for those parts of the memory which actually contain data. 
Another very useful property from a prograrrmer's point of 
view is that information stored in the storage system is 
directly accessible to his program by a virtual memory 
address. This property eliminates the need for explicitly 
progranmed overlays, chain links, or memory loads, and also 
reduces the number of explicitly prograrrmed input and output 
operations. The Multics storage system takes on the 
responsibility for safekeeping of all information placed 
there by the user. It therefore automatically maintains 
tape copies of all Information which has -remained in the 
system for more than an hour. These ta~es can be used to 
reload any user Information lost or damaged as a result of 
hardware or software failures, and may also be used to 
retrieve Individual items damaged by a user's own blunder. 

Each user has an administratively set quota of space which 
limits the amount of storage he can use, althouah he may 
purchase as large an amount of space as he would like. 
Additional disk storage can be added to the system In large 
quantities if necessary. 

4. The option of dynamic linking. 

In constructing a program or system of programs, it Is 
frequently convenient to begin testing certaJn features of 
one program before having written another program which is 
needed for some cases. Dynamic linking allows the execution 
of the first program to begin, and a search for the second 
program is undertaken only if and when it is actually 
called by the first one. This feature also allows a user to 
freely include in his program a conditional call out to a 
large and sophisticated error diagnostic program, secure in 
the knowledge that in all those executions of his program 
which do not encounter the error, he will not pay the cost 
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of locating, linking, and mapping into his virtual memory 
the error diagnosis package. It also allows a user 
borrowing a program to provide a substitute for any 
subroutine called by that program when he uses it, since he 
has control over where the system looks to find missing 
subroutines. In those cases where subroutine A calls 
subroutine B every time, there is, of course, no need to use 
dynamic linking (and the implied library search), so 
facilities are provided to bind A and B together prior to 
execution. 

5. Configuration flexibility. 

An important aspect of the Multics design is that it is 
actually difficult for a user to write a program which will 
stop working correctly if the hardware configuration is 
changed. In response to changing system-wide needs, the 
amount of primary memory, the number of central processors, 
the amount and nature of secondary storage (disks, drums, 
etc.), and the type of interactive typewriter terminals may 
change with time over a range of 2 or 3 to 1, but users do 
not normally need to change their programs to keep up with 
the hardware. The system itself adapts to changes in the 
number of processor or memory boxes dynamically, that is, 
while users are logged in. Most other configuration changes 
(e.g., the addition of disk storage units) require that the 
system be relnitial ized, an operation whtch takes a few 
minutes. 

6. The human interface. 

Experience has proven that ease of use of a time-sharing 
system is considerably more sensitive to human engineering 
than is a batch processing system. The Multics comnand 
language has been designed wJth this in mind. Features such 
as universal use of a character set with both upper and 
lower case letters in it, and allowing names of objects to 
be 32 characters long, are examples of the little things 
which allow the nonspeci~list to feel that he does not have 
to discover a secret code in order to be an effective user 
of the system. In a similar vein, a hierarchial storage 
system provides a very useful organization and bookkeeping 
aid, so that a user need keep i1m1ediately at hand only those 
things he is working with at the moment. Such a facility is 
of great assistance when attacking complicated or 
intricately structured problems. 

Laogyages 

Multics 
FORTRAN IV. 
supported by 
input/output 

provides two primary user languages: PL/I and 
The F O RT RAN co mp i 1 e r i s fa i r 1 y s tan d a rd . I t i s 

the usual library of math routines and formatted 
facilities. Its primary use is for translation of 
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already written programs which have been imported from other 
computer systems. 

The Multi cs PL/ l c.omprl er Is quite I nteres tt ng beca,use it 
offers a very full selection of lan:guag~ fae:11 ities, over 300 
helpful error diagnostics, and the abl'llt;y to ge-t a"t t'he advanced 
features of Multics, al 1 a,t rusonab·le cost. Fo·r these reasons, 
as we 11 as the. a.va i lab I l f ty of Pl/ I· Oft' other computer systems, t t 
f s the recomnended 1 anau•1• for s.u:bsystem hnp-f•menters and 
general research users neecflnc an axpresstve l.anawtae. If ts 
worth notln& that the system itself ts wrltten mostly rn the PL/I 
language. 

Other 1 an~a-aes available on Multics are: 

BASIC - A translator and editor s.uhsys.tem for the BASIC 
languace,. developed at Oartmouth Co.lleae. A 
1 i ml tad: Mu l t I. cs. se:rv tee, ts ••aJ 1 abJ e wh i ch 
re:strlcts- the u.ser to. .has.t this. subsystem, If 
desired. The BASIC. subsys.tem is also avat·rable to 
ra&ular Multics users. 

- A 11 
has been 
editing 
editors, 

APL - A powerfu.1 and popular interpretive language 
develepe.d by Kennath I.Viers.on.. The Mul t lcs 
implementation ¥ery ;c.Josety hattate.a Iverson 's, 
with the except ton that an effect rve 1 y un 1 fmi ted 
workspace size is available. 

LI SP - Both an interpreter and a compi,ler are aval lab le 
for th Is 11 st process i na ranguaae often used rn 
artificial f,ntell iaenc:. a,op,llcatlOin$· The Multi cs 
implamen.tation of the MACL~SP dialect of LISP 
contains useful and· soPfifsttcated fttatur·es not 
available Jn most othe.r d:t.al~ts, of LI SP. Among 
these are debugln& tools and the ability to 
modl fy or proaraan parts. of the interpreter. The 
tatter makes rt an eas.t lY eX,tens tble lan&uage. 
Another lnterestlna feature of the Multics 
implementation ts the very tarse structure space 
provided by the virtual memory. 

ALM - A machine lan&Ua&e assembler for the Honeywell 
6180 computer. CI t is not .tec::ommet'lded for 1eneral 
use; it is slow and the machine languaae Is very 
difficult.) 

QEDX - A programnable editor which qualifies as a minor 
Interpretive language. 

of the above languages translate a source program which 
previously placed in the storage system. Input and 
of source text is done with one of the available text 
edm or qedx. Although interactive, lfne•by-llne syntax 
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checking languages are easily implemented in the Multics 
environment, none are currently available. 

A source language debugging system, named debug, provides 
the ability to inspect variables and set break points In terms of 
the PL/I or FORTRAN program being debugged. It also has a 
variety of features to allow inspection of all aspects of the 
Multics execution environment. 

A MuJtjcs Bibliograohv 

A. t·ianuals which are available through Honeywell. 

1. Multics programmers' Manya) (Order Numbers AG90, AG91, 
AG92, AG93 and AK92). An upda-teatile reference manual In 
five volumes. Volume I Is an i'ntroducflon to the 
Multics programming environment and includes sample 
terminal sessions and annotated Multics programs. 
Volume 11 cont.ains reference material on the overal 1 
mechanics, conventions and usage of the system. 
Volumes Ill and IV are alphabetically organized lists 
of standard Multics comnands and subroutines, 
respectively, giving details of the calling sequence 
and usage of each. Volume V provides reference 
material and descriptions of comnands and subroutines 
which are of interest primarily to compiler writers and 
subsystem writers. 

2. ~ Multics ..e.J..Li Language (Order Number AG94). A 
reference manual which specifies precisely the PL/I 
language used on Multics. 

3. ~Multics Virtual Memorv (Order Number AG95). A 
collection of three technical papers on the hard\'Jare 
and software used to implement the virtual memory and 
program protection features of Multics. 

4. Multics Proiect Admioistrators' ManyaJ, preliminary 
edition (Order Number AK5ll. A reference manual for 
project administators describing corTITlands and 
subroutines which may be used to specify certain 
features of Multics to the members of a project. 

5. Multics System Administr9tors' Manual (Order Number 
AK50). A reference manual for system administrators of 
a Multics installation describing commands and 
subroutines ~hich may be used to control various system 
parameters. 

6. ~ Af.l User's Gyide (Order Number AK95). A manual for 
beginning and advanced APL users describing the use of 
Multics APL. 



1-12 HIGHLIGHTS OF THE MULTI CS SYSTEM 

B. Manuals which may be examined in the t1.l.T. Project t-1AC or 
Information Processing Center Document Rooms. These manuals 
are .D.Q1 otherwise available. 

1. 

2. 

3. 

4. 

5. 

6. 

Mui t; 1,s :ivst;em Prograwwers' ~anyal. In pr Inc lple, a 
complete reference manual describing how the system 
works inside. In fact, this document contains many 
sections which are inconsistent, Inaccurate, or 
obsolete; it is Jn need of much upgradlna. However, 
its overview sections are generally accurate and 
valuable if insight into the internal organization f s 
desired. 

$vstem FCQ&CIDJll•ri' SIJQQ)CIDIDt; J'.Q .llut Mu}tlcs 
pro1c1mwccs' HiDYll· This 1,1pdateable reference manual, 
in the $ame format as the Multics Procranmers' Manual, 
provides calling sequences of every system module. 

Graphi~ U11r$' ~~pQlCflllQt .tQ. .t.b.& Mult;('~ Programmers' 
M1.oua}. In the same formet as the Mul t I cs Prog ranmers 1 

Manual, this supplemttnt gathers In one place 
descriptions of the Multics Graphics System, and the 
commands and subroutines needed to use It. 

A User's GyJde .tQ. Multic$ EOftiffl· A document which 
provides the prospectiveu~cs FORTRAN user with 
sufficient information to enable him to create and 
execute FORTRAN programs on Multics. It contains a 
complete definition of the Multics FORTRAN language as 
well as a description of the FORTRAN conimand and error 
messages. It also describes how to communicate with 
non-FORTRAN programs, and discusses some of the 
fundamental characteristics of Multics which affect the 
FORTRAN user. 

EPLBSA Programmer'$ BeferonGc H1ndb9ok, by 
D. J. Riesenberg. A manual describing the assembly 
(machine) lanauage for the Honeywell 645 computer. The 
language has been renamed ALM since the publication of 
this manual. {Needed only bY programmers with some 
special reason to use 645 machine language.) 

Honeywell .§.!t..2. processor Mapy,1. A hardware description 
including opcodes, address ng modifiers, etc. Of 
Interest only to dedfcated machine language 
pro1rammers. 

C. B?oks about Multics. 

1. Ih.c. Multics Syst;em: An Examip~t jon 2f. l..U. Structure, by 
E. I. Organick. A hard cover book describing in some 
detail how Multics works. The description Is from the 
point of view of a programmer developing a large 



A MULTICS BIBLIOGRAPHY 1-13 

program or subsystem, who wishes to gain the extra 
insight to help him intelligently choose among 
available alternatives of his implementation. M.l.T. 
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York, 1970. 270 pages. 
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INTRODUCTION TO THE CONCEPTS OF MULTICS 

September 20, 1973 

The following pages contain reprints of eight technical 
papers about Multics. Although these papers were written 
lnd1vidually for conferences and technical journals, as a group 
they provide an in-depth lntroductlon to· ·most of the major 
concepts of the Multics system. The reader should be warned that 
the earliest of these papers was written six years before the 
latest. As a result, he will notice minor differences in 
terminology and emphasis, reflecting the gradually increasing 
experience both In using and explaining Ideas which were fl.rst 
introduced by Multics. In addition, these papers should be taken 
as background explanations of why Multics Is designed the way it 
is, rather than as a reference to the way i~ currently works. 
Some ideas suggested in these papers have not yet been 
Implemented In the actual system, or having been implemented and 
found wanting, have been discarded. Parts II and Ill of· the 
Multics Programmers' Manual provide current descriptions of the 
user interfaces which are actually Implemented in Multics, and 
should be used as reference for all programming. On the other 
hand, much of that reference guide merely tells how, without 
explaining why, which is the purpose of this chapter. 

The reader who is interested in a greater depth of detail 
about Multics may wish to consult the book Ib.c. Myltjcs System: 
An Examinatjon 2f. ~ Stryctyre, by Elliott I. Organlck (MIT 
Press, 1972). That book provides a deep and authoritative look 
at the implementation of many of the parts of the Multics system. 
In addition, the bibliography at the end of MPM Introduction 
Chapter One provides a list of other specialized technical papers 
and academic theses related to Multics. 

Finally, the reader who wishes only to use the Multics 
system will probably want to only skim this chapter to see what 
kinds of ideas are discussed here. It is .WU. necessary to 
comprehend Chapter Two in order to begin using Multics. The 
concepts provided here are background in nature, and are probably 
most useful to a reader contemplating an unusual application of 
the system. For an introduction on how to use and program for 
Multics, one should move on to Chapters Three and Four of the 
manua 1 • 
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Multics-The first seven years* Rei:>rinted from -

AFIPS - Conference Proceedings 
Volume40 

by F. J. CORBAT0 and J. H. BALTZER 

MassachuscUs lrutitute of Technology 
Cambridge, Massachusetts 

and 

C. T. CLINGEN 

Honeywell lnformatio• Syatems Inc. 
Cambfidge, Massachusetts 

INTRODUCTION 

In 1964, following implementation of the Compatible 
Time.Sharing System (CTSS) 1•2 serious planning began 
on the development of a new computer system specifi­
cally organized as a prototype of acomputerutility. The 
plans and aspirations for this system, called :Multics 
(for Multiplexed Information and Computing Service), 
were described in a set. of six papers presented at the 
1965 Fall Joint Computer Conference.a-a The develop­
ment of the system was undertaken as a cooperative ef­
fort involving the Bell Telephone Laboratories (from 
196.'l to 1969), the computer department of the General 
Electric Company,* and Project :.\IAC of l\I.I.T. 

Implicit in the 1965 papers was the expectation that 
there should be a later examination of the development 
effort. From the present vantage point, however, it is 
clear that a definitive examination cannot be presented 
in a single paper. As a result, the present paper discusses 
only some of the many possible topics. 'First we review 
the goals, history and current status of the :.\I ultics proj­
ect. This review is followed by a brief description of the 
appearance of the :.\Iultics system to its various classes 
of users. Finally several topics are given which represent 
some of the research insights which have come out of 
the development activities. This organization has been 
chosen in order to emphasize those aspects of software 
systems having the goals of a computer utilit.y which we 

• Work reported herein was sponsored (in part) by Project MAC, 
an !\I.LT. research program sponsored by the Advanced Research 
Projects A~ency, Department of Defense, under office of Naval 
lfosearch Contract Number N00014-i0-A--0362-0001. Re­
production is permitted for any purpose of the United States 
Government. 
•Subsequently acquired by Honeywell Information Systems Inc. 

571 

© AFIPS NESS 
Montv•I•, N. J. 07645 

feel to be of special interest. We do not attempt detailed 
discussion of the organization of Multics; that is the 
purpose of specialiaed technical books and papers.* 

GOALJ3 

The goals of the computer utility, although stated at 
length in the 196.5 papers, deserve a brief review. By a 
computer utility it was meant that one had a com­
munity computer facility with~ 

(1) Convenient remote terminal access as the normal 
mooe of system usage; 

(2) A view of continuous operation analogous to that 
of the electric power and telephone companies; 

(3) A wide range of capacity to allow growth or 
contraction without either system or user re­
organi.ation; 

( 4) An internal file system so reliable that users trust 
their only copy of programs and data to be stored 
in it; 

(5) Sufficient control of access to allow selective 
sharing of information; 

(6) The ability to structure hierarchically both the 
logical storage of information as well as the ad­
ministratien of the system; 

(7) The capability of serving large and small users 
without inefficiency to either; 

(8) The ability to support different progr~mming 
environments and human interfaces within a 
single system; 

•For example, the essential mechanisms for much of the Multics 
system are given in books by Organick9 and Watson.10 
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(9) The flexibility and generality of system organiza­
tion required for evolution through successive 
waves of technological improvements and the 
inevitable growth of ttser expectations. 

In an absolute sense the above goals are extremely 
difficult to achieve. Xevertheless, it is our belief that 
::\Iultics, as it now exists. has made substantial progress 
toward achieving each of the nine goals.• :\lost im­
portantly, none of these goals had to be compromised 
in any important way. 

HISTORY OF THE DEVELOP::\IENT 

As previously mentioned, the :\I ulti<'s project got 
under way in the Fall of 1964. The computer equipment 
to be used was a modified General Electric 63;) which 
was later named the 64;). The most significant changes 
made were in the processor addressing and access control 
logic where paging and segmentation were introduced. 
A completely new Generalized Input/Output Cont.roller 
"·as designed and implemented to accommodate the 
varied needs of devices such as disks, tapes and tele­
type\\Titers without presenting an excessive interrupt 
burden to the processors. To handle the expected paging 
traffic, a 4-million word (36-bit) high-performance drum 
system with hardware queueing was developed. The 
design specifications for these items were completed by 
Fall 196.i, and the equipment became available for soft­
ware development in early 1967. 

Software preparation underwent several phases. The 
first phase was the development and blocking out of 
major ideas, followed by the writing of detailed program 
module specifications. The resulting 3,000 typewritten 
pages formed the ::\Iultics System Programmers' ::\lan­
ual and served as the starting point for all program­
ming. Furthermore, the software designers were ex­
pected to implement their own designs. As a general 
policy PL/I was used as the system programming 
language wherever possibie to maximize lucidity and 
maintainability of the system. 14• u This policy also in­
creased the effectiveness of system programmers by al­
lowing each one to keep more of the system within his 
grasp. 

The second major phase of software development, 
well under way by early 1967, was that of module im­
plementation and unit checkout followed by merging 
into larger aggregates for integrated testing. Up to then 
most software and hardware difficulties had been antici­
pated on the basis of previous experience. But what 

"' To the best of our knowledge, the only other attempt to 
comprehensively attack all of the:se goals simultaneously is the 
TSS/360 project at IB::\i.U·1ua 

gradually beeame apparent as the module integration 
continued was that there were gross discrepancies be­
tween actual and expected performance of the various 
logical execution paths throughout the software. The 
result was that an unanticipated phase of design itera­
tions was neceMary. These design iterations did not 
mean that major portions of the system were scrapped 
without being used. On the contrary, until their re­
placements could be implemented, often months later, 
they were erucially necessary to allow the testing and 
evaluation of the other portions of the system. The 
cause of the required redesigns was rarely "bad coding" 
since most of the system programmers were well above 
average ability. ~Ioreover the redesigns did not mean 
that the goals of the project were compromised. Rather 
three recurrent phenomena were observed: (1) typically, 
specifications representing less-important features were 
found to be intmducing much of the complexity, (2) 
the initial choice of modularity and interfacing between 
modules was sometimes awkward and (3) it was re­
discovered that the most important property of al­
gorithms is simplicity rather than special mechanisms 
for wiusual cMes. • 

The reason for bringing out in detail the above design 
iteration experience is that frequently the planning of 
large software projects still does not properly t....I\.e the 
need for continuing iteration into account. And yet we 
believe that design iterations are a required activity on 
any large scale systen1 which attempts to break new con­
ceptual ground &uch that individual programmers can­
not comprehend the entire system in detail. For when 
new ground is broken, it is usually impossible to de­
duce the consequent system behavior except by experi­
mental operation. Simulation is not particularly ef­
fective when the system concepts and user behavior are 
new. Unfortunately, one does not widerstand the system 
well enough to simplify it correctly and thereby obtain 
a manageable model which requires less effort to imple­
ment than the sytitem itself. Instead one must develop 
a different view: · 

(1) The initial program version of a module should 
be viewed only as the first complete specification 
of the module and should be subject to design 
review l>ef ore being debugged or checked out. 

(2) ~Iodule design and implementation should be 
based upon an assumption of periodic evaluation, 
redesign, and evolution. 

In retrospect, the design iteration effect was apparent 

* "In anything at all, perfection is finslly attained not when there 
is no longer anything to add, but when there is no longer anything 
to take away ... " 

-Antoine de Saint-Exupery, Wind, Sand and Stars Quoted 
with permission of Harcourt Brace Jovanovich, Inc. 



e\·en in the development of the earlier Compatible Time­
Sharing System (CTSS) when a second file system with 
many functional improvements turned out to have poor 
performance when initially installed. A hasty design 
iteration succeeded in rectifying the matter but the 
episode at the time was viewed as an anomaly perhaps 
due to inadequate technical review of individual pro­
gramming efforts. 

CURRENT STATUS 

In spite of the unexpected design iteration phase, the 
l\Iultics system became sufficiently effective by late 1968 
to allow system programmers to use the system while 
still developing it. By October 1969, the system was 
made available for general use on a "cost-recovery" 
charging basis similar to that used for other major 
cotnputation facilities at l\f.l.T. ·Multics is now the 
most widely used time-sharing system at 1\1.1.T., sup­
porting a user community of some 500 registered sub­
scribers. The system is currently operated for users 22 
hours per day, 7 days per week. For at least eight hours 
each day the system operates with two processors and 
three melitoi'y modules containing a total of 384k (k = 

1624} 36-bit words. This configuration currently is rated 
at a capacity of about 55 fairly demanding users such 
that most trivial requests obtain response in one to five 
seconds. (Future design iterations are expected to in­
crease the capacity rating.) Several times a day during 
the off-peak usage hours the system is dynamically re­
configured into two systems: a reduced capacity service 
system and an independent development system. The 
development system is used for testing those hardware 
and software changes which cannot be done under nor~ 
mal service operation. 

The reliability of the round-the-clock system opera­
tion described above has been a matter of great con­
cern, for in any on-line real-time system the impact of 
mishaps is usually far more severe than in batch pro­
cessing systems. In an on-line system especially im­
portant considerations are: 

(1) the time required before the system is usable 
again following a mishap, 

(2) the extra precautions required for restoring pos­
sibly lost files, and 

(3) the psychological stress of breaking the inter­
active dialogue with users who were counting on 
system availability. 

Because of the importance of these considerations, care­
ful logs are kept of all Multics "crashes" (i.e., system 
service disruption for all active users) at M.l.T. in 
order that analysis can reveal their causes. These analy­
ses indicate currently an average of between one and 
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TABLE I-A comparison of the system development and use 
periods of CT88 and l\lultics. The Multics develop­
ment period is not significantly lonp;er than that. for 
CTSS despite the development of about 10 times as 
much code for Multics as for CTSS and a p;eographi­
cally distributed staff. Although reasons for this 
i;imilarity in time span include the use of a higher­
level programminp; language an<l a somewhat larger 
staff, the use of CTSS as a develooment tool for 
Multics was of pivitol importance. 

System 

CTS.1' 
Multics 

Development 
Only 

1960-1963 
1964-1969 

Development 
+Use 

1963-1965 
1969-present 

Use Only 

1965-present 

two crashes per 24 hour day. These crashes have no 
single ~use. Some are due to hardware failures, others 
to operator error and still others to software bugs intro­
duced during the course of development. At the two 
other sites where Multics is operated, but where active 
system development does not take place, there have 
been almost no system failures traced to software. 

Currently the :Multics system, including compilers, 
commands, and subroutine libraries, consists of about 
1500 modules, averaging roughly 200 lines of PL.II 
apiece. These compile to produce some 1,000,000 words 
of procedure code. Another measure of the system is the 
size of the resident supervisor which is about 30k words 
of procedure and, for a 55 user load, about 36k words of 
data and buffer areas. 

Because the system is so large, the most powerful 
maintenance tool available was chosen-the system it­
self. With all of the system modules stored on-line, it is 
easy to manipulate the many components of different 
versions of the system. Thus it has been possible to 
maintain steadily for the la.st year or so a pace of install­
ing 5 or 10 new or modified system modules a day. 
Some three-quarters of these changes can be installed 
while the system is in operation. The remainder, per­
taining to the central supervisor, are installed in batches 
once or twice a week. This on-line maintenance capa­
bility has proven indispensable to the rapid develop­
ment and maintenance of Multics since it permits con­
stant upgrading of the user interface without interrupt­
ing the service. We are just beginning to see instances of 
user-written applications which require this same capa­
bility so that the application users need not be inter­
rupted while the software they are using is being 
modified. 

The software effort which has been spent on ~Iultics 
is difficult to est:mate. Approximately 150 man-years 
wer~ applied directly to design and system programming 
during the "development-only" period of Table I. 

------ -~---
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Sinc-e then we PStimatc that another r..o man-yt>ars have 
hccn de,·otcd to improving and extending the system. 
But the adual rost of a single mt<'l·('Ss{ul :->ystem is miis~ 
leading, for if one starts afre;h to build a similar syistem, 
one must compensate for the non-&ero probability of 
failure. 

THE APPEARANCE OF :\lULTICS TO 
ITS USERS 

Ha\i'ing reviewed the background of the project, we 
may now ask who are the users of the :\lultics system 
and what do the facilities that :\lultics provides mean 
to these users. Before answering, it is worth describing 
the generic user as "viewed" by :\lultics. Although 
from the system's point of view all users have the same 
general characteristics and interlace with it uniformly, 
no single human interface represents the ':\fultics ma­
chine. That machine is determined by each user's 
initial procedure coupled with those functions accessible 
to him. Thus there exists the potential to present each 
:'.\Iultics user with a unique external interface. 

However, Multics does provide a native intema.l 
program environment consisting of a sta.ck--oriented, 
pure-procedure, collection of PL/I proeedutes imbedded 
in a segmented virtual memory containing 'all pro­
cedures a.nd data stored on·line. The extent to which 
some, all, or none of this internal environment is visible 
to the various users is an administrative choice. 

The implications of these two vie\\"8-both the ex­
ternal interface and the intemal programming environ­
ment-are discussed in terms of the following categories 
of users: . 

• System progra.mmers and user application pro­
grammers responsible for writing system and user 
software. 

• Administrative personnel responsible for the man­
agement of system resources and privileges. 

• The ultimate users of applicatiODB systems. 
• Operations and hardware maintenance personnel 

responsible, respectively, for running the machine 
room and maintaining the hardware. 

Multics as viewed by system and subsystem programmers 

The machine presented to both the :Vlultics system 
programmer and the application system programmer is 
the one with which we have the most experience; it is 
the raw material from which one constructs other en­
vironments. It is worth reemphasizing that the only 
differentiation between l\foltics system programmers 
and user programmers is embodied in the access control 

m('{"hanism whit·h dt'tt'rtnincs what on-line information 
<·an lx~ reft'rt'll<'Nl; thc1't'f ore, what arc apparently two 
g1"(m1>.-; of u~-s ran he di.'l'Mt~ a.s Ol'K'. 

'.\lajor int<'tfaet'S pres<'ntcd to l,rogranunt>rn on the 
:'.\lulti(·11 systC'm <·an he da.~iticd as the pmwam prcr•am· 
tion and dormncntation farilitics and the program exe-. 
cution and debu~in« crwironment. They will be 
touched upon briefly, in the order used ror program 
preparation. 

~m preparation abd documentation 

The facilities for program preparation on :\lultirs arc 
typical of those found oo other time.sharing systems, 
with somt'l shifts in emphasis (see the Appendix). For 
example, programmers ronsider the file system suffi­
cient.ly invulnerable to physical loss that it is used 
casually and routi'1eiy to save all information. Thus, 
the J)Unched card has vaniished from tbe work routine 
of :\lulties programmers and aeceSll to one's programs 
and the ability to work on them are provided by the 
closest terminal. 

As another example, the full ASCII character set is 
employed in preparing programs, data) and documenta­
tion, thereby eliminatin11; the need for multiple text 
editors, several varieties of text formatting and com­
parison programs1 and multiple facilities for printing 
information both on-line and off-line. This gcneraliaa­
tion of user interfaces facilitates the learning and sub­
sequent use of the '\fstem by reducing the number of 
convoo.tioos which must be mastered. 

FiD&lly, because the PL/I compiler is a large set of 
programs, cooeiderable Attention was given to shielding 
the user from the sise of the compiler and to aiding 
him in mast.ering the complexities of the language. As 
in many other time--sharing systems, the compiler is 
invoked by issuing a simple command line from a 
terminal exactly as for the less ambitious commands. 
No knowledge is required of the user regarding the 
various phases of compilation, temporary files required, 
and optiona.l capabilities for the specialist; explanatory 
"sermons" diagnosing syntactic errors are delivered to 
the terminal to effect a self-teaching session during each 
compilation. To the programmer, the PL/I compiler is 
just another command. 

Program execution environment 

Another set of interfaces is embodied in the imple­
mentation environment seen by PL/I programmers. 
This environment consists of a directly a.ddressa.ble 
virtual memory containing the entire hierarchy of on.­
line information, a. dynamie linking facility which 



searches this hierarchy to bind procedure references, a 
device-independent input/output16 system,* and pro­
gram debugging and metering facilities. These facilities 
enjoy a symbiotic relationship with the PL/I procedure 
environment used both to implement them and to im­
plement user facilities co-existing with them. Of major 
significance is that the natural internal environment 
provided and required by the system is exactly that 
environment expected by PL/I procedures. For example, 
PL/I pointer variables, call and return statements, 
conditions, and static and automatic storage all corre­
spond directly to mechanisms provided in the internal 
environment. Consequently, the system supports PL/I 
code as a matter of course. 

The main effect of the combination of these features 
is to permit the implementer to spend his time concen­
trating on the logic of his problem; for the most part 
he is freed from the usual mechanical problems of 
storage management and overlays, input/output device 
quirks, and machine-d.ependent features. 

Some implementation experience 

The :\lultics team began to be much more productive 
once the :\lultics system became useful for software 
development. A few cases are worth citing to illustrate 
the effectiveness of the implementation environment. 
A good example is the current PL/I compiler, which is 
the third one to be implemented for the project, and 
which consists of some 2;j0 procedures and about 125k 
words of object code. Four people implemented this 
compiler in two years, from start to first general use. 
The first version of the :\lultics program debugging 
system, composed of over 3,000 lines of source code, 
was usable after one person spent some six months of 
nights and weekends "bootlegging" its implementation. 
As a last example, a facility consisting of fiO procedures 
with a t•>tal of nearly 4,000 PL/I statements permitting 
execution of Honeywell 635 programs under :\lultics 
became operational after one person spent eight month.s 
learning about the GCOS operating system for the 63;), 
PL/I, and Multics, and then implemented the environ­
ment. In each of these examples the implementation 
was accomplished from remote terminals using PL/I. 

.:\lultics users have discovered that it is possible to 
get their programs running very quickly in this environ­
ment. They frequently prepare "rough drafts" of pro­
grams, execute them, and then improve their overall 
design and operating strategy using the results of ex­
perience obtained during actual operation. As an ex­
ample, again drawn from the implementation of l\lul-

• The Michigan Terminal ~ystem 17 has a similar device-inde­
pendent input/output system. 
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tics, the early designs and implementations of the pro­
grams supporting the virtual memory18 made over­
optimistic use of variable-sized storage allocation 
techniques. The result was a functionally correct but 
inadequately performing set of programs. Nevertheless, 
these modules were used as the foundation for subse­
quent work for many months. When they were finally 
replaced with modules using simplified fixed-size storage 
techniques, performance improvements of over an order 
of magnitude were realized. This technique emphasizes 
two points: first, it is frequently possible to provide a 
practical, usable facility containing temporary versions 
of programs; second, often the insight required to sig­
nificantly improve the behavior of a program comes 
only after it is studied in operation. As implied in the 
earlier discussion of design iteration, our experience has 
been that structural and strategic changes rather than 
"polishing" (or recoding in assembly language) produce 
the most significant performance improvements. 

In general, we have noticed a significant "amplifier" 
or "leverage" effect with the use of an effective on-line 
environment as a system programming facility. Major 
implementation projects on the :Multics system seldom 
involve more than a few programmers, thereby easing 
the management and communications problems usually 
entailed by complex system implementations. As would 
be expected, the amplification effect is most apparent 
with the best project personnel. 

Administration of Multics facilities and resources 

The problem of managing the capabilities of a com­
puter utility with geographically dispersed subscribers 
leads to a requirement of decentralized administration. 
At the apex of an administrative pyramid resides a sys­
tem administrator with the ability to register new users, 
confer resource quotas, and generate periodic bills for 
services rendered. The system administrator deals with 
user groups called projects. Each group can in turn 
designate a project administrator who is delegated the 
authority to manage a budget of system resources on 
behalf of the project. The project administrator is then 
free to deal directly with project members without fur­
ther intervention from the system administrator, 
thereby greatly reducing the bottlenecks inherent in a 
completely centralized administrative structure. 

Environment shaping 

In addition to haYing imnwdiatc control of ::mch re­
sources as secondary storage, port access, and rate of 
processor usage, the project administrator is also able 
to define or shape the environment sePn by the members 
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of his project when they log into the system. He does 
this by defining those wocedures that ~ be accessed 
by nwmbcrs of.his project and by specifying the initial 
procedure executed. by each me~ of his project when 
he lop in. This environ~t shapj.Qafacility haale:d to 
the notioa of a private p,roj®t subsy$m on Multics. 
It combin~ the l!dminist4'ative and pfQIJ':auuning facili­
ties of )lul~ so that a. ~ ~~tor and a 
few project implementers Call build, mamtauh lWd 
evolve eJ.l.v.U-enmmts entmtly OJl. their own. TbW\ SQroe 
suhsysten\a bear. no in~ re.st\Olblanee to the ~d,. 
arq :Uulties proceQ.we env~. 

F-0r examp~ the DaJtmoutb BASlci' comp,iler exe­
cute$ in a closed_subsy~ i~t'ld by an M.l.'f. 
student group for use by ~· sWdent&. The 
con:q>iler, its. objeet code, a.nd ~· ~ppQrf. routines ex. 
cuf,e iA a simu1-ti.Qn of tlw .iive eavironrotat ~vidM. 
at n.-tmoutb. The U4lel'S of thia Sllhsy&teIQ need little, 
if any, knowledge of Multie.s a.pd a.re able to beluwe as 
if logged into the Dartmouth sy8Wm proper. other 
examples of cQlltrolled envitonment subeystems in-Olude 
one to permit many prow&ms which normally run 
under the GCOS operating systelJl tQ alao ~ umn~ 
fied in Multics. Finally, an APL20 subsystem a.UQws the 
user to behave for the mo.t part as if he were logged 
into an APL. maehine. The ~ce of ~ sub­
systems is that their implementer. did not need to 
interact with the system admiui.ftrator or to D>.Odify 
already existing Multics capabilities. The administra­
tive facilities permit each such subsystem to be offered 
by its supporters as a private service with its own group 
of users, each effectively having its own private com­
putei- system.. 

Finally, we observe that the roles of the application 
user, the system operators and the hardware main­
tainers as seen by the sy:stem are simply those of Ol"­

dinary Multics users with specialised access to the 
on-line procedures and data. The effect of this uni­
formity of treatment is to reduce greatly the mainte­
nance burden of the system control software. One 
example, of great practical importance, has been the 
ease with which system performance measurement 
tools have been prepared for use by the operating 
staff. 

INSIGHTS 

So far, we have discussed the status and appearance 
of the Multics system. A further question is what has 
been learned in the construction of Multics which is of 

use to the designers of other systems. Having a bright 
idea which clearly solves a probkmi is not sufficient 
caWJe to claim a. oon.tribution if the idea is tQ be part of 
a complex syateR\l. In on1eI" to efrt.ablWl the re3l f~i­
bility of anidea, ~ ofita irnplie.aµQQS.and ce>naequeJWCS 
must be foll.;nved ou.t. Much of the work ou Multics 
sinee 1900 ~ invol~ folhlwing wt il'tl~licatiou and 
consequ~ of the ~ idea& thetl ptQp<W&d for the 
pro~ype ~ ll:t.mt.Y• That fullowiag OU:t ii ~ 
esseatial put QC. prQQf of i~ is att.ted by the. dllfi.. 
cul• w~,~·~. eftMUn~ in.·otaer eQ&Ul~­
inc, Qtiotta. ~. eitl· the: dev~t of n~clear fuiP.oa 
power· PktAt.iuw.d tlMl ~rie aui<mlQbi~. Not altpro­
posals work out; fw e•ltlple, extended attempt.a to 
~ aw. a~ J>Qwered ~ sugg~ in­
feui.bili,ty. 

Peduws Multics' most· signifi~t singl,e CQBtribution 
to·the state of the art of computer system construction 
is the d~cm of a large: set of fully implemented 
ideas in a working sy$.em, Further,. most of these id~ 
have been in.tegrated without straining the overall de-. 
sign; most additional proposals would not topple the 
structure. Ideas such as virtual memory access to on­
line storage, parallel process orgaruzati()[l, routine but 
controU~ infor1™1ttion sharing, dynamic link:Qg of 
procedures, and higli-level language implementa-

Viriuoj 

Root 
direct~ 

Project 
dirMIQl',y 

~., ---flll!.!ra!io-..... illlllr.' viaor 
fwlllM!Fl Mfment 

_____ s19ment 

0 

UHr 2 
d1teetory 

- Virtuol memory storo9e system -

Figure 1-The entire storage hierarchy may be mapped into 
individual user process address spaces (see arrows) as if contained 
in primary memory. Illustrated are the sharing of a supervisor 
segment by U11er 1 and user 2 and private access to segment a 
and segment b. The necessary primary storage is simulated by a 
demand paging technique which moves information between 

the real primary memory and secondary storage 



tion have proven remarkably compatible and 
complementary. 

To illustrate some of the areas of progress in under­
standing of system organization and eonstruetion which 
have been achieved in ~Iulties, we consider here the 
following five topics: 

1. l\Todular division of responsibility 
2. Dynamic reconfiguration 
3. Automatically managed multilevel memory 
4. Protection of programs and data 
a. System programming language 

Modular division of responsibility 

Early in the design of ~Iultics a decision had to be 
made whether or not to treat the segmented virtual 
memory as a separately usable "feature," independent 
of a traditionally organized read/write type file system. 
The alternative, to use the segmented virtual memory 
as the file system itself, providing the illusion of direct 
"in-core" access to all on-line storage, was certainly the 
less conservative approach (see Figure 1). The second 
approach, which was the one chosen, led to a strong 
test of the ability of a computing system to support an 
apparent one-level memory for an arbitrarily large in­
formation base. It is interesting that the resulting al­
most total decoupling between physical storage alloca­
tion and data movement on the one hand and directory 
structure, naming, and file organization on the other led 
to a remarkably simple and functionally modular struc­
ture for that part of the system18 (see Figure 2). 

Another area of l\I ultics in which a high degree of 

User programs and command /subroutine I ibrory 

T 
I ----- --- ------------ ------ -

General user I 
I interface 
I 

Directory User l/O device I 
I address space control and 
I management buffering 
I l 7 I / 
I I / 

/ I I 1-1-- - ---i-- ---:;/- - ----

I I / 
Virtual memory 
multi- process 
interface 

------ --
I ; 

l l "/ 
Drom, disk, core Processor multi -
demand paging ~ pluing and process 

control I er synchronization 

Figure 2-Major lines of modular division in Multics. Solid lines 
indicate calls for services. Dotted lines indicate implicit use of 

the virtual memory 
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functional modularity "·as achieved was in the area of 
scheduling, multiprogramming, and processor manage­
ment. Because harnessing of multiple processors was an 
objective from the beginning, a careful and methodical 
approach to multiplexing processors, handling inter­
rupts, and providing interprocess synchronizing primi­
tives was developed. The resulting design, known as the 
:\Iultics traffic controller, absorbed into a single, simple 
module a set of responsibilities often diffused among a 
scheduling algorithm, the input/ output controlling sys­
tem, the on-line file management system, and special 
purpose inter-user communication mechanisms.21 

Finally, with processor management and on-line 
storage management uncoupled into well-isolated 
modules, the Multics input/output system was left 
with the similarly isolatable function of managing 
streams of data flowing from and to source and sink 
type devices. 16 Thus, this section of the system concen­
trates only on switching of the streams, allocation of 
data buffering areas, and device control strategies. 

Each of the divisions of labor described above repre­
sents an interesting result primarily because it is so 
difficult to discover appropriate divisions of complex 
systems.* Establishing that a certain proposed division 
results in simplicity, creates an uncluttered interface, 
and does not interfere with performance, is generally 
cause for a minor celebration. 

Dynamic reconfiguration 

If the computer utility is ever to become as much a 
reality as the electric power utility or the telephone 
communication service, its continued operation must 
not be dependent upon any single physical component, 
since individual components will eventually require 
maintenance. This observation leads an electric power 
utility to provide procedures whereby an idle generator 
may be dynamically added to the utility's generating 
capacity, while another is removed for maintenance, all 
without any disruption of service to customers. A simi­
lar scenario has long been proposed for multiprocessor, 
multimemory computer systems, in which one would 
dynamically switch processsors and memory boxes in 
and out of the operating configuration as needed. Un­
fortunately, though there have been demonstrated a 
few "special purpose" designs,* it has not been apparent 
how to provide for such operations in a general purpose 
system. A recent thesis24 proposed a general model for 
the dynamic binding and unbinding of computation 
and memory structures to and from ongoing computa-

* See Dijkstra22 for a further discussion of this point. 
* An outstanding example is the American Airlines SABHE 
system.23 
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Figure 3-Dynamic reconfiguration permita switching among 
the three typical operating configurations shown here, with<>ut 
currently logged-in U11era being aware that a change hll8 taken 

place 

tions. Using this model as a basis, the thesis also pro­
posed a specific implementation for a typical multi­
processor, multimemory computing system. One of the 
results of this work was the addition to the operating 
Multics system of the capability of dynamically adding 
and removing central processors and memory modules 
as in Figure 3. The usefulne8'3 of the idea may be gauged 
by observing that at M. I.T. five to ten such reconfigura­
tions are performed in a typical 24-hour operating day. 
Most of the reconfigurations are used to provide a 
secondary system for Multics development. 

Automatically ma11agecl multilevel memory 

By now it has become accepted lore in the <'omputer 
system field that the use of automu.tit• management 
algorithms for memory systems conMtmcte<l of several 
levels with different access times <'an provide a mgnili­
cant reduction of u:,;er programming effort. Exam1>les of 
such automatic management strategies include the 
buffer memories of .the IB:\I system :J70 models };);), 
16;i, and 19.;u and the demand paging virtual memories 
of :\lultics, IB:\l's CP-:67H and the :\lichigan Terminal 
System.17 Unfortunately, behind the mask of accep­
tance hides a worrisome lack of knowledge about how to 
engineer a multilevel memory system with appropriate 
strategy algorithms which are matched to the load and 
hardware characteristics. One of the goals of the :\Iultics 
project has been to instrument and experiment with the 
multilevel memory sy__stem of :\lultics, in order to learn 
better how to predict in advance the performance of 
proposed new automatically managed multilevel mem­
ory systems. Several specific aspects of this goal have 
been explored: 

• A strategy to treat core memory, drum, and disk as 
a three-level system has been proposed, including 
a "least-recently-used" algorithm for moving in­
formation from drum to disk. Such an algorithm 
has been used for some time to determine which 
pages should be removed from core memory. 27 The 
dynamics of interaction among two such algorithms 
operating at different levels ~ weakly understood, 
and some experimental work should provide much 
insight. The proposed strategy will be imple­
mented, and then compared with the simpler pres­
ent strategy which never moves things from drum 
to disk, but instead makes educated "guesses" as 
to which device is most appropriate for the perma­
nent residence of a given page. If the automatic 
algorithm is at least as good as the older, static one, 
it would represent an improvement in overall de­
sign by itself, since it would automatically track 
changes in uaer behavior, while the static algorithm 
requires attention to the :vlilldity of its guesses. 

• A scheme to permit experimentation with predic­
tive paging algorithms was devised. The scheme 
providea for each process a list of pages to be pre­
loaded whenever the process is run, and a second 
list to be immediately purged whenever the process 
stops. The updating of these lists is controlled by a 
decision taele exercised every time the process 
stops running. Since every page of the :\fultics 
virtual memory is potentially shared, the decision 
table represents a set of heuristics designed to 
separate out those which are probably not being 
shared at the moment. 



• A senes of measurements was made to establish 
the effectiveness of a small hardware associative 
memory used to hold recently accessed page de­
scriptors. These measurements established a profile 
of hit ratio (probability of finding a page descriptor 
in the associative memory) versus associative 
memory size which should be useful to the designers 
of virtual memory systems. 2s 

• A set of models, both analytic and simulation, was 
constructed to try to understand program behavior 
in a virtual memory. So far, two results have been 
obtained. One is the finding that a single program 
characteristic (the mean execution time before en­
countering a "missing" page in the virtual memory 
as a function of memory size) suffices to provide a 
quite accurate prediction of paging and idle over­
heads. The second is direct calculation of the dis­
tribution of response times under multiprogram­
ming. Having available the entire response time 
distribution, rather than just averages, permits 
estimation of the variance and 90-percentile points 
of the distribution, which may be more meaningful 
than just the average. A doctoral thesis is in prog­
ress on this topic. 

Although the immediate effect of each of these in­
vestigations is to improve the understanding or per­
formance of the current version of ~1ultics, the long­
range payoff in methodical engineering using better­
understood memory structures is also evident. 

Protection of programs and data 

A long-standing objecfve of the public computer 
utility has been to provide facilities for the protection 
of executing programs from one another, so that users 
may with confidence place appropriate controI on the 
release of their private information. In 1967, a mecha­
nism was proposed29 and implemented in software 
which generalized the usual supervisor-user protection 
relationship. This mechanism, named "rings of protec­
tion," provides user-written subsystems with the same 
protection from other users that the supervisor has, yet 
does not require that the user-written subsystem be in­
corporated into the supervisor. Recently, this approach 
was brought under intense review, with two results: 

• A hardware architecture which implements the 
mechanism was proposed. 30 One of the chief fea­
tures of the proposed architecture is that subrou­
tine calls from one protection ring to another use 
exactly the same mechanisms as do subroutine 
calls among procedures within a protection area. 
The proposal appears sufficiently promising that it 
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is included in the specifications for the next genera 
tion of hardware to be used for Multics. 

• As an experiment in the feasibility of a multi­
layered supervisor, several supervisor procedures 
which required protection, but not all supervisor 
privileges, were moved into a ring of protection 
intermediate between the users and the main 
supervisor. The success of this experiment estab­
lished that such layering is a practical way to re­
duce the quantity of supervisor code which must 
be given all privileges. 

Both of these results are viewed as steps toward first, a 
more complete exploitation and understanding of rings 
of protection, and later, a less constrained organization 
of the type suggested by Evans and LeClerc31 and by 
Lampson. 32 But more importantly, rings of protection 
appear applicable to any computer system using a seg­
mented virtual memory. Two doctoral theses are under 
way in this area. 

System programming language 

Another technique of system engineering method­
ology being explored within the :Multics project is that 
of higher level programming language for system imple­
mentation. The initial step in this direction (which 
proved to be a very big step) was the choice of the PL/I 
language for the implementation of Multics. By now, 
Multics offers an extensive case study in the viability 
of this strategy. Not only has the cost of using a higher 
level language been acceptable, but increased main­
tainability of the software has permitted more rapid 
evolution of the system in response to development 
ideas as well as user needs. Three specific aspects of this 
experience have now been completed: 

• The transition from an early PL/I subset com­
piler14 to a newer compiler which handles al most the 
entire language was completed. This transition 
was carried out with performance improvement in 
practically every module converted in spite of the 
larger language involved. The significance of the 
transition is the demonstration that it is not neces­
sary to narrow one's sights to a "simple" subset 
language for system programming. If the language 
is thoroughly understood, even a language as com­
plex as the full PL/I can be effectively used. As a 
result, the same language and compiler provided 
for users can also be used for systei:n implementa­
tion, thereby minimizing maintenance, confusion, 
and specialization. 

• Notwithstanding the observation just made, the 
time required to implement a full PL I compiler 
is still too great for many situations in 'd1ich the 
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compiler implementation cannot be started far 
enough in advance of system coding. For this 
reason, there is considerable interest in defining a 
smaller language which is easily compilable, yet 
retains the features most important for system im­
plementation. On the basis of the experience of 
programming Multics in a subset of PL/I, such a 
language was defined but not implemented, since 
it was not needed.A 

• A census of Multics system modules reveals how 
much of the system was actually coded in PL/I, 
and reasons for use of other languages. Roughly, 
of the 1500 system modules, about 250 were written 
in machine language. :Most of. the machine language 
modules represent data bases or small subroutines 
which execute a single privileged instruction. (No 
attempt was made to provide either a data base 
compiler or PL/I built-in functions for specialised 
hardware needs.) Significantly, only a half dosen 
areas (primarily in the traffic controller, the cen­
tral page fault path, and interrupt handlers) which 
were originally written in PL/I have been recoded 
in machine language for reasons of squeezing out 
the utmost in performance. Several programs, 
originally in machine language, have been recoded 
in PL/I to increase their maintainability. 

As with the earlier topics, the implications of this 
work with PL/I should be felt far beyond the :\Iultics 
system. :\lost implementers, when faced with the eco­
nomic uncertainties of a higher-level language, have 
chosen machine language for their central operating 
systems. The experience of PL/I in :\lultics when added 
to the expanding collection of experience elsewhere" 
should help reduce the uncertainty. 

In a research project as large, long, and complex as 
:\Iultics, any paper such as this must necessarily omit 
many equally significant ideas, and touch only a few 
which may happen to have wide current interest. It is 
the purpose of individual and detailed technical papers 
to explain these and other ideas more fully. The bibli­
ography found in Reference 35 contains over twenty 
such technical papers. 

Immediate future plans 

The :\Iultics software is continuing to evolve in re­
sponse to user needs and improved understanding of its 
organization. In 1972 a new hardware base for :\Iultics 
will be installed by the Information Processing Center 
at :\I.LT. for use by the :\I.LT. computing community. 
This program compatible hardware base contains small 

but significant architectural extensions to the current 
hardware. The circuit technology used will be that of 
the Honeywell 6080 computer. The substantial changes 
include: 

(I} replacement. of the high-performance paging 
drum initially with bulk core and when avail-. ' 
able, LSI memory, and 

(2) implementation of rings of protection as part of 
the paging and segmentation hardware. 

Wherever possible the strategy of using off-the-shelf 
standard equipment rather than specially engineered 
units for llultics has been followed. This strategy is 
intended to simplify maintenance. 

CONCLUSIONS 

There are many conclusions which could possibly be 
drawn from the experience of the :\Cultics project. Of 
these, we consider four to be major and worthy of note. 
First, we feel it is clear that it is possible to achieve the 
goals of a prototype computer utility. The current im­
plementation of :\[ultics provides a measure of. the 
mechanisms t-equired. :\Ioreover, the specific .imple­
mentation of the system, because it has been written 
in PL.II, forms a model fo- other system designers to 
draw upon when constructing similar systems. 

Second, the question of whether or not the specific 
software features and mechanisms which were postu­
lated for effective computer utility operation are desir­
able has now been tested with specific user experience. 
Although the specific mechanisms implemented subse­
quently may be superseded by better ones, it is certainly 
clear that the improvement of the user environment 
which was wanted has been achieved. 

Third, systems of. the comput~r utility cla.s.<J must 
evolve indefinitely since the cost of starting over is 
usually prohibitive and the many-year lead time re­
quired may be equally unacceptable. The requirement 
of evolvability places stringent demands on design, 
maintainability, and implementation techniques. 

Fourth and finally, the very act of creating a system 
which solves many of the problems posed in 1965 has 
opened up many new directions of research and develop­
ment. It would appear almost a certainty that increased 
user aspirations will continue to require intensive work 
in the areas of computer system principles and 
techniques. 

In dosing, perhaps we should take note that in the 
seven years since :\Iultics was proposed, a great many 
other systems have also been proposed and constructed; 



many of these have developed similar ideas.* In most 
cases, their designers have developed effective imple­
mentations which arc directed to a different interpreta­
tion of the goals, or to a smaller set of goals than those 
required for the complete computer utility. This di­
versity is valuable, and probably necessary, to accom­
plish a thorough exploration of many individually com­
plex ideas, and thereby to meet a future which holds 
increasing demand for systems which embrace the 
totality of computer utility requirements. 
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APPEXDIX: A CHECKLIST OF :\IUI,TICS 
l'EATURES 

Following is a «'heckfo1t of currently available features 
and facilities of '.\lultics. Although many of the features 
are described in cryptic and untraruilatcd local jargon, 
one <'an at least <>Ptain a feel for the range of fadlities 
now provided. Further information on most of these 
features may be found in the :\lultics J1rogrammers' 
Manual.a 

Interactive Time-Sharing Facilities 
file editors 
file manipulation (rename/move/delete) 
penonal command abbreviations 
recunive command language 
source language debugging with breakpoints 
subroutine eallttacer 
can stop any running command or program 

Programming Languages 
PL/I 
FORTRAN 
BASIC* 
APL 
LISP 
BCPL 
AL:\f (assembly language/:\lultics) 

Information Storage Syst.e.m 
configuration independent 
accessed through virtual memory (segments) 
access control Jists by user and project 
links to segments of other users 
hierarchical directory (catalog) arrangement 
public library facilities 
sharing at all levels . 
multiple segment names (synonyms) 
separate control of read, write, and execute 

Programming Environment 
segmented virtual memory 
dynamic linking of procedures and data, or prelinking 
interprocess communication 
independent of configuration 
uniform error handling mechanism 
user definable protection rings 
microsecond calelldar clock with interrupt 
program interrupt signal from console 

Input and Output 
standard typewriter interface for device independence 
ASCII character set used throughout 
input characters converted to canonical form 
erase and kill editing on typed input 



1/0 streams switchable during execution 
magnetic tape, printer, card punch, card reader 
typewriter terminals: IBM 2741, 1050 

Teletype 37, 33, 35 
Dura, Datel, Execuport, 

Terminet-300 
graphic support library (devices: ARDS, IMLAC, 

DEC 338) 
ARPA network 
interfaces at three levels: 

formatted data conversion 
bit stream control 
full device control 

Management Facilities 
passwords required for login 
project may interpose authentication procedure 
decentralized projects 
accounting, billing, and quotas 
on-line probing and account adjustment 
operator or system initiated logout of users 
unlisted and anonymous users 
limited service system 
dynamic reconfiguration of memories and processors 
system performance metering for parameter 

adjustment 
project-imposed starting procedure 

Communication Facilities 
interuser mail 
help command; help files 
message of the day 
on-line error reporting and consultation service 
on-line user graffiti board 
operations message broadcast to logged-in users 

Absentee Facilities 
priority/ defer queues for printer, card punch 
queued translator facility 
general absentee job facility 

Reliability Measures 
weekly file copies onto tape 
daily disk/drum copy onto tape 
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incremental file copies onto tape, Y2 hour behind use 
salvager to clean up files after system crash 
emergency shutdown entry to system 

Maintenance Features . 
on-line library change, no disruption of current users 
entire system source on-line, maintenance tools 
system checkout on small hardware configuration 
on-line performance monitoring of 

multiprogramming 
paging traffic 
drum/disk usage // 
typewriter traffic 

user performance feedback: 
cpu time and paging load on each command 
page trace always operating 
subroutine call counters 

Private Project Subsystems 
project providable command interface 
Dartmouth environment* 
student environment 

Miscellaneous Facilities 
desk calculators 
sort command 
memorandum formatting and typing subsystem 
user-provided list of programs· to. be automatically 

executed when user logs in 
GCOS environment 

•The BASIC system and the Dartmouth environment were 
developed at Dartmouth College. They are used at M.I.T. by 
permission of Dartmouth College. 
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After four sections of relatively elementary Introduction, 
this paper delves deeply into the mechanisms required to support 
a virtual memory system in which all on-line storage is addressed 
directly by the processor. This virtual memory system is 
probably the most important conceptual departure Introduced by 
Multics. It is of special Interest to .wrtters of complex 
application subsystems which manipulate d~ta bases shared by 
several users. The power of the Multics vi.rtual memory as a tool 
to reduce programming effort is Illustrated 'in MPM Introduction 
Chapter Four. 

Since this paper is a recent one, the termtnoJogy is quite 
up-to-date, although the description given here ts abstracted 
somewhat from the actual implementation to avoid cluttering 
details. Large copies of figures four and five, which did not 
repr.odu.ce well in the original publication, wn 1 be found after 
the las~ page of the paper. 

-----1-
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The Multics 
Virtual Memory: 
Concepts and 
Design 

As experience witla me of cm-Hae operatfllg 
systems lau gro~ die neatto .-re illfannatlan 
among sjltem men Im lleeome illcreuially ...,.,eat. 
Many contemporary .,... permit IOIBe tlearee of 
sharing. U....Uy, sllariag is accempllllled by allowing 
several lllel'S to mare data via iltput ud oatput of 
information stored ia files kept ba secoadary storage. 
Through tt.e use of~ howner, Maltks 
provides direct llanlWare adllreaiitg &y .... _. system 
progr8ms of aft Warmatiue, iiMiep at 11t of its pltysical 
storage lecatioa. lllformatlmt fs Aaftii tn agmeats eadl 
of whidA is potentially .......r. lllMf carries ks own 
independeat attributes of si7.e aad acce11 priYilege. 

Here, tbe desip and implementation COlllWentiolls 
of segmentation aad sllarha1 in Multics are tint 
discussed under tile assumption tat all w.-tion 
resides in a large, segmeated ..m ___.Y. Shtce the 
size of main memory on CCJ8temporary systems is rather 
limited, it is then llhowa how die Multics software 
achieves the effect of a large 1egmeated main memory 
through the use of the HoaeyweD 645 segmentation and 
paging hardware. 
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In the past few years several well-known systems 
have implemcrited large virtual memories which permit 
the execution of programs exceeding the size of available 
core memory. These implementations have been 
achieved by demand paging in the Atlas computer [11 ], 
allowing a program to be divided physicalJy into pages 
onJy some of which rieed reside 'in core storage at any 
one time, by segmentation in the BSOOO computer (15], 
aUowing a program to be di\lided logically into seg­
ments, only some of Which need be in cote, and by a 
combination of both- segmentation and paging in the 
Honeywell 645 (3, 121 and the IBM 360/67 [21 for which 
only a few pages of a few segments need be available in 
core while a program is running. 

As experience has been gained with remote-access, 
multiprogrammed systems, however, it has become 
apparent that, in ad~ition to being able to take ad­
vantage of the direct addressibility of large amounts of 
information made possible by large virtual memories, 
many applications also require the rapid but controlled 
sharing of information stored on-line at the central 
facility. In Multics (Multiplexed Information and 
Computing Service) segmentation provides a gener­
alized basis for the direct accessing and sharing of on­
line information by satisfying two design goals: (I) it 
must be possible for all on-line information stored in 
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the system to be addressed directly by a processor and 
hence referenced directly by any computation; (2) it 
must be possible to control access, at each reference, to 
all on-line information in the system. 

The fundamental advantage of direct addressibility 
is that information copying is no longer mandatory. 
Since all instructions and data items in the system are 
processor-addressible, duplication of procedures and 
data is unnecessary. This means, for example, that core 
images of programs need not be prepared by loading 
and binding together copies of procedures before 
execution; instead, the original procedures may be used 
directly in a computation. Also, partial copies of data 
files need not be read, via requests to an 1/0 system, 
into core buffers for subsequent use and then returned, 
by means of another 1/ o request, to their original 
locations; instead the central processor executing a 
computation can directly address just those required 
data items in the original version of the file. This kind 
of access to information promises a very attractive 
reduction in program complexity for the programmer. 

If all on-line information in the system may be 
addressed directly by any computation, it becomes 
imperative to be able to limit or control access to this 
information both for the self-protection of a computa­
tion from its own mishaps, and for the mutual protec­
tion of computations using the same system hardware 
facilities. Thus it becomes desirable to compartmentalize 
or package all information in a directly-addressible 
memory and to attach access attributes to these in­
formation packages describing the fashion in which 
each user may reference the contained data and pro­
cedures. Since all such information is processor­
addressible, the access attributes of the referencing 
user must be enforced upon each processor reference 
to any information package. 

Given the ability to directly address all on-line 
information in the system, thereby eliminating the 
need for copying data and procedures, and given the 
ability to control access to this information, controlled 
sharing among several computations then follows as a 
natural consequence. 

In Multics, segments are packages of information 
which are directly addressed and which are accessed in 
a controlled fashion. Associated with each segment is 
a set of access attributes for each user who may access 
the segment. These attributes are checked by hardware 
upon each segment reference by any user. Furthermore, 
all on-line information in a Multics installation can be 
directly referenced as segments while in other systems 
most on-line information is referenced as files. 

This paper discusses the properties of an "idealized" 
Multics memory comprised entirely of segments 
referenced by symbolic name, and describes the simula­
tion of this idealized memory through the use of both 
specialized hardware and system software. The result of 
this simulation is referred to as the Multics virtual 
memory. Although · the Multics virtual memory has 
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been discussed elsewhere [3, 6, 7] at the conceptual 
level or in its earlier forms, the implementation pre­
sented here represents a mechanism resulting from 
several consecutive implementations leading to an 
effective realization of the design goals. 

2. Segmentation 

A basic motivation behind segmentation is the 
desire to permit information sharing in a more auto­
matic and general manner than provided by non­
segmented systems. Sharing must be accomplished 
without duplication of information and access to the 
shared information must be controlled not only in 
secondary memory but also in main memory. 

In most existing systems that provide for informa­
tion sharing, the two requirements mentioned above are 
not met. For example, in the CTSS system [5], informa­
tion to be shared is contained in files. In order for 
several users to access the information recorded in a 
file, a copy of the desired information is placed in a 
buffer in each user's core image. This requires an 
explicit, programmer-controlled 1/0 request to the file 
system, at which time the file system checks whether 
the user has appropriate access to the file. During 
execution, the user program manipulates this copy and 
not the file. Any modification or updating is done on 
the copy and can be reflected in the original file only by 
an explicit 1/0 request to the file system, at which time 
the file system determines whether the user has the 
right to change the file. 

In nonsegmented systems, the use of core images 
makes it nearly impossible to control access to shared 
information in core. Each program in execution is 
assigned a logically contiguous, bounded portion of 
core memory or paged virtual memory. Even if the 
nontrivial problem of addressing the shared information 
in core were solved, access to this information could 
not be controlled without additional hardware as­
sistance. Each core image consists of a succession of 
anonymous words that cannot be decomposed into the 
original elementary parts from which the core image 
was synthetized. These different parts are indistinguish­
able in the core image; they have lost their identity and 
thereby have lost all their attributes, such as length, 
access rights, and name. As a consequence, nonseg­
mented hardware is inadequate for controlled sharing 
in core memory. Although attempts to share informa­
tion in core memory have been made with nonseg­
mented hardware, they have resulted in each instance 
being a special case which must be preplanned at the 
supervisory level. For example, if all users are to share 
a compiler in main memory, it is imperative that none 
of them be able to alter the part of main memory where 
the compiler resides. The hardware "privileged" mode 
used by the supervisor is often the only means of pro­
tecting shared information in main memory. In order 
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to protect the shared compiler, it is made accessible 
only in this privileged mode. The compiler can no 
longer be regarded as a user procedure; it has to be 
accessed through a supervisor call like any other part 
of the supervisor, and must be coded to respect any 
conventions which may have been established for the 
supervisor. 

In segmented systems, hardware segmentation can 
be used to divide a core image into several parts, or 
segments [IO]. Each segment is accessed by the hardware 
through a segment descriptor containing the segment's 
attributes. Among these attributes are access rights that 
the hardware interprets on each program reference to 
the segment for a specific user. The absolute core loca­
tion of the beginning of a segment and its length are 

. also attributes interpreted by the hardware at each 
reference, allowing the segment to be relocated any­
where in core and to grow and -shrink independently of 
other segments. As a result of hardware checking of 
access rights, protection of a shared compiler, for 
example, becomes trivial since the compiler can reside 
in a segment with only the "execute" attribute, thus 
permitting users to execute the compiler but not to 
change it. 

In most segmented systems, a user program must 
first call the supervisor to associate a segment descriptor 
with a specific file before the program can directly 
access the information in the file. If the number of files 
the user program must reference exceeds the number 
of segment descriptors available to the user, the user 
program is forced to call the supervisor agai9 to free 
segment descriptors currently in use so that they can 
be reused to access other information. Furthermore, 
if the number of segment descriptors is insufficient to 
provide simultaneous direct access to each distinct file 
required by this program, the user must then provide 
for some means of buffering this information. Buffering, 
of course, requires that information from more than one 
file be copied and coalesced with other distinctly differ­
ent information having potentially different attributes. 
Once the information is copied and merged, the 
identity of the original information is lost, thus making 
it impossible for the information to be shared with 
other user programs. In addition, this form of user­
controlled segment descriptor allocation and buffering 
of information requires a significant amount of pre­
planning by the user. 

In Multics, the number of segment descriptors 
available to each computation is sufficiently large to 
provide a segment descriptor for each file that the user 
program needs to reference in most applications. The 
availability of a large number of segment descriptors to 
each computation makes it practical for the Multics 
supervisor to associate segment descriptors with files 
upon first reference to the information by a user pro­
gram, relieving the user from the responsibility of 
allocating and deallocating segment descriptors. In 
addition, the relatively large number of segment 
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descriptors eliminates the need for buffering, allowing 
the user program to operate directly on the original 
information rather than on a copy of the information. 
In this way, all information retains its identity and 
independent attributes of length and access privilege 
regardless of its physical location in main memory or on 
secondary storage. As a result, the Multics user no 
longer uses files; instead he references all information 
as segments, which aFe directly accessible to his pro­
grams. 

To Multics users, all memory appears to be com­
posed of a large number of independent linear core 
memories, each associated with a descriptor. A user 
program can create a segment by issuing a call to the 
supervisor, giving, as arguments, the appropriate 
attributes such as symbolic segment name, name of each 
user allowed to access the segment with his respective 
access rights, etc. The supervisor then finds an unused 
descriptor where it stores the segment attributes. The 
segment having been created, the user program can 
now address any word of the corresponding linear 
memory by the pair (name, i) where "name" is the 
symbolic name of the segment and "i" is the word 
number in the linear memory. Furthermore, any 
other user can reference word number i of this segment 
also by the pair (name, i) but he can access it only 
according to the access rights he was given by the 
creator and which are recorded in the descriptor. 
Combinations of the "read," "write,'' "execute" and 
"append" access rights [6] are available in Multics. 

A simple representation of this memory, referred to 
as the Multics idealized memory, is shown in Figure l. 

3. Paging 

In a system in which the maximum size of any seg­
ment was very small compared to the size of the entire 
core memory, the "swapping" of complete segments 
into and out of core would be feasible. Even in such a 
system, if all segments did not have the same maximum 
size, or had the same maximum size but were allowed to 
grow from initially smaller sizes, there remains the 
difficult core management problem of providing space 
for segments of different sizes. Multics, however, 
provides for segments of sufficient maximum size so 
that only a few can be entirely core-resident at any one 
time. Also, these segments can grow from any initial 
size smaller than the maximum permissible size. 

By breaking segments into equal-size parts called 
pages and providing for the transportation of in­
dividual pages to and from core as demand dictates, 
the disadvantages of fragmentation are incurred, as 
explained by Denning [9]. However, several practical 
problems encountered in the implementation of a 
segmented virtual memory are solved. 

First, since pages are all of equal size, space alloca­
tion is immensely simplified. The problems of "com-
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Fig. 1. Multics idealized memory. 

pi:.cting" information in core and on secondary storage, 
characteristic of systems dealing with variable-sized 
~ments or pages, are thereby eliminated. 

Second, since only the referenced page of a segment 
need be in core at any one instant, segments need not be 
small compared to core memory. 

Third, "demand paging" permits advantage to be 
Men of any locality of reference peculiar to a program 
by transporting to core only those pages of segments 
which are currently needed. Any additional overhead 
associated with demand paging should• of course be 
weighed against the alternative inefficiencies associated 
with dedicating core to entire segments which must be 
swapped into core but which may be only partly ref­
erenced_ 

Finally, demand paging allows the user a greater 
-Oegree of machine independence in that a large pro­

, pm designed to run well in a large core memory con­
;.ation will continue to run at reduced performance 
·W' smaller configurations. 

4. i'lle M.ttks Vll'tual Memory 

Multics simulates the idealized memory, represented 
in Figure i, using the segmentation and paging features 
of the 645 assisted by the appropriate software features. 
The result of the simulation is referred to as the "Multics 
Virtual Memory." The user can keep a large number of 
segments in this memory and reference them by symbolic 
name; upon first reference to a segment, the supervisor 
automatically transforms the symbolic name into the 
appropriate hardware address which is directly used 
by the processor for subsequent references. 

The remainder of this paper explains the addressing 
mechanism in the 645 and describes how the Multics su­
pervisor simulates the Multics idealized memory. 
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The features of the 645 processor which are of in­
terest for the implementation of the Multics virtual 
memory are segmentation and paging. 

S.l Segmentation 
Any address in the 645 processor consists of a 

pair of integers {s, i]. "s" is called the segment number; 
"i" the index within the segment. The range of "s" and 
"i" is 0 to 218 - I. Word (s, i] is accessed through a 
hardware register which is the sth word in a table called 
a descriptor segment (os). The descriptor segment is in 
core memory and its absolute address is recorded in a 
processor register called a descriptor base register 
(DBR). Each word of the os is called a segment-t!escriptor 
word (sow); the sth sow will be referred to as sow(s). 
See Figure 2. 

The DBR contains the values: 
DBR ·core which is the absolute core address of the os. 
DBI\· L which is the length of the os. 
Segment descriptor word number "s" contains the 

values: 
sow(s) ·core which is the absolute core address of 

the segments. 
sow(s) · L which is the length of the segment s. 
sow(s) ·ace which describes the access rights for 

the segment. 
sow(s) ·F which is the "missing segment" switch. 

A simplifie.d version of the algorithm used by the 
processor to access the word whose address is ( s, il 
follows (see Figure 2): 

If DBR · L < s, generate a trap, or "fault" to the 
supervisor. 

Access sow(s) at absolute location DBR·core + s. 
If sow(s) · F = ON, generate a missing segment fault. 
If sow{s) ·L < i, generate a fault. 
If sow(s) ·ace is incompatible with the requested 

operation, generate a fault. 
Access the word whose absolute address is sow(s) · 

core+ i. 

S.1 Paging 
The above description assumes that segments are 

not paged; in fact, paging is implemented in the 
645 hardware. In the Multics implementation, alt 
segments are paged and the page size is always l,024 
words. 

Element "i" of a segment is the w1h word of the 
p1" page of the segment, ''w" and "p" being defined by 

{
w = i mod 1,024 
p = (i - w)/l,024 

Each segment is referenced by a processor through a 
page table (PT). The PT of a segment is an array of 
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Fig. 2. Hardware segmentation in the Honeywell 645. 
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physically contiguous words in core memory. Each 
element of this array is called a paie lable word (PTW). 
Page table word number p contains: 

PTW(p)·core which is the absolute core address of 
page number p. 

PTW(p) · F which is the "missing page" switch. 
ThcmeaningofDBR·core and sow(s)·core is now: 
DBR ·core = Absolute core address of the PT of the 

descriptor segment. 
snw(s) ·core = Absolute core address of the PT of 

segment number s. 
A simplified version of the algorithm used by the 

processor to access the word whose address is [s, i] is 
as follows (see Figure 3): 

If DBll · L < s, generate a fault. 
Splits into the page number s11 and word numbers., . 
Access PTW(s,.) at absolute location 

DBR·core + s,.. 
If PTW(s11) • F = ON, generate a missing page fault. 
Access sow(s} at absolute location 

PTW(s,.) ·core+ s.,, . 
If sow(s) · F = ON, generate a missing segment fault. 
If sow(s) · L < i, generate a fault. 
If sow(s) ·ace is incompatible with the requested 

operation, generate a fault. 
Split i into the page number i11 and word number i,. . 
Access PTW(i11) at absolute location 

sow(s) ·core + i11 • 

If PTW(i11) • F = ON, generate a missing page fault. 
Access the word whose absolute location is 

PTW(i11) ·core + i"'. 
In order to reduce the number of processor refer­

ences to core storage while performing this algorithm, 
each processor has a small, high-speed associative 
memory [12] automatically maintained so as to always 
contain the PTW's and sow's most recently used by the 
processor. The associative memory significantly reduces 
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Fig. 3. Hardware segmentation and paging in the Honeywell 645. 
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the number of additional memory requests required 
during address. preparations. 

A process is generally understood as being a ptogram 
in execution. A process is characterized by itS state­
word defining, at any .given instanty the history reslllting 
from the execution of the program. It is also charac­
terized by its ~.f space. The address space of a 
process is the set .of ptocessor addresses that the process 
can use t&reference information in memory~ In Multics, 
any inf-Ormation mat a- process can reference by an 
addres& of the form:(segment number, word number) is 
said to be in the address space of the process. There is a 
one-to-one cot'respoBdc8" between Multics processes 
and addres& spaces. ·Eadt process is provided with a 
private dtscriptor segment which ,maps se~nt num­
bers' into core-11remory addresses· and with a piMlte 
table which maps symbolic :segment name&, into seg­
ment numbers. This table is called the Known Segment 
Table (KST). 

The Multics supervisor could have been: written so 
as not to use segment addressing of course; but organiz­
ing the supervisor _into procedures :aad data . segments 
permits·one to-use, iA0thc-supervisor, the same conven­
tions that· ate used i1r user programs. For instance, the 
call-save'-rcturn conventions {7] made for user pro­
grams ean be used by-the supervisor; the standard way 
to manufacture pYr-e procedures in a user program is 
also lid extemively, in- ·the sttpervisor. A less visible 
advantage of scgmetttation of the supervisor is that 
some-supervisory facilities provided for the management 
of user segments can also be applied to supervisor 
segments; for example, the demand paging facility 
designed to automatically load pages of user segments 
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can also be used to load pages of supervisor segments. 
As a result, a large portion of the supervisor need not 
reside permanently in core. 

Unlike most supervisors, the Multics supervisor does 
not operate in a dedicated process or address space. 
Instead, the supervisor procedure and data segments 
are shared among all Multics processes. Whenever a 
new process is created, its descriptor segment is ini­
tialized with descriptors for all supervisor segments 
allowing the process to perform all of the basic super­
visory functions for itself. The execution of the super­
visor in the address space of each process facilitates 
communication between user procedures and supervisor 
procedures. For example, the user can call a supervisor 
procedure as if he were calling a normal user procedure. 
Also, the sharing of the Multics supervisor facilitates 
simultaneous execution, by several processes, of super­
visory functions, just as the sharing of user procedures 
facilitates the simultaneous execution of functions 
written by users. 

Since supervisor segments are in the address space 
of each process, they must be protected against un­
authorized references by user programs. Multics pro­
vides the user with a ring protection mechanism [ 13] 
which segregates the segments in his address space into 
several sets with different access privileges. The Multics 
supervisor takes advantage of the existence of this 
mechanism and uses it, rather than some other special 
mechanism to protect itself. 

7. Segment Attributes 

7.1 Directory Hierarchy 
The name of a segment and its attributes are asso­

ciated in a catalogue. Conceptually this catalogue con­
sists of a table with one entry for each segment in the 
system. An entry contains the name of the segment and 
all its attributes: length, memory address, list of users 
allowed to use the segment with their respective access 
rights, date and time the segment was created, etc. 

In Multics, this catalogue is implemented as several 
segments, called directories, organized into a tree 
structure. A segment name is a list of subnames reflect­
ing the position of the entry in the tree structure, with 
respect to the beginning, or root directory (ROOT) of 
the tree. By convention, su bnames are separated by the 
character">". Each subname is called an entryname 
and the list of entrynames is called a pathname. An 
entryname is unique in a given directory and a path­
name is unique in the entire directory hierarchy. Be­
cause of its property of uniquely identifying a segment 
in the directory hierarchy, the pathname has been 
chosen as the symbolic name by which the Multics user 
must reference a segment. There are two types of direc­
tory entries, branches and links. A branch is a directory 
entry which contains all attributes of a segment while a 
link is a directory entry which contains the pathname of 
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another directory entry. A more detailed description of 
the directory hierarchy and of the use of links is given 
by Daley and Neumann [6]. 

7.2 Operations on Segment Attributes 
Supervisor primitives perform all operations on 

segment attributes. There is a set of primitives available 
to the user which allow him, for example, to create a 
segment, delete a segment, change the entryname of a 
directory entry, change the access rights of a segment, 
list the segment attributes contained in a directory, etc. 

Creating a segment whose pathname is ROOT 

> A > B > c (see Figure 4) consists basically of the fol­
lowing steps: 

Check that entryname c does not already exist in 
the directory ROOT > A > B. 

Allocate space for a new branch in directory ROOT 

>A> B. 
Store in the branch the following items: 
The entry name c. 
The segment length, initialized to zero. 
The access list, given by the creator. 
The segment map, consisting of an array of second­

ary memory addresses, one for each page of the segment. 
The maximum length of a segment in Multics being 64 
pages, the segment map for any segment contains 64 
entries. Since the segment length is still zero, each 
entry of the segment map is initialized with a "null" 
address, showing that no secondary memory has been 
assigned to any potential page of the segment. · · 

The segment status "inactive," meaning that there 
is no page table for this segment. The segment status, 
which may be either "active" or "inactive" is indicated 
by the active switch. 

Fig. 4. Directory hierarchy. 
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8. Segment Accessing 

Although the creation of a segment initializes its 
attributes, additional supervisor support is required to 
make the segment accessible to the processor when a 
user program references the segment by symbolic name. 

8.1 Symbolic Addressing Conventions 
The pathname is the only symbolic name by which 

a segment can be uniquely identified in the directory 
hierarchy. However, for user convenience, the system 
provides a facility whereby a user can reference a seg­
ment from his program using only the last entryname of 
the segment's pathname and supplying the rest of the 
pathname according to system conventions. This last 
entry name is called the reference name. 

When a process executes an instruction which 
attempts to access a segment by means of its reference 
name, the Multics dynamic linking facility (7} is auto­
matically invoked. The dynamic linker determines the 
missing part of the pathname according to the above­
mentioned system conventions. These conventions are 
called search rules and may be regarded as a list of 
directories to be searched for an entryname matching 
the specified reference name. When this entryname is 
found in a directory, the directory pathname is prefixed 
to the reference name yielding the required pathname. 
The dynamic linker, using the "Make Known" module 
(Section 8.2), then obtains a segment number by which 
the referenced segment will be accessed. Finally it trans­
forms the reference name into this segment number so 
that all subsequent executions of the instruction in this 
process access the segment directly by segment number. 
Further details are given by Daley and Dennis [7). 

8.2 Making a Segment Known to a Process 
Each time a segment is referenced in a process by its 

pathname, either explicitly or as the result of the evalua­
tion of a reference name by the dynamic linking facility, 
the pathname must be translated into a segment number 
in order to permit the processor to address the segment 
for this process. This translation is done by the super­
visor using the KST associated with the process. The 
KST is an array organized such that entry number "s", 
KSTE(s), contains the pathname associated with segment 
number "s". See Figure 5. 

If the association {pathname, segment number) is 
found in the KST of the process, the segment is said to be 
known to the process and the segment number can be 
used to reference the segment. 

If the association (pathname, segment number) is 
not found in the KST, this is the first reference to the 
segment in the process and the segment must be made 
known. A segment is made known by assigning an 
unused segment number "s" in the process and by 
recording the pathname in KSTE(s) to establish the pair 
{pathname, segment number) in the KST of the process. 
The directory hierarchy is also searched for this path-

314 

Fig. S. Basic tables used to imp)emeot the Multics virtual memory. -
... 

__,__ __ 
------........................................ . ................... 

name and a pointer to the corresponding branch is 
entered in KSTE(s) for later use (Section 8.3.). 

The per-process association of pathname and seg­
ment number is used in the Multics system because it 
is imp6ssible to assign a unique segment number to 
each segment. The reason is that the number of seg­
ments in the system will nearly always be larger than 
the number of segment numbers available in the 
processor. 

When a segment is made known to a process by 
segment number "s," its attributes are not placed in 
snw(s) of the descriptor segment of that process. 
snw(s) having been initialized with the missing segment 
switch ON, the first reference in this process to that 
segment by segment number "s" will cause the processor 
to generate a trap. In Multics this trap is called a 
"missing segment fault" and transfers control to a 
supervisor module called the segment fault handler. 

8.3 The Segment Fault Handler 
When a missing segment fault occurs, control is 

passed to the segment fault handler to store the proper 
segment attributes in the appropriate sow and set the 
missing segment switch OFF in the sow. 

These attributes, as shown in Figure 3, consist of 
the page table address, the length of the segment, and 
the access rights of the user with respect to the segment. 
The information initially available to the supervisor 
upon occurrence of a missing segment fault is the seg-
ment number "s." · 

The only place where the needed attributes can be 
found is in the branch of the segmenL Using the segment 
number "s'', the supervisor can locate the KST entry 
associated with the faulting segment; it can then find the 
required branch since a pointer to the branch has been 
stored in the KST entry when the segment was made 
known to this process (Section 8.2). 
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Using the active switch (Figure 5) in the branch, the 
supervisor determines whether there is a page table 
for this segment. Recall that this switch was initialized 
in the branch at segment creation time. If there is no 
page table, one must be constructed. A portion of core 
memory is permanently reserved for page tables. All 
page tables are of the same length and the number of 
page tables is determined at system initialization. 

The supervisor divides page tables into two lists: 
the used list and the free list. Manufacturing a page 
table (PT) for a segment could consist only of selecting 
a PT from the free list, putting its absolute address in 
the branch and moving it from the free to the used list. 
If this were actually done, however, the servicing of each 
missing page fault would require access to a branch 
since the segment map containing secondary storage 
addresses is kept there (Figure 5). Since it is impractical 
for all directories to permanently reside in core, page 
fault handling could thereby require a secondary 
storage access in addition to the read request required 
to transport the page itself into core. Although this 
mechanism works, efficiency considerations have led 
to the "activation" convention between the segment 
fault handler and the page fault handler. 

Activation. A portion of core memory is permanently 
reserved for recording attributes needed by the page 
fault handler, i.e. the segment map and the segment 
length. This portion of core is referred to as the active 
segment table (AST). There is only one AST in the system 
and it is shared by all processes. The AST contains one 
entry (ASTE) for each PT. A PT is always associated with 
an ASTE, the address of one implying the address of the 
other. They may be regarded as a single entity and will 
be referred to as the (PT, ASTE) of a segment. The used 
list and free list mentioned above are referred to as the 
(PT, ASTE) free list and the (PT, ASTE) used list. 

A segment which has a (PT, ASTE) is said to be 
active. Being active or not active is an attribute of the 
segment and is recorded in the branch using the active 
switch. 

When the active switch is ON, both the segment map 
and the segment length are no longer in the branch but 
are to be found in the segment's (PT, ASTE) whose 
address was recorded in the branch during "activation" 
of the segment. 

To activate a segment, the supervisor must: 
Find a free (PT, ASTE). (Assume temporarily that at 

least one is available). 
Move the segment map and the segment length from 

the branch into the ASTE. 

Set the active switch ON in the branch. 
Record the pointer to (PT, ASTE) in the branch. 
By pairing an ASTE with a PT in core, the segment 

fault handler has guaranteed that all segment attributes 
needed by the page fault handler are core-resident, 
permitting more efficient page fault servicing. 

Connection. Once the segment is active, the corre­
sponding sow must be "connected" to the segment. To 
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connect the sow to the segment the supervisor must: 

Get the absolute address of the PT, using the (PT, 

ASTE) pointer kept in the branch, and store it in sow. 
Get the segment length from the ASTE and store it 

in the SDW. 

Get the access rights for the user from the branch 
and store them in the sow. 

Turn off the missing segment switch in the sow. 
Having defined activation and connection, segment 

fault handling can now be summarized as: 
Use the segment number s to access the KST entry. 
Use the KST entry to locate the branch. 
If the active switch in the branch is OFF, activate the 

segment. 
Connect the sow. 
Note that the active switch and the (PT, ASTE) 

pointer in the segment branch "automatically" guar­
antee segment sharing in core since all sow's describ­
ing a given segment will point to the same PT. 

Once the segment and its sow have been connected, 
the hardware can access the appropriate page table 
word. If the page is not in core, a missing page fault 
occurs, transferring control to the supervisor module 
called the page fault handler. 

8.4 The Page Fault Handler 
When a page fault occurs the page fault handler is 

given control with the PT address and the page number 
of the faulting page. The information needed to bring 
the page into core memory is the address of a free block 
of core memory into which the page can be moved and 
the address of the page in secondary memory. The 
term page frame is also used to denote a block of core 
memory which holds a page of information [9]. 

A free block of core must be found. This is done by 
using a data base called the core map. The core map is 
an array of elements called core map entries (CME). 
The nth entry contains information about the nth block 
of core (the size of all blocks is 1,024 words). The 
supervisor divides this core map into two lists; the core 
map used list and the core map free list. 

The job of the page fault handler consists of the 
following steps: 

Find a free block of core and remove its core map 
entry from the free list. (Assume temporarily that ~he 
free list is not empty.) 

Access the ASTE associated with the PT and find the 
address in secondary memory of the missing page. 

If this address is a "null" address, initialize the 
block of core with zeros and update the segment length 
in the ASTE; this action is only taken the first time the 
page is referenced since the segment was created and 
provides for the automatic growing of segments. Other­
wise issue an 1/0 request to move the page from second­
ary memory into the free block of core and wait for 
completion of the request via a call to the "traffic 
controller" [14] which is responsible for processor 
multiplexing. 
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Store the core address in the PTW, remove the fault 
from the PTW, and place the core map entry in the used list. 

8.5 Page Multiplexing 
There are many more pages in virtual memory than 

there are blocks of core in the real memory; therefore, 
these blocks must be multiplexed among all pages. In 
the description of page fault handling it was assumed 
that a free block of core was always available. In order 
to insure that this is nearly always true, the page fault 
hand1er, upon removing a free block from the core map 
free list, examines the number of remaining free list 
entries; if this number is less than a preset :minimum 
value, a page removal mechanism is invoked a sufficient 
number of times to ensure a nonempty core· map free 
list in all but the most unusual cases. A nonempty core 
map.free list eliminates waiting for page removal during 
the handling of a missing page fault. 

To get a free block of core, the page removal mech­
anism may have to move a page from core to secondary 
memory. This requires: (a) an algorithm to select a 
page to be removed; (b) the address of the PTW which 
holds the address of the selected page, in order to set a 
fault in it; and (c) a place to put the page in secondary 
memory. 

The selection algorithm is based upon page usage. 
It is a particularly easy-to-implement version [41 of the 
''least-recently-used" algorithm (I, 8]. The hardware 
provides valuable assistance by, each time a page is 
referenced, setting ON a bit, called the used bit, in the 
corresponding PTW. The selection algorithm will not be 
described in detail here. However, it should be noted 
that candidates for removal are those pages described 
in the core map used list; therefore, each core map 
entry which appears in the used list must contain a 
pointer to the associated PTW (Figure 5) in order to 
permit examination of the used bit. The action of storing 
the PTW pointer in the core map entry must be added 
to the list of actions taken by the page fauh handler 
when a page is moved into core (Section 8.4.). 

Once the supervisor has selected the page to be 
removed, it takes the following steps: 

Set the missing page switch ON in the PTW. 

If no secondary memory has been assigned yet for 
this page, i.e. the segment map entry for this page holds 
a "null" address, assign a block of secondary memory 
and store its address in the segment map entry. 

Issue an 1/0 request to move the page to secondary 
storage. 

Upon completion of the 1/0 request, move the core 
map entry describing the freed block of core from the 
core map used list to the core map free list. This may be 
done in another process upon noticing the completion 
of the 1/0 request. 

8.6 (PT, ASTE) Multiplexing 
Core blocks can be multiplexed only among pages 

of active segments. The number of concurrently active 

316 

Fig. 6. Supervisor functional modules and data bases. 

segments is limited to the number of (PT, ASTE) pairs, 
which is, by far, smaller than the total number of 
segments in the virtual memory. Therefore (PT, ASTB) 
pairs must be multiplexed among all segments in the 
virtual memory. 

When segment activation was described, a (PT, 
ASTE) pair was assumed available for assignment. In 
fact, this is not atways the case. Making one segment 
active may imply making another segment inactive, 
thereby disassociating this other segment from its 
(PT, ASTE). Since all processes sharing the same segment 
will hav{: the addr-ess of the PT in an sow, it is essential to 
invalidate this address in all sow's containing it before 
removing the page table. 

This operation requires: (a) an algorithm to select 
a segment to be deactivated; (b) knowing all sow's that 
contain the address of the page table of the selected 
segment, in order to invalidate this address; (c) moving 
the attributes contained in the ASTE back to the branch; 
and (d) changing the status of the segment from active 
to inactive in the branch. 

The selection algorithm for deactivation, like the 
selection algorithm for page removal, is based on 
usage. When the last page of a segment is removed from 
core, the segment becomes a candidate for deactivation. 
The algorithm selects for deactivation the segment 
which has had no pages in core for the longest period of 
time, i.e. the segment which has been least recently used. 
Since the number of (PT, ASTE) pairs substantially 
exceeds the number of pageable blocks of core, it is 
always possible to find an active segment with no pages 
in core. 

The ASTE must provide all the information needed 
for deactivating a segment. This means that during 
activation and connection, this information must be 
made available. During activation, a pointer to the 
branch must be placed in the ASTE; during connection, 
a pointer to the sow must be placed in the ASTE. Since 
more than one sow is connected to the same PT when 
the segment is shared by several processes, the super­
visor must maintain a list of pointers to all connected 
sow's. This list is called a connection list. See Figure 5. 

After the selection algorithm chooses a (PT, ASTE) 

to be freed, the disassociation of the segment from its 
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(PT, ASTE) is done in two steps: disconnection and 
deactivation. 

Disconnection consists of storing a segment fault 
in each sow whose address appears in the connection 
list in the ASTE. Deactivation consists of moving the 
segment map and the segment length from the ASTE 

back to the branch, resetting the active switch in the 
branch, and putting the (PT, ASTE) in the free list. 

9. Structure of the Supervisor 

Up to now supervisor functions have been described, 
but not the supervisor structure. In this section, the 
different components of the supervisor am presented 
and the ability of portions of the supervisor to utilize 
the virtual memory is discussed. 

9.1 Functional Modules 
Three functional modules can be identified in the 

supervisor described in Section 8; they are called 
directory control (oc), segment control (sc), and 
page control (Pc). 

oc performs all operations on segment attributes; 
it also maps pathnames into segment numbers in the 
KST of the executing process. Data bases used by a 
process executing oc procedures are the directories and 
the KST of the process (Figure 6). 

sc performs segment fault handling. Data bases used 
by a process executing sc procedures are directories, 
the KST of the process, descriptor segments and (PT, 

ASTE) pairs. 
PC performs page fault handling. Data bases used by 

a process executing PC procedures are (PT, ASTE) pairs 
and the core map. 

9.2 Use of PC in the Supervisor 
One can observe that the page fault handler need not 

know if a missing page belongs to a user segment or to 
a supervisor segment; it only expects to find the in­
formation it requires in the (PT, ASTE) of the segment 
to which the missing page belongs. Therefore, if all 
segments used in sc and oc are always active, then their 
pages need not be in core since PC can load them when 
they are referenced. 

In order to make use of PC in the rest of the super­
visor the following (temporary) assumption must be 
made. 

Assumption 1 
(a) All segments used in PC are always in core and are 
connected to the descriptor segment of each process. 
(b) All segments used in sc and oc are always active 
and are connected to the descriptor segment of each 
process. 

9.3 Use of SC in the Supervisor 
Assumption l is satisfactory in the Multics imple­

mentation except.for directories. 
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The number of directory segments in the system may 
be very large and keeping them always active is not a 
realistic approach, since a large number of (PT, ASTE) 

pairs would have to be permanently assigned to them. 
It would be desirable to use sc to activate and connect 
directory segments only as needed. 

A necessary condition for handling a segment fault 
for segment x in a process is that segment x be known 
to that process. Assuming that all directories are known 
to all processes, but not necessarily active, reference to 
a directory x may cause a segment fault. When handling 
this fault, the segment fault handler must reference the 
parent directory of segment x, where the branch for x 
is located. This reference to the parent of x could, in 
turn, cause a recursive invocation of the seg!llent fault 
handler. These recursive invocations can propagate 
from directory to parent directory up to the root. If the 
root directory is always active and connected to each 
process, then the recursion is guaranteed to be finite and 
a segment fault for any directory can be handled. 

The first assumption can be replaced by the follow­
ing more satisfactory assumption (again temporary). 

Assumption 2 
(a) All segments used in PC are always in core and are 
connected to the descriptor segment of each process. 
(b) All nondirectory segments used in sc and oc are 
always active and are connected to the descriptor seg­
ment of each process. 
(c) The root directory is always active and connected 
to each process. 
(d) All directories are always known to each process. 

9.4 Use of the Make Known Facility in the Supervisor 
However, it is unsatisfactory to keep all directories 

known to all processes because of the space that would 
be required in each KST. It would be more attractive if 
a directory could be made known to a process only 
when needed by the process. 

Making a segment x known implies searching for its 
pathname in the KST. If not found, the parent of x must 
first be made known and so on up to the root. If the 
root directory is always known to all processes, then 
any directory can be made known to a process by calling 
recursively the Make Known facility of the supervisor. 

Assumption 2 will now be replaced by the final 
assumption: 

Final Assumption 
(a) All segments used in PC are always in core and are 
connected to the descriptor segment of each process. 
(b) All nondirectory segments used in sc and oc are 
always active and are connected to the descriptor seg­
ment of each process. 
(c) The root directory is always active and connected 
to each process. 
(d) The root directory is always known to each process. 

Given the above assumption, supervisor segments, as 
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well as UiK.r segments, can bt: sLvn:u m tne v11ma1 
memory that the supervisor provides. 

10. Summary 

The most important points discussed in this paper 
are summarized below. They are grouped into two 
classes: the point of view of the user of the virtual 
memory, and the point of view of the supervisor itself. 

User PoiDt of View 
The Multics virtual memory can contain a very 

large number of segments that are referenced by 
symbolic names. 

Segment attributes are stored in special segments 
called directories, which are organized into a tree 
structure; by a naming convention known to the user, 
the symbolic name of a segment must be the pathname 
of the segment in . the directory tree. strueture. 

Any operation on directory sqments must be done 
by calling the supervisor. 

Any operation on a nondirectory segment can be 
done directly in accordance with the access rights that 
the user has for the segment; any word of any segment 
which resides in the virtual memory can be referenced 
with a pair (pathname, i) by the user. 

Supeniaor Point of View , . , 
The supervisor must simulate a large segmented 

memory which is directly addressable by symbolic 
name and such that any access to the memory is sub­
mitted to access rights checking. 

The supervisor maintains a directory tree where it 
stores all segment attributes. It can retrieve the attri­
butes of a segment, given the pathname of that segment. 

The supervisor itself is organized into segments 
and runs in the address space of each ;user process. 

Any segment, be it a directory or a nondirectory 
segment, is identified by its pathname but can be ac­
cessed only using a segment number. For each segment 
name the supervisor must assign a segment number by 
which the processor will address the segment in the 
process. 

The processor accesses a word of a segment through 
the appropriate sow and PTW, subject to the access 
rights recorded in the sow. 

A segment fault is generated by the processor when­
ever the page table address or access rights are missing 
in the sow. The supervisor then, using the KST entry as 
a stepping stone, accesses the branch where it finds the 
needed information. If a PT is to be assigned, the super­
visor may have to deactivate another segment. 

A page fault is generated by the processor whenever 
a PTW does not contain a core address. The supervisor 
then, using the ASTE associated with the PT, moves the 
missing page from secondary storage to core. This may 
require the removal of another page. 
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Figure 4. Directory Hierarchy 
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INTRODUCTION TO THE CONCEPTS OF MULTICS 

YirtyaJ Memorv, Processes, .ilW1 Sharing ln MuJtics 

by R.C. Daley and J.B. Dennis. Reprinted from 
CQOIDunlcatjons 2f. .tW:. AkH, 11., 5, May, 1968, pp. 
306-312, with permission. Copyright 1968 by the 
Association for Computing Machinery. 
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This early paper Introduced the concept of a virtual memory 
which contains all on-line storage, and explains the hardware 
addressing structure which Is used to support it. The remainder 
of the paper then explores the properties and mechanisms 
necessary to permit dynamic linking of procedures and data. The 
paper does not emphasize the value to the user of this feature. 
Brief1y, dynamic linking eliminates the need to collect together 
all the parts of a program before execution; it ls especially 
helpful during debugging of a new program. A more extensive 
d I scuss I on of the usefu 1 ness of ·this feature Is found In MPM 
Introduction Chapter Four. 

It may help, when reading the discussion of dynamic;, linking, 
to realize that stored as part of every pure proced.Ure is a 
prototype linkage section for that procedure. When the procedure 
Is first 1 lnl<ed to, the dynamf-c;.ffnker c:;ep•l.es thfs ptatotype 
linkage section into the linkage area for the ~roces~, and this 
copy ts the linkage section ref•rred to In the paper. Note that 
the word 11 1 ink Ina" Is a local piece ot ... j,ar~, which has a 
meaning approximately the same as "binding· In most recent 
literature on languages and linguistics. 

The call-save-return mechanism described in the paper was 
the first one used In Multics, and i$ qulte different from the 
one implemented with special h~rdware,,Jn; the current Honeywell 
6180 system. However, the mecheai&m de&e:rJ,Md is functionally 
equivalent to the current one, and it. JSc q.uJte .instructlve to 
compare the description here with tha.t provl4ed In the Subsystem 
Writers' Guide, to gain Insight into the tntrlnstc operations 
being performed. Probably the most lmpartant difference between 
the two mechanisms is that the old~r one deserlbttd in this paper 
required that the linkage section con;atn Instructions ~o. be 
executed as part of the subroutine entry sequence. In the- hewer 
technique the linkage section contafn.s only indirect addresses. 
As a result, the segment containing the linkage section no longer 
requires "execute" permission, and wild transfers to that segment 
are thus trapped lnmedlately as errors. 
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Introduction 

In MlJl.Tics [l} (.Multiplexed lnform&tion and Com­
puting S~ce), ~tal design decisions were made 
so the.system -would1!fiectiVely serve the ·oornpqtihgneeds 
of a large comntuDi.ty of users with diverse interests, 
operating principAtly from remote terminals . .Among the 
ob~~ were~ three: 

Ct1 To. p:r:oVi(Je . the wter with a large machine-inde­
pendent yirtuaf JneJD(>ry, thus placing t~ reswnsibility 
for the ni~...-t. or physical stOrage with the system 
software. J;ly tills means the user is provided With an 
addD!es space 'larie enou.gh to Wiminat.e the need for com­
plicated'b\tffering &ndoverlay techpiques. Users, therefore, 
are relisVed Of ··tfle • burd4m of preplanning the transfer 
of information between &t.orage levels, and user programs 
become independtint of the nature of the various storage 
devices in the system. 

(2) To pennit a degree of programming generality not 
previously practical. This includes the ability of one pro­
cedure to use another procedure knowing only its name, 
and without knowledge of its requirements for storage, or 
the additional procedures upon which it may in tum call. 
For example, a user should be able to initiat.e a computa-
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tion merely by specifying the symbolic name of a proce­
dure at which the computation is to start and by allowing 
additional procedures and data to be provided auto­
matically when and if they are needed. 

(3) To permit sharing of procedures and data among 
users subject only to proper authorization. Sharing of 
procedures in core memory is extremely valuable in a 
multiplexed system so that the cluttering of auxiliary 
storage with myriad copies of routines is avoided, and so 
unnecessary information transfers are eliminated. The 
sharing of data objects in core memory is necessary to 
permit efficient and close interaction between processes. 

These objectives led to the design of a computer system 
[6] (the General Electric Model 645) embodying the con­
cepts of paging [8] and segmentation [3] on which the 
initial implementation of MULTICS will run. 

In this paper we explain some of the more fundamental 
aspects of the MULTICS design. The concepts of "process" 
and "address space" are defined, some details of the ad­
dressing mechanism are given, and the mechanism by 
which "dynamic linking" is accomplished is explained. 

Concepts of Process and Address Space 

Several interpretations of the term "process" have come 
into recent use. The most common usage applies the term 
to the activity of a processor in carrying out the compu­
tation specified by a program (4, 5]. In MULTICS, the 
concept of process is intimately connected with the con­
cept of address space. Processes stand in one-to-one corre­
spondence with virtual memories. Each process runs in 
its own address space, which is established independently 
of other address spaces. Processes are run on a processor 
at the discretion of the traffic controller module of the 
supervisor. 

The virtual memory (or address space) of a MULTICS 

process is an ordered set of as many as 2H segments each 
consisting of as many as 218 36-bit words. The arguments 
for providing a generous address space having this struc­
ture have been given by Dennis [3]. Briefly, the motiva­
tion is to avoid the necessity of procedure overlays or the 
movement of data within the address space, which gen­
erally lead to naming conflicts and severe difficulties in 
sharing information among many processes. 

Each segment is a logically distinct unit of information 
having attributes of length and access privilege and may 
grow or shrink independently of other segments in the 
system. For present purposes, we consider two segment 
types: (1) data, and (2) procedure. A segment is treated 
as procedure if it is intended to be accessed for instruction 
fetch by a processor. Other segments (including, e.g., a 
source program file) are considered to be data. Instruction 
fetch references to procedure segments are allowed, as are 
internal data reads. Writing into a procedure segment is 
normally considered invalid and is prohibited by the 
system. (In certain cases, reading of a procedure segment 
by another procedure may also be prohibited while execu­
tion is allowed.) Thus procedure segments are nonself-
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modifying or pure procedures. Instruction fetches from 
data segments are invalid, and any data segment may be 
write protected. The overall design of MULTICS protec­
tion mechanisms is discussed by Graham [7]. 

segments 

virtual 
memory 

FIG. 1. Virtual memory in a MULTICS process 

The size of address space provided to processes makes it 
feasible to dispense with files as a separate mechanism for 
addressing information held in the computer system. No 
distinction need be drawn between files and segments! 

The directory structure [2] is a hi~archical arrangement 
of directories that associates at ~t one symbolic name 
(but perhaps many) with eacli~gment. These names 
have meaning that is invariant o{ter all processes in exist­
ence. Figure 1 portrays the concept of a process as a 
virtual memory made up of segments selected from the 
directory structure. 

Addressing 

The Generalized Address. Each word in the address 
space of a process is identified by a generalized address. As 
shown in Figure 2, a generalized address consists of two 
parts-a segment number and a word number. The address­
ing mechanisms of the processor are designed so that a 
process may make effective reference to a word by means 
of its generalized address when the word has an assigned 
location in main memory. Together with supervisor soft­
ware, these mechanisms make reference by generalized 

segment number word number 

FIG. 2. The generalized address 

address, effective regardless of where the word might 
reside in the storage hierarchy by placing it in main 
memory when needed. Thus the generalized address is a 
location-independent means of identifying information. In 

Communications of the ACM 307 



2-34 

the following paragraphs we explain how generalized 
addre:;;..~s are fonned in the processor and give a brief 
diHeu.~ion of how they are made effective. 

(PBR 

lxt IP 
ILP 

AMrna F....tion. Each processor oft~ computer 
system (Yagme 3) has an aeeunmlator A. a multiplier/ 
quotient Q. eight index registel'8 XO, XI, · · ·• X7, and a 
pmgt"Ull counter PC, whieh serve eonftlltionaf functions. 
For the implementation of generalised addres&ing and 
intersegment. linking, a de3criptor ha-. regi,der, a ~re 
boae ttgisler, and four base pair regisl,ers are included in 
each proee!'l80r. The function of the descriptor base register 
will be discussed in a later paragraph since it does not 
participate in generalized address fonnation. The proce­
dure base register always contains the segment number of 
the procedure being executed. Each of the four base pair 
registers (called simply base registers in the sequel) holds 
a complete generalized address (segment number/won! 
number pair) and .is named according to its specific func­
tion in MULTICS: 

ba11e flair 

0 
1 
2 
3 

designation function 

ap argument pointer 
bp base point.er 
!e linkage point.er 
sp stack pointer 

The functions of these pointers will become clear when 
the linkage mechanism is explained. 

The instruction format of the processor is given in 
Figure 4. Instructions are executed sequentially except 
where a transfer of control occurs. Hence, the program 
counter is normally advanced by one during the execution 
of each instruction. 

address external flot 

sevm•nt ta9 operation cod• addressint made 

FIG. 4. Instruction format 

When the processor requires an instruction word from 
memory, the corresponding generalized address is the 
segment number in the procedure base register coupled 
with the word number in the program counter (Figure 5). 
For data references, a field in the instruction format 
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called the segmtmt tag selects one of the base registers if 
the external flag is on. The effective address computed 
from the ad<4ess field of the instruction by the usual 
indexing procedure is added to the word number portion 
of the selected base to obtain the desired genem1iaed 
address. This operatiQQ. is illustrated by Figure 6 and is 
used to reference all information outside the current pro­
cedure segment. If the ext.emal k is off, then the gener­
aliaed addnJlls is the seplel't number taken from the pro­
cedure base •t.er eoupled ~ an effective word num­
ber~as ~-TJUs~ismed for internal 
refereDee by a ·~ to. fetch oonstama at fur trans­
fef of eontrut 

FIG. ;}. Addrems formation for instruction fetch 

._.-t n-Nr -d ,..., ... , 

........... r 

~------------t+ 

----[ index reQ. 
......... ~-'--~-~~ ......... 

address 

FIG. 6. Address formation for data access 

Indired Addressi11g. As will be seen when the linkage 
mechanism is discussed, a method of indirect addressing 
in terms of generalized addresses is very valuable. In the 
processor the addressing mode field of instructions may 
indicate that indirect addressing is to be used. In this 
case, the generalized address, formed as explained above 
for data references, is used to fetch a pair of 36-bit words 
which is interpreted as shown in Figure 7. If the address 
mode field of the first word contains the code its (indirect 

<Jenera Ii zed odd reH 

sevment number 

word number madt 

FIG. 7. Interpretation of word pair as indirect address 
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to ~egment), the segment number and word number 
fields are combined to produce a new generalized address. 
This address is augmented by indexing according to the 
mode field of the second word of the pair. Further indirect 
addressing may also be specified. 

The Descriptor Segment. Implementation of a memory 
access specified by a generalized address calls for an 
associative mechanism that will yield the main memory 
location of any word within main memory when a seg­
ment number/word number combination is supplied. A 
direct use of associative hardware was impossible to 
justify in view of the other possibilities available. 

The means chosen to implement the generalized address 
for a process is essentially a two-step hardware table 
look-up procedure as illustrated by Figure 8. The segment 
number portion of the generalized address is used as an 
index to perform a table look-up in an array called the 
descriptor segment of the associated process. This descriptor 
segment contains a descriptor for each segment that the 
process may reference by generalized address. Each 
descriptor contains information that enables the address­
ing mechanism to locate the segment and information 
that establishes the appropriate mode ot protection of the 
segment for this process. 

I aeoment number word number 

descriptor 
aeoment 

information 
segment 

Fm. 8. Addressing by generalized address 

The descriptor base register is used by the processor to 
locate the descriptor segment of the process in execution. 
Note that since segment numbers and word numbers are 
nonlocation dependent data, the only location dependent 
information contained in the processor registers shown in 
Figure 3 is in the descriptor base register. This fact greatly 
simplifies the bookkeeping required by the system in carry­
ing out reallocation activity. In fact, switching a processor 
from one process to another involves little more than 
swapping processor register status and substituting a 
new descriptor base. 

In practice this implementation requires that segment 
numbers be assigned starting from zero and continuing 
successively for the segments of procedure and data re­
quired by each process. An immediate consequence is that 
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the same segment will, in general, be identified by di.ff erent 
segment numbers in different processes. 

Paging. Both information segments and descriptor 
segments may become sufficiently large enough to make 
paging desirable in order to simplify storage allocation 
problems in main memory. Paging allows noncontiguous 
blocks of main memory to be referenced as a logically 
contiguous set of generalized addresses. The mapping of 
generalized addresses into absolute memory locations is 
done by the system and is transparent to the user. 

Paging is implemented by means of page tables in main 
memory which provide for trapping in case a page is not 
present in main memory. The page tables also contain 
control bits that record access and modification of pages 
for use by storage allocation procedures. A small associa­
tive memory is built into each processor so that most 
references to page tables or descriptor segments may be 
bypassed. 

lntersegment Linking and Addressing 

The ability of many users to share access to procedure 
and data information and the power of being able to 
construct complex procedures by building on the work of 
others are two prime desiderata of multiprocess computer 
systems. The potential value of these features to the 
advancement of computer applications should not be 
underestimated. The design of a system around the notion 
of a generalized, location-independent address is an essen­
tial ingredient in meeting these objectives. It remains to 
show how the sharing of data and procedure segments 
and the building of programs out of component procedure 
segments can be implemented within the framework of 
the MULTICS addressing mechanisms just described. In 
particular we must show how references to external data 
(and procedure) segments occurring within a shared pro­
cedure segment can be correctly interpreted for each of 
possibly many processes running concurrently. 

Requirements. Necessary properties of a satisfactory 
intersegment addressing arrangement include the following: 

(I) Procedure segments must be pure; that is, their 
execution must not cause a single word of their con­
tent to be modified. 

Pure procedure is a recognized requirement for general 
sharing of procedure information. 

(2) It must be possible for a process to call a routine by 
its symbolic name without having made prior arrange­
ments for its use. 

This means that the subroutine (which could invoke in 
turn an arbitrarily large collection of other procedures) 
must be able to provide space for its data, must be able 
to reference any needed data object, and must be able to 
call on further routines that may be unknown to it::; caller. 

(3) Segments of procedure must be invariant to the 
recompilation of other segments. 
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This requirement has the following implication: The 
values of identifiers that denote addtesses within a seg­
ment which may change with :recompilation must not 
appear in the content of any other segment. 

Making a &gment Known. Meeting condition (1) 
requires that a segment be callable by a process even if 
no position in the descriptor segment of the process has 
been reserved for the segment. Hence a mechanism is 
provided in the system for assigning a position in the 
descriptor segment (a segment number) when the process 
first makes reference to the segment by means of its sym­
bolic name. We call this oper&tion making the segment 
knoton to the procee8. Once a segment is known, the 
process may reference it by its segment number. 

The pattern of descriptor segment aaigrmaent will be 
difrerent for each process. TherefO!e it is not possible, in 
general, for the system to 8S8ign a unique segment number 
to a shared routine or data object. This fact is a major 
consideration in the desip of the linking mechanism. In 
the following ~ we describe 'a sCbeme for imple­
menting the linkage of aegmenta that meets the ·reqUir& 
ments stated above. 

It is worth empluuU:ing that this diacuaDon has nothing 
to do with the memory man•fll"""'M problem that the 
supervisor faces in deciding 'Where in the st.onge hierarchy 
information should reside. All information involved in the 
linkage mechanism is, as will be eem,. refenineed by gen­
eralised addreeses whieh ue made eftective by the mecha­
nisms described earlier. The fad t.bat paps of the BBg­

ments referml to in the following diacru1smn may be in or 
out of main memory at the time a procesa requires aceeas 
to them is irrelevant. 

Linkage Data. Before a segment beeomes known to a 
Jll'tMle88 the segment may only. be relereaeed by mesD8 of 
a. symbolic pall& name (2t · whieh permaaently identifies 
the segment within the directory stNcture. Since the 
segment number used to refenmtie a particular segment ia 
process dependent, f1f4P1Wlt munhen may not appear 
intemally in pure prooedure code. For this reason, a seg-

p 0 

F1a. 9. An intenegment reference by procedure P 
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ment is identified within a procedure segment by a sym­
bolic .egment ref~ name. Before a procedure can com­
plete an extemal eegment reference, the reference name 
mUBt be tnuisla.t.ed into a path name by means of a direc­
tory searching algorithm and the desired se~t made 
known to the process. Once the segment has become 
known to the process, we wish to substitut.e the efficient 
addressing mechanism based on the generalised address 
for the time-consuming operation of searching the direc­
tory structure. 

Consider a procedure segment P that makes reference 
to a word at location x within data segment D, as illua­
trated in Figure 9. ID 888embly language this would be 
written as: 

OPR <D> I [x) 

The angle brackets indie&t.e that the encloeed character 
string is· the refermee name of some segment. This name 
will be used to ~ the- directory structure the tint 
time segment· P is refereneed ·by a prooess. The square 
braelreti! indicate that the eneloeed character string is a 
symbolic ~ Within an ext.ernal segment. Since by 
requirement (3} :vre -.ish segment P to be invariant to 
recompilation of D, only the symbolic addmB (x) may 
appear in P. Furthermore, we wish to delay the evaluation 
of [x] until a reference to it is actually made in the running 
of a process. 

The following problem arises: Initially process a in 
executing procedure P may reference· (D) I (x] only by 
symbolic segment name and symbolic external address. 
After segment D bas been. made known to process a, and 
a first reference lias been effected, we wish to make further 
references by the generalised address d M .jx. The question 
is: How can we niak.e t!w. transition from symbolic refer­
ence to genera1iHd addressing without altering the con­
tent of segment P? 

It should be clear that a change must be made aome 
place that can effect the change in addressing mechanism. 
Further, the data that is changed must participate in 
evtt"I/ reference to the information. We call the informa­
tion that is altered in value to make this transition 
the link data for linking segment P to symbolic address 

La 0 

Fla. 10. Linbp of P to D I x for procesa ar 
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(D) j [x] in process a. The collection of link data for all 
external references originating in segment P is called the 
linkage section of procedure P. 

Link data is private data of its process because whether 
P is linked to Dix for process a is entirely independent of 
whether the same is true for any other process. Therefore, 
whenever a procedure segment is made known to a process, 
a copy of the procedure's linkage section is made as a 
segment within that process. In certain cases the linkage 
sections of several procedures are combined into a single 
linkage segment private to the process. 

Linking. Figure 10 shows segments P, D and the 
linkage section L" for P in process a. To implement refer­
ence to DJx from within segment P will require two refer­
ences by generalized address-one to access the pertinent 
link data in La, and one to fetch the word addressed in 
segment D. Realization of this minimum number of 
references implies use of the indirect addressing feature of 
the processor. Thus the link data for an established link 
will be an indirect word pair containing the generalized 

(a) 

10 <D>II•J 

(b) 

Fro. 11. States of the link data 

address D fl, .,Jx (Figure lla). Before the link is estab­
lished, an attempt by a process of computation a to 
reference DJx through the link must lead to a trap of the 
process and transfer of control to the system routines 
that '"ill establish the link and continue operation of the 
process. For this purpose a special form of indirect word 
pair is used which causes the desired trap. In Figure llb 
this is indicated by the code ft in the addressing mode 
field of the pair. The segment number and word number 
fields of the indirect word can then be used to inform 
supervisory routines of the place to look to find the sym­
bolic address (D) I [x] associated with the link. This 
address must be translated into a generalized address to 
establish the link. The operation of changing the link 
data to establish a link is called linking. 

It is desirable to keep the procedure segment P self­
contained if at all possible. Consequently the symbolic 
address (D) I [x] pointed to by the unestablished link 
should be part of the procedure segment P. Two look-up 
operations are required on the part of supervisory routines 
to establish the link. The symbolic reference name D 
must be associated with a specific segment through a 
search in the directory structure, and this segment must 
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be made known to the process if a segment number has 
not already been assigned. 

The word number corresponding to the symbolic word 
name x must also be determined. The set of associations 
between symbolic word names and word numbers for a 
segment is its symbol table and is part of the segment. Thus, 
in our example, a list of word numbers corresponding to 
symbolic word names that may appear in references to 
segment D from other segments is included as part of 
segment D at a standard position known to the system. 
This list is searched by a system routine to find the word 
number required to establish a link. 

The Link Pointer. A remaining question is: How does 
a process produce the generalized address L fl' .. Jw required 
to access the link data? One might suppose that word 
address w could be fixed permanently at the time proce­
dure segment P was created. This is not possible because 
the set of segments required by each process that might 
share use of procedure P will in general be unrelated: If 
the linkage sections of several procedures were placed in 
a single segment, assigning a fixed position to a link for 
all processes would produce intolerable conflicts. On the 
other hand, the code by which an intersegment reference is 
represented in segment P must be fixed and identical for 
all computations to meet the pure procedure constraint. 
Any data that allow different addresses to be formed from 
fixed code must reside in processor registers. By this 
argument we see the necessity of associating a linkage 
pointer with each process. The linkage pointer is a gener­
alized address that resides in a dedicated base register 
(designated lp). As shown in Figure 12, it is the origin 

L fl' aJs of th;-portion of a linkage segment that contains 
the links for intersegment references made from the seg­
ment being executed. 

References to external segments are coded relative to 
the link pointer and have the form shown in Figure 12. 
The displacement k is determined by the coding of P and 
is invariant with respect to the process using P. 

Procedure Call and Return. The coding used to trans­
fer control to a subprocedure and the subsequent return 
of control must meet the requirements of programming 
generality. In particular, no assumptions may be made 
regarding the detailed coding of either the calling or 
called procedure other than those aspects uniformly es­
tablished by convention. Conventions for four aspects of 
subroutine calling are relatively familiar: 

(1) Transmission of arguments. 
(2) Arranging for return of control. 
(3) Saving and restoring processor state. 
(4) Allocating private storage for the called procedure. 

Item ( 4) is necessary in MULTICS because of the pure 
procedure requirement, and the generality requirement 
which forbids prior arrangement of a called procedure's 
storage needs. This private storage is supplied b~· asso­
ciating the stack segment with each process in which a 
frame of private storage is reserved at each procedure call. 
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The frame is released upon return of control. This mecha­
nism is implemented by the stack pointer (designated 
sp) which is the generalized address of the stack frame 
origin for the procedure in operation. The use of the 
stack segment makes every procedure in MULTICS 

automatically recursive by associating separate stack 
frames with successive entries into the same procedure. 
Dtw to the pure procedure requirement, only fixed argu­
ments that do not depend on segment numbers may ap­
pear in procedure segments. Pointers and variable argu­
ments must be placed in the stack segment, the linkage 
:'legment, or elEewhere. So that the language designer 
may have his choice of implementation, the argument 
pointer (designated ap) is at procedure entry the general­
ized address of the list of arguments for the called proce­
dure.· 

In addition to these conventional requirements, the 
method of dynamic linking just described introduces one 
new problem: When process a, in executing procedure P, 
transfers control to procedure Q, the value of linkage 

p 

<D>f{.) 

OPR 1 * 
Frn. 12. Addressing the link data 

pointer must be changed to the generalized address of 
the linkage section for procedure Q. Since the new value 
of the linkage pointer contains a segment nwnber, it is 
private data of process a and cannot be placed in segment 
PorQ. 

This problem requires a somewhat modified form of 
intersegment linkage from that used for data references. 
Since it is desirable that the ~hine code necessary to 
load the linkage pointer for a procedure segment be as­
sociated with that segment, the following solution was 
adopted. For each external entry point within a procedure 
segment, two additional instructions are placed in the 
procedure's linkage section at compilation time. The first 
instruction loads the linkage pointer with the appro­
priate value at procedure entry, and the second instruc­
tion transfers control to the entry point in the called 
procedure segment. Thus in establishing the link for an 
external procedure call, the generalized indirect address 
placed in the calling procedure's link data points to the 
corresponding instruction pair in the linkage section of 
the procedure being called. \\hen control passes to the 
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linkage segment during an external procedure call, the 
segment number portion of the desired linkage pointer is 
easily obtained from the procedure base register, since 
the process is now executing in the desired linkage seg­
ment. 

coll 
<0>1£•] 

p lift"°te section 
fot p 

Unlr.•te section 
for O 

Fw. 13. Linkage mechanism for procedure entry 

0 

Figure 13 depicts the linkage mechanism required for 
an external procedure call from procedure P to segment 
Q at entry point e. The solid lines indicate the individual 
steps taken through indirect addresses, while the dashed 
lines indicate resulting flow of control. 

In executing a call to an external procedure, the caller's 
machine conditions, including the procedure base register 
and program counter, are saved in the stack segment by 
the caller. Return from the called procedure can thus be 
effected by simply restoring the caller's machine condi­
tions from the stack segment. 
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This paper provides a survey of all the different 
techniques, mechanisms, and design principles that underlie the 
control of access to information in Multics. Since it describes 
an area that is a subject of continuing research at M.l.T., its 
details (especially its list of weaknesses) ara going out of date 
quite rapidly. Nevertheless, the general concern of the Multics 
design that it support the need for privacy of Individuals and 
organizations is best exhibited by a comprehensive snapshot of 
the mechanisms used. 
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ABSTRACT 

This paper describes the design of mechanisms to control sharing of information in the Multics system. 
Seven design principles help provide insight into the tradeoffs among different possible designs. The key 
mechanisms described include access control lists, hierarchical control of access specifications, identifi­
cation and authentication of users, and primary memory protection. The paper ends with a discussion of 
several known weaknesses in the current protection mechanism design. 

An essential part of a general-purpose computer 
utility system is a set of protection mechanisms 
which control the transfer of information among the 
users of the utility. The Multics system*, a proto­
type computer utility, serves as a useful case 
study of the protection mechani81118 needed to permit 
controlled sharing of information in an on-line, 
general-purpose, information-storing system. This 
paper provides a survey of the various techniques 
currently used in Multics to provide controlled 
sharing, user authentication, inter-user isolation, 
supervisor-user protection, user-written proprie­
tary programs, and control of special privileges. 

Controlled sharing of information was a goal 
in the initial specifications of Multics[S, 11], 
and thus has influenced every stage of the system 
design, starting with the hardware modifications to 
the General Electric 635 COlllpUter'Which produced 
the original GE 645 base for "1ltics. As a result, 
information protection is more thoroughly inte­
grated into the. buic design of ltlltics than is the 
case for those coimercisl syst- w)tose original 
specifications did not include COllll'r.tlensive con­
sideration of information protection. 

ltlltics is an evolving system, so any case 
study must be a snapshot taken at llOllle specific 
time. The time chosen for this snapshot is 
s~r, 1973, at which ti- lillltics is opersting 
at H.l.T. using the Honeywell 6180 computer system. 
Rather than trying to doc~t every detail of a 
changing environment, this paper concentrates on 
the protection strategy of Multics, with the goal 
of comnunicating those ideas which 1:;an be applied 
or adapted to other operating systems. 

This research was supported by the Advanced Research 
Projects Agency of the Department of Defense under 
ARPA Order No. 2095 which was monitored by ONR 
Contract No. N00014-70-A-0362-0006. 

* A brief description of Multics, and a more com­
plete bibliography, are given in the paper by 
Corbato, Saltzer, and Clipgen[6). 
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~ ll .!!!!!? 
In trying to identify the ideas related to 

protection which were first introduced by Multics, 
a certain amount of confusion occ_urs. The design 
was initially l'id out in 1964-1967, and ideas 
were borrowed from many sources and embellished, 
and new ideas were added. Since then, the system 
has been available for atudy to many other system 
designers, who have in turn borrowed and embellished 
upon.the ideas they found in Multics while construc­
ting their own systems. Thus some of the ideas 
reported here have already appeared in the litera­
ture. "<>f the i~• Teperted here, the following 
seem to be both novel and previously unreported; 

The notion of deal.going • compreheosive com­
puter utility with information protection as 
a f1.1Dda.ental objective. 

Openition of the supervisor under the same 
lurrdware coastratne. as use-r programs, under 
descriptor c-trol aml in the s- address 
apace as the user. 

Facilities for user-constructed protected 
subayu- .. 
An access control system applicable to batch 
aa well as on-line jobs. 

~ive human eagineering of the user authen­
tication (password) interface. 

Decentr.aliaation of administrative control of 
the protection mechanillDS. 

Ability to allow or revoke access with 
i~iate effect. 

Multics is unique in the extent to which infor­
-t ion protection has ~ permitted to influence 
the entir~ syet .. deal.go. By describi11g the range 
of protection ideas embedded in Hulttca, the ex­
tent of this influence ehould become apparent. 

.!!!!!&!! Principles 

Before proceeding, it is useful to review 
several design principles which were used in the 
development of facilities for information protec­
tion in Multics. These design principles provided 
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guidance in many decisions, although admittedly 
some of the principles were articulated only 
during the design, rather than in advance. 

1. Every designer should know and understand 'the 
protection objectives of the system. At the 
present rather shaky stage of understanding of 
operating system engineering, there are many 
points at which an apparently "don't care" 
decision actually has a bearing on protection. 
Although these decisions will eventually come 
to light as the system design is integrated, a 
system design cannot withstand very many rever­
sals of early design decisions if it is to be 
completed on a reasonable fChedule and within 
a budget. By lteep.ing all designers aware of 
the protection objectives, the early decisions 
we more likely to be made correctly. 

2. Keep the design as simple and small as possible. 
This principle is stated so often that it be­
comes tiresome to hear. However, it bears 
repeating with respect to protection mechanisms, 
since there is a special probl-: design and 
iniplementation errors which result in unwanted 
access paths will not be 1-ediately noticed 
during routine use, since routine use usually 
does not include attempts to utilize improper 
access paths. Therefore, techniques such as 
complete, line-by-line auditing of the protec­
tion mechani81D8 are necessary; for such 
techniques to be successful, a 111111111 and simple 
design is essential. 

3. Protection ..chani-. should be baaed on per­
mission rather than exclusion. This principle 
means that the default situation is lack of 
access, and the protection scheme provides 
selective permission for specific purposes. 
The alternative, in which lilechani-s attempt 
to screen off sections of an othezwiae open 
sy•tem, seems to present the wrong psychologi­
cal base for secure ayst- design. A conser­
vative design must be basee on arglllleQts on 
why objects should be accessible, rather than 
on why they should not; in a large system some 
objects will be inadequately con•idered and a 
default of lack of access is more fail-safe. 
Along the same line o'f reasoning, a design or 
implementation iaiatake in a mec:hui• which 
gives explicit permission tends to fail by re­
fusing permission, a safe situation, since it 
will be quickly detected. On the other hand 
a design or implementation mistake in a 
mechanism which explicitly excludes access 
tends to fail by not excluding acceaa, a fail­
ure which may go unnoticed. 

4. Every access to every object must be checked 
for authority. This principle, when applied 
methodically, is the primary underpinning of 
the protection system. It forces a system­
wide view of access control which includes 
initialization, recovery, shutdown, and main­
tenance. It also implies that a foolproof 
method of identifying the source of every re­
quest must be devised. In a system designed 
to operate continuously, this principle re­
quires that when access decisions are remem­
bered for future use, careful consideration 
be given to how changes in authority are pro­
pagated into such local memories. 

5. The design is not secret. The mechanisias do 
not depend on the ignorance of potential 
attackers, but rather on possession of speci­
fic, more easily protected, protection keys or 
passwords. This strong decoupling between pro­
tection mechanisms and protection keys permits 
the ~ani..a to be reviewed and examined by 
as many competent authorities as possible, 
without concern that such review may itself 
compromise the safeguards. Peters[l9) and 
Baran[2) discuss this point further. 

6. The principle of least privilege. Every pro­
gram and every privileged user of the system 
should <>p41rate using the least amount of privi­
lege necuaary to complete the job. If this 
principle ia ,Wllowed, the effect of accidents 
ia reduced. .Also, if a question related to 
aauae of .. a 1u::Lvilege occurs, the nwaber of 
progr ... which must be audited is minimized. 
Put another way, if one has a mechanism avail­
able which tan provide "firewalls", the prin­
ciple of ·1eaat privilege provides a rationale 
for where to install the firewalls. 

7. Make .sure .thet the design encourages correct 
beh.ayior in the users, operators, and admin­
istr~tora of the syatea. Experience with 
syat811111 which did not follow this principle 
rev-led maer.ous exaiaples in which usera ig­
nor~ or bypa.saed protection mechanisma for 
the ~e of convenience. It is essential that 
the humian interface be designed for natural­
nesa, ea" .of. use, and simplicity, so that 
users will routinely and automatically apply 
the protection:·mechani-. 

The application -Of these seven design principles 
will be ev~ent in ·l!llmy of the specific mechaniama 
deacribed in tjiia pajU!r. 

Finally, in ttie d1!11ign of Multics there were 
two additicnal functional objectives worth dwelling 
upon. The first·cif these was to provide the option 
of cOlliplete decentraltza·tion of the adminiiltration 
of protection specifkations. If the system 1iesign 
forces all adtitinistrative decisions (e.g., protec­
tion apecificationa) to be set by a single adminis­
trator~ that. llda4n~ator quickly becomes a bottle­
neck and an .:t!lped~t ,to effective use of the 
.,.at .. , 111ith the w-.iilt that users begin adopting 
habits whidl bypa8a the ~niat:rator, often com­
promiaing prc>tection in the barsain. Even if re­
spo~illilicy un be. distributed among several ad-
111iniatr.ator•, ~ UJlle effects •Y occur. Only by 
pellllitting the -illdividu.sl u .. r some control of his 
own administrative envirosment can one in.-iat that 
he take responsibility for his work. Of course, 
centralization of authority should be available as 
an option. It is easy to limit decentralization; 
it seems harder to adapt a centralized design to 
an environment i~ 'Which decentralization is needed. 

The second additional functiDDal objective 
was to assume that some users will require protec­
tion schemes not anticipated in the original design. 
This objeetive requiTes that the .system provide a 
complete set of handholds so that the user, without 
exercising special privileges, may construct a pro­
tection environment which can interpret access re­
quests however he desires. The method used is to 
permit any user to construct a protected subsystem, 
Which is a collection of programs and data with 
the property that the data may be accessed 



only by programs in the subsystem, and the programs 
may be entered only at designated entry points. A 
protected subsystem can thus be used to program 
any desired access control scheme. 

The Storage System and Access Control Lists 

The central fixture of Multics is an .organized 
information storage system. [8] Since the storage 
system provides both reliability and protec.tion 
from unauthorized information release, the user is 
thereby encouraged to make it the repository of all 
of his programs and data files. All use of infor­
mation in the storage system is implemented by 
mapping the information into the virtual memory of 
some Multics process. Physical storage location is 
automatically determined by activity. As a result, 
the storage system is also used for all system data 
bases and tables, including those related to protec­
tion. The consequence of these observations is that 
one access control mechanism, that of the storage 
system, handles almost all of the protection 
responsibility in Multics. 

Storage is logically organized in separately 
named data storage segments, each of which contains 
up to 262,144 36-bit words. A segment is the cata­
loguing unit of the storage system, and it is also 
the unit of separate protection. Associated with 
each segment is an access control list, an open­
ended list of names of users who are permitted to 
reference the segment*. To understand the struc­
ture of the access control list, first consider 
that every access to a stored segment is actually 
made by a Multics process. Associated with each 
process is an unforgeable character string identi­
fier, assigned to the process when it was created. 
In its simplest form, this identifier might consist 
of the personal name of the individual responsible 
for the actions of the process. (This responsible 
person is commonly called the principal, and the 
identifier the principal identifier.) Whenever 
the process attempts to access a segment or other 
object catalogued by the storage system, the prin­
cipal identifier of the process is compared with 
those appearing on the access control list of the 
object; if any match is found access is granted. 

Actually, Multics uses a more flexible scheme 
which facilitates granting access to groups of 
users, not all of whose members are known, and 
which may have dynamically varying membership. A 
principal identifier in Multics consists of several 
parts; each part of the identifier corresponds to 
an independent, exhaustive partition of all users 
into named groups. At present, the standard 
Multics principal identifier contains three parts, 
corresponding to three partitions: 

1. The first partition places every individual 
user of the installation in a separate access 
control group by himself, and names the group 
with his personal name. (This partition is 
identical to the simple mechanism of the 
previous paragraph.) 

2. The second partition places users in groups 
called projects, which are basically sets of 
users who cooperate in some activity such as 
constructing a compiler or updating an 

* The Multics access control list corresponds 
roughly to a column of Lampson's protection 
matrix. [16] 
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inventory file. One person may be a member of 
several projects, although at the beginning of 
any instance of his use of Multics he.must de­
cide under which project he is operating. 

3. The third partition allows an individual user 
to create his own, named protection compart­
ments. Private compartments are chiefly use­
ful for the user who has borrowed a progr~m 
which he has not audited, and wishes to i~sure 
that the borrowed program does not access cer­
tain of his own files. The user may designate 
which of his own partitions he wishes to use 
at the time he authenticates his identity1'. 

Although the precise description in terms of 
exhaustive partitions sounds formidable, in practice 
a relatively easy-to-use mechanism results. For 
example, the user named "Jones" working on the pro­
ject named "Inventory" and designating the personal 
compartment named "a" would be assigned the princi­
pal identifier: 

Jones.Inventory.a 

Whenever his process attempts to access an object 
catalogued by the storage system, this three part 
principal identifier is first compared with succes­
sive entries of the access control list for the 
object. An access control list entry similarly has 
three parts, but with the additional conveqtion 
that any or all of the parts may carry a special 
flag to indicate "don't care" for that particular 
partition. (We represent the special flag with an 
asterisk in the following examples.) Thus, the 
access control list entry 

Jones.Inventory.a 

would permit access to exactly the principal of our 
earlier example. The access control list entry 

Jones.*.* 

would permit access to Jones no matter what project 
he is operating under, and independent of his per­
sonally designated compartment. Finally, the access 
control list entry 

i<. Inventory.* 

would permit access to all users of the "Inventory" 
project. Matching is on a part by part basis, so 
there is no confusion if there happens to be a 
project named "Jones". 

Using multi-component principal identifiers it 
is straightforward to implement a variety of stan­
dard security mechanisms. For example, the military 
"need-to-know" list corresponds to a series of 
access control list entries with explicit user names 
but (possibly) asterisks in the remaining fields. 
The standard government security compartments are 
examples of additional partitions, and would be 
implemented by extending the principal identifier 
to four or more parts, each additional part corres­
ponding to one compartment in use at a particular 
installation. (Every person would be either in or 
out of each such compartment.) A restriction of 
~ess to users who are simultaneously in two or 
more compartments is then easily expressed. 

.,, The third partition has not yet been completely 
implemented. The current system uses the third 
partition only to distinguish between interactive 
and absentee use of the system. 
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Ve have used the term "object" to describe the 
entities catalogued by the storage system with the 
intent of implying that segments are not the only 
kinds of objects. Currently, four kinds of objects 
are implemented or envisioned: 

1. Segments 

2. Message queues (experimental implementation) 

3. Directories (called catalogues in some systems) 

4. Removable media descriptors (not yet imple­
mented) 

For each object, there are several separately 
controllable modes of access to the object. For 
example, a segment may be read, written, or exe­
cuted as a procedure. If we use the letters r, w, 
and e for these three modes of access, an access 
control list entry for a segment may specify any of 
the combinations of access in table I. Certain 
access mode combinations are prohibited either be­
cause they make no sense (e.g.; write only) or cor­
rect implementation requires more sophisticated 
machinery than implied by the simple mode settings. 
(For example, an execute-only mode, while appealing 
as a method for obtaining proprietary procedures, 
leaves unsolved certain probll!lllS of general pro­
prietary procedures, such as protection of return 
points of calla to other procedures. The protec­
tion ring mechanism described later is used in 
Multics to implen.nt proprietary procedures. The 
execute-only mode, while probably useful for less 
general cases, has not been pursued.) 

Mode Typical use 

(none) access denied 

r read-only data 

re pure procedure 

rw writeable data 

rew impure procedure 

Table I: Acceptable combinations of access 
modes for a segment. 

In a similar way, message queues permit sepa­
rate control of enqueueing and dequeueing of 
messages, tape reel media descriptors permit 
separate control of reading, writing, and appending 
to the end of a tape reel, and directories permit 
separate control of listing of contents, modifying 
existing entries, and adding new entries. Control 
of these various forms of access to objects is pro­
vided by extending each access control list entry 
to include access mode indicators. Thus, the access 
control list entry 

Smith.*.* rw 

permits Smith to read and write the data segment 
associated with the entry. 

It would have been simpler to associate an 
access mode with the object itself, rather than 
with each individual access control list entry, but 
the flexibility of allowing different users to have 
different access modes seems useful. It also makes 
possible exceptions to the granting of access to 
all members of a group. In the case where more 
than one access control list entry applies, with 
different access modes, the convention is made that 
the first access control list entry which matches 

the principal identifier of the requesting process 
is the one which applies. Thus, the pair of access 
control list entries: 

Smith.Inventory.* 

*.Inventory.* 

(none) 

rw 

would deny access to Smith, while permitting all 
other ....t>ers of the "Inventory" project to read 
and write the segment*. To insure that such con­
trol is effec:tive, when an entry is added to an 
accesa control list, it is sorted into the.list 
accot"ding· to bow specific the entry is by the fol­
lowing rule: all entries containing speci~ic names 
in the first part are placed before those with 
"don 1 t caru" ·in the first part. Each 'of thoae, 
subgroups is then siailarly ordered according to 
the second part, and so on. The purpose of this 
sorting is to allow very 1pecif ic additions to an 
access control list to tend to take precedence over 
previously existing (perhaps by default) less 
specific entries, without requiring that the user 
master a language which permits him arbitrary 
ordering of entries. The result is that most com­
mon access control intentions are handled correctly 
automatically, and only unusually sophisticated 
intentions require careful analysis by the user to 
get them to colae out right. 

To minimize the explicit attention which a 
user 1m1st give to setting access control lists, 
every directory contains an "initial access control 
list". Whenever a ~ object is created in that 
directory, the contents of the initial acce&a con­
trol list are copied into the access control list 
of the -i.y c:ntated Object*": Only if the user 
wishes acce .. to be handled differently than this 
does he have to take explicit a.ction. Permission 
to llM>dify a directory's contents implies also 
permission to llOdify its initial access control 
list. 

The acceaa control list ..echaniam illustrates 
an intereatj.ng subtlety. One might consider pro­
viding, aa a convenience, checking of new access 
control list entries at the time they are made, for 
exampl.e to warn a user that he has just cr.eated an 
access control list entry for a non-existent person. 
Such checks were initially implemented in Multics, 

* This feature violates design principle three, 
which pra11cribes selective exclusion from an other­
wise open environment because of the risk of un­
detected et:rora. The feature has been provided 
neverthel-•, because the alternative of lbting 
every user except the few excluded seems clumsy. 

** An earlier version of Multics did not copy the 
initial access control list, but instead considered 
it to be a coamion appendix to every access control 
liat in that directory. That strategy made auto­
matic sorting of access control list entries in­
effective, so sorting was left to the user. As a 
result, the net effect of a single change to the 
common appendix could be different for every object 
in the directory, leading to frequent mistakes and 
confusion, in violation of the seventh design prin­
ciple. Since in the protection area, it is essen­
tial that a user be able to easily understand the 
consequences of an action, this apparently more 
flexible design was abandoned in favor of the less 
flexible but more understandable one. 



but it was quickly noticed that they represented a 
kind of compromise of privacy: by creating an 
access control list entry naming an individual, the 
presence or absence of an error message would tell 
whether or not that individual was a registered 
user of the system, thereby possibly compromising 
his privacy. For this reason, a name-encoding 
scheme which required checking of access control 
entry names at the time they were created was 
abandoned. 

It is also interesting to compare the Multics 
access control scheme with that of the earlier CTSS 
system[6]. In CTSS, each file had a set of access 
restriction bits, applying to all users. Sharing 
of files was accomplished by permitting other users 
to place in their directories special entries 
called links, which named the original file, and 
typically contained further restrictions on allow­
able access modes. The CTSS scheme had several de­
fects not present in the Multics arrangement: 

1. Once a link was in place there was no way to 
remove it without modifying the borrower's 
directory. Thus, revocation of access was 
awkward, 

2. A single user, using the same file via differ­
ent links, could have different access privi­
leges, depending on which link he used. 
Allowing access rights to depend on the name 
which happens to be used for an object cer­
tainly introduced an extra degree of flexi­
bility, but this flexibility more often re­
sulted in mistakes than in usefulness. 

3. As part of a protection audit, one would like 
to be able to obtain a list of all users who 
can access a file. To construct that list, 
on CTSS, one had to search every directory in 
the system to make a list of links. Thus such 
an audit was expensive and also compromised 
other users' privacy. 

Multics retains the concept of a link as a naming 
convenience, but the Multics link confers no access 
privileges -- it is only an indirect address. 

Early in the design of Multics[8] an additional 
extension was proposed for an access control list 
entry: the "trap" extension, consisting of a one­
bit flag and the name of a procedure. The idea 
was that for all users whose principal identifier 
matched with that entry, if the trap flag were on 
the procedure named in the trap extension should"" 
be called before access be granted. The procedure, 
supplied by the setter of the access control list 
entry, could supply arbitrary access constraints, 
such as permitting access only during certain hours 
or only after asking another logged in user for an 
OK. This idea, like that of the execute-only pro­
cedure, is appealing but requires an astonishing 
amount of supporting mechanism. The trap proce­
dure cannot be run in the requesting user's address­
ing and protection environment, since he is in con­
trol of the environment and could easily subvert 
the trap procedure. Since the trap procedure is 
supplied by another user, it cannot be run in the 
supervisor's protection environment, either, so a 
separate, protected subsystem environment is called 
for. Since the current Multics protected subsystem 
scheme allows a subsystem to have access to all of 
its user's files, implementation of the trap exten­
sion could expose a user to unexpected threats from 
trap procedures on any data segment he touches. 
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Therefore, at the least, a user should be able to 
request that he be denied acces~ t0 0~~e~ts pro­
tected by trap extensions, rather than be subject 
to unexpected threats from trap procedures. Finally, 
if such a trap occurs on every read or write refer­
ence to the segment, the cost would seem to be high. 
On the other hand, if the trap occurs only at the 
time the segment is mapped into a user's address 
space'~, then design principle four, that every 
reference be validated, is violated; revocation of 
access becomes difficult especially if the system 
is operated continuously for long periods. The sum 
total of these considerations led to temporarily 
abandoning the idea of the trap extension, perhaps 
until such time as a more general domain scheme, 
such as that suggested by Schroeder[21] is 
available. 

Both backup copying of segments (for reliabil­
ity) and bulk input and output to printers, etc. 
are carried out by operator-controlled processes 
which are subject to access control just as are 
ordinary users. Thus a user can insure that print­
ed copies of a segment are not accidentally made, 
by failing to provide an access control list entry 
which permits the printer process to read the 
segment**. Access control list entries permitting 
backup and bulk I/O are usually part of the default 
initial access control list. Bulk input of cards 
is accomplished by an operator process which reads 
them into a system directory, and leaves a note for 
the user in question to move them to his own 
directory. This strategy guarantees that there is 
no way in which one user can overwrite another 
user's segment by submitting a spurious card input 
request. These mechanisms are examples of the 
fourth design principle: every access to every 
object is checked for authority. 

An administrative consequence of the access 
control list organization is that personal and pro­
ject names, once assigned, cannot easily be reused, 
since the names may appear in access control lists. 
In principle, a system administrator could, when a 
user departs, unregister him and then examine every 
access control list of the storage system for in­
stances of that name, and delete them. The system 
has been deliberately designed to discourage such 
a strategy, on the basis that a system administrator 
should not routinely paw through all the directories 
of all system users. Thus, the alternative scheme 
was adopted, requiring all user names, once regis­
tered, to be permanent. 

Finally, the one most apparent limitation of 
the scheme as presently implemented is its "one­
way" control of access. With the described access 
control list organization, the owner of a segment 
has complete control over who may access it. There 
are some cases in which users other than the owner 
may wish to see access restricted to an object 
which the owner has declared public. For example, 
an instructor of a class may for pedagogical pur­
poses wish to require his students to write a 

* Or, in traditional file systems, at the time the 
file is "opened". 

;,,·, Of course, another user who has permission to 
read the segment could make a copy and then have 
the copy printed. Methods of constraining even 
users who have permission are the subject of con­
tinuing research[20]. 



2-46 

particular program rather than make use of an equiva­
lent one already publicly available in the system. 
Alternatively, a project administrator concerned 
about security may wish to insure that his project 
members cannot copy sensitive information into stor­
age areas belonging to other users and which are 
not under his control. He may also want to prevent 
his project members from setting access control 
lists to permit access by users outside the project. 
This kind of control can be expressed in Multics 
currently only by'going to the trouble of construc­
ting a protected subsystem which examines all super­
visor calls, thereby permitting complete control 
over which objects are mapped into the address space 
and what terms are added to access control lists. 
Fortunately, there have Bo far appeared only a few 
examples in which such control is required, and the 
escape suggested has proven adequate for those cases. 
A more general, yet quite simple, solution would be 
to associate with the user's process two constrain­
ing lists: a list of pathn.mnes of directories 
whose contents he may access> and a list of access 
control list terma which he is ~ermitted to place on 
access control lists. lbese two constraining lists 
would be set only by the project administrator or 
security officer. ni.e constraining lists would be 
especially useful in the military security environ­
ment, since they would help in the construction of 
a list of items a defector might have had access to. 

As is evident, the Multics access control list 
mechanism represents an engineering tradeoff among 
three conflicting goals: flexibility of expression, 
ease of understanding and use, and economy of 
implementation. Additional flexibility of expres­
sion was tried (e.g., the coaDon access control 
list mechanism previously footnoted) with the con­
clusion that the additional confusion which results 
from accidental misuse of the generality can out­
weigh the benefits; apparently the correct direction 
is the opposite, toward simpler, leas general, and 
more easily understandable protection structures. 

Hierarchical Control .!?! Access Specifications 

Since in Multics every object, including a 
directory, must be catalogued in some directory, all 
objects are arranged into a single hierarchical tree 
of directories. This naming hierarchy also provides 
a hierarchy of control of access, through the 
ability to modify the contents of a directory. 
Since a directory entry consists of the ll8JIM! of some 
object and its access control list, having access to 
modify directory entries is interpreted to include 
the ability to modify the access control lists of 
all the objects catalogued in that directory, No 
further hierarchical control is provided; for 
example, there is no ability to say "Allow read ac­
cess to Jones for all segments below this node in 
the naming tree". Such specifications are similar 
in nature to the "cOD1111on access control list" men­
tioned before; they make it difficult for a user to 
be sure of all the consequences of a change to the 
access specification. For example, removing a 
specification such as that quoted above, which per­
mits only reading, might render effective a forgotten 
access control term lower in the naming hierarchy 
which permits both reading and writing*. 

* Early versions of Multics provided a limited 
form of higher-level specification in the form of 
ability to deny all use of a directory, and 

Although it would appear that the hierarchical 
scheme provides an inordinate amount of power to a 
project administrator and, above him, to a system 
administrator, in practice it forces a careful 
consideration of the lines of authority over pro­
tected information, and explicit recognition of an 
authority hierarchy which already existed. In some 
environments, it would probably be appropriate to 
publicly log all modifications of directory access 
above some level, so as to provide a measure of 
control of the use of hierarchical authority. More 
elaborate controls might include requiring c00pera­
t ive consent of some quasi-judicial c011111ittee of 
users for modifi.cation of high-level directory 
access. Such controls are relatively easy for an 
installation or a project to implement, uaing pr<>­
tected subsystems. 

It is poaaible, by choosing access modes 
correctly, to use the hierarchical access con.trol 
scheme in combination with the initial acceae con­
trol list to accomplish a totally centralized con­
trol of all access' decisions. If, for example, a 
project adlninistrator creates a directory for a 
uaer, places an initial access control list in that 
directory, and,then grants to the new user per­
mission only to add new entries to the directory, 
all such new entries would automatically receive a 
copy of the initial access control list det.ermined 
by the admin:latrator -- the user would have no con­
trol over who may use the objects he creates. By 
policy, a system administrator could run an entire 
installation under this tight control, and retain 
for himself complete authority to determine what 
access control list is placed on every object, as 
in IBM's Resource Security System[l4). Alterna­
tively, any lllllllller portion of the naming hier­
archy can be kept under absolute control by the 
person having authority to modify acceas control 
lists at the top node of the portion. 

ni.e other obvious alternative to a hierarchi­
cal control of modification of access control lists 
would be some form of self-control. 'nlat is, the 
ability to modify an access control list would be 
one of the modes of access controlled by the list 
itself. A veTy general version of this alternative 
has been explored by Rotenberg(20). This alterna­
tive has not been tried out in the Multics context, 
partly because the implications of the hierarchical 
method were easier to understand in the first imple­
mentation. Probably the chief advantage of self­
control of access modification would be that one 
could provide an individual a fully private work 
area in which no one -- manager, security officer, 
or system administrator -- could intrude. On the 
other hand, the implementation of a "locksmith" 
while easy to do may require introducing hidden 
access paths which are then subject to misuse*. 

therefore of the objects contained within it. For 
the reasons suggested, this feature has been 
disabled. 

* A locksmith would be an administrator who can 
provide accountable intervention when mistakes are 
made. For example, if an organization's key data 
base is under the exclusive control of a manager 
who has been disabled in an automobile accident, 
the locksmith could then provide another manager 
with access to the file. It seems appropriate to 
formalize the concept of a locksmith so that appro­
priate audit trails and authority to be a locksmith 



Also, one wonders how a self-control scheme would 
fit smoothly into an organization which does not 
usually give an individual the privilege of choos­
ing his own office door lock. Clearly, the social 
and organizational consequences of the choice be­
tween these two design alternatives deserve fur­
ther study. 

Authentication of users 

All of the machinery of access control lists, 
access modes, protected subsystems, and hierarchi­
cal control depend on an accurate principal iden­
tifier being associated with every process. 
Accuracy of identification depends on authentica­
tion of the user's claimed identity. A variety of 
mechanisms are used to help insure the security of 
this authentication. The general strategy chosen 
by Multics is to maintain individual accountability 
on a personal basis. Every user of a given instal­
lation (with one class of exception, noted later) 
is registered at the installation, which means that 
a unique name, usually his last name plus one or 
two initials, is permanently entered in a system 
registry. Associated with his name at the time he 
is registered is a password of up to eight ASCII 
characters. Whenever any person proposes to use 
the system, he supplies his unique name, at which 
point the system demands also that he provide his 
password. 

Thus far, the authentication mechanism of 
Multics is essentially the same as for most other 
remote-accessed systems. However, Multics uses 
several extra measures related to user authentica­
tion, which are not often found in other systems. 
For one, all use of the system, whether interactive 
or absentee (batch) is authenticated interactively. 
That is, initiation of a batch job is not done on 
the basis of information found in a card reader. 
Arriving card decks are read in and held in on-line 
storage by a system process, for which an operator 
is responsible. All absentee jobs, whether they 
are to be controlled by files created from cards 
or files constructed interactively or files con­
structed by another program, must be initiated by 
some job already on the system, and whose legiti­
macy has been previously authenticated. Although 
a chain of absentee job requests can be developed, 
the chain must have begun with an interactive job, 
which requires interactive authentication. In 
the simplest case, the individual responsible goes 
to an interactive console, identifies and authen­
ticates himself, and requests execution of the job 
represented by the incoming card deck. If neces­
sary, the request will automatically wait until 
the card deck arrives, so that the user need not 
wait for the operator or for a card reader queue*. 
Thus, no job is every run without prior positive 
identification of the responsible party. Note 
that for installations in which responsibility for 
card controlled jobs is considered unimportant, it 
is rather trivial to construct a Multics program, 
run under the responsibility of the card reader 

can be well-defined. The alternative of sending 
a system programmer into the computer room with 
instructions to directly patch the system or its 
data may leave no audit trail and almost certainly 
encourages sloppy practice. 

;, The automatic wait is not yet implemented. 
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operator, which accepts and runs as a job anything 
found in the card reader. All such jobs would be 
run in processes bearing the principal identifier of 
the card reader operator, and are thus constrained 
in the range of on-line information which they can 
access. The inviolate principle of access control 
remains that on-line authentication of identity, by 
presenting a password, is required in order to start 
a process labeled with a particular desired principal 
identifier. Note also that the fact that a job 
happens to be operated without an interactive ter­
minal has no bearing on its privileges, except as 
explicitly controlled by its principal identifier. 
Finally, to handle the situation where a busy 
researcher asks a friend to submit the batch job, 
a proxy login scheme permits the friend to identify 
himself, under his own password, and then request 
that the job be run under the principal identifier 
of the original researcher. The system will permit 
proxy logins only if the person responsible for the 
principal identifier to be used has previously 
authorized such logins by giving a list of proxies*. 

As to protection of passwords, several facili­
ties are provided. The user may, after authenti­
cating himself, change his password at any time he 
feels that the old one may have been compromised. 
A program is available which will generate a new 
random eight-character password with English digraph 
statistics, thereby making it pronounceable and easy 
to memorize, and minimizing the need for written 
copies bf the password. Users are encouraged to 
obtain their passwords from this program, rather 
than choosing passwords themselves, since human­
chosen passwords are often surprisingly easy to 
guess. Passwords are stored in the file system in 
mildly encrypted form, using a one-way encryption 
scheme along the lines suggested by Wilkes[29]. 
As a result, passwords are not routinely known by 
any system administrator or project administrators, 
and there is never any occasion for which it is even 
appropriate to print out lists of passwords. If, 
through some accident, a stored password is exposed, 
its usefulness is reduced by its encrypted form. 

When the user is requested to give his password, 
at login time, the printer on his terminal is turned 
off, if possible, or else a background of garbling 
characters is first printed in the area where he is 
to type his password. Although the user could be 
indoctrinated to tear off and destroy the piece of 
paper containing his password, by routinely protec­
ting it for him the system encourages a concern for 
security on the part of the user. In addition, if 
the user's boss (or someone from four levels of 
management higher) happens to be looking over his 
shoulder as he logs in, the user is not faced with 
the awkward social problem of scrambling to conceal 
his password from a superior who could potentially 
take offense at an implication that he is not to be 
trusted with the information. 

A time-out is provided to help protect the 
user who leaves his terminal, is distracted, and 
forgets to log out. If no activity occurs for a 
period, a logout is automatically generated. The 
length of the time-out period can be adjusted to 
suit the needs of a particular installation. 
Similarly, whenever service is interrupted by a 
system failure for more than a moment, a new login 

'" The proxy login is not yet implemented. 
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is required of all interactive users, since some 
users may have given up and left their terminals. 

Finally, several logging and penetration 
detection techniques help prevent attacks via the 
password routine. If a user provides an incorrect 
password, the event of an incorrect login attempt 
is noted in a threat-monitoring log, and the user is 
permitted to try again, up to a limit of ten times 
at which point the telephone (or network) connec­
tion is forcibly broken by the system, introducing 
delay to frustrate systematic penetration atteiapts*. 
Whenever a user logs in, the time and physical lo­
cation (terminal identification) of his previous 
login are printed out in his greetina message, . 
thus giving him an opportunity to notice if his 
password has been used by sOllleone else in his 
absence. Similarly, monthly accounting reports 
break down usaga by shift and services used, and 
may be reviewed on-line at any tima, thereby pro­
viding an opportunity for the individ114l to compare 
his pattern of use with that observed by the 
system, and perhaps to thereby detect unauthorized 
use. If either of these mechani8!118 suggests un­
authorized use, the individual involved may ask 
the system administrator to check the system log, 
which contains an entry for every login and logout 
giving date and time, terminal type used, and ter­
minal identification, if any. 

For a project which maintains especially sen­
sitive information, the project administrator may 
designate the initial procedure to be executed by 
some or all processes created using the name of 
that project as part of its principal identifier. 
This initial procedure, supplied by the project 
administrator, has complete control of the process, 
and can demand further authentication (e.g., a 
one-time password or a challenge-response scheme,) 
perform project logging of the result, constrain 
the user to a subset of the available facilities, 
or initiate a logout sequence, thereby refuaing 
access to the user. In the other direction, some 
projects may wish to allow unlimited public access 
to their files. If so, the project administrator 
may indicate that his project will accept login of 
unauthenticated users. In such a case, the system 

* With ASCII passwords chosen to match English 
digraph frequency, a little less than four bits of 
information are represented by each character 
(despite the eight or nine bits required to store 
the characters.) An eight character password thus 
carries about 30 bits of information, which would 
require about 109 guesses using an information 
theoretic optimum guessing strategy. If one mount­
ed a simultaneous attack frOlll 100 computer-driven 
terminals, and the system-imposed delays average 
only 10 milliseconds per attempt, about 105 seconds, 
or one full day of systematic attack would be re­
quired to guess a password. Although use of a 
uniformly random password generator would increase 
this work factor by several orders of magnitude, 
resistance to use of hard-to-remember passwords and 
the need to make written copies might act to wipe 
out the gain. Of course, this work factor calcula­
tion presumes that the attacker has no further 
basis on which to narrow the range of password 
possibilities, for example, by knowing that the 
user in question may have chosen his own password, 
or by wiretapping a previous login. 

does not demand a password, instead assigning the 
personal name "anonymous" to the principal identi­
fier of the process involved, using the name of the 
responsible project for the second part of the 
principal identifier. The principal identifier 
"anonymous" is the one exception to the registration 
scheme mentioned earlier. Allowing anonymous users 
does not comproaise the security of the storage 
system, since the principal identifier is constrain­
ed, and all storage system access is based on the 
principal identifier. The primary use of anonymous 
users has been for educational purposes, in which 
all students in a class are to perform some assign­
ment. Sometimes, this feature is coupled with the 
project•designated initial procedure, so that the 
project may-implement its own password scheme, or 
control w&ao facilities are made available, so as 
t() limit its financial liability. some statistical 
analysis and data-base development projects also 
permit anonymous use of data-retrieval programs. 

The obje~ive of many of these -cban.icms, such 
as a:l.mple regi•tration of every user, the proxy 
login, the anoR)"ll'10U• user, concealnient of printed 
passwords, ·and user changeable passwords, together 
with a storaatt eystem which pet'lllits all authorized 
aharing of iafora.tion, is to provide an environ-. 
ment in which there is never any need for anyone 
to know a password other than his own. Experience 
with the earlier CTSS system demonstrated that by 
omitting any of these features, the system itself 
may encourage borrowing of passwords, with an 
attendent reduction in overall security. 

l'ri.piary-Metnory Protection 

We may consider the access control list to be 
the first level of mechanism providing protection 
for stored information. Most of the burden of 
keeping users' programs from interfering with one 
another, with protected subsyatems, and with the 
supe:rVisor ia actually carried by a second level of 
mechanism, which is descriptor-baaed. lbis second 
level is intrciduced essentially· for speed, so that 
arbitration of access may occur·on every reference 
to memory. As a reault, the second level is imple­
mented mostly in hardware in the central processing 
unit of the Honeywell 6180. Of course, this 
strategy requires that the second level of mechanism 
be.operated in such a way as to carry out the intent 
expressed in the first level access control lists. 

As described by Bensoussan et al.(4) the 
Multics virtual memory is segmented to permit shar­
ing of objects in the virtual 1111!1110ry, and to simpli­
fy address space management for the programmer. 
The implementation of segmentation uses addressing 
descriptors, a teehnique used, for example, in the 
Burroughs 85000 computer systenis[9). The Burroughs 
impleuientation of a ·descriptor is exclusively as an 
addressing and type-labeling mechanism, with protec­
tion provided on the basis that a process may access 
only those objects for which it has names. In 
Multics, the function of the descriptor* is extended 
to include modes of access (read, write, and exe­
cute) and to provide for protected subsystems which 
share object names with their users. Evans and 
LeClerc(lO) were among the first to describe the 
usefulness of such an extension. 

* With the exception of type identification, 
which is~ provided in Multics. 



As shown in figure one, there are three 
classes of descriptor extensions for protection 
purposes: mode control, protected subsystem entry 
control, and control on which protected subsystems 
may use the descriptor at all. Every reference of 
the processor to the segment described by this 
descriptor is thus checked for validity. 

The virtual address space of a Multics pro­
cess is implemented with an array of descriptors, 
called a descriptor segment, as in figure two. 
Every reference to the virtual memory specifies 
both a segment number (which is interpreted as an 
index into the descriptor segment) and· a word num­
ber within the segment. 

Figure ·two also helps illustrate why the pro­
tection information is associated with the address­
ing descriptor r4ther than with the data itself*. 
Each c6mputation is carried out in its own address 
space, so each computation has its own private 
descriptor segment. Using this mechanism, a single 
physical segment may appear in different address 
spaces with different access privileges for differ­
ent users, even though they are referring to the 
same physical data. Since in a multiprocessor 
system such as Multics two such processes may be 
executing simultaneously, a single protection 
specification associated with the data is not 

* The alternate option is chosen, for example, in 
the IBM 360/67 and the IBM 370 "Advanced Function" 
virtual memory systems(24]. 
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Controls on which (hierarchically arranged) 
vrotected subsystems may use this descriptor. 

Figure 1 -- A Multics descriptor. 

sufficient. Having the protection specification 
associated with the descriptor allows for such 
controlled sharing to be handled easily. 

An llftuaual feature of the descriptors used in 
Multics is embodied in the second and third exten­
sions of figure one. Together, they allow hard­
ware enforcement of protected subsystems. A pro­
tected subsystem is a collection of procedures and 
data bases which are intended to be used only by 
calls to designated entry points, known in Multics 
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VM access to write new addressing and protection descriptor into descriptor segment. 

Caller accesses new object. 

Figure 2 -- Descriptor management in Multics. The Multics supervisor is treated as a protected subsystem. 
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as gates. If this intention is hardware enforced, 
it is possible to construct proprietary programs 
which cannot be read, data base managers which 
return only statistics rather than raw data to some 
callers, and debugging tools which cannot be acci­
dentally disabled. The descriptor extensions are 
used to authenticate subroutine calls to protected 
subsystems. Two important advantages flow from 
using a hardware checked call: 

1. Calls to protected subsystems use the same 
structural mechanisms as do calls to unpro­
tected subroutines, with the same cost in 
execution time. Thus a progr-r does not 
need to take the fact that he is calling a 
protected subsystem into account when he tries 
to estimate the performance of a new program 
design. 

2. It is quite easy to extend to the user the 
ability to write protected subsystems of his 
own. Without any special privileges, any user 
may develop his own proprietary program, data­
screening system, or extra authentication 
system, and be assured that even though he per­
mits others to use his protected subsystem, 
the information he is protecting receives the 
same kind of security as does the 111.1pervisor 
itself. 

In support of call protection, hardware is also 
provided to automatically check the addresses of 
all arguments as they are used, to be sure that 
the caller has access to them. Checking the range 
of the argument values is left to the protected 
subsystem. 

Protected subsystems are formed by using the 
third field of the descriptor extension of figure 
one. To simplify protected subsystem implementa­
tion, Multics imposes a hierarchical constraint 
on all subsystems which operate within a single 
process: each subsystem is assigned a number, be­
tween 0 and 7, and it is permitted to use all of 
those descriptors containing protected subsystem 
numbers greater than or equal to its own. Among 
the descriptors available to a subsystem may be 
some permitting it to call to the entry points of 
other protected subsystems. This scheme goes by 
the name .!!!Yi! .2! protection, and is more com­
pletely described by Grahma{l2] and by Schroeder 
and Saltzer[22].* As far as is known, the only 
previously existing systems to permit general, 
user-constructed protected subsystems are the 
M.I.T. PDP-1 time-sharing system[l] and the CAL 
operating system[l5]. 

The descriptor-based strategy permits two fur­
ther simplifying steps to be taken: 

1. All information in the storage system is read 
and written by mapping it into the virtual 
memory, and then using load and store instruc­
tions whose validity is checked by the 
descriptor mechanism. 

2. The supervisor itself is treated as an example 
of a protected subsystem, which operates in a 
virtual memory arbitrated by descriptors, 

* A more general approach, not yet implemented, 
but which removes the restriction that the protected 
subsystem be hierarchical, is described by Schroeder 
in his doctoral thesis[21]. 

exactly the same as do the user programs 
which it supports. 

The reasons why the first step provides simplifica­
tion for the user have been discussed extensively 
in the literature[4,13J. The second step deserves 
some more comnent. By placing the supervisor it­
self under the control of the descriptors, as in 
figure ·two, a rather substantial benefit is 
achieved: the supervisor then operates with the 
same addressing and machine language code genera­
tion environment aa the user, which means that 
supervisor programs may be constructed using the 
same compile-rs and debugging tools available to a 
user. The effect on protection is non-trivial: 
programs constructed and checked out with more 
powerful tools tend to have fewer errors, and 
errors in the supervisor which compromise protec­
tion often eacape notice. 

Perhaps equally important is that the deter­
mination of whether one is ~ or .!?!!! of the super­
visor is not baaed on some processor mode bit which 
can ue accidentally left in the wrong state when 
control is passed to a user program. Instead, the 
addressing privileges of the current protected sub­
system are gOll'erned by the subsystem identification, 
located in the descriptor of the segment which 
supplied the most recent instruction. Every trans­
fer of control to a different program is thus 
guaranteed to automatically produce addressing 
privileges appropriate to the new program. If a 
supervisor procedure should -accidentally transfer 
to a location in a user procedure, that procedure 
will find that the protection environment has auto­
matically returned to the state appropriate for 
running user procedures. 

Finally~ the descriptors are adjusted to pro­
vide only the amount of access required by the 
supervisor, in consonance with design principle six. 
For example', procedures are not writeable, and data 
bases are not executable. As a result, prograaming 
errors related to using incorrect addresses tend 
to be innediately detected as protection violations, 
and do not persist into delivered systems. If one 
reviews the operation of Multics starting with the 
initial loading of the system on an empty machine, 
he will find that only the first hundred or so 
instructions do not use descriptors. Once a 
descriptor segment has been fashioned, all memory 
references by the processor from that point on are 
arbitrated by descriptors. 

These mechanisms do not prohibit the super­
visor from making full use of the hardware when 
appropriate. Rather, they protect against acciden­
tal overuse of supervisor privileges. Clearly, the 
supervisor must be able to write into the descrip­
tor segment, in order to initially set it up, and 
also to honor requests to map additional objects 
of the storage system into segments of the virtual 
memory. This adjustment of descriptors is done 
with great care, using a single procedure whose 
only function is to construct descriptors which 
correspond to access control list entries. A call 
to the storage system which results in adjustment 
of a descriptor is illustrated in figure two. In 
this figure, it is worth noting that even the 
writing of the descriptor is done with use of a 
descriptor for the descriptor itself. Thus there 
is lictle danger of accidentally modifying a des­
criptor segment belonging to some other user, 



since the only descriptor segment routinely 
appearing in the virtual memory of this process 
is its own. 

Entries to the supervisor which implement 
"special privileges" (e.g., the operator may have 
the privilege of shutting the system down) are 
generally controlled by ordinary access control 
lists, either on the gates of supervisor entries, 
or in some cases by having the supervisor proce­
dure access some data segment before proceeding 
with the privileged operation. If the user 
attempting to invoke the privilege does not appear 
on the access control list of the data segment, an 
access violation fault will occur, rather than an 
unauthorized use of the privilege. 

The final step of "locking up" the supervisor 
lies in management of source-sink input-output. 
Recall first that all access to on-line catalogued 
information of the storage system is handled by 
direct mapping into the virtual memory. Thus, in­
put and output operations in Multics consist only 
of tru.e source-sink operations, that is of streams 
of information which enter or leave the system. 
Such operations are performed by hardware I/O chan­
nels, following channel programs conatructed by the 
I/O system in response to 1/0 requests of the call­
ing program. These 1/0 channel programs are placed 
in a part of the virtual memory accessible only to 
the supervisor*. Similarly, all input data is read 
into a protected buffer area, accessible only to 
the supervisor. Only after the input has arrived 
and the supervisor has had a chance to check it is 
.it turned over to the user, either by copying it, 
or by lllOdifying a descriptor to make it accessible 
to the user. A similar, inverse pattern is used 
on output. Since during 1/0 neither the data nor 
the ~annel program is accessible to the user, 
there is no hesitatian about permitting him to con­
tinue his computation in parallel with the 1/0 
operation. Thus, fully asynchronous operations are 
poHible. 

The system is initialized from a magnetic tape 
which contains copies of every program residing in 
the most protected area. In this way, the integrity 
of the protection mechanisms depends on protecting 
only one magnetic tape, and is independent of the 
contents of the secondary storage system (disk and 
drums) which are more exposed to compromise by 
maintenance staff. On the other hand, since the 
system is designed for continuous operation, there 

* And to the I/O channels, which use absolute 
addresses. If separate I/O channels were available 
to each physical device and the I/O channels used 
the addressing descriptors, protected supervisor 
procedures would not be required for I/O operations 
after device assignment (which requires a descrip­
tor to be constructed.) 

Here is an example of a place where building a new 
system, rather than modifying an old one, has sim­
plified matters. On some computer systems, the 
user constructs his own channel programs, and may 
even expect to modify them dynamically during 
channel operation. It is quite hard to invent a 
satisfactory scheme for protecting other users 
against such I/O operations without placing re­
strictions on their scope, or inhibiting parallel 
operation of the user with his I/O channel programs. 

appears to be no need for a separate package con­
s is ting of passwords and clearance information as 
suggested by Weissman[28]. 

2-51 

To round out the discussion of primary and 
virtual memory protection, we should consider stor­
age residues. A storage residue is the data copy 
left in a physical storage device after the previous 
user has finished with it. Storage residues must 
be carefully controlled to avoid accidental release 
of information. In a virtual memory system, the 
only way a storage residue could be examined would 
be to read from a previously unused part of the 
virtual memory. By convention, in Multics, the 
supervisor provides pages of zeros in response to 
such attempts. Since all access to on-line storage 
is via the virtual memory, no additional mechanism 
is required to insure that a user never sees a 
residue from the storage system. 

Weaknesses of ~ Multics Protection Mechanisms 

One is always hesitant to list the weaknesses 
in his system, for a variety of reasons. Often, 
they represent mistakes or errors of judgement, 
which are embarrassing to admit. Such a list pro­
vides an easy target for detractors of a design, 
and in the protection area provides an invitation 
for potential attackers at production installations 
which happen to be usillg the system. In the case 
of a system still evolving, such as Multics~ known 
weaknesses are being corrected as rapidly as 
feasible, so any list of weaknesses is rapidly 
obsolete. And finally, any liat of weaknesses is 
almost certainly incomplete, being subject to all 
of the built-in blindnesses of its authors. Never­
theless, such a list is quite useful, both to look 
for specific interesting unsolved problems, and 
also to establish what level of con·siderations are 
still considered releyant by the designers of the 
system. The weaknesses described here begin with 
two major areas, followed by several smaller 
probl-s. 

Probably the lllOst important weakness in the 
current Multics design lies in the large number of 
different program modules which have the ability, 
in principle, to comprOlllise the protection system. 
Of the 2000 program modules which comprise Multics, 
some 400, or 201., are in the "moat protected area", 
consisting of system initialization, the storage 
system, miscellaneous supervisor functions, and 
system shutdown. Althaugh all of these 400 modules 
operate using the descriptor-based virtual memory 
described earlier, the.descriptors serve for them 
only as protection against accidentally generated 
illegal address references; these modules are not 
constrained by the inability to construct suitable 
descriptors in the same way as the remaining 1600 
modules and user programs. ntus any of these 400 
modules (averaging perhaps 200 lines of source 
code each) might contain an error which compromises 
the security mechanisms, or even a security viola­
tion intentionally inserted by a system programmer. 
The large number of programs and the very high 
internal intricacy level frustrates line by line 
auditing for errors, misimplementation, or inten­
tially planted trapdoors. This weakness is not 
surprising for the first implementation of a sophis­
ticated system, and upon review it is now apparent 
that with mild software restructuring plus help from 
specialized hardware the number of lines of code in 
the most protected area can be greatly reduced --
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perhaps by as much as an order of magnitude. In 
examining many specific examples, there seem to have 
been three common, interrelated reasons for the 
extra bulk currently found in the protected area: 

economics: at the time of design, a function 
could be implemented more cheaply in the most 
protected region. Since the protection ring 
mechanism was originally simulated by software, 
there were design decisions based on the 
assumption that calls across ring boundaries 
were expeaaive. 

rush to get on the air: in the hurry to get 
an in~tial version of the system going, a 
shortcut was found, which required unnecessar­
ily placing a module in the most protected 
region. 

lack of understanding: a complex subsystem 
was not carefully enough analyzed to separate 
the parts requiring protection; the entire 
subsystem was therefore protected. 

With hardware-supported protection rings, 
hindsight, and the experience of a complete working 
implementation, it is apparent that a smaller ''most 
protected area" can be constructed. It now appears 
possible to make complete auditing a feasible task. 
A project is now underway to test this hypothesis 
by attempting to develop an auditable version of 
the most protected region of Multics. 

The second serious weakness in the current 
Multics design is in the complexity of the user 
interface. In creating a new segment, a user should 
specify permitted lists of users and projects, 
specify allowed modes of access for each, decide 
whether or not backup copies should be allowed and 
whether or not bulk I/O should be permitted for the 
segment, and whether or not the segment should be 
part of a protected subsystem. He should check 
that permissions he has giv•n to modify higher­
level directories interact in the desired way with 
his current intent. A variety of defaults have 
been devised to reduce the number of explicit 
choices which need be made in common cases: as 
already mentioned, a per-directory "initial access 
control list" is by default assigned to any new 
segment created in that directory. The defaults 
merely hide the complex underlying structure, how­
ever, and do not help the user with an unusual 
protection requirement, who 111.1st figure out for 
himself how to accomplish his intentions amid a 
myriad of possiblities, not all of which he under­
stands. The situation for a project administrator, 
who can control the initial program his users get, 
·and may perhaps force all of his users to interact 
via a limited, protected subsystem is similar, but 
with fewer defaults and more possibilities 
available. 

The solution to this problem lies in better 
understanding the nature of the typical user's 
mental description of protection intent, and then 
devising interfaces which permit more direct speci­
fication of that protection intent. As an example, 
a graduate student devised a simple Multics program 
which prints a list of all users who may force 
access to a segment (by virtue of having modify 
access to some higher level directory.) This list 
does not correspond to any single access control 
list found anywhere in the system, yet it is clearly 
relevant to one's image of how the segment is 
protected. Setting up the mechanisms of access 

control lists, accessibility modes, and rings of 
protection perhaps should be viewed as a problem of 
programming in which, as usual, the structures 
available in initial designs do not correspond 
directly with the user's way of thinking, even 
though there may be some way of progranming the 
structure to accomplish any intent. In the area of 
protection, the problem has a special edge, since 
if a user, through confusion, devises an overly per­
missive protection specification, he may not dis­
cover his mistalte until too late. 

At a level of significance well below the two 
major points of system sil:e and user interface com­
plexity are several other kinds of problems. 'l1tese 
problems are felt to be leas significant not because 
they cannot be exploited as e .. ily, but rather be­
cause the changes required to strengthen these areas 
are straightfoniard and relatively easy to implement. 
These problems include~ 

1 • Conmnication 1 inks are weak. Of course, any 
use of switched telephone lines leads to vul­
nerability, but provision for integration of 
a Lucifer-like system[23J for end-to-end 
encryption of messages sent over public lines 
or through a communication network would pro­
bably be a desirable (and simple) addition. 
As an example of a typical problem in this 
area, the Bell Syatem 202C6 DATAPHONE dataset, 
which is used for 1200 bps terminals, does not 
include provision for reporting telephone line 
disconnection to the computer system during 
data output transmission. If a user acciden­
tally hangs up his telephone line during out­
put, another U8er dialing to the same port on 
the computer may receive the output, and cap­
ture control of the process. Although remedial 
measures such as requiring reauthentication 
every few minutes could be used, automatic 
detection of the line disconnection would be 
far more reassuring. (Note that for the more 
c~ly uaed lOlA DATAPHOME dataset, which 
does report telephone line disconne'ctions, 
this problem does not exist; upon observing 
the dropping of the carrier detect line from 
the dataset, Multics immediately logs the user 
out.) 

2. The operator interface is weak. The primary 
interface of the operator is as a logged-in 
user, where his interactions can be logged, 
verified, and suitably restricted. However, 
he has a secondary interface: the switches 
and lights of the hardware itself. It would 
appear that the potential for error or sabo­
tage via this route is far higher than 
necessary, If every hardware switch in the 
system were both readable and settable by 
(protected supervisor) programs, then all such 
switches could be declared off limits to the 
operator, and perhaps placed behind locked 
panels. Since all operator interaction would 
then be forced to take place via hia terminal, 
his requests can be checked for plausibility 
by a program. What has really gone wrong here 
is a failure to completely reconsider the role 
of the operator in a computer system operating 
as a utility. Functions such as operation of 
card readers and printers do not require access 
to switches on the side of the processor -- or 
even physical presence in the same room as the 
computer, for that matter. The decision that 
a system failure has occurred and the 



appropriate level of recovery action to take 
are probably the operator functions which are 
hardest to automate or decouple from the phy­
sical machine room, but certainly much move­
ment in this direction would be easy to 
accomplish. 

3. Users are permitted to specify their own 
passwords, leading to easy-to-guess passwords. 
The resulting loss of security has already 
been well documented in the literature[25], 
and this method has been used at least once to 
improperly obtain access to Multics at M.I.T., 
when a programmer chose as his Multics pass­
word the same password he used on another, un­
secured time-sharing system. A better strategy 
here would be to force the use of system-gen­
erated randomly chosen passwords, and also to 
place an expiration date on them, to force 
periodic password changes. For sensitive 
applications, or situations where the password 
must be exposed to unknown observers (as in 
using a system via the ARPA network), the 
system should provide lists of one-time 
passwords. 

4. The supervisor interface is vulnerable to mis­
implementation, Although this difficulty 
could be described as a specific example of a 
supervisor too large and complex to audit, it 
is worth identifying in its own right. The 
problem has to do with checking the range of 
arguments passed to the supervisor. The hard­
ware automatically checks that argument 
addresses are legitimately accessible to the 
caller, and completely checks all use of 
pointer variables as indirect addresses. How­
ever, it provides no help in determining 
whether the ultimate argument values are 
"reasonable" for the supervisor entry in 
question, Each entry must be prepared to 
operate correctly (or at least safely) no mat­
ter what combination of argument values is 
supplied by the caller. Certain kinds of 
interfaces make for difficulty in auditing a 
program to see if it properly checks range of 
arguments. For example, if the allowed range 
of one argument depends on the result of com­
putation which is based in part on another 
argument, then it may be hard to enforce a 
programming standard which requires that all 
supervisor entries check the range of all their 
arguments before performing any other computa­
tion. The current Multics interface has 
examples of situations in which, to verify that 
a supervisor entry is correctly programmed so 
that it does not blow up when presented with 
an illegal argument, one must trace hundreds 
of lines of code and many subroutine calls. 
Such interfaces discourage routine auditing 
of the supervisor interface, and probably re­
sult in some undetected implementation errors. 
It would be interesting to explore the design 
of argument range-checking hardware, which 
would force the system programmer to declare 
the allowed range of arguments for his entries, 
and thereby force out into the open the exist­
ence of arguments whose range is not trivially 
testable, for interface design revision, 

5. Secondary storage residues are not cleared un­
til they are reassigned. When a segment is 
deleted, all descriptors for the physical 
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storage area are destroyed, and the area is 
marked as reusable. No further descriptors 
for the storage area will ever be constructed 
without first clearing the storage area, but 
meanwhile the residue remains intact. In 
principle, there is no way to exploit these 
residues using the system itself, but auto­
matic overwriting of the residues at the time 
of deletion would provide an additional safe­
guard against accidents, and guarantee that a 
segment, once deleted, is not accessible even 
to a hardware maintenance engineer. A similar 
problem exists for the magnetic tapes contain­
ing backup copies of segm,ents. In at least 
one case on another time-sharing system, the 
persistence of backup copies has proved 
embarrassing: a government agency requested 
that a file containing a list of special tele­
phone access codes be completely deleted; the 
installation administrator found himself with 
no convenient way to purge the residues on the 
backup tapes. Tnese tapes should probably be 
encrypted, using per-segment keys known only 
by the operating system, It is an interesting 
problem to construct a strategy for safely en­
crypting backup copy tapes, while ensuring 
that encrypting keys do not get destroyed upon 
system failure, making the backup copies 
worthless. 

6. Over-privileged system administrator. Some 
system functions have been organized in such a 
way that the administrators of the system re­
quire more privilege than really necessary. 
For example, measures of secondary storage 
usage are stored in the using directory rather 
than in an account fil~. As a result, the 
administrative accounting programs which pre­
pare bills for secondary storage use must have 
access to read every directory in the storage 
system. For another example, the "locksmith" 
function, mentioned earlier, is currently 
implemented by giving the locksmith permission 
to modify the root directory of the storage 
system directory hierarchy. Thus the lock­
smith has the unaudited ability to grant him­
self access to every file in the storage 
system. Such a design means that one of the 
easiest ways to attack is to attempt to in­
fluence the system administrator, possibly by 
surreptitiously inserting traps in some pro­
gram he is likely to use* while running a 
process whose principal identifier needlessly 
permits extensive privileges. The counter 
measure, currently partially implemented, is 
to provide administrators with protected sub­
systems from which they cannot escape, which 
are certified to exercise a minimum of privi­
lege, and which maintain audit trails. 

7. Ponderous backup copy and retrieval scheme. 
It has been noticed that the general method 
currently used for indexing the contents of 
storage system backup copy tapes is weak, so 
that the only effective way to identify a de­
sired copy of a damaged segment is to permit 
the user to manually scan printed journals of 
the names of the segments copied onto each 
tape. These journals contain the names of 

'' This technique has been described as the "Trojan 
Horse" attack[S]. 
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other users' segments and directories, and 
were intended for use only for emergency sit­
uations and with proper clearance. Unfortu­
nately, the number of retrieval requests which 
can be handled on other than an emergency basis 
is a sensitive function of the quality of the 
tools available for searching the journals 
automatically while maintaining privacy. A 
simple scheme based on a protected subsystem 
for searching journals has recently been pro­
posed, but is not yet implemented. 

8. Counter-intelligence techniques have not been 
exploited. Although logs of auspicious events 
(such as incorrectly supplied paaaworda) are 
maintained no true counter-intelligence strate­
gies are a.ployed. For example, Turn, et al. 
(26) have suggested inserting carefully moni­
tored apparent flaws in the ayst-. These 
flaws would be intended to attract a would-be 
attacker; any attempt to exploit them would 
result in an early warning of attack and an 
opportunity to apprehend the attacker. 

9. Some areas of potentially vulnerability have 
not been ex-ined. 'l'hese include vulnerability 
to undetected failures of the hardware protec­
tion apparatua[l7J,* electromagnetic radiation 
from the physical hardware .. chine[3], and 
traffic analysis possibilities, using perfor­
mance measurement tools available to any user. 

It is interesting to note that none of these 
nine specific weaknesses represent intrinsic diffi­
culties of full-scale computer utility systems -­
relatively straightforward modification can easily 
strengthen any of these areas. In fact, neither 
the two major weaknesses nor the nine specific ones 
represent "holes" in the sense of being i.iiediately 
exploitable by an attacker. Rather, they are areas 
in which an attacker is more likely to discover a 
method of entry caused by misimplementation, mis­
understanding, or miamanageiaent ·of an otherwise 
securable system. ntua we might describe the pro­
tect ion system as usable, though with known areas 
of weakness. 

Conclusions 

lbis paper has surveyed the complete range of 
information protection techniques which have been 
applied to a specific ex4mple of a system designed_ 
for production use as a computer utility. over 
three years of experience in a production environ­
ment at M.I.T. has demonstrated that the mechani8Dl8 
are generally useful. A cOlllllOnly asked question 
(especially in the light of recent experiences 
with attempts to add security to other coimnercially 
available computer systems) is "how much perfor­
mance is lost?" This question is difficult to 
answer since, as is evident, the protection struc­
ture is deeply integrated into the system and 

* Although the 6180 hardware is less vulnerable 
than some. An asynchronous processor-memory inter­
face tends to stop when an error occurs rather than 
proceeding with wrong data; complete instruction 
decoding explicitly traps all but legal operation 
codes and addressing modifiers; and the multipro­
cessor organization helps obviate the need for 
pipelines and other accident~prone highly-tuned 
logic tricks. 

cannot be simply "turned off'' for an experiment.* 
However, one significant observation may be made. 
In general, the protection mechaniSlllll are closely 
related to n4ming mechanisms, and can be implemented 
with a mini1m.1111 of extra fuss in a system which pro­
v·ides a highly structured naming environment. Thus, 
the users of Multics apparently have found that the 
overall package of a structured virtual memory with 
protection comea at an acceptable price. 

The Multics protection mechanisms were designed 
to be baaic and extendable, rather than a complete 
implementation of llOllll! specialized security model. 
Thus there are mecbaniaas which tllllY be used to pro­
vide the multilevel security classification (top 
secret, secret, confidential, unclaasified) and the 
access compartmenta of the U.S. governmental secur­
ity system[27). If one wished to precisely imi'tate 
the government security system, he could·do so with­
out altering the operating system. In this sense, 
Multics differs wi'th, say, SDC'a ADEPT[28} and 
IBM's Resource security Syatem( 14 J, both of which 
specifically implement models of the gC11Ternment 
security syst:em; but which do not permit, for 
example, uaer-written program-protected data bases. 

We should also note that the Multics aystem 
was designed to be securable, which is .different 
than stating that any particular site is actually 
operated in a completely secured fashion. Such 
tlllltters as machine room security, certification of 
of hardware maintenance engineers and sjatem opera­
tors, and telephone wire tapping are largely out­
side of the scope of operating system deaigl'l. In 
addition, correct '·admiilhtration can be encouraged 
by the design of an operating system, but not 
enforced. .Further we have reportfl the design of 
the system, realizing that its implementation has 
not yet been completely audited and therefore may 
contain trivial progrmmning errors which affect 
protection; 
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operating system (developed at the Untver~ltY of California at 
Berkeley) are the only two systems thus. far developed which 
permit construction of general, user-constructed, protected 
subsystems. This paper describes the mechanisms which make this 
feature posslble In Multics. Since the paper Is recent, the 
term I no 1 ogy and desert pt I on a re genera 11 y up-to-date. The 
mechanisms described here are exactly the ones Implemented on the 
Honeywell 6180 computer system. 



Protection of co111p11tations and information is an 
important aspect of a computer utility. In a system 
which uses segmentation as a menac;ry addressing 
scheme, protection can be achieved in part by 
associating concentric rings _of decreasing access 
privilege with a computation. This.paper describes 
hardware processor mechanisms for fJllPlementing 
these rings of protection. nte medlanisms allow 
cross-ring calls and SllbseqUent returns to occur 
without trappiitg to tlle supervisor. Automatic 
hardware valiclation of references across ring 
boundaries is also performed. Thus, a can by a user 
procedure to a protected subsystem (including the 
the supervisor) is identical to a can to a companion 
user procedure. The mechanisms of passing and 
referencing arguments are the same in both cases as 
well. 
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information, segmentation, virtual memory, Multics 
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Introduction 

The topic of this paper is the control of access to 
stored information in a computer utility. The paper 
describes a set bf proce5sor access control mechanisms 
that were devised as part of the second iteration of the 
hardware base for tQe Multics system. These mecha­
nisms provide a hardware implementation of protection 
rings which limit the access privileges of an executing 
program. 

Mu1tics is a general purpose, multiple user, inter­
active computer system developed at Project MAC of 
MIT in a joint effort with the Cambridge Information 
Systems Laboratory of Honeywell Information Systems 
Inc. and, until 1969, the Bell Telephone Laboratories. It 
was built and is being run as an experiment in designing, 
implementing, 6perating, and evaluating a prototype 
computer utility. (Reference [14] contains a bibliog­
raphy or publiCations on Multics.) 

Multics is ~urrently implemented on a Honeywell 
645 computer system. The 645 represents a first attempt 
to define a suitable hardware base for a computer utility. 
White conttlini~g special logic to support a seg1TYented 
virtual memocy;;the 645 processor [10] provide'S~tinly a 
limited set of access control mechanisms, forcing soft­
ware intervention to implement protection rings. In the 
course of Multics development a second iteration of the 
design of the hardware base has been undertaken. The 
resulting new hardware system is being built as a re-

• Project MAC and Department of Electrical Engineering, 545 
Technology Square, Cambridae, MA 92139'. Work reported herein 
was supported in Pltf't by Project MAC, an MIT research program 
sponscred by the f\4vanced Research Projects Agency, Department 
of Defense, under Office of Naval Research Contract N00014-70-
A.0362-000I. 

Presented at the Third ACM Symposium on Operating Systems 
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placement for the 645 using the technology of the 
Honeywell 6000 series computer systems. The new proc­
essor includes an improved set of access control mecha­
nisms, described here, which implement rings almost 
completely in hardware. These mechanisms were devel­
oped from a scheme described in [16]. Although specifi­
cally designed for Multics, the mechanisms are appli­
cable to any computer system which uses segmentation 
as a memory addressing sclleme. 

This paper begins by establishing the general need 
to control acce5s to stored information in a computer 
utility and by presenting several criteria for comparing 
different sets of access control mechanisms. R•vant 
aspects of the organization of segmented memories· are 
then sketched, and the processor mechanisms for imple­
menting profection rings are described. The paper con­
cludes by illustrating how rings can be used and by 
evaluating the impact of a hardware system design. 

Access Control in a Computer Utility 

Protection of computations and information is an 
important aspect of a computer utility. The multiple 
users of a computer utility have different goals and are 
responsible to different authorities. Such a diverse group 
will Use the same system only if it is possible for them to 
achieve independence from one another .. On the other 
}land, a great potential benefit of a computer utility is 
its ability to allow users to easily communicate, coop­
erate, and build upon one another's work. The role of 
protection in a computer utility is to control user inter­
action-guaranteeing total user separation when de­
sired, allowing unrestricted user cooperation when 
desired. and providing as many intermediate degrees of 
control as will be useful. 

While there are many manifestations of protection 
in a computer utility, most may be related to controlling 
access to stored information. Because stored informa­
tion represents both data and executable procedure, 
control of access to stored information serves to regulate 
information processing as well. 

Four criteria can be applied to a set of access control 
mechanisms to judge its usefulness in a computer utility: 
functional capability, economy~ sim.plicity, and pro­
. gramming generality. The first means that a set of access 
control mechanisms should be able to meet an inter­
esting set of user protection needs in a natural way. The 
ability to meet interesting protection needs must be a 
quality of the basic mechanisms, while the ability to do 
so in a natural way is a quality of their user interface. 
An obvious goal in designing new protection mecha­
nisms is to maximize functional capability. 

The second criterion, economy, means that the cost 
of specifying and enforcing a particular kind of access 
constraint with a set of mechanisms should be so low 
that it is not an important consideration in determining 
the type of access control to be used in a particular appli-
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cation. In addition, cost should be proportional to the 
functional capability actually used. The existence of 
access control mechanisms with sophisticated capabil­
ities should cost no extra to those with unsophisticated 
needs. Cost includes the subsystem complexity and user 
inco:ivenie:ice that result from use of the access control 
mechanisms, as well as any associated extra storage 
space and execution time. 

Simplicity is the third criterion. While it is true that 
simplicity often leads to economy, something more is at 
stake. For a set of access control mechanisms to be ac­
cepted there must be confidence that no way exists to 
circumvent it. The best way to achieve confidence is to 
keep the mechanisms so simple that they may be com­
pletely understood. With respect to access control 
mechanisms, lack of simplicity often implies lack of 
security. 

The fourth criterion, programming generality, is 
often neglected. It means that individual procedures 
may be combined easily into larger units without under­
standing or altering their internal organizations. Pro­
grarmning .gen~ dows shaling to be effective in 
encoura8'ng ~ts io build upon one another's work. 
An impijcatioq of prognunming generality of relevance 
to access control m~ms ·is that it should be pos­
sible to c~nge tfiC' protection environment of proce­
dures ~nd cOtlCctions of· procedures without altering 
their internal ~e. 

It clearly is diln.wlt to design access control mecha­
nisms which 5'tlsfY all four of these criteria simultane­
ously. Increases in. functj.onal capability come at the 
expense of ec9nomy, simplicity, and programming gen­
erality. Th~ C~Jl&e ig dcsianing a set of access control 
mechanism.s)s to.llialimiie, fqnctional capability within 
the cons1faints of Ute other three criteria. In the fol­
lowing sCciiol\S a ~ of lw!dw~e ~ control mecha­
nisms tJiAiwas.~viSed ~n the. ciiurse of Multics develop­
ment is described. These mechanisms appear to provide 
a significant improvement in the simultaneous satisfac­
tion of tile.four .~riteria. as compared with the mecha­
nisms in. the i~tial ~wtics implementation. 

Segmented Virtual Memory Environment 

The processor access control mechanisms described 
here regulate the ability of an executing program to 
reference information in a segmented virtual memory. 
As a basis for understanding these access control mecha­
nisms this section briefly reviews the structure of a typ­
ical sepiented virt• memory. (See (l-JJ for detailed 
descriptions of.several segmented virtual memories.) 

A machine language program for a segmented envi­
ronment does not reference memory by absolute ad­
dress. Rather, its memory consists of independent seg­
ments identified by number. Each segment is a separate 
array of words. A two-part address (s, w) identifies 
word w of the segment numbered s. 
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The collection pf segments in the virtual memory is 
defined by a descriptor segment containing an array of 
segment descriptor words (so~~- Each sow can de­
scribe a single segment in the virtual memory. The num­
ber of a segment is just the index of the corresponding 
sow in the descriptor segment. Among other things, an 
sow contains the absolute address of the beginning of 
the corresponding segment in memory. The absolute 
address of the beginning of the descriptor segment is 
contained in the descriptor base register (OBR) of a proc­
essor. Each processor contains logic for automatically 
translating two-part addresses into the corresponding 
absolute addresses. Address translation, done with an 
indexed retrieval of the appropriate sow from the de­
scriptor segment, occurs each time a word in the virtual 
memory is referenced, i.e. each time an instruction, in­
direct word, or instruction operand reference is made by 
an executing program. 

Storage for segments is usually allocated with a 
paging scheme in scattered fixed-length blocks. If used, 
paging is also taken into account by the address transla­
tion logic, but is totally transparent to an executing 
machine language program. Paging, if appropriately 
implemented, need not affect access control; it will be 
ignored in the remainder of this paper. 

Changing the absolute address in the OBR of a proc­
essor will cause the address translation logic to interpret 
two-part addresses relative to a different descriptor seg­
ment. This facility can be used to provide each user of 
the system with a separate virtual memory. A single 
segment may be part of several virtual memories at the 
same time, allowing straightforward sharing of segments 
among users. 

Controlling Access in a Segmented Virtual Memory 

To provide a framework for discussion, three specific 
assumptions true of Multics are introduced. First, a 
process with a new virtual memory is created for each 
user when he logs in to the system, and the name of the 
user is associated with the process. The process is the 
active agent of the user, and is his only means of refer­
encing and manipulating information stored on-line. 
Second, on-line storage is organized as a collection of 
segments of information. A process can reference a seg­
ment of on-line storage only if the segment is first added 
to the virtual memory of the process. Third, the users 
that are permitted to access each segment are named by 
an access control list associated with each segment. As 
will be seen, any system providing access control of the 
type under discussion will probably have analogous as­
sumptions. The application of the rest of the discussion 
to other systems with segmented virtual memories is 
straightforward. 

Adding a segment to a virtual memory, an operation 
performed by supervisor programs, provides the initial 
opportunity for controlling access to information stored 
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on-line. The name of the user associated with a process 
must match some entry on the access control list of a seg­
ment before the supervisor will add that segment to the 
the virtual memory of the process. 

Once a segment is included in the virtual memory, 
however, finer control on access is required. (If a process 
could, say, write in any segment to which it had access, 
little sharing of information among users would occur.) 
If this finer control is to be effective against arbitrary 
machine language programs constructed by users, it 
must be implemented as hardware access validation on 
each reference. The structure of the virtual memory 
makes it natural to record these finer constraints in the 
sow associated with each segment. Since the processor 
must examine the sow for a segment each time that seg­
ment is referenced by two-part address anyway, there is 
little effort added to validate the intended access against 
constraints recorded there. With this structure it is also 
possible to change the allowed access to a segment by 
changing the finer constraints recorded in the sow, and 
to expect the change to be immediately effective, al­
though the need for such dynamic changes is rare. 

Flags which enable a segment to be read, written, 
and executed are natural constraints to record in each 
sow. The value for each flag comes from the access con­
trol list entry which matched the name of the user asso­
ciated with the process. An attempt by a process to 
change the contents of a word of a segment, for exam pie, 
would be allowed by the processor only if the write flag 
were on in the sow for the segment. This mechanism 
provides individual control on the ability of each user's 
process to read, write, and execute the words in each 
segment stored on-line. It also makes a segment the 
smallest unit of information that can be separately pro­
tected. 

With the access control mechanisms described so far, 
all programs executed as part of some process have the 
same information accessing capabilities. However, there 
seems to be an intrinsic need in many computations for 
the access capabilities of a process to vary as the exe­
cution point passes through the various programs that 
direct the computation. The most obvious examples of 
this need are explicit invocations of supervisor programs 
during the course of a computation. The execution point 
may pass from a user program to a supervisor program 
to initiate an input/ output operation or change the ac­
cess control list of a segment, and then pass back to the 
user program. Presumably the executing supervisor pro­
gram can access information in some way that the user 
program cannot. In a system that allows and encourages 
sharing of information among users, other examples 
appear. For instance, user A may wish to allow user B 
to access a sensitive data segment, but only through 
a special program, provided by A, that audits references 
to the segment. During the course of a computation in 
a process of user B, access to the sensitive data segment 
should be allowed only when the execution point is in 
the special program provided by A. 
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l ne word "domain" is frequently associated with a 

set of access capabilities. The examples above point to 
an intrinsic need for multiple domains to be associated 
with a process and for the domain in which the process 
is executing to occasionally change as the execution 
point passes from one program to another. A descriptor 
segment with read, write, and execute flags in the sow's 
defines a single domain. Additional mechanisms are 
required to allow multiple domains to be associated 
with a single process. 

A very general set of access control mechanisms 
would place no restriction on the number of domains 
which could be associated with a process, and would 
force no restrictive relationships to exist among the sets 
of access capabilities included in the domains. Unfortu­
nately, devising such a set of access control mechanisms 
that also meets the criteria of economy, simplicity, and 
programming generality is a difficult research problem. 
(See {5, 7, S, 12, 13, 17) for several approaches that have 
been explored.) In Multics the strategy was adopted of 
limiting the number of domains which may be associated 
with a process, and of forcing certain relationships to 
exist among the sets of access capabilities included in 
the domains. The result is protection rings. 

The characterization of rings as a restricted imple­
mentation of domains is the result of hindsight. When 
developed, rings were viewed as a natural generalization 
of the supervisor/user modes that provided protection 
in many computers. This path of development was 
chosen because it solved the most pressing problems of 
access control involved in the prototype computer 
utility and, due to the inherent simplicity of the idea, it 
was a path that the Multics designers felt coafident they 
could successfully complete. Even today rinp appear to 
provide an effective trade-off among the criteria men­
tioned above. 

. Protectiola Riags 

Associated with each process are a fixed number of 
domains called protection rings. These r rings are named 
by the integers 0 through r - I. The access capabilities 
included in ring mare constrained to be a subset of those 
in ring n whenever m > n. Put another way, the sets of 
access capabilities represented by the various rings of a 
process form a collection of nested subsets, with ring 0 
the largest set and ring r - I the smallest set in the collec­
tion. Thus, a process has the greatest access privilege 
when executing in ring 0, and the least access privilege 
when executing in ring r - l. The total ordering of the 
sets of access capabilities defined by the consecutively 
numbered rings of a process is the property which allows 
a straightforward implementation of rings in hardware. 

As described earlier, the permission flags for each 
segment in the virtual memory of a process simply indi­
cate that the segment can or cannot be read, written, or 
executed by the process. With the addition of rings, the 
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flags must be extended to indicate which rings include 
each access capability. Because of the nested subset 
property of rings, the capability, say, to write a particu­
lar segment, if available to a process at all, is included in 
all rings numbered less than or equal to some value w. 
The range of rings over which this write permission 
applies is called the write bracket of the segment for the 
process. Read and execute brackets for each segment 
can be established in the same way. A process is per­
mitted to read, write, or execute a segment in its virtual 
memory only if the riaa of execution of the process is 
within the proper braoket. 

A partial hardware implementation of rings places 
numbers indicat.iag tho top ·Of each bracket of a segment 
in the sow of the seament, along with the read, write, 
and exeeute-ftags. If a Bag is on, then the number spec­
ifies the extent of the corresponding bracket. Turning a 
flag off indicates that the corresponding access capability 
is not included in any. ring of the process. For example, 
a data segnw:nt miab& have its execute flag turned off or 
a pure · prooedure segment might have its write flag 
turned off. A register is_ added to the processor to record 
the current ring of execution of the process. The proc­
essor. can then .validate each reference to a segment by 
making the obviow; ~parisons when the sow for the 
segment is examined for address translation. 

Figure I illustrates the flap and brackets that might 
be associated with a writable data segment for some 
process. (In Multics, eitht was chosen as the appropriate 
number of rings. Eight rings are shown in the examples, 
although more or fewer rings might be appropriate in 
anotller ·system.) 

Fig. 1. Example access indicators for a writable data segment. 

0 4 6 ring 
>---+-~t---+---4~-!--+~-+---I 

--------., 11• bracket 

r•od a.rocket 

r-aod flat • 011 

'lf'rit• fla9 t °" 
eHcute rta9 ' "" 

The association of multiple domains of protection 
with a process generates the need for a new kind of ac­
cess capability-the capability to change the domain of 
execution of a process. Since changing the domain of 
execution bMs the potential to make additional access 
capabilities availabk to a process, it is an operation that 
must be carefully controlled. An understanding of the 
sort of contr-01 required can be gained by reviewing the 
purpose of domains. A domain provides the means to 
protect procedure and data segments from other proce­
dures that are part of the same computation. Using 
domains, it should be possible to make certain access 
capabilities available to a process only when particular 
programs are being executed. Restricting the start of 
execution in a particular domain to certain program 
locations, called gates,. p1ovides this ability, for it gives 
the program sections that begin at those locations com-
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plete control over the use made of the access capabilities 
included in the domain. Thus, changing the domain of 
execution must be restricted to occur only as the result 
of a transfer of control to one of these gate locations of 
another domain. 

With a completely general implementation of do­
mains, each domain could provide protection against 
the procedures executing in all other domains of a pro­
cess. The corresponding property of rings is that the 
protection provided by a given ring of a process is ef­
fective against procedures executing in higher numbered 
rings. Switching the ring of execution to a lower number 
makes additional access capabilities available to a pro­
cess, while switching the ring to a higher number reduces 
the available access capabilities. Thus, the downward 
ring switching capability must be coupled to a transfer 
of control to a gate into the lower numbered ring. Gates 
are specified by associating a (possibly empty) list of 
gate locations with each segment in the virtual memory 
of a process. If the execution point of the process is 
transferred to a segment while the ring of execution is 
above the top of the execute bracket for the segment, 
then the transfer must be directed to one of the gate 
locations in the segment. If the transfer is to a gate, then 
the ring of execution of the process will switch down to 
the top of the execute bracket of the segment as the 
transfer occurs. If the transfer is not directed to one of 
the gate locations, then the transfer is not allowed. 

To provide control of this downward ring switching 
capability which is consistent with the subset property 
of rings, a gate extension to the execute bracket of a 
segment is defined. The gate extension specifies the con­
secutively numbered rings above the execute bracket of 
the segment that include the "transfer to a gate and 
change ring" capability for the segment. The gate list 
and the gate extension to the execute bracket can both 
be specified with additional fields in each sow. 

In contrast to downward ring changes, switching the 
ring of execution to a higher-numbered ring can only 
decrease the available access capabilities of a process. 
Thus, an upward ring switch is an unrestricted operation 
that can be performed by any executing procedure. (The 
instruction to be executed immediately following an 
upward ring switch must come from a segment that is 
executable in the new, higher-numbered ring.) For 
programming convenience, the upward ring switch may 
be coupled to a special transfer instruction. 

The abstract description of rings is now one step 
from completion. The last step comes from the observa­
tion that for each procedure segment in the virtual mem­
ory of each process there is a lowest-numbered ring in 
which that procedure is intended to execute. In order 
to provide the means for preventing the accidental 
transfer to and execution of a procedure in a ring lower 
than intended, the requirement that execute brackets 
have a lower limit at ring 0 is relaxed and instead an 
arbitrary lower limit is allowed. For many procedure 
segments the execute bracket will include exactly one 
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ring-the ring in which the procedure is intended to exe­
cute. Procedure segments with wider execute brackets 
normally will contain commonly used library subrou­
tines that are certified as acceptable for execution in any 
of several rings. 

The arbitrary lower limit on the execute bracket of a 
segment can be implemented by using the field of an 
sow which specifies the top of the write bracket to spec­
ify the bottom of the execute bracket as well. The double 
use of this field does not appear to remove any inter­
esting functional capability. In fact, it eliminates an 
unwanted degree of freedom in access specification, 
thereby removing the potential to make certain types of 
errors, such as allowing both writing and execution of a 
segment in more than one ring of a process. 

Figure 2 shows example access indicators for a pure 
procedure segment containing gates, and illustrates how 

Fig. 2. Example access indicators for a pure procedure segment 
which contains gates. 
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the execute and write brackets specified in an sow must 
be related. 

The gate list and the numbers specifying the read, 
write, and execute brackets and gate extension in each 
sow all come from the access control list entry which 
permitted the process to include the corresponding seg­
ment in its virtual memory, as did the values for the 
read, write, and execute flags. 

Call and Return 

As argued above, a change in the domain of execu­
tion of a process can occur only when the executing 
procedure transfers control to a gate of another domain. 
In the context of most programming languages, an inter­
procedure transfer represents a subroutine call, a return 
following a call, or a nonlocal goto. Linguistically, all 
three operations produce a change in the environment 
of the execution point; this change affects the binding of 
variable names to virtual storage locations. The call 
operation has the additional function of transmitting 
arguments and recording a return point. Performing 
these functions generally requires the cooperation of 
both the procedure initiating the operation and the 
procedure receiving control. If a call, return, or goto 
changes the domain of execution because it happens to 
be directed to a gate location of another domain, then 
the situation becomes more complicated, for neither 
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procedure can depend upon the other to cooperate. An 
important simplification introduced by restricting do­
mains to a ring structure is that a procedure may assume 
the cooperation of procedures in lower-numbered rings. 

When procedures are shared among different pro­
cesses and different domains, the addressing environ­
ment is usually defined via processor registers, for the 
procedures must be pure and it is not convenient to 
embed addresses within them. Part of the function of the 
call, return, and goto operations is to properly update 
this environment pointer. In Multics, pure procedures 
are used with a per process stack, and a stack pointer 
register provides the required environment definition. 
The stack of a process is implemented with a separate 
segment for each ring being used. The stack segment for 
procedures executing in ring n has read and write brack­
ets that end at ring n. Thus, stack areas for these proce­
dures are not accessible to procedures executing in any 
ring m > n. In the following discussion the stack pointer 
register is used as a typical example of the required 
environment pointer. 

The most common ways of changing the ring of exe­
cution of a process are a call to a gate of a lower-num­
bered ring and the subsequent upward return. A down­
ward call represents the invocation of a user-provided 
protected subsystem or a supervisor procedure. Because 
the Honeywell 645 was designed around the usual super­
visor/user protection method, the version of Multics for 
this machine implements rings by trapping to a super­
visor procedure when downward calls and upward re­
turns are performed. The hardware mechanisms detailed 
in the next section eliminate the need to trap in these 
cases. Using these improved hardware access control 
~hanisms, downward calls and upward returns occur 
without the intervention of a supervisor procedure and 
are performed by the same object code sequences that 
perform all calls and returns. 

It is the nested subset property of rings that makes a 
straightforward hardware implementation of downward 
calls and upward returns possible. Because of this prop­
erty, the called procedure automatically has all access 
capabilities required to reference any arguments that 
the calling procedure can legitimately specify and to 
return to the calling procedure in the ring from which it 
called. However, three problems remain. First, the called 
procedure must have a way of finding a new stack area 
without depending upon information provided by the 
calling procedure. Second, the called procedure must 
have a way of validating references to arguments, so that 
it cannot be tricked into reading or writing an argument 
that the caller could not also read or write. Finally, the 
called procedure must have a way of knowing for certain 
the ring in which the calling procedure was executing, 
so that the called procedure cannot be tricked into re­
turning control to a ring not as high as that of the calling 
procedure. 

The key to solving the first problem, finding a new 
stack area, is a rule relating the segment number of the 
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stack segment for a ring to the ring number. Using this 
rule, the processor automatically calculates the segment 
number of the proper stack segment for the called proce­
dure's ring of execution. By convention, a fixed word of 
each stack segment can point to the beginning of the 
next available stack area. Thus, the stack segment num­
ber alone can provide the called procedure with enough 
information from which to construct its own stack 
pointer. Because the processor provides the stack seg­
ment number, no procedure executing in a higher-num­
bered ring, e.g. the calling procedure, can affect the value 
of the stack pointer for the called procedure. 

The second problem, validating argument references, 
is·solved by providing processor mechanisms which al­
low a procedure to assume the more restricted access 
capabilitie& of any higher-numbered ring for particular 
operand reference5. Using these mechanisms, the called 
procedure can validate access when referencing argu­
ments as though execution were occurring in the (higher­
numbered) ring of the calling procedure. Thus, the 
called proeedute, ~ though it is executing in a ring 
with more aoeesscaf)atiilitles than the ring of the calling 
procedure, ean prevent itself from reading or writing 
any arglitnent that the Calling procedure could not also 
read ot write. 

The final problem, knowing the ring of the caller, is 
solved by having the processor leave in a program acces­
sible register the num6er of the ring in which execution 
was occurring before the downward call was made. The 
subsequent retmn iS made to that ring. Thus the calling 
pr-0eedure ·has no opportunity to lower the number of 
the ring to which' the return is made. 

The lle'Xt two sections describe in more detail how 
downward ealls, argument referencing and validation, 
and upward returns are implemented. Before proceeding 
to that description~ however, there are two other possi­
bilities to consider: a call and return that do not change 
the ring of execution, amt an upward call and the su bse­
quent downward return. The first presents no protection 
problem, as both the calling and the called procedures 
have available the same set of access capabilities. The 
hardware mechanisms for downward calls and upward 
returns also work when no change of ring is needed. 

The last possibility is more difficult to handle. An 
upward call occurs when a procedure executing in ring 
n calls an entry point in another procedure segment 
whose execute bracket bottom is m > n. When the call 
occurs, the ring of execution will change to m. The sub­
sequent return is downward, resetting the ring of execu­
tion ton. These cases exhibit two unpleasant character­
istics of a general cross-domain call and return that were 
not-present in the other cases. 

The first is that the calling procedure may specify 
arguments that cannot be referenced from the ring of the 
called procedure. (For .a downward call, the nested sub­
set property of rings guaranteed that this could not 
happen.) There are at least three possible solutions to 
this problem. One is to require that the calling procedure 
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Fig. 3. Schematic description of relevant storage formats and 
processor registers. 
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specify only arguments that are accessible in the higher­
numbered ring of the called procedure. This solution 
compromises programming generality by forcing the 
calling procedure to take special precautions in the case 
of an upward call. Another possible solution is to dy­
namically include in the ring of the called procedure the 
capabilities to reference the arguments. Because a seg­
ment is the smallest unit of information for which access 
can be individually controlled, this forces segments 
which contain arguments to contain no other informa­
tion that should be protected differently, again compro­
mising programming generality, unless segments are in­
expensive enough that, as a matter of course, every data 
item is placed in its own segment. It may also be expen­
sive to dynamically include and remove the argument 
referencing capabilities from the called ring. The third 
possible solution is copying arguments into segments 
that are accessible in the called ring, and then copying 
them back to their original locations on return. This so­
lution restricts the possibility of sharing arguments with 
parallel processes. None of the three solutions lends 
itself to a straightforward hardware implementation. 

The second unpleasant characteristic is that a gate 
must be provided for the downward return. (For an 
upward return the nested subset property of rings made 
a return gate unnecessary.) The return gate must be 
created at the time of the upward call and be destroyed 
when the subsequent return occurs. If recursive calls 
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into a ring are allowed, then this gate must behave as 
though it were stored in a push-down stack, so that only 
the gate at the top of the stack can be used. The gates 
specified in sow's seem poorly suited to this sort of dy­
namic behavior. Processor mechanisms to provide dy­
namic, stacked return gates are not obvious at this time. 

Because of these two problems, the hardware de­
scribed in the next section does not implement upward 
calls and downward returns without software interven­
tion. Although the same object code sequences that 
perform all calls and returns are used in these cases as 
well, the hardware responds to each attempted upward 
call or downward return by generating a trap to a super­
visor procedure which performs the necessary environ­
ment adjustments. 

The manner in which the stack pointer register value 
of the calling procedure is saved when a call occurs and 
restored when the subsequent return occurs has not yet 
been discussed. For a same-ring or downward call, it is 
reasonable to trust the called procedure to save the value 
left in the stack pointer register by the calling procedure 
and then restore it before the subsequent return, since in 
these cases the called procedure has access capabilities 
which allow it to cause the calling procedure to malfunc­
tion in other ways anyway. For an upward call and the 
subsequent downward return, the same convention can 
be used without violating the protection provided by the 
lower ring if the intervening software verifies the re­
stored stack pointer register value when performing the 
downward return. 

Hardware Implementation of Rings 

In this section the ideas presented in the previous sec­
tions are gathered into a description of a design for 
processor hardware to implement rings. The description 
touches upon only those aspects of the processor orga­
nization that are relevant to access control. The seg­
mented addressing hardware described earlier serves as 
the foundation of the ring implementation mechanisms. 

Figure 3 presents a schematic description of storage 
formats and processor registers that are relevant to the 
discussion which follows. The OBR and sow's have al­
ready been mentioned. The three 3-bit ring numbers in 
an sow (sow.RI, sow.R2, and sow.R3) delimit the read, 
write, and execute brackets and the gate extension. The 
write bracket is rings 0 through sow.RI, the execute 
bracket sow.RI through sow.R2, and the gate extension 
sow.R2+ 1 through sow.R3. Rather than providing a 
fourth number to specify the top of the read bracket, 
sow.R2 is reused for this purpose. Thus the read bracket 
is rings 0 through SDW.R2. Forcing the top of the read 
and execute brackets to coincide in this manner does not 
seem to preclude any important cases, and saves one 
ring number in the sow. Supervisor code for con­
structing sow's must guarantee that sow.RI <:;; sow.R2 
<:;; sow.R3 is true. The single-bit read, write, and execute 
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flags (sow.R, sow.w, and sow.E) also appear. Finally, 
the list of gate locations of a segment is compressed to 
a single fixed-length field (sow.GATE) by requiring all 
gate locations to be gathered together, beginning at 
location 0 of a segment. sow.GATE contains the number 
of gate locations present. 

The instruction pointer register (IPR) specifies the 
current ring of execution and the two-part address of 
the next instruction to be executed. The general format 
of an instruction word in memory (INST) is also shown 
for later reference. 

The program a.ccessible pointer registers (Pfl.0, Pill, 
... ) each contain a two~part addrt;SS .00 a ring number. 
Because segment numbers arc not ~e.lly known at 
the time a procedure segment is compiled, machine 
instructions specify t~part operand addresses by 
giving an offset (in INST.Oft'SBT) relative to one of.the 
PR.•s (specified by JNST.HNUll) or lft. The ring number 
in a pointer register (PM.RING) is uscxl ~ spc;Qfy a.vali­
dation level for the ad~ess, and is. part. of the mecha­
nism that allows an executin1; pr~ to ,u.&UD\C the 
access capabilities of a bigliei:-0:\lm~ ring_ for rcfer­
encina arguments. One. of the n's is inten~ to serve 
as the s~k pointer register mentioned earlier. 

Indirect addressing may be SRCcificd jn an instruction 
by setting the indirect flag (1Nst.1). Indirect words {INO) 
contain the same information. as PJ\'s, and. may also 
indicate further indirection with an indirect ftag (IND.I). 

The final item in Figure 3 is the temporary pointer 
register (TPR). The TPR is an internal processor register 
that is not program accessible. It is used to form the 
two-part address of each virtual memory reference 
made. The ring number (TPll.RlNG) provides the yalue 
with respect to which permission to reference the virtual 
memory location is validated. 

There arc two aspects to the implementation of rings 
in hardware. The first is access checking logic, integrated 
with the segmented addressing hardware, that validlltes 
each virtual memory reference. The second is special 
instructions for changing the ring of execution. The best 
way to describe the first aspect is to trace the processor 
instruction cycle, paying particular attention to the 
places where operations related to access validation oc­
cur. The second aspect will be discussed when the de­
scription of the instruction cycle reaches the point where 
the instruction is actually performed. 

The first phase of the instruction cycle, retrieving the 
next instruction to be executed, is described in Figure 4. 
At the point during address translation that the sow for 
the segment containing the instruction be<;omes avail­
able, the ring of execution (now TPR.RING) is matched 
against the execute bracket defined in the sow and the 
execute flag is checked. If the segment may be executed 
from the current ring of execution the instruction fetch 
is completed. The access violations and other conditions 
requiring software intervention shown in this and fol­
lowing figures generate traps, derailing the instruction 
cycle. A traps action is described later in this section. 
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Fig. 4. Retrieval of next instruction to be executed. 
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The next phase of the instruction cycle, calculating 
in TPR the effective address of the instruction's operand, 
is described in Figure 5. This phase occurs only if the 
instruction has an operand in memory. The effective 
address is the fi.nJlJ. two-part address of the operand 
(after· all address. modificiltions and indirections have 
tab;n place) t~ with . an effective ring numb.er 
which is used to vall,date tlie actual reference to the 
operand. 

The formation of a two-part address in TPR.sEGNO 

and TPll-WORQNO is very straightforward and is de­
scri~ by Figure 5. The calculation of the ring number 
portion of the e«ecµye addressi11 TPR.RlNG and the ac~ 
cess validation performed before retrieving indirect 
words, also shown in Figure 5, need further comment. 

The effective ring port,km. of the effective address 
provides a pr<>Oedure with the means of voluntarily as­
suniin& ihC 8ccess cwabilities of a higher-numbered 
ring whe~ making,~n instruction ,operand reference. The 
etreetiverjngnum~ also records the highest-numbered 
ring from which a pr~ure (in the same process) pos­
sibly could have influenced the effective address calcula­
tion. The first opportunity for the value of TPR.RING to 
change quring effective address calculation occurs if the 
instruction contains. an address that is an offset relative 
to some PRn. In this case TPR.RlNG is u¢ated with the 
larger of its ~urrent values (itill the current ring of execu­
tion) and the ring number in the specified pointer regis­
ter (PRn.RlNG). Thus. if PM.RING contains a value that is 
greater than the current ring of execution, validation of 
the operand reference will be as though execution were 
occurring in this higher-numbered ring. 
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Fig. 5. Formation in TPR of effective address of instruction 
operand. 
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The remaining opportunities to change the vame of 

TPR.RING occur in conjunction with the processing of 
indirect words involved in the effective address calcula­
tion. Each time an indirect word is retrieved, TPR.RING 
is updated with the larger of its current values, the ring 
number in the indirect word (IND.RING), and the top of 
the write bracket for the segment containing the indirect 
word (sow.RI). The ring number in the indirect word 
has the same purpose as the ring number in a pointer 
register-forcing validation of the operand reference 
relative to some higher-numbered ring. Including in the 
calculation the top of the write bracket of the segment 
containing the indirect word, however, has another pur­
pose. The top of the write bracket represents the highest­
numbered ring from which a procedure in the same 
process could have altered the indirect word and thereby 
influenced the result of the effective address calculation. 
Taking into account SDW.Rl when updating TPR.RING 
guarantees that the operand reference will be validated 
with respect to the highest-numbered ring which could 
have influenced the effective address. 

The capability to read an indirect word during effec­
tive address formation must be validated before the 
indirect word is retrieved. Validation is with respect to 
the value in TPR.RING at the time the indirect word is 
encountered. At the conclusion of the effective address 
calculation described in Figure 5, TPR contains the effec­
tive address of the instruction operand, including the 
effective ring number with respect to which the reference 
to the operand will be validated. 

The next phase of the instruction cycle is to perform 
the instruction. For the purpose of access validation, 
the possible instructions may be broken into three 
groups, according to the type of reference made to the 
operand. Figure 6 shows the access validation for the 
straightforward cases of instructions which read their 
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operands and instructions which write their operands. 
The third group, instructions which do not reference 
their operands, is illustrated in Figure 7. One set in this 
group is the "Effective Address to Pointer Register"­
type (EAP-type) instructions which load the RING, SEGNO, 
and WORDNO fields of PRn with the corresponding fields 
of TPR. The operand is not referenced, so no access val­
idation is required. Instructions of this type are impor­
tant, as will be seen later, for they are the only way to 
load PR'S. 

The remaining instructions illustrated in Figure 7 are 
transfer instructions. To provide some protection 
against changing the ring of execution by accident, all 
transfer instructions except two, CALL and RETlJRN, are 
constrained from doing so. Since a transfer instruction 
does not reference its operand, but just loads the address 
of its operand into the instruction counter, no access 
validation is really required. H<>wever, an advance check 
on whether reloading IPR from TPR will result in an ac­
cess violation when the next instruction is retrieved is 
very useful from the standpoint of debugging, for it 
catches the access violation while it is still possible to 
identify the instruction which made the illegaftransfer. 
Figure 7 describes the advance check for transfer in­
structions other than CALL and RETURN. 

The two instructions that remain to be considered 
are the instructions which can change the ring of execu­
tion: CALL and RETURN. They are intended to be used to 
implement the same-named linguistic operations.1 CALL 
will automatically switch the r;i.~g of execution to a 
lower number and RETURN to a higher number if the oc­
casion requires it. These instructions also function 
properly for calls and returns within the same ring. 
When used to perform an upward call or a downward 
return, the instructions cause traps which allow software 
intervention. 

Figure 8 describes the access validation and perform­
ance of the CALL instruction. Several points require 
further explanation. The first concerns gates. From Fig­
ure 8 it is apparent that a CALL must be directed at a 
gate location even when the called procedure will exe­
cute in the same ring as the calling procedure. The ra­
tionale for this use of the gate list of a segment is that 
it can provide protection against accidental calls to 
locations that are not entry points, even when the call 
comes from within the same ring. Thus; sow.GATE for a 
procedure segment usually specifies the number of ex­
ternally defined entry points in the procedure segment. 
These become gates for higher-numbered rings in the 
sense described in the previous sections only if the top 
of the gate extension of the segment is above the top of 
the execute bracket, i.e. only if sow.R3 > sow.R2 for 
the segment. The price paid for this error detection abil­
ity is that if any externally defined entry point in a pro­
cedure segment is a gate for a higher-numbered ring, 

1 RETURN may also be used to implement the nonlocal goto 
operation. 
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Fig. 7. Access validation for instructions which do not reference 
their operands. 
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Fig. 9. Access validation and performance of the RETURN 
instruction. 
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then all are. On intersegment transfers of control within 
the same ring, the gate restriction can be byJ1assed by 
using a normal transfer instruction rather than a CALL. 

The only exception to having the CALL instruction re­
spect the gate list of the operand segment occurs if the 
operand is in the same segment as the instruction. Al­
lowing a CALL instruction to ignore the gate list of the 
segment containing the instruction permits it to be used 
to implement calls to internal procedures. 

The access validation for the CALL instruction is 
made relative to the ring number computed as part of 
the effective address. Since, as a result of PR-relative 
addressing and indirection, the effective ring value 
(TPR.RING) can be higher than the current ring of 
execution (IPR.RING), what would appear to be a call 
within the same ring or to a lower ring with respect to 
TPR.RING can in fact be an upward call with respect 
to IPR.RING. Because in normal circumstances this 
situation represents an error, the decision is made to 
generate an access violation when it occurs, even if the 
current ring of execution is within the execute bracket 
of the called procedure segment. 

CALL generates in PRO a pointer to word 0 of the 
stack segment for the new ring of execution. (The PR to 
use as this stack base pointer is chosen arbitrarily.} The 
stack segment selection rule illustrated in Figure 8 is 
that the segment number of the appropriate stack seg-
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ment is the same as the new ring numbcl". 1 The final 
transfer of control is achieved by reloading IPR.RING, 
IPR.SEGNO, and IPR.WORDNO from the corresponding 
fields of TPR. 

The RETURN instruction is described by Figure 9. 
The access validation is the same as for other transfer 
instructions. The ring to which the return is made is 
specified by the effective ring portion of the effective 
address generated by the RETURN instruction. In the case 
that the return is upward, the ring number fields in all 
pointer registers are replaced with the larger of their 
current values and the new ring of execution. This re­
placement, together with the fact that PR's can only be 
loaded with EAP-type instructions, guarantees that PRn.­
RING can never contain a value that is less than IPR.RING, 
a fact which proves very useful when passing arguments 
on a downward call and which makes it easy to perform 
an upward return to the proper ring. (See the next sec­
tion for details.) 

Two items remain to be considered to complete the 
description of the processor hardware for implementing 
rings. One is the action of a trap. 'traps are generated by 
a variety of conditions in Figures 4-9, as welt as by 
missing segments and pages, 1/0 completions, etc. When 
the processor detects such a condition, it changes the 
ring of execution to zero and transfers control to a fixed 
location in the supervisor. A special instruction allows 
the state of the processor at the time of the trap to be 
restor~ later if appropriate, resuming the disrupted 
instruction. 

The other item concerns privileged instructions. 
Certain instructions, if executable by all procedure seg­
ments, could invalidate the protection provided by the 
ring mechanisms. Among these are the instructions to 
load the DBR, start 1/0, and restore the processor state 
after a trap. Such instructions are designated as privi­
leged and will be executed by the processor only in ring 
0. This convention restricts their use to supervisor pro­
cedures. 

Call and Return Revisited 

The intended use of the hardware mechanisms just 
described is illustrated by considering again two key 
aspects of the linguistic meaning of the operations call 
and return. 

' Two subtle features may be included at this point by using a 
more sophisticated stack segment selection rule. If the CALL in­
struction does not change the ring of execution, then the segment 
number for-the stack base pointer is taken directly from the stack 
pointer register, allowing the continued use of a nonstandard stack 
segment for procedures executing in the same ring. If the CALL in­

struction does change the ring of execution then the new stack seg­
ment number is calculated by adding the new ring number to an 
additional DBR field that specifies the eight consecutively numbered 
segments that are the standard stack segments of the process. The 
use of the additional DBR field allows more flexibility in stack seg­
ment assignment, facilitating the preservation of stack history fol­
lowing an error and the implementation of forked stacks. 
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The first aspect to be reconsidered is the way argu­
ments are passed and referenced. A procedure making a 
call constructs an array of indirect words containing the 
addresses of the various arguments to be passed with 
the call. To inform the called procedure of the location 
of this argument list, the calling procedure loads a spe­
cific Pk designated by software convention (can it PRa) 
with the address of the beginning of the argument list. 
An instruction of the called procedure can reference the 
nth argument as its operand by using an indirect ad­
dress. The location of the indirect word is specified in 
the instruction as PRa offset by n. If this operand refer­
ence constitutes an upward cross-ring argument refer­
ence then the proper validation is automatic, for PRa.­
RING, as set by the calling procedure, must contain a 
number that is greater than or equal to the number of 
the ring in which the calling procedure was executing 
when the call was made. Thus, validation of all argu­
ment references by the called procedure wiB be with 
respect to an eif ective ring that is •t least as high as the 
ring or the caller. 

The ring number in PRa, then, allows the called pro­
cedure to automatically assume the fewer acce8s capabil­
ities of the Calling procedure in the case of an upward 
cross-ring argument reference via PRa and the argument 
list. Not all argument references, however, will be made 
in this way. For example, if an argument is an array, 
then the corresponding argument list indirect word will 
address the first element. The called procedure may find 
it convenient to load some free PR, say PRI, with the 
actual two-part address of the beginning of that array 
argument so that array indexing can be more easily ac­
complished. If PRI is loaded with an EAP-type instruction 
whose operand address is specified via PRa and the argu­
ment list, then the proper etrective ring number will 
automatically be put in PRl.RING, and subsequent refer­
ences to the argument via PR 1 will also be validated 
with respect to an effective ring that is at least as high as 
the ring of the ca1ter. If PRI is then stored as an indirect 
word, this effective ring is put into the RING field of the 
indirect word. In fact, as long as the called procedure 
does not make an explicit effort to lower the effective 
ring associated with an argument address, e.g. by 
zeroing the RING field of an indirect word, then all ma­
nipulations of the argument address are safe, and all 
argument references will be validated with respect to an 
effective ring that is at least as high as the ring of the 
caller.3 

The second aspect to be reconsidered with respect to 

3 This property allows the correct argument validation to occur 
naturally when an argument is passed along a dlaio.of.downward 
calls. The RING field of an argument list indirect word will specify 
the ring which originally provided the lll"gQIJlellt. If this value is 
higher than the value of PRa.RING, then the indirect word ring 
number will become the effective ring for validation of references to 
the corresponding argument. 
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call and return is the way in which a return to the proper 
ring is accomplished. As described earlier, the hardware 
guarantees that the RING fields in all PR'S always contain 
values greater than or equal to the current ring of exe­
cution. Thus, after a call all PR's except PRO, which is 
altered by the CALL instruction, initially contain the ring 
of the caller (or some higher number) in their RING 
fields. It follows that any scheme for returning which 
depends upon one of these values is secure. For example, 
the convention described earlier for restoring the stack 
pointer register value of the caller before a return makes 
it natural to address the operand of the RETURN instruc­
tion via this restored PR. (For this scheme to work, the 
return point must have been saved by the caller at a 
standard position in its stack area before the call oc­
curred.) The RETURN instruction is thus guaranteed to 
generate an effective ring number no lower than the ring 
of the calling procedure and therefore will return control 
to the ring of the caller or some higher-numbered ring. 

Use of Rings 

Some insight into the functional capabilities of rings 
can be gained by considering briefly the way the basic 
mechanisms described in the previous sections are used 
in Multics. 

The ring protection scheme allows a layered super­
visor. to be included in the virtual memory of each 
process. In Multics, the lowest-level supervisor pro­
cedures, such as those implementing the primitive 
operations ofacce¥ contrql, 1/0, memory multiplexing, 
and prQCeS$pr multiplexing, execute in ring 0. The 
remaining supervisor procedures execute in ring I. Ex­
amples of ring l supervisor procedures are those 
performing accounting, input/ output stream manage­
ment, and file ~ystem search dir.ection. (Deciding how 
many layers tQ use and which procedures should execute 
in each layer is an. intere&ting engineering design 
problem.) Supervisor data qments have read and write 
brackets that end at ring 0 or ring I, depending on which 
layer of the supervisor needs to access each. 

Implicit invocation of certain ring 0 supervisor 
procedures occurs as a result of a trap. Explicit invoca­
tion of selected ring 0 and ring I supervisor procedures 
by procedures executing in tin.gs 2-5 of a process is by 
standard subroutine caHs to gates. Procedures executing 
in rings 6 and 7 are,not given access to supervisor gates. 

Because separate access control lists for each seg­
ment and !ICParate descfiptor segments for each process 
provide the means to control separately the use of each 
segment by each user's process, not all gates into super­
visor rings need be available to the processes of all users, 
and not all gates need have the same gate extension 
associated with them. For example, some gates into 
ring 0 are ac(;Cs$lble to the pr~ of all users, but only 
to procedures executing in ring 1. Such gates provide the 
internal interfaces between the two layers of the super-
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visor. Some gates into ring l are accessible to procedures 
executing in rings 2-S in the processes of selected users, 
but are not accessible at all from the processes of other 
users. An example of the latter kind is a gate for regis­
tering new users that is available only from the processes 
of system administrators. 

As pointed out by Dijkstra [6], a layered supervisor 
has several advantages. Constructing the supervisor in 
layers enforced by ring protection reinforces these ad­
vantages. It limits the propagation of errors, thereby 
making the supervisor easier to modify correctly and 
increasing the level of confidence that the supervisor 
functions correctly. For example, changes can be made 
in ring I without having to recertify the correct oper­
ation of the procedures in ring 0. 

By arranging for standard user procedures to execute 
in ring 4, rings 2 and 3 become available for the protec­
tion of user-constructed subsystems. Subsystems 
executing in rings 2 and 3 of a process can be protected 
from procedures executing in rings 4-7 in the same way 
that the supervisor is protected from procedures exe­
cuting in rings 2-7. All comments made about a super­
visor implemented in rings 0 and l of each process apply 
to protected subsystems implemented in rings 2 and 3. 
Different protected subsystems may be operated simul­
taneously in rings 2 and 3 of different processes and 
several processes may share the use of the same 
protected subsystem simultaneously. The ring protection 
scheme allows the operation of user-constructed pro­
tected subsystems without auditing them for inclusion 
in the supervisor. (The software facility that forces 
standard user procedures to execute in ring 4, and yet 
allows all users to freely provide ring 3 protected sub­
systems for one another, is not discussed here.) 
Examples of protected subsystems that might be 
provided by various users are a proprietary compiler or 
a subsystem to provide interpretive access to some sen­
sitive data base and safely log each request for infor­
mation. 

With most user procedures executing in ring 4, rings 
5, 6, and 7 are available for user self-protection. For 
example, a user may debug a program by executing it 
in ring 5, where only procedure and data segments in­
tended to be referenced by the program would be made 
accessible. The ring protection mechanisms would detect 
many of the addressing errors that could be made by 
the program and would prevent the untested program 
from accidently damaging other segments accessible 
from ring 4. In the same way ring 5 can be used for the 
execution of an untrusted program borrowed from an­
other user. 

Because supervisor gates are not accessible from 
rings 6 and 7 of any process in Multics, procedures exe­
cuted in these rings have no explicit access to supervisor 
functions; they may, however, be given permission to 
call user-provided gates into rings 4 or 5. Ring 6 of a 
process might be used, for example, to provide a suit­
ably isolated environment for student programs being 
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evaluted by a grading program executing in ring 4. 

The complete description of a software access 
control facility based on rings that allows them to be 
used in the manner just outlined would require another 
paper. A fundamental constraint enforced by this soft­
ware facility is that a program executing in ring n cannot 
specify Rl, R2, or R3 values of less than n in an access 
control list entry of any segment. Although a given ring 
may simultaneously protect different subsystems in dif­
ferent processes, each ring of each process can protect 
only one subsystem at a time. A usable software access 
control facility must constrain each user's ability to 
dynamically set and modify access control specifications 
so that this sole occupant property can be verified and 
enforced when necessary. 

Conclusions 

The hardware mechanisms derived and described in 
this paper implement a methodical generalization of the 
traditional supervisor/user protection scheme that is 
compatible with a shared virtual memory based on seg­
mentation. This generalization solves three significant 
kinds of problems of a general purpose system to be 
used as a computer utility: 

• users can create arbitrary, but protected, subsystems 
for use by others; 
• the supervisor can be implemented in layers which 
are enforced; 
• the user can protect himself while debugging his own 
(or borrowed) programs. 

The subset access property of rings of protection does 
not provide for what may be called "mutually suspicious 
programs" operating under the control of a single proc­
ess. On the other hand, it is just that subset property 
which imposes an organization which is easy to under­
stand and thus allows a system or subsystem designer 
to convince himself that his implementation is complete. 
Also, it is just the subset property which is the basis for 
a hardware implementation that is integrated with seg­
mentation mechanisms, requiring very small additional 
costs in hardware logic and processor speed. 

The long-range effect of hardware protection mech­
anisms which permit calls to protected subsystems that 
use the same mechanisms as calls to other procedures 
is bound to be significant. In the interface to the super­
visor of most systems there are many examples of 
facilities whose interface design is biased by the assump­
tion that a call to the supervisor is relatively expensive; 
the usual result is to place several closely related 
functions together in the supervisor, even though only 
one of the group really needs protection. For example, 
in the Multics typewriter 1/0 package, only the func­
tions of copying data in and out of shared buffer areas 
and of executing the privileged instruction to initiate 
1/0 channel operation need to be protected. But, since 
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2-70 
these two functions are deeply tangled with typewriter 
operation strategy and code conversion, the typewriter 
1/0 control package is currently implemented as a set 
of procedures all located in the lowest-numbered ring of 
the system, thus increasing the quantity of code which 
has maximum privilege. 

A similar example is found in many file system 
designs, where complex file search operations are carried 
out entirely by protected supervisor routines rather than 
by unprotected library packages, primarily because a 
complex file search requires many individual file access 
operations, each of which would require transfer to a 
protected service routine, which transfer is presumed 
costly. 

The initial version of Multics used software imple­
mented rings of protection. The result was a very 
conservative use of the rings: originally just two super­
visor rings and one user ring were employed, and the 
two supervisor rings were temporarily collapsed into 
one (thus exploiting the programming generality objec­
tive referred to before) while the software ring crossing 
mechanisms were tuned up. Today. although there are 
many obvious applications waitin& the ability to use 
more than two rings in a computation is just beginning 
to be exploited. The availability with the new Multics 
processor of hardware implemented rings which make 
downward calls and upward returns no more complex 
than calls and returns in the same ring should signifi­
cantly increase such exploitation. 
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uses a version of the software implementation of rings. 
The complete automation of downward calls and up­
ward returns was proposed in a thesis in 1969 [16]; the 
description in this paper extends that thesis slightly with 
the addition of ring numbers to indirect words and the 
processor pointer registers, as suggested by Daley. The 
CALL and RETURN instructions proposed there have also 
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lli. Mu 1 ti cs .eJ.Ll Como i 1 er 

by R.A. Freiburghouse. Reprinted from AFIPS Conference 
proceedings .l2,, AFIPS Press, 1969, pp. 187-199, with 
permission. Copyright 1969 by AFIPS Pr~ss. 

This paper describes the second PL/I compiler successfully 
constructed for Multics, and used for the compilation of the 
operating system itself. Although today a third and better PL/I 
compiler ls now in use, the basic organization of the second 
compiler was preserved. Probably the most significant 
observation about these two compilers Is that even though they 
implement the full ·language, they generate object code of high 
enough quality (often better than an average machine language 
programmer) to be used in the operating system itself. Since the 
concept of writing the system in PL/I, to make its description 
smaller, more maintainable, and easier to learn, was considered 
pivotal in the goals of Multics, this paper is especially 
significant. 
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The multics PL fl compiler 

by R. A. FREIBURGHOUSE 

~ El«:tric Company 
Cambridge, MaSs&chusetts 

INTRODUCTION 

The Multics PL/l compiler is in many respects a 
"!JeC()tld generation" PL/l compiler. It was built at a 
time when the language was considerably more stable 
and' well defined than it had been when the first 
compilers were built.1 ·~ It has benefited from the 
experience of the first .compilers and avoids some of the 
difficulties which they encountered. The Multics com­
piler is the only PL/I compiler written in PL/l and is 
beliewd to be the first PL/l compiler to produce high 
speed object eode. 

Tile language 

The Multics PL/! language is the language defined 
by the IBM "PL/1 Language Specifications" dated 
Manih, 1968.1 At the time this paper was written most 
language features were implemented by the compiler 
!>t1t the run time library did not include support for 
input and output, as well as several lesser features. 
Sinee the multi-tasking primitives provided bv the 
Multics opera.ting system were not welt suited to.PL/! 
tee'ring, PL/l tasking was not implemented. Inter­
process communication (Multics tasking) may be 
performed through calls to operating system facilities. 

Tile system environment 

The compiler and its object programs operate within 
the Multics operating system.1 •4 •5 The environment 
provided by this system includes a virtual two ·dimen­
sional address space consisting of a large number of 
segments. Each segment is a linear address space whose 
addresses range from 0 to 64K. The entire virtual store 
is supported by a paging mechanism. which is invisible 
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to the program. Each program operating in this 
environment consists of two segments: a text segment 
containing a pure re-entrant procedure, .and a linkage 
segment containing out-references (liaks), definitions 
(entry names), and static storage Ioctl w,Gprogram. 
The text segnient of each program is ~'tile 'by 1111 
other users on the system. Linking to a calf~gram is 
normally done dynamically during program execution. '· 

Implementation techniques 

The entire compiler and the Multics operating system 
were written in EPL1 a large subset of PL/l containing 
most of the complex features of the language. The EPL 
compiler was built by a team headed by M. D. l\f cIJroy 
and R. Morris of Bell Telephone I.abontories. Several 
members of the 1\fultfos PL/l projec,t modified the 
original EPL eompiler to improve ita object code 
perf om\ance, and utili.zed the knowledge acquired from 
this experience in the design of the Multics PL/l 
compiler. EPL and M.ultics PL/l are suliciently 
compatible to allow the :Multics PL/1 compiler to 
compile itaelf and the operating system. 

The Multics PL/l compiler was built and de-bugged 
by four experienced system programmers in 18 months. 
All program preparation was done on-line using the 
CTSS time-sharing system a.t MIT. Most de-bugging 
was done in a batch mode on the GE645, but final 
de-bugging was done on-line using Multics. 

The extremely short development time of 18 months 
was made poesib!e by these powerful tools. The same 
design programmed in a macro-assembly language using 
card input and batched runs would have required twice 
as much time, and the result would have been extremely 
unmanageable. 

187 
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Design objectives -The project's design decisions and choice of techniques 
were influenced by the following objectives: 

1. A correct implementation of a reasonably 
complete PL/I language. 

2. A compiler which produced relatively fa.st object 
code for a.II language constructs. For similar 
language constructs, the object code was ex­
pected to equal ~r exceed that produced by most 
Fortran or COBOL compilers. 

3. Object program compatibility with EPL object 
programs and other Multics languages. 

4. An extensive compile time diagnostic facility. 
5. A machine independent compiler capable of 

bootstrapping itself onto other hardware. 

The compiler's size and speed were considered less 
important than the shove mentioned objectives. Each 
phase of the original compiler occupies approximately 
32K, but after the compiler bas compiled itself that 
figure will be shout 24K. The origjna.l compiler waB 

abQut \~~slow as the Multics Fortran compiler. 
The bootailapped version of the PL/l compiler is 
expected. w be considerably faster than the original 
version but it will probably not equal the speed of 
Fortran. 

An~ of lM compikr 

The Multics PL/I compiler is designed a.long 
traditional lines. It is not an interactive compiler nor 
does it perform partial compilations. The compiler 
traDBlates· PL/I external procedures into relocatable 
binary machine code which may be executed directly or 
which may be bound topther with other procedures 
compiled by a.QY Multics language proceesor: 

The notion of a phase is particularly useful when 
diacusaing the OlpDization of the Multics PL/I 
compiler. A phase iaa set of procedures which performs 
a major logical function of compilation, such as syntac­
tic analysis. A phase is not necessarily a memory load or 
s P888 over some data base although it may, in some 
cases, be either or both of these things. 

The dynamic linking a.nd paging facilities of the 
Multics environment have the effect of making avail­
able in virtual storage only those specific pages of those 
particular procedures which are referenced during an 
execution of the compiler. A phase of the Multics PL/I 
compiler is therefore only a Jogjca.l grouping of pro­
cedures which may ca.II ea.ch other. The PL/I compiler 
is organized into five phsses: Syntactic Translation, 
Declaration Processing, Semantic Trsnsla.tion, Optimi­
zation, and Code Generation. 

The internal representation 

The internal representation of the program being 
compiled serves as the interface between phases of the 
compiler. The internal representation is organized into 
a modified tree structure (the program tree) consisting 
of nodes which represent the component parts of the 
program, such as blocks, groups, statements, operators, 
operands, and declarations. Esch node may be logically 
connected to any number of other nodes by the use of 
pointers. 

Esch source program block is represented in the 
program tree by a block node which has two lists 
connected to it: s statement list and a declaration list. 
The elements of the declaration list are symbol table 
nodes representing declarations of identffienrnithin that 
block. The elements of the statement list are nodes 
representing the source statements of that block. Esch 
statement node contains the root of a computation tree 
which repnamt.& the operations to be performed by that 
statement. This oomputation tree consists of operator 
nodes and openr.nd nodes. 

The operaton of the internal representation are 
n-operand operatois whose meaning clOBely parallels 
that of the PL/l sow:ee operators. The form of an 
operand is.~ by. certain phases, but operands 
generally refer to. a declaration of some variable or 
CODBtant. Eaeh operand aleo serves· as the root of a 
computation tree which describes· the computations 
necessary to locate the item st run time. 

This internsl repreeentation is machine. independent 
in that it does not reflect the instruction set, the 
a.ddreesing propertie8, or the register· arrangement of 
the GEMS. Tlte fintfour phaees nf the1l0mpiler are aleo 
machine independent since they deal only with this 
machine independent internal representation. Figure I 
shows the internal representation of a simple program. 

Syntactic translation 

Syntaetie analysis of PL/I programs is slightly more 
difticult than syntactic analysis of other languages such 
as Fortnm. PL/I is a larger language containing more 
syntactic constructs, but it does not present any 
significantly new problems. The syntactic translator 
consists of two modules ca.lled the lexical analyzer and 
the parse. 

Lexical analysis 

The lexical analyzer organizes the input text into 
groups of tokens which represent a statement. It also 
creates the source listing file and builds a token table 
which contains the source representation of all tokens in 



FACT: 

F: 

~Cf FIXED,f'fflNT ENTRY, F ENlRYRETURNS(FIXEDl INT; 

DO I • t TO tO; 
CALL JIRINT("fbctorlol ls~ F(l)h 
ENO; 
PROC (NI FIXED; 
OCL N FIXED; 
IF N • 0 THEN RETURN(1): 
RETURNIN•F{N-1)); 
£N0 F; 
END FACT: 

tabl• 

Figure 1-The internal repmertation of e. program. 
The example is peatly simplified. Only the state­

ments of procedure F are shown in detail. 

tabl• 

the source program. A token is an identifier, a constant, 
an operator or a delimiter. The lexical analyzer is called 
by the,parse each time the parse wants a new statement. 

The lexical analyzer is an approximation to a finite 
state machine. Since the lexical analyzer must produce 
output as well as recognize tokens, action codes are 
attached to the state transitions of the finite state 
machine. These action codes result in the concatenation 
of individual characters from the output until a 
recognized token is formed. Constants are not converted 
to their internal format by the lexical analyzer. They are 
converted by the semantic translator to a format which 
depends on the context in which the constant appears. 

The token table produced by the lexical analyzer 
contains a single entry for each unique token in the 
source program. Searching of the token table is done 
utilizing a hash coded scheme which provides quick 
access to the table. Each token table entry contains a 
pointer which may eventually point to a declaration of 
the token. For each statement, the lexical analyzer 
builds a vector of pointers to the tokens which were 
found in the statement. This vector serves as the input 
to the parse. Figure 2 shows a simple example of lexical 
analysis. 

PRINT: 
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PAOC tM£SsAG£. lolALUEl; . 
OQ_ MESSAGE CHAR(*), \IAUJE FIXED; 
CALL OISPLAY(MESSAG£ II VALUE); 
£NO; 

Th• to11en ta 1111 produclcl by 
th• IHlcal analyar for 
this pr•9ra9' is: 

PltlNT 
This vector of pointers is the 
representation of fl!e col I 
etot•m•nt. ii is created by 
the lexical analyzer and serves 
oe input to "" parse. 

Filt\lre 2-The output of the lexical analyzer. 

The parse 

The parse consists of a set of possibly recursi~e 
procedures ea.eh of which corresponds to a syntactic 
unit of the 

1

language. The!je procedures are organized to 
perform a top 4'>wn aua.lysis of the .source pr?gran~. ~s 
each component of the program is recogruzed, 1~ is 
transformed into an appropriate internal representation. 
The completed internal representation is a program tree 
which reflects the relationships between all of the 
c Jmponents of the original source program. Figure 3 
shows the results of the parse of a simple program.· 

Syntactic contexts which yield declarative inform~­
tion are recognized by the parse, and this informatio~ is 
passed to a module called the context recorder w~1ch 
constructs a data base containing this information. 
Declare statements are parsed into partial symbol table 
nodes which represent declarations. 

The problem of backup 

The top down method of syntactic analysis is med 
because of its simplicity and flexibility. Th~ use ~f a 
simple statement recognition algorithm made 1t possible 
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Sllll: creates new declarations hs.ving the same fonnst as 
thoee derived ·trom deelr.re statements. This activity 
creates contextual and implicit declarations. 

fte 41edaraU. pn<llill' 

The declaration proeel!SOr develop11 suftieient informa­
tion about the varlal 138 of the program so that they 
may be~ storage, initialised and aceessed by the 

,... "'•" ..... programta oi}erators. It is orgariized to perfonn three 
major funnions: the prepara\ien of acceSsing code, the 

Figure 3-The output of the p&l'lll! 

to eliminate all backup. The statement recogniser 
identifies the type of each statement before the parse of 
that statement is attempted. The algorithm used by 
this procedure first attempts to recotr;niae •ipment 
statements using a left to right scan which looks for 
token patterns which are roughly analogous to X = or 
X ( ) = . If a statement is not recognized 118 an 
assignment, it.s leading token is mateMd apiDPt a 
keY"ford list to determine the statement type. This 
algorithm is very efficient and is able to positively 
identify all legal statements without requiring keywords 
to be reserved. 

Decl.arat{on prOCPasiftfl 

PL/I declaration processing is complicated by the 
great vari9'y of data attributes and by the context 
88118itive manner in which they are derived. Two 
modules, the context proeessor and. the declaration 
proceaor, prooess declarative information gathered by 
the parse. 

Tb.e eoate:d proeessor 

The cont.en prooe880r scans the data base containing 
contextually derived attributes produoed during the 
parte by ihe context rvconhr. It either anr,m-ta the 
partial symbol table created from declare statements or 

computation of each ~ble's storage requirements, 
and the creation of ini\i,e.li•a&,iQR code. 

The .d~ -p~t is relatively machine 
independe.it. AU IMC'1ine ~ependent eh&racteristirs, 
such Ml the number of·~ perword and the alignment 
requirements of data tyj,es, are contained in a table. 
All computations or statements prod~ by the 
declaration P,recetlflOf haV. tlt.e.S&Ple internal rePreeenta­
tion as sourile Ian~ exp~ions or statements. Later 
phasee of ihe compiler• not .d.U¢inguish ~them. 

The use of based references by the declaration 
pro essor 

The eoneept of a based reference is useful to the 
understanding ot Pl/ I data accessing and the imple­
mentation of a number of language features. A based 
declara~ ol th~ lonp. DCL A BASED is referoneed 
by a baaed reterenoe of the form p' - A, where Pis a 
poinw to. the storage . occupied by a value whose 
descriptioQ is given _by the. declaration of A., Multiple 
~ees of data having the characteristics of A can be 

, ref~ through, the use of unique pointers, i.e., 
Q-A, B-+A, etc. 

The declaration processor implements a number of 
I~ feat~ by t,ra.osfo.rming them into suitable 
based declatations. Automatic data whose size is 
variable is tran&forlned into a based declaration. 

For Mample the dedaration: 

DCL A(N) AUTO; 

becomes 

DCL A(N) BASED(P); 

where: P is a cenrpiklr produced pointer which is eet 
upon entry t.o the declaring block. 

Based declarations are also used to implement 
parameters. For example. 

X: PROC (C); DCL C; 



becomes 

X: PROO (P); DCL C BASED(P); 

where: P is a pointer which points to the argument 
corresponding to the parameter C. 

Data. accessing 

The address of an item of PL/l data consists of three 
basic parts: a pointer to some storage location, a word 
offset from th.at location and a bit offset from the word 
oft•. Either or both offsets may be zero. The term 
~;> is un.dentood to refer to the addreaaa.ble unit 
«•~t.er's storage. 

~el 
DCL A AUTO; 

The address of A consists of a pointer to the declaring 
block's automatic storage, a word offset within that 
automatic storage and a zero bit offset 

Example 2 

DCL I s BASED(P) I 
2 A BIT(5), 
2 B BIT(N) 

When referenced by P --+ B, the address of B is a 
point.iar P, a zero word offset and a bit offset of 5. The 
word oJfset may include the distance from th~ origin of 
the item's storage class, as was the case with the first 
example, or it may be ·only ~e distance from the 
level-one containing structure, as it was in the last 
example. The term "level-one" refers to all variables 
which are not contained within structures. Subscripted 
array element references, A(K,. J), or sub-string 
references, SUBSTR(X, K, J), may· also be expressed 
as offsets. 

Offset expressions 

The declaration processor constructs offset expres­
sions which represent the distanee between an element 
of a structure and the data origin of its level-one 
containing structure. If an offset expression contains · 
only constant terms, it is evaluated by the declaration 
processor and results in a constant addressing offset. If 
the offset expression contains v-ariable terms, the 
expression results in the generation of accessing 
instructions in the object program. The discussion which 
follows describes the efficient creation of these off set 
expressions. 
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Given a declaration of the form: 

DCL l S, 
2 A BIT(M), 
2 B BIT(5), 
2 C FLOAT; 

The ofset of A is zero, the offset of B is M bits, and the 
offset of C is M + 5 bits rounded upward to the 
nearest word boullda.ry. 

In general, the offset of the nth item in a structure is: 

bi.(e.-1(8,.-1) + b.......1(e.-2(S..-2) + b.......2 
( · · ·ha( 0t(es)) + bs( ei(s1)) )- • ·))) 

~: b1: is a rounding function whieh expresses the 
boundary requirement of the ktA item. 

3Jo is the sile of the kth item. 
c,. is the conversion factor necessary to convert 
8.t to some common units such as bits. 

The declaration processor suppresses the creation of 
unnecessary conversion functions ( c1:) and bo~dary 
functions (b1:) by keeping traek of the current units and 
boundary as it ·builds the expre88ion. As a result the 
offset exprt!issions of the previous example do not contain 
conversion functions and boundary functions for A 
andB. 

Durmg the construction of the offset expression, the 
declaration processor separates the constant and varia­
ble terms so that the addition of constant terms is done 
by the compiler rather than by accessing code in the 
object program. The following example demonstrates 
the im.proveauent gained by this technique. 

DCL 1 S, 
2 A BIT(5), 
2 B BIT(K), 
2 C BIT(6), 
2 D BIT(IO); 

The offset of D i,s K+11 instead of s+K+6. 

The word offset and the bit offset are developed 
separ~tely. Within ea.ch·offset, the constant and varia­
ble parts are separated. These sepa.ra.tions result in the 

, min.imization of additions and· unit conversions. If the 
,declaration· oontains only constant sizes, the resulting 
offsets are eonstant. If the declaration contains expres­
sions, then the ()ffsets are expressions containing the 
minimum number of terms and 1.»onversion factors. 

The development of size and offset expressions at 
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compile time enables the object program to access data 
without the use of data descriptors or ''dope vectors.',. 
:\lost existing PL/1 implementations make extensive 
use of such descriptors to aeeess data whose size or 
offsets a.re variable. Unless these descriptors Jtre 
implemented by har.:iware, their use results in rat.her 
ine3icient object code. The ::\lultics PL/1 strategy of 
developinc offset expresaioM from the declarations 
results in accessing code similar to that produced for 
subs :ri ~ted array leferenees; Th.is code is ~Y 
moN dlieient than code which UM8 descriptors. · 

In ~al. the olfaet ~ eonstructed b)· the 
deelaratio~1 proee380r remain unchanged until code 
generatiqn. Two oases are exceptions to this rule: 
subscripted array ~. A(K,J), and sub--string 
references, SU BSTR(X,K,J). Each subscripted 
refereuee or sub-sUiP& refereooe is a reference to a 
unique sub-daium within the doola.red datum and, 
therefore, requires a unique offset. The semantic 
translator oonstructs these unique oft'seta using the 
subscripts from the reference and the oft'set prepared by 
the declaration proceeaor. 

AJoeaU. 
The declaration. proeessor d~ not ~ storage 

for most classes of data, but it d~ detenlline the 
amount of storage needed by eaeh v.n.ble. Variables 
are allooated within some sepient of s~ by ihe code 
generator. Storage allocation is delayed becauae, during 
semutie traula.\ion aad optimiu.t.ion, add.lf.iooal dee­
l.0rations of constants and compiler created variables 
are made. 

The declaration proceesor creates statementfi iti the 
prologue of the declaring block which will initialize 
automatic data. It geilerates DO statements, IF 
statements and Meip,ment statements io accomplish 
the required initU.liaation. 

The expansion of the initial attribute for based and 
controlled data is identical to that for automatie data 
except that the required stateQients are ill88l'ted into 
the program at the point of allocation rather than in the 
prolggue. 

Since &rray bounds and string sile6 of static data are 
required by the language to be oon&tant, and since all 
values of the initial attribute of statie ·data muat be 
constant, the compiler is able to init.ialise the static data 
at compile time. The initialisation is dooo by the code 
generator at the time it allocates the static data.. 

Semantic translati011 

The semantic translator transforms the internal 
representation so that it reflects the attributes (seman­
tics) of the declared variables without reftecti111 the 
properties of the object machine. It makes a llinale eean 
over the internal repn!lll8Dtation of the Jll'OflP1Ull· A com­
piler, which had no equivalent of the optimiser phase 
and which did not separate the ma.ehiae depe1dencies 
into a separate ~ could conceivably produce object 
code duri~ this ~. 

Ol'pallatilll of .. llOUUttie tn••• 
The &elDatltie- •ranaJMor ~ of a.. set of J!9CW'Bive 

prooedures which walk throu&h the ~ tree. The 
actions taken by theae proeedure8 are deeeribed by *­
general tel'lll8: operator transformation and ~·· 
processing. Operator transformation includes the cM­
tion of an explicit representation of eaeh operator's 
result and the generation of oonvendon opera.tors for 
those operands· Whieh require conversion. Operand 
proeee8ing determillel8 the attributes, size and offilet8 of 
each operator's operand&. 

Operator tnmsfonaatiGn 

The meaning of ait operator is determined by the 
attributes of its openmd8. This meaning specifies which 
conversions must be performed on the operands, &nd it 
decides the attributes of the operator's result. 

Au operaton result is repreeentl'd in the progtam 
tree by a temp<>rary node. Temporary nodes are a 
further qualification of the original operator. For 
example, an add open~ whose reeutt is bed-point is a 
distin4't operation ftom an add operator whoee ·reeult is 
fto6tinc-00int. There is no storage associated with 
telllporaries-they are allocated either core or ·NCister 
storatr.-e by the code generator. A temporary's eise is a 
function of the operator's meaning and the sizes of the 
operator's operands. A temporary, representing the 
intermediate result of a string operation, requires &n 
expreesion to represent its length if any of the string 
operator's operands have variable lengths. 

Operalli pner rina 

Operands consist of sub-expressions, references to 
variables, eowttants, tmd references to procedtire names 
or built-in fwictions.. Sub-expression operands are 
pf()Cetlled by recursive use of operator transformation 
and operand processing. Operand processing converts 
constants to a bin&ey format which depends on the 



context in which the constant was used. References to 
variables or procedure names are associated with their 
appropriate declaration by the search function. After 
the search function has found the appropriate declara­
tion, the reference may be further processed by the 
subscriptor or function processor. 

The Search function 

During the parse, it is not possible for references to 
source program variables to know the declared attributes 
of the variable because the PL/l language allows 
declarations to follow their uae. Therefore, references to 
source program variables are parsed into a form which 
contains a pointer to a token table entry rather than to 
a declaration of the variable. Figure 3 shows the output 
of the parse. The search function finds the proper 

· declaration for each reference to a source program 
variable. The effectiveness of the search depends heavily 
on the structure of the token ~able and the symbol table. 
After declaration processing, the token table entry 
representing an identifier contains a list of all the 
declarations of that identifier. See Fiyure 4. 

The search function first tries to find a declaration 
belonging to the block in which the reference occurred. 
If it fails to find one, it looks for a declaration in the next 
containing block. This process is repeated until a 

~ PAOC: 

OCL 8 POINTER l 

BEGIN; 

OCL 8 FLOAT: 

BEGIN: 

DCL 8 FIXED; 

END: 
END: 

END; 

Token Table 

8 

\ 
S)'mbol tab I e for 

........... B as a pointer 
block node for .'---

TOP ~ 
"""-.. .,.-1 tebl • for 

"'- ............ 8 ae floatin9-point 
block node for '\. 
f Int IE&IN \ 

"""-.. .,.., table for 
"'- ....,...a ae flxed•polnt 
block node for ~ 
Hcond BEGIN 

Figure 4-The relationship between the token table and 
the symbol ti.hie 
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DEM1 PROC; 

DCL IS, 
2 A(N) Fl.OAT, 
2 ISCMI FIXED; 

5.8(1) • O; 

£ND; 

\ S)'fllbol 

block node ---for 8 

for OEM 

\ . 
' . 

-- ---
table 

\,.,.,.llC. 
node for 8 

8K!lf1Hian bui It 
\ } tlle word offHt 

N b)' tlle declaration 
proce11or. 

] th -d OffHt 
UPl'Htion bui It 
bJ tit• ••-tic 
tr••lotor. 

Figure 5-A simplified diagram showing the effects of 
subscripting 

declaration is found. Since the number of declarations 
on the list is usually one, the search is quite fast. In its 
attempt to find the appropriate declaration, the search 
function obeys the language rules regarding structure 
qualification. It also collects any subscripts used in the 
reference and places them into a subscript list. Depend­
ing on the attributes of the referenced item, the 
subscript list serves as input to the function processo~ or 
subsctil)W. 

The declaration, processor creates offset expressions 
and size expressions for all variables. These expressions, 
known as accessing expressiens, are rooted in a reference 
node which is attached to a symbol table node. The 
reference node contains all information necessary to 
access the data at run time. The search function 
translates a source reference into a pointer to this 
reference node. See Fi!tlll"0 5 . 

Subscripting 

Since each subscripted reference is unique, its offset 
expression is unique. To reflect this in the internal 
representation, the subscriptor creates a unique refer­
ence node for ea.ch subscripted reference. See Figure 6. 
The following discussion shows the relationship between 
the declared array bounds, the element size, the array 
offset and subscripts. 
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Let us collBider the case of an array declared: 

a(h :u1, 12 :u,, · · · · , l,. :u,,) 

I ts element si1e is s and its offset is b. 

The multipliers for the array are defined as: 

rn. = s 
m...-1 ;.. (u,. -I.+ l)s 
ID.-1 -= (u-1 -1-1 + l)m.-1 

m1 = (u2 -1, + l)m1 

The offset of a reference a(h, i2, · · ·, i..) is computed as: 

" 
v + L: i;m; 

;-1 

where: vis the virtual origin. The virtual origin is the 
offset obtained by setting the subscripts equal to 1ero. 
It serves as a convenient base from which to compute 
the offset of any array element. 

During the construetion of all expremiions, the 
constant tenns are separated from the variable terms 
and all constant operations are performed by the 

FIGS PM>C; 

DCI.. lX. ~ Z> FLOAT: 

X • Y+Z; 

.,,,,,,,.---.,... ....... 
__...... •• , z \ .,... .. ,..... , ........ 

torY \ ..-t.z 

\ ,,.... .. :--- , .... .... 
ferX \ ..... forY 

llleell ................ ,.,. ...... 

:i__ 7~·· 
(h911 ••• ...... \ V•• teM•J 

for ou1 .. -t '·--\ v v· v' 
' ' 

' , _____ _ 
\ ...... __ 

z 
y 

x 

Figure &-The internal ~presentation of a statement 
before and after the execution of the search function. 

The broken lines show the statement's 
operands before the seueh 

compiler. Since the virtual origin and the multipliers are 
common to all references, they are constructed by the 
declaration proool!l80r and are repeatedly used by ~e 
sub8criptor. 

Arrays of PL/I structures which contain arrays may 
result in a set of multipliers whose units differ. The 
declaration: 

DCL I S(IO), 
2 A PTR, 
2 B(IO) BIT(2); 

yields two multipliers of difenint unit.a. The fust 
multiplier is the me of .. eleaent of 8 in WOl'da,; :while 
the seaond. muliipJier Hi the ·me of an ehtment of B 
in bit.a. 

Array parameters which may eorrespond to an array 
rross section argument must receive their multipliers 
from an argument deaeripto?. Sinee the a,rrangernent 
of the cross seCtlon elements in storage is not kno"-n tc> 
the called .prorram, it cannot conStruct its own multi­
pliers and must use multipliers prepared by the calling 
program. Note that the current definition of PL/I 
allows any array~ to receive a cross section 
argument. 

The funetion processor 

An operand which is a reference to a procedure Hi 
expanded by the function proceMOr into a call operator 
and possible eonvenion operators. Built-ill funetion 
references result in new opentors or are translated into 
expressions consisting of operators and ope:ra,nds. . 

Generic procedure references 

A generic entry name represents a. family of pro­
cedures whose members require different types of 
arguments. 

DCL ALPHA GENERIC (BETA 
ENTRY (FIXED)), 
GA..\lMA 
ENTRY (FLOAT)); 

A reference to ALPHA (X) will result in a. call to 
BETA or CAMMA depending on the attributes of X. 

The declar&tioo ·~cha.ins together all members 
of a generic family and the function prooossor selects the 
appropriate member of the family by matching the 
arguments used in the reference with the declared 
argument requirements of each member. When the 
appropriate member is found, the original reference is 
replaced by a :reference to the selected member. 



Argument processing 

The function processor matches arguments to user­
deelated procedures against the argument types required 
for the procedure. It inserts conversion operators inf;o 
the program tree where appropriate, and it issues 
diagnostics when it detects illegal cases. 

The return value of a function is processed as if it 
were the n+ 1th argument to the procedure, eliminating 
the distinction between subroutines and functions. 

The function processor determines which arguments 
may possibly correspond to a parameter whose size or 
array bounds are not specified in the ctilled procedure. 
In this case, the argument list is augmented to include 
the miBBing size information.. A more deta.iledde8cription 
of this issue is given later in the diseUllBion of object 
code strategies. 

The built-in function processor 

The built-in function proce880r is basically a table 
driven device. The driving table describes the number 
and kind of arguments required by each function and is 
used to force the neceesary conversions and diagnostics 
for eaeh argument. Mon functions require processing 
wbieh is unique ~ that function, but the table driven 
device minimiM!8 the amount of this proceesing. 

The 8UBSTR built-in function is of partieular 
importance since it is a basic PL/! string operator. It is 
& three argument function which allows a reference to 
be made to a portion of a string variable, i.e., 
SUBSTR (X, I, J) is a reference to the ith through 
i + j - 1th eharact.er (or bit) in the string X. , 

This function is similar to a.n array element reference 
in the sense that they ooth determine the oftsets of the 
reference. The processing of the SUBSTR function 
involves adjusting the offset and leugth expressions 
oontained in the reference node of X. As is the case in 
all compiler operatioos on the offset expreMiOOB, the 
constant and variable terms are separated to minimise 
the object code necessary to aooess the data. 

The optimizer 

The compiler is designed to produce· relatively fast 
object code without the aid of an optimising phase. 
Normal execution of the CODipiler will by-p888 the 
optimiser, but if extensively optimised object code is 
desired, the user may set a compiler command option 
which will execute the optimiser. The optimiler consists 
of a set of procedures which perform two major optimi­
zations: common sub-expression removal and. remova1 

of computations from loops. The data bases necessary 
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for these optimizations are constructed by the parse 
and the semantic translator. These data bases consist of 
a cross-reference structure of statement labels and a 
tree structure representing the DO groups of each 
block. Both optimizations are done on a block ha.sis 
using these two data b88e8. 

Although the optimizer phase was not implemented 
at the time this paper was written, all data ba.ses 
required by the optimizer are constructed by previous 
phases of the cbmpiler and the abnormality of all 
variables is properly determined. 

Optimiation of PL/I programs 

The on·condition mechanism of the PL/I language 
m&kes the optimisation of PL/l programs. considerably 
1D01e dll&C\llt ~ the optllni..lation. of Fortran pro­
grams. ~ i;hat aa optimised version of a 
prognt.81 should yjeld results i~cal to those produced 
by the un-optimised venion, then if any on-conditioru1 
are enabled in a given region of the program, the 
compiler cannot remove or ~ the computations 
performed in that region. (Consider the ease of a divide 
by zero on unit which counts the number of times that 
the condition oocurs.) 

Since some oo.-eonditions are enabled by default, 
most PL/l programs ~ot be optimized. Because of 
the diSeulty oJ determining the abnormality of a 
pmgram~ev~, the optimi•on of those programs 
which may be op~ requires a rather intelligent 
compiler. A variabJe ie abnQrmal in some block if its 
value can be altered without an explicit indication of 
that fa.et present in that block. An optimizing PL/I 
compiler must consider all~ variables, all arguments 
to ~e ADDR. furultion, all 4efined variables, and all 
blWI& items of ~ variables to be· &bnorma.l. If the 
cotnpiler expects values of v~les to be retained 
throughout ·tile exeol,Jtioa of a call, it must also consider 
all parameters, all external variables, and all arguments 
of ineduoible fuectiODS $«> be abnormal. 

Becauae of ,the ~y of optimizing programs 
written in the c~nt PL/1 Ian~ compilers should 
probably not attempt to perform general optimizations 
but should eoneeni:Ate on special case optimizations 
which are unique to each implementation. Future 
revisions to the language definition may help solve the 
optimization problem. 

The code generator 

The code generator is the machine dependent portion 
of the compiler. lt perfOl'IDS two major functions: it 
allocat. data into Multics segments and it generates 
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645 machine iMtructions from the internal repre­
sentation. 

Storage allacation 

A module of the code generator called the storage 
allocator scans the symbol table allocating stack 
storage for constant size automatic data, and linkage 
segment storage for internal static data. For each 
external name the storage allocator creates a link (an 
out-reference) or a definition (an entry point) in the 
fuikage segment. All internal static data is initialized as 

. its storage is allocated. 
Due to the dynamic linking and loading characteris­

tics of the :\lultics environment, the allocation and 
initialiaation of external static storage is rather unusual. 
The compiler creates a special type of link which e&U8e8 

the linker module of the operating &)"stem to create and 
initialize the external data upon first reference. There­
fore, if two programs eon~in references to the same 
item of external data, the first one to reference that data 
wilJ allocate and initialise it. 

Code generation 

The code generator scans the internal representation 
transforming it into 645 machine instructions which it 
outputs into the text segment. During this scan the 
code generator allocates storage for temporaries, and 
maintains a history of the contents of index registers to 
prevent excessive loading and storing of index values. 

Code generation consists of three distinct activities: 
addresti eomputation, operator selection and macro 
expansion. Address computation is the process of 
transforming the offset expre88ions of a reference node 
into a machine address or an in9'ruetion sequence which 
leads to a machine address. Operator selection is the 
translation of operators into n-operand macros which 
reflect the properties of the 645 machine. 

A one-to-one relationship often exists between the 
macl'08 and 645 instructions but many operations (load 
long string, etc.) have no machine counterpart. All 
macros are expanded in· actual 645 code by the macro 
expander which uses a code pattern table (macro 
skeletons) to select the specific instruction sequences 
for each macro. 

Object code strategies 

The object code design 

The design of the object code is a compromise between 
the speed obtainable by straight in-line code and the 

necessity to minimize t~e number of page faults calltled 
by large object pro£TI.d11S. 

The length of the object program is minimized by f.he 
extensive use of out-of-line code sequences. These 
out-of-line code sequences represent invariant code 
whieh is comJll()n to all. l\lultics PL/I objttt programs. 
Although the compiled code makes heavy use of out-of­
line code sequences, the compiled <!ode is r.ot in any 
respect interpretive. The object. code produte for each 
operator is ve1y highly.tailored to the specific attributes 
of that operator. 

All out-of-line sequences are tontained in a single 
"operator" segment which is shared by all users. The 
in-line code reaches on out-ef-line sequence through 
transfer inatructions. rather than through the standard 
subroutine meebani81Jl. We believe that the time 
overhead associated with the transfers is more than 
1edeemed by the reduction in the number of page faults 
caused by shorter object programs. ~ystem performance 
is improved by insuring that the pages of the opentor 
segment are always retained in storage. 

The stack 

~Iultics PL/I object programs utilize a stack segment 
for the allocation of all automatic data, temporaries, 
and data assoeiMed with on-condiuou. Each task 
(Multics process) hae its own stack which is extended 
(pu8hed) upon entry to block and is reverted (popped) 
upon return from a block. Prior to the execution of-each 
statement it is extended to create sufficient space for 
any variable len«th string temporaries used in that 
statement. Constant sise temporaries are allocated at 
compile time and do not cawie the staek to be extended 
for each statement. 

The tenn prologue describes the computations which 
are performed after block entry and prior to the 
execution of the first source statement. These actions 
include the establishment of the condition prefix, the 
computation of the size of variable size automatic data, 
extension of the stack to allocate automatic data, and 
the initialiia.tion of automatic data. Epilogues are not 
needed because all actions which must be undone upon 
exit from the block are accomplished by popping the 
stack. The stack is popped for each return or non-local 
go to statement. 

Accessing of data 

Multics PL/I object code addresses all data, inelud-



ing members of variable sized structures and arrays 
directly through the use of in-line code. If the address 
of the data is constant, it is computed at compile time. 
If it is a mixture of constant and variable terms, the 
constant terms are combined at compile time. Descrip­
tors are never used to address or allocate data. 

String operations 

All string operations are done by in-line code or by 
"transfer" type subroutinized code. No descriptors or 
calls are produced for string operations. The SUBSTR 
built-in function is implemented as a part of the normal 
addressing code and is therefore as efficient as a 
subscripted array reference. 

String temporaries 

A string temporary or dummy is desigued in such a 
way that it appears to be both a varying and non-vary­
ing string. This means that the programmer does not 
need to be concerned with whether a string expression. is 
varying or non-varying when he uses such an expression 
as an argument. 

Varying strings 

The Multics PL/I implemcnt:>,tion of vr,rying strings 
uses a data format which cor.sists of an intcgor followed 
by a non-varying string whose length is the declr,re 
maximum of the varying string. Tl•.e i 1tegcr is used to 
hold the current size of the string in bits or chr.rr.cters. 
Using this data format, operations on vr,rying strinf;s 
are just as efficient as operations on non-varying strings. 

On-conditions 

The design of the condition machinery minimizes the 
overhead associated with enabling and reverting on­
units and transfers most of the cost to the si~I 
statement. All data associated with on-conditions, 
including the condition prefix, is allocated in the stack. 
The normal popping of the stack reverts all enabled 
on-units and restores the proper condition prefix. Stack 
storage associated with each block is threaded backward 
to the previous block. The signal statement uses this 
thread to search back through the stack looking for the 
first enabled unit for the condition being signalled. 
Figure 7 shows the organization of enabled on-units in 
the stack. 

Argument passing 

The PL/I language permits parameters to be 

The Multics PL/1 Compiler 2-83 

] 

stack 1tara11e 
fH A. 

} 
ot1-unlt contra! 
Clota far X. 

J 
::c~. storao• 

i----4J;\ .... 11111t control j data for X and 
Y. . 

} 

steel! Uorill11• 
, ... c. 

Pracedure A enabled an 
on-unit far w11dit1on X 
and called procedure B. 

Procedure 8 -bind a 
new on-11nit for COlldit ion 
X 91111 Oft on-lllllt for 

. conclltlon. Y. It tltn 
canw ,roca•r• c. 

Proce-.re C dill llOf 
• ..... .., •-11111t1. 

Figure 7-St&ck storage and the signal mechanism 
A tignal for condition X ce.uses the signe.l mechanism to search 
t eek through the ste.ck until it find<1 the first enabled· on-unit 
for condition X. 
An on-unit is compiled a1 an internal procedure. The execution 
of e.n ON-statement creates a block of on-unit control data. This 
control datr. comhb of the name of the condition for which the 
unit we.s enabled 1.md a procedure variable. The dgnal mechanism 
uses the pl'O('edure. variable to invoke the on-unit. All data 
associated with the ent.hled on-unit is stored in the stack storage 
of ihe procedure which enabled it. Normal popping of the stack 
reverts the on-unit!!< ent!.bled durin1 the execution of the 
procedure. 

declared with unknown array bounds or string lengths. 
In these cases, the missing size information is assumed 
to be suppl~ by the arJ1,ument which corre8ponds to the 
parameter. This missing size information is Mt explicitly 
supplied by the programmer as is the case in Fortran, 
rather it must be supplied by the compiler as indicated 
in the following example: 

SUB: PROC(A); :MAIN: PROC; 

DCL A CHAR(*); DCL SUB ENTRY; 

DCL B CHAR(lO); 

CALL SUB(B); 

Since parameter A assumes the length of the argu­
ment B, the compiler must include the length of Bin the 
argument list of the call to SUB. 
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The declaration of an entry name may or may not 
incfode a description of the arguments required by that 
entry. If such a description is not supplied, then the 
calling program must assume that argument descriptors 
are needed, and must include them in all calls to the 
entry. If a complete argument description is contained 
in the calling program, the compiler can determine if 
descriptors are needed for calls to the entry. 

In tbe previous example the entry SUB waa not fully 
declared and the compiler was forced to aaa~me that an 
argument descriptor for B was required. If the entry 
had been declared SUB ENTRY (CHAR(*}) the 
compiler could have known t.hat tbe descriptor of B was 
actually required by the procedure SUB. Sinee descrip­
tors are often created by the calling procedure but not 
used by the called procedure, it is deeirable to separate 
them from the argument information Which is always 
used by the called procedure. 

Communication between procedW'e8 '\\"litten in PL/1 
and other Jangs18p& ia facilitated if the other laaguages 
do not n-1 to OOllGem themaelve1with PL/l arg\lment 
descriptors. The Multics PL/I implementation of the 
argument list is shown in Figure 8. Note that the 
argument pointera point directly to the data (f~ilitating 
communication between. languages) and that the 
deecripton are optional, also ~ that. PL/1 pointers 

DCL ACtOI llT(N), I QWlC7), C .,_.CtOMI; 

CM.L lCCA,1,Ch 

1lle .,._. 1111 
,...,_ .. fOf llM · 
call to X. 

pol11ter1 to tlle nt11el 
welHI of A, I eM C. 

HICrlpter flt A 

-.Cr lllfor of I 

Figure 8-An &qpnnent list showing the relatiouhip 
between arguments and their d«:criptol'll. The 

broken lines indicate tha~ deeoriptora 
are optional. 

must be capable of bit addressing in order to implement 
unaligned strings. Since descriptors contain no address­
ing information, they are quite often constant and can 
be prepared at compile time. 

SUMl\fARY 

Our experiences both as users and implementors of 
PL/I have led us to form a numhet of opinions and 
insights which may be of general interest. 

I. It is feasible, but dilicult, to prodooe efficient 
object code for the PL/ I language as it is cur­
rently definied. Unfeal a eonaiderable. amount of 
work is inftlted in .a PL/I eompiler, the object 
code it generates "ill generally be much worse 
than that produced by.most Fortran or COBOL 
compilers. 

2. The difficulty of building a compiler for the 
current language has been seriously under­
estimated by most implementors. Unless the 
language ia markedly improved and simplified 
this problem will continue to restrict the avail­
ability and acceptance of the language and will 
lead to the implementation of incompatible 
dialects and subsets.7 

3. Simplification of the existing language will make 
it more suitable to Wl8l'8 and implementon. We 
believe tl:W tAe language can be simplified and 
still ~ its "univf'l'S&l" chant.et.er and 
capabilities. 

4. The esperienee of writ.ing the compiler in PL/I 
eonvineed ws thM a subset of the-language is well 
suited to 8)'IMm pqram.ming. This conviction 
iawpporied by Profeasor Corbato in hia report on 
the UBe of PL/1 as an implementation language 
for the Multies syat.em.• Many PL/1 concepts 
and consttU* are valuable, but PL/ 1 lt?Uctures 
and lilt ~ eeem to be the· principal 
impro-.enietlt owr alternative languages.• 
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Remote Terminal Character Stream Processing in Multics 

by J.H. Saltzer and J.F. Ossanna. Reprinted from 
AEIPS Coofarepc! pro,aedings .li, AFIPS Press, 
1970, pp. 621-6 7, with permission. Copyright 1970 
by AFIPS Press. 

This paper describes one of the numerous areas of an 
operating system which must be carefully thought out to provide a 
uniform, well-enalneered human interface. The topic Is the 
processing of terminal Input and output so that programs see a 

·standard Implementation-Independent termfnal, while typists see a 
simple, easy-to-learn method of conmunlcatlng with the system, no 
matter which terminal device they happen to be faced with. Since 
the system has been used with perhaps 25 different kinds of 
terminal equipment the considerations described here cannot be 
Ignored. (Note, however, that we are here dealing with a set of 
concepts which are a notch below the Importance of, say, the 
Multics virtual memory strategy.), The paper Is generally 
up-to-date in terminology, but for exact details of the typlna 
conventions one should refer to section 1 of the Reference Guide. 
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Remote terminal character stream 
processing in Multics 

by J. H. BALTZER 
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J. F. OSSANNA 
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INTRODUCTION 

There a.re a. variety of considerations which a.re per­
tinent to the design of the interf a.ce between programs 
and typewriter-class remote terminal devices in a. 
general-purpose time-sharing system. The conventions 
used for editing, converting, and reduction to canonical 
form of the stream of cha.ra.cters passing to and from 
remote terminals is the subject of this pa.per. The 
particular techniques used in the Multics* system 
are presented as an example of a. single unified design 
of the entire cha.ra.cter stream processing interface. 
The sections which follow contain discussion of char­
acter set considerations, character stream processing 
objectives, character stream reduction to canonical 
form, line and print position deletion, and other 
interface problems. An appendix gives a. forma.l de­
scription of the eanonica.l form for stored character 
strings used in Multics. 

CHARACTER SET CONSIDERATIONS 

Although for many yea.rs computer specialists have 
been willing to accept whatever miscellaneous collec­
tion of characters and codes their systems were delivered 
with, and to invent ingenious compromises when 
designing the syntax of programming languages, the 

• Multics is a comprehensive general purpose time-sharing 
system implemented on the General Electric 645 computer 
system. A general description of Multics can be found in Ref­
erence 1 or 2. 
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impact of today's computer system is felt far beyond the 
specialist, and computer printout is (or should be) 
received by many who have neither time nor patience 
to decode information printed with inadequate graphic 
versatility. Report generation has, for some time, been 
a. routine function. Recently, on-line documentation 
aids, such as RUNOFF,1 Data.text (IBM Corp.) or 
RAES (Genera.I Electric Co.) have attracted many 
users. Especia.lly for the latter examples it is essentia.l 
to have a. cha.ra.cter set encompassing both upper and 
lower case letters. Modem programming languages can 
certainly benefit from availability of a variety of special 
cha.ra.cters as syntactic delimiters, the ingenuity of 
PL/I in usirig a. sma.11 set notwithstanding. 

Probably the minimum character set acceptable 
today is one like the USASCII 128-eha.ra.cter set' or 
IBM's EBCDIC set with the provision that they be 
fully supported by upper /lower case printer and 
termina.l hardware. The definition of support of a. 
character set is a.lmost as important as the fa.ct of 
support. To be fully useful, one should be able to use the 
same full character set in composing program or data. 
files, in literal character strings of a. programming 
language, in arguments of ca.lls to the supervisor and to 
library routines requiring symbolic names, as embedded 
cha.ra.cter strings in program linkage information, and in 
input and output to typewriters, displays, printers, and 
cards. However, it may be necessary to place conversion 
packages in the path to and from some devices since it is 
rare to find that all the different hardware devices 
attached to a. system use the same character set and 
character codes. 
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TABLE 1-:&.pe conTentio1111 for input and output 
of U8A8CII from an EBCDIC typewriter 

N«mal 
ABCII CMraeter ASCII EBCDIC 

Name CRpic Eticape 

JlisMSqmreBraabt I> 
IAl\Sq... ..... I< 
ftiPt .... I> 
IAftBraca I< ,,... It 
0...WAooent 

-· 
CHARACTER STREAM PR~ING 

CON8IDBRATION8 

~ 
"edited" ....,. 
* ::& 
-+-
-+ 
-+-

1he treatment of ...... *-m input and output 
may be degraded, from a ....._ eaaDieerinl point of 
view> un1em it ia iempered by the following two 
comideratioas: 

1. If a computer system supporia a variety of terminal 
dn:icM (Mldt.iaa, · n eZataple, sapporta bOtla·. tlJe 
IBM ·Madel 2'741~'·and tie Teletype l\fOtW··rr) 
the. it.,.... be polllih1e to work ....... Mly program 
flQln u.y termiitat. 

2. It ....... be ,... to determine from the primed ..... ~ ..-..ty. bo\ll ·;.W·wnt bdo the 
computer Jll'OCrS$. ·• wW • 1>1• ... tried ·t.o 

. tout. )Jl'ID 

To be ,. •eat.iff, ._ two eoneic:leraaoaa must 
aP1Qto.u-.. . .-.ou&pawt111e~naelf (e.g., 
..- 1.i.· I iD,oh .. ._ •• ., ete.} a well as 
iapa ...... ._.._ V..•.editon, .. 

Aa an enmple el. die .. ...,_ ~., oon-
' time, M--. w the UBMlCll ......., aet in 
all iMlllM!l muftae•_. ..,-;••• ~ t.eclw.iques 
for ·bbs ~ •viHJ1 .,... ue ..... us.ASCII. 
Whee -. ~. G&-M6 UiWJC1J •.primer or the 
Tele'1Pe Model 31~ ·*"-·is • diftiwk1 in ~ 
any U8A8CII papbie. for ~ or o\Rput fl'Olll any 
__.or..,.._ ......._.In onler to t.e non-UBASCII 
Mrcl .......... OM UBASCllpapbic {&be .wt .iant) 
ie Ill uir1e • a "aoftware a.pa" cta.nder~ When a 
DDD-UBA8Cll clevioe (ay iJie IBM 2741 typewriter 
witll u EBCDIC priat element} is to be uaed, one 
filld ..... a ~1 so fw 88 Jl91!11ible, 
betWWl .,..-. ~ on the device and graphics 
of· lJ8A8CU, beiBs ._ that aome ~ter of the 
deYiae eanetpllnd1 to dae ~ escape ~r. 
'Ilml, fw die IBM 2"1.U, tlaere &re 86 obviouady cor­
ntpnndina ......... ~ EBCDIC overbar, cent sign, 
and ~ ean correspond to the US.ASCII 

circumflex, left slant, and acute aeeent respectively, 
leaving the IBM 2741 unable to represent six USASCll 
graphic oharutera. For eaeh of the six miasing char­
aden a two charMter aequenee beginninc with the 
80ftware eaeape eharacter is defined, as shown in Table 
I. The eicape ehancter itself, 88 well as any illepJ 

~~·~°"'~-~~ )>y ll fot1r character 
eeqttenee,'~ ttii:'tWf>e~lalowed by a 
3-digit octalftll •. I! .... of fihe Qlmelll' oade. ThUB, 
it is paaRbJe from an mM 2741 to easily eommunieate 
all the cbarMten in the full USA8CII set. 

A similar, though much ~. Pl'inful, eet of eeeape 
conventiona U. been deviaedt ti 1* Of ·tlie Mridel 33 
and 36 Teletypes.. -.,1ih1w•..,..aa1Uower caae 
disUnetion on tlM.e manhime it die prinapal.tJstacle; 
two printed ~ eeeape aeq\Jenees • uaed to 
indiea~ that 8'IGl'llllfJdin letters are to be interpreted 
in a specific caae shift. 

Note that COllllidentiQn n\Ullber two above, that the 
printed record be unam~us, ~Wes aaaiQs& char-­
acter set extenaion conventions based on non-printing 
and otherwise um.ed oontrol characters.· Such con­
ventions ~vit&bly lead to diftietdty .in ~buainc, 
since the printed record cannot be used as a guide to the 
lfaY in wlaieb the input,,._ interpreted. 

The objeelive ,9'.. typewriter device independence 
also 1- aome i~ for conttol characters. The 
:\I~ .,._ ~ is to choose a small subset of the 
~"l.L.. __.._. cMruters· ..tve them · · · me · 
~ .... ·~····· ·" . ··~.. pred8e anmga, and aUeq>t tO ~ tlloee meaniDp oii ewry device, 
by in~ if ~. Thus, a "new page" 
cbMacter jt.ppears m the subset; on & :\{odel 37 teletype 
it is intelifttecl bY ~ a ronn feed and a carriage 
retwn; on an JBjf 2741 it is'interpreted by giving an 
appropriate number ofl'lew line c~rs. • 

Of ~e 33 ~le USASCII control characters, 11 are 
defuied in 11~., sh<nm in Table II. 

Red and b1ack shift· ctiaractets appear ·in the set 
because of their convenience in providing emphasis in 
coIQments, both by' s~ and by user routines. The 
half-line forward and half-line reverse feed characters 
were included to facilitate experimentation with the 
:\Iodel 37 Teletype; theae characters are not currently 
interpretable cm other dlmees. 

One interesting point is the choice of a "null" or 
"Plddmc• .ebarade.r ueed to fill out strinp after the 
lui wiqf.ul chuaot.er. By convention, padding 
characten appearing ia .an output stream are to be dis­
eudedt eitlter.b.y hardware or tt0ftware. The USASCII 
choiee of eode vakle _,.., for the null character bas the 

-This inlerpret.ation or tM form feed function is oonsist.ent. with 
the In..,.tional Stand~s Organization option of interpreting 
the "line feed" cOde u "new line" includift(C elll'ria(I,'& return. 
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interesting side effect that if an uninitialized string (or 
random storage area) is unintentionally added to the 
output stream, all of the zeros found there will be as­
sumed nulls, and discarded, possibly leaving no effect 
at all on the output stream. Debugging a program 
in such a situation can be extraordinarily awkward, 
since there is no visible evidence that the code manipu­
lating the offending string was. ever encountered. 

In Multics, this problem was considered serious 
enough that the USASCII character "delete" (all 
bits one) was chosen as the padding character code. The 
zero code is considered illegal, along with all other 
unassigned code values, and is printed in octal whenever 
encountered. 

· As an example of a control function not appearing in 
the character set, the printer-on/printer-off function 
(to allow typing of passwords) is controlled by a special 
call which must be inserted before the next call to read 
information. This choice is dictated by the need to get 
back a status report which indicates that for the cur­
rently attached device, the printer cannot be turned 
on and off. Such a status report can be returned as an 
error code on a special call; there would be no con­
venient way to return such status if the function were 
controlled by a character in the output stream.** 

CANONICAL FORM FOR STORED 
CHARACTER STRINGS 

Probably the most significant impact of the constraint 
that the printed record be unambiguous is the inter­
action of that constraint with the carriage motion 
control characters of the USASCII and EBCDIC sets. 
Although most characters imply "type a character in 
the current position and move to the next one," 
three commonly provided characters, namely back­
space, horizontal tab, and carriage return (no line 
feed) do cailse ambiguity. 

For example, suppose that one chooses to implement 
an ALGOL language in which keywords are underlined. 
The keyword for may now be typed in at least a dozen 
different ways, all with the same printed result but all 
witq different orders for the individual letters and back­
spaces. It is unreasonable to expect a translator to 
accept a dozen different, but equivalent, ways of typing 
every control word; it is equally unreasonable to require 

** The initial Multics implementation temporarily uses the 
character codes for USASCU ACK and NAK for this purpose, 
as an implementation expedient. In addition, a number of 
additional codes are accepted to permit experimentation with 
special features of the Model 37 Teletype; these codes may 
become standard if the features they trigger appear useful enough 
to simulate on all devices. 

TABLE 11-USASCII Control Characters 88 Used in Multics 

USASCII MULTICS 
NAME NAME 

BEL 
BS 

HT 

LF 

so 
SI 
VT 

FF 

DC2 
DC4 
DEL 

BEL 
BS 

HT 

NL 

RRS 
BRS 
VT 

NP 

HLF 
HLR 
PAD 

MULTICS MEANING 

Sound an audible alarm. 
Backspace. Move carriage back one 

column. The backspace implies over­
striking rather than er1Bure. 

Horizontal Tabulate. Move carriage to 
next horizontal tab stop. Default tab 
stops are BBBUmed to be at columns 
11, 21, 31, 41, etc. 

New Line. Move carriage to left edge 
of next line. 

Red Ribbon Shift. 
Black Ribbon Shift. 
Vertical Tabulate. Move carriage to 

next vertical tab stop. Default tab 
stops are assumed to be at lines 11, 
21, 31, etc. 

New Page. Move carriage to the left 
edge of the top of the next page. 

Half-Line Forward Feed. 
Half-Line Reverse Feed. 
Padding Character. This character is 

discarded when encountered in an 
output line. 

that the typist do his underlining in a standard way 
since if he slips, there is no way he can tell from his 
printed record (or later protestations of the compiler) 
what he has done wrong. A similar dilemma occurs in a 
manuscript editing system if the user types in under­
lined words, and later tries to edit them. 

An answer to this dilemma is to process all character 
text entering the system to convert it into a canonical 
form. For example, on a "read" call Multics would 
return the string: 

_ (BS)f_ (BS)o_ (BS)r 

(where (BS) is the backspace character) as the 
canonical character string representation of the 
printed image of for independently of the way 
in which it had been typed. Canonical reduction is 
accomplished by scanning across a completed input 
line, associating a carriage position with each printed 
graphic encountered, then sorting the graphics into 
order by carriage or print position. When two or more 
graphics are found in the same print position, they are 
placed in order by numerical collating sequence with 
backspace characters between. Thus, if two different 
streams of characters produce the same printed image, 
after canonical reduction they will be represented by 
the same stored string. Any program can thus easily 
compare two canonical strings to discover if they 
produce the same printed image. No restriction is 
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placed on the human being at his COD80le; he is free to 
type a non-canonical character stream. This stream \\ill 
automatically be converted to the canonical fonn before 
it reacbeehis progra8l. (There is al.an escape hatch for 
the user who want.a his program to receive the raw input 
from his typewriter, unproceMed in any way.) 

Similarly, a typn-riteJ< control module is free to 
reWork a canonical· stream for output into a different 
form if, for example, the different form happens to 
print more rapidly or reliably. 

In order to accomplish canonical reduction, it is 
necessary that the typewriter control module be able 
to determine unambiguously what preciae physical 
motion of the device eonespoada to the o.haracter Mia'eam 
coming from or IOiag.t.o·-- la JNtioulv, it must.bow 
the location of ~ WJ eef.tinp. This requirement 
places a constraint on devices with movable tab stops; 
when the tab stops are moved, the system must be 
informed of the new eettinp. 

'I'he apparent eomplesity of the Multics canonical 
form, which is formally d8lleribed in Appendix I, is a 
result of its generality in dealing with all possible 
combinations of ty)Jewtiter carriage motions. ·Viewed 
in the perspective of preeen.t day language input to 
computer systema, one may observe that many of the 
alternatives are rarely, if ever, encountered. In fact for 
most iDpu~, the folJowing three ata&4tmentll, deacribing a 
simplified canonical forlll,are onmplifely.tequate: 

1. A meSsage eonsist8 of strings of cbaraeter poeitions 
separated by Cllll'ia«e mOtion. 

2. Carriage motions consist of New Line or Space 
characters. 

3. Character position$ consist of a single graphic or an 
overstruck graphic. A cb8rMter poldion·repreaentmg 
overstrikes contains a graphic; a baebpllCe chat­
aeter, a graphic, etc., with the grapbi(Bin: ueending 
oollating sequence. 

Thus we may conclude that for the mc.t part, the 
canonical stream will differ little ~ the raw input 
stream from which it wu derived. 

A strict application of the OUMmical form as given in 
Appendix I bu a side effect which bu affected it!I uae in 
.Multics. Correct application lead.a to rep.&.cement of all 
horilontal tab ch~ with apace cbaraeters in 
appropriate numbers. If one is creating a file of tabular 
information, it is pomible.that thea.mbipaity introduaed 
by the horisontal tab ~ is in factd.esirable; if a 
short entry at the left of a line is la&er expanded, words 
in that entry move over, but iteras ia eolumna to the 
right of that entry ah9uld atay in their oftP>al carriage 
position; the bomo..w tab faeilit.a&el expreasing this 
concept. A similar comment applies to tbe form feed 
character. 

The initial ::\lultics implementation allo'A"IJ the hori­
zonW tab cba.raeter, if typed, to sneak through the 
caoonieal xed•e$ic>n process and appear in a stored 
a&riq,. 4 RlQlle ·elegant approach to this problem is 
to devise a set of conventions for a text editor which 
allows one. to twe in and edit tabular columns con­
venieatl)r •. even tbQugli. the iafe.nnat,ion is stored in 
stliet,ly. cauw~ fWfll. Siaee the moet common way of 
storing a~ program is in tabular columns, the 
Deed fer $mple eimvention& to handle this situation 
eanaol. be ipol:iacl. 

It is. in4erri.-g to ~ that moat format statement 
iii~ -* 88 thoae commonly implemented 
for FORTRAN and PL/I, fail to maintain proper 
colulM-. .,,Iip!IMQ~: when· handed character strings 
coatainU. ~ baekspaces, such u names 
coat&iainc o~ accents. For complete inf.elration 
of. such ~· &trings iat.o a system, one should 
expand the rdiolt. of: character counts to inelude 
P1i• poedion oouat.& •·well as storage poeition countB. 
For exatnPle; .. the VIM• returned by a built-in string 
leiwth l~ac~ .be .. print. polliijoo eount if the 
reault. ia. \lied. ill ~tting output; it should· be a 
.,..., Joeation. oo•t .if the result is used to ·aliooate 
space in memery. 

LINE AND PRINT POSITION DELETION 
CONVENTIONS 

Experience hu abown that even with sophisticated 
editor. IJl"Oll'Uli8 a.,,ailable, two minimal editing con­
vent.iollll ate very uaefal for hunwi input to a eomputer 
~ · Th.eee: ,We> conentioos giv& the typist these 
editiaa eapabitit•• at the instant be ia typing: 

1. Ability to delete the last character or characters 
typed; 

2. Ability t.o delete all of the current line typed up to 
the point. 

(lfe>1e complex editing capabilities must also be avail­
abl&, but they fall in the domain of editing ·programH 

which ean work with. linea previowily typed u well 
88 the cunent input stream.) By framing these two 
editiac coav~tiicms in the language of the canonical 
f OrDlt it ia. posaiWe to preserve the ability to interpret 
1mambipo-1y a typed line image despite the fact 
that editing was required. 

The first editing convention is to reserve one graphic, 
(in llultics, the "number" sign), as the eraae character. 
When this character appears in a print position, it 
erases itself and the contents of the previous print 
position. If the erase follows simple carriage motion, 
the entire carriage motion is erased. Several successive 
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erase characters will erase an equal number of preceding 
print positions or simple carriage motions. Since 
erase processing occurs after the transformation to 
canonical form, there is no ambiguity as to which print 
position is erased; the printed line image is always the 
guide. Whenever a print position is erased, the carriage 
motions (if any) on the two sides of the erased print 
position are combined into a single carriage motion. 

The second editing convention reserves another 
graphic (in Multics, the "commercial at" sign) as the 
kill character. When this character appears in a print 
position, the contents of that line up to and including 
the kill character are disca._"<ied. Again, since the kill 
processing occurs after the conversion to canonical 
form, there can be no ambiguity about which characters 
have been discarded. By convention, kill is done before 
erase, so that it is not possible to erase a kill character. 

OTHER INTERFACE CONVENTIONS 

Two other conventions which can smooth the human 
interface on character stream input and output are 
worth noting. The first is that many devices contain 
special control features such as line feed without 
~arriage movement, which can be used to speed up 
printing in special cases. If the system-supplied terminal 
control software automatically does whatever speedups 
it can identify, the user is not motivated to try to do 
them himself and risk dependence on the particular 
control feature of the terminal he happens to be working 
with. For example, the system can automatically insert 
tabs (followed by backspaces if necessary) in place of 
long strings of spaces, and it also can type centered 
short tabular information ";th line feed and backspace 
sequences between lines. 

The second convention has been alluded to already. 
If character string input is highly processed for routine 
use, there must be available an escape by which a 
program can obtain the raw, unconverted, unreduced 
and unedited keystrokes of the typist, if it wants to. 
Only through such an escape can certain special situa­
tions (including experimenting with a different set of 
proposed processing conventions) be handled. In 
:\Iultics, there are three modes of character handling­
normal, raw, and edited.* The raw mode means no 
processing whatsoever on input or output streams, 
while the normal mode provides character escapes, 
canonical reduction, and erase and kill editing. The 
edited mode (effective only on output if requested) is 
designed to produce high quality\ clean copy; every 
effort is made to avoid using escape conventions. For 
example, illegal characters are discarded and graphics 
not available on the output device used are typed with 

the "overstrike" escapes of Tp.ble I, or else left as a 
blank space so that they may be drawn in by hand. 

CONCLUSIONS 

The preceding sections have discll88ed both the back­
ground considerations and the design of the Multics 
remote terminal character stream interface. Several 
years of experience in using this interface, first in a 
special editor on the 7094 Compatible Time-Sharing 
System and more recently as the standard system 
interface for Multics, have indicated that the deeign i8 
implementable, usable and effective. Probably the ~ 
important aspect of the design is that the cuual uier, 
who has not yet encountered a problem for which 
canonical reduction, or character set eecapee, or apecial 
character definitions are needed, does not need to 
concern himself with these ideas; yet as he expands his 
programming objectives to the point where he en­
counters one of these needs, he finds that a method bu 
been latently available all along in the standard 1ystem 
interface. 

There should be no 888umption that the particular 
set of conventions described here is the only useful set. 
At the very least, there are issues of taste and opinion 
which have influenced the design. More importantly, 
systems with only slightly different objectives may be 
able to utilize substantially different approaches tO 
handling character streams. 
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APPENDIX I 

The Multics canonical jurm 

To describe the Multics canonical form, we give a set 
of definitions of a canonical message. Each definition is 
followed by a discU88ion of if.8 implications. PL/I-style 
formal definitions are included for the benefit of readers 
who find them useful.7 Other readen may safely ignore 
them at a small cost in precision. In the formal defini­
tions, capitalized abbreviations stand for the control 
characters in Table II. 

1. The canonical form deals with messages. A 
message consists of a sequence of print positions, 
poeeibly separated by, beginning, or ending with carriage 
motion. 
message : : = [carriage motion] 

[[print position]• • • [carria«e motion]]· • • 

Typewriter input is usually delimited by action char­
acters, that is, some character which, upon receipt by 
the system, indicates that the typist is satisfied with the 
previous string of typing. Most c6mmonly, the new line 
character, or some variant, is used for this function. 

Reeeipt of the action character initiates canonical 
reduction. 

The most important property on the canonical form is 
that graphies are in the Older that they appear on the 
printed pap reading from left to right and top to 
bottom. Between dle graphic ebaneten appear only 
the carriage motion cbaractelB which are ™'CMBllJ'Y to 
move the ~ from one p-aphic to the next. Over­
struek graphics are stored in a standard form including 
a bacbpue character (see below). 

2. There are two mutually exclusive types of carriage 
motion, POfll motion and simple motion. 

emotion } 
carriage mot.ion : : - simple motion 

ll'09 motion simple motion 

Carriage motion generally appears between two graphies; 
the amount of motion repreeented dependa only on the 
relative position of the two graphics on the page. Simple 
motion separates characters within a printed line; it 
includes positioning, for example, for supencript.s and 
subscript.a. Groes motion separates lines. 

3. 0!'088 motion CODBiats of any number of succeaeive 
New Line (NL) characten. 

gnllll8motion:: - INLJ··· 

The system must transJate vertic-.1. ta.be and form feeds 
into new line characters on input. 

4. Simple motion consists of any number of Space 
characten (SP) followed by some number (poesibly 
zero) of vertical half-line forward (HLF) or reverse 
(HLR) characters. The number of vertical half line feed 
characten is exactly the number needed to move the 
carriage from the lowest character of the preceding print 
position to the highest character of the next print 
position. 

[
[HLF]· • ·i 

simple motion : : = I SP I · · · 
[HLR]· •• 

The basis for the amount of simple carriage motion 
represented is always the horisontal and vertical 
distance between succeaeive graphies that appears on 
the actual device. In the tranalation to and from the 
canonical form, the syirt.em must of course take into 
aceount the actual (possibly variable) horisontal 
tab stops on the physical device. 

In some systemB, a ''relative horizontal tab" char­
acter is defined. Some character code (for example, 
USASCII 001) is reserved for this meaning, and by 
convention the immediately following character storage 
position eontains a eount which is interpreted u the 
size of the horisoutal white space to be left. 8ueh a 
character fif.8 smoothly into the canonical form de-
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scribed here in place of the successive spaces implied 
by the definition above. It also minimizes the space 
requirement of a canonical string. It does require some 
language features, or subroutines, to extra.ct the count 
u an integer, to determine its size. It also me&Il8 that 
character comparison is harder to implement; equality 
of a character with one found in a string may mean 
either that the hoped for character has been found or 
it may mean that a relative tab count happens to have 
the same bit pattern as the desired character; reference 
to the previous character in the string is required to 
distinguish the two cases. 

5. A print position consists of some non-zero number 
of character positions, occupying different half line 
vertical positions in the same horizontal carriage 
position. All but the last character position of a print 
position are followed by a backspace character and some 
number of HLF characters. 

print position : : = character position 

[BS [HLF] •••character position]•·• 

6. A character position consists of a sequence of 
graphic formers separated by backspace characters. 
The graphic formers are ordered according to the 
USASCII coded numeric value of the graphics they 
contain. (The first graphic former contains the graphic 
with the smallest code, etc.) Two graphic formers 
containing the same graphic will never appear in the 
same character position. 

character position : : = graphic former 

[BS graphic former]• • • 

Note that all possible uses of a. backspace character in a. 
raw input stream have been covered by statements 
about horizontal carriage movements and overstruck 
graphics. 

7. A graphic former is a possibly zero-length setup 
sequence of graphic controls followed by one of the 94 
USASCII non-blank graphic characters. 

. 94 UASCII 

{

one of the } 

graphic former : : = [setup sequence] h' grap lC 

characters 

8. A graphic setup sequence is a. color shift or a. bell 
(BEL) or a. color shift followed by a bell. The color shift 
only appears when the following graphic is to be a. 
different color from the preceding one in the message. 

l[RRS J) [BEL] 
setup sequence : : = BRS 

BEL 

in the absence of a. color shift, the first graphic in a. 
message is printed in black shift. Other control char­
acters a.re treated similarly to bell. They appear 
immediately before the next graphic typed, in the 
order typed. 

By virtue of the a.hove definitions, the control 
characters HT, VT, and CR will never appear in a. 
canonical stream. 
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~Multics lnoyt/Oytout System 

by R.J. Feiertag and E.I. Organick. Reprinted from 
AkH. Third Symoosiwo J2f1 Operating $ystem princloles, 
Palo Alto, California, October, 1971, pp. 35-41, 

. with permission. 

This generally up-to-date paper describes the 
device-independent 1/0 interface of the Multics system. Its 
significance lies mainly ln the wide range of problems which can 
be easily solved using a simple elegantly designed mechanism. 

By reading between the lines, one may also deduce that in 
Multics, the function of the 1/0 system is drastically different 
from that in most operating systems. Interrupt handling, 
scheduling, and file formatting do not appear bere, since they 
are considered to be general responsibilities require4 apart from 
1/0 operations. The 1/0 system is thus left with only the 
problem of buffer management and device strategy, In a general 
framework which encourages device independence. 

As an example of the flexibility of the Multics 1/0 system, 
since this paper was written the M.l.T. Multics site has been 
attached to the ARPA computer network, with the relatively minor 
addition of a special network demultiplexing module at the base 
of the I /O system. · 

• 
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ABSTRACT 

An I/O system has been implemented in the Multics system that facilitates dynamic switching of I/0 devices. 
This switching is accomplished by providing a general interface for all I/O devices that allows all equivalent 
operations on different devices to be expressed in the same way. Also particular devices are referenced by sym­
bolic names and the binding of names to devices can be dynamically modified. Available I/O operations range 
from a set of basic 1/0 calls that require almost no knowledge of the I/0 System or the I/O device being used to 
fully general calls that permit one to take full advantage of all features of an I/O device but require consi­
derable knowledge of the I/O System and the device. The I/O System is described and some popular applications 
of it, illustrating these features, are presented. 

Introduction 

In many early operating system designs the soft­
ware known as the input/output control system (IOCS) 
played a central conceptual and functional role. In 
the pre-multiprogramming, batch operating systems, 
many supervisory functions had to do with input/output 
control -- e.g., control over queued jobs, control for 
management and operation of secondary storage, control 
for operation of display devices and other peripheral 
equipment, etc. A system programmer (or subsystem 
designer) for such operating systems could hardly 
prove his professional competence without acquiring 
a reasonable familiarity with the intricacies of the 
roes for his "installation". By contrast the role 
played by the input/output control system in a Multics 
system is decidedly secondary, at least from a concep­
tual point of view. In fact, many or even most sub­
system designers are able to achieve their respective 
objectives while remaining entirely oblivious to the 
roes details of Multics. 

This is possible partly because two operations 
sometimes associated with the IOCS have been separated 
into separate functional units which are made use of 
by other parts of the system as well as the roes. 
First, the file system [l] makes known and dynamically 
links files that are stored within the system to pro­
cesses that legitimately request this service. It 
does not matter on what storage device these files 
reside at the time of the request. The users (or for 
that matter other supervisory modules) are unaware 
of any explicit data movement in accessing these 
segments even though physical transfer from actual 
secondary devices to central memory may occur. 
Secondly, the traffic controller [2] handles all multi­
plexing of processors including the relinquishing of 
a processor by a process and the awakening of pro­
c~sses which have been waiting for I/O transactions to 
be completed. What remains for the IOCS is strategic 
control of I/0 devices and the binding of these devices 
with symbolic names used to represent them. Figure 1 
illustrates the interrelationships of these modules. 

*Work reported herein was supported in part by Project 
MAC, an M.I.T. research program sponsored by the 
Advanced Research Projects Agency, Department of 
Defense, under Office of Naval Research Contract N0014-../ 
70-A-0362-0001. Reproduction is permitted for any pur­
pose of the United States Government. 

The secondary role of the I/0 System does not mean 
that Multics attempts to erect a barrier that prevents 
the (system or user) prograrmner from acquiring and 
exercising full control over I/O devices. On the con­
trary, user processes are able to "negotiate" with the· 
system administrator, who controls distribution of 
I/O resources, to acquire particular I/0 devices. Then, 
with user code, the user process ~y program the con­
trol of these 1/0 devices and operate them with the 
full freedom that is normally accorded a system pro­
grammer. 

In brief, the Multics I/O System has been designed 
using two important guidelines: 

a) the simplest, most commonplace use of it 
requires only a minimum of knowledge and 
skill -- and the overhead for such simple 
(common mode) use is also minimized. 

b) to extract more tailored (special purpose) 
services there is added cost -- both in the 
time that must be committed to understand 
how the tool works and in the actual over­
head that will be incurred in execution. 

The system to be described here stresses symbolic, 
hardware independent references to input/output devi­
ces. This scheme permits programs to be written 
largely independently of the devices they use and 
allows the devices to be assigned at the time the com­
putation is performed and changed dynamically during 
the run. Although other systems [3,4,5] have made use 
of symbolic referencing, the Multics system attempts 
to provide extreme ease of modification and almost 
total device independence, to the limits possible. 

The I/O System does not in itself provide for­
matted I/O such as that typically found in many lang­
uages and library subroutines. Also, the details of 
operating specific devices are relegated to a minor 
role. What remains is an intermediate level of I/O 
software that forms the conceptual heart of the I/O 
System in Multics and will now be described. 

Overview of the 1/0 System 

A primary objective of Multics is to make the 
input/output operations stated in the programs or ser­
vice procedures that a user writes specify only those 
device functions that are required for the application 
at hand, leaving to the system the responsibility for 
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gauging the degree of device independence implied by 
the user's request. In this way a user who invokes 
such service procedures is free to designate substi­
tute devices as may be appropriate, while adhering to 
the device dependencies that are implied by the stated 
I/O function requests. For example, a program may 
output a long string of characters. If the device 
currently associated with this output is a typewriter 
the I/0 System should insert carriage returns when the 
end of the carriage is reached. However, if the output 
device is a tape then no carriage returns are neces­
sary. For this reason user-coded I/O operations should 
ordinarily be independent (or as independent as feasi­
ble) of the particular device and model, or even of 
the type of device, e.g., typewriter, as opposed to 
teletype or paper tape. 

There are two clear motivations for this crucially 
important objective. First, we must preswae that at 
any given time a system will generally acco-.odate 
several types of I/0 devices and models. Each is 
lik~ly to require different progTatmned control. Each 
may have different character sets, and may be intrin­
sically different in various respects (e.g., line 
printers are not backspaceable, magnetic tapes are; 
some tapes cannot be r~ad backwards as well as for­
wards, while card readers are never designed to read 
cards backwards, etc.). It is, however, desirable to 
be able to run progr-s using devices other than those 
for which they were originally written. Second, we 
presume that I/O devices become obsolete and, over 
time, are replaced by new lllDdels of the sa.e or 
different types, e.g., video ~yboards may replace 
typewriters. Clearly, if programs are to be usable 
over long periods of time:, if programs are to be 
repeated with minor or no variation in the nature or 
effect of their 1/0 operations, then recognition of 
device independence must be a planned part of the pro­
gramming system for I/O operations. 

One approach to design for the needed device 
independence is to regard the 1/0 resource needed to 
complete any given I/O operation not as a real or 
physical resource, as for instance a particular card 
reader, but as a virtual (pseudo) I/0 resource that is 
described in terms of the functions it must be capable 
of perfonaing, which is mapped by the syst- to a 
particular real resource at run-tille. Such an approach 
implies that all available input devices. regaTdless 
of type (or location) are in sDlllt sense acceptable 
equivalents and all output devices are correapondingly 
equivalent. 

'nle user amst, when he so chooses, be able to 
decide what I/O devices of the ones available to hia 
he wants used. In other Words the uaer -t be able 
to specify which physical resources die.pseudo 
resources correspond to. It -y alao be necessary 
for the user to provide detailed 1/0 coding for the 
control of a device if such a device ia not already 
known to the system. 

The particular design approach taken in Multics 
is based on two practical requirements, one having to 
do with the system's responsibility for dispensing 
and recovery of all real 1/0 devices, and the other 
having to do with the n.m-ti.me 194pping of valid 
user-coded I/O operations, regardless of their degree 
of specificity, onto specific devices and in the 
manner and with controls appropriate to those specific 
devices. 

First, it is recognized that at any given time, 
as a consequence of the 1/0 device needs of a process, 
certain specific 1/0 devices (or device capabilities) 
must be exclusively allocated to specific processes 

or sets of processes. The question of how the I/0 
System decides how to allocate devices, how to reclaim 
devices, and how to insure exclusive use of a device 
by the intended processes is largely independent of 
the central theme of this discussion, the structure of 
the I/O System, and, although important, will not be 
discussed here. 

Second, any progranmed I/O operation should at 
source level, at least, be expressed (coded) in a 
general way that specifies the I/0 source or sink, 
not by its device designation but only by a place­
holder name for that source or sink. (Moreover, as an 
added convenience to users, it may be possible to code 
certain standard I/0 operations so that even this name 
may be inferred from context.) 

!2£. exa!!ple, (and here we illustrate only sche­
matically], rather than use a specific device designa­
tion such as in the following for111: 

read from "card_reader_2" into area_23; 
or 

read ("device 35", area_23); 

we might instead say: 

(1) 

read from the stream named "Billy" into area 23; (2) 
or 

read ("my_console", area_23); 

depending on the syntax of the coding language being 
used. 

Here in example (2), "Billy" and ''ay_console" are 
simply identifiers· for sources of data. For such a 
read statement to have any meaningful effec~, the 
specific device represen1:ed by that identifier· must 
be bound to or "attached" to (i.e., associated in some 
way with· ) "Billy" or "my_console" at some time after 
the device is allocated to the process and before the 
read statement: is executed. 'lhe Multics l/O'System 
is responsible for maintenance and supervision'of these 
device-source name associations. Similarly for output, 
names for sinks are used in write statements rather 
than actual eutput duice designations. Thus by anal­
ogy to the read examples in (2) above we could con­
ceivably picture someth~ng like 

write (''his_conaole", "format 12", area_22); (3) 

in which ''his console" is here intended to suggest the 
n- of - ;ink (output device) . The attachment at 
any given time .. , be to one of a set of several 
(difftteat) devices. 'lh-. if· a single process had 
several consoles allocated, the process could simulate 
a "part:y_line" conver .. tion on the several consoles 
where the DaM "his con_,le,.. could be attached and 
reattached, possibly cyclically, among the several 
different allocated devices. 

'ftle name chosen for elements of the set {source, 
sink} is stre... Concepnially, the attaching of a 
stre,,.. n~ to a pat't:icular device is a form of para­
meter binding. 'lbe device designation plays the role 
of the acblal argument and the stream name that of 
the foraal paraiileter. In order to apply more than one 
"·argu.ent" to the same "parameter' Multics provides 
for the detaching of a device {designation) frOlll a 
stream n11111e so'that subsequently another device can be 
attached to the •- stream name. 

To carry out a read or write operation (call) of 
the type suggested in (2) and (3) above, the following 
steps can now be visualized. The system module that 
received and is responsible for "interpreting" this 
call 1Mlst first perfom a table look-up to detenrlne 
the device designation (and type of device, constraint 
rules, if any, for use, etc.) that is currently 



associated with the named I/O stream parameter. In 
principle, assUllling the I/0 call parameters are con­
sistent with the data kept in this so-called Attach 
Table, this same I/O control module can then ~t 
this request into an I/0 action -- i.e., by initiating 
the desired I/O operations after generating the re­
quired channel commands, etc. Because the system 
must be capable of supporting an open-ended number of 
devices, device types, and controllers, considerably 
more modularity is called for. So, in actual fact, 
the I/0 control module (called the I/O switch) merely 
transmits the now more specific I/O request as a call 
to an appropriate "specialist" module, a Device Inter­
face Module (DIM), for each type of device. A list 
of DIMs currently in general use in Multics is given 
in Appendix B. This DIM in turn takes charge of 
getting the I/O request accomplished as suggested in 
Figure 2. 

It is, therefore, the function of the DIM to con­
vert the I/O request into a set of specific channel 
conmands for the particular device associated with this 
DIM. The DIM knows both the conventions of the I/O 
System and the conventions of a particular I/0 device 
and functions as a translator from one set of conven­
tions to the other. In order that all devices 18&Y be 
fully exploited it is necessary that the I/O System 
"language" be carefully chosen. The I/O System calls 
of Multics are described more fully later and in 
Appendix A. 

Description of the I/O System 

The Device Interface Module converts a generalized 
I/O request into specific instructions understandable 
by a particular device. In doing this, it must compile 
a program for the hardware General Input Output 
Controller (GIOC) [6] which it can in turn supply to 
the target channel. The compiled program reflects 
the idiosyncracies of the particular device to which 
the stream is attached. It (the program) may include 
line controls in the case of remote terminals, 
select instructions in the case of tapes, and so forth. 
In addition, the DIM may need to convert the internal 
character code used by the system into an appro-
priate character code for the device. Typewriter 
terminals for example, come in many different vari­
eties. Virtually every different variety has different 
character codes. 

The Device Interface Module after compiling a 
program for the GIOC, calls a module that serves as an 
interface for the GIOC to start the I/O using this 
GIOC program. It is the DIM's responsibility to inter­
act with the GIOC Interface Module (abbreviated as GIM) 
until this I/O request has been completed. 

The GIOC Interface Module is responsible for the 
overall management of the GIOC. Thus, the GIM is 
also responsible for overall monitoring of the opera­
tion of the GIOC. This requires answering interrupts 
(i.e., that its code acts as an interrupt handler for), 
recognizing completion of tasks, and transmitting 
to its caller status information deposited by the 
GIOC. 

It may be necessary for the DIM to wait for a 
particular I/O operation to complete and/or be awak­
ened when it does occur. For this purpose an entry 
is provided in the traffic controller that causes the 
process to be suspended until it is reawakened. When 
the awaited operation completes, the GIM (which is 
invoked by a hardware interrupt from the GIOC) calls 
the traffic controller to awaken the suspended process. 
This is the interface between the traffic controller 
and the I/O System. All multiplexing of processors 
is, therefore, accomplished by the traffic controller. 

'.'"'.?, 
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The I/0 System is implemented by a set of sub­

routine calls, twenty at present. The stream-DIM 
association is established by the attach call: 

call attach (stream_name, DIM_name, device_name); 

This call creates an entry in the Attach Table for th~ 
stream identified by stream_name, if one does not 
already exist, and associates the DIM identified by 
DIM name with it. The DIM itself is then invoked to 
initialize (establish communication with the device 
and prepare it for further transactions) the device 
identified by device_name. 

Once the device has been attached it may be 
utilized by issuing a read or write call: 

call read (stream name, buffer); 
call write (stream_name, buffer); 

Where stream Q4llle identifies the stream with which 
the desired .Dlll and device are associated, and 
buffer iaclicates the area from which data is to be 
written or iato which data is to be read. The I/O 
switch, upon receiving. a read or write call, finds 
the entry in the 4ttach Table associated with this 
stream and invoke3 the associated DIM at the read 
or write entry. The read and write calls represent 
the primary means by which all d~ta enters or leaves 
the systelD. 

In order to dissolve an attachment the detach cal 
is used. 

call detach (stream_name); 

This call causes the association of the specified 
stream with any DIMs and devices to be dissolved. 
The I/O switch invokes the associated DIM which in 
turn terminates (releases the device and ends commu­
nication with it) the associated device or devices. 
lilhen the DIM returns control to the I/0 switch the 
stream-DIM association in the Attach Table is deleted. 

There are many other I/O System calls which 
concern aspects of the I/0 System that are not of 
i11111eGliate concern to this discussion. These include 
calls to set device modes (readable only, writeable 
only, forward spaceable only, etc.), calls to operate 
devic-. synchronously or asynchronously (e.g., 
readahead and writebehind), calls to establish input 
delimiters, calls to determine the current device 
status, and calls to reposition the current read or 
write position of a device (e.g., tape spacing). 
A short description of these calls is given in Appen­
dix A. 

A final I/O System call that is of interest here 
is the order call. This call provides the escape 
mechanism when an operation not implementable by any 
of the other generalized I/O System calls must be 
performed. 

call order (stream_name, request_name, 
other_information) ; 

This call is transmitted by the I/O switch to the 
appropriate DIM which performs the operation indicated 
by request_name making use of data supplied in 
other_information if necessary. Examples of order 
requests might be to repunch a card on a card punch 
or lock the keyboard of a console. 

Up to this point discussion of input-output has 
been in terms of communication with physical devices. 
It has been shown that the only software ttut deals 
specifically with any single device is the DIM asso­
ciated with that type of device. The 1/0 Svstem, 
other than the DIMs, knows nothing of devices. lt. 
therefore, follows that the I/O System does tWt 

necessarily have to communicate with a physic"·: de,•1-::c 
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hut that DIMs may be written to operate on the data to 
be input or output in any manner whatsoever. Such 
DIMs are said to be associated with a virtual or pseudo­
device and are termed pseudo-DIMS. 

The most important pseudo-DIM is the File System 
Interface Module (FSIM) which treats a segment in the 
Multics File System as an I/O device. When a segment 
in the file system is attached to a stream via the 
FSIM, read and write calls on that stream will cause· 
data to be read from or written into the segment. The 
FSIM provides the interface between the I/O System 
and the File System in Multics. However, unlike many 
systems this interface is not heavily used because the 
File System is usually called directly. 

Another class of DIM is one that translates one 
I/O call to another I/O call, i.e., its pseudo-device 
is a stream. A stream that is used as a pseudo-device 
is termed an object stream. The most important of 
this class of DIHs i• the "synonym" module. When an 
attachment is made via the synonym UIOdule the speci­
fied device is another stream. Any subsequent calls 
to the first•stream is transformed by the synonym 
module to the same call on the latter stream. The 
stream names are, therefore, synonymous: 

Applications 
In the Multics system certain stream names are 

established, by convention, for normal use. The 
first of these is "user i/o". This stream is normally 
associated with the use;'s primary I/0 device, e.g., 
in a normal console session "user_i/o" will be attached 
to the user's console. Two other stream names are 
also established: "user input" and "user output". 
These streams are normally attached to "user_i/o" 
via the "synonym" module as illustrated in Figure Ja, 
i.e., they are made equivalent to "user_i/o". Since 
at present most programs that perform I/0 intended 
to do so with the user's console, the stream names 
"user output" and·"user input" are the ones used in 
calls-to the I/O System-in these programs. This 
illustrates one of the important purposes of the 
"synonym" DIM, to permit the manipulation of stream 
attachments without having to attach and detach physi­
cal devices. The streams "user input" and "user output" 
could normally be attached dire~tly to the user•; 
console as shown in Figure Jb. However, this would 
force the console to be detached whenever these streams 
were attached to some other device. Detachment and 
subsequent reattachment implies that certain physical 
hardware action has been taken with regard to the 
device. In the use of a console this might include 
termination of communication with the console and 
subsequently having to reestablish this conmunication. 
It would not be difficult to indicate to the DIM to 
keep the device active, however, the use of synonyms 
is more straightforward and makes more visible the 
states of various devices, i.e., if they are attached 
they are active. In other words, synonyms are an 
easy, efficient method of changing the binding of 
streams to devices. Because of this use of synonyms 
the "synonym" DIM has been highly optimized for the 
simple switching described above. 

Some important and heavily used features of 
Multics serve to illustrate some of the advantages 
of this organization of the I/O System. A user of 
Multics may sometimes desire to redirect the output 
that could normally appear on his console to some 
other'device. This situation usually arises because 
the output is lengthy and would require excessive 
amounts of time to print on a console. The Multics 
system provides a service by which the contents of 
segments in the file system may be printed on a high 
speed printer. Therefore, it is a fairly conmon 

occurrence for a user to redirect his output to a seg­
ment in the file system using the FSIM mentioned above 
so that it may be printed by the high speed printer or 
examined using a text editor. To do this the following 
I/O System calls must be made: 

call attach ( "file_output_stream", "fsim", 
"segment_name"); 

call detach ("user_output"); 
call attach ("user_output", "synonym", 

"file_output_stream"); 

The first call causes the segment, "segment_name", to 
become the receiver of all subsequent data directed to 
the stream "file output stream" by a write call. The 
second and third-calls ~ause the strealll "user_output", 
the stream on which all stand.rd write calls are made, 
to be disassociated from "user_i/o", the stream asso­
ciated with the user's console, and instead be 
attached to the new stream "file output stream". 
Again the use of synonyms is not-mandat;;ry but is 
included for the reason mentioned earlier. All sub­
sequent output that would normally have appeared on 
the user's console would now be placed in the segment 
"segment_name". This new situation is depicted by the 
graph in Figure Jc. 

There are many instances in which a user wishes 
to issue the same set of commands (a command is a 
line typed at a user's console requesting some action 
to be performed by the computer) many times. Rather 
than doing so manually he may instead put the set of 
conmands in a segment and then cause this segment to 
be read as input one coamand at a time. This may be 
done by the following I/O calls: 

call attach ("file_input_stream", "fsim", 
"input_segment_name"); 

call detach ("user_input"); 
call attach ("user .input", "synonym", 

"file~)nput_stream"); 

The segment whose name is "input_segment_name" contains 
the coamiands to be executed. The action performed by 
these calls is analogous to those performed by the 
above calls concerning output. All subsequent standard 
read calls will cause input to be taken from the seg­
ment "input_segnaent_name". 

Consider now the situation that results when 
both the standard input and output streams are attached 
to segments simultaneously. In this case direct com­
munication with the user has been elimina~ed. The user 
controls his process only indirectly through the input 
segment. A process that is in this state, i.e., whose 
standard input and output streams are attached to seg­
ments rather than to an interactive console, for its 
entire lifetime is called an absentee process (see 
Figure Jd). Absentee processes are the means by which 
background or batch jobs are implemented in Multics. 
The advantage of an absentee process from the system 
view is a better allocation of resources since absentee 
jobs may be scheduled at periods of low interactive 
demand. The point of interest here is that an absentee 
process, as opposed to an interactive process, is 
obtained by a few slightly different calls to the I/O 
System during process initialization and that no other 
special user or system programming is necessary. 

In order to restore the situation to the interac­
tive state just two I/O calls are necessary for each 
of the standard input and output streams. Thus for 
the input stream there would be: 

call detach ("user input"); 
call attach ("userJnput", "synonym", "user_i/o"); 

Upon completion of these two calls the standard input 
stream is again attached to the user's console. The 



stream "file_input_strea111" remains attached to the 
input segment. 

The "synonym" DIM, as mentioned earlier, is one 
example of a DIM that uses another stream as the device 
upon which it acts. Such modules are effectively 
spliced into the flow of control in that each such 
module gains control and in turn passes control onto 
another DIM invoked as a consequence of its call to 
the I/O System on its object stream. The "synonym" 
simply results in an identical call to the object 
stream. However, such a DIM could easily perform 
some useful operation before passing the call on. A 
good example of such an operation is code conversion 
on the data to be read or written. A simple example 
could be to reformat a string of characters meant to 
be written on a console with a wide carriage for 
writing on a narrow carriage by properly placing 
carriage returns in the data. 

Similarly such an intermediary could be used to 
make one device appear as another device. For 
example, if a light pen were to be added to the system 
as a new input device, a DIM could be written to make 
data read from a segment via the FSIM simulate the 
input from the light pen in order that all the asso­
ciated software may be checked out before the actual 
installation of the device. 

A final example of such intermediate modules is 
the broadcaster. This DIM allows fan out of I/O System 
calls. Rather than having one stream as its object, 
the broadcaster may have several. A call on a 
stream attached via the broadcaster is transmitted to 
all streams attached to this stream via the broad­
caster. This is simply an extension of the synonym 
module. For example, a user may wish to record all 
the output typed on his console in a segment of the 
file system. To do this he simply attaches the stream 
"user output" to both "user i/o" and "file output 
strea~" as indicated in Fig;-re 3e. -

Conclusion 

It is the purpose of the Multics I/O System to 
permit I/O operations to be specified in a device 
independent manner, thereby permitting easy inter­
change of devices while programs are in execution. 
The designers of the I/O System have been able to 
achieve this goal largely because certain functions 
associated with I/O (file system, processor multi­
plexing) have been provided as independent facilities 
in Multics which are invoked by the I/O System as well 
as other programs. The method used to attain device 
independence is to define a set of I/0 calls which are 
used to specify all I/O operations in a general manner. 
All devices are addressed symbolically by stream name 
and the binding of streams to devices can be modified 
dynamically. 

The modular structure of the I/O System facili­
tates introduction of new devices. In order to logi­
cally add a device to the system, a user or system 
programmer need only provide the detailed I/0 coding 
for that device in the form of a Device Interface 
Module. This ability to add new devices is necessary 
to assure the system's longevity. 

Users of the I/O System, may if they desire, 
bypass the general mechanism. Instead of making a 
general I/O call, programs can invoke Device Interface 
Modules or even the GIOC Interface Module directly. 
The user who takes this approach loses the switching 
capabilities, device independence, and other advan­
tages that the general mechanism provides. So far, 
no Multics user has needed or chosen to bypass the 
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general mechanism. 
own DIMs making use 
special requests. 

Some users, however, write their 
of the order call to specify 

The applications described earlier indicate some 
of the most common uses of the I/O System. The faci­
lities of file input and output and absentee are 
achieved easily both conceptually and in practice and 
could not have been provided, in such a general manner, 
without device independence and stream switching. The 
I/O System has also proved very useful for system 
development, e.g., when testing a program that normally 
uses the high-speed printer it is advantageous to use 
a less critical more accessible device than one of the 
two printers available. The capabilities present in 
the Multics I/O System, as described here, have, there­
fore, proved well worth the careful design effort 
necessary for its development. 
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Appendix A 

The following is a list of general I/O System 
calls and a brief description of their functions. 
This list serves only as an indication of the type 
of operations that are thought to be necessary in 
Multics, not as a complete description of their 
operations. Complete descriptions are given in [7]. 

attach establishes an association between a stream 
name, a device's control software (DIM), and a device. 
All subsequent operations on this stream will invoke 
the associated control software and will be performed 
on the associated device. 

detach 
call. 

destroys an association created by an attach 

read causes input to be taken from the device asso­
ciated with the given stream and placed in the indicated 
buffer area. 

write causes output to be taken from the indicated 
buffer area and written to the device associated with 
the given stream. 

seek modifies the current position of the read and 
write pointers for the device associated with the 
given stream. 

tell returns the current position of the read and 
write pointers for the device associated with the 
given stream. 

changemode changes the current mode of the device 
associated with the given stream and returns the old 
mode. Modes determine attributes of a device such as 
whether reading or writing is per.mitted. 

readsync determines whether or not the DIM asso­
ciated with the given stream will perform read-ahead 
on the associated device. Performing read-ahead is 
to read input from a device before the read call is 
issued. 

writesync determines whether or not the DIM asso­
ciated with the given stream will perform write-behind 
on the associated device. Performing write-behind is 
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to write output on a device after the write call has 
returned. 

resetread erases all currently accumulated read­
ahead from the device associated with the given stream. 

resetwrite erases all currently accumulated write­
behind intended for the device associated with the 
given stream. 

worksync determines whether the device associated 
with the given stream is in workspace synchronous or 
asynchronous mode. Being in workspace synchronous 
mode means that when a read or write call returns, 
the I/O System is finished using the provided buffer 
area associated with this call. If the call was a 
read call the desired input has been placed in the 
buffer area. If the call was a write call the data 
has been taken from the buffer area. Being in work­
space asynchronous mode means that buffers may still 
be in use by the I/0 System after the call has re­
turned. If a read call then the buffer area may not 
yet contain the desired input, but it will be filled 
in ·at some later time. If a write call then the data 
may not yet have been taken from the buffer. but the 
I/O Syste• will do so at some later ti... workspace 
asynchronous mode allows progr&111111ers to perform asyn­
chronous I/O transactions and multiplex their I/O 
calls. 

upstate returns the current status of a specific 
asynchronous transaction on the device associated with 
the given strealll. 

iowait returns the current status of a specific 
asynchronous transaction on the device associated 
with the given stream. 'nle iowait call will not return 
until the indicated transaction is complete, i.e., the 
I/O System is finished with the buffer area. 

abort . causes the indicated transaction or transac· 
t~on the device associated with the given stream 
to be aborted. 

getdelim returns the current break characters and 
read delimiters for the device associated with the 
given stream. Break characters define the extent of 
canonicalization and erase and kill processing of 
input [7}. Read delimiters determine on which input 
characters a single read call is to cease reading. 

setdelim modifies the current break characters and 
'read delimiters for the device associated with the 
given stream. 

getsize returns the length, in number of bits, of 
the size of a basic element to be read or written on 
the device associated with the given stream. For 
example, Multics uses seven bit aacii right adjusted 
in a nine bit field as its standard character set so 
the element size for character oriented devices is 9. 

setsize modifies the element size for the device 
associated with the given stream. 

When a specific function on a specific device cannot 
be logically specified by any of the above general 
calls the order call is used: 

2!..!!!.£. is used to specify device dependent requests 
to be executed by the DIM associated with the given 
stream. Examples include locking the keyboard of a 
console and unloading a magnetic tape. 

AEpendix B 

The following list briefly describes the Device 
Interface Modules (DIMs) generally available and 
widely used in Multics. Detailed descriptions are 
given in [7}. 

Typewriter DIM - currently operates all devices used 

as user consoles in Multics. These include Teletype 
Models 33, 35, and 37, IBM 1050 and 2741, Datel 30, 
ARDS, and Terminet 300. 

Synonym DIM - causes tWo streams to become synonymous, 
i.e., all I/O calls (except attach and detach) on 
either stream result in the same 1/0 operations being 
performed. 

File System Interface Module - causes segments of the 
file system to be treated as input and output devices. 

Multics Standard TaJ!e DIM - is used for reading and 
writing tapes in Multics standard tape format. 

Nonstandard Tape DIM - is used for reading and writing 
tapes in any for111at. 

Card DIM - is used for reading and punching punched 
cards. 

Printer DIM - is used for writing to the high speed 
printers. 

ARPA Nettgork PIM - is used to input and output from 
the ARPA Netw0rk of which the M.I.T. Multics installa­
tion is a part. 

CoimaunicttiOOa Lipe DIM - is used to read from and 
write to a dedicated PDP-8 over a high speed c~ni­
cations line that is connected to the M.I.T. Multics 
installation. This PDP-8 is uaed for monitoring of 
Multics and for graphics. 

[ 1 I 

[2] 

[3] 

(4) 

[5 J 

[6] 

[7] 

References 

Daley, R.C. and Neu111ann, P.G., "A General-Purpose 
File System for Secondary Storage", AFIPS, 1965 
Fall Joint Computer Conference, Vol. 27, Part 1, 
Spartan Books, Washington, D.C., pp. 213-229. 

Saltaer, J.H., ''Traffic Control in a Multiplexed 
Computer System'', Sc.D. Thesis, Department of 
Electrical Engineering, M.I.T., June (Available 
as M.I.T., Project MAC Technical Report No. 30). 

Lett, A. and Konigsford, w., "TSS/360: A Time­
Shared Operating System", AFIPS, 1968 Fall Joint 
Computer Conference, Vol. 33, Part 1, MDI Publi­
cations, Wayne, Pennsylvania, pp. 15-28. 

CP-67/CMS User's Guide, IBM, October, 1970. 

System/360 Operating System Concepts and Facili­
ties, IBM, For$ 128-6535-1, June, 1967. 

Ossanna, J.F., Mikus, L., and Dunten, s., "Co11111U­
nieationa and Input-Output Switching in a Multi­
plex COll()Udng Syatea••, AFIPS, 1965 Fall Joint 
Computer Confereac•> Vol. 27, Part 1, Spartan 
Books, Washington, D.c., pp. 231-242. 

Multics Prograaaers' Manual, Preliminary Edition, 
M.I.T., .April, 1971. 

Users and rest 
of system 

I/O I DIMs 
System I l----f-"""'"--1.-1 

Traffic r -
GIM Control 

GIOC 

Figure 1 - The I/O System's relationship 
to some other important Multics facilities. 
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Figure 2 - Simplified view of I/O System organization. 
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Figure 3c - Output attached to a segment in 
the file system. 
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Figure 3d - Absentee attachment graph. For 
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a true absentee process that has 
never been attached to a console · 
the attachment in the dashed box 
ls unnecessary. 
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Figure 3e - Attachment graph with standard output 
written to both the user's console 
and a segment in the file system. 
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C H A P T E R 3 

BEGINNER'S GUIDE TO THE USE OF MULTICS 

September 20, 1973 

There are a large number of ways to use M~ltlcs. You may, 
at different times, f fnd that you are usln& a program preparation 
facll I ty, or a program debugging tacfl tty, or a MmC>l"andum typing 
facll lty, or a management Information fac1·1tty. · One of the 
Interest.Ing properties of Multics •Is the . abtT1ty for a 
knowledgeable programmer to construct a sln1le program whlch 
makes use of several of these facilities at once. For the 
beginner, however, the problem ts slmpty to ·ffJure. o.ut which one 
of several ways of doing something Is . a'pp'roprlate for his 
project. In this chapter wf 11 be found a &utde to typical ways 
of using Multics and Its most connon1y used faclltttes, and a 
number of examples of sessions at the terminal, to give a feel 
for the way one fits things together to achieve useful results. 
We must begin by exploring a number of issut!s having to do with 
the simple mechanics of using the system. 

l.b&. Mechanics g.f Terminal Usage 

Afthough there are several different varieties of typewriter 
or graphic terminals which can be used with Murtlcs, they all are 
used In similar ways; the way ln which "ultl~s ··normally expects 
these terminals to be used Is our subject here. Note that 
Multics permits a subsystem designer f1exlbl1Jty to change 
conventions which are not exac~ly . suite~ to .his needs. 
Therefore, we will describe here the standard ~onventtons which 
apply to ordinary use of Multics, and which are Jlso used by most 
programs. Indeed, an Important property of Mµtflcs Is the extent 
to which the mechanics described here ate ttnhi~rsalry used by so 
many different parts of the system. 

Most computer terminals are designed with flexibility to 
allow use with different kinds of systems. This flexibility is 
expressed In the form of switches whose setting mu$t be correct 
If proper operation is expected. For example, the IBM mocte1 2741 
terminal may have one or two switch.•• on the left. side, one 
labeled "com-lcl" (which must be set to "*), and the. other 
labeled "Inhibit auto-eot" (which, if there, should be set to 
.QllL For switch settings on other t.-rmJna1 typ.es, see the MPM 
Reference Gut de section, Protocol for L0$&1f'l& 1n. 

-- - T --------
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The connection of the terminal to the computer is 
accomplished by ordinary telephone lines, and by dialing the 
telephone number of the computer. This number is usually 
equipped to automatically connect you to the first free line into 
the computer system. Multics Is designed to inform potential 
users that it is fully loaded by printlng a message on the 
terminal rather than by refusing to answer the telephone or 
returning a telephone busy signal. Either of these latter two 
responses to dialing Multics is a symptom of trouble and should 
be reported. 

Communication of keyboard chara.c..ters with the computer is 
accomplished by conversion of these char~cters Into sequences of 

·tones which can be sent over the telephone line. The piece of 
hardware which does this conversion is ca.I led a datuet or IQ5¥Jem 
(for mdulator-,dmao.dulatar); there mu.s.t. be: one· .. modem at the 
terminal and ano.ther at the computer. Two types of mo.dems are 
f re..quent 1 y found asa.oc..l ated w J th computer term Ina 1 s: those 
d I rec t l y attached to the te 1 ephone 1 i ne, and those wh J ch are. 
acoustically coup.led by inserting the teJeQbone h~set, 
phys I ca 11 y Into the modem. The directly a.ttacbed dev I ce.s 
normal 1 y come wl th a spec.la 1 telephone set wh I ch has a row of · 
buttons; one of these buttons must b.e depres..sed in order to get a 
dla.J tone to start the call. In c.ontrast, the acoustic coupler 
is designed to work wtth any ordinary telephone anywhere. · 

After dialing the Multics telephone number, you should hear 
one or two rings, and then the compu.ter wf 11 answer. The next 
step is to complete an electronic hands:hake SeQ."8nce, first 
between your modem and the one at the comp.uter, and then between 
your computer terminal and the Multics termloal ctmtrol ler. The 
computer starts the sequence Immediately after ft answers by 
placing a tone which you can hear o.n the teJephoae 1 in.e. You 
should then press the .dil.t&. button on the medem, If the modem is 
directlv attached, or--eTSe fns.ert the telepl!aone. ~ands.et Into the 
acoustic coupler. The h,andshake sequence s~ld then proceed to 
completion all by itself, with a charac.terlst.lc pattern of cl lcks 
and aurgles that you will soon learn to recQ&nlze as nor'lfta..1 
operation, ending with a printed messaa.e from the computer. 

There are several possible ways in which the handshake 
sequence rna.y fall. Before giving up, check th.e following list of 
possibilities: 

1. Are you sure the computer answered and provided the Initial 
tone? If not, check to see If Multics is In operation. 

2. Is the terminal plugged In and Is Its power switch gn? 

3. Is the cable connecting the terminal to the modem properly 
In place? 

4. Is the modem plugged In? (If It ts an acoustic coupler, It 
may have to be turned mi also.) 
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5. Are all the switches on the terminal and modem In correct 
position? 

6. Did you dial. the correct telephone number? Generally there 
are different numbers for different terminal types and 
speeds. Check your telephone number list. 

7. Has the terminal in question ever 
before? If not, possibly it 
required for use with Multics. 

been used 
Is missing 

wl th 
some 

Multics 
feature 

8. Has this telephone line ever been used with this acoustic 
coupler before? Possibly the line is too noisy or weak for 
the brand of coupler used, or maybe there is too much 
amplification in the telephone line and one of the modems is 
being overloaded. 

9. Try hanging up and dialing again once or twice. With the 
array of equipment between you and the computer, flukes are 
common. 

If all of these checks fail to turn up anything, it is time to 
turn to expert help. 

Assuming that the handshake was successful, it was completed 
with the printing of some message from the computer, e.g., 
"Multics version 15.11". You are now in communication with the 
computer, and anything you type on the keyboard will be both 
printed and heard by the computer. Whenever Multics or any 
program prints anything to you, the keyboard will be temporarily 
locked, thus preventing you from typing anything. At all other 
times, the keyboard Is unlocked, and you are free to type. 

Generally, you will type messages with the intent that they 
be read and understood by some program; you should always keep in 
mind just exactly which program will be interpreting each message 
you type.* To start with, the system has arranged that your 
input lines will be directed to a login program which will insist 
that you type information properly identifying yourself. The 
login program will, at one point, exercise a special feature of 
your terminal by disconnecting your keyboard from your printer, 
so that you may type a password without producing a printed copy. 
Clf your terminal doesn't have this feature, the login program 

* It is important to realize that you are allowed to type even 
If some previously initiated operation has not finished yet and 
technically the system or subsystem is not ready for another 
typed line from you. If you can anticipate your next input 
lines, you may type them at any time; they will be stacked up 
and used, in order, to satisfy future requests for input from 
you. This feature permits you to work ahead of the computer, and 
overlap your thinking and typing with waits for response from It. 

----------,----- --~-
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will Instead print some random letters on the paper in the place 
you are to type your password.) When the login program ts 
satisfied that it knows your Identity, It will start a program 
known as the Jlst101c which Is usually used to supervise your 
entire terminal session. The listener Interprets lines that you 
type as names of programs y0u wish to run. Whenever the listener 
Is listening for Input, the terminal Is said to be at cogmaod 
leyel. The programs which you ask the listener to call are known 
as coQ1Dapds. Command level Is an Important reference point, and 
we will use this term frequently. Several of these Ideas may 
come into better focus In the example terminal sessions which 
appear later In this chapter. 

It Is common, as well as human, to make typing mistakes, so 
two correction conventions are normally In operation at all 
times. One of thenJ allows you to erase, so to speak, and then 
retype small typing mistakes, and the other allows you to simply 
discard more extensive typing disasters. The erase convention 
uses the number sl1n (f) character. Whenever y0u realize that 
you have typed a character In error, type as the next character 
after ft the number sign. When the line Is read, it will be 
scanned for number sl1ns; If one Is found, it, and the character 
before It will be discarded; the resulting line Is then assumed 
to be the line you Intended to type. Two consecutive number 
signs will erase the two lnwedlately preceding characters, and so 
on. Note that you do not correct errors by backing up and 
ovectyplng, as In some systems. If you do backspace and 
overtype, the system will presume that you want that particular 
combination of overstruck characters to be In your Input line. 
In this connection, note that the system Is more concerned with 
the appearance of the final printed line on vour terminal than It 
Is with the order you typed things In. Thus, 'for example, the 
order In which you produce overstruck characters Is unimportant, 
and extra up and down case shifts are Ignored. 

If you notice a serious error farther back In the line you 
are typing, you could correct It by typing enough number signs to 
erase everything back to and Including the error, and then 
retyping everythlnC that was erased, this time correctly. 
However, It may be simpler to just type. a JU.ll character Cthe 
commercial at sign, @). When this character Is encountered In an 
Input line, It, and all of the line to the left of It are 
discarded. The corrected line Is then retyped directly to the 
right of the kill character. Several examples of the use of 
erase and kill characters appear In the annotated terminal 
scripts later In this chapter. 

Unless one Is using a special program which has arranged 
things differently, the unit of cormwntcatlon with the computer 
for the typist Is the completed Jlne, ending with the function 
key which returns the carriage to a new line. Thus, typing "new 
1 lne" Is the signal that the typist Is satisfied with the line as 
ft stands; the line Is scanned for erase and kill characters, 
and then passed along to satisfy the next request for Input. 
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Some terminals do not have all of the 96 different 
characters which can be typed in to Multics programs. For 
example, the IBM 2741 terminal does not have square brackets. 
There is a set of conventions which allows one to type something 
else which means the same thing. All of these conventions use 
one special character as an escaoe character to indicate that the 
next character is to be interpreted differently than usual. On 
a 2741, the escape character is the cent sign (¢). If one types 
a cent sign followed by a "less than" sign, these two characters 
together will be taken to mean a left square bracket. A complete 
set of escape conventions which apply to your terminal may be 
found in the MPM Reference Guide section, Typing Conventions. 

Finally, two emergency measures should be mentioned. Every 
terminal has somewhere on it a special button which is always 
pressable, even if something is being printed and the rest of 
the keyboard is locked. This button is called the .w.t.Lt. button, 
and, when pressed, will cause the system to stop whatever program 
was running and return to command level. In this way, even if 
you have started a runaway or incorrect program, you may always 
keep positive control of the situation. Note that when the quit 
button is used, the work in progress, while halted, will not 
necessarily be saved if you begin doing something else. 
Generally, unless you take special measures, you will find that 
pressing the quit button discards all work which was done since 
the previous time you were at command level. 

The second emergency measure is the terminal disconnect. If 
you should happen to turn off the terminal power, or hang up the 
telephone while logged in, the system will first perform the 
equivalent of a quit, then it will automatically perform a logout 
command. Of course, it can not print the usual logout message on 
your disconnected terminal. In general, you need not worry about 
disrupting the system by such an abrupt disconnection, but your 
own work may be lost back to the last time you were at command 
1eve1. 

A Multics Terminal Sessjon 

Having accumulated some familiarity with the basic mechanics 
of using Multics, the easiest way to proceed to familiarity with 
the system itself is to look over the shoulder of an experienced 
but cooperative user, and pester him with questions about what 
seems to be happening. The closest alternative we can achieve 
here is to walk through some sample terminal sessions, explaining 
in some detail the various pieces of an emerging picture. To 
start with, we will consider one of the simplest possible 
sessions, in which a user logs in to the system, checks on the 
latest news and notices, uses the system as a desk calculator to 
balance his checkbook, and then logs out. Later examples will 
illustrate typing and editing information and use of the Multics 
storage system. To begin with, however, the simple terminal 
session illustrated in Figure 3-1 will allow us to decouple from 
those considerations the purely mechanical issues underlying all 

----- - ---------
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BEGINNER'S GUIDE TO THE USE OF MULTICS 

I 

Multics 15.8; MIT, Cambridge Mass. 
Load • 55.0 out of 60.0 units; Users • 58 
login Williams 
Password: 

Williams Apollo logged in: 09/29/70 2139.4 edt Tue 
Last loaln 9/28/70 1633.·2 edt from terminal 11 209" 
New or updated help segments: pl/l_status, tty_bug, news 
r 2139 3.914 12.070 231 

help nesfws 
(10 lines follow) 
09/29/70 
The following changes were made in the on-line system today: 
1) The editor comRNlnd, edm, was replaced with a new version 

which eliminates a bug encountered when lnput lines 
overflow Its Input buffer. 

2) A new command named chanae_default_wdl~ (abbreviated cdwd) 
was Installed. This command changes the user's default 
working directory for the duration of the current 
process or until the command Is Issued again. 

(end) 

more help? yes 
(68 lines follow) 
Following Is a summary of all system changes made 9/1 to 9/28: 
9/28 Replaced Pl/I compiler, removfna varying string bug. 
9/26 Added 12 million words of disk stora 
QUIT 
r 2142 1.667 4.760 110 

de cam 
Go 
•0 
+14791 
+38525 
-271ll 
-3482 
-49768 
p 
-2675 

q 
r 2148 .515 4.040 135 

logout 

Williams Apollo logaed out 9/29/70 2149.1 edt Tue 
CPU usage 5 sec 
hangup 

Figure 3-1: A Sample Terminal Session. 
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use of the system. In each of our examples, we will take 
replicas of actual terminal sessions, and add line numbers down 
the left side so that we may refer to them. We have placed an 
asterisk (•) beside those lines typed by the user; the remaining 
lines are those printed by whatever program he is cormtunlcating 
with. The session start.sat an 1814 2741 terminal, tnmedtately 
fol lowing the dial Ing of the Multics telephone number. 

The login sequence, all by itself, rals.es a fairly large 
collection of issues. Let us examine this script, 1 lne by 1 tne. 
Line 1 was printed as a consequence of the electronic handshake 
sequence between the typewriter control pro&f'am and the 2741. In 
order to establish what kind of terminal ~as, called, the control 
program trl es several experlment.s~ .. atten>'tJng to e 1 i cit a 
response from the term Ina 1. One ()f th,e 'eX:p.er lments caused the 
terminal to print a number sign. That experiment being 
successful, the terminal type ~s Jdentlfted, and the system 
printed a greeting message on Hnes·/3 arid 4~. after putting In a 
blank line Cline 2) to Insure that the .carriage is at the left 
edge and that anything accJdental-Jy prlnt-.d by the experiment ts 
separated from the message. Note th•t • line from the computer 
usually ends with a "new 1 lne", so that the •fl&Xt, message, whether 
typed by the user or the computer, starts at the left edge of a 
new 1 lne. The second l tne of the. gree.t-lng ~sage ( 1 ine 4) tel ls 
the number of users currently Jogged in, and the load they are 
placing on the system. The average ·user pJau:es .a load of 1.0 
load units on the system, and In this, example the hardware 
conf I gurat ion in use wll 1 support 6Q 1,1n t ts, or 60 average users. 
Some users with restricted convnand repertoires may be rated at 
less than 1.0 load units; others may be rated higher. Since the 
load, 55.0, is well below the limit, 60.0, we will have no 
trouble logging in. If the load were equal to the limit, we 
might still attempt to log in; it may be that some part of the 
load can be deferred or some low priority user could be asked to 
stop working. After printing Une 4, the system unlocked the 
typewriter keyboard, and the user had two minutes In which to log 
In to the system. Thus,. on 1 ine 5 h• typ,ed • login 1 ine, giving 
the persona 1 name by wh J ch he Is Iden.ti f i ed throughout 1the 
system. Note that the dlstin.ction bet.ween upper and lower .case 
letters ts significant in Multics Input and output. If he had 
typed his name without the initial capital letter, it would not 
have been recognized. 

Some users may type other things after their name. Such 
extra input Items are necessary only if the user works on more 
than one project or charges his usage to more than one account, 
and then only If he does not want to,t.1cs.e hi,,s standard bi 11 ing or 
project identification for this terminal session. 

On line 6, the login program responded by requesting the 
private password which is associated wi.th the user's name. At 
this point, the program turned t·he t.ermlna 1. pr Jn ting me ch an ism 
off and al though our typist typed. in hi$, ipassword on 1 ine 7, 
there is no printed record of it. · Note that, as usual, he 
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signaled that he had completed typing by typing a "new line", so 
the next message from the computer was printed on line 8. 

Lines 8 through 12 are the response of the login program to 
the successful identification of the user. Line 8 records the 
date, time, name, and project affiliation of the user. The 
project afft 1 lat Ion refers to a croup Ina of user"S· who are working 
together on a single project and therefore require frequent 
access to each other's lnfonnation. As we shall see fn the 
example .terminal sesslon exhfbltfng storage sys-tem usap, since 
the privacy sys·tem- recognizes· the ettt~nce- of such groups, one 
can grant access to all members of a group by statfng just the 
project name of the group. line 9 tefls the user of the 
conditions of his previous te1"mfna1 ses-slon, so ttwrt he may 
discover If someone else Is us Ina ht s password. 

LI ne 10 Is called the nwssage gt .tbsl .sl&lL. Th Is message Is 
updated frequently to reflect any tmponerrt news fof" users. 
Rather than prfntlns the detalls of the news here, though, the 
message usually refers the usef' to lnftHw&flon f"ll'eS wh.feh may be 
printed with th• help conmand. we wtl l .... exaanplles of how to 
use this very handy facility In a moment. 

Lines 11 and 12·, the last lines printed as a result of 
loggln& In, are known as a r1ady message, since- Its appearance 
Indicates that the terminal Is now at cOlllllBnd level, and thcrt the 
conmand lansuase Interpreter Is reedy to s'tart lnte-rpretlng 
CQlllllilnds. The four numbers pr lnted· In the ready messaae have the 
followln& ,..anlngs: 

2139 Time of day, In 21' hour form, to the nearest minute 
(e.g., 9:39 p.m.>. 

3.914 Number of seconds of central processor time used since 
the last visit to cosnmand level. 

12.070 A· measure of the memory used since the last visit to 
COii .. nd level. It Is lntemled, to measure rnentDry usase 
In a manner tha1: Is t-ndepeMfent of ~-- load. 

231 Number of pages 
brou&ht in to 
connand level. 

(10211 word b·locfts·) of tnformat ion 
primary memory since the last visit to 

A blank line, In this case on line 12, Is prJnt-ed as part of 
the ready messaa-e, to provide separatlcm between successively 
typed connands. As W8' stta 11 se&, a reacty ni*Ssage ts pr0lnted 
every time that the te-rmlnal returns t'O eOillliaftd level. The 
Information printed in the ready message, In addition to 
providfnc an occasiona-1 time stanp on oa~s tennfnal output, Is 
frequently handy ht estl•tlna the rwla<t'lve · c:ost of a 
just-completed operation, or In cC)lllP&'rfna tt.e east' with another 
way of dolna the same thin&. (Note: fer the Ultfnte.rested, there 
Is a special feature which can be used to suppress the ready 
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message. For details, see the write-up of the ready_off command 
in the MPM Reference Guide Command section.) 

At this point, the system has now created a orocess for the 
user. A process may be thought of as a private. computer, working 
in its own memory, or adqress SDf$;C 1 µnder C(>.nfrol of the user at 
his terminal. The process· ha.$ be.\.tn r1.1nntng ln the listener 
program, so any 11 ne typed by the· usef wl 1 L be ·1 ntetpreted as a 
comand, that is, an instruct19n,, to .. c~11 some program either 
belonging to the user or else in the M1.1ltics llbr'ary. · Our sample 
session continues as the user types hfs first command line. 

The command line typed on line 13 lllus:trates three things: 
invoking a library program by. n..,ne, pa$$lng that program an 
argume.nt, and correction of a typfqg error • . ·the user· chose to 
fol low up the suggestlon given by the.,,,es, .. ~ of· the. day back on 
line 10, so he trped the.name of the fltt1p ~~rid. That. coR111and 
Is capable of giving help on a va.rlety.~of t0plc$; one seJects the 
topic by giving the help comman4 a.g •'f1Pi, !fhlch names the 
desired topic.* The help cQmmand takes'tha:;rgument as the name 
of a file of Information whic;h it then ¥fe."as •source of text. 
In this case~ our user wanted tQ see_ th~ ~·~est system new$, so 
he tried to type the argument "news" followlnJ the connnand name 
"help". Unfortunately, he slipped up, and typed "nes". He then 
noticed his error, and typed the erase ch•r~u:ter (#)followed by 
the correct letters. Thus the ltne . .actua11y interpreted by the 
listener reads "help news". · 

The help comnand then replied by printfng# on line 14, a 
not t ce of how much output was com Ing~ and. du~n on 1 i nes 15-24 the 
latest message from the on-line news file. Afte'r compli!ting that 
message, It Inserted a blank line (lil')e. 25) to improve 
readability; and then asked the user lf he wished to see more. 
This question, on line 26, Illustrate$ that some lines printed by 
the computer ne.ed not end with a "new 1 tne". Afte.r printing the 
question mark, the program printed ~1tf0.,Pac;:~~, then stopped to 
await the reply of the typist. Thf! p·areothj',tJcal asterisk to the 
left of line 26 ls Intended to call attention to the fact that 
the typist only typed the last part of tflTs line, namely the 
letters "yes", and the "new line". 

Then, on line 27, the help program again printed a notice of 
how much output was coming, and proceeded with the next older set 
of news. Our user, not wishing to watt while 68 lines of 
information were printed, allowed the printing to proceed only 
unti 1 he saw news he had seen before, on lin,,, 30. In tbe middle 
of that 1 lne he pressed the quit b.wtton. The system responded 
imnediately by prlnting a "new line11

, the word QUIT on line 31, 

* If one does not even know enough to name a topic on which he 
needs help, typing "help" with no arguments will provide a 
tutorial on the on-line information currently available. 
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and a standard ready message on lines 32 and 33. The terminal 
was thus forcibly returned to command level, the help command 
having been suspended In mld•operatfon. The user was then ready 
to type his next conmand, on line 34. 

There our user typed in the name of a desk calculator 
command program found In the Multics library. This command turns 
his terminal typewriter Into a kind of simple adding machine, so 
that he can balance hi~ checkbook. The desk calculator 
acknowledges that It Is listening for Input by printing the word 
"Go" on line 35. Our user,·belng experienced In the use of the 
calculator, proceeded to type tn a whole serlas of requests to It 
on lines 36-41, first to clear its memory, then to add and 
subtract several numbers found in his checkbook. Note that he 
did not wait for a response to one request before typing the next 
one; he knew that the calculator does not repry to requests for 
memory clearing, addition, and subtraction. In fact, It is 
likely that he typed at least some of his Input lines before the 
calculator was ready for them; he and the desk calculator were 
making effective use of the Multics type-ahead ability mentioned 
before. Finally, on 1 lne 42, he typed a request to print the 
result of all that addltlon and subtraction. This time, he 
waited for the response, which the desk calculator printed on 
1 tne 43, followed by a blank line for readabl 1 I ty on lfne llll. J 

Our user was then finished with the desk calculator, and 
wanted to type more commands; In order to return to comnand 
level, he typed the request q (short for "I quit"> to the desk 
calcul.ator on line 45. The calculator program responded by 
retur'ning to its caller, and the terminal was returned to connand 
level as the ready message on lines 116 and 47 attests. 

Our user, having solved his lnmedlate problem (there seems 
to be little Multics can do about the negative balance in his 
checkbook), then typed the logout colllftand on line 48. The logout 
comnand, In addition to printing the messages on lines 49-53, 
took care of various housekeeping chOTes, such as updatfng 
accounting records and remov Ing the u.se r .• s naote from the 1 Is t of 
those currently logg•d In. It aJso trtgpreda telephone line 
disconnect sequence, which caused the minus sign to print on line 
54. Note that although our user was logged Jn 'for almost ten 
minutes, he used only five seconds of the central processor's 
time. Such ratios a're the basts for developing a time-sharing 
system which Is to be used by a large number of people 
simultaneously. 

With this example, we have now walked through an entire 
terminal session. If you wish, you might want to try to Imitate 
this session the first time you log In, substituting your own 
name for that of our sample user. One thing that you would 
surely notice If you tried that experiment is that the ready 
messages would not be exactly the same as In our sample script. 
It is normal to observe a variation In the amount of processor 
time or number of page movements required to accomplish the same 
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job several t.imes. The variation arises because the system 
attempts, as often, as it possibly can, to run your program on the 
coattails of-. otJier users, utilizing pages .In fOmmon. To the 
extent that such sharing is successful, the·cna.t&eJ:to lr•d1vldual 
users may be reduced, but the size of thts effict' 1wi) 1 v~ry ·.wt th 
c i r cums tances. A 1 so, when. the srs tem. . I s . he.ay,J .. 1 y ;,' o~dfd, . i t i s 
harder to locate the resources requ re<! to rJlf) · .~. · proitam; the 
extra effort requl red shows up as;a efrarge to tJ\e uset~•ho asked 
for them. 

Jn addition to the conmands Illustrated here, you might try 
typing the help co1T111and with no arguments, and you might also try 
the who command. The Reference Gulde gives complete Information 
on many options and variations on these as well as on the 
corrmands illustrated In our sample s~rtpts. 

Tvplng .ilD.51. Edltlnc Information 

Probably the single most common activity of a user of a 
time-sharing system is typing In and edl ting Information, with 
the intent that the Information be stored for later use. One 
important property of a sys.tam whlch ls normally appro·ached by 
means of a remote terminal must be that It c-.n sto".Ft. •. -.}nformatlon 
from one usage session to the next. If th1s A(Off;rtY. were 
lacking, ft would be unreasonable to use It ~<f tackle any 
information processing job whJch could not be comRJ.fled in a 
single sitting. Since that kind of restrlcttOil !a unwanted, 
Multics provides an extensive system for storing and organizing 
Information, the Multics storage system. 

The unit of Information which Is stored, named, protected, 
and shared In the Multics storage system Is known technically as 
a segment. One or more segments containlng related information 
is usually cal led a ,W.A.. Typically, a segment might contain a 
complete program written in the Pl/I language, or a memorandum, 
or a collection of closely related data. We w111 return later to 
a variety of examples of how segments are named, protected, 
classified, and shared; for the moment we are mere1y Interested 
In the mechanism by which one creates a brand new segment or 
mod if les the contents of an o.ld one. Th ls mechanism ts ·ttnportant 
because most subsystems which require S:Ubstantial quantities of 
Input expect to find their input in segments. For example, one 
uses the Multics PL/I compiler by, first constructing a segment 
which contains the desired PL/I sou.rce program. Then he 
instructs the compiler to translate the source program found in 
that st!'gment. 

Segments which contain only strings of characters, and thus 
can be printed by a standard printing procedure without decoding 
their format, are known as orintAhlA segments; a Pl/I source 
program is an example of a prlnt,able segment. All other segments 
may be categorized as binary -seg~nts,,,,~ljh Is just a way of 
saying that they consist of a coH.:•.~.tion "of:~ .. ,~,,,~ ~htch somehow 
represent lnforma.tlon in a way. ,,dtff,ftr1'4\~ 'frqm the standard 
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printable form. Usually, binary segments are created and read 
only by programs. Because they can be easily printed, printable 
segments are creatable, modifiable, and readable by human beings 
as well as by programs. 

For the purposes of creating and editing printable segments, 
several general-purpose editor conmands are available. The two 
standard editors are named edm and qedx. The first, edm, is easy 
to learn and use, but limited in its repertoire of facilities 
when complex but methodical changes to a segment are needed. The 
second, qedx, Is more powerful and ts con"trotled by a concise 
Input language, but Is somewhat more dlfffcult to master at 
first. Some subsystems (for example, BASIC and 'APL) provide 
their own built-In editor program In order to minimize the 
distinction between program creation and execution. We will here 
concentrate on the simpler of the two general-purpose editors. 

As before, It Is easiest to explain the operation of an 
editor by looking at a sample termrnal ses5fon. In the example 
In Figure 3-2, edm is used to type in a new segment containing a 
short poem. We begin our reference 1 ine numbers from 1, 
realizing, of course, that the user who typed In this segment 
must have fl rst logced In as In our· ·earl fer example. As before, 
we have marked with an asterisk lines typed by the u$er. 

On line 1, our user typed the command to Invoke the editor. 
Since the editor Is willing to edit any text segment in the 
system, it ls necessary to Indicate which segment is to be 
edited. This Indication ls made by typing the name of the 
segment as an argument following the name of the editor corrmand 
i tse 1 f. In th ts case1 · our user has chosen· 'the name, pcem, as the 
name he would 1 Ike to use for the segment he is about to create. 
On 1 i ne 2 the edl tor rep 1 t es wf th the obseryat Ion that It d Id not 
find a segment named Poem already in ex+stence, so It assumed 
that it was supposed to create a new segment with that name. 

To u~derstand the message printed by the editor on line 3, 
we must. realize that this editor operates in one of two modes: 
input mode~ and edit mode. In the Input mode, . ·everything typed 
by the typist ts presumed to be information to be stor·ed tn the 
segment. In edit mode, ,the typlst•s lf'ne.s are Tristead taken to 
be requests to make changes to the:' already s·toTed .segment. Since 
the segment had not yet be.en typed in', the edl tor assumed we 
should start In Input mode, which· ft sigrflf:fed by printing 
"Input." on line 3. As we shall see, when the editor detects 
that the typist is working on an old segment, It start's him off 
in edit mode instead. 

Lines 4-8, then, are the intended Information content of the 
segment, supplied by the typl5t. NOte the use of an erase 
character near the beginning of line S, to change the i to an o, 
and the kl 11 character used on ll·ne 7 after noticing a blunder 
earlier in the 1 t"e •. Even though only one chaf':acter was In eTror 
Cthe r should have been an e), It was necessary to type the 
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edm poem 
Segment not found. 
Input. 
There was a young lady from Niger 
Who rllode with a smile of a tiger. 
They returned from the ride 
With thr lady@With the lady inside 
And the smile on the face of the tiger. . 
Edit. 
t 
1 smile 
Who rode with a smile of a tiger. 
c /of Joni 
Who rode with a smile on a tiger. 
t 
p 1000 
No 1 lne. 
There was a young lady from Niger 
Who rode with a smile on a tiger. 
They returned from the ride 
With the lady Inside 
And the smile on the face of the tiger. 
EOF 
w 
q 
r 202'6 1.280 

edm poem 
Edit. 
1 tiger 

5.2i4 225 

Who rode with a smile on a tiger. 
1 
And the smile on the face of the tiger. 
i -- anonymous 
t . 
lnput. 
A poem: 

• 
Edlt. 
t 
p 1000 
No 1 tne. 
A paern: 

There was a young lady from Niger 
Who rode with a smile on a tiger. 
They returned from the ride 

Figure 3-2: An Example of Typing and Editing Information. 
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£OF 
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c 1000 /tlpr/alraff~t· · · < ., 
Nho ,_ •I tt. a ... Mi~ .;Al•'• klll'.., 

== .... -··· ~:s~·~'~ 
t 
I anon 

d 
w 
fl 
r 2.026 .175-

print ...,._ 

-- ....,,_. 

2.lJZ 

- _: ~.._ 

" -~ 
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entire line over again because, you may recall, the kill 
character deletes everything to its left on the same line~ 

Having completed the initial typing of the poem, our typist 
now wished to switch to edit mode. Now he was up against a 
slight problem: everything he typed was supposed to be stored in 
the segment. How was he to communicate to the editor program his 
intent to stop using the input mode? As we might expect, a trick 
is used. The editor checks each line typed in input mode. When 
ft sees a line containing nothing but a period, it takes that 
line to mean that the mode should be changed, and ft does not 
store that line in the segment being created. (Note that this 
means that one cannot store a line containing only a period 
while in the input mode. However, one can create such a line in 
edit mode.) 

Thus, on line 9, we see only a typed period, and on line 10 
we see the response of the editor, saying that "Edf t. 11 mode is 
now in operation. At this point, our typist, having looked over 
the Printed copy of his input, noticed that he made an error on 
line 5--the word "of" should have been typed as "on". To make 
such changes easy to manage, the editor maintains a oojnter, 
which is always pointing to some place in the stored segment. 
The typist may move this pointer from line to line, by issuing 
various requests. Thus, when our typist issued the request to 
switch to edit mode, the pointer was pointing to the last line he 
had typed. The t (for top--most edm requests are one letter 
mnemonics) request on line 11 moved the pointer to the top of the 
segment, ahead of the first line. The l (for locate) request, on 
line 12, started a search for the next line containing the string 
of letters "smile". When it found such a line, the editor 
printed It on line 13, and left the pointer pointing to that 
line. This operation of moving the pointer by searching for a 
string of letters is known as editing by context. 

Having got the pointer set to the line which contained the 
error, our typist then issued a c (for change) request on line 
14. The change request is designed to avoid the need for typing 
the whole line over, by mentioning first a string of characters 
which appears in the line, and then giving another string which 
is to replace the first one. What the typist wanted to express 
is the notion "change the string of letters 'of' to the string 
'on"'. Since, in general, one or both of the strings may contain 
blank spaces, we must invent some convention for communicating to 
the change request exactly what string is to be used for 
matching, and what string is to be used in the first string's 
place. The convention used is for the typist to choose any 
character he wishes that is not in either string -- his choice is 
called the delimiter character. (The slash mark is often used 
since it is convenient to type.) Then he types that character 
three times, with the two strings in between. Thus, the 
substitution was expressed to edm by typing the request name c, 
followed by a space, then the first delimiter (/), the string of 
characters to be matched (of), then a second delimiter, then the 
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new string to be substituted In place of the matching string 
Con), and finally a third delimiting character. In return for 
this input sequence, the editor performed the requested 
substitution, then printed the changed line to verify that the 
correct change occurred. 

(Note that while editing by context is very convenient, 
context Is often ambiguous, and one must constantly check to 
Insure that the correct context was used. Thus, the word "of" 
might have appeared twice in the line; In that case, the change 
request would have chanced both occurrences. If one wanted only 
the second occurrenG• chanaed, he would have to type a larger 
identification strlna, one which uniquely matched the single 
usage of "of" that was to be chanced.) 

Next, to verl fy th.at the whole segment Is correct, our 
typist moved the painter back to above the top of the segment 
with the t request on line 16, and then he asked the editor to 
print (with the p request> the next 1000 lines of his segment. 
Although he knew that his segment did not contain 1000 lines, he 
did not want to count them; when the user asks for a larger 
number than necessary, the editor merely Prints to the end of the 
s.,ment, then stops. Thus, we. hev.e the flnal segment contents 
printed on lines 19-23. The comment "No line." on line 18 Is 
Inserted whenever the pointer Is not polntln& at a line; for 
example, when It ts polntlna to the top of the seament. 
Similarly, the COAlnent EOF on line 24 ts printed whenever any 
request causes the pointer to run past the end of the seament. 
Our tltp,lst then typed the request w <write> :0n line 25, which 
means "put the se.gment away In the storage system". Being 
finished with the editor he then typed q,. for q.ult. The editor 
responded by returning to cawnand level, as shown by the ready 
message on line 27. 

To illustrate the ability of the editor to modify 
lines 29 through 83 are a typical edltln& session. 
session, the typist made some chances to tbe segment 
the poem that had been typed In before. 

a segment, 
In this 

containing 

The typist started from connand level, just as before, 
typing; the name of the editor and the name of the segment to be 
edited. This time, since the seament already existed, the editor 
began In edit mode rather than Input mode. ·The typist wanted to 
add a line followln& the last line, so he had to move the pointer 
to the last line. Noticing that the hast line contafned the word 
"tiger", on line 31 he typed a request.to locate that string of 
characters. Now lt becomes apparent why the editor always prints 
the line it has moved the POlnter ~o, as on line 32 -- there were 
two lines contalnln1 the word ''tiger", and the editor had located 
the first one. The typist should have used the request: 

1 the t I &er 
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on llne 31, since only the last line contains the string of 
characters "the tiger". Seeing his mls,take, the typl st took 
advantage of a special convention: If he types a locate request 
with no character string, the previous locate request will be 
repeated, with the effect in this case that the next instance of 
the string "tiger" w111 be located. This he did on line 33, and 
the editor responded on line 34 with the last line of the 
segment. Then, using the I (Insert) request, which inserts a 
line after the painter, our typist on line 35 added a single line 
to the end of the segment. 

Next, he decided that his paem needed a heading, so he moved 
the pointer back to the top of the segment with the t (top) 
request on line 36. Since the heading ts to be more than one 
line, he decided to switch temporarily to Input mode by typing 
the mode-switch character, a line containing only a single 
period, on line 37. He followed this with two lines to be stored 
In the segment following the current pointer position (which In 
this case was at the top of the segment). Note that line 40 is 
completely blank--presumably the typist wanted a blank line in 
his segment at that point. Having now finished typing the new 
material, the typist switched back to editing mode, went back to 
the top of the segment, and on line 4- requested that it be 
printed. As we see on lines 45-54, the segment appeared as 
before, except for the three added lines, two at the start and 
one at the end. -

Next, our typist exhibited one of the most powerful features 
of this editor, its multiline change request. On line 56, he 
requested that the string "tigert• be replaced by the string 
"giraffe" everywhere it appeared on the next 1000 lines following 
the pointer. Thus, every occurrence of "tiger" in the entire 
segment was sought out and changed by the editor. For 
verification, the editor printed each changed line Clines 57 and 
58), and then reported that it encountered the end of the segment 
Cline 59). Finally, the typist decided that the line saying 
"anonymous" was superfluous, so he first moved the pointer to it 
Clines 60 and 61), and then deleted It Cline 63). Finally, he 
wrote out the resulting edited segment, and then asked the editor 
to return to convnand level. 

As an independent check on the contents of the resulting 
edited segment, he then typed the print command, as shown on line 
68. This library program will print any text segment; first it 
prints a header giving the segment's name and the date and time 
Cline 70), then It prints the contents of the segment. 

WI th 
wt th the 
Reference 
your own. 

this brief introduction, the next steps to familiarity 
editor are to read the edm command write-up in the 

Gulde, and then to type Jn and edit a small segment of 

Some pointers: 
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1. It ts useful to remember that the editor makes all changes 
on a ~ of the segment~ not on the orl g tna·l. On 1 y when 
you issue aw {write) request does the editor overwrite your 
original segJnent with the edited version. If the user types 
q (quit) without a preceding w (write), the editor warns him 
that edl ting wl 11 be lost and the original segment wi 11 be 
unchanged, and gives him the option of aborting the request. 

2. Don't ever press the quit button while In the editor, unless 
you are prepared to lose all of the work you have done since 
the last w (write) request. If you press quit while aw 
request Is In progress, you may even damage the original 
version of the segment. 

· 3o If one has a lot of typing or editing to do, It ts wisest to 
occasionally (say every 10-15 minutes) Issue aw request, to 
insure that all the work up to that time Is permanently 
recorded. Then, If some accident should occur (e.g., a 
system failure, or the telephone llne dlsco11nects), you will 
lose work only back to the last w request. 

4. Some requests are more expensive· In computer resources than 
others. In particular, frequent movement of the Pointer 
back to the top of the segment should be avoided. If 
passlble, It is best to plan ahead, and try to do as much 
editing as Possible with a slnale pass of the painter 
through the segment. The 1 arger the ·segment, the more 
important this consideration becomes. 

5. The request to move the pointer backward, while very handy, 
Is very expensive to use, since the editor actually has to 
move the pointer to the bottom, then back to the top,· then 
to the correct location. 

6. Be sure that you have switched from Input -mode to edit mode 
before typing editing requests, including the requests to 
write and quit. If you forg~t, the editing requests will 
be stor-ed In yaur seament, ln$tead. of beJng acted upon. You 
w 111 then have to locate and de l.ete them. 

7. The only frequently-used requests which have not been 
illustrated are the next (n) and backup.(-) requests. The 
remaining requests are less lmportent and you can safely 
Ignore them to start with. 

8. As one becomes more and more familiar with the use of edm, 
he may conclude that It provides verification respanses more 
often than necessary, th1,1s slowing him dawn. The requests v 
and k are used te control tbeAdltor•s verbosity. At about 
the point where one feels conf fdent enough to use these two 
requests constructively, it Is probably time to begin 
studying the more sophisticated editor, qedx. The qedx 
editor provides the user with a repertoire of more concise 
and powerful requests, which permit more rapid work. 
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ysing .tJ:lg, Multics Storage System 

In the previous section we saw how a text segment may be 
created and edited. In this section, we will explore some of the 
features of the system which allow such segments to be organized 
and stored for later use. 

The user in our last example chose the name poem for his 
segment. Multics tries to allow the user as much flexibility as 
possible in choosing names for segments. Since the system has 
many users, who may be strangers to one another, this need for 
flexibility suggests that the segments belonging to any one user 
be grouped in such a way that he can choose names without worry 
that some other user has already used that name. This grouping 
is accomplished by an entity known as a directory. A directory 
may be conveniently thought of as a segment containing a list of 
names of other segments.• 

Typically, each user has a directory for his own segments. 
Within a single directory, each segment must have a different 
name, but two different directories may contain segments with the 
same name. By a simple extension of this convention, directories 
are also given names, so a user's directory may contain the names 
not only of his segments, but also of additional directories he 
has created. These additional directories may contain the names 
of more segments. When a directory name is found in a directory, 
it is said to be an inferior directory; the naming directory is 
said to be suoerior to it. A user's motives for p~tting some of 
his segments in inferior directories may be several: 

• 

He may have two segments to which he wants to give the 
same name; they must not be in the same directory. 

He may have many segments, and would like to keep them 
grouped by category. As we shall see, he can ask for a 
list of all the names in any one directory, and thus in 
one of his categories. 

He may wish to protect a certain group of segments all in 
the same way; when he creates a new such segment, he can 
protect it the same way as the others by putting it in 
the appropriate directory; he need not think through the 
protection specification again. 

* Although a segment is technically only named by a directory, 
it is common terminology to refer to a segment as being stored in 
a directory. Of course, the segment is actually stored on some 
disk or drum storage device; only its location on that devtce is 
stored in the directory. This distinction is important In the 
case of Jinks, which name segments stored in other directories, 
rather than providing for their storage directlYo 
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Whenever a program asks for a segment by name, a search 
ts undertaken for the segment. This search Is controlled 
by specifying a list of directory names. Thus, he may 
create several directories In order to arrange that the 
search proceed In a fashion he prefers. 

It should be clear, then, that the concept of a directory Is 
a key to several different features of the Multics storage 
system. The Idea of superior and inferior directories ts 
extended by the requirement that all the directories In the 
system together form a hierarchy, or .1.CJUt. The' directory at the 
base of the tree, which Is superior to every directory of the 
system, Is called the LSli2.t, directory. 

Figure 3-3 ts a typical directory arrangement. The root 
directory In that example contains two entries, both of which are 
names of othe~ directories. One of these two directories 
contains the library of system programs, while the other, named 
udd (for user_dlrectory_dlrectory) contains one entry for every 
user of the system, namely Smith and Jones. These two users each 
have a directory with their names on It, and In addition, Smith 
has chosen to add another directory Inferior to his own, named 
old_dtr; he has placed three segments named x, y, and z In 
old_dlr. 

Whenever a Multics program wishes to read or change the 
contents of a segment, It Is required to specify the name of the 
segment It wants. Every segment has a .111.tb. .D..illDA which Is formed 
as follows: trace the directory structure down from the root to 
the desired segment, writing In order the name of every directory 
on the path, and finally the name of the segment Itself. Now, 
concatenate all these names Into a single long name, placing the 
"greater than" character between the Individual names. Thus, the 
path name of the edm command, found in the library, would be 

root>llbrary>edm 

By convention, since every path name would begin with the letters 
"root", these letters are left off, so one would use the path 
name 

>llbrary>edm 

to refer to the edm command. 
lp.pll has the path name 

>udd>Jones>lp.pll 
' 

Similarly, Jones' segment named 

and Smith's segment named x has the path name 

>udd>Smlth>old_dlr>x 
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root: udd 

library 

udd: 
Jones 

edm 
Smith 

who 

print 

de cam 

sqrt_ 
Jones: 

lp.pll 

x 

Smith: poem . 

a.pll 

old dir 

old_dir: x 

y 

z 

Figure 3-3: Typical Multics Directory Hierarchy. 
OirectorJes are rectangles; 
segments are circles. 
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which Is clearly distinct from Jones' segment x, which has the 
path name 

>udd>Jones>x 

To avoid the need for typing full path names, which may not 
be easily remembered (or even known, In some cases), the system 
remembers for each logged In user the path name of one directory 
In which his activity Is centered: his working dlrectorv. All 
names which do not begin with a Ugreater than" sign are 
considered to be relative to his worktnl directory. Thus, for 
example, Smith might choose as his working directory the path 
name 

>udd>Smlth 

In which case when he uses the name 

poem 

he will be referring to the seament with path name 

>udd>Smlth>poem 

and when he uses the name 

old_dlr>x 

he is referring to the segment wlth path name 

>udd>Smlth>old_dir>x 

The system automatically .chooses an initial working 
directory for a user when he logs In, but he Is free to change 
the path name of his working directory to any other directory In 
the system. He makes this change by invoking one of several 
commands used for interaction with the storage system. As 
before, it is easiest to understand these commands by following a 
series of sample scripts, which are based on the directory 
organization Illustrated In Figure 3-3. Suppose that Jones has 
logged In, and the system has assigned him the directory 

>udd>Jones 

as his working directory to start with. (The script may be found 
in Figure 3-4.) 

On line 1, he typed the co11111and print_wdlr, which merely 
prints the path name of his current working directory on line 2. 
(This co11111and Is quite handy if one forgets where he is, or needs 
confirmation that he typed his last co111nand to change directories 
correctly.) Next, on line 5, he typed tbe list command, which 
prints the contents of the working directory. On line 7 the list 
co11111and printed a summary of the directory contents. Jones' 
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USING ~MULTICS STORAGE 

prlnt_wdl r 
>udd>Jones 
r 1211 .. 1J1 .812 27 

ltst 

Seamen ts • 2~ Records ..... 
r w 1 lp.pll 
re J x 

r 1212 .216 1. 762 33 

create foo 
r 1213 .320 3.728 77 

11 st 

Segments • 3, Records • 4. 

r w 0 f oo 
r w 1 1p.p11 
re 3 x 

r 1215 .202 1.856 49 

createdir mypoems 
r 1216 .151 1.482 O 

change_wdir mypoems 
r 1218 .089 .306 17 

prlnt_wdtr 
>udd>Jones>mypoems 
r 1219 .119 • 056 14 

list 
directory empty 
r 1219 .147 1.406 42 

copy >udd>Smith>poern limerick 
r 1220 .311 1.732 53 

11 st 
Segments • 1, Records = 1. 

r w 1 limerick 

r 1220 .219 2.162 41 

change_wdir >udd 
r 1221 .067 .646 30 

SYSTEM 

Figure 3•4: Example of Use of the Multics Storage System. 
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directory (refer to Figure 3-3) contained only two entries, and 
these segments occupied a total of four records, the unit of 
storage space. One record has room for up to 4096 printed 
characters, or 1024 computer words. 

Starting on line 9 is the three-column list of names of 
segments in this directory. Working back from the right, the 
third column Is the segment name (32 characters or fewer in 
length), the second column is the number of storage records 
occupied by this segment, and the first column tells the mode of 
access this user is permitted to this segment. Up to three 
letters may appear In this column, each Jetter indicating an 
additional privilege: 

r (Lead) The user may read the contents of this 
segment. 

e <,axecute} The user may run this segment as a program. 

w <•rite) The user may rewrl te the contents of the 
segment. 

We will return later to the subject of setting these access mode 
Indicators. For the moment, we will merely observe that they 
exist, that different users may have different access mOde 
Indicators for the same segment, and that the system enforces the 

·· access mode restrictlons. 
' 

On line 9 is listed a segment which has a "period" as part 
of Its name. In general, the storage system Is happy to allow 
any character except the "greater than" sign tn a segment name. 
The user of the storage system may wish to attach some special 
meaning to some character, and one such system-wide convention is 
Illustrated on line 9: a segment n..,e may consist of ,omp,gnents, 
separated by periods. As far as the storage system Is concerned, 
the name is one long string of letters with Interspersed periods; 
the user by convention attaches meaning to the components. It is 
customary, for example, for source language programs to be given 
a two-component name. The first component Is chosen by the user, 
and the second component ts the name of the source language. 
Thus, the name lp.pll is evidently attached to a program written 
In the Pl/I language. 

On line 14, the user typed a command which creates a new 
segment, and upon reissuing the list con111and on line 17, we see 
the newly created segment included ln the listing. Note that the 
create command attached an access mode indicator of "r w". Note 
also that since no Information has been written in the segment 
yet, Its space occupied is o. 

On line 27, the user created 
own, named mypoems, and on line 30 he 
changes his working directory to the 
a check, on line 33 he asked to print 

a directory inferior to his 
typed the command which 

new Inferior directory. As 
the name of his working 
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directory, which is now 

>udd>Jones>mypoems 

When he tried to list the contents of his new directory, on line 
37, he received an appropriate error comment. 

To Illustrate a typical use of segment names, on line 41 he 
typed a copy command. The copy command works as follows: 

COPY a b 

• The segment named a ts located Jn the hterarchy • 

• A segment named b Is created • 

• The contents of a are copied Into b • 

Both the names a and b are subjected to the conventions about 
working directories. Thus, on line 41, the name a is 

>udd>Smlth>poem 

which, since It begins with the "greater than" character, Is 
taken to be a full path name and requires no Interpretation. The 
name b f s 

limerick 

which, not starting with the "greater thari-n character, must be 
Interpreted relative to the current workfng directory. Thus, 
name b for this case ls taken to be 

>udd>Jones>mypoems>llmerlck 

A segment of that path name was thus created, and the contents of 
Smith's poem were copied Into It. To prove this, the user next 
typed "list", and found one segment, named limerick, In his new 
directory. Its stie was nonzero, so somethl1'g must have been 
wrltten Into It by the copy cotnmand. 

We should pause at this moment to observe that copying of 
segments Is the exception, rather than the rule, In Multics. 
tlormally several different users will share the same copy of a 
segment, either by giving the full path name when they wish to 
access It, or by placing In their working dlr•etory a link to the 
segment. Copying ts performed only If one wishes to make a 
modification to a segment, but keep the original version also. 

Continuing our example, on line 51, the user began exploring 
the rest of the directory structure by typing conwnands to change 
his working directory to one higher In the directory; hierarchy. 
He then on line 54 listed the contents of thf~ directory. 

The list conwnand presumes that most often one wants only a 
list of segments, not of Inferior directories, so It normally 
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does not print directory names. If the argument -a (for all) is 
given to the list command, it will list everything in the 
directory, not just segments. Thus, on lines 56-63, we see the 
summary of contents, and the names of the two directories 
Inferior to udd. Note that Jones has more access to his own 
di rectory than he does to Smith's. If Smith were to try this 
same experiment, he would probably find that he has more access 
to his own directory than he has to Jones'. Access modes for 
directories are described below un~er A''cas Cgntrol .ln Multics. 

Next, on line 67, Jones switched his working directory into 
Smith's own inferior directory, and used the status command to 
find out all he could about segment x. 

Finally, he returned his working directory to the place 
where he started, by typ.ing the comt'Rand change_wdir with no 
arguments. The change_wdir command has tu¢ked away the name of 
his original working directory to ailow such a move to be 
specified easily, since it is very common. 

.. Next, the user placed In his directory a link to Smith's 
§egment x, as referred to above. Note that one can make a link 
to another directory, if desired, also. This feature allows one 
to talk about any entry in that directory with a name briefer 
than the path name from the root. 

Finally, he listed just the names of everything in his 
directory. Figure 3-5 Illustrates ·the modified directory 
structure. 

While the sample scripts described here are useful for 
getting a flavor of how the system is typically used, much 
additional insight can be gained by experimenting with the system 
itself. For example, the following series of experiments is 
suggested: .. 
1. Log in 

2. Print the name of your working directory with the print_wdir 
command. 

3. List the contents of your working directory with the command 
"1 lst -a". 

4. Switch to the directory immediately superior to yours with 
the change_wdir command. Give as the name of the directory 
to switch to, the name printed In step 2, with the last 
component stripped off. 

5. Repeat steps 2-4 until you have reached the root directory. 
CTo enter the root directory, U$e a "greater than" sign for 
its name.) 

6. Explore downward from the root to see how far you can go 
into other parts of the directory hierarchy. 

----~·-~--
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root: 
udd 

library 

udd~ 
Jones 

library: edJa 
Slllith 

print 

de cam 

sqrt_ 
Jones: lp.pll 

x 

poem 
foo 

Smith: 

a.pl! 
Saithx 

old dir 

mypoems: limerick 

old_dir: 

y 

z 

Figure 3-5: Directory Hierarchy of Figure 3-3 (After Manipulation 
by Example Script). Directories are rectangles; 
segments are circles. 
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Finally, we have not yet mentioned three commonly used 
convenience features of the Multics storage system: 

1. Any time a segment name must be typed, one may specify 
either the path name from the root, or a relative path name 
starting from the current working directory. We have 
already seen two examples of this feature above, in typing 
names of segments located below the working directory. One 
can also give relative path names for segments not below the 
working directory by typing an Initial "less than" sign for 
each level up in the hierarchy needed to get to the segment 
in question. Thus, If the worklng directory is 

>udd>Smith 

Then the relative path name 

<Jones>tp.pll 

is taken to mean 

>udd>Jones>lp.pll 

2. Any segment, link, or directory may have several names, if 
desired. The addname command is used in this connection. 

·Multiple names are handy in cases where a new name is 
wanted, but some programs (or users) still use the old one. 
Also, a segment with a long name may be given a second, 
shorter name for typing convenience. 

3. There are conventions for talking about groups of segments 
with similar names, using an asterisk to specify the parts 
of the name that vary within the group. Thus, the command 

list •.pll 

would list all segments in the current working directory 
which have two-component names ending with .pll. 

More details on these three features, as well as many other 
storage system features and options which are less commonly_ 
exercised, may be found in the MPM Reference Guide sections on 
Using the Multics Storage System, and the MPM Reference Guide 
section, Constructing and Interpreting Names. 

Access Control l.n Multics 

In the examples given above, each segment had an access mode 
which indicated the user's ability to read or write in a given 
segment. The access modes are not universal; Multics permits 
different users to have different access modes for the same 
segment. Further, careful control is maintained over who may set 
or change the access mode of a segment. These facilities permit 
control of privacy of information In a large variety of ways. 
Multics contains some very powerful _,features for controlling 
access which allow construction of restricted access 
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general-purpose subsystems by users 
Though he may not l11111edlately 
sophisticated mechanism, the casual 
some of the more routine aspects of 

with no special privileges. 
see a use for the fully 

user should be familiar with 
access control. 

The most important piece of the access control mechanism is 
the access control 11$t, abbreviated ACL. Every segment has Its 
own ACL. An AC.L consists of a 1 I st of names of users who are 
permitted to use a segment, along with the modes {read, execute, 
or write) which they may use. To make ACl.s meaningful, every 
user of Multics ts re&lstered, which means a standard name, 
different from everyone else, is recorded for hhn. The password, 
typed at login time, Is a check on the authenticity of a user 
claiming that he Is registered. For convenience In specifying 
access control, users may be organized into groups who are 
working together. Each such group ts given a unique name also, 
known as a proiect Identifier. For purposes of controlling 
access, the name of a logged In user Is the concatenation of the 
user's registered name and his project's name. Two typical 
access control names are: 

Williams.Apollo.a 
Jones.MathSlm.a 

The third component of the name can be different for each 
instance of a particular user, If he has two Jobs In the system 
at once, or Is logged In twice. An ACL consls.ts_of a series of 
access control names, followed by the made of access allowed to 
that name. A user can access a segment only if hfs name matches 
one of the entries on the ACL. For example, the ACL 

Williams.Apollo.a re 
Jones.MathSlm.a rw 

would grant access to just those two users, and no one else. To 
·grant access to all members of a given project, one of the ACL 
entries may specify .anmo• bY P14'cing ~n asterisk In the field 
normally occupl'd by the personal name. Slmflarfy, astertsks may 
be placed In the other two fields, Thus the acdess control list 

Wllliams.Apallo.• rew 
•.Apollo.• rw 
*·*•* r 

would permit Williams, when working on project Apollo, to access 
the segment with all modes of access, all other Apollo project 
members with slightly restricted access, and all other users of 
the system, with read access only. 

Access control lists are constructed and modified with the 
aid of three c011111ands: setacl, deleteac1, and listacl. 
Permission to use these commands ls based on a simple 
hierarchical rule: directories also have access control lists. 
Permission to modify a directory carrle$ wlt'1 ft the permission 
to set the ACLs of segments stored In that directory. Thus, most 
users are assigned a directory by their project supervisor; he 
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sets the ACL of the directory to allow the user to modify the 
directory, and the user then has co~plete control over who may 
access segments he places there. 

One minor point of Interest here ls that the project 
supervisor must have had permission to modify the next higher 
level directory in order to create the us~r's new directory, as 
well as to set the ACL permitting the user to modify the new 
directory. That permission Is derived in the same way, by an ACL 
controlling the next higher directory. This general pattern 
continues up to the root dtrectory, which has an ACL which 
permits only the system administrator ability to modify Its 
contents. 

Multics distinguishes among several ways of using 
directories, and an ACL intended for a directory indicates these 
ways in a manner analogous to the access modes of a segment. The 
directory access modes are: 

s (3,tatus) 

m <modify) 

a <.~.Ppend) 

The user may list the contents and find 
out the attributes (such as ACLs) of the 
entrles In the directory. 

The user may delete entries from the 
directory and may modify the attributes 
of entries ln the directory. 

The user may add an entry to the 
directory, but he may not later delete it 
unless he also m access. 

The "a" access mode is handy for implementing mailbox faci 1 ities 
in which the only form of access is to leave a message. 

In order that the user not be plagued with constant need to 
specify ACLs, each directory contains an initial access control 
list Cinital ACL) which is automatically placed on every entry 
added to that directory. Also, most standard fac111ties for 
creating segments routinely specify appropriate access for at 
least the user who created the segment. Thus, a comnon strategy 
is to place in the tnltal ACL the entries 

*·*·* re 
*·*·* s 

thus allowing alJ other users freedom to explore, but not change, 
the segments and directories contained in the user's directory. 

Finally, certain system services such as off-line printing 
of segments and backup copying of new and modified segments are 
performed by system processes which must have access to any 
segments they print or copy. Appropriate ACL entries are 
automatically placed on every segment unless the user takes 
explicit steps to prevent them from appearing. 
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Where .m ~ .f.twn li.t:a 

This chapter has illustrated the typical usage of some 
corrmonly used commands. However, even a beginning user will 
rapidly develop needs fpr many of the more sophisticated 
facilities available. On the other hand, a cover-to-cover 
reading of the Reference Guide is probably not the most 
efficient method of gradually expanding one's grasp of system 
facilities. Readln& the following sequence of material from the 
Reference Gulde may be useful In getting started: 

1. Read the Reference Gulde section entitled The Multics 
Conwnand Repertoire to become famlllar with the kinds of 
conmands available, and their names. 

2. Peruse the remaining parts of Section l'of the Reference 
Guide (The Multics Command Languaga Environment) so that 
you wt 11 know what klnds of questions.· are answet'ed there. 
Detailed study of these parts can be deff!rred: to the tlme 
when a need arises. 

3. Read the Reference Gulde section, The Storage System 
Directory Hierarchy, and skim the remainder of the 
sections on Using the Multics Storage System. 

4. Read the following command descriptions; they represent 
the set which will be most used, at first: 

edm 
print 
dprlnt 
delete 
help 

link 
unlink 
list 
llstacl 
setacl 
mal 1 

login 
logout 
rename 
pll 
getquota 
who 

5. Read the first few pages of the description of the debug 
command. This facility Is extremely powerful, but a 
beginner will find that there are a lot of ideas to 
master before he can use debug to Its full effectiveness. 

6. Read Chapter Four for an Introduction to the programming 
enivlronment. 

7. Look at the Reference Guide section, List of System 
Status Codes and Meanings, to see what kinds of 
info-rmatton are 1 I sted there. 

8. At the next level down, the following less frequently 
used commands are also good to know about: 

copy 
hold 
start 
new_proc 
release 
program_lnterrupt 

change_wdir 
prlnt_wdf r 
archive 
status 
where 
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9. Before beginning to write programs In earnest, review the 
section on The Multics Programming Environment, and 
especially the part entitled The Subroutine Repertoire. 

10. Finally, read the section on Use of the Input and Output 
Facilities. 

The set of section and command write-ups suggested above 
should provide a thorough introduction to both the facilities 
available on ·Multics and also the kinds of reference material 
found In this manual. 
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A prograrrmer may, if he wishes, treat Multics as simply a 
PL/I, FORTRAN, APL, BASIC, or LISP machine, and contain his 
activities to just the features provided in his preferred 
programming language. On the other hand, much of the richness of 
the Multics programnlng environment involves use of system 
facilities for which there are no available constructs in the 
usua 1 1 anguages. To use these features, It is genera 11 y 
necessary to call upon library and supervisor subroutines. 
Unfortunately, a simple description of how to call a subroutine 
may give little clue to how it Is intended to be used. The 
purpose of this chapter ls to illustrate typical ways in which 
one utilizes many of the properties of the Multics prograrT111ing' 
environment. 

The progranmer choosing a language for his implementation 
should carefully consider the extent to which he will want to go 
beyond his language and use system facilities of Multics which 
are missing from his language. As a general rule, one may say 
that each of the t!u 1 ti cs 1 anguages matches some we 11-known 
standard for completeness of that language (e.g., .RSI or IBM). 
However, in going beyond the standard languages, the programmer 
will find that Multics tends to be biased towards convenience of 
the PL/I programmer. For example, if one plans to write programs 
which directly call the Multics storage system privacy and 
protection entries, he will be asked to supply arguments which 
are, in PL/I, structures. If he is writing in FORTRAN or BASIC, 
he has no convenient way to express such structures. Note that 
the situation is not hopeless, however. Programs which stay 
within the original language can be written with no trouble. 
Also, in many cases, one can construct a trivial PL/I interface 
subroutine, callable from, say, a FORTRAN program and which goes 
on to reinterpret arguments and invoke the Multics facility 
desired. Using such techniques, almost any program originally 
prepared for another system can be moved into the Multics 
environment. 
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Probably the quickest way for an experienced programmer to 
get a feel for how to program in a new environment is to examine 
sample programs. This chapter consists of ~everal examples of 
programming for fv1ultics. Each program is annotated with comments 
to guide the reader. Unfortunately, programs do not always 
invoke features in the best order for understanding, so the 
following strategy may be useful: as you read each comment, if 
its implications are clear and you feel you understand it, check 
it off. If you encounter one which does not fit in to your 
mental image of what is going on, skip It for the moment. Later 
comments may shed some light on the situation, as will Tater 
reference to other parts of the MPM. Finally, a hard core of 
obscure points may remain unexplained, in which case the advice 
of an experienced Multics programmer is probably needed. Be 
\'larned that the range of comments is very wide, from trivial to 
significant, from simple to sophisticated, and from obvious to 
extremely subtle. 

The notes presume that the reader 
language. Only those aspects of the 
provides some unusual implication are 
have been printed out on an IBM 27~1 
the ASCII circumflex character appears 

is familiar with the PL/I 
language for which Multics 
mentioned. The programs 
(golf-ball) typewriter, so 
as a hooked overbar. 

Finally, some comments provide suggestions for "good 
programming practice." Such suggestions are usually subjective, 
and often controversial. Nonetheless, the concept of choosing 
among various possible implementation methods one which has 
clarity, is consistent, and minimizes side effects is valuable, 
so the suggestions are provided as a starting point for the 
reader who may wish to develop his own style of good programming 
practice. 

Basic Agdressjng Technjgues 

The most significant difference between the Multics 
programming environment and that of most other contemporary 
computer programming systems lies In its approach to addressing 
onl ine storage. Most compu.ter systems have two sharply distinct 
environments: a resident file storage system in which programs 
are created, and translated programs and data are stored, and an 
execution environment consisting of a processor (actually 
allocated in short time bursts) and a "core Image", which 
contains the instructions and data for the processor.- Supervisor 
procedures provide subroutines for physically moving copies of 
programs and data back and forth between the two environments. 

In Multics, the line between these two environments has been 
deliberately blurred, so as to simplify program construction: 
most programs need to be cognizant of only one environment rather 
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than two. This blending of the two environments is accomplished 
by extending the processor/core-Image environment. In Multics, 
the share of the processor is termed a process, and the core 
image is abstracted into what is called an address space. Each 
user when he logs in is assigned one newly created address space, 
and a single process which can execute in it. 

A Multics address space is not like the usual core image, 
however: it is larger, and it is segmented*. A segment may be 
of any size between O and 256K 36-bit words and an address space 
may have a large number of segments -- a typical Multics process 
has about 200 segments. (The hardwar~ places a limit of 256K 
distinct segments, but table sizes in the current software limit 
an address space to a number closer to 2000.) Typically, each 
separately translated program resides in a differe"t segment; 
collections of data which are large enough to be worthy of a 
separate name are placed in a segment by themselves. 

The segment is also the unit of storage of the Multics 
catalogued file storage environment. (Called the Multics stora£e 
svstem.) These two environments, distinct in many other systems, 
are automatically mapped together on demand, by the Multics 
virtual memory system. \lhen a program already appearing in the 
current address space calls to another one which is not yet 
there, a dvnamic linking fault occurs, the supervisor locates the 
needed procedure, and maps it into the current address space, 
assigning it some as yet unused segment number. Similarly, data 
segments are mapped into the address space. In contrast to many 
other systems, this address space Is retained throughout the 
login session, and its contents gradually are increased as 
different programs and data objects are accessed. (Facilities 
are also available for starting over with a new address space, or 
removing items no longer needed in the address space.) Finally, 
all supervisor procedures and col'Tlnands called by the user are 
mapped into the very same address space. Thus, there is a great 
uniformity of access methods, to user-written programs, to data, 
to library or supervisor programs, and to items never before used 
but catalogued in the storage system. 

As will be seen in the examples which follow, the effect of 
the mapping together of these two environments can range from the 
negligible (programs can be written as though there were a 
traditional two-environment system, if desired) to a significant 
simplification of programs which make extensive use of the 

* This discussion presumes that the reader is familiar with 
the purposes of and mechanisms which allow memory segmentation. 
For further background in this area, see the bibliography at the 
end of Lhapter One and the first parts of Chapter Two. In 
addition, books by Organick <.Ih.e. Multics Sv;item: M Explanation 
of ~ Stryctyre> and Watson (Time Sharing Svstem Design 
Concepts) motivate segmentation. 
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catalogued storage system. We begin with seven brief examples of 
programs which are generally simpler than those encountered In 
practice, but which I 11ustf'ate ways Jn which on-I tne storage is 
accessed in Multics. 

1. Internal Automatic Variables. The following program 
types the word "Hello" on four successive lines of termlna1 
output: 

a: procedure; 
declare I fixed bln•rv; 
do I • 1 to •; 

put list ("Hello">; 
put stclp; 
end; 

return; 
end a; 

The variable t Is by default of Pl/I storage class "internal 
automatic": In Multics It ts stored In the st~k of the current 
process and Is ava.llu1e by nane only to proel"'.-. "a" and only 
untl I "a" returns to I ts cal le.-. It Is, d~lared binary for 
clarity, so that there wl11 be no questlen tn the reader's mind 
whether or not a presumably slo.er declu1 addition Is Involved. 

2. Internal Static Variables. The following program, each 
time it is called, types out the number of times It has been 
called: 

b: procedure; 
declare j.ffxed binary Internal static lnltla1(1);' 
l>Ut list (j, "calls te b.">; 
l>Ut skip; 
j • j + 1; 
return; 
end b; 

The variable j Is of PL/I storqe class "Internal static"; 
In Multics It Is stored In b's Hnkace sectton (discussed later) 
and Is available by n-. only to prog.,._. · b. Its value ts 
preserved for the 11 fe of the. process, , or unt 11 procedure b Is 
recompiled, whichever time Is shOt"ter. T~e "I ni tJal" decl arat I on 
causes the value of j to be Int ti all zed at the time this 
procedure is first used In a process. 

3 and 4. External Static. Suppose we wish to set a value 
from one program and have It printed bv some other program In the 
same proces$: 



c: 

d: 
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procedure; 
declare z fixed binary external static; 
z = 4; 
return; 
end c; 

procedure; 
declare z fixed binary external static; 
put list (z); 
put skip; 
return; 
end·d; 

4-5 

In both programs, the variable z ls of Pl/I storage class 
"external static"; in Multics ft is stored in a particular 
segment (named stat_ by default, but changeable), and Is 
available to all procedures In a particular process, until the 
process is destroyed. External static Is analogous to COMMON in 
FORTRAN, but with the important difference that data Items are 
accessed by name rather than by relatlve position In a 
declaration. 

Each variable which ts accessed In this form generates a 
dynamic linking fault the first time It ts used. Later 
references to the variable by the same pro.cedure on that or 
subsequent calls do not generate the fault. A more complete 
discussion of dynamic linking appears in a later section of this 
chapter. 

5. Direct lntersegment References. The following program 
prints the sum of the 1000 Integers stored in the segment w: 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

e: procedure; 
declare w$Cl000) fixed binary external; 
declare Ci, sum> fixed binary; 
sum • O; 
do I = 1 to 1000; 

sum• sum+ w$(1); 
end; 

put 1 f s t ( sum} ; 
put skip; 
return; 
end e; 

The dollar sign is recognized as a special identifier by the 
PL/I compiler, and code for statement 6 Is constructed which 
anticipates dynamic linking to the segment named w. UPon first 
execution, a dynamic 1 inking fault is trlgger,ed, and a search 
undertaken for a segment named w. If one is found, the 1 Ink is 
"snapped," which means that all future references will occur with 
a single machine Instruction. 
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If no segment named w is found, the dynamic linker will 
return to connand level and report an error to the user. As 
described later, It is possible to create an appropriate segment 
named w, and then continue execution of the interrup'ted program, 
if such action is appropriate. 

6. Reference to Named Offsets. The following procedure 
calculates the sum of 1000 Integers stored in segment x starting 
at the named off set u: 

f: procedure; 
declare x$u(lQ00) fixed binary external; 
declare (I, sum) fixed l>inary; 
sum• •; 
do 1 • 1 to 1aoo; 

sum • stm1t + x$u(i); 
end; 

put l t.st (Slim}; 
put skfp; 
return;: 
end f; 

The difference between this example and the previous one is 
that segment x Is pr•sumed to have some substructure, with named 
internal locations, called offsets. To tnftla11y create a 
segment with such a substructure, one nonnally uses one of the 
comp I lers or asseml>lers, sf nee an Inbound linkage section must be 
constructed for the segment to I ndlcate- to the ll nker where 
within the segment the offsets may be found. Unfortunately, the 
PL/I languaae permits specification of such structured segments 
only for procedures, not for data. The ALM assembler can be used 
for creating structured data segments. flt· f's· expected that In 
the future better techniques will become avaflable.) 

7. External Reference Starting With a Cberacter String. In 
many cases, one starts. wt th a cha-rac:.-Ce.r str Inc ret>resentat Ion of 
the name of a segment wh:lch Is. to be acce.ssed,. rn those cases, a 
cal 1 to the Multics storaae system Is req.ulred .In order to map 
the segment Into the virtual llM!fRO¥Y and to obtain a pointer to 
It: 

g: procedure(strlng); 
declare strlna character(•); 
declare p painter; 
declare (f, sum) fixed binary; 
declare v(lOOG) fixed binary based(p); 
caJ 1 hcs_$makeJ>t.r ts trf na, p) ;· 
sum • 0; 
do I • 1 to 1000; 

sum• st.mt+ v<ll; 
end; 

return; 
end g; 



A PROGRAM WHICH TESTS FOR PRIME NUMBERS 4-7 

The calling sequence to hcs_$make_ptr is simplified from 
real life. The real calling sequence requires specification of 
several options unimportant to us here. Cthts Is the only sample 
program which will not work If typed in literally as shown. See 
the write-up of hcs_$make_ptr in the subroutine section of the 
MPM for the complete calling sequence.) 

One may also use, in place of hcs_$make_ptr, another storage 
system entry named hcs_$initiate. When using hcs_$initiate, one 
directly specifies the path name of the segment desired: no 
search is undertaken for the segment as in the case of a dynamic 
linking fault. This procedure dfffers greatly from the examples 
above, ln which a search Is involved. An intermediate situation, 
in which library routines are used to construct a tree name 
starting wt th an entry name, ts found fn the "simple text editor" 
example, which appears later in this chapter. 

A Program Which Tests fgj:, Prime Number~ 

In figure 4-1 is a typical small PL/I program, which may be 
used as a model for many simple calc\Jlatlons not involving 
special Multics system properties. T~e program is confined 
entirely to the PL/I language; presumably It would run unchanged 
on any computer system which has a PL/I, assuming that all the 
necessary PL/I features are available. The program is organized 
assuming that input and output will go from and to an interactive 
console. The comments following are keyed to the 11ne numbers 
printed to the left of the program. (Note: the source program 
is typed in withoyt line numbers. We have added them here to 
facilitate making co11111ents, with an asterisk Indicating lines 
typed by the user, as ln chapter 3.) 

1 lne c00111ent 

5. All identifiers are explicitly declared, 
suprise defaults occur, and to make 
reading the program for someone else 
maintain it. 

to be sure that no 
easier the job of 
who is asked to 

7. These two identifiers are not explicitly used in the 
program, but they are implicitly involved In the put list 
and get list statements. 

9. Character and bit strings are delimited with the ASCII 
double quote mark in the Multics Pl/I language. 

9. Note that the upper case and lower case letters are 
different, whether appearing in comments, literal strings, 
or i dent If I e rs. 

13. The underscored word Jli2.t. will properly go through all the 
mechanisms and come out the other end. If we had used 
edit-type 1/0 statements (that is, format statements) we 
would have noticed one minor problem: the character 
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I• 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
111 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36* 
37 
38 
39 
40• 
41{*) 
42 
43 
44 
45* 
46{•) 
47 
48 
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print primetest.pll 

pr imetest: procedure; 

declare prime_input fixed binary; 
declare.{sqrt,mod) builtln; 
declare {sysprfnt,sysin) file; 

put 1 ist C"Type prime to be tested: "); 
cet list {prlme_fnput); 
If prfme(prime_input) 

then put list Cprtme_lnput, n1s a prime.">; 
e 1 se put l I s t C p rt me_ I npu t , " t s .WU.. a pr I me • " > ; 

put skip; 
return; 

prime: procedure{trtal_prfme) returns Cblt(l)); 

declare trlal_prfme fixed binary, 
trlal_factor fixed binary, 
last_factor f fxed binary; 

last factor • sqrtCtrfal_prtme); 
do trlal_factor • 2 to last_factor; 

If mod(trial_prfme, trlal_factor) • 0 
then return {110"b); 

end; 
return C"l"b); 

end prime; 

end pr I metes t; 

r 1406 1.712 9.359 176 

pll primetest 
PL/I 
r 1409 7.041 56.437 1217 

prlmetest 
Type prime to be tested: 121 

121 is n2.1 a prime. 
r 1410 2.960 10.627 557 

primetest 
Type prime to be tested: 

397 
r 1410 .305 3.172 98 

397 
is a prime. 

Fl&ure 4-1: A program which tests for prime numbers. 
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position counts in format statements are in terms of storage 
locations occupied by a character string rather than print 
positions required to print the character string. Thus the 
string .D.S2.t would require 9, rather than 3, spaces in a 
format specification. (Three letters, three backspaces, and 
three underscores.) 

17. This Internal procedure is not recursive, and meets several 
other rules which permit the compiler to generate a very 
fast Cl-instruction) calling sequence to it. Storage for 
variables of the Internal procedure ls actually allocated in 
the automatic storage area of primetest Itself for this 
special case. Thus, non-recursive Internal procedures are 
quite economical organizing tools. 

23. The algorithm used to test for J:N"imeness ts actually quite 
brute force: the only work reduction technique it employs is 
to note that at least one factor of a number must be less 
than or equal to the square root of the number. 

23. Note that the use of the sqrt built-in function involves 
conversion from integer to flo,tfng-point representation, 
and back. These conversions are automatically supplied by 
PL/I, but the programmer should be aware when he Invokes 
them, so as not to trigger unnecessary conversion. 

In the examples of use of the program, note that the ready 
message cost of use is substantially larger the first time the 
program is Invoked. (Compare lines 43 and 48.) This effect is 
due to the initial dynamic linking of the procedure to its 
environment, including primarily the fnJ>ut and output mechanisms 
invoked by put and get. 

Checking sm. ~ performance Qf. a program 

Often, after putting together a new program, one wishes to· 
improve its performance. The simplest performance measuring tool 
available in Multics is to be found In the ready message. A 
s 1ight1 y more sophist I cated approach can be· taken by using the 
"profile" option of the Pl/I compiler. For example, if one 
wished to compile the primetest program using this option, he 
would proceed as in figure 4-2. 

The numbers printed in the profile are 
statement-by-statement counts of the number of times that the 
statement was executed, and the number of machine language 
instructions which were involved. The latter number Ctn.the 
column headed "COST") Is shown as the sum of two parts, the 
inline instruction count, and the number of transfers out to PL/I 
support subroutines ("operators"). Thus, line 23 (containing a 
use of the single-precision fixed paint modulo operator) was 
executed 30 times; it apparently consists of 13 machine language 
instructions, one of which is the call to the operator which 
performs the mod bulltin function. The n.ames in parentheses at 



' 
'./ 

~ l• pll prlmetest ·profile I ..... 2 pl 1, Ve rs Ion 11 0 
3 r .. 1605 9.089 40+758 
4 
5• prlmetest 
6(•) type prime to be tested: 997 
7 997 Is a prime. 
8 r 1605 2.409 14+177 

-0 9 A> 
0 10• prlnt_proflle prlmetest C) 

11 ~ 12 LINE STM COUNT COST PROGRAM 3: 
3: 13 -14 pr I me test z 
C) 

15 5 1 1 29 
16 7 1 1 6 + 3 (stream_I o put_l Is t_a 1 put_end) z 
17 8 1 1 7 + 3 Cstream_lo aet_l lst_al aet_end) ..... 
18 9 1 1 21 + 4 Cstream_lo put_l lst_al put_llst_al put_end) :c 

m 19 12 1 1 7 + 2 Cstr•em_lo put_end) 
3: 20 13 1 1 7 + 1 (return) c 

21 21 1 1 13 + 3 Cfxl_to;_f12 ca 1 l_ex t_out f12_to_fxl) r-..... 22 22 1 1 7 -
23 23 1 30 390 + 30 Cmod_fxl) n 

(I) 

24 25 1 30 240 m 25 z 
26 TOTAL 727 + 46 < -27 r 1606 1.703 4.991 151 A> 

0 
z 
3: 
m 
z ..... 

Figure 4.2: Use of the execution profile feature. 
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the right are those of the operators involved. For example, line 
21 of the program takes the square root of a fixed binary 
integer. Operator fxl_to_f12 converts the integer to floating 
point representation for the square root routine. Operator 
call_ext_out performs the call to sqrt, and operator f12_to_fxl 
converts the result back to integer form. 

Other performance measuring tools include the page_trace 
cofTllland, which prints out a list of recently-used pages. Various 
clock subroutines may be used to time the execution of 
subroutines to microsecond precision. 

Qebuggjng Programs wi Myltics 

A variety of debugging tooJs are available on Multics. The 
most powerful of these ts a program named debug, which permits 
source-language breakpalnt debugging of PL/I and FORTRAN 
programs. The debug command also has many feature-s useful to the 
machine language progranmer, but we will concentrate here on a 
small subset of its features which can be quickly and easily 
applied to a PL/I program. 

To understand the examples given below, one must first know 
a little about the Multics stack. The stack is essentially a 
push down list used to contain the return points from a series of 
outstanding interprocedure calls. It Is also used for storage of 
automatic variables. If one were to stop a running program and 
trace its stack, he would find, starting at the oldest entry in 
the stack, a record of the procedures used to initialize the 
process, followed by the command language interpreter, followed 
by the procedure called at command level and any procedures it 
has called. If an unexpected error occurs (or the user pr~sses 
the "Quit" button), the system will mark the stack at its current 
1eve1, push it down, and ca 11 a new i nvocat I on of the command 
interpreter. Three special commands may then be invoked: 
release, hold, and start. If the user types release, the command 
interpreter will unwind the stack back to its own previous 
invocation, and discard the intervening stack contents. If the 
user types hold, the stack contents will be preserved 
indefinitely. If the user types start, the system will attempt 
to return to the interrupted computation to continue it. 
Depending on the nature of the error, and what the user has done 
since the error occurred, the restart attempt may or not succeed. 
The user may also type any other command, but upon completion of 
that command, the command interpreter will automatically perform 
a release operation, unless a hold has been requested. A common 
response to an unexpected error is to type hold, use other 
commands and debugging tools to discover and repair the error, 
and then type start, If it still makes sense to continue running 
the program. 

Consider, now, the script of figure 4-3: The program 
printed on lines 3-11 scans the automatic array named "a", using 
illegal negative subscripts. Since the program does not specify 



l• 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15• 
16 
17 
18 
19 
20 
21 
22• 
23 
24 
25 
26 
27 
28• 
20• 
30 
31• 
32 
33 
34 

print blowup.pll 

blowup: procedure; 

dcl Cj,aClO),loop_tndex> fixed binary; 

do loop_tndex • -1 to ·100000 bv ~1; 
j • aCloop_Jndex); 
end; 

end; 

r 1839 1.250 5+43 

pll blowup ·table 
PL/I, Version 2 

WARNING 307 
The variable "a" has been referenced but hes never been set. 
r 1840 10.351 5+355 

blowup 

Error: out_bounds_err by b1owupl16 
referencln& stack_41777777 Cln proce11 dlr) 
r 1840 1.087 3+35 

debug 
/blowup/166t,s 

J • ~Cloop_lndex); 
loop_I ndex 
1413 113 •769 
.q 
r 1841 .840 4.277 120 

Figure 4.3: A simple example of source 1an1ua1e d1bu11tng, 
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that subscript checking should be done by PL/I, the compiled code 
will attempt to do something with the negative subscripts, in 
this case scanning downwards in the stack until the bottom is 
reached; a hardware trap will then catch the errant program. 

Note that, in preparation for debugging a new program, the 
"table" option of the compiler is used, on line 15. This option 
requests the compiler to leave its symbol table embedded in the 
program, for run-time use. A warning of trouble is provided by 
the compiler on line 19, but this does not deter us from trying 
the program, on line 22. As predicted, an out-of-bounds fault 
occurs when referring to the next Jocat~bn in the stack after 
location zero. A standard Multics notation for memory locations 
Is exhibited twice in the error message, once on line 24 and 
again on line 25. On line 24 we see the string: 

bJowupl 16 

which is interpreted as "in the segment named blowup, at offset 
16 (octal) locations from the baseu. (This notation should be 
read "blowup offset 16".) Thus line 24 gives us the address of 
the offending instruction, while line 25 tells us th~ 
out-of-bounds address which it attempted to reference.* 

~ 

* The message on lines 24 and 25 Is printed by the Multics 
"default error handler" which means that the program which was 
running had not explicitly arranged to respond to the particular 
error which occurred. CA PL/I "on condttlon11 statement is used 
for explicitly catching such errors.) The following errors are 
commonly encountered: 

out_bounds_err 

linkage_error 

record_quota_overf low 

an out of range subscript or 
uninitialized subscript or pointer 
variable was probably used, leading to a 
reference to a legal segment number but 
an illegal word address within the 
segment. 

a call occurred to a subroutine which 
could not be found. It is possible to 
type "hold", write the missing 
subroutine, compile it, and then restart 
the program which got the linkage error. 

The user's secondary storage· allocation 
has been exceeded. If one types "ho 1 d11

, 

he may then list his directory, delete 
something, and then restart the program 
which ran into the overflow. 

For the cause of and recovery from other errors, the MPM sections 
on handling of unusual occurrences and condition names should be 
consulted. 



4-14 PROGRAMMING IN THE MULTICS ENVIRONMENT 

To find out what has gone wrong, we now use the debug 
command on line 28: there is no reply when the command name is 
typed, so the next line, 29, contains tHe first request to debug. 
The syntax of debug requests is straightforward, though cryptic 
at first. One specifies first a Multics memory address, then 
what to do at that address. On line 29, the string 
"/blowup/16&t" specifies the address: starting from segment 
named "b 1 owup", go to the 16th 1 ocat ion l n the text. The s tr Ing 
",s" after that address specifies that the contents of that 
location should be printed out, In symbolic (source-instruction) 
format. Thus we see, on line 30, the line of code which caused 
the out-of-bounds fault to occur. 

To inspect individual variables to see what has gone wrong, 
one merely mentions them by name, as on line 31, and debug will 
print out their position (1413 locations from the base of the 
stack, 113 from the current stack frame base) and value C-769 in 
the example.) Note that this request follows the general form of 
all debug addressing requests, but that defaults are used 
profusely. In the absence of a segment name, the last one 
ment 1 oned C /b 1 owup/) is used; in the ·. absence of specific 
instructions for output format, a format appropriate to the 
variable (decimal integer) is used; in the absence of any other 
instruction, output printing ts assumed. In the place where the 
variable name ts typed, an arbitrarily complex identifier may be 
used. Thus, If the program contained a based, two-dimensional 
array named x, one could look at an element of that array by 
typing: 

p->x CI, j) 

The debug command would look up each variable in turn, evaluate 
the subscripts, then fetch the array element in question, using 
the current value of "p" as a base. 

Finally, having satisfied ourselves as to the status of the 
program, we exit debug by typing the request on line 33. All 
debug requests not related to memory locations are preceded with 
a period. Since we did not type hoJd following the error, the 
command language interpreter will release the stack contents upon 
return from debug. We have no further use for the errant 
program, and for this example It makes no sense to repair It and 
continue, so a stack release is the appropriate action. 

As an example of breakpoint debugging, consider the pair of 
programs in figure 4-4. According to plan, one calls the program 
"trev" with a string of words; trev calls recursive procedure 
"rev" to reverse the order of words in the string; then it prints 
the reversed string. When we try to run the program, we obtain 
the particularly discouraging comment on line 29 -- apparently 
the recursive procedure has run wild, and run out of stack space. 
A new process, with a new stack, Is created automatically but 
unfortunately the current version of Multics discards the old 
process and Its stack, which contain most of the clues needed to 
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print trev.pll 

trev: procedure(string); 

declare string character(•) unaligned, 
rev entry(character(•)) returns(character(32) varying); 
put skip list(revCstring)); 
put skip; 

end; 

r 1819 1.732 4.670 106 

print rev.pll 

rev: procedureCstring) returns(character(32) varying); 

declare string character(•); 
i • index (st rl ng, 11 

.. ) ; 

if i • O then ~eturn(string); 
else returnCrevCsubstr(string,f ))If" "II 

Cs~bstr{string,l,J))); 

end; 

r 1820 .513 4.040 133 

trev "now is the time" 

Fatal error. Process has terminated. Out of bounds fault on stack. 
New process created. 
r 1120 2.006 5.263 127 

debug 
/rev/&a5< 
Break 0 of rev set at 34 from 34 
•• trev "now is the t tmen 
Break 0 at 1 ine 5 of rev, 220134 
string 

3561 -447 "now is the time" 
• c:: 
Break 0 at li~e 5 of rev, 220134 
st ring 

4372 -6 .. is the t .ime" 
• be st r i ng; • c 
.c 
Break - at line 5 of rev, 220134 
string; .c 

4542 -6 " Is the time" 
Break - at line 5 of rev, 220134 
string;.c 

4112 -6 " is the time" 
QUIT 
r 1822 13.873 41.426 557 

600100236100 

Figure 4-4: Breakpoint debugging 

ldq spllOO 
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debug the program. (Future versions of Multics will save some 
information about the defunot process.) 

Since there is no clue as to why the recursive procedure is 
not properly stopping its recursion, we enter debug and, on line 
34, place a breakpoint in procedure rev at program line 5. (The 
string "&aS" means 1 ine 5, the character "<" means set a break.) 
Debug responds by printing the old contents of the location it 
had to modify; this information is not of Interest to us. Now, 
we call, from inside debug, out to procedure "trev", on line 36. 
(Any Multics command or program may be called from within debug 
by typing the two periods at the beginning of the request line.) 

Now; debug calls to trev, and the next thing we know, the 
break point ts reached, putting us back Into debug, which prints 
the message on line 37. We look at variable "string" to see what 
has been handed to the subroutine as an ar_gument. Since the 
string printed on line 37 is exactly what we expected, we type .c 
on line 40, meaning "continue the program until the break point 
is reached again." Again the break point is <encountered, and the 
string inspected, and It looks OK. Being impatient, we now type 
the spec I a 1 "macro" request on 1 lne ": "whenever a break 
occurs, print the contents of "string", then continue." We again 
start. the program on its way, and Its faulty behavior immediately 
becomes apparent as the debugger prints lines 46-51: the 
argument string Is not changing after the second Iteration. 
Inspection of the program reveals .the trouble; the blank 
character should have been stripped from the front of "string" 
before recursively calling; changing the second argument of the 
first substr In line 21 to i + 1 will fix the program. 

On line 52, we have exited from our looping program by 
quitting out of it. This leaves us at a hlghe-r stack level, with 
both our program and our Invocation of the debug command 
somewhere earlier in the stack. It also leaves program rev with 
a breakpoint Inserted in its code. To be careful, we should now 
type the program_I nterrupt command, which wtll return us to the 
most recent invocation of debug, so that we may reset the 
breakpoint gracefully. Failure to reset the breakpoint would 
lead to mysterious difficulties C"mme2" faults) if we later ran 
the program without using debug to control it. Of course we can 
also recompile the program, In which case we also get a new copy 
without breakpoints. Figure 4-5 continues the example of figure 
4-4, using the program_interrupt command to return to the 
debugger, on line 55. Now, to see what the stack looks 
like, we request debug to trace the stack contents, with 
the .t request on line 56. lines 60-78 are the successive 
entries currently on the stack with the oldest entry first. The 
first four entries, on lines 60-63, represent the procedures 
provided by the Multics system to set up the standard command 
environment, and are unimportant to us rt ght now, except to 
notice that line 63 Is the command language interpreter. On line 
64 is the debug command, the result of typing "debug" back on 
line 33. While in debug, we called out, on line 36, to the 
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54 
55• program_interrupt 
56• • t 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
7ff 
75 
76 
77 
78 
79• 
ao 

Depth Segno 

0 
1 
2 
3 
4 
5 
6 
7 

10 
11 
12 
13 
14 
IS 
16 
17 
zo 
21 
22 
.q 

200 
20-0 
200 
200 
216 
200 
231 
231 
232 
Z!0-
220 
220 
220 
220 
220 
220 
220 
220 
220 

Offset Name 

120 real_init_admin_f15771 
260 process_overseer_f 15057 
460 1isten_l2304 
760 comnand_processor_l3127 

1300 debual6651 
2630 comnand_processor_l3225 
3150 fu11_command_processor _I 3006 
3600 bound,_fu1l_cp_l2J6i 
4010 trevlll7 
4230 rev 1115 
4\00 rev 1115 
IJ550 revlllS 
ff720 rev I llS 
5070 rev J 115 
52'0 revJ115 
51110 rev 1115 
5568 revlllS 
5730 revlllS 
6100 revtl4 

r 1825 2.438 7.611 257 

fiaure 4-5: Tracing the ca11 stack. 
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program we were debugging. The debug conwnand called out to the 
standard command language interpreter, since line 36 c-0ntalned a 
standard Multics conwnand line. Thus, ltne 65 describes a second 
generation of the same program we saw earlier on line 63. Note, 
however, that the location in the stack (the column labeled 
Offset} is different for the two generations of the command 
language interpreter: the two generations will therefore use 
different copies of automatic variables. 

The command line typed on line 36 provides as a single· 
argument a string (including blanks} encJosed in quotation marks. 
The command language interpreter ts organized Jn several modules, 
such that for the most c0111T1on (and simplest} syntax, only a small 
part of the interpreter is needed. Whenever a more elaborate 
syntactical structure is encountered, a more elaborate section of 
the interpreter is invoked. In the case at hand, the quoted 
string argument triggers a need for the more elaborate 
interpreter, so on line 66 we see that a program named 
full_command_processor_ was called, and it entered an internal 
block which debug has tagged with the name bound_full_cp_. 
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Finally, the command language interpreter constructed a call 
to trev, the program being debugged, on 1 ine ~,8. Program trev 
then called rev, which called itself recursively several times 
before we hit the quit button. Notice than the number of 
recursive calls to rev found in the stack ClO in this example) is 
greater than the number of times that debug breakpoints were 
encountered on 1 Ines 35-la9. RecaH that on line 41J, debug was 
instructed to let the progr-am run .wJ,t.flout stopping at 
breakpoints, except for printing thJt cC1ntents. of the variable 
named string. The Mu 1 t lcs ty.pewr it-er ouctllltt dlacka&e operates 
asynchronously, which means that tt be&lfls typing an output 
message, and s tmul taneous 1 y returns contro 1 to the process 
originating the messace. The process can thea" &Q on to its next 
step, perhaps producing mere. messaaes1: Wohich the typewriter 
package collects In a queue for tile t~rtter. Thus In our 
example, the program had gotten we 11 altead ·:Of. tile. typewr I ter when 
both It and the typewriter output were :stopped• 

An alternative way of examining the contents of the stack Is 
to use the conmand trace_stack, which l)F4Vhlt:s a -~ealth of 
information about each stack level: the,,ar1uments used In the 
call from the last level, the symbolic tnstructloa which caused 
the call, a list of enabled on-condttfOft.5 at the stack level, 
details of any faults or signals which occu~red, etc. The MPM 
write-up of trace_stack provides more 4eta~ls •• _The trace_stack 
command is especially useful for situations where something 
mysterious has happened, which requr~es help from en expert who 
Is not available at the moment. The output from trace_stack ts 
often sufficient to diagnose, or provide etues In the diagnosis 
of very complicated problems. 

The reader should not feel that these two short examples 
have completely explained the ins. and outs of using the debug 
command. However, unti 1 he has had time to mQ.r·e thoroughly 
review the MPM write-up of debug, he raay flnd the samples useful 
to imitate while debuyl ng his own PF'°8f!cam5. 

One final connent about symbol tables Is of significance: 
the symbol table {created by the "table" option of PL/I) is 
stored In the end of the program, rn an otherwl se. unused area. 
If it is not explicitly used, as by the debugger, then it will 
not cause any extra pagl·ng activity.. It will" however use;· up 
secondary storage space. Thus, it is recommended that whllea 
new set of programs is being debugged, the table option be used 
in al 1 compilations. After one is. reasonably satisfied that al 1 
of his programs are working p-roperly, he may wish to recompile 
without the table option, to save long term secondary storage 
charges. ·· 

The reader should also refer to the MPM Reference Guide 
section on the Multics Command Repertoire, where a list of other 
useful debugging tools is provided. 
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Absentee~ Q.f Multics 

A common progranrning pattern Is to develop a program 
on-1 ine, using debugging tools and the ability to Interactively 
try a variety of test cases to check on a program's correctness. 
After· the program ts working, one may wish to do a 0 large 
"production" run. Since the production run may produce much 
output or take much time, the programmer does not wish to wait at 
his terminal for the results. For such c~ses, he may develop an 
absentee job, and submit It for execution. this technique has 
several implications: 

The job is not under control of a terminal, so an 
absentee job control segment must be constructed. 

Since there Is no terminal available, all Input and 
output must come from and go to the storage system. 

The absentee job is placed In a queue and run as 
background to the normal interactive work of the 
system. This technique provides a buffer of 
pre-emptable resources for Interactive peak loads, and 
meanwhile helps keep the system fully uttllied. For 
these reasons, the charging rate for absentee jobs Is 
normally substantially lower than for Interactive work. 

The job control language of the Multics absentee facility is 
identical to the command language typed at the console. In 
general, an absentee job is given a name, say "a". When run, an 
ordinary Multics process is logged in, but its lnput stream~ Is 
attached to a segment named a.abs In, and it$ output stream to a 
segment namedJa.absout. Thus to control an absentee job, one 
must first create the absentee input segment which contains the 
commands to be executed. 

In f lgure 4-6 is a version of the prlmetest program used 
before. It has been modified to be a "production 11 program by 
adding a do loop. One might interactively start this program to 
check that it is producing the expected results: 
pr I me test 

1 is a prime. 
2 is a prime. 
3 is a pr tme. 
4 is 112.t. a prime. 
5 is a prime. 
6 is WU. a prime. 
7 ts a prl 

QUIT 
r 1519 5.834 20.1i.1 1061 

To submit the job for absentee execution, the user first 
constructs a control $egment to be used for input to the job. 
The only Input in this case Is the command line required to 
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;_.__- J ..;_ 

prl•test: 
,.:""-

declare 

.. :. 

-· \ 

Fleur• ,_,: Production version of t~ .....,. •• " 
.. ·-~:~4U i. ~1 q ~- i!- } ~-
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,_ 
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execute program prlmetest. Thus, he creates a segment named 
prirne.absin, using an editor: 

l• 
2 
3 
4* 
5• 
6• 
7 
8• 
9• 

111 
11 
12* 
13 
14 

e dm p r 1 me • abs i n 
Segment not found. 
Input. 
primetest 
logout . 
Edit. 
w 
q 
r 1537 2.373 27+21~ 

enter_abs_request prfme.absln 
23 already requested. 
r 1538 ~.8~1 9.083 319 

And now, he may go about his business, whether working at 
his terminal or logging out, as he chooses. Some time later, 
after the jobs ahead of his are processed, a new process will be 
1 ogged in and his two commands wi 11 be executed. When the job is 
finished, a segment named prime.a:bsout wl 11 appear In his 
directory, which he may print on his terminal, or send to the 
high-speed printer, as desired. 

Our example absentee job uses only the most rudimentary 
features of the absentee facility. One can also supply arguments 
to be substituted inside the absentee control segment, make 
absentee job steps conditional, delay absentee work until a 
chosen time, and develop a periodic absentee job which is run, 
say, once every two days. 

Sometimes, a very elaborate absentee control segment is 
constructed, and the user may wish to verify that his absentee 
job will operate properly. One u~eful technlque for checking out 
an absentee control segment is to use it as a· control segment for 
the exec_com command, a macro_conma-nd facility which accepts the 
same kind of control segment as does the absentee facility. The 
MPM Reference Guide sections on enter_absentee_request and 
exec_com contain further information on these facilitles. 

Dynamic Linking Aru1 Binding 

A particularly potent programming tool of Multics is the 
dynamic linking facility. Dynamic linking consists of delaying 
the search for and mapping of a subroutine (or data segment) 
until the first call for that subroutine Cor use of that data 
segment) occurs. Dynamic linking is accomplished by having the 
compiler leave in the object code of a compiled program a special 
bit pattern which, if used in an indirect address reference, 
causes a machine fault (trap) to the dynamic linker. The linker 
inspects the location causing the fault, and from pointers found 
there, locates the symbolic name of the program being called or 
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the data segment being referenced. It then locates the 
appropriate segment, maps lt into the current address space, and 
replaces the Indirect word with a new one containing the address 
of the program or data entry point, so that future references 
will not cause a dynamic linking fault. 

There are many ways in which dynamic linking can be used, 
but the following three are probably most significant: 

• to permit initial debugging of collections of programs 
before the entire collection is completely coded. 

to permit a program to include a conditional call to an 
elaborate error handling or other special-case handling 
program, wl thout invokhig a searc1' Tor or mapping of 
that program unless the condition arises In which it is 
actually needed. 

to permit a group of 
collection of related 
ob ta Ins the 1 a·tes t copy 
it becomes available. 

prQgraaners to work on a 
programs, such that each one 

of each suhrou.tlne as soon as 

Whenever related subprograms are separately translated, they 
are normal 1y 1 Inked by the Multics dynamic linker at the time 
they are executed. If a set of related programs ts known to 
always require certain links, then aproeram-known as the binder 
may be used to pack them into a single segment, permanently link 
any cross references, and condense any cORnolt outward references 
into a single oettbound lfnk. In retvn for the loss of 
flexlbi 1 i ty whlch cOMes wt th such permanent· bhnHng, one reduces 
both the space reqvh•ed for the Programs anct the number of 
l fbrary searches which l'M.lst be undert-..,, ·t.o run the co·l lectfon 
of programs. In addl tlon, binding of aeparwte<Ty; translated 
subroutines retains most of the advantages of separate 
tTanslat't.on. (An alternative schelne< WOU4d be to collect the 
proceclvres together· into a slnc·l• slant procedure-, and then 
recompl le. This &turnMtr scitelle' has the cff-~advenitage that a 
very long recomplt at hm Is: .needed' far . ...,..,., ana-:tine change: to 
any part of the cot lect fon of pregr.ams:. > 

To provide a brief eaanap0le of the ,.._.f ng of dynanfc 
1 Inking, consider the sample console session· of ff gure l&-7. 
Procedure k, on lines 9-11', reads an int:eaer from the console, 
and then cal ls one of three dlfferent.s•f!Qlltl11J8$. Only one of 
these subroutines, naned y, actually has been written. On line 
JI·, k Is Invoked, it as'ks for lftJMl.t~- atlCl the lftput value which 
causes y to be called- 1$· typed on ll:ne 31. tl·ne J1 provides 
evidence that y was' cal led. Note tl'fat,, att.h-h tlhe statwnt on 
1 Fne 11 was executed, the: conclltienal test··fafledl' and a call to 
procedure x (whfdt h• not yet been .wir:U1ten> dld not occur. 
S fnc• 1 tnklng Is done on de-.and,. and ·ao .d-•ml. for x occurred, 
the faG:t of its ·neD-eJllsteDCe h• not kettt us fnn runalaa our 
precedur. y .. 
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print k.pl 1 

k: procedure; 

declare 
declare 
declare 

(x,y,z) external entry; 
i fixed binary; 
(sysprlnt,sysin) file; 

put 1 i 5 t <"What now? ft); 
get list ( i); 
if i • 1 then cal1 x; 
If i • 2 then ca11 y; 
if I • 3 then call ~; 
return; 

end k; 

r 927 1.075 3.994 178 

print y.pll 

y: procedure; 
declare sysprint file; 
put 1Jst C"y ha5 been caJled."); 
put skip; 
end y; 

r 927 .699 1. 8'06 79 

k 
What now? 2 

y has been called. 
r 928 .858 2.812 112 

k 
What now? 3 

Error: linkage error by k$kl165 
Referencing z 1 z. 
Segment not found. 
r 928 1.318 5.855 252 

hold 
r 928 .199 2.062 38 

Figure 4-7: Dynamic linking example. 
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46• edm z.pll 
47 Segment not found. 
48 Input. 
49• 
50• 
51* 
52* 
53• 
Sil• 
55 
56• 
51• 

z: 

Edit. 
w 
q 

procedure; 
declare sysprint file; 
put 1 ist c••z has been cal led"); 
put slkip; 
end z;. 

5& 223 r 929 1.218 5 .. 27, 
59 .... 
61 

pll z 
Pl/I, Version 2 

u 28 r 930 7.136 21.651 
63 ,,,. start 
6S Z has been ca.I led 
66 r 931 .175 2.132 lSI 

Fi~ure '-7, Continued • 

. On line 35, k is invoked again,. this time with a request to 
call procedure z. Since z does not yet exist,. the default error 
message on lines 38,. 39, and 40 explains that a linkage error 
occurred, when subroutine k attempted to reference subroutine z. 
I.tote, by the way, that line 38 uses one convention, k$k, to refer 
to segment k,. entry poin.t k, while line 39 uses a different 
convention,. zLz, to refer to segment z, entry p.oint z. These two 
conventions should be considered equivalent. (One arose from a 
standard com.pi ler syntax,. while the other arose from a standard 
assembler syntax.) 

To illustrate tnat a linkage error is normally recoverable, 
a hot d command is typed on. line 43, and then a program named z is 
typeq in and compiled on lines lt6-62~ (See figure fJ.-7, 
continued.) When start is typed on 1 ine 64,. we see that the 
original call (from line 14 in procedure k) to subroutine z has 
now succeeded. 

For more information on the details of dynam,fc 1 lnking and 
binding see the MPM Reference Guide sections on object segments, 
system libraries and search rules, and the command b[nd .. 

A Simole ~ Editor 

• Our next sample program is a text editor similar to, but 
simpler than, the edm command used in Chapter Three.· ft is a 
typical example of an interactive program which makes use of the 
Multics storage system via the virtual memory. ln overview, the 
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editor creates two temporary storage areas, each large enough to 
hold the entire text segment being edited. It copies the segment 
into one of these areas, so as not to harm the original and then, 
as the user supplies successive editing requests, constructs in 
the other area an edited version of the segment. When the user 
finishes a pass through the segment, the editor interchanges the 
roles of the two storage areas for the next editing pass. When 
finished the appropriate temporary storage area is then copied 
back over the original segment. 

For this example, we have available a program listing as 
produced by the PL/I compiler. The program itself is derived 
from the edm command of Multics, and it exhibits several 
different styles of coding and commenting, since it has had many 
different maintainers. 

The reader wi11 also notice that some comments appear to be 
critical of the program style or of interfaces to the Multics 
supervisor. These comments should be taken in the spirit of 
illumination of the mechanisms involved. Often they refer to 
points which could easily be repaired, but which have not been in 
order to provide a more interesting illustration. Most of the 
points criticized are minor in impact. Finally, some comments 
mention effectiveness of compiled code for certain constructs. 
Experience has shown that as PL/I compiler technology advances, 
the range of constructs which produce efficient compiled code 
increases. Such comments, then, should be considered to be 
dated, and subject to change. 

The program begins on page 40 following the comments. 

Line number 

first 
unnum­
bered 
1 i ne 

fourth 
unnum­
bered 
1 i ne 

1 

The compiler both records here and encodes into 
the binary object program the date and time of 
compilation and the version of the compiler used. 
The print_link_info command may be used to print the 
date and time of compilation stored in the object 
program. If it is not identical to that printed at the 
top of the listing, then the listing is for a different 
compilation, and should be suspected as being possibly 
a different program. 

The command "pl 1 eds -map -optimize" was typed 
at the console. This line records the fact that 
the map and optimize options were used. The map 
option caused a listing and variable storage map to be 
produced. A source segment named eds.pll was used as 
input; the compiler constructed output segments named 
eds.list (containing the listing) and eds (containing 
the compiled binary program.> 

No explicit arguments are declared here, 
eds should be called with one argument. 

even though 
The argument 
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is instead picked up with a library subroutine which 
can return an error Indication if the argument is 
missing. Since eds is used as a command, it Is a good 
human engineering practice to check explicitly for 
missing arguments; the PL/I language has no feature to 
accomplish this check gracefully. (See lines 84-89.) 

To avoid errors when program maintenance is performed 
by someone other than the original coder, all variables 
are explicitly declared. This practice not only avoids 
surprises, but also gives an opportunity for a convnent 
to indicate how each variable ls used. 

One default which is used here (and is subject to some 
debate) is that the precision of fixed binary integers 
is not specified, leading to use of fixed binaryC17). 
This practice has grown up In an attempt to allow the 
compiler to choose a hardware supported precision, and 
in fear that an exact precision specification might 
cause generated code to check and enforce the specified 
precision at (presumably) great cost. In fact, most 
such considerations are not relevant to the Multics 
Implementation; for all aligned variables with 
precisions less than one word (fixed binary(35)), the 
compiler generates code which uses word length hardware 
and does not enforce the precision specification. 
Ideally, one should consider the expected range of each 
variable and specify an appropriate precision for it, 
rather than depending on a forgiving implementation 
which accidentally supplies more precision than 
requested. 

Most character strings in this program are declared 
aligned so as to Insure that the fastest possible 
accessing code will be produced. The only exceptions 
are character strings which are to be used as arguments 
to supervisor entries which require unaligned strings. 
(See lines 25, 62, and 440). In programs such as this 
one, the storage space loss due to use of the aligned 
attribute on a few character variables Is generally 
trivial compared with the space required to hold 
accessing code and time required to execute it. 
Obviously this convnent might not hold In a case where 
many hundreds or thousands of character strings are 
involved. 

All line buffers are designed to hold one long typed 
line (132 characters for input terminals with the 
widest lines) plus a moderate number of 
backspace/overstrike characters. To support memorandum 
typing, the buffers permit a 70-character line which i.s 
completely underlined. Note also that the current 
typewriter input conversion package has a defect which 
requires that the original input line, before erase and 
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kill editing, and before overstrike canonicalization, 
fit into the character buffers provided by the user for 
correct conversion to take place. 

The variable named code has precision 35 bits, since it 
is used as an output argument for several supervisor 
entries which return a fixed binary(35) variable. It 
would seem appropriate, on a 36-bit machine, to use 
fixed binary(35) declarations everywhere. However, use 
of fixed binary(35) variables for routine arithmetic 
should be avoided since, for example, addition of two 
such variables results in a fixed binary(36) result, 
forcing the compiler to generate code for double 
precision operations from that point on. One must be 
careful of the PL/I language rule which requires the 
compiler to maintain full implicit precision on 
intermediate results. 

Automatic variables with initial values are set to 
their initial values every time the program is entered. 
This method is at least as effective as a series of 
initialization statements at the beginning of the 
program, and perhaps clearer to the reader. 

All editing is done by direct reference to virtual 
memory locations. The variable from_ptr is set to 
point to a source of text, and the based variable 
from_seg is used for all reference to that text. 

The general operation of the editor 
from one storage area to another, 
The names f rom_seg and to_seg are 
storage areas. 

is copy the text 
editing on the way. 
used for the two 

It is necessary for this program to know the t/O stream 
name on which input will be typed. Programs which 
perform less sophisticated input operations can often 
get along with system supplied defaults for the 1/0 
stream names. (See comment on line 440.) 

The PL/I language provides no direct way to express 
literal control characters. The technique used here, 
while adding clutter to the program listing at least 
works and is machine independent. 

One set of supervisor interfaces calls for 24 bit 
integers; this declaration guarantees that no precision 
conversion is necessary when calling these interfaces. 
(See line 97). 

Supervisor entries generally use fixed, rather than 
varying, strings. (In an earlier compiler 
implementation, varying strings were very inefficient, 
and based varying strings were forbidden.) Thus, when 
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calling older supervisor entries it is occasionally 
necessary to simulate a varying string by using a fixed 
string and an integer count of the number of characters 
in the string. (See lines 84 and 93 for the single 
example in this program.) 

Subroutines com_err_ and loa_ are called with a 
different number of arguments each time, a feature not 
normally permitted in PL/I. The Multics 
implementation, ·however, has a feature to permit such 
calls to be compiled. The "options" clause warns the 
compiler that the feature is to be used for this 
external subroutine. 

All subroutines other than com_err_ and ioa_ are 
completely declared in order to guarantee that the 
compiler can check that arguments betnc passed agree in 
attribute with those expected by the subroutine. 
Warning diagnostics are printed if the compiler finds 
argument conversions to be necessary. 

The procedure cu (short for command utility) has 
several different entry points. The Multics PL/I 
compiler specially handles names of external objects 
which contain the dollar sign character. The dollar 
sign Is taken to be a separator between a segment name 
and an offset name in the compiled external linkage. 
Thus, this· 1 ine declares the entry Point name arg_ptr 
In the segment name cu_. 

For many procedures, the segment name and entry point 
name are Identical, so the compiler also permits the 
briefer form cv_dec_, which Is handled Identically to 
cv_dec_$cv_dec_. 

The hardcore Cring zero) supervisor entries are all 
easily Identifiable since they are entered through a 
single Interface segment named hes_. Segment hes_ 
consists of just a set of transfers on to the 
subroutine wanted. A transfer vector Is used to 
isolate, in one easily available location, all gates to 
the Multics supervisor. Also, it ts in principle 
possible to dynamically replace a supervisor routine, 
by changing a single transfer instruction. 

Note that supervisor entry hcs_$make_seg takes 
unaligned character strings for its first three 
arguments. This property will turn out to be a 
nuisance later Cline 95) since the library subroutine 
which constructs the arguments for hcs_$make_seg 
returns aligned character strings. See the comments on 
lines 93 and 95 for more information. 
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This implementation-dependent declaration is a based 
structure, designed to overlay on top of a 64K Multics 
segment, and thereby allow construction of a pointer to 
the midpoint of the segment. The declaration depends 
on fixed binary variables of precision less than 36 
bits occupying one word each. 

The co1T111ent on this line consists of a single ASCII 
control character, for form feed (octal 014). The 
closing syntax for the comment appears at the top left 
edge of the next page. Such "vertical punctuation" 
between major parts of a program is recommended for 
program readability. 

The segment name is copied into an intermediate storage 
space since it may be used in an error comment. Note 
that we should not use the variable ename as the second 
argument in the call to hcs_$make_seg, since ename is 
aligned and hcs_$make_seg requires unaligned input 
arguments. 

The first step in the program is to obtain a pointer to 
a "scratch" or temporary segment in which intermediate 
copies of the text being edited may be stored. 
Subroutine hcs_$make_seg will create a segment, if one 
does not already exist with the specified name. The 
binary string specifies that if a segment is created, 
the system should permit read and write access to the 
segment. The system creates the segment, maps it into 
the address space of this process, and returns a 
pointer in the variable from_ptr. The first argument 
to hcs_$make_seg specifies the name of the directory in 
which the segment should be located. A null string, as 
in this case, indicates that the segment is to be 
created in the process directory, a suitable home for 
temporary segments. The third argument is a place for 
a reference'name, which would be specified if there 
were to be later references to the segment to be 
accomplished by dynamic linking. Since no such 
reference will occur, a null string is specified. 

Although our program has no declared static variables, 
the segment eds_temp is now effectively a 
program-created static variable. If, for example, one 
were to quit out of the editor, issue a "hold" command 
to maintain the stack level, and then reinvoke the 
editor at a new, deeper, stack level, the second 
invocation of the editor would, upon encountering line 
74, obtain a pointer to the same segment, eds_temp, 
that is being used by the earlier, interrupted 
invocation. If the second invocation of eds overwrites 
eds_temp, then upon later return to the earlier, 
interrupted invocation one would probably be in deep 
trouble. Three different techniques could have been 
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used to avoid this trouble: 1) document the restriction 
that the editor cannot be used recursively, or 2) put a 
check In the editor to see if a previously created 
eds_temp exists, and give warning if one does, or 3) 
implement an automatic, rather than a static, temporary 
segment, by using a guaranteed unique name (Multics 
subroutine unique_~hars_ can be useful here) for the 
temporary segment. 

If there was trouble creating a buffer segment, 
hcs_$make_seg returns a null pointer. It also returns 
a status code, but since a non-zero status code is 
returned in some non-error cases (e.g., when a segment 
named eds_temp was already there) the easiest test for 
a disastrous error is on the returned pointer. 

The subroutine com_err_ should be called to print out 
the error message associated with the returned status 
code. However, the calling sequence is quite long, so 
an internal subroutine, called from many places in eds, 
minimizes the amount of generated call setup code. 

One exits from a Multics command by simply returning to 
its caller. (See also line 351). 

(See comment re line 67). Here, in an economy move, we 
create a pointer to the midpoint of the segment just 
created. We thus avoid the need to create two 
temporary segments for editing. At this point from_seg 
points to the base of the segment and to_seg points to 
the midpoint. The two halves of the segment will be 
used as two buffers for editing. Note that this 
strategy restricts the maximum size of a segment which 
may be edited, yet the editor nowhere checks to see if 
this maximum size is being exceeded, an unfortunate 
omission. Since lack of a check could cause 
overwriting of data, a program with this defect would 
not be considered acceptable for the Multics command 
library. 

When a user types a command such as "eds alpha" the 
first string of characters is taken as the name of a 
procedure to be called, while succeeding strings are 
taken as character string arguments to that procedure. 
Rather than declaring eds to have one argument, which 
would not permit a graceful exit if no argument were 
typed, we pick up the argument with subroutine 
cu_$arg_ptr, which returns a pointer to the beginning 
of the unaligned character string representation of the 
first argument, which eds considers to be the name of 
the segment to be edited. 

For many 
indicates 

subroutines, any non-zero 
that the subroutine could 

status code 
not proper 1 y 
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complete, and recovery action is appropriate. In this 
case, the most likely error is that the argument is 
missing. 

When an error occurs now, we do not immediately return, 
since we have created a temporary segment, and should 
clean up after ourselves first. Thus the transfer to 
qultl rather than a return. (See line 348.) 

Assuming that a pointer to an argument was returned, we 
must now convert that argument to a standard (directory 
name, entry name) pair. The subroutine expand_path_ 
implements the system-wide standard practice of 
Interpreting the typed argument as either a path name 
relative to the current working directory, or an 
absolute path name from the root, as appropriate. 

The third and fourth arguments to expand_path_ are 
(unnecessarily) required to be pointers to the 
character strings in question, rather than the strings 
themselves. Because pointers are the formal arguments, 
neither the reader, nor a mechanical argument checking 
program, can detect whether or not the real arguments 
being passed behind the pointers match In type with 
those expected by the writer of expand_path_. 
Examination of the MPM write-up for expand_path_ tells 
us that aligned character strings are required for the 
third and fourth arguments, and an unaligned character 
string for the first one. (This interface is a 
left-over from, a time when character string arguments 
were very expensive to pass directly.) In such cases, 
it is a good practice to represent the arguments as 
shown, for clarity, rather than by setting and passing 
pointer variables whose purpose ts not clear to the 
next maintainer of the program. In general, it is a 
good practice to consider painter variables to be 
escapes around missing language or system features, and 
therefore to isolate their use in a way which makes 
clear what is being escaped around. This program 
follows this practice whenever possible, but some older 
supervisor interfaces force a departure. 

We now call hcs_$make_seg again, to either create or 
get a pointer to the source segment to be .edited, this 
time specifying the directory and entry names returned 
by expand_path_. As mentioned earlier, hcs_$make_seg 
requires unaligned character strings In its first three 
arguments, but ename and buffer are the aligned return 
values from expand_path_. Therefore, the compiler, 
noting that the declaration on line 56 disagrees with 
those on lines 9 ancl 15, will automatically generate 
code to copy the aligned $trlngs over into unaligned 
temporary varlables'for the duration of the call. The 
compiler will normally print a warning diagnostic when 
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it generates such code, in case the programmer doesn't 
realize that he is forcing a type conversion. To 
suppress the warning message, the first two arguments 
to hcs_$make_seg have been placed in parentheses, which 
are taken by the compiler to be an explicit request for 
conversion; therefore no message is printed. 

Occasionally one will encounter an extremely bad 
practice which has been used to get around the argument 
copying: subroutine hcs_$make_seg may be misdeclared 
to take aligned arguments. Since it happens that the 
Multics implementation of aligned character strings is 
identical to unaligned character strings which start on 
a word boundary, the misdeclaration happens to work. 
This mapping together of aligned and a subset of 
unaligned does not necessarily hold in other PL/I 
implementations, and it does not hold in Multics for 
variables other than strings. In any case, use of such 
constructs is an outstanding example of bad programming 
practice for two reasons: first, it relies on obscure 
properties of the local implementation; second, one 
would like to have available a mechanical technique for 
detecting accidentally mismatched arguments; 
intentionally mismatched ones would then frustrate 
mechanical verification. 

97 The storage system provides for every segment a 
variable named the bit count. For a text segment, by 
convention, the bit count contains the number of 
information bits currently stored in the segment. 
Subroutine hcs_$status_mins obtains the value of the 
bit count. 

97 Clearly, the calls to expand_path_, hcs_$make_seg, and 
hcs_$status_mins could have been a single subroutine 
call to a subroutine which performs all three 
functions. Such an interface would eliminate the need 
for this procedure to care about (and provide storage 
for) such things as the number of characters in the 
typed argument string, and the name of the directory 
containing the segment being edited. The hassle about 
aligned and unaligned strings could be avoided, too. 

~9 If the segment to be edited did not previously exist, 
(that is, the call to hcs_$make_seg created the segment 
rather than merely returning a pointer to it) then the 
bit count will be zero, and the editor assumes that is 
should start in input mode. 

103 This statement converts the bit count to a character 
count. Note that we have here embedded knowledge of 
the number of hardware bits per character in this 
program. If the system-wide standard had been to store 
a character count with a segment instead, it would not 
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have been necessary to have an implementation-dependent 
statement here. Unfortunately, a stored character 
count would get the system into the business of 
maintaining an interpretation of the segment's 
contents, which it currently does not do. A still 
better strategy would have been to store a character 
count in the segment itself, say in the first word, 
thus maintaining the view that a segment maintains its 
own interpretation. 

103 The PL/I language specifies that the result of a divide 
operation using the division sign is to be a scaled 
fixed point number. To get integer division, the 
divide built-in function is used instead. 

104 Here, we invoke some of the most powerful features of 
the Multics virtual memory. This simple assignment 
statement copies the entire source segment to be edited 
into the temporary buffer named from_seg. Highly 
optimized machine code performs the actual copy loop. 
Note that we are regarding the entire text segment as a 
simple character string of length csize. We may regard 
it this way because the storage representation for 
permanent text segments is chosen to be identical to 
that of a PL/I fixed character string. 

106 Be sure to read the comments embedded in the program, 
too. 

109 Subroutine ioa_ is a handy library output package. It 
provides a format facility similar to PL/I and FORTRAN 
format statements, and it automatically writes onto the 
1/0 stream named user_output, which is normally 
attached to the interactive user's terminal. When used 
as shown, it appends a new line character to the end of 
the string given. Programmers who are more concerned 
about speed than about compatibility with other 
operating systems use ioa_ in preference to PL/I "put" 
statements, because ioa_ is a less general facility 
which does not touch nearly as many distinct storage 
pages. 

111 Here we have another interface which (unnecessarily) 
requires use of a pointer in its first argument. 
Again, one result of this obsolete practice is that 
complete type-checking by the compiler is not possible 
for that argument. Some of the more sophisticated 1/0 
system entries use a pointer in the same position, but 
with a better reason: those entries can transmit 
variables of various types on different calls, so no 
single variable declaration could suffice. 

111 Subroutine ios_$read_ptr is often used for input rather 
than the. PL/I statement "read file (sysin) into " 
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again because the ios_ entry has fewer options and 
therefore touches fewer storage pages. The PL/I 
facility ultimately calls on the Multics ios_ package 
anyway. (Again, if one wished to write a program which 
would also work on other PL/I systems, he would be 
better advised to use the PL/ I I /O statements instead. ) 

112 For human engineering, blank lines are ignored by the 
editor. Since complete input lines from the typewriter 
end with a new line character, the length of a blank 
line is one, not zero. 

114 The code to isolate a string of characters on the typed 
input line is needed in four places, so an internal 
subroutine is used. This subroutine is not recursive, 
which makes it possible for the compiler to construct a 
one-instruction calling sequence to the internal 
procedure. Certain constructs (e.g., variables of 
adjustable size declared within the subroutine) will 
force a more complex calling sequence. For details, 
one should review the documentation on the Multics PL/I 
implementation. 

116 Although the dispatching technique used here appears 
costly, it is really compiled into very quick and 
effective code -- 4 machine instructions for each line 
of PL/I. For such a short dispatching table, there is 
really no point in developing anything more elaborate. 
If the table were larger, one might use subscripted 
label constants for greater dispatching speed. 

121 Human engineering: the typist is forced to type out 
the full name of the one "powerful" editing request 
which, if typed by mistake, could cause overwriting of 
the original segment before that overwriting was 
intended. 

131 The format and decimal conversion facilities of ioa_ 
are used in a simple way in this example. The "not" 
sign in the format string indicates where a converted 
variable is to be inserted; the character following the 
not sign indicates the form (in this case, a character 
string) to which the variable should be converted. The 
first argument is the format string, rema1n1ng 
arguments are variables to be converted and inserted in 
the output line: 

132 Whenever a message is typed which the typist is 
probably not expecting, it is good practice to discard 
any type-ahead, so that he may examine the error 
message, and redo the typed lines in the light of this 
new information. 



138 

142,143 

150 

152 

161 

177,187 

206 

319 

A SIMPLE TEXT EDITOR 4-35 

The general strategy of the editor is as follows: 
lines from the typewriter go into the variable named 
"buffer" until they can be examined. Another buffer, 
named "line" holds the current line being "pointed at" 
by the eds conceptual pointer. Subroutine "put" copies 
the current line onto the end of to_seg, while 
subroutine "get" copies the next line in from_seg into 
the current line buffer. 

If ios_$read_ptr returned a varying string rather than 
a fixed string and a count, these two statements could 
reduce to "line= buffer". More use of varying or 
adjustable strings would probably simplify the 
appearance of this program quite a bit. 

The procedure get_num sets up the variable 
the value of the next typed integer on 

n to contain 
the request 

is not an line. Such side-effect communication 
especially good programming practice. 

The delete request is 
from from_seg, but 
If deletion were a 
worthwhile to use 
ahead the pointer in 
copy operation. 

accomplished by reading lines 
failing to copy them into to_seg. 
common operation, it might be 

more complex code to directly push 
from_seg, and thus avoid a wasted 

More side-effect communication: the variable edct is 
always pointing at the last character so far examined 
in the typed request line. 

All movement of parts of the material being edited is 
accomplished by a simple string substitution, using 
appropriate indexes. 

The locate request is accomplished by use of the index 
built-in function, used on whatever is still unedited 
in from_seg. 

A negative number in the "next" request resu 1 ts in 
moving the conceptual pointer backwards. The resulting 
code is quite complex for two reasons: 

a) The eds editing strategy requires interchanging the 
input and output segments before scanning 
backwards, so that the backward scan is with regard 
to the latest edited version of the segment. 

b) At the time this program was written, there was no 
PL/I feature to perform an "index" function 
starting from the end of a character string rather 
than the beginning. The "reverse" built-in 
function could now be used. 
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Before exiting from the editor, the temporary segment 
should be cleaned up. The question of whether the 
temporary segment should be deleted or merely truncated 
is a slightly fuzzy one. Since the editor is almost 
certain to be used several times in a process, the 
choice was made here to .IlQ...t delete it, so that later 
invocations of the editor will result in a faster 
response from make_seg. If, on line 74, we had used a 
unique name for the temporary segment, then we should 
surely delete it here, since no one will ever ask for a 
segment by that name again. 

Another human engineering point: since the user may 
have typed several 1 ines ahead, the error message 
includes the offending request, so that he can tell 
which one ran into trouble and where to start retyping. 

Note a small "window" in this sequence of code. If the 
editor is delayed (by "time-sharing") between lines 362 
and 363, it is possible that the message on line 362 
will be completed, and the user will have responded by 
typing one or more revised input lines, all before line 
363 discards all pending input. Although in principle 
fixable by a reset option on the write call, Multics 
currently provides no way to cover this timing window. 
Fortunately, the window is small enough that most 
interactive users will go literally for years without 
encountering an example of a timing failure on input 
read reset. 

The input and output editing buffer areas are 
interchanged by these three statements. Here is an 
example of localizing the use of pointer variables to 
make clear that they are being used as escapes to allow 
interchange of the meaning of PL/I identifiers. 

To go along with the entry point ios_$read_ptr which 
used stream name user_input by default, Multics does 
not have a corresponding reset entry with a default 
stream name. As a result, we must embed the stream 
name "user_input" in this program. 

Calls to com_err_ and ioa_ take more setup than most, 
because each requires passing of argument descriptors 
so that the subroutine at the other end can figure out 
how many and what type of arguments have been passed. 
Since this editor always uses the same arguments to 
call com_err_, a single call in an internal subroutine 
avoids having multiple copies of the argument setup 
code. 

This editor considers typed-in tab characters to be 
just as suitable for token delimiters as are blanks. 
Ideally, tab characters would never reach the editor, 
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instead having been replaced by blanks by the 
typewriter input routines. Such complete 
canonicalization of the input stream would el imlnate 
lines 457-464, but would also require a more 
sophisticated strategy elsewhere to handle editing of 
text typed in columns. 

The cv_dec_ library routine is used here rather than a 
PL/ I 1 anguage feature, because cv_dec w i 11 a 1 ways 
return a value, even if the number to be converted is 
ill-formed (in which case it returns zero.) Thus the 
editor retains complete control over the error comments 
and messages which will be presented to the user. Such 
control is essential if one is to construct a 
well-engineered interface which uses consistent and 
relevant error messages. 

The items printed after the program 1 isting by the compiler 
do not have 1 ine numbers. They are referred to in the following 
comments by name. 

The listing of all variables includes a cross-reference 
listing, by line number, to facilitate locating all uses of a 
given variable. This cross-reference listing is also useful for 
discovering unnecessary variables, which are set and never 
referenced, or perhaps never referenced at all. Any variable 
which is referenced only once is suspect, except for external 
subroutines which nay happen to be called only once. Variables 
never referenced at all appear in the immediately following list. 
~ote that structure names used only as qualifiers (e.g., a.b.c) 
do not count as uses of the outer names (e.g., a and b). Passing 
an entire structure as an argument, or structure substitution, 
would count as a use. 

(See listing of identifier alt 1th). The default precision 
for fixed binary numbers is 17 bits ;ith no fractional part. 

"THE RE HERE NO tJAMES U ECLARED BY CONTEXT OR I MPL I CAT I ON". 
This comment was the result of the consistent practice of 
explicitly declaring everything. If some identifier had not been 
declared, it would appear in a separate 1 ist here, and the 
compiler would also print a special warning message to the user. 

"STORAGE REQUIREMENTS FOR TH IS PROGRAf1". The resu 1 t of 
compiling the above program is the creation of two segments: the 
listing segment (printed here) and a segment containing a binary 
machine language program, known as the object segment. The 
object segment actually contains several different parts, in a 
format which is interpreted by the mechanisms used for 1 inking to 
and executing procedures. The numbers printed under this heading 
require the following picture of an object segment for 
interpretation: 
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( location 0 

text 

definitions 
object 

---------------~ 
static link 

---------------~ 

symbol 

• object is the entire segment • 

• ~ is the binary machine language program, 

• defjnjtjons is a set of character string names of entry 
points to this segment and procedures which it calls • 

• .l..Lnk is a prototype linkage section, to be copied into 
the linkage/static segment when this procedure is first 
used. 

static is the part of the prototype linkage section in 
which PL/I internal static variables are allocated. 
Initial values for such variables are stored here • 

• Symbol contains relocation bits for the text and 
linkage areas, in case this segment is to be 
permanently bound together with some other object 
segment. It also contains other things such as the 
date and time of compilation and, if the table option 
is specified to the compiler, a symbol table, for 
debugging. The example shown here did not use the 
table option, so the symbol section is quite small. 

All of the numbers describing storage requirements are printed in 
octal, so, for example, the binary machine instructions occupy 
3015 (octal) locations or 1549 (decimal) locations. Since the 
program contains about 315 executable statements, each source 
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program line has apparently expanded to an average of about five 
machine language instructions. The program is shown as using two 
words of static storage, despite the lack of variables declared 
to be internal static. The two words of static storage are 
allocated by the compiler for use by program trace and debugging 
packages. 

Following the object segment description are details about 
automatic storage allocation. All internal procedures except 
get_token share automatic storage with the main editor program, 
which means that fast subroutine calls are compiled to them. 
Subroutine get_token could have used a fast subroutine call, but 
the compiler, noting the call to get_token from another internal 
subroutine Con line 475) conservatively chose to use a full call, 
since a back call from get_token might have caused recursion. 
Future versions of the compiler may attempt to trace the flow of 
such cross calls to guarantee lack of recursion, and thus permit 
fast calls in more cases. 

"THE FOLLOWING EXTERNAL OPERATORS ARE USED BY THIS PROGRAM." 
Many frequently used PL/I features are implemented in a library 
segment named pll_operators_, and are used by fast subroutine 
calls compiled into the program. It is useful to get a feeling 
for what kinds of linguistic constructs result in such calls, by 
examining a detailed machine language listing some time. 

The list of numbers at the end of the program provides a 
complete map of the machine instructions generated by each 
statement. This map is useful when debugging following the 
unexpected printing of a message such as "Out of bounds fault at 
1 ocat ion 110 4 of segment eds." 

Although It was not printed here, it is also possible (by 
using the -list option) to have the compiler print out the 
detailed machine language program which it generated. Such a 
printout is useful for reviewing the performance of a program, 
since it may provide clues about use of PL/I constructs which are 
inherently expensive to implement. 

(text continues on page 55) 



COMPILATION 
Comp I led by 
Comp I led on 

LI ST I t!G OF SEGMENT eds 
Multics PL/ I Compiler, Version 2 of 15 Au,ust 1972, 
09/07/72 2155.0 edt Thu 

Options optlMize map 

l eds: 
2 
3 
4 /* 
5 
6 dee l are 
7 declare 
8 declare 
9 declare 

10 declare 
11 declare 
12 declare 
n declare 
14 declare 
15 declare 
lb declare 
17 declare 
18 declare 
19 declare 
20 declare 
21 declare 
22 declare 
23 declare 
211 declare 
25 declare 
2b declare 
27 declare 
28 declare 
29 declare 
30 declare 
31 declare 
H declare 
H declare 
34 declare 
3 5 II) i 
36 declare 
37 declare 
38 declare 
39 declare 
40 declare 
41 declare 
42 declare 
43 declare 
44 declare 
45 declare 
46 declare 
47 declare 
411 

procedure; 

Internal variable declarations. •/ 

alt Ith 
break 
brkl 
buffer 
code 
count 
cslze 
edct 
ednm 
ename 
exptr 
from_ptr 
from_seg 
token_l th 
globsw 
I 
lj 
lndf 
lndt 
loname 
j 
k 
1 
line 
lngth 
located 
m 
n 
n 1 

out_count 
out_ptr 
out_seg 
pre 
sname_l th 
sname_ptr 
status 
templ 
t l In 
tkn 
to_seg 
to_ptr 

f I xed b Ina ry; 
character(l) aligned; 
fixed binary; 
character(210) alt,ned; 
fixed blnary(35); 
f I xed b Ina ry; 
fixed binary tnltlal(O); 
fixed binary; 
characterC3) al lr;ne<! lnltlal("eds">; 
character(32) aligned; 
po Inter; 
pointer; 
character(l31072) aligned based(from_ptr); 
fixed binary; 
blt(l) aligned; 
fixed blnl!rY; 
fixed binary; 
flxed bl~ry Initial CO>; 
fixed bl,,.ry lril,thHO>; 
chaNreterfJIJ) J&ltltU~11wr.;.;ln1>Ut",J 
niuut-::Jl&Qtn . 
fixed bfHry1 
fll!ed btl\•trv; 
chatai:ter'IUO.) aU1nad1 
fl.06 l>ftt*ry l111lthHQ.l; 
f1it•ll lti~rv; 
,.lJJed blnffv; 
fl xed b I nary; 
character(l) al lgnetl Initial<" 

fixed blnary(2~); 
po l.rtter; 
cha racterU 310 72) a·J I gned based Cout_Pt r); 
fixed binary tnltta1(210); 
fixer! binary; 
pointer; 
blt(72) al lgned; 
blt(l) al lgned; 
character(210) aligned; 
character(8) al lcned; 
character(l31072) all,ned hased(to_ptr); 
pointer; 

/* Holds position of next tah. •/ 
/* ~olds break char for chan~e. •/ 
/* Hold~ index of chan,e hreak char, •/ 
/• Typewriter Input huffer, •/ 
/* For returned status codes. •/ 

/* 1t11me r:>f the edlt<'r, for cn,..,.,,ents, •/ 
/• Hr>lds name nf se~ment ~elng edited, •/ 
/* Temporary pointer holder. •/ 
/* Pointer tn currPnt 'rom_ser;. •/ 
/• Fdltlng ls from this se~ment, •/ 
/* length of token, •/ 
/* On If "11:" option used In change, •/ 

,f•~··it"•r.tM!lllt!! ~r,iresetreat1, •/ 

/11. Held!' l IH•cur·rerittv ~Ins •rlttet1, •/ 

/* 
I• 
I• 

·/• 
/* 
I• 
/* 
/* 

liter~] 11 new lln.e" char~cter, •/ 
Holds se•m•nt hit tenir:th, •/ 
Pnl,f!t'r to ou~ teir:. •/ 
""t'l~t se"'"'nf·,or r•ad nr write. 
&lie of a11 bqffers. •/ 
Lenath of snurcp se~ment name, •/ 
Pnlnter to source se•Ment naf'llf', */ 
To hnld t/O status, •/ 

/* ~uffer to hold ~utnut nf chffnll:P· •/ 
/* ~nlds next Item on tyned line, •/ 
I• Ft11tlng t~ to thl~ seir:ment, •/ 
/* Pnlnter to to_sli'g, •/ 

•/ 
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49 I* 
50 
51 declare 
52 declare 
53 declare 
54 declare 
55 declare 
5E> declare 
57 
58 declare 
59 declare 
60 declare 
Gl declare 
b2 declare 
G3 declare 
64 
&5 declare 
bb 
67 declare 
60 I* 

external subroutine declarations. */ 

com_err_ 
cu_$arg_ptr 
cv_dec_ 
eJtpand_path_ 
hcs_$status_mins 
hcs_$make_seg 

hcs_$set_bc_seg 
hcs_$truncate_seg 
loa_ 
ios_$read_ptr 
los_$resetread 
los_$write_ptr 

entry optlons(variable); 
entry(flxerl binary, pointer, fixerl binary, fixerl binary(35)); 
entry(character(•) al lgned) returns(fixerl binary); 
entry(polnter, fixerl binary, pointer, pointer, fixed binary(35)J; 
entry(polnter,fixerl binary, fixed hinary(24), fixerl binary(35JI; 
entry(character(•), character(•), character(•), fixed binary(S), 

pointer, fixed binary(35)); 
entry(polnter, fixed binary(24), fixed binary(35)); 
entry(polnter, fixerl binary, fixerl binary(3~)); 
entry options(variable); 
entry(pointer, fixed binary, f xed binary); 
entry(character(•), bit(72) al ~nerl); 
entry(pointer, flxerl binary, f xerl hinaryl; 

Caddr, divide, index, min, null, substr) built in; 

1 mid based(from_ptr), 2 space(327G8) fixed binary, 2 se.d327£'7) fixer< hinary; 
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*/ 
li~ /* 
70 
7l /• 
72 
73 
74 
75 
76 
77 
78 
79 
80 

P R 0 G R A M 

Set up Buffer segments. */ 

ename = "eds temp"· 
ca 11 hcs_$make_seg ( "", "eds_temp", "" 
if from_ptr • null 

then do; 
call call_com; 
return; 
end; 

to_ptr • addr(mld.seg); 

OlOllb, from_ptr, code); 

81 
82 
83 
84 

I• Now check to see If an input ar1ument was given •/ 

85 
8& 
87 
88 
39 
90 
91 
92 
93 
94 
95 
!lb 
97 
98 
99 

100 
101 

ferror: 

call cu_$arg_ptr(l,sname_ptr,sname_lth,code); 
If code..,•O then do; 

ename • ""; 
ca 11 ca 11 _com; 
10 to qultl; 
end; 

/* Now get a pointer to the segment to be edited •/ 

call expand_path_(sname_ptr,sname_lth,addr(buffer),addr(enaMe)
1
corle); 

If code ..... O then go to ferror; . 
ca 11 hcs_$make_seg ((buffer), ( ename), "", 01011 b, nu t_Pt r, code); 
If out_ptr •null then go to ferror; 
call hcs_$status_mlns(out_ptr,l,nut_count,code); 
If code ..... 0 then 10 to ferror; 
If out_count • 0 then dn; 

cal 1 loa_C"Segment ..,a not ft1und.", enamf!l; 
go to plnput; 

end; 

*/ 

10 2 
103 
104 
105 
106 /• 
107 
108 
109 
llll 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 

cslze • dlvlde(out_count,9,17,0); /• change hit cnunt tn cli111r cnunt •/ 
substr(from_seg,1,cslze) • substr(out_seg,1,cslzel; /* Move source segment lntn huffer. .,, 

Main edltln1 loop ••••• •I 

pedlt: 
next: 

cal1 loa_C"Edlt."l; 

ca 11 I os_$read_pt r( addr (buffer l, pre, count); 
if count•l then go to next; /• If nul 1 1 lne then ii:et anntt-er 11""'' 
edct • l; /* Set up counter to scan this 1 lne. •/ 
cal 1 get_token; /* Identify next token. •/ 

If tkn • 11 1" then go to Insert 
if tkn = "r" then go to retype 
If tkn • 11 111 then go to locate 
if tkn = "p" then gt1 to print; 
if tkn • "n" then gn to nexl In; 
if tkn = "save" then go to file; 

rlt1n 1 t orlnt errnr •/ 
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122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 

I• 

13 5 I• 
136 

If 

if t kn = "c" then go to chan.ite; 
if tkn = "d" thPn go to dell in; 
if tkn = "w" then go to wsave; 
if tkn = "t" then go to top; 
if tkn = "b" then go to be>ttom; 
if tkn = II II thPn go to pinput; 

none of the above then not a request •I 

call ioa_C'"~a• Not an erlit Requpst 11
, substr(buffer,1,count-J)J; 

ca 11 reset read; 
go to next; 

********* input mode *******'** •I 

call ioa_( 11 lnput. 11
); /•print worr< innut •/ 13 7 

l3S 
139 
140 

pinput: 
input: call ios_$read_ptr(addr(buffer), 0 rc,count); 

if substr(buffer,l,ll = "." 
/• rPar< a line•/ 

141 
then if count = 2 then go to oedlt; 

cal 1 put; · 
I• eheck for modp c~ange •/ 

142 
143 
144 

substr(l ine,l,count) = substr(buffer,1,countl; 
lngth = count; 

I• movp line inP11tterl intn interm!'rliate stnri'10:P. •/ 

145 
14b 

go to input; 

147 /* ********* delete ****'***** •/ 
148 
14 ~ de 1 1 in: 
150 call get_num; 

I• rPr,Pllt 'til 11 It */ 

151 do i = 1 to n·l; /* rlo for e11ch 1 lrie te> he rlelPterl •/ 
152 call get; /* r.et next 1 inP, twerv1rite currPnt t'lnp, •/ 
153 end; 
154 lngth = O; /* nul 11 fy l<'lst 1 il"P •/ 
155 go to next; 
15 L 
157 /* ********* insert ********* •I 
158 
159 insert: call put; /* Arlrl currerit lil"e tl'1 C'\utput sPv.ment, •/ 
100 retype: /• This is also the retype requpst, •/ 
lGl substr(line,l,count-edct) = suhstr(huffer,edct+l,cnunt-erictJ; /• i'!rlrl rPP1<1ced 1 lnt> •/ 
162 lngth = count - erlct; 
163 go to next; 
164 
lLS /• ********* next ********* •/ 
1L6 
167 nexl in: cal 1 get_num; 
1L8 if n < O then go to backup; 
lb~ m,j = indf; /* SilVP. ~;!'lerf" ynu 11re •I 
170 call put; 
171 do i = 1 ton; /•once for P.i'1Ch nl •/ 
172 if j >=csize then go to n_eof; /• cl'>P.ck for ee>f •I 
173 k = index(substrCfrom_sPg,j+l csize-jJ,nll; /•locate enrl nf line•/ 
174 if k=O then do; ' /• nn nl (pt'lfJ nrint pnf •/ 
175 n_eof: if indf>=csize then KO to enf; 
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l 7b 
177 
178 
179 
180 
181 
182 
183 
184 
185 

1 ng th = 0; 
substr(to_seg,indt+l,cslze-m) 
indf = csize; 
indt = indt + csize - m; 
go to eof; 
end; 

j = j + k; 
end; 

indf = j; 
lngth = k; 

/*set to no line•/ 
suhstrCfrom_sep;,m+l,cslze-ml;/•mnve In top nf file •/ 

/* srt pointers •/ 

/* Increment j hy lenv.th nf 1 lne •/ 

/*set polntl"r~ 11nrl mavl" In top of file•/ 

subs t r ( 1 i n e, l , k l = subs t r ( fr om_s e F., j - '< + 1 , k ) ; / * nut ~"' r ~ I n g 1 I n e I n 1 I n e * / 
substr(to_seg,inclt+l,indf-lngth-m) = substr(from_srg,m+l lnrlf'-lngtt--.,,); /*fill rPst of file•/ 
indt = indt + indf - lngth - m; ' 
go to next; 

ldti 
187 
188 
189 
190 
191 I* 
192 

********* locate ********* */ 

193 
194 
195 
196 
197 
198 
199 
200 
2u1 
202 
203 
204 
205 
20[, 
207 
2oa 
209 
210 
211 
212 
213 
214 
215 
21G 
217 
218 
219 
220 
221 
222 
223 
224 
225 

locate: 

l_nl: 

if count=edct then go to lncmplt; 
edct = edct + l; 
j = indt; 
m = indf; 
n = csize-inclf; 
cal 1 put; 
if Ccsize=O) I Cn<=O) 

then do; 
call switch; 
if j > 0 then n = j - 1; e 1 ~ E' n • 0; 
m, j = O; 
end; 

/•check for nlalri 11 1 '·'l" •/ 
I* S k In r!e 1 Im I ti! r. *I 
/* lriltl11l lze onlnter~ fnr lnrlex tYn"' SPl'rcl'> •/ 

I• S11ve current line. •I 

i = index(substr(from_seg, inrlf+l,n),<1ubstr(buffor,erlct,cnunt-erlctll; /•locl'!te•/ 
if i~=O then do; /* If fnunrl then do •/ 

do k = indf+i to 1 by -1; /* finrl begirnlnll' of 1 lne •/ 
if substr(frorn_seg,k,l)=nl th~n gn tn l_nl; 
end; 

k = 0; 

do indf = k+l to cslze-1 by 1 ~1hlle(sul-str(from_sf'l!:,inrlf,ll~=r'1l;/* fil"lrl enrl nf llnf' •/ 
end; 

substr(to_se.e:,indt+l,k-rn) = 
1 ngth = indf - k; 

substr(from_sf'g,m+l,k-m);/* Mnve in top of file•/ 

indt = indt + k - rn; 
subs tr( 1ine,1, lngth) 
n = l; 

Sl1bstr(from_sPp;,v+l,ln.ll'th); /*nut fnul"rl linP 11"1 linf' •/ 

go to printl; 
end; 

call copy; 
call switch; 
go to eof; 

/* nrlnt founrl line if w11nterl •/ 

.l=" 
I 

+:" 
+:" 

'"O 
:::0 
0 
G) 
Al 
)> 
:::: 
::: 
z 
G) 

z 
-t 
:::c 
fT1 

:::: 
c: 
r­
-t 
(") 
(/) 

rn 
z 
< 
::u 
0 
z 
3:: 
rn 
z 
-t 



22G 
227 
228 
22~ 
2 30 
231 
232 

/* ********* print ********* */ 

2 3 3 
234 
235 

Print: 

printl: 
nol i ne: 

cal 1 get_num; 
if lngth = 0 then 
do; 

end; 

call ioa_C"No line."); 
go to nol i ne; 

call ios_$•1rite_ptr(addr(l ine),O,min(prc, lngth)); 
n = n-1; 

if n = 0 then go to next; 
call put; 
call get; 

go to printl; 

/* nrint inrlicatlnn of no linP.s */ 

/*write the line•/ 

/• any more to he printerl? •/ 
2 3 6 
237 
238 
239 
240 
241 
242 /* 
243 
244 
245 
24L 
247 
246 
24~ 

25u 
251 
252 
253 

********* change ********* •I 

L '.> 4 
255 
256 
257 
258 
259 
2bU 
261 
2b2 
2b3 
2 b4 
2G5 
2G6 
2b7 
2b8 
2L9 
270 
271 
272 
273 
274 
275 
'L 7o 
2 77 
278 
279 

change: 

incmplt: 

nxarg: 

chl: 

ch2: 

located = O; 
if count = 2 then do; 

call ioa_("l"1proper: 
cal 1 resetre<>rl; 

go to next; 
end; 

brkl = edct + 2; 

-a", substr{buffer,l,count•l) l; 

break = substr(buffer,edct+l,ll; 
i = index(substr(buffer,brkl,count-brkll,break); 
if i=O then go to incmnlt; 

/• Pick 11n the rlel i,.,I tlnir character, 

j = index{substr{buffer,i+brkl,count-brkl-il,hreak); 
if j=O then j = count-i-brkl+l; 
edct = edct + i + j + l; 
gl obs•1 = "O"b; 
n = l; 
cal 1 get_token; 

/• 
/* 

I• Continue 5Ci1nning erlit line, 
Assume only one change, •/ 
Assume only one line chan~erl, */ 

if tkn -=" " then do; /• If token there, process it. 
if tkn = "g" then globsw = "l"b; /* Change all occurri'lnC!"S, •/ 

*/ 

else call cv_num; 
go to nxarg; 
end; 

if lngth = 0 then go to sklpch; 

/• Try for another arPument. •I 

/• Skip changing empty line. •I 

*/ 

*/ 

templ = "O"b; 
m, i j, 1 = 1; 
if i=l then· do; 

/•to indicate if anythinv. was c'rl on 1 ine •/ 
/* inrlexe~ to strings •/ 

templ = "l"b; 
located = l; 

I• arld tn he~lnin~ nf line*/ 

substr{tl in,l,j-1) = substr<buffer,hrkl+l,j-ll; /*copy Pllrt tn be arider' •/ 
substr{tlin,j,lngthl = suhstr(llne,l,lngthl; /•copy nle! llnP •/ 
i j = j + l n gt h - 1; 
go to cprt; 
end; 

k = index{substr(line,m,lngth-m),suhstr(buffer,hrkl,1-1)); /•locate whi1t I~ to he chan,erl •/ 
if k-=o then do; 
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280 
281 
282 
28 3 
284 
285 
286 
287 
21!8 
289 
290 
2!H 
2\12 
293 
294 
295 
2~(> 

2\17 
298 
299 
300 
301 
302 
303 
304 
3 05 
30£i 
307 
308 
309 
310 
311 
312 
313 
314 
3l5 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 

substr(tlln,lj,k-ll "substrCllne,m,k-1); 
substr(tl In, lj+k-l,j-1) '" suhstr(buffer,brkl+i,j-1);/• 
m • m + k + I - 2; 
ij = lj + k + j - 2; 
templ .. "l "b; 
located " l; 
If globsw then go to ch2; 
end; 

substr(tl in,lj,Jngth-m+l) • substrCJlne,m,Jngth-m+l); 
I j • I j + Ing th - m; 

/*copy line un tn chan~e •/ 
nut In chan~e •/ 

/* Increment lndPxes •/ 

/* lnc'lcate that y<"u rllc' snmetln~ •/ 

/* cony rPst nf I lne •/ 

cprt: If templ then call los_$wrlte_ptr(ac'dr(tlin),0,lj); /•write I~ s<"methlr11i: chan,."c' •/ 
substr(llne,l,lj) • substr(tlln,1,lj); 
1 ngth = i j; 

skipch: if n<•l then do; 
If located•O then do; 

/* flr.i!lhttrl •/ 

call ioa_("Nothlng changerl by: "'a", 
ca I J reset read; 

suhstr(huf~er,l,count·lJ);/• If not lnc~tec' •/ 

go to next; 
end; 

n • n-1; 
cal 1 put; 
cal 1 get; 
go to chl; 

end; 

/* ********* top ********* •/ 

top: call copy; 
call switch; 

go to next; 

/* ********* bottom ********* */ 

bottom: call copy; 
I ngth • O; 
go to plnput; 

/* ********* backup ********* •I 

backup: 

newln: 

I ,. lndt; 
cal 1 copy; 
ca 11 sw It ch; 
lndf ,. l+l; 
do n • n to O; 

do lndf .. lndf·l to 1 by ·l; 
If substr(from_seg,lndf,1) • nl 
end; 

if n "'= O then do; 
lngth = O; 
n = l; 
i nd t, I nd f • 0; 
go to eof; 
end; 
end; 

/* Sl'IVP. ptr~ •/ 

/* restore otr~ •/ 
I• Note that "n" start~ ne11;at lvp, •/ 

/• too~ for ~e~lnlni nf 11nPS •/ 
then go to new1n; 

/•went of# top of fl1e •/ 
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indt ; indf; /* I inP starts <'IS inrlt •/ 334 
335 
33G 
337 
:s 38 
33~ 

340 
341 
3 4 2 
3 4 3 

substr(to_seg,l, indtl ; substr(fro"'_Sf'g,l, inrlt);/• 1•1nve 
do indf ; indt+l by 1 to csize; 

in tnp of filP */ 

subs t r ( l i n e, i n d f - i n d t, 1 ) ; subs t r ( fr or1_s e g, i n r f, 1 ) ; 
if subs tr<froci seg, i ndf, 1) ;n] then f'Jl tn line encl; 
end; - -

indf; csize; 
ine end: lngth; indf - inc!t; 

go to next; 

344 /* ********** "file" request ********** */ 
345 
34b file: 
347 
348 quitl: 
3~S 

350 
3)1 
))2 

call copy; /* 
ca 11 save; 
cal I hcs_$truncatP_srr(fror .. ,_ritr,O,core); 
enarne = 1111

; 

if code-; 0 then cilll u1ll_coc; 
return; 

5~5 /* **********write save********** */ 
354 
5J5 \,'save: 

Fini5r corY. •/ 

3 Ju 

3 ~ 7 
) ) 8 
3 5:] 

ciJllcopy; 
call save; 
r;o to next; 

I* Finish c0py, •/ 

I* Cortinur accPpting 

)CU /* ********* pof ********* */ 
3 u 1 

/* finr pnrl nf I inP •/ 
/* C'OVP into line •/ 
/* serircr for enrJ of line •/ 

rr>GtlPSts. •! 

3u2 eof: 
) (J 3 

ca 11 
ca 11 

ioa ("End of File re;icherl by:-;-a", 
res-;;-t reild; 

suhstr(buffrr, 1, co11nt-l)); 

3u4 go 
3 b ') 
3Uu /* ********** 
3 lJ 7 
3Gd error: 

ca 11 
ca 11 

to next; 

FI LE SYSTE~' FPRr:JR ********** •/ 

c0 l l _cor-1; 
r<:setread; 

3GJ 
3 7 u 
3 7 1 
3 7 2 
3 7 3 
3 7 4 
37) 

go to next; 

3 7G I* 
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*/ 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
>87 
388 
389 
Hu 
391 
392 
393 
394 
395 
396 
397 
3!:18 
399 
400 
401 
402 
403 
401+ 
405 
406 
40 7 
1108 
40:l 
410 
1111 
412 
1113 
41" 
1115 
416 
417 
418 
419 
420 
1121 
422 
1123 
1+24 
1+25 
1+26 
1+27 
1+28 
429 

/* ********* I N T E R N A l P R 0 C E 0 U R E S ********* */ 

copy: 

save: 

put: 

get: 

switch: 

procedure; 
substr(to_seg, indt+l, ln!';th) • sunstr(l ine,1, lnp:th); 
indt • indt + lngth; 
lngth • O; 

/• cony rest of file into to file •/ 
/* rony currPnt I inP, •/ 

if csize•O then return; 
ij • csize - indf; 
If lj>O then substrCto_seg,lnrlt+l,lj) 
lndt • lndt + ij; 

/* If new input, then 
I• rlo rPst of filP. •/ 

substr(from_seg,lndf+l,lj); 

nn copy neerlPrl, 

indf • cslze; 
/* set cr.unters •/ 

return; 

end copy; 

procedure; /* Procedure to write out "tri" i-.uffer. •/ 
call hcs_$truncate_seg(out_ntr,O,corle); 
If code ~. 0 then go to error; 
substr(out_seg,l,lndt) • substr(to_seg,l,lnrlt); 
call hcs_$set_bc_seg(out_ptr,lndt•9,code); 
If code ~. 0 then go to error; 
return; 

end save; 

procedure; 
substr(to_seg, lndt+l, lngth) • substr(l lne,l, lngth); 
lndt • lndt + lngth; 
lngth • O; 
return; 

end put; 

I* rlo nmvt> •/ 
/* st>t countt>rs •/ 
/* l'lf~carrl nlrl 1 lnp, •/ 

Procedure; /* Get next 1 lnp In f'rom sPg Into "l lne". •/ 
lngth • O; /* Reset current T lne length. •/ 
If lndf >• cslze then go to eof; /* If nn Input left, give un, •I 
lngth • lndex(substr(from_seg, lnrlf+l,cslze-lnrlf), nl ); /* Flnrl the next new l lne, •/ 
If lngth • 0 then lngth • cslze-lndf; /* If nn nl fnunrl, trPat end of seP.;ment as one. 
substr(llne,l,lngth) • substr(from_seg,lndf+l,lngth); /* Peturn the llnp to caller. •/ 
lndf • lngth+lndf; /* 11ove the "from" pointer ahl!!a<i nnl!! 1 lnl!!, •/ 
return; 

end get; 

procedure; 
exptr • from_ptr; 

/* m~kp fro~-flle to file, ~nrl v.v. •/ 
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430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 
444 
445 
446 
447 
1+48 
449 
450 
451 
452 
45 3 
454 
455 
45 b 
457 
458 
459 
4b0 
461 
4b2 
463 
4b4 
465 
466 
4b7 
468 
4&9 
470 
471 
472 
473 
474 
475 
476 
4 77 
478 
479 
480 
431 
482 
483 

reset read: 

from_ptr = to_ptr; 
to_ptr = exptr; 
csize = indt; 
indt, indf = O; 
l ngth = 0; 
return; 

end switch; 

procedure; 
call los_$resetrearl(ioname,status); 
return; 

end reset read; 

/* Call i /o system rest"t reerl eritry. */ 
/* In one Pl11ce tn minimize c~ll setup corle, */ 

cal l_com: procedure; /• ra11 cnm_err_ frorri standarrl nlace, •/ 

get_token: 

call com_err_Ccode,ednm,enane); 
return; 

end ca 11 _com; 

procedure; 

/* In or'le place to riinlmiZP. call setup code. */ 

tkn = 11 11
; /* ClP.11r out nl rl tnl-en. */ 

do edct = edct by 1 to count while (substrCbuffer,erlct,l) = 11 11 ); 

end; 
token_lth = index(substrCbuffer,Pr1ct,count-er1ctl, 11 11

); /• Scan to next blank. •/ 
alt_lth = index(substr(buffer,edct,count-edct), 11 

"); /• 1.t>ok for tat:> alsr.1. •/ 
if token_lth+al t_i th = 0 /* Pass token hac!r, •/ 

then token_lth =count - erlct; /* Neither fnunrl, use rest of line. •/ 
else do; /* One or both rlel!mlters were fnunrl, •/ 

if token lth•alt 1th = 0 /* rheck for hnth found. */ 
the; token_lth = token_lth+alt_lth-1; /* Only one, set alt_lth to It, •/ 
else token_lth = min(token_lth,alt_lth) - J; I• ~oth fnunrl, use smallest. 

end; 
token_lth = mln(8,token_lth); 
substr(tkn,l,token_lthl = substr(buffer,erlct,token_lth); 
edct = edct + token_lth; 

*/ 

if alt_lth > 0 then if alt_lth<token_lth then erlct = erlct - l; 
return; 

/* If lnitl11l rah, hack up scanner. 

end get_token; 

get_num: procedure; 
call get_token; 

cv_num: entry; 
n = cv_dec_Ctkn); 
if n = 0 then n = 1; 
return; 

end get_num; 

end eds; 

/* Routine tn convert token to binary lnte11:er. */ 
/* f'lel Im! t the token. */ 
/* fnter herp If tn~en already 11vallable. •/ 

/* Default count is 1. •/ 
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iJAMES DECLARED IM TH IS CQ/.\PI L/\TI ON, 

IDENTIFIER OFFSET LDC STORAGE CLASS 

NAMES DECLARED BY DECLARE STATEMENT. 
addr 

a 1 t 1th 000100 automatic 
break 000101 automatic 
brkl 000102 automatic 
buffer 000103 automatic 

code 000170 automatic 

com_err _ 000012 constant 
count 0U017l automatic 

csize 000172 automatic 

cu_$arg_ptr 000014 constant 
cv_dec_ 000016 constant 
divide 
edct 000173 automatic 

ednm 000174 automatic 
enarne 000175 automatic 
expand_path_ 000020 constant 
ex pt r 000206 automatic 
from_ptr 000210 automatic 

from_seg based 

globsw 000213 automatic 
hcs_$make_seg 0000211 constant 
hcs_$set_bc_seg 00002C constant 
hcs_$status_mins 000022 constant 
hcs_$truncate_seg 000030 constant 
i 000214 automatic 

i j 000215 automatic 

index 

indf 000216 automatic 

indt 000217 automatic 

DATA TYPF 

builtln function 

fixed bin(17,0) 
cha rCl) 
fixed binCl7,nl 
charC210) 

fixed binC35,0) 

entry 
fixed binC17,0l 

fixed binCl7,0) 

entry 
entry 
bulltin function 
fixed blnCl7,0) 

char(3) 
char(32) 
entry 
pointer 
pointer 

charC131072l 

bit Cl) 
entry 
entry 
entry 
entry 
fixerl bln(l7,0) 

fixed blnCl7,0) 

bulltin function 

fixed bln(l7,0) 

fixed binCl7,0l 

ATTP I ll!ITES A'ID P<"FrrinrCFS 

internal dcl r:< rrf 8n n,3 93 q3 q3 110 110 138 13R 
235 ?35 290 290 
dcl G set ref 4'7 458 4fil 461 463 4GR 4f8 
rlcl 7 set rPf 2~2 253 255 
dcl R set ref 2Sl 253 253 255 255 256 27~ 278 2?.l 
dcl g set ref 93 93 95 110 110 131 131 138 138 13n 
142 l~~ 206 247 247 2~2 253 255 273 278 231 2q5 
295 3C2 362 454 456 457 466 
dcl 10 SPt ref 74 84 85 93 94 C,5 97 ~~ 348 350 ~n7 
398 400 401 446 ' 
external dcl 51 ref 44(' 
rlcl 11 set ref 110 112 J31 131 138 13q 142 142 14~ 
160 160 1C2 193 206 246 247 247 253 255 256 295 
2gs 3E2 362 454 456 4~7 458 
initi?l rlcl 12 set ref 12 103 104 104 172 173 175 
177 177 178 179 198 2no 212 336 340 12 3~6 3R7 3nn 
41R 419 420 432 
external rlcl 52 rrf 84 
external ricl 53 ref 477 
internal rlcl 65 rPf 103 
dcl 13 sPt ref 113 160 160 lGO 162 lq3 1qs lqs 20G 
206 251 252 257 257 454 454 454 456 456 457 457 
452 466 467 467 45q 468 
initial rlcl 14 set rrf 14 14 446 
dcl 15 set ref 73 86 03 03 05 100 340 44F 
exterrii'tl r'cl 54 rrf 93 
rlcl lG set rPf 429 431 
rlcl 17 set ref 74 75 80 104 173 177 186 187 206 
209 212 215 218 325 335 337 338 348 388 4JQ 421 
429 430 
dcl 18 set ref 104 173 177 186 187 206 20~ 212 215 
218 325 33r, 337 338 388 419 421 
dcl 20 set ref 258 2f2 286 
extPrrial rlcl 56 ref 74 9'i 
external rlcl SS ref 400 
external rlcl 55 rf>f 97 
external rlcl 59 ref 348 397 
ncl 21 set ref q7 151 171 206 207 208 253 254 2'i5 
255 256 257 270 273 278 281 282 31~ 322 
rlcl 22 set ref 269 275 280 281 283 283 288 2~~ 28~ 
290 291 2~1 292 337 388 388 388 389 
Internal rlcl 65 ref 173 206 253 255 278 419 4'i6 
457 
inlti?l rlcl 23 set ref 23 169 175 178 184 187 187 
188 197 198 206 208 212 212 21f. 322 324 324 325 
330 334 336 337 337 338 34n 341 23 387 388 3QO 4J~ 
419 419 420 421 422 422 433 
initi~l rlcl 24 set ref 24 177 170 179 187 188 189 
196 215 217 217 319 330 334 335 335 336 337 341 
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24 323 384 384 388 389 389 399 399 400 408 4oq 4oq 
432 433 

ioa_ 000032 constant entry external rlcl 60 ref 100 109 131 137 232 247 295 
36? 

ioname 000220 automatic char(lO J in it I a 1 una 1 i o:ned rlc 1 25 set ref 25 25 440 
ios_$read_ptr 000034 constant entry external rlcl 61 ref 110 138 
ios_$resetread 000036 constant entry external rlc 1 F2 ref 440 
ios_hiri te_ptr 000040 constant entry extern;il rlcl 53 rpf 235 290 
j 000223 automatic fixed bin(17,0J ric 1 ?6 set ref 16" 172 173 173 182 182 184 12f l~F 

20~ 203 204 25~ 256 256 257 273 273 274 275 281 
2RJ 28~ 

k 000224 automatic fixed bin(17,0) rlc 1 27 SPt ref 173 174 182 185 136 186 lSF 208 2n9 
211 212 215 215 216 217 218 278 279 280 280 281 
232 283 

000225 automatic fixed binC17,0) dcl 28 set rl"f·2G9 
1 i ne 00022G automatic char(210) rlc 1 29 set ref 142 160 186 218 235 235 274 27R 2~0 

228 2~1 337 3R3 408 421 
1 ng th 000313 automatic fix erl b In Cl 7, n J in it i.1 l rlcl 30 Sf't ref 30 143 154 162 176 185 187 

1S7 183 216 218 2J8 230 235 235 266 274 274 275 l> 
273 288 288 289 292 314 328 341 30 383 383 384 38~ 
408 40~ 409 410 417 419 420 420 421 42J 422 4~4 (/) 

located 000314 autonatic fixerl binC17,0) rlc 1 31 set ref 244 ?72 285 294 -rn 000315 automatic fixeri binC17,0J r'cl 3 2 SP t rpf 109 177 177 177 179 187 187 1~7 l~R ::: 
197 2~4 2JS 215 215 217 269 278 278 280 282 282 -0 
2~n 7.~8 2P.R U9 r-

min builtin function internal rlcl 65 ref 235 235 463 465 fTI 

n 00 0316 autor,at i c fixer' bin(17,0J rlcl 33 SPt ref 151 !Ge 171 198 200 203 203 20G 219 -t 23G 2~6 2~7 2~9 293 300 300 323 323 327 320 477 m 
478 478 >< 

nl 000317 automatic char(l) in it r a 1 rlc 1 34 set rPf 34 173 209 212 325 33R 34 -t 
419 

nul 1 builtln function internal r'c 1 G5 ref 75 96 fTI 
out_count 000320 automatic fixed b in ( 2 4, O) rlc 1 36 set rPf 'l7 'l9 103 c 
out_ptr 000322 automatic pointer dcl 37 Sl"t rpf ~5 96 97 104 397 39'l 400 -
out_seg based char ( 131072 J rlcl 38 set ref 104 39q -t 
pre 000324 automatic f I xerl bin (17, 0) in it I a 1 ricl 39 set rPf 3q 110 138 235 235 3'l 0 
seg 100000 based f I xed b in (17, 0 J array level 2 dcl 67 set ref RO " sname_ l th 000325 automatic f i xerl bin (17, n J '1cl 40 set ref R4 '13 
sname_ptr 000326 automatic pointer dcl 41 set ref 84 ~3 
status 000330 automatic hit ( 7 2) rlcl 42 set ref 440 
substr builtln function internal rlcl F5 set ref 104 104 131 131 139 142 

142 160 160 173 177 177 186 186 187 187 206 20F 
209 212 2l5 215 218 218 247 247 252 253 255 273 
273 274 274 27R 278 280 280 281 281 2~R 2R8 2'll 
2'11 2'15 2~5 325 335 335 337 337 338 362 3n2 3R~ 
383 38R 388 39~ 39'l 408 408 419 421 421 454 456 
457 466 466 

templ 000332 automatic bit (1) dcl 43 set ref 268 271 284 290 
tkn 000420 automatic charCSJ rlcl 45 set ref 116 117 118 119 120 121 122 12~ J24 

125 126 127 2€1 262 453 466 477 
t l in 000333 automatic char(210) rlcl 44 set ref 273 274 280 281 288 290 290 291 
to_ptr 000422 automatic pointer dcl 47 set ref 80 177 187 215 335 383 388 399 40R 

43Q 431 
to_seg based char ( 1310 7 2 J d.c 1 4G set ref 177 187 215 335 383 388 399 408 
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token_lth 000212 automatic flxerl binC17,0) 

NAMES DECLARED BY DECLARE STATEMENT AND NEVER REFERENCED. 
mid based structure 
space based fixed bln(l7,0l 

NAMES DECLARED 
backup 
bottom 
ca 1 l_com 
chl 
ch2 
change 
COPY 
cprt 
cv_num 
del 1 in 
eds 
eof 
error 
ferror 
f i 1 e 
get 
get_num 
get_token 
I ncmplt 
input 
insert 
l_nl 
11 ne_end 
locate 
n_eof 
newln 
nex 1 in 
next 

nol ine 
nxarg 
pedlt 
pinput 
print 
pr Intl 
put 
quitl 
reset read 
retype 
save 
skipch 
swl tch 
top 
wsave 

BY EXPLICIT CONTEXT, 
002113 constant 
002110 constant 
002577 constant 
001542 constant 
001616 constant 
001362 constant 
002334 constant 
002007 constant 
002771 constant 
000645 constant 
000102 constant 
002275 constant 
002331 constant 
000226 constant 
002245 constant 
002501 constant 
002763 constant 
002626 constant 
001366 constant 
000610 constant 
000664 constant 
001205 constant 
002241 constant 
001072 constant 
000751 constant 
002162 constant 
000707 constant 
000417 constant 

001353 constant 
001515 constant 
000404 constant 
000575 constant 
001311 constant 
001330 constant 
002460 constant 
002247 constant 
002560 constant 
000665 constant 
002413 constant 
002036 constant 
002543 constant 
002105 constant 
002272 constant 

THERE WERE NO NAMES DECLARED BY COVTEXT OR IMPLICATION, 

label 
1 abel 
entry 
la be 1 
label 
lahel 
entry 
label 
entry 
label 
entry 
label 
label 
label 
label 
entry 
entry 
entry 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 

label 
label 
label 
1 abel 
label 
label 
entry 
label 
entry 
label 
entry 
label 
entry 
label 
1 abel 

rlcl 1q sPt ref 456 458 458 461 461 461 463 463 4n5 
465 466 46F 457 468 

level 1 unal lgnerl rlcl 67 
array levpl 2 r!cl F7 

dcl 319 ref 168 319 
dcl 313 ref 126 313 
Internal -icl 445 ref 77 87 350 368 445 
rlcl 268 ref 268 303 
rlcl ~78 rpf 278 286 
dcl 244 rPf 122 244 
internal dcl 382 ref 222 307 313 320 346 355 382 
dcl 2'10 ref 276 290 
Internal rlcl 476 ref 263 476 
dcl 149 ref 123 149 
external rlcl 1 rPf 1 
rlcl 362 ref 175 180 224 331 362 418 
dcl 368 ref 368 39~ 401 
dcl SC ref 86 94 ~6 9P 
rlcl 346 ref 121 346 
Internal rlcl 416 ref 152 23q 302 4ln 
internal dcl 474 ref 149 167 228 474 
Internal dcl 452 ref 114 260 452 475 
dcl 247 ref 193 247 254 
rlcl 138 ref 138 144 
dcl 159 ref 116 159 
de 1 2 J. 2 rP f 2 0 9 212 
dcl 341 ref 338 341 
dcl 193 rpf 118 193 
rlcl 175 ref 172 175 
dcl 333 ref 325 333 
dcl 167 ref 120 167 
dcl 110 ref 110 112 133 155 163 189 237 24q 2qg 
30~ 342 358 3f.4 371 
dcl B6 ref 233 236 
rlcl 260 ref 260 264 
dcl 109 ref 109 139 
dcl 137 rPf 1n1 127 137 315 
dcl 228 rPf 119 228 
dcl 235 rpf 220 235 240 
Internal rlcl 407 rPf 141 159 170 19q 238 301 4n7 
rlcl 34S ref 88 348 
Internal rlcl 439 ·ref 132 248 296 ~63 370 43q 
dcl 160 ref 117 160 
Internal rlcl 396 ref 347 357 396 
dcl 293 ref 266 293 
internal rlcl 428 ref 202 223 308 321 428 
rlcl 307 ref 125 307 
dcl 355 ref 124 355 
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Sl DRAGE REQU I RE11ENTS FOR TH IS PROGPMI, 

Sta rt 
Length 

Object 
0 

3456 

Text 
0 

3015 

Link 
3 lb2 

42 

Symbol 
3224 

217 

De fs 
3015 

145 

Static 
3172 

2 

External procedure eds uses 496 words of automatic storage 
Internal procedure copy shares stack frame of parent block 
Internal procedure save shares stack frame of parent block 
Internal procedure put shares stack frame of parent block 
Internal procedure get shares stack frame of parent block 
Internal procedure switch shares stack frame of parent block 
Internal procedure resetread shares stack frame of parent block 
Internal procedure call_com shares stack frame of parent block 
Internal procedure get_token uses 68 words of automatic storage 
Internal procedure get_num shares stack frame of parent block 

THE FOLLO\·/I r:G EXTERNAL DPER1\TDRS ARE 
r_e_as 
cal 1 ext out 
shorten_stack 
rpd_loop_l_lp_bp 

r _le_a 
call_int_this 
blank csa 
rpd_loop_l_bp_lp 

USED BY TH IS PPDGRM', 
alloc_cs move_csa csa_mnve call_ext_out_rlesc 
return 
index_cs_co 

set csa 
inrlex_cs_l_co 

set_cs_cn cs_move_co 
ext_entry int_entry 

THE FOLLO\llf'G EXTERr:AL 
corn err 
hcs=$make_seg 

ErJTRIES ARE CALLED B'f THIS PllDr.RAll, 
cu_$arg_ptr cv dee 

hes $status mins 
ios=$resetrearl 

ex pa nrl_ra tli_ 
hcs_$set_bc_seg 

ioa_ i os_$ read_pt r 

f;D EXTER!JAL VARIABLES ARE USED BY THIS PROGRAM. 

LI ,<E LDC LI l<E LDC L HIE LDC 
1 000100 12 000107 14 000110 

34 000122 39 000124 73 00012G 
80 000202 84 000205 85 000224 
94 000256 95 000250 96 000327 

lJl 000375 103 00037.6 104 000400 
114 000441 116 000445 117 000452 
122 000503 123 000510 124 000515 
132 000572 133 000574 137 000575 
143 000642 144 000644 149 OOOG45 
155 OOOGG3 159 0006G4 160 0006G5 
1L9 000712 170 000715 171 000716 
176 000754 177 000755 178 001003 
184 001015 185 001017 186 001021 
195 001075 196 001076 197 001100 
203 1)01116 203 001124 204 001125 
210 001201 211 001204 212 001205 
218 001270 219 001303 220 001305 
230 001312 232 001314 233 001327 
239 001360 240 001361 244 001362 
251 U01422 252 001425 253 001435 

LI "E LDC LI f1E LCIC 
23 000112 24 oon1l3 
74 000134 75 000174 
8C 000226 87 000231 
97 000333 9~ 000~5'1 

10~ 000404 110 000417 
118 000457 119 01)04611 
125 000522 126 000527 
138 000610 1)0 000625 
151 OOOG4G 152 000657 
1G2 000703 163 00070G 
172 000726 173 000731 
179 001005 12rJ OOlOJl 
127 00ln3S ma on1or,4 
1'18 001102 l'l'1 0011(15 
206 001127 207 001157 
214 001231 215 001233 
222 00130G 223 0013n7 
235 001330 23E 001353 
24G 001363 2117 0 013 6 E 
254 0014511 255 0014c;G 

hes $truncate se~ 
i 0s=~1·1r i te_ot-;: 

LI "F Lf )C LI "I' LOr 
25 000114 30 000121 
77 000200 78 000201 
8° O'l0232 93 1)00233 
9'l 000352 100 000354 

lP '1~011~4 113 000437 
120 000471 121 000476 
127 000534 131 000541 
141 000634 142 000635 
153 OOOGfO 154 000~62 
167 OIJ07fl7 l(i8 000710 
1 711 00 07 4 7 175 000751 
1R2 no1012 18~ 001013 
JR'l on1r71 193 001072 
2no ori11ofi 202 00lll5 
20~ fJOllGJ 209 001167 
216 0012El 217 001264 
224 O'll3ln 228 001311 
237 001355 238 001357 
24C 001417 249 001421 
256 00147~ 257 001505 
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258 001512 259 001513 2GO 001515 261 001521 262 001525 263 001536 264 001537 \.n 

266 001540 268 001542 269 001543 270 001547 271 001552 272 0015511 273 001556 .i::.-

274 001575 275 001611 276 001615 278 001616 279 001653 230 00lfi56 281 001677 
282 001732 283 001737 284 001744 285 001746 286 001750 2~8 0017~2 289 002003 
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Handling Large Files on l>'1ultics 

A frequent point of confusion about Multics concerns the 
handling of large data files within the segmented virtual memory 
environment. A .fll..e., in hultics terminology is a (usually 
structured) collection of data of arbitrary size. A file which 
happens to require less than 256K words of storage is usually 
stored in a single segment of the t~ultics storage system, and is 
addressed by mapping the segment containing the entire file into 
the current address space. Source and object programs, and 
smal 1, linear ASCII text files are examples of files handled this 
way. A file which is larger than 256K words (or which is smaller 
but may someday grow that large) is usually stored in several 
segments in a single directory in the Multics storage system, and 
is addressed by mapping relevant parts (records) of the file into 
the current address space. The directory contains, in addition 
to the raw data of the file, any maps or indexes needed to 
maintain its internal organization. Three file management 
facilities (sometimes called Access Methods on IBM systems) are 
available to handle the details of setting up, indexing, and 
searching of files. These are: 

1. Multi-segment files (MSF): There is a system-wide 
standard format for ASCII text files which require more 
than 256K words of storage. Most translators, for 
example, are prepared to produce very long output 
listings for the printer using this format; the high 
speed line printer facilities also recognize the 
format. 

2. File manager: A general purpose, record-oriented file 
manipulation system provides sequential record files 
and indexed (keyed) record files of up to 100 mill ion 
bytes. The files are accessed using the virtual 
memory: one calls to the file manager giving the index 
or key of the record desired; the file manager returns 
a pointer to the location of that record in the address 
space, and the program then can manipulate the contents 
of the record using, for example, a PL/I based 
structure. The file manager provides interlocking 
facilities for multiple users, and also guarantees 
integrity of a file in the case where a system failure 
occurs while the user is updating the file. The MPM 
reference guide section on the file manager, and 
write-ups of a set of subroutines beginning with the 
name fm_ should be consulted for further information. 

3. PL/I record-oriented 1/0: The full ANSI standard PL/I 
1/0 system is implemented on fiultics*, allowing 
construction of a data manipulation system which is in 
principle system independent. Since the PL/I 1/0 
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system uses the f:iultics File r'1anager (2, above) very 
large files can be efficiently set up, updated, and 
searched using only the PL/I language. For further 
information, one should consult the PL/I language 
specifications. 

In addition, users with unusually sophisticated needs such 
as completely inverted files, files with indexes on different 
elements, etc., will find that appropriate facilities can easily 
be developed using the virtual memory combined with techniques 
similar to those used by the tlultics File Manager. It is 
important to realize that the Multics File Manager, while 
organized as a protected subsystem, is written in PL/I, using 
only Multics facilities which are also available to the user. 
Thus, a user could construct his own version of the File Manager, 
or a more elaborate file accessing system without recourse to 
special privileges or need to modify the Multics supervisor. 

Finally, the Multics 1/0 system, which is organized to allow 
attachment of arbitrary source-sink 1/0 devices, may be used to 
read and write magnetic tape in any of several formats, for 
applications in which permanent on-1 ine storage is not 
appropriate. 

Unfortunately, there does not yet exist a suitable set of 
annotated case studies on the use of the f i .1 e management 
facilities. The potential developer of a large file application 
is advised to begin by reviewing one or more applications 
previously implemented on Multics and which use these tools. 
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