@

Included
i i ln dO i i S®
| ® Windows CE 3.0 Programming
| for Pocket PC®, Handheld PC,
and embedded devices
® Enterprise computing
including COM, DCOM,
database access using
. ADOCE, and Microsoft®

Message Queue

® Communications, including

A P P I-I c ATI O N Web access with HTTP. TCP/IP
sockets, serial communications,
and desktop synchronization
PROG RAMMI N G with ActiveSync® 3
2

Build and run applications in
Visual C++°® using Microsoft
Foundation Classes

¢ CD-ROM with eMbedded
Visual C++ 3.0 and Pocket
PC SDK

Nlick Grattan
Marshall Brain

28 MICROSOFT TECHNOLOGIES SERIES

"o 0°C 70 SMOpUIM

S

o
o

-

-

-
o
-

L

=
o

i
o
-

e

i
.
.

it
L

.
.

i

o

o

o
L

i

T
i

el

e
e

o

o

S

o

-
e

e
Shhi
-

iz

e
o

L

.

i

R e e B R R
L

iy
it . e
s S
e i

e e

. e

-

|
Loy e
e

e

o

P
joo e
sl e
=

.

255921

780130

o
s
£

seloie

¥ ot
o . o

.

.

i

S e

i

e

.

e
o

et

S

e S
- s s

5 i . m

L
Sl

o

e . o
...

PRENTICE HALL PTR MICROSOFT® TEC

NETWORKING

Microsoft Technology: Networking, Concepts, Tools
Woodard, Gattuccio, Brain

NT Network Programming Toolkit

Murphy

Building COM Applications with Internet Explorer
Loveman

Understanding DCOM
Rubin, Brain

Web Database Development for Windows Platforms
Gutierrez

PROGRAMMING

The Windows 2000 Device Driver Book, Second Edition

Baker, Lozano

‘WIN32 System Services: The Heart of Windows 98
and Windows 2000, Third Edition

Brain, Reeves

Programming the WIN32 API and UNIX System Services

Merusi

‘Windows CE 3.0: Application Programming
Grattan, Brain

The Visual Basic Style Guide
Patrick

Windows Shell Programming
Seely

Windows Installer Complete
Easter

Windows 2000 Web Applications Developer’s Guide
Yoger

Developing Windows Solutions with Office 2000
Components and VBA

Aitken

Multithreaded Programming with Win32

Pham, Garg

Developing Professional Applications

for Windows 98 and NT Using MFC, Third Edition
Brain, Lovette

Introduction to Windows 98 Programming
Murray, Pappas

The COM and COM+ Programming Primer
Gordon

Understanding and Programming COM+:
A Practical Guide to Windows 2000 DNA
Oberg

Distributed COM Application Development Using
Visual C++ 6.0

Maloney

Distributed COM Application Development Using
Visual Basic 6.0

Maloney

The Essence of COM, Third Edition

Plati

COM-CORBA Interoperability

Geraghty, Joyce, Moriarty, Noone

MFC Programming in C++ with the Standard Template
Libraries

Murray, Pappas

Introduction to MFC Programming with Visual C++
Jones

Visual C++ Templates

Murray, Pappas

Visual Basic Object and Component Handbook
Vogel

Visual Basic 6: Error Coding and Layering

Gill

ADO Programming in Visual Basic 6

Holzner

Visual Basic 6: Design, Specification, and Objects
Hollis

ASP/MTS/ADSI Web Security
Harrison

BACKOFFICE

Designing Enterprise Solutions with Microsoft
Technologies
Kemp, Kemp, Goncalves

Microsoft Site Server 3.0 Commerce Edition
Libertone, Scoppa

Building Microsoft SQL Server 7 Web Sites
Byrne

Optimizing SQL Server 7
Schneider, Goncalves
ADMINISTRATION

Microsoft SQL Server 2000
Fields

Windows 2000 Cluster Server Guidebook
Libertone

Windows 2000 Hardware and Disk Management
Simmons

‘Windows 2000 Server: Management and Control,
Third Edition

Spencer, Goncalves

Creating Active Directory Infrastructures
Simmons

‘Windows 2000 Registry

Sanna

Configuring Windows 2000 Server

Simmons

Supporting Windows NT and 2000 Workstation
and Server

Mohr

Zero Administration Kit for Windows

Mclnerney

Tuning and Sizing NT Server
Aubley

Windows NT 4.0 Server Security Guide
Goncalves

Windows NT Security

Mclnerney

CERTIFICATION
Core MCSE: Windows 2000 Edition
Dell
Core MCSE: Designing a Windows 2000 Directory
Services Infrastructure
Simmons
Core MCSE
Dell
Core MCSE: Networking Essentials
Keogh
MCSE: Administering Microsoft SQL Server 7
Byrne

MCSE: Implementing and Supporting Microsoft
Exchange Server 5.5
Goncalves

MCSE: Internetworking with Microsoft TCP/IP

Ryvkin, Houde, Hoffman

MCSE: Implementing and Supporting Microsoft Proxy
Server 2.0

Ryvkin, Hoffman

MCSE: Implementing and Supporting Microsoft SNA
Server 4.0

Mariscal

MCSE: Implementing and Supporting Microsoft Internet
Information Server 4

Dell

MCSE: Implementing and Supporting Web Sites Using
Microsoft Site Server 3
Goncalves

MCSE: Microsoft System Management Server 2
Jewett

MCSE: Implementing and Supporting Internet Explorer 5
Dell

Core MCSD: Designing and Implementing Desktop
Applications with Microsoft Visual Basic 6
Holzner

Core MCSD: Designing and Implementing Distributed
Applications with Microsoft Visual Basic 6
Houleite, Klander

MCSD: Planning and Implementing SQL Server 7
Vace
MCSD: Designing and Implementing Web Sites with

Microsoft FrontPage 98
Karlins

L

-

.

.

.

L

D

-

o

L

.

.

-

5

L
i o

e
L

o

-

-

.

o
e

i

o

e

S
o

S
4

e

=

e
L

-
-
-

=

—

L

2
e

-
-

e

L

.

s A
someRn i
G henea e
..
e
S e

.

e

G

i

.

i

e
.

s

.

o
e
i

S

L
B

et

o

o

o

e

o

L
e

.

&F;ie

i
e
.

L

.

e
o

.

i

R

-

-

G

L

e

-
o

o

.
.

.

o

e
o

o

L

.

i
S

i

:
o
S
o

e

o

.

o
o

-

e

Tl

.

e e
St e

.
e

i
.

.

o

o

e
e
G
o

.
.

o

L

.

e

o

L
e

e

e

s
.

.

.

-

e

-

-
-

-
-

-
.
.
.
s

i

.
.

;%?

-
i

e
.
.
.

-
o

-

L

L

o
e

L
o

.
.
i

-

e

S
.
G
-
o

.
.

et
.
.

o

- .
e
-

L

T

feer

o
-

o
e
-

-
e

o

S

.

o

o

:

.
.

LR

L
o
e

Lo

o
.

e

.

.

e
e
A

o

.
-

S
G

o
o

o

o
.

-

i

i

s

-

e
s

.
.

nh

S
-

o
o

L

Library of Congress Cataloging-in-Publication Data
Grattan, Nick.

Windows CE 3.0 : application programming / Nick Grattan, Marshall Brain.

p- cm!— (Prentice Hall series on Microsoft technologies)

ISBN 0-13-025592-0

1. Application software —Development. 2. Microsoft Windows (Computer file)
I. Brain, Marshall. 1L Title. III. Series.
QA76.76.D47 G76 2001
005.4'469—dc21

00-063708

Editorial /Production Supervision: G &S Typesetters
Acquisitions Editor: Mike Meeban
Editorial Assistant: Linda Ramagnano
Cover Design Director: Jerry Votta
Cover Designer: Anthony Gemmellaro
Manufacturing Manager: Alexis R. Heydt
Series Design: Gail Cocker-Bogusz
Marketing Manager: Debby van Dijk
Art Director: Gail Cocker-Bogusz
Buyer: Maura Zaldivar

Project Coordinator: Anne Trowbridge

9S8 © 2001 by Prentice Hall PTR
|5yl Prentice-Hall, Inc.
g pper Saddle River, New Jersey 07458

Prentice Hall books are widely used by corporations and government agencies for
training, marketing, and resale. The publisher offers discounts on this book when
ordered in bulk quantities. For more information, contact:

Corporate Sales Department,

Prentice Hall PTR

One Lake Street

Upper Saddle River, NJ 07458

Phone: 800-382-3419; FAX: 201-236-7141
E-mail (Internet): corpsales@prenhall.com

All rights reserved. No part of this book may be reproduced, in any form
or by any means, without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1
ISBN 0-13-025592-0

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delbi
Prentice-Hall of Japan, Inc., Tokyo

Pearson Education Asia P.T.E., Ltd.

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

To my parents, Bob and Mildred Grattan.
Thanks for everything.
NG.

Preface i

Acknowledgments xxiii

v ONE Introduction 1

About Microsoft Windows CE 3
Microsoft Pocket PC 4
Handheld PC 4
Palm Size PC 5

About This Book 5

About You &

About MFC (Microsoft Foundation Classes) and ATL (ActiveX Template Libraries)
eMbedded Visual (++ 3.0 &

Common Executable Format (CEF) 9
Emulation Environments 9

The Code Samples o

Unicode Text and Strings 11
Generic String and Character Data Types 12
String Constants 13
Calculating String Buffer Lengths 74
Standard String Library Functions 74
Converting Between ANSI and Unicode Strings 14

Error Checking 16
Exception Handling and Page Faults 16
Conclusion 15

vTWO0 Files 19

Overview 20
Opening and Reading from a File 20

iX

Contents

Getting and Setting File Information 25
Getting the File Times 25
Getting File Size 26
Getting File Attributes 28
Getting All File Information 30
File Operations 32
File Reading and Writing 33
File Mapping 38

Conclusion 44

v THREE Object Store, Directory, and Network Operations

Getting Object Store Free Space 46

(reating and Deleting Directories 47
Traversing Directory Trees 49

Compact Flosh and Other Storage Devices 52
Auto-Run Applications on Compact Flash Cards 53
Enumerating Compact Flash Cards 54

WNet Functions 55
Enumerating Network Resources 56

Adding and Canceling Connections 61
Adding and Canceling Connections With Dialogs 63
Using Network Printers 65
Getting User Names 66
Listing Current Connections 67

Conclusion 69

v FOUR Property Dafabases and the Registry 70

Database Volumes 71
Creating and Mounting Database Volumes 71
Unmounting a Volume 73

Flushing a Database Volume 73
Listing Mounted Database Volumes 74

Properties 75

45

Contents

Sort Orders 76

Creating a Property Database 77

Opening and Closing Property Databases 79
Deleting Property Databases sz

Wiiting Records s2

Reading Records s+

Using the CEVT_BLOB Property Data Type 87
Searching for Records ~ ss

Deleting Properties and Records o1
Updating Database Records o2

Database Notifications o4

Listing Database Information o6

Changing Database Attributes 99

Using MFC Classes with Property Databases 101
Opening and Creating Databases 101
Reading and Writing Records 102
Secking to Records 7104
Deleting Records and Properties 104
Serialization and BLOBs 104

Accessing the Registry 107
Adding and Updating Registry Keys and Values 108
Querying a Registry Value 170
Deleting a Registry Value 112
Deleting a Registry Key 113
Enumerating a Registry Key 113
Implementing a Record Counter using the Registry 117

Conclusion 179

v FIVE Processes and Threads 120
Creating a Process with CreateProcess 121
Process Kemel Object Handles and Identifiers 123
Creating a Process with ShellExecutefx 124

Xi

Xl Contents

Waiting for a Process fo Terminate 125

Process Exit Code 127

Listing Running Processes 127

Modules Used by a Process 129

Terminating a Process 131

Determining If a Previous Instance of a Process Is Running 132

Threads 133
User-Interface and Worker Threads 133
Accessing Global and Local Variables In Threads 134
Using Correct Thread Processing 134

Creating a Thread 136

Terminating a Thread and Thread Exit Codes 137
Thread States 139

Thread Scheduling 140

Thread Priorities 141

Enumerating Threads 143

Determine Thread Execution Times 144
(reating Threads with MFC 144
Conclusion 145

v SIX Thread Synchronization 146

The Need for Synchronization ~ 146

Ciitical Sections 151

The Interlocked Functions 154

WaitforSingleObject and WaitForMultipleObjects 154
Using Mutex Objects 156

Using Event Objects 158

Using Semaphores 163

Selecting the Correct Synchronization Technique 165
Thread Local Storage and Dynamic Link Libraries 165
Conclusion 169

Contents

v SEVEN Nofifications 170

Running an Application at a Specified Time 171
Using Mini-Applications with Notification 171
Starting an Application on an Event 175
Manually Controlling the LED 277

User Notification 779

CeSetlserNofificationEx 152

Conclusion 184

v EIGHT Communications Using TCP/IP: HTTP and Sockets

Overview of TCP/IP Communications 186
Programming the HTTP Protocol 187
Simple HTTP Requests 157

Initializing the Internet Function Library—InternetOpen 788
Making the HTTP Request—InternetOpenUrl 790
Retrieving the Data—InternetReadFile 790

Tidying Up—InternetCloseHandle 17971

More Complex HTTP Requests Using a Session 193
Cracking the URL—InternetCrackUrl 1793
Connecting to a Server—InternetConnect 795
Obtaining a Request Handle—HttpOpenRequest 796
Making the Request—HttpSendRequest 797

Using a Proxy Server 200

Connecting fo Secure Sifes 201
Authentication with InternetErrorDlg 202
Authentication with InternetSetOption 204

Sending Data to o Server 205
Sending Data with the URL 206
Posting Data to the Server 208

HTIP in Summary 210

Socket Programming 220
Socket Clients and Servers 211
Initializing the Winsock Library 213

Xin

185

XIv Contents

Manipulating IP Addresses 214

Determining a Device’s IP Address and Host Name 215
Implementing a Ping Function 217

Simple Socket Sample Application 220

The Socket Client Application 220

Integer Byte Ordering 225

The Socket Server Application 226

Lingering and Timeouts 237

Infrared Data Association (IrDA) Socket Communications 232
Enumerating IrDA Devices 232

Opening an IrDA Socket Port 234

Conclusion 235

v NINE ~ Serial Communications 236

Basic Serial Communications 236
Opening and Configuring a Serial Communications Port 237
Reading Data from the Communications Port 243
Closing a Communications Port 245
Writing to a Communications Port 246
Testing Communications 247

GPS and NMEA 247
The NMEA 0183 Standard 248

Connecting Windows CE and GPS Devices 250
Reading Data from a GPS Device 250

Infrared and Other Devices 255
Conclusion 256

v TEN The Remote API (RAPI) 257

Initializing and Un-initializing RAPI 258
Handling Errors 259
A Simple RAP! Application— Creating a Process 260

Overview of RAPI Functions 263
File and Folder Manipulation 263
Property Database RAPI Functions 266

Contents

Registry RAPI Functions 267
System Information RAPI Functions 269
Miscellaneous RAPI Functions 270

Wite Your Own RAPI Functions with CeRapilnvoke 271
A CeRapilnvoke Blocking Function 2771
RAPI Stream Functions 276

Conclusion 283

v ELEVEN Telephone API (TAPI) and Remote Access
Services (RAS) 284

Introduction to Telephone API (TAPI) 285
Line Initialization and Shutdown 2s6

Fnumerating TAPI Devices 2ss
Negotiating TAPI Version 288
Getting Line Device Capabilities 289

Making a Call with TAPI 202
Opening a Line 293
Translating a Telephone Number 294
Making the Call 296
Line Callback Function 298
Shutting Down a Call 300

Communicating Through an Open Call - 300
Obtaining a Communications Port Handle 3071
Sending and Receiving Data 303

Remote Access Services (RAS) 304
Listing RAS Phone Book Entries 305
Making a RAS Connection 307
Monitoring a RAS Connection 309
Dropping a RAS Connection 310
Testing for an Existing RAS Connection 310

Conclusion 312

v TWELVE Memory Management 313

The Virtual Address Space 313
Allocating Memory for Data Storage 314

XV

XVi

Contents

Obtaining System Processor and Memory Information 315
Obtaining the Current Memory Status 317

Application Memory Allocation 318
Global and Static Memory Allocation 318
Heap-Based Allocation 379
Stack-Based Allocation 320

(reating Your Own Heaps 320
Using Heaps with C++ Classes 322

Handling Low-Memory Situations ~ 324
Responding to a WM_CLOSE Message 324
Responding to a WM_HIBERNATE Message 325

Conclusion 325

v THIRTEEN ~ System Information and Power Management

Operating System Version Information ~ 326
The SystemParametersInfo Function 327

Power Management 328
Power Management States 328
Changing from On to Idle State 329
Changing from Idle to Suspend State 330
Monitoring Battery Status 330
Powering Off a Device 334

Conclusion 334

v FOURTEEN COM and ActiveX 335

Introduction to the Component Object Model (COM) 335
COM Components 336
COM Interfaces 336
The IUnknown Interface 337
Globally Unique Identifiers (GUIDs) 338
Programmatic Identifiers (ProgIDs) 339
COM Components and the Registry 339
The HRESULT Data Type and Handling Errors 340

326

Contents

Interface Definition Language and Type Library
Information 340

POOM—The Pocket Office Object Model 341

Using COM Components ~ 343
Initializing and Uninitializing COM 343
Creating a COM Object 344
Calling COM Functions 346
The BSTR Data Type 346
Releasing COM Interfaces 347
Finding a Contact’s Email Address 348
Calling QueryInterface 350
Adding a Contact 352

Using Smart Pointers ~ 353
(reating a Recurring Appointment 356

ActiveX and Automation 359
_bstr_t and _variant_t Classes 359
Automation Displnterfaces 359
The IDispatch Interface 360
Obtaining an IDispatch Interface Pointer 360
Obtaining Dispatch Identifiers 361
The VARIANT Data Type 362
Using an Automation Property 364
Calling Automation Methods 365

Using Automation Objects with MFC 368
Creating a COleDispatchDriver-Derived Class 369

Using the IPOutlookApp Class 3771
Conclusion 373

v FIFTEEN ~ Microsoft Message Queve (MSMQ) 374

Overview of Microsoft Message Queve 375

Installation 376
Installing MSMQ on Windows CE 377

Installing MSMQ on Windows 2000 378
Managing DNS Entries 378
IP Network, RAS, and ActiveSync 379

XVii

XViii

Contents

Managing Queues on Windows 2000 3s0
Creating a Private Queue 380
Reading Messages from a Queue in Windows 2000 3871

Sending Messages from Windows CF 354
(reating a New Queve 389

Reading Messages from a Queve 392
Reading Other Message Properties 397
Peeking Messages and Cursors 398
Callback Function and Asynchronous Message Reading 401

Message Timeouts, Acknowledgements, and Administration Queves 405
Message Transactions 410
Conclusion 411

v SIXTEEN ADOCE and SQL Server for Windows CE 412
Installing SQL Server for Windows CF 413

ADOCE and ADOXCE 413

Using Smart Pointers with ADOCE 413

Using _bstr_t and _variant_t Closses 416

Creating a Catalog (Database) 416
Opening a Database (Catalog) 418
Creating a Table 418

Enumerating Tables in a Catalog 421
Dropping a Table 422

Adding Records to a Table 422
Retrieving Records from a Table 428
Connection Object 431

Deleting Records 432

SQL Data Definition Language (DDL) 433
Using CREATE TABLE 433
Using DROP TABLE 435
Using Identities and Primary Keys 435
Indexes 436

Contents

INSERT Statement 437
Error Handling 440
Transactions 442
Conclusion 443

v SEVENTEEN ~ ActiveSync 445

ActiveSync Items, Folders, and Store 446
Item 446
Folder 446
Store 447

Steps fo Implement Device Synchronization 447
Steps fo Implement Desktop Synchronization 448
Additional Steps for Continuous Synchronization 449
The Sample Application 449

Installation and Registration 450

Data Organization 453

Important Note 453

Implementing the Windows CF Device Provider 453
InitObjType Exported Function 454
ObjectNotify Exported Function 454
GetObjTypelnfo Exported Function 456

Implementing the Device IReplObjHandler COM Interface 457

Serialization Format 458
IReplObjHandler::Setup 459
IReplObjHandler::Reset 460
IReplObjHandler::GetPacket 460
IReplObjHandler::SetPacket 461
IReplObjHandler::DeleteObj 462

Implementing the Desktop Provider 462
Representing HREPLITEM and HREPLFLD 462
Storing Data on the Desktop 463
Implementing IReplStore 463
IReplStore Initialization 464
Store Information and Manipulation 465

XiX

XX

Contents

Folder Information and Manipulation 467

Iterate Items in a Folder 468

Manipulating HREPLITEM and HREPLFLD Objects 469
HREPLITEM Synchronization 472

Implementing the Desktop IReplObjHandler COM
Interface 474

IReplObjHandler:: Setup 474
IReplObjHandler:: Reset 475
IReplObjHandler::GetPacket 475
IReplObjHandler::SetPacket 476
IReplObjHandler::DeleteObj 477

Conclusion 478

Index 479

This book, in concept and design, grew out of the book Win32 System Services,
written by Marshall Brain (1995, Prentice Hall PTR). There are many similarities
between Win32 programming on Windows NT/98/2000 and Windows CE pro-
gramming, such as file I/O, processes, and threads. There are many differences,
too—Windows CE uses a smaller API (Application Programming Interface) and
has fewer security functions and no services. Also, each type of programming
emphasizes different issues. Windows CE devices, such as Pocket PC, need to
communicate using a wide variety of techniques. These devices also must store
data locally so that users can manipulate data when not connected to enterprise
networks. This data (or more specifically, changes to this data) then has to be
communicated back to the databases located on enterprise servers. The impor-
tance of this process is reflected in this book’s content, and draws on my ex-
periences in writing enterprise solutions using Windows CE.

Like Brain’s original book, this book, for three main reasons, does not
cover user interface programming. First, Windows CE user interface program-
ming is very similar to Win32, albeit with some differences in the shell and the
form factor (the size of the screen). Second, many embedded devices using
Windows CE do not have a display, making user interface development irrele-
vant to a significant number of programmers. Third, in more and more cases
Pocket Internet Explorer is used to present the user interface, with some amount
of Windows CE code to allow disconnected access to data.

I hope this book helps you to overcome the challenges in writing appli-
cations for mobile, wireless, and embedded devices using Windows CE, and to
gain from the tremendous opportunities in this area.

XXi

This book owes its existence to Mike Meehan, Senior Acquisitions Editor at
Prentice Hall PTR. Mike has always been there to answer queries, provide sug-
gestions, and move the project toward completion. Thanks.

I would like to thank Microsoft Corporation for a constant supply of timely
information and software. In particular, Dilip Mistry, Chris Stirrat, and Megan
Stuhlberg always came up with the goods.

My special thanks to my family—Therese, Hannah, and Tim—for their
great patience throughout another writing project. The next one will be easier!

The staff at G&S Typesetters in Austin, Texas, did a really great job in tak-
ing my words and making them understandable and well presented. Those who
helped included Alison Rainey, Joshua Goodman, and Carolyn S. Russ.

Finally, I would like to thank in advance you, the readers, who provide
very valuable feedback, criticism, and encouragement. Please feel free to email
me at the address below. I will try to answer as many of the emails as possible.

Nick Grattan

Dublin, Ireland

August 2000
development@softwarepaths.com

ose

XX

ntroduction

Around twenty years ago a computer revolution started when the IBM PC was
released. The IBM PC took computing away from the air-conditioned environ-
ment of the mainframe and minicomputer and put it onto the desk of poten-
tially everyone. Nowadays most workers have a PC on their desk, and many
have a PC at home, too. Laptop computers allow users to have one computer
that can be used both at home and at work, as well as on the road. PCs are ge-
neric computing devices providing tremendous computing power and flexibil-
ity, and all PCs in the world from laptops to desktop PCs and through to servers
have fundamentally the same architecture. Living through the PC era has been
fun, frustrating, and exciting. However, there is an even bigger revolution on
the way with more potential and even more challenges—the move to truly
mobile-device-based computing.

In the last few years computing devices have been coming onto the mar-
ket that provide unparalleled portability and accessibility. Microsoft Windows
CE devices, such as the palm-size device and handheld PC, provide cutdown
desktop PC capabilities in a really small footprint, and Palm Pilot has been a very
successful PDA (Personal Digital Assistant). Microsoft Pocket PC has tremen-
dous features for enterprise computing, games, and entertainment. The Win-
dows CE operating system has been embedded into many appliances (such as
gas pumps and productions systems) for monitoring and control. Unlike the
generic PC, these computing devices are not all the same and are designed for
specific purposes.

We think of laptop PCs as being mobile devices, but really they are a
convenient way of moving a PC from desktop to desktop. Think of a situation
where I go to a client’s offices, and as I walk through the door I want to check
the names of the people I will be meeting. With a laptop computer, I have to
power-on (assuming I haven’t let the battery run down), wait for the operating

2

Chapter 1 & Introduction

system to boot, login, run my calendar application, and look up the informa-
tion. This whole operation could take five minutes during which I have to suf-
fer quizzical looks from the receptionist. The same scenario with a true mobile
device is entirely different—with instant power-on and one-click access to my
calendar, I can have the information within 30 seconds.

Most people tend to think of a mobile worker as the typical road war-
rior, out of the office taking orders from customers and flying or driving from
here to there and never visiting the office from one week to the next. Sales
force automation (SFA) and field engineer support are classic applications for
this type of activity. The reality, though, is that we are a/l mobile workers—
start thinking of a mobile worker as someone away from his or her desk. If I
am at a project status meeting, I may be expected to take decisions or provide
comments on a project’s progress. I need to have the information in front of me,
but chances are it is on my desktop PC back in the office. With a mobile device,
I can bring the information with me.

The mobile devices are designed to fill in the gaps in our lives where we
haven’t had convenient access to computing. The desktop PC provides comput-
ing capability at the desk at work and at home. Mobile devices allow access to
computing while commuting and traveling, at client meetings, on holidays, and
anywhere else we may be. Computing is not just about work, so these devices
can also entertain. I can listen to my favorite music, play a game, or read a book.

To date, most devices have worked their way into organizations through
personal purchases. The devices arrive in the office on Monday morning and are
hooked up to the desktop PC; information such as contacts and tasks are then
downloaded onto the device. Of course, this doesn’t always work the first time,
so IT support staff are called in to try to support a device that may be new to
them. Consequently, many organizations are now starting to produce strategies
for adopting and supporting mobile devices. It soon becomes apparent that these
devices should be enterprise players and have the capability of downloading,
uploading, and manipulating data from databases, the Internet, and the intranet.

Mobile devices are not just about mobility. For example, desktop Win-
dows CE devices are available that provide thin-client computing. They have
Windows Terminal Server client installed, allowing them to effectively run Win-
dows NT and 2000 applications. Being thin clients, they are easy to set up, con-
figure, and maintain. Windows CE has successfully been embedded into many
different custom devices by developers around the world.

As devices are produced which combine technologies, the possibilities
become even more exciting. Combining a computing device with a GSM phone
allows mobile computing with access to data even when a telephone connec-
tion is not present. Enterprise servers can push data down onto the devices
without user intervention—the device will even wake itself up to receive the
data. By incorporating GPS (Global Positioning System) support, a device’s lo-
cation may be determined very accurately, and this can be used to direct the

About Microsoft Windows CE 3

user to a local service, such as a coffee shop or gas station. Harnessing these
possibilities requires applications, and this book shows how to do just that us-
ing the Windows CE operating system.

About Microsoft Windows CE

First, let’s start by describing some of the Windows CE operating system char-
acteristics and capabilities:

e Compatible API with Windows NT and 2000

e Multiprocessing, multithreaded support with synchronization

e Virtual memory architecture

s File system and property database support

e TCP/IP stack with functions allowing HTTP and socket communication

Access to Windows NT and 2000 network resources

Serial port communications

Database access through ADOCE (ActiveX Data Objects for Windows CE)

COM (Component Object Model) support for building componentized

software

e DCOM (Distributed Component Object Model) support for building Win-
dows DNA client software

s Synchronization of data with desktop PCs using ActiveSync

® & @ @

Windows CE is a modular operating system designed to build computing de-
vices. Its modularity means that engineers can select which parts of the oper-
ating system are required—for example, a device may not need a keyboard or
a display, but perhaps it needs networking capability. By selecting only those
modules a device requires, the size and cost of the device can be controlled.
Device manufacturers can use the Microsoft Platform Builder product to pro-
duce their own customized devices, or use one of the standard configurations
such as the Pocket PC or Handheld PC. These standard configurations come
with utilities and tools, such as Pocket Word or Pocket Internet Explorer, that
can be incorporated into the devices.

This flexibility also produces problems for the application developer.
While the Windows CE operating system may support some functionality, such
as a TCP/IP stack, the device being targeted may not. Therefore, the applica-
tion developer should first determine if the feature is present before program-
ming for it!

There is currently much confusion around Windows CE versions and nam-
ing conventions. In particular, recent devices such as the Pocket PC are labeled
“Powered by Windows” and don’t actually mention Windows CE at all. The
truth is that Pocket PC does use Windows CE. Here are some of the more re-
cent releases of Windows CE:

Chapter 1 « Introduction

¢ Windows CE 3.0. This version of the operating system is designed to pro-
vide hard, real time operating system characteristics and other improve-
ments. Pocket PC uses this version of Windows CE.

e Windows CE 2.12. Used primarily by embedded device manufacturers us-
ing the Microsoft Platform Builder product. This version did not make its
way into many consumer devices.

e Windows CE 2.21. The version of Windows CE used in Windows Hand-
held and Palm size devices.

To add to the confusion, each of the standard configurations such as
palm-size and handheld devices has its own version number. For example, the
Handheld PC Edition Version 3.01 actually runs on Windows CE 2.11. To sim-
plify matters, the descriptions of devices will apply to the following operating
systems:

@ Pocket PC—Running on Windows CE 3.0
¢ Handheld PC—Running on Windows CE 2.11
¢ Palm size PC—Running on Windows CE 2.11

Microsoft Pocket PC

The Pocket PC does not have a keyboard and supports written character in-
put using SIP (Supplementary Input Panel) with either character recognition or
a virtual keyboard. Pocket PC can also use Microsoft Transcriber, a program
that uses neural network programming techniques for handwriting recognition.
Pocket PC provides multimedia playback (for music using MP3 and video),
Microsoft Reader for reading books, Microsoft Pocket Word and Pocket Excel,
and Microsoft Pocket Internet Explorer for web access.

Pocket PC marks the start of a new era in mobile devices. Not only does
it offer unparalleled consumer functionality; it also provides tools for the enter-
prise developer for accessing databases, the Internet and intranet, and server-
side components.

Most Pocket PC devices support either a type-1 or type-2 Compact Flash
slot which can be used for expanding storage (using either solid-state memory
devices or Winchester disk drives), or adding peripheral support such as bar-
code readers, cameras, modems, or connections to GSM mobile phones.

Handheld PC

The Handheld PC differs from Pocket PC primarily in its keyboard support. It
also has a larger screen. Sub-notebook size devices with larger screens and key-
boards are also available.

Handheld devices often support a full-size PCMCIA card and a Compact
Flash card slot and may have an inbuilt modem. This device configuration is
best suited to job functions that require large amounts of data entry and bet-

About This Book 5

ter display capabilities, such as customer-facing situations. Either the screens
are touch sensitive, or some form of mouse support is provided. The sub-
notebooks running Windows CE are generally the same size as some of the
smaller Windows 98 laptop computers, and there is less cost differential.

Palm Size PC

The Palm size PC has been largely replaced with the Pocket PC. It provides a
user interface that is more similar to Windows, as opposed to Pocket PC, which
is more like a browser interface. The Palm size PC suffered from poor battery
life and insufficient capability.

About This Book

First, let me state what this book is zo#/ This book does not look at user inter-
face programming. Why not? I wanted to concentrate on the behind-the-scenes
operating system facilities that are used to make really great applications. There
are many good books on programming the user interface, and many of the prin-
ciples and techniques are the same on Windows CE as for Windows NT/98/
2000. The major difference is the smaller size of display, and knowing which
user interface features are supported.

While many of these operating system features are similar to counterparts
on Windows NT/98/2000 and often use the same API (Application Program-
ming Interface) functions, the emphasis is different. Windows CE applications
need to communicate. They need to communicate with other devices, to com-
municate with the Internet, to communicate with databases, and to communi-
cate with server-side components. These are the areas on which I concentrate.

Also, these devices are smaller and have less memory in which to execute
applications and to store data. Writing memory-efficient applications that can
degrade gracefully in low-memory situations is essential. Data storage can be
in files or in databases, and Windows CE provides unique techniques for both.
These issues are covered in this book.

The techniques here can be used in nearly all Windows CE devices, in-
cluding standard devices such as Pocket PC and Handheld PC, and customized
embedded Windows CE devices produced by embedded developers. Probably
90 percent of the techniques here work in Windows CE 2.11 or 2.12. I have
pointed out code that is specific to Windows CE 3.0 and Pocket PC in particular.

I have tried to provide plenty of code samples showing how to use the
features being discussed. There is little or no user-interface code to get in the
way of seeing the really important code. Feel free to take the code (it is on
the CDROM) and incorporate it into your own applications. However, please,
please, please add error-checking code. For the sake of brevity it is omitted
from the source code samples, but it is essential in any production code.

6

Chapter 1 ¢ Introduction

About You

I expect that you are a developer about to start a serious Windows CE applica-
tion development project for Pocket PC, or an embedded Windows CE devel-
oper who needs to write applications to run on a custom device, or perhaps
someone who wants to find out more about the innards of Windows CE, or
perhaps just plain inquisitive—it really doesn’t matter. However, to get the most
out of the book you will probably need the following experience:

s C and C++ knowledge. Most of the code samples are written using C; a
few require C++ specific knowledge.

e Some Windows API programming experience. You should have already
written some Windows applications, perhaps on Windows NT, 98, or 2000.

e Experience using a Windows CE device. You should try using a Windows
CE device for a while before attempting to write or design applications
for a device. You will need to become accustomed to the capabilities, limi-
tations, and different way of doing things.

I hope that after reading this book you will know a lot more about Win-
dows CE programming in particular, and more about programming in general.

About MFC (Microsoft Foundation Classes)
and ATL (ActiveX Template Libraries)

This book is primarily about using the Windows CE API functions, so most of
the code is standard C code calling these functions. If you are writing an ap-
plication using MFC, you will be able to call these functions in exactly the same
way. However, there are times when MFC provides classes that make calling
these functions easier and more efficient. For example, the Windows CE prop-
erty databases can be programmed through direct API calls, but the MFC
classes make writing database applications much easier. This book will show
how to use MFC classes when appropriate.

Many developers are now writing components using ATL. This can be a
difficult learning process, but the benefits are great. ATL is mainly based around
writing and using COM components, although ATL can also be used to write
applications. This book does not use ATL to any great extent, but as with MFC,
the API calls and techniques can be incorporated into ATL applications and
components.

eMbedded Visual C+ + 3.0

In the past, Microsoft has provided add-ins for Visual C++ to provide a Win-
dows CE development environment. The main problem with the add-ins was

eMbedded Visual C++ 3.0 7

that all the facilities used for developing Windows NT/98/2000 applications
were still present. Also, tools like the dialog editor were not tailored to writ-
ing Windows CE applications. The documentation was difficult to follow—
Windows CE-specific comments were embedded in the full MSDN documen-
tation set.

eMbedded Visual C++ 3.0 (Figure 1.1) is a new tool specifically designed
to write Windows CE applications. It is based on Visual C++ and shares the
same user interface, but only those tools and facilities necessary for writing
Windows CE applications are present. The ‘WCE Configuration’ toolbar pro-
vides drop-down combo boxes that allow selection of the target platform (for
example, Pocket PC, Palm size PC 2.11, or H/PC Pro 2.11); the target CPU (such
as ARM and MIPS); whether the build is debug or release; and the type of de-
vice to be run on (for example, emulation or a target device).

Pocket PC Emulation

o wek Listing 40235
=4
</ Database oounter ¥ith senchronization

{8 Examples files
Y Source Files

LONG GetNextCounterValue()
{

LONG dwCounter:
HKEY hKey;
DVORD dwDisp:
HANDLE hHutex:

hMutex = CreateMutex(NULL, FALSE, _T("CounterMutex")):
if (hMutex == NULL)
i

cout << _T("Could not create mutex");
return —1:

¥
else
WaitForSingleObject (hMutex. INFINITE):
if {RegCreateKeyEx(HKEY_LOCAL_MACHINE,
_T("Sof tware\\HyConpany\\MyApplication"),
0, NULL, 0, 0, NULL,
&hKey, &dyDisp) != 0)

cout << _T{"Could not open registry key"):
ReleaseHutex(hMutex):

CloseHandle(hMutex) :

return -1;

ReadMe.tst
#-{3) Extemal Dependencies

T
DWORD cbData, chType:

5

m eMbedded Visual C++

8 Chapter 1 ¢ Introduction

Sleep

This function suspends the execution of the current thread for a specified interval,

Parameters

dwiilliseconds
Specifies the time, in milliseconds, for which to suspend execution, & value of zero causes the thread to relinguish the
remainder of its time slice to any other thread of equal priority that is ready to run. If there are no.other threads of
equal priority ready to run, the function returns immediately, and the thread continues execution. A-value of INFINITE
causes an infinite delay,

Return ¥alues
None.

Remarks
A thread can relinquish:the remainder of its time slice by calling this function with a sleep time of zero milliseconds.

Youhave to be careful when using Sleep and code that directly or indirectly creates windows, If a thread creates any
windows, it must process messages. Message broadcasts are sent to all windows in the system, If you have a thread that
uses Sleep with infinite delay, the system will deadlock, Two examples of code that indirectly creates windows are DDE
and COM Colnitialize. Therefore, if you have a thread that creates windows, use MsgWaitForMultipleObjects or
MsgWaitForMultipleDbjectsEx, rather than Sleep.

Requirements

Windows CE 0S5 1.0 and later winbase.h
Pocket PC Wwindows CE 05 Wwinbase.h Windows.h
3.0

w Typical help screen for a Windows CE function

The documentation is specific to writing for Windows CE and details
carefully how the various functions are implemented in the various operating
system and platform versions. Figure 1.2 shows a typical example for the Sleep
function.

eMbedded Visual C++ allows you to write Windows CE application for
any target device for which you have an SDK (Software Development Kit). As
well as producing a customized Windows CE operating system, the Microsoft
Platform Builder can also produce an SDK for that device. The SDK can then
be installed in eMbedded Visual C++ and applications can be developed for
the device.

All the sample projects covered in this book and distributed on the CD-
ROM are eMbedded Visual C++ projects, and should not be compiled using the
standard Visual C++. Workspaces in eMbedded Visual C++ use the .vew ex-
tension, and projects the .vcp extension. In Visual C++ .dsw and .dsp are
used. eMbedded Visual C++ can import Windows CE projects created using Vi-
sual C++. However, in my experience it is sometimes better to rebuild the proj-
ect and import the files.

The Code Samples 9

Common Executable Format (CEF)

One of the downsides to writing Windows CE applications in the past was the
number of different microprocessors that needed to be supported, such as
MIPS and SH3. Starting with Pocket PC, Windows CE devices now support a
processor-neutral machine code set called Common Executable Format, or CEF
(pronounced ‘keff”). You can compile into CEF using eMbedded Visual C++
and then run that single executable on any platform that supports CEF, such as
Pocket PC.

CEF-enabled platforms have a translator that takes the CEF code and trans-
lates it into the native code, such as MIPS or SH3. Translation can take place
every time the application is run, or the converted code can be saved. There
is an overhead in performance— CEF applications run at around 80 percent the
speed of native applications.

Emulation Environments

Many Windows CE SDKs, such as Pocket PC, support an emulation environ-
ment that runs on the desktop PC. This can be used to test and debug your ap-
plications and is generally quicker to use than downloading applications onto
a real device. However, you should not solely rely on emulation for testing for
the following reasons:

o Emulation is not perfect, and applications that run under emulation may
not work correctly on a proper device. Facilities such as networking and
RAS dialup connections may behave differently.

e User interfaces may appear differently under emulation, since there are
differences in how standard controls and fonts are implemented.

o Desktop performance is generally much better than on a real device. Ap-
plications may perform adequately under emulation, but run too slowly
on a Windows CE device.

Using emulation does save large amounts of development time, particu-
larly when you are debugging non-user-interface code.

The Code Samples

Throughout the book you will find code samples showing how to use the fa-
cilities being discussed. All the code is on the CDROM, so it can be copied di-
rectly into your application. Unless otherwise stated, all the code is in a single
project called examples.vcep in the directory \examples. The source code
is arranged by chapter, and each chapter has its own source file, for example
Chapter?2.cpp, Chapter3.cpp, and so on.

The examples.exe application can be run on a real device, or under
emulation. The user interface has been optimized to run under Pocket PC, but

10

Chapter 1 ¢ Introduction

w|Start

Figure 1.3 Examples application

used to run sample code

can easily be adapted to run on other platforms. The menu contains drop downs
for each of the chapters arranged into groups, and the drop downs contain
menu items allowing each code sample to be run. Figure 1.3 shows how the ap-
plication looks, with sample output. No prizes for best user interface here! Note
that not all the sample code will run on all platforms. In particular, some samples
will not run under emulation.

The code samples are designed to remove all irrelevant code so you can
concentrate on what is really important. In the Examples project, all output is
displayed to a read-only edit window (which, in Figure 1.3, contains the text
“Mounted vol: SystemHeap” and so on). A C++ class object called ‘cout’ has
been created to emulate the basic behaviors of the standard C++ ‘cout’ ob-
ject used in command line, character mode applications. The ‘cout’ object is
an instance of the class COutput which is declared in Examples.h and imple-
mented in InputOutput .cpp. The ‘<<’ operator has overloads for most com-
mon data types, including strings, integers, and characters. Calling the cout-
put ‘CLS’ method removes all the text from the text edit window. You will find
statements like the following to display data to the edit window:

cout << _T("Unicode File") << endl;

Input is obtained from the user in a dialog using the function GetText-
Response. The function is passed the string to prompt the user with, a string
in which the data will be returned as well as the maximum number of charac-
ters of data that can be placed in the string. The function returns TRUE if a
string is returned, or FALSE if the user pressed Cancel.

Unicode Text and Strings]]

if (!GetTextResponse (_T("Enter URL to Display: "),
szURL, MAX_PATH))
return;

The function Get FileName will display a File Open command dialog box
allowing the user to select a file. This function takes the same arguments as
GetTextResponse:

if(!GetFilename (_T("Enter filename:"),
szFilename, MAX_PATH))
return;

Some of the sample code is in separate projects, and because some of
these projects run on a desktop PC, the projects should be compiled using Vi-
sual C++ 6.0.

Unicode Text and Strings

Before starting out there are a couple of topics that need to be covered, and
the first of these is Unicode. Windows 98 API functions have partial support
for Unicode strings, and Windows 2000 and NT allow applications to call either
Unicode or ANSI versions of the API functions. Windows CE, on the other hand,
only supports Unicode, so you will need to write your applications using Uni-
code strings and text.

Most of us grew up safe in the knowledge that a character was stored in
a single byte using eight bits. Character strings are stored in ‘char’ arrays and
are terminated with a NULL, ANSI O character. Strangely enough, the ‘char’ data
type is signed, but we get used to that. The problem is that there are many more
than the 255 characters that fit in a ‘char’ used by different languages around
the world, so tricks need to be employed to support all these characters. Two
such tricks are:

e Use multi-byte character strings (MBCS), where special characters act as
lead-ins indicating that the next character should be treated as an entirely
different character.

e Use Code Pages, in which the same ANSI character number is used to
display completely different characters depending on which code page is
loaded.

Neither of these tricks is satisfactory. Parsing MBCS strings is difficult; for
example, the length of a string can only be determined by traversing the entire
string and inspecting each character. With code pages, you can display com-
pletely incorrect text by having the wrong code page loaded for the text being
displayed. The Unicode solution uses two bytes to store a single character. This
allows up to 65536 different characters to be displayed—more than enough for
all the languages around the world. With Unicode, a character is stored as an

12

Chapter 1 e Introduction

unsigned two-byte integer value. They are also known as ‘wide byte characters’.
The Unicode characters in the range 0x00 to 0x7F are reserved for ANSI char-
acters, so ANSI characters always have the high byte set to zero when repre-
sented in Unicode.

Compilers do not provide native support for Unicode—that is, there is
no magic compiler switch that changes a char from one byte to two bytes. In-
stead, support for Unicode is achieved through defines and typedef statements
in header files. The data type wchar_t is used to represent a Unicode charac-
ter, and an array of wchar_t is used to store strings. As with ANSI strings, a
NULL terminates a string, but this is a two-byte rather than a one-byte value.
ANSI strings and characters can be used alongside Unicode strings and charac-
ters—you can continue to use the ‘char’ data type. This is important because
data coming from the outside world (through the Internet or as a file) may use
ANSI characters, and these need to be converted before being used.

Unicode characters obviously take twice as much space as ANSI to store
strings. In many applications the majority of strings stored using Unicode ac-
tually store ANSI characters, so every other byte is a NULL. In Windows CE, the
compression algorithms used to store data in the object store (that is, data stored
in files or databases) are optimized to recognize this sequence.

Generic String and Character Data Types

You can use the standard Unicode data type wchar_t, but it is more usual to
use generic string data types, and then use compiler defines to specify which
character type should be used for the compilation. You can write code that can
be compiled for ANSI and Unicode and is portable. The define _UNICODE is
defined either as a compiler switch or using #define to indicate that the Uni-
code version of API functions should be used. Some header files expect the
UNICODE define to be used, so both often end up being defined. The compiler
defines _MBCS, and multi-byte character strings (MBCS) are used in Windows
NT/98/2000 to compile for ANSI characters but are not supported under Win-
dows CE. If neither _MBCS nor _UNICODE is defined, the header files default
to single-byte character strings (SBCS). SCBS don’t use lead-in characters to ex-
tend the supported range of characters.

To use generic string and character data types, include the file tchar.h
and ensure that _UNICODE or _MBCS is defined as appropriate. To declare
a character, use the data type TCHAR, and this will be compiled to wchar_t
or char depending on the define in operation. The following code declares a
character variable and a character string that can store up to ten characters in-
cluding the terminating NULL:

TCHAR cChar;
TCHAR szArray[10];

Rather than using the LPSTR data type for specifying a pointer to a char-
acter string, you should use LPTSTR. This will be compiled to either a ‘char*’
or a ‘wchar_t*’.

Unicode Text and Strings]3

String Constants

In the following code fragment, the string constant "my string" will always
be compiled as an ANSI character string constant using one byte per character.

LPTSTR lpszStr = "my string";

You will get a compiler type mismatch error if you try to compile this code
with _UNICODE. The header file tchar.h declares two macros ‘T and ‘_TEXT’
that are used to specify Unicode character string constants when _UNICODE is
declared, and ANSI character string constants when _MBCS is declared. So, the
previous line of code should be written as

LPTSTR lpszStr = _T("my string"):;

or

1

LPTSTR lpszStr _TEXT("my string");

The L macro can be used to force a Unicode string constant. In this next
line of code, the LPWSTR data type declares a Unicode string pointer and points
it to a Unicode string constant.

LPWSTR lpszStr = L("my string");

With Windows CE programming you will need to use the _T or _TEXT
macro around just about every string constant. My preference is for _T, only
because it is shorter. I like to set up an eMbedded Visual C++ macro and as-
sign it to the Ctrl+T key sequence to generate the _T(" ") sequence in the
source file. To do this:

e Select the Tools+Macro menu command.

e Enter the name of the macro, say ‘T’, and click the Record button.

o Enter the text _T (" ") into a source file, followed by two left arrow key

presses to locate the cursor between the two double quotes.

Turn off recording by pressing the Macro toolbar icon with a square box.

e Select the Tools+Macro menu command again, this time to assign the
macro to a keystroke.

@ Select your macro from the list and click the Options button.

e Select the Keystrokes button, and assign the macro to the required key-
stroke, for example Ctrl+T.

@

Macros in eMbedded Visual C++ are recorded using VB Script. Here is the
source for the _T macro:

Sub T ()
'"DESCRIPTION: A macro to enter _T("") into a source file.
'Begin Recording
ActiveDocument.Selection = "_T("""")™"
ActiveDocument.Selection.CharLeft dsMove, 2
'"End Recording
End Sub

14

Chapter 1 & Introduction

Calculating String Buffer Lengths

One of the most common bugs introduced when moving to Unicode pro-
gramming concerns calculating buffer lengths—all too often, code assumes that
characters are stored in one byte. For example:

TCHAR szBuffer[200];
DWORD dwLen;
dwLen = gsizeof (szBuffer);

We might expect dwLen to contain the value 200, but it will actually con-
tain 400, which is the number of bytes occupied by szBuffer. If dwLen were
passed to a function indicating how many characters can be placed in sz-
Buf fer, the application might fail, as the function could exceed the bounds of
the array szBuffer. The following code should be used instead, and this will
work for both ANSI and Unicode compilation.

dwLen = sizeof (szBuffer) / sizeof (TCHAR);

When passing the length of a string buffer to a function, check whether
the function expects the size of the buffer in bytes or characters.

Standard String Library Functions

We are all accustomed to the standard C run-time functions for string manipu-
lation—strlen, strcpy, and so on. These functions work with the ‘char’
data type and cannot be used for Unicode strings. Unicode equivalent func-
tions are provided, such as wcslen and wescpy (standing for ‘wide character
string length,” and ‘wide character string copy”).

Generic string functions are also available which will be compiled to the
ANSI or Unicode function equivalents. For example, the function _tcslen will
compile to strlen if _MBCS is defined, or wecslen if _UNICODE is defined.
The header file tchar . h should be included to enable this behavior. Using the
_tc functions makes code portable between ANSI and Unicode. The samples
in this book tend tc use the wcs functions rather than _tc, since I never in-
tend to port this code away from Unicode. Table 1.1 shows some of the C com-
mon run-time string functions and their generic and Unicode equivalents.

Converting Between ANSI and Unicode Strings

There are times when you will need to convert ANSI strings or characters to
Unicode and vice versa. Examples include:

e Reading an ANSI text file into a Windows CE application

¢ Reading and writing characters from a serial device that supplies data in
ANSI

@ Reading and writing data from Internet servers, such as web or email serv-
ers, most of which expect text in ANSI

Table 1.1

Unicode Text and Strings]5

C common runime string functions with generic and Unicode equivalents

Generic

String ANSI Unicode
Purpose Function Function Function
Return length of string in characters _tcslen strlen wcslen
Concatenate strings _tcscat strcat wcscat
Search for character in string _teschr strchr wcschr
Compare two strings _tcscmp strcmp wcscmp
Copy a string _tcscpy strcpy wCSsCcpy
Find one string in another _tcsstr strstr wesstr
Reverse a string _tcsrev _strrev _wcsrev

Converting an ANSI character to Unicode is easy—all you need to do is
set the high byte in the Unicode character to zero and copy the ANSI character
into the low byte. In this next code fragment, the MAKEWORD macro combines
a low byte and high byte into a single two-byte word, and the result is assigned
to a Unicode character.

WCHAR wC;
char ¢ = 'C';

wC = MAKEWORD(c, O0);
You can convert string using one of the C run-time functions:

e mbstowcs—Convert a multi-byte (ANSD string to wide character string
(Unicode)
» wcstombs—Convert a wide character string to multi-byte string

Both of these functions take three arguments that are the buffer in which
to place the converted string, the string to convert, and the maximum number
of characters that can be placed in the string. Both functions return the num-
ber of converted characters placed in the string. The following code converts
an ANSI string to Unicode and a Unicode string to ANSI.

WCHAR szwcBuffer[100];
char szBuffer([100];

char* lpszConvert = "ANSI String to convert";
WCHAR* lpszwcConvert = _T("Unicode string to convert");
int nChars;

nChars = mbstowcs (szwcBuffer, lpszConvert, 100);
nChars = wcstombs (szBuffer, lpszwcConvert, 100);

If you are using code pages, the Windows API functions MultiByteTo-
WideChar and WideCharToMultiByte should be used since you can specify
the target or destination code page to be used for the conversion.

16

Chapter 1 & Introduction

Error Checking

As with any operating system, it is imperative to check the return results when
calling Windows CE API functions—never assume that the function works.
Many of the code samples in this book do not have sufficient error-checking
code for use as production code, so you will need to add it if you take code
from this book for use in your own applications.

Nearly all Windows CE API functions return a value indicating success or
failure, but little information detailing the nature of the error. You should call
the function GetLastError to determine the actual error number encountered.
You can look up the error numbers in the header file winerror .h, where you
will find a short description of the error. This file is located in the “\Windows
CE Tools\wce300\MS Pocket PC\include”, or another folder appropri-
ate to the SDK version you are using. The on-line documentation often lists the
common errors encountered when calling specific Windows CE functions.

Windows CE devices, unlike Windows NT/98/2000, do not support the
FormatMessage function for producing textual descriptions of error numbers,
but the function does work under emulation—watch out for this one.

Adding comprehensive error-checking code can increase significantly the
size of your application’s code. With memory-tight Windows CE devices, this
can be a problem. You should therefore place debug-specific error-checking
code in #ifdef / #endif compiler directives with the _DEBUG define so that
the code will not be included in your released application.

#ifdef _DEBUG
// perform error checking that does not need to be in
// the production version

#endif

Exception Handling and Page Faults

A page fault occurs when an application attempts to read or write data from or
to a page that does not have memory associated with it, or to a memory ad-
dress that is illegal. If you try to execute the following code on a desktop PC,
you will get an unhandled page fault error box, and your application will ter-
minate.

char* 1pC = 0;
*1pC = 'A';

The code declares a character pointer and sets it to point at address 0. In
most operating systems, including Windows CE, address 0 is protected and
cannot be used. The second line attempts to place a character into the address
pointed to by 1pcC, and since the address is protected, a page fault is generated
and the application will fail.

Exception Handling and Page Faults]7

Surprisingly, if you attempt to run these two lines of code in Windows CE
you will not get a page protection fault—the application will continue to exe-
cute, although it may not function correctly. This can be a real problem in ap-
plication development. To ensure that your page faults are correctly reported
you will need to use exception handling.

Exception handling allows you to execute code and to trap any errors that
would normally be reported by the operating system. Exception handling is a
long and complex topic, especially with regard to the rules of how exceptions
are handled with C++ object creation and destruction and to nested function
calls. To confuse the issue, three types of exception handling exist in Windows
programming: MFC (Microsoft Foundation Class), C++ language, and Windows
structured exception handling (SEH).

I use Windows structured exception handling (SEH) to trap address and
memory exceptions in my applications, and I try to keep it as simple as pos-
sible. With SEH the code needed to trap errors is placed in a __try block (that
is try with two leading underscores). Errors generated in any function called
from this block of code will be trapped. The error-trapping code to be exe-
cuted in event of an error is placed in an __except block. The EXCEPTION_
EXECUTE_HANDLER constant in the __except block indicates that errors will
be handled by the block and not passed to other handlers.

__try
{
char* 1pC = 0;
*1pC. = 'A';
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
MessageBox (hwnd,
_T("Page Fault Caught in exception handling!"),
szTitle, MB_OK | MB_ICONEXCLAMATION) ;

Now, even in Windows CE, the assignment to a NULL pointer will be
trapped and reported. When writing a Windows API function with a message-
handling function for a main window, I generally place a __try/__except
block around all the code in the message-handling function. Nearly all the code
in the application will be called from this function, so any page fault in any
function called from the message handler will be trapped.

LRESULT CALLBACK WndProc (HWND hwnd,
UINT message, WPARAM wParam, LPARAM lParam)
{
_try
{
switch (message)
{
case WM_CREATE:
break;

]8 Chapter 1 o Introduction

// ... standard message handling code here
default:
return DefWindowProc (hWnd,
message, wParam, lParam);
}

}
___except (EXCEPTION_EXECUTE_HANDLER)

{
MessageBox (hiWnd,
_T("Page Fault in exception handling!"),
szTitle, MB_OK | MB_ICONEXCLAMATION) ;
}

return 0;

Conclusion

Now that the preliminaries—what the book is about, the sample code, and gen-
eral programming techniques such as error trapping—have been dealt with,
you are ready to find out about the great features provided by Windows CE
programming, such as communications, databases, and components. You can
read the book chapter by chapter o, if you like, dip into those chapters that are
important for you and the applications you are building. Before you start, one
last thought: Remember that nearly all errors in an application are your errors,
and just a very few may be due to bugs in the Windows CE operating system.

Files

File access is one of the most basic services provided by any operating system.
Files in Windows CE are used in much the same way as files in other operating
systems. They are generally used to store unstructured data such as text files.
Windows CE also provides property databases (see Chapter 4) for storing struc-
tured data, and the registry for storing application-specific data such as settings
or preferences. Files, databases, and the registry are stored, by default, in the
Object Store (see Chapter 3).

This chapter discusses file access. It shows you how to open and close
files, how to read and write from them, and how to gather information about
files using the Windows CE API function. You can access files using either the
Windows CE API functions, or the CFile class in MFC (as long as MFC is sup-
ported on the Windows CE platform you are targeting). You can use standard
C or C++ functions (such as fopen and fwrite) for file input and output in
Windows CE 3.0, however, the Windows CE functions provide much better con-
trol and more features.

Files are important in Windows because you access many different objects
using the file routines. Certain techniques are used in the Windows CE API to
open a file, read from it and write to it, and close the file. The Windows CE API -
uses identical techniques to work with communications ports (see Chapter 9).
Therefore, understanding how to work with files is central to understandmg se-
rial communications tasks in Window CE.

Files are quite interesting in Windows because of all the different capa-
bilities built into the Windows CE for working with them. For example:

e As you would expect, you can open, read, and write files.
& You can open ANSI or Unicode text files and determine which character
set is used to store text.

19

20

Chapter 2 « Files

& You can access a great deal of status information about files through the
32-bit APL

You can map files into the virtual memory system to significantly improve
their performance and to manipulate large files. This technique is also used for
high-speed inter-process communication

The Object Store and network resource access, closely related to files, are
discussed in detail in the next chapter.

Overview

In Windows CE, you can think of a file as a collection of bytes stored under a
unique name in the Object Store. You can seek to any byte offset and read or
write a block of bytes of any size.

Figure 2.1 shows two ways that you will access files in Windows. Files
typically contain either text or binary data in the form of structures stored di-
rectly onto the disk. You can use the ReadFile and WriteFile functions
to access these characters or structures. If you have ever used the fread and
fwrite functions in <stdio.h>, you will find the use of these API functions
very similar.

These same ReadFile and WriteFile functions appear throughout the
Windows CE API in a variety of roles. You will use them, for example, to read
from and write to communications ports and the network. In these applica-
tions you will also be able to think of the data in terms of single characters or
structures.

A number of functions in the Windows CE API allow you to gather infor-
mation about a file once you open it. For example, given an open file you can
determine its size, type, creation times, and so on. You can also use the Win-
dows CE API functions to move, copy, and delete files.

Opening and Reading from a File

Let’s say that you want to write a program that performs the simplest possible
file operation: you want to open a file, read from it, and write its contents to
the screen. First, however, you need to determine what type of text file you
have. The file could contain single-byte characters using the ANSI character set.
Alternatively, the file could contain text using Unicode characters, where two
bytes are used to store each character. Further, Unicode characters can be stored
with the most significant byte either first or last. It is important to determine
which byte-ordering scheme is being used before the file is read.

offset

Text Files

Read or
write one
character at
a time, or

. Blocks of

characters

Opening and Reading from a File 2]

offset

m Text files and files of structures

Read or
write one
structure at
a time, or
Blocks of
structures

Structure Files

In Unicode text files, the first two characters have the value Oxfeff if the

file is a Unicode file, or Oxfffe if the file is Unicode with reversed byte order.
In ANSI files, the first two bytes store regular characters.

set being used.

Listing 2.1 shows code that opens a text file and determines the character

W Determines the content type of a text file (ANSI or Unicode)

void Listing2_1()

{

HANDLE hFile;
WORD wLeadin;
DWORD dwNumRead;

22 Chapter 2 o Files

TCHAR szFilename [MAX_PATH + 1];

if(!GetFilename (_T("Enter filename:"),
szFilename, MAX_PATH))
return;
hFile = CreateFile(szFilename,
GENERIC_READ, 0, 0, OPEN_EXISTING, 0, 0);

if (hFile == INVALID_HANDLE_VALUE)
{
cout << _T("Could not open file. Error:") <<
GetLastError () ;
return;
}

if (ReadFile (hFile, &wLeadin, 2, &dwNumRead, 0))

{
// Is this a Unicode file?
// Determine byte order sequence

if (wLeadin == OXFEFF)
cout << _T("Unicode File") << endl;
else if (wLeadin == OXFFFE)
cout << _T("Byte reversed Unicode file")
<< endl;
else
cout << _T("Text file") << endl;
}
else

{
cout << _T("Could not read file. Error: ")
<< GetLastError();

}
CloseHandle (hFile) ;

In this program, the code requests a file name from the user, opens the
file using CreateFile, reads the first two characters from the file using Read-
File, and then closes the file using CloseHandle. Listing 2.2 modifies the
code in Listing 2.1 so that the contents of the file are listed if the file contains
Unicode text.

Listing 2.2 Displays the contents of a Unicode fext file

void Listing2_2()
{
HANDLE hFile;
WORD wLeadin;
DWORD dwNumRead;
TCHAR szFilename [MAX_ PATH + 1], szChar[2];

if(!GetFilename (_T("Enter filename:"),
szFilename, MAX_PATH))
return;

Opening and Reading from a File 23

hFile = CreateFile(szFilename, GENERIC_READ,

0, 0, OPEN_EXISTING,

0, 0);

if (hFile == INVALID_HANDLE_VALUE)

{

cout << _T("Could not open file. Error:")
<< GetLastError();

return;

}

if (ReadFile(hFile, &wLeadin, 2, &dwNumRead, 0))

{
if (wLeadin == OXFEFF)
// read file character by character
while(ReadFile(hFile, szChar,
sizeof (TCHAR), &dwNumRead, O0)
&& dwNumRead > 0)
{
szChar([1] = '\0';
cout << szChar;
}
else
cout << _T("File is not Unicode!") << endl;
}
else

cout << _T("Could not read file. Error: ")
<< GetLastError();

CloseHandle (hFile) ;

The CreateFile function opens a file for read and/or write access. We
will see in Chapter 9 that this same function also opens serial communications
ports. It is also dealt with in more detail later in this chapter.

Table 2.1 CreateFile—Opens or creates a file

CreateFile

LPCTSTR name

DWORD accessMode

DWORD shareMode

LPSECURITY_ATTRIBUTES securityAttributes

DWORD create
DWORD attributes
HANDLE templateFile

Name of the file to open
How the file should be accessed
The way the file should be shared

Address of a security structure (not supported,
should be NULL)

The way the file should be created
Settings for file attribute bits and flags

File containing extended attributes (not sup-
ported, should be NULL)

HANDLE Return Value

Returns a handle on success, or INVALID_
HANDLE_VALUE

24

Chapter 2 « Files

In Listing 2.2, the CreateFile function accepts the name of the file, a
GENERIC_READ access mode that stipulates that the file will be used in a read-
only mode, a share mode that prevents any other process from opening the
file, and an OPEN_EXISTING creation mode that specifies that the file already
exists. Windows CE does not support security attributes or a template file. The
function returns either a handle to the file object that it opened, or returns IN-
VALID_HANDLE_VALUE if an error is detected. If an error occurs, you can use
the GetLastError function to retrieve an error code. A very common mistake
is to test the returned handle for NULL rather than INVALID_HANDLE_VALUE,
and so failures in CreateFile remain undetected.

Once the file is open, the ReadFile function reads two bytes of data that
are used to determine the text file type. Then, ReadFile is used to read data
from the file one character at a time. ReadFile is a generic block-reading
function. You pass it a buffer and the number of bytes for it to read, and the
function retrieves the specified number of bytes from the file starting at the cur-
rent offset.

Table 2.2 ReadFile—Reads bytes from the specified file

ReadFile

HANDLE file File handle created with CreateFile

LPVOID buffer Buffer to hold the read bytes

DWORD, requestedBytes The number of bytes desired

LPDWORD actualBytes The number of bytes actually placed in the buffer

LPOVERLAPPED overlapped Overlapped -pointer to overlapped structure (not
supported)

BOOL Return Value TRUE on success, otherwise FALSE

In Listing 2.2 the code reads the file one character at a time until Read-
File indicates end-of-file. The CloseHandle function closes the file once the
operations on it are complete.

Table 2.3 CloseHandle—Closes an open handle

CloseHandle
HANDLE object The handle to close
BOOL Return Value TRUE on success, otherwise FALSE

In this section the goal has been to show that file access using the Win-
dows CE API functions is not much different from normal file access techniques
that you already understand.

Getting and Setting File Information 25

(Getting and Setting File Information

The Windows CE API contains several functions that are useful for retrieving
file information. For example, you can find out when a file was last modified,
how its attribute bits are currently set, and the size of the file. The following
sections detail the different capabilities that are available. Several of these func-
tions require an open file handle rather than the file’s name.

Getting the File Times

The GetFileTime function retrieves three different pieces of time informa-
tion from an open file: the Creation time, the Last Access time, and the Last
Write time.

Table 2.4 GefFileTime— Gets file time information

GetFileTime

HANDLE file Handle to a file from CreateFile
LPFILETIME creationTime Time of file creation

LPFILETIME lastAccessTime Time of last file access

LPFILETIME lastWriteTime Time of last file write

BOOL Return Value Returns TRUE on success, otherwise FALSE

In Listing 2.3, the CreateFile function opens the requested file name.
GetFileTime uses the handle that it returns to access the file times, and then
passes the last write time up to the ShowTime function to dump the time to
cout.

m Displays the file times associated with the given file

void ShowTime (FILETIME t)

{
FILETIME ft;
SYSTEMTIME st;
FileTimeToLocalFileTime (&t, &ft);
FileTimeToSystemTime (&ft, &st);
cout << st.wMonth << _T("/") << st.wDay
<< _T("/") << st.wYear << _T(" ") << st.wHour
<< _T(":") << st.wMinute << endl;
}

void Listing2_3()
{
HANDLE hFile;

26 Chapter 2 ¢ Files

TCHAR szFilename[MAX_ _PATH + 11;
FILETIME ftCreate, ftLastWrite, ftLastAccess;

if (!GetFilename (_T("Enter filename:"),
szFilename, MAX_PATH))
return;
hFile = CreateFile(szFilename,
GENERIC_READ, 0, 0, OPEN_EXISTING, 0, 0);
if (hFile == INVALID_HANDLE_VALUE)
{
cout << _T("Could not open file. Error:")
<< GetLastError();
return;
}
if (GetFileTime (hFile, &ftCreate,
&ftLastWrite, &ftLastAccess))
{
cout << _T("Create time: ");
ShowTime (ftCreate) ;
cout << _T("Last write time: ");
ShowTime (ftLastWrite) ;
cout << _T("Last Access time: ");
ShowTime (ftLastAccess) ;

}

else
cout << _T("Could not file times. Error: ")

<< GetLastError () ;
CloseHandle (hFile) ;

FILETIME is a structure that contains two 32-bit values. The 64 bits to-
gether represent the number of 100-nanosecond time increments that have
passed since January 1, 1601. The FileTimeToLocalTime and FileTime-
ToSystemTime functions convert the 64-bit value to local time and then to a
form suitable for output. The times returned by GetFileTime are in UTC (Uni-
versal Coordinated Time, otherwise known as Greenwich Mean Time or GMT),
and so should be converted to local time when displayed to users.

The function SetFileTime can be used to set one or all of the three file
times. Note that when changing just one of the times on an object store file, the
other two file times are updated by default. This behavior does not occur with
FAT files.

Getting File Size

The GetFileSize function returns the size of the file in bytes, or 0OxFFFFFFFF
on error. The file size returned is the uncompressed file size—files in the ob-
ject store are automatically compressed. In the Object Store the largest file size
possible can be represented in less than 32 bits, but NTFS (which you may con-

Getting and Setting File Information 27

nect to through the network) is a 64-bit file system. GetFileSize therefore
returns 64 bits of size information if you request it. There is currently no easy
way to deal with integers larger than 32 bits.

m GelfileSize —Returns a 64-bit size value for the file

GetFileSize

HANDLE file Handle to a file from CreateFile

LPDWORD fileSizeHigh Pointer to a DWORD that returns the high-order 32 bits
of size

Return Value Returns the low-order 32 bits of the file size, or

O0xXFFFFFFFF on failure

The low-order 32 bits of size information comes from the return value,
while the high-order 32 bits come from the fileSizeHigh parameter when
you pass in a pointer to a DWORD. You can also pass in NULL for this parame-
ter if you are not interested in receiving the high-order 32 bits of information.
Listing 2.4 shows how to access the information.

W Reports size of file in bytes

void Listing2_4()

{
HANDLE hFile;
TCHAR szFilename [MAX_PATH + 1];
DWORD dwSizeLo, dwSizeHi;

if(!GetFilename (_T("Enter filename:"),
szFilename, MAX_PATH))
return;
hFile = CreateFile(szFilename, GENERIC_READ,
0, 0, OPEN_EXISTING, 0, 0);
if (hFile == INVALID_HANDLE_VALUE)
{
cout << _T("Could not open file. Error:")
<< GetLastError();
return;

dwSizeLo = GetFileSize (hFile, &dwSizeHi);
if (dwSizeLo == OxFFFFFFFF && GetLastError()
!= NO_ERROR)
cout << _T("Error getting file size: ")
<< GetLastError () ;

28

Chapter 2 « Files

else
cout << _T("Filesize (Low, High) : ")
<< dwSizeLo << _T(",") << dwSizeHi;
CloseHandle (hFile) ;
}
Getting File Attributes

Files have associated with them attribute bits that hold special information about
the file. You can view most of the attributes from the Explorer by selecting a file
and then choosing the Properties option in the File menu. Inside a program you
can examine attribute bits with the GetFileAttributes function.

Table 2.6 GefFileAttributes — Gets the attribute bits for a file

GetFileAttributes
LPTSTR fileName The name of the file
Return Value Returns the attribute bits as a DWORD, or 0xFFFFFFFF on

error

Listing 2.5 demonstrates how to acquire and examine the attribute bits.
The system returns not only the four standard bits seen in the Explorer (ar-
chive, read only, system, and hidden), but also bits indicating that the file name
is actually a directory, as well as In-ROM and related attributes. Note that not
all the available attributes are listed in the code sample.

m Reports file affributes

void ShowAttributes (DWORD dwAttributes)
{
if (dwAttributes & FILE_ATTRIBUTE_READONLY)
cout << _T("Read only") << endl;
if (dwAttributes & FILE_ATTRIBUTE_HIDDEN)
cout << _T("Hidden") << endl;
if (dwAttributes & FILE_ATTRIBUTE_SYSTEM)
cout << _T("System") << endl;
if (AwAttributes & FILE_ATTRIBUTE_DIRECTORY)
cout << _T("Directory") << endl;
if (dwAttributes & FILE_ATTRIBUTE_ARCHIVE)
cout << _T("Archive") << endl;
if (dwAttributes & FILE_ATTRIBUTE_INROM)
cout << _T("In ROM") << endl;
if (dwAttributes & FILE_ATTRIBUTE_NORMAL)
cout << _T("Normal") << endl;

Getting and Setting File Information 29

if (dwAttributes & FILE_ATTRIBUTE_TEMPORARY)
cout << _T("Temporary") << endl;

if (dwAttributes & FILE_ATTRIBUTE_COMPRESSED)
cout << _T("Compressed") << endl;

if (dwAttributes & FILE_ATTRIBUTE_ROMSTATICREF)
cout << _T("ROM Static Ref") << endl;

if (dwAttributes & FILE_ATTRIBUTE_ROMMODULE)
cout << _T("ROM Module") << endl;

}

void Listing2_5()

{
TCHAR szFilename[MAX_PATH + 1];
DWORD dwAttributes;

if (!GetFilename (_T("Enter filename:"),
szFilename, MAX_PATH))
return;
dwAttributes = GetFileAttributes (szFilename) ;
ShowAttributes (dwAttributes) ;

It is also possible to set some file attributes using the SetFileAttri-
butes function. This function accepts a file name and one or more attribute
constants, and returns a Boolean value indicating success or failure.

Table 2.7 SetFileAttributes —Sets file atfributes

SetFileAttributes

LPTSTR filename The name of the file

DWORD attributes Attributes as for GetFileAttributes
Return Value Returns TRUE on success, otherwise FALSE

The same attribute constants seen in the ShowAttributes function of
Listing 2.5 are available. For example, you might set a file as hidden and read-
only with the following statement:

success = SetFileAttributes (_T("xxx"),
FILE_ATTRIBUTE_HIDDEN |
FILE_ATTRIBUTE_READONLY) ;

Generally those are the only two attributes you will want to set. The other
bits, for example the directory bit, are set automatically by system calls when
they are appropriate and should not be altered. File attributes can be set when
the file is created using CreateFile. Table 2.8 shows the Windows CE file at-
tributes; indicates whether they can be accessed using GetFileAttributes,
SetFileAttributes, and CreateFile; and gives a brief definition.

Chapter 2 « Files

Table 2.8 File Attributes and Their Purposes

Attribute

Purpose

FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_ENCRYPTED
FILE_ATTRIBUTE_HIDDEN

FILE_ATTRIBUTE_INROM

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_OFFLINE
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_REPARSE_POINT
FILE_ATTRIBUTE_ROMMODULE

FILE_ATTRIBUTE_SPARSE_FILE
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_TEMPORARY
FILE_FLAG_WRITE_THROUGH
FILE_FLAG_RANDOM_ACCESS
FILE_FLAG_SEQUENTIAL_SCAN
FILE_ATTRIBUTE_ROMSTATICREF

File has been archived or backed up.
File is stored in compressed format.
File is a directory.

File is encrypted.

File is hidden and not included in normal
directory listings.

File is located in ROM. It is read-only and
cannot be modified.

Normal file, has no other attributes.

File contents not currently available.
File is read-only.

The file has an associated reparse point.

DLL or EXE in ROM. CreateFile cannot be
used to access these files.

Empty spaces in a file are not stored.
File is part of the system file set.
Temporary file, will be deleted.

No buffering for file I/0.

Open optimized for random access.
Open optimized for sequential option.

Module is in ROM and contains static ref-
erences to other modules. It cannot be
replaced (shadowed) with a file in RAM.

All files in the object store are compressed, and will have the FILE_AT-
TRIBUTE_COMPRESSED attribute. You cannot set this attribute to compress a
file as you can with Windows NT and 2000.

Getting All File Information

The function GetFileInformationByHandle returns all of the information
described in the previous three sections in one call. It is useful when you want
to access or display all information about a file in one call.

Getting and Setting File Information 3]

Table 2.9 GetFilelnformationByHandle—Retrieves all file information

GetFileInformationByHandle

HANDLE file Handle to an open file from CreateFile
LPBY_HANDLE_FILE_INFORMATION Information about the file

Return Value Returns TRUE on success, otherwise FALSE

The information comes back in a structure that contains the attributes,
size, and time data discussed in the previous sections, along with volume, in-
dex, and link information not available anywhere else. The volume serial num-
ber is a2 unique number assigned to the volume when it was formatted. The file
index is a unique identifier attached to the file while it is open. Listing 2.6 dem-
onstrates the process.

W Lists all information for a given file

void Listing2_6()

{
HANDLE hFile;
TCHAR szFilename[MAX_PATH + 1];
BY HANDLE_FILE_INFORMATION fiInfo;

if(!GetFilename (_T("Enter filename:"),
szFilename, MAX_PATH))
return;
hFile = CreateFile(szFilename, GENERIC_READ,
0, 0, OPEN_EXISTING, 0, 0);
if (hFile == INVALID_HANDLE_VALUE)
{
cout << _T("Could not open file. Error:")
<< GetLastError();

return;
}
if (GetFileInformationByHandle (hFile, &fiInfo))
{

ShowAttributes (fiInfo.dwFileAttributes) ;
cout << _T("Create time: ");
ShowTime (fiInfo.ftCreationTime) ;
cout << _T("Last write time: ");
ShowTime (fiInfo.ftLastWriteTime) ;
cout << _T("Last Access time: ");
ShowTime (fiInfo.ftLastAccessTime) ;
cout << _T("Volume serial number: ")

<< fiInfo.dwVolumeSerialNumber << endl;
cout << _T("File size: ")

<< fiInfo.nFileSizeLow << endl;

32

Chapter 2 « Files

cout << _T("High index: ")

<< fiInfo.nFileIndexHigh << endl;
cout << _T("Low index: ")

<< fiInfo.nFileIndexLow << endl;

cout << _T("Object ID: ") << fiInfo.dwOID
<< endl;
}
CloseHandle (hFile) ;
}
File Operations

The API provides three functions for the common file operations of moving,
copying, and deleting files. You can use these functions in your programs to
duplicate the functionality of the command line equivalents.

The CopyFile function copies the source file to the destination file name.
If an error occurs during the copy, GetLastError contains the error code.

Table 2.10 CopyFile—Copies a file

CopyFile

LPTSTR sourceFile File name for the source file.
LPTSTR destFile File name for the destination.

BOOL existFail Passing TRUE causes the call to fail if the file exists. FALSE
allows existing files to be overwritten.

BOOL Return Value TRUE on success, otherwise FALSE.

The existFail parameter controls the behavior of the function when
the destination file name already exists. If you set it to TRUE, then the function
fails when the destination file name already exists. When set to FALSE, the func-
tion overwrites an existing file. This code fragment demonstrates the use of this
function.

success = CopyFile(sourceFilename,
destFilename, TRUE);
if (!success)
cout << _T("Error code = ") << GetLastError();
else
cout << _T("success\n");

Files can be deleted using the DeleteFile function, which is passed the
filename to be deleted (Table 2.11).

If the return value is FALSE, use the GetLastError function to retrieve
the error code, as shown in this code fragment.

Getting and Setting File Information 33

Table 2.11 DeleteFile—Deletes a file

DeleteFile
LPTSTR fileName Filename to delete
Return Value Returns TRUE on success, FALSE on failure.

success = DeleteFile(filename) ;
if (success)
cout << _T("success\n");
else
cout << _T("Error number: ") " << GetLastError();

File Reading and Writing

The section “Opening and Reading from a File” in this chapter briefly intro-
duced simple file reading using CreateFile, ReadFile, and CloseHandle.
In this section we will examine file seeking, reading, and writing in more de-
tail, and look at the CreateFile function more carefully. The operations here
are all synchronous, so they block (that is, do not return) until complete. Asyn-
chronous file operations are not supported in Windows CE. Listing 2.7 demon-
strates a file-write operation that writes structures to a new file.

Listing 2.7 Writes structures to a file

typedef struct

{
int a, b, c;
} DATA;
void Listing2_7()
{

HANDLE hFile;

TCHAR szFilename[MAX_PATH + 17;
BOOL bSuccess;

DATA dataRec;

int x;

DWORD numWrite;

if (!GetFilename (_T("Enter filename to create:"),
szFilename, MAX_PATH, TRUE))

return;
cout << szFilename;
hFile = CreateFile(szFilename,
GENERIC_WRITE, 0, 0, CREATE_NEW, 0, 0);
if (hFile == INVALID_ HANDLE_VALUE)
{

34

Chapter 2 o Files

cout << _T("Could not open file. Error:

<< GetLastError () ;
return;

dataRec.a = dataRec.b = dataRec.c = x;
bSuccess = WriteFile(hFile, &dataRec,
sizeof (dataRec), &numWrite, O0);
}
while (bSuccess && x++ < 10);

CloseHandle (hFile) ;

The WriteFile function is similar to the ReadFile function, writing the
specified number of bytes to disk. The function does not care what the bytes
represent, SO you can use it to write text or structures. In Listing 2.7, the pro-
gram writes one structure’s set of bytes in a single operation and repeats the
operation ten times.

Table 2.12 WiteFile—Writes data to a file

WriteFile

HANDLE fileHandle

LPDWORD bytesWritten

LPOVERLAPPED overlapped

CONST VOID *buffer Data to write

DWORD bytesToWrite The number of bytes to write

bytes actually written

Handle to a file created by CreateFile

Pointer to a DWORD that returns the number of

Overlapped structure (not supported, pass as NULL)

BOOL Return Value

TRUE for success, FALSE for failure

Listing 2.7 uses the CreateFile function in its simplest configuration. For
example, in Listing 2.7 the GENERIC_WRITE constant indicates that we need
write access to the file, and the CREATE_NEW constant indicates that the sys-
tem should create a new file rather than overwrite an existing one (if the file
name already exists, the function fails). However, CreateFile has many other
capabilities.
When using the CreateFile function, you have control over several dif-
ferent properties:

e The read and write mode
e The way the file will be shared
e A variety of attributes and performance hints

Table 2.13

Getting and Setting File Information 35

Createfile—Creates a new file or opens an existing file

CreateFile

LPCTSTR name

Name of the file to open

DWORD accessMode Read/Write mode
DWORD shareMode The way the file should be shared
LPSECURITY_ATTRIBUTES Address of a security structure (not supported, pass as NULL)

securityAttributes

DWORD create

The way the file should be created

DWORD attributes Settings for normal file attribute bits
HANDLE templateFile File containing extended attributes (not supported, pass as NULL)
HANDLE Return Value Returns a handle to the file, or INVALID_HANDLE_VALUE on failure

The first parameter contains the name of the file to be opened. The func-
tion Get TempFileName can be used to obtain a valid temporary filename from
the operating system. The second parameter passed to CreateFile controls
read and write access. You can pass in any of the following three combinations:

Table 2.14 Read /write access control

Constant Purpose

GENERIC_READ Read only
GENERIC_WRITE Write only
GENERIC_READ | GENERIC_WRITE Read/write

Generally you use the third option when you plan to open a file of struc-
tures that you will read and modify simultaneously. You use GENERIC_READ
when you want read-only access, and GENERIC_WRITE when you need write-
only access.

The third parameter passed to CreateFile controls the share mode of
the file. You control access to the entire file using this parameter. Four varia-
tions are possible (Table 2.15).

m Share mode options

Constant Purpose

0 Exclusive use of the file
FILE_SHARE_READ Read-sharing of the file
FILE_SHARE_WRITE Write-sharing of the file

FILE_SHARE_READ | FILE_SHARE WRITE Read/Write sharing

36

Chapter 2 « Files

If you pass 0 to the shareMode parameter, then the entire file is locked
while you have it open. Any other process attempting to open the file will re-
ceive a share violation. The remaining options grant increasing levels of access
to other processes.

The Create parameter controls the failure behavior of CreateFile dur-
ing creation. Any of the options in Table 2.16 may be used. If you create a new
file with the same name as a file in ROM, the ROM file will be “shadowed.”
Your new file will replace the ROM file. If your file is deleted, the ROM file
comes back into use.

Table 2.16 Create Parameters

Constant Purpose

CREATE_NEW Create a new file. Fails if file name exists.

CREATE_ALWAYS Create a new file. Destroys any existing file.

OPEN_EXISTING Opens an existing file. Fails if file not found.

OPEN_ALWAYS Creates a file if one does not exist, or opens the exist-
ing file.

TRUNCATE_EXISTING Deletes the contents of the file if it exists. Fails if it

does not exist.

The Attributes parameter lets you set the file attributes, and it also lets
you tell the system your intended use of the file so that you can improve over-
all system performance. Table 2.17 shows all the available attributes and indi-
cates which ones can be used in CreateFile, GetFileAttributes, and
SetFileAttributes. Table 2.8 provides a description of the attributes. You
can OR together nonconflicting combinations shown in Table 2.17 as needed
in an application.

Many of the flag options are hints that you give to help the operating sys-
tem improve its overall performance. For example, if you know you are open-
ing a 1-MB file that you will read from beginning to end and never use again,
then it is a waste for the operating system to cache any of it. You should there-
fore use the FILE_FLAG_SEQUENTIAL_SCAN option.

It is possible to read from or write to a file either sequentially or at random
byte offsets in the file. You typically use random offsets when the file contains
a set of structures. The SetFilePointer function moves the file pointer to
the indicated position.

The new file position can move a distance that is relative to the beginning
of the file, the end of the file, or the current position. Positive values move for-
ward, and negative values move backward. Listing 2.8 demonstrates a program
that sets the file pointer to the fifth structure in the file written by Listing 2.7.

Getting and Setting File Information 37

Table 2.17 File Attributes

Create- GetFile- SetFile-
Attribute File Attributes Attributes
FILE_ATTRIBUTE_ARCHIVE X X X
FILE_ATTRIBUTE_COMPRESSED X
FILE_ATTRIBUTE_DIRECTORY X
FILE_ATTRIBUTE_ENCRYPTED X
FILE_ATTRIBUTE_HIDDEN X X X
FILE_ATTRIBUTE_INROM X
FILE_ATTRIBUTE_NORMAL X X X
FILE_ATTRIBUTE_OFFLINE X X
FILE_ATTRIBUTE_READONLY X X X
FILE_ATTRIBUTE_REPARSE_POINT X
FILE_ATTRIBUTE_ROMMODULE X
FILE_ATTRIBUTE_SPARSE_FILE X
FILE_ATTRIBUTE_SYSTEM X X X
FILE_ATTRIBUTE_TEMPORARY X X X
FILE_FLAG_WRITE_THROUGH X
FILE_FLAG_RANDOM_ACCESS X
FILE_FLAG_SEQUENTIAL_SCAN X
FILE_ATTRIBUTE_ROMSTATICREF X

Table 2.18 SetfilePointer—Moves the file pointer

SetFilePointer

HANDLE fileHandle Handle created by CreateFile.

LONG distance Distance to move pointer (low 32 bits).

PLONG distanceHigh Pointer to distance to move pointer (high 32 bits),

or NULL.

DWORD method FILE_BEGIN—move from start of file.
FILE_CURRENT—move from current postion.
FILE_END—move from end of file.

DWORD Return Value Returns the new location of the file pointer, or

OxXFFFFFFFF on error.

38 Chapter 2 « Files

W Gets Sth record from file created in Listing 2.7 and displays it

void'Listing2_8()
{
HANDLE hFile;
DWORD dwNumRead;
TCHAR szFilename[MAX_PATH + 1];
DATA dataRec;

if (!GetFilename (_T("Enter filename:"),
szFilename, MAX_PATH))
return;
hFile = CreateFile(szFilename, GENERIC_READ,
0, 0, OPEN_EXISTING, 0, 0);
if (hFile == INVALID_HANDLE_VALUE)
{
cout << _T("Could not open file. Error:")
<< GetLastError();
return;
}
SetFilePointer (hFile, 5 * sizeof (DATA), 0, FILE_BEGIN);
if (GetLastError() != NO_ERROR)
{
cout << _T("Could not seek to file. Error:")
<< GetLastError();
}
else
{
if (ReadFile (hFile, &dataRec,
sizeof (DATA), &dwNumRead, 0))
{
cout << _T("Record 5: ") << dataRec.a
<< _T(" ™)
<< dataRec.b << _T(" ")
<< dataRec.c << endl;

else

cout << _T("Could not read file. Error: ")
<< GetLastError();
}
}
CloseHandle (hFile) ;
}

File Mapping

The Win32 API provides a feature called file mapping that allows you to map a
file directly into the Windows CE virtual memory space. This capability is often

Getting and Setting File Information 39

used to implement interprocess communication schemes and is also useful for
simplifying or speeding file access.

You can map a file either for read-only or read-write access. Once
mapped, you access the file by address (using array or pointer syntax) rather
than using file access functions such as ReadFile or WriteFile.

For example, say that you need to access data in a file and you know that
you will make a large number of writes to the file in rapid succession. Also imag-
ine that, for performance reasons, you cannot afford the time it takes to perform
all of those writes. Typically you would solve this problem by reading the file
to an array, accessing the array, and then writing the array back to disk. File map-
ping does this automatically—it maps the file into memory for you. In addition,
you can share the memory image among multiple processes, and the image will
remain coherent to all viewers on a single machine. If several processes all use
the same file-mapping object, all changes to the mapped file will be reflected
in the data read by all processes.

Listing 2.9 shows how to use file mapping in read-only mode.

m Displays Unicode fext file using file mapping

void Listing2_9()
{
HANDLE hFile;
TCHAR szFilename[MAX_PATH + 1];
HANDLE hFileMap;
LPTSTR 1pFile;

if(!GetFilename (_T("Enter filename:"),
szFilename, MAX_PATH))
return;
hFile = CreateFileForMapping (szFilename,
GENERIC_READ, 0, 0, OPEN_EXISTING, 0, 0);
if (hFile == INVALID_HANDLE_VALUE)
{
cout << _T("Could not open file. Error:")
<< GetLastError();
return;
}
hFileMap = CreateFileMapping(hFile, 0,
PAGE_READONLY, 0, 0, NULL);
if (hFileMap == NULL)
{
cout << _T("Could not create file mapping:")
<< GetLastError();
CloseHandle (hFile) ;
return;

40 Chapter 2 o Files

lpFile = (LPTSTR) MapViewOfFile (hFileMap,
FILE_MAP_READ, 0, 0, 0);
if(1lpFile == NULL)
cout << _T("Could not create view of map:")
<< GetLastError();

else
{
if ((DWORD) *1pFile != OXFEFF)
cout << _T("Not a Unicode file");
else
{
1pFile++; // skip over first two bytes.

// DANGEROUS! Assumes '\0' terminated file
cout << 1lpFile;
}
UnmapViewOfFile(lpFile) ;
}
CloseHandle (hFileMap) ;
CloseHandle (hFile) ;

The program in Listing 2.9 begins by asking the user for a filename and
opening the file with CreateFileForMapping. In Windows CE, Create-
FileForMapping should be used to open a file ready for file mapping, instead
of CreateFile. As Table 2.19 shows, this function takes the same arguments
as CreateFile.

Table 2.19 CreateforFileMapping—COpens a file for mapping
CreateForFileMapping

LPCTSTR 1pFileName File for which a mapping is to be created.
DWORD dwDesiredAccess Type of access. 0, GENERIC_READ or GENERIC_WRITE.
DWORD dwShareMode How the file can be shared. 0, FILE_SHARE_READ, FILE_
SHARE_WRITE.

LPSECURITY_ATTRIBUTES Not Supported, pass as NULL.

lpSecurityAttributes
DWORD dwCreationDisposition How the file will be created. See CreateFile for options.
DWORD dwFlagsAndAttributes Attributes and flags for file. See CreateFile for options.
HANDLE hTemplateFile Not supported, pass as NULL.
HANDLE Return Value Handle to a file object that can be mapped, or INVALID_

HANDLE_VALUE on failure.

Listing 2.9 then calls the CreateFileMapping function to create the
mapping. This step determines the size of the mapping as well as its data. The

Getting and Setting File Information 4]

protection is set to read-only, and setting sizeLow and sizeHigh to zero sets
the size to the current file size.

Table 2.20 CreateFileMapping — Creates and names a mapping

CreateFileMapping

HANDLE fileHandle Handle to the file, or 0OxFFFFFFFF for a memory block

LPSECURITY_ATTRIBUTES Security attributes (not supported, pass as NULL)
security

DWORD protect Access protection (read-only vs. read-write)

DWORD sizeHigh Maximum size of the mapping, high 32 bits

DWORD sizeLow Maximum size of the mapping, low 32 bits
LPTSTR mapName Name of the mapping

HANDLE Return Value Returns a handle to the mapping, or NULL on error

The MapViewOfFile function reserves data into an address range set
aside for memory-mapped files, and returns the new address of the data. The
address range for memory-mapped files is above the address range used for
processes. The data from the file will be paged into this memory space as you
access it. In Listing 2.9, 1pFile is declared as a pointer to a character so that
the data can be treated text. You can declare 1pFile to be of any type. For ex-
ample, if the file contains a set of structures, let 1pFile be a pointer to that type
of structure.

Table 2.21 MapViewOffile —loads a file mapping info memory
MapViewOfFile

HANDLE mapHandle Handle to the mapping

DWORD access Type of access (read-only, read-write, etc.)

DWORD offsetHigh Offset into the file, high 32 bits

DWORD offsetLow Offset into the file, low 32 bits

DWORD number Number of bytes to map

LPVOID Return Value Returns the starting address of the view, or 0 on error

In Listing 2.9, the code maps the entire file with read-only access. Once
mapped, 1pFile points to the address of the mapping, and you use it just like
any other pointer or array. If you load a text file with this program, the cout
statement displays the entire file, as shown. This is dangerous, since cout will
assume that whatever 1pFile points at is null-character terminated, but this is

42 Chapter 2 « Files

not generally the case for text files. The code will work until you try to open
a file that contains an exact number of memory pages. In this situation, cout
will look beyond the last page for the null character, and this will often cause
a page fault.

Once you have finished with the file, use UnmapviewOfFile to unload
the memory and write any changes back to the original file. No changes were
made here, but the next example makes use of this feature. ‘

Table 2.22 UnmapViewOfFile—Releases the view and writes changes back to the file

UnmapViewOfFile

LPVOID address Address of the mapping that was returned from MapvViewOfFile

BOOL Return Value Returns TRUE on success, or FALSE on failure

Listing 2.10 shows a second example of file mapping. Here the program
opens the mapped file for read-write access and then writes to the file. The
changes are flushed to disk only when the program calls UnmapViewOfFile.

Listing 2.10 Displays Unicode text file using writable file mapping

void Listing2_10¢()
{
HANDLE hFile;
TCHAR szFilename [MAX PATH + 1];
HANDLE hFileMap;
LPTSTR lpFile;
DWORD dwSizelo;

if (!GetFilename (_T("Enter filename:"),
szFilename, MAX_PATH))
return;
hFile = CreateFileForMapping (szFilename,
GENERIC_READ | GENERIC_WRITE,
0, 0, OPEN_EXISTING, 0, 0);
if (hFile == INVALID_HANDLE_VALUE)
{
cout << _T("Could not open file. Error:")
<< GetLastError();
return;
}
// assume < 4 gigabytes
dwSizeLo = GetFileSize (hFile, NULL);
hFileMap = CreateFileMapping(hFile, O,
PAGE_READWRITE, 0, dwSizeLo + 1, NULL);
if (hFileMap == NULL)
{

Getting and Setting File Information 43

cout << _T("Could not create file mapping:")
<< GetLastError();
CloseHandle (hFile) ;
return;
}
lpFile = (LPTSTR) MapViewOfFile (hFileMap,
FILE_MAP_WRITE, 0, 0, 0);
if (1lpFile == NULL)
cout << _T("Could not create view of map:")
<< GetLastError() ;

else
{
if ((DWORD) *1pFile != OXFEFF)
cout << _T("Not a Unicode file");
else
{
// add terminating NULL character
lpFile[dwSizeLo] = '\0"';
// skip over first two bytes.
1lpFile++;

cout << 1lpFile;

}
UnmapViewOfFile (1pFile) ;

}

CloseHandle (hFileMap) ;

// remove NULL character at end of file
SetFilePointer (hFile, -2, NULL, FILE_END);
SetEndOfFile (hFile);

CloseHandle (hFile) ;

Listing 2.10 opens the mapping for reading and writing. A null character
is appended to the end of the file, and this makes writing the contents of the
file to cout safe. The null character needs to be removed once the mapping
is closed. This can be done by moving the file pointer to the byte before the
null character and then calling SetEndOfFile to set the end of file to the cur-
rent file position.

Table 2.23 SetEndOfFile —Sets end of file to current file position

SetEndOfFile
HANDLE hFile Handle of file to set end of file for
BOOL Return Value Returns TRUE on success, or FALSE on failure

The function FlushviewOfFile can be used to write any changed data
out to the Object Store. This function is also useful when using a read-only
mapped file. As you read through a file, pages of memory are used to store the

44

Chapter 2 « Files

data. If you are reading a large file, significant amounts of the device’s scarce
memory can be used up. Calling FlushviewOfFile will release these pages
of memory.

Table 2.24 FlushViewOfFile—Flushes changes in the view to Object Store
FlushvViewOfFile

LPVOID address The base address of the bytes to flush
DWORD number The number of bytes to flush
BOOL Return Value Returns TRUE on success, FALSE on failure

When using FlushViewOfFile, you generally flush the entire file. The
system is smart enough to write back to disk only those memory pages that ac-
tually contain modified data.

Conclusion

This chapter presents many of the individual concepts involved in handling
and manipulating files. As you can see, in Windows CE file access is quite in-
teresting because of all of the different techniques available in the API: normal
file I/0, file mapping, and so on.

The CreateFile, ReadFile, and WriteFile concepts discussed in
this chapter apply not only to files, but also to several other I/O channels.
For example, these same functions appear in Chapter 9, which looks at serial
communications.

Memory-mapped files are a convenient way to access data in files and can
also be used for sharing data between applications.

Object Store, Directory,
~ and Network Operations

Windows CE uses the Object Store for storing files, databases, and the registry
(see Chapter 4). The Object Store uses RAM. This is limited to 256 MB in Win-
dows CE 3.0, and 16 MB in earlier versions. Other devices can be used to store
files and database, including storage cards (such as Compact Flash memory
cards) and disk drives. Windows CE can also connect to resources on the net-
work, either through a dialup/serial communications Remote Access Services
(RAS) connection or a network device such as a NE2000 PCMCIA network card.

Unlike Windows NT/98/2000, Windows CE does not use drive letters (for
example, "F: ") for network connections or devices. Directories in the Object
Store (for example, "\Storage Card") represent storage devices. Network
connections can be accessed directly through UNCs (Universal Naming Con-
ventions) such as "\\myserver\myshare\myfile.txt". Alternatively, a
connection can be made using the remote name (the UNC) and a local name.
The local name is added to the directory "\network", which can then be used
to access the network. So, for example, if a connection is made using the lo-
cal name "myresource", and the network resource contains the file "myfile
.txt", the file can be accessed through the name "\network\myresource\
myfile.txt". Windows CE does not support the concept of “current direc-
tory,” so functions like GetCurrentDirectory are not implemented.

The object store is maintained in RAM, and so needs to be reliable in the
event of system crashes and invalid memory pointers from devices and appli-
cations. The object store uses transactions to ensure that the contents of the
store can be returned to a known, integral state when a device is restarted. Files
and directories are just two kinds of objects that can be stored. Registry items
and property database records are also objects. Each object (including files and
directories) has a unique identifier called an “Object ID,” or OID. While you
can find the OID for a file or directory, it is not particularly useful. However,
the OIDs are essential when dealing with property databases.

45

46

Chapter 3 « Object Store, Directory, and Network Operations

Windows CE gives you several functions that you can use to access in-
formation about the object store, individual directories (folders), and network
resources. For example, you use these functions:

o To find the maximum size and free space in the Object Store and storage
devices

e To create and remove directories

e To find files in directories

Windows CE contains a set of WNet functions that lets you find and con-
nect to network drives and printers shared by other machines. With these func-
tions you can:

Enumerate all the domains on the network

Enumerate all the machines in each domain
Enumerate all the drives and printers on each machine
Connect to any drive on the network

Disconnect from any drive

All the connection options seen by a user in the Explorer are implemented
using the WNet and related functions.

Getting Object Store Free Space

Determining the available free space in the Object Store or storage device is
important before attempting to save large amounts of data, or for providing
feedback to the user. Listing 3.1 shows how to obtain this information by call-
ing GetDiskFreeSpaceEx.

Listing 3.1 Displays free space in the object store

void Listing3_1()
{
ULARGE_INTEGER ulFree, ulTotalBytes, ulTotalFree;
// specify root directory in Object Store
if (GetDiskFreeSpaceEx (_T("\\"),
&ulFree, &ulTotalBytes, &ulTotalFree))
{
cout << _T("Bytes available to caller: ")
<< tab << ulFree.LowPart << tab
<< ulFree.HighPart << endl;
cout << _T("Total number bytes: ")
<< tab << ulTotalBytes.LowPart << tab
<< ulTotalBytes.HighPart << endl;

Creating and Deleting Directories 47

cout << _T("Total num. free bytes: ") << tab
<< ulTotalFree.LowPart << tab
<< ulTotalFree.HighPart << endl;

else
cout << _T("Could not get free gpace: ")
<< GetLastError();

Table 3.1 GetDiskFreeSpacefx— Gets information on available storage space

GetDigkFreeSpaceEx

LPCWSTR lpDirectoryName Storage device for which to obtain
information

PULARGE_INTEGER lpFreeBytesAvailableToCaller Number of bytes of storage available to
this user

PULARGE_INTEGER lpTotalNumberOfBytes Total number of bytes of storage

PULARGE_INTEGER lpTotalNumberOfFreeBytes Total number of free bytes of storage

BOOL Return Value Nonzero indicates success. Zero

indicates failure

The same function can be used to determine the free space in storage de-
vices or network devices by passing the name of the directory entry represent-
ing the storage device (for example, "Storage Card") or network connection
("\Network\myresource"). Because of security restrictions the free bytes
available to the caller may be less than the total free bytes.

GetDiskFreeSpaceEx returns information in ULARGE structures. This
structure contains a single member that is a ULONGLONG structure. You can get
the low long and high long values using the LowPart and HighPart members.

Windows CE also provides the GetStoreInformation for determining
the size and free space in the Object Store. However, GetDiskFreeSpaceEx
is more useful, as it can be used for any storage medium.

(reating and Deleting Directories

Typically a user creates a directory with the Explorer. There are many reasons
why you might need to do the same thing inside of an application. For ex-
ample, if you are writing an application that installs another application or a
set of data files, you will need to create directories to hold the files that you
are installing. Listing 3.2 uses the CreateDirectory function to create a new
directory.

48 Chapter 3 » Object Store, Directory, and Network Operations

Listing 3.2 Creates the specified directory

void Listing3_2()
{
TCHAR szPath[MAX_ PATH + 1];

if (!GetTextResponse(_T("Enter Directory to Create:"),
szPath, MAX_PATH))
return;

if (!CreateDirectory(szPath, 0))
cout << _T("Could not create directory: ")

<< GetLastError();

}

CreateDirectory—Creates a new directory

CreateDirectory ‘

LPTSTR dirName Name/path of the directory to create.

LPSECURITY_ATTRIBUTES Security attributes (not supported, use NULL)
security

BOOL Return Value Returns TRUE on success, otherwise FALSE

The dirName parameter accepts either a name or a path. If it receives
just a name, it forms the new directory as a child of the root directory in the
Object Store. If it receives a path (for example, "\mydir\temp\new"), it trav-
erses the path ("\mydir\temp") and creates the new directory ("new") there.
If the path is invalid, it fails. The GetLastError function contains a detailed
error code following any failure.

It is just as easy to delete a directory using the RemoveDirectory func-
tion, as shown in Listing 3.3.

W Deletes the specified directory

void Listing3_3()
{
TCHAR szPath[MAX_PATH + 11];

if (!GetTextResponse (_T("Enter Directory to Remove:"),
szPath, MAX_PATH))
return;

if (!RemoveDirectory (szPath))
cout << _T("Could not remove directory: ")
<< GetLastError () ;

(reating and Deleting Directories 49

Table 3.3 RemoveDirectory—Removes an empty directory

RemoveDirectory
LPTSTR dirName Name/path of the directory to remove
BOOL Return Value Returns TRUE on success, or FALSE on failure

The RemoveDirectory function can remove a directory only if it is
empty. It accepts the same name and/or path information described for
CreateDirectory above.

Traversing Directory Trees

The Windows CE API provides a set of three functions that let you easily tra-
verse a directory. Using these same functions recursively you can traverse en-
tire directory trees. Listing 3.4 demonstrates the use of the directory walking
functions in their simplest form. This code lists all the file and directory names
found in a single directory.

Listing 3.4 Lists directory contents

void PrintFindData (WIN32_FIND_DATA *fdData)
{
// Directory and temporary means removable media
if ((fdData->dwFileAttributes
& FILE_ATTRIBUTE_TEMPORARY)
&& (fdData->dwFileAttributes
& FILE_ATTRIBUTE_DIRECTORY))

cout << _T("Removable Media: ")
<< fdData->cFileName << endl;
} .
// If it's a directory, print the name
else if(fdData->dwFileAttributes
& FILE_ATTRIBUTE_DIRECTORY)
{
cout << _T("Directory: ")
<< fdDhata->cFileName << endl;
}
else// it's a file, print name and size
{
cout << fdData->cFileName;
cout << tab << _T("(")
<< fdbhata->nFileSizeLow << _T(")") << endl;

50 Chapter 3 ¢ Object Store, Directory, and Network Operations

void ListDirectoryContents (LPTSTR lpFileMask)
{
HANDLE hFindFile;
WIN32_FIND_DATA fdData;
// get first file
hFindFile = FindFirstFile(lpFileMask, &fdbData):;
if (hFindFile != INVALID_HANDLE_VALUE)
{
PrintFindData (&fdData) ;
while (FindNextFile (hFindFile, &fdData))
{
PrintFindData (&fdData) ;
}
FindClose (hFindFile) ;
}
else
cout << _T("Call to FindFirstFile failed: ")
<< GetLastError();

}

void Listing3_4()
{

ListDirectoryContents (_T("*.*"));
}

In Listing 3.4, the ListDirectoryContents function starts by calling
the API's FindFirstFile function.

Table 3.4 FindFirstFile —Finds the specified file in the current directory

FindFirstFile

LPTSTR searchFile The file to search for (wild cards are OK)
LPWIN32_FIND_DATA findData Information about the file it finds

HANDLE Return Value Returns a search handle to the first matching file
found, or INVALID_HANDLE_VALUE on failure

The FindFirstFile function accepts the name of the file to find and re-
turns a HANDLE to the file if it is found, as well as a structure describing the file.
The file handle is net a normal file handle like the ones produced by Create-
File (see Chapter 2). It is specific to the Find functions described in this sec-
tion. The WIN32_FIND_DATA structure returns the following information:

typedef struct _WIN32_FIND_DATA {
DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftLastAccessTime;

Creating and Deleting Directories 5]

FILETIME ftLastWriteTime;

DWORD nFileSizeHigh;

DWORD nFileSizeLow;

DWORD dwReservedO;

DWORD dwReservedl;

TCHAR cFileName[MAX_PATH];
TCHAR cAlternateFileName[14];

} WIN32_FIND_DATA;

A great deal of this information duplicates the information returned by
the GetFileInformationByHandle function (see Chapter 2), as well as the
fully qualified file name. Windows CE does not use the 8.3 DOS file notation,
so cAlternateFilename is not used.

You can pass to the FindFirstFile function a specific file name, a file
name containing wild cards, or a path with or without a file name. If it finds a
file that matches the file name you have passed, it returns the handle and in-
formation about the file. If it cannot find the file, it returns INVALID_FILE_
HANDLE for the handle.

In Listing 3.4, the program is searching for every file in the root directory.
It passes the structure returned by FindFileFirst to PrintFindData, which
decides whether or not it is a directory name and prints out some of the infor-
mation. The program then continues looking for other files in the directory us-
ing the FindNextFile function.

Storage devices are represented as directories in the Object Store. Such di-
rectories have the attributes “directory” and “temporary.” PrintFindData uses
these attributes to determine if a directory represents a storage device.

m FindNextFile—Finds the next file following a FindFileFirst

FindNextFile

HANDLE findFile File handle returned by FindFileFirst
LPWIN32_FIND_DATA finData Information about the file it finds

BOOL Return Value Returns TRUE on success, otherwise FALSE

FindNextFile accepts a handle produced by either FindFirstFile
or a previous call to FindNextFile. It finds the next file in the directory that
matches the file name description first passed to FindFirstFile. If no
match is found, the returned Boolean value will be false, and the GetLast-
Error function will contain the error code. Once no match is found, it means
that the code has reached the end of the directory. At this point, the pro-
gram calls FindClose to clean up the file handle used by the previous Find
functions.

52

Chapter 3 = Object Store, Directory, and Network Operations

Table 3.6 FindClose — Closes the search handle

FindClose
HANDLE File handle returned by FindFileFirst
BOOL Return Value Returns TRUE on success, otherwise FALSE

Compact Flash and Other Storage Devices

Storage devices extend the amount of data stored in a Windows CE device from
the maximum allowed in the Object Store. The most common type of storage
device is Compact Flash (CF) and ATA cards, although CDROM, DVD, FAT, and
other storage devices are becoming more widespread.

Most storage devices are removable, so knowing when the user puts in
or takes out a device can be important. In Windows CE a WM_DEVICECHANGE
message is sent to the main application window when a removable storage de-
vice is added or removed. You need to include the file dbt .h when using this
message. You can respond to this message using the following code in the win-
dow’s message-processing function.

case WM_DEVICECHANGE:
switch (wParam)
{
case DBT_DEVICEARRIVAL:
case DBT_DEVICEREMOVECOMPLETE:
Listing3_5 (wParam,
(DEV_BROADCAST_HDR*) 1Param) ; break;

The wParam parameter has the value DBT_DEVICEARRIVAL when a de-
vice is inserted, and DBT_DEVICEREMOVECOMPLETE when the device is re-
moved (Listing 3.5). You should note that the WM_DEVICECHANGE message is
also sent when any PCMCIA (such as modem or network card) or other remov-
able device is inserted or removed. Your application will determine whether a
storage device caused the message to be sent using the techniques shown in
Listing 3.6.

W Response fo inserfion or removal of a storage card (called in response
to WM_DEVICECHANGE message)

void Listing3_5 (WORD wParam, DEV_BROADCAST HDR* dbt)
{
// Must include dbt.h
if (wParam == DBT_DEVICEARRIVAL)
cout << _T("Device inserted") << endl;
else if (wParam == DBT_DEVICEREMOVECOMPLETE)
cout << _T("Device removed") << endl;

Compact Flash and Other Storage Devices 53

A special situation occurs when the Windows CE device is turned on. Win-
dows CE simulates a removal and insertion of the device before applications
are allowed to access the device. This means your application will receive two
WM_DEVICECHANGE messages (a DBT_DEVICEREMOVECOMPLETE and DBT_
DEVICEARRIVAL) for each removable device when the Windows CE device is
turned on.

Auto-Run Applications on Compact Flash Cards

Starting with Windows CE 3.0 it is possible to have an application run from a
Compact Flash memory card when it is inserted into a device. This allows an
application to auto-install from a Compact Flash card.

To set an application to be auto-run, you must place the application in
a specific folder for the CPU targeted by your application. The folder name
is based on the CPU number returned in the dwProcessorType member of
the SYSTEM_INFO structure returned from calling Get SystemInfo. Table 3.7
shows the possible values and their associated constants.

Table 3.7 Processor values and associated constants

Constant Value
PROCESSOR_MIPS_R4000 4000
PROCESSOR_HITACHI_SH3 10003
PROCESSOR_HITACHT_SH3E 10004
PROCESSOR_HITACHI_SH4 10005
PROCESSOR_MOTOROLA_821 821
PROCESSOR_SHx_SH3 103
PROCESSOR_SHx_SH4 104
PROCESSOR_STRONGARM 2577
PROCESSOR_ARM720 1824
PROCESSOR_ARM820 2080
PROCESSOR_ARM920 2336
PROCESSOR_ARM_7TDMI 70001

Thus, if you want your application to auto-run and the application is com-
piled for MIPS, you should rename your application to autorun . exe and place
it in a folder called \4000, for example, \4000\autorun.exe.

If your application is compiled for CEF (Common Executable Format),
you should place the autorun.exe file in a folder called \0, for example,
\O\autorun.exe.

54

Chapter 3 o Obiéct Store, Directory, and Network Operations

The application autorun.exe is passed the command line parameter
‘install’ when a Compact Flash card is inserted, and with the command line
parameter ‘uninstall’” when the card is removed. This allows your auto-
run.exe application to uninstall itself when the card is removed. The auto-
run. exe application typically has a simple WinMain that tests for the two valid
command line values:

int WINAPI WinMain (HINSTANCE hInst,

HINSTANCE hInstPrev, LPTSTR lpszCmdLine,
int nCmdShow)

if (lstrcmpi(lpszCmdLine, _T("install") == 0)
{
OnCardInsert () ; // function installs
}
else
{
OnCardEject () ; // function uninstalls
}
return 0;

}

Enumerating Compact Flash Cards

The code in Listing 3.4 in the section “Traversing Directory Trees” showed how
to search for files and how to recognize a Compact Flash card from the related
directory’s attributes. In Windows CE 3.0 the FindFirstFlashCard and
FindNextFlashCard functions can be used to enumerate all flash cards in-
stalled on a device, and this is much easier. The functions operate in very much
the same way as FindFirstFile and FindNextFile. Listing 3.6 lists all the
Compact Flash cards present on the device. You need to include projects.h
into your source files and Note_Prj.Lib into the project.

W Enumerates all Compact Flash cards

#include <projects.h>
// link with NOTE_PRJ.LIB

void Listing3_6()
{
HANDLE hCF;
WIN32_FIND_DATA fndMountable;

hCF = FindFirstFlashCard (&fndMountable) ;

if (hCF == INVALID_ HANDLE_VALUE)
cout << _T("No CF Cards") << endl;
else

{
do

WNet Functions 55

cout << _T("CF Card: ")
<< fndMountable.cFileName << endl;
} while(FindNextFlashCard (&fndMountable,
&fndMountable)) ;
FindClose (hCF) ;

The function FindFirstFlashCard takes a single argument, a pointer
to a WIN32_FIND_DATA structure, and returns a search handle, stored in hCF.
The search handle has a value of INVALID_ HANDLE_VALUE if the search fails
(for example, if there are no Compact Flash cards). The code in Listing 3.6 lists
the folder name associated with the Compact Flash card (for example, ‘Stor-
age Card), and then calls FindNextFlashCard. The function is passed the
search handle, hCF, and a pointer to a WIN32_FIND_DATA structure. The func-
tion returns FALSE when all Compact Flash cards have been listed. The search
handle should be passed to FindClose when the list is complete.

Whet Functions

Windows CE is designed to work with networks. When several Windows ma-
chines exist on a net, they can easily share disk drives and printers with one
another. The Explorer provides an easy way for users to connect to these shared
devices. The Windows CE API also gives you mechanisms to connect to these
devices from within your applications.

Windows sees the network as a tree. Any Windows network is divided into
a series of domains, each of which contains a set of machines. Each machine
can share zero or more drives, directories, or printers on the network.

Windows CE supports a subset of the Win32 API WNet functions that
can be used to maintain connections to network resources (such as folder and
printer shares). Before using the WNet functions you must have a valid network
connection through a Remote Access Services (RAS) or direct network connec-
tion using a network adapter (such as PCMCIA compatible NE2000). WNet func-
tions cannot be used through an ActiveSync connection to a desktop PC.

The Win32 API contains a set of functions that allow you to enumerate
all the shares available throughout the network and then connect to any one
of these shares. The network itself, its domains, and the machines in the do-
mains are called containers. You open containers with the WNetOpenEnum
function. A container can contain other containers (for example, domains con-
tain machines), or it can contain actual drive and printer resources, called ob-
jects. You enumerate all the items in a container—that is, you request a list of
everything that a container holds—using the WNet EnumResources function.

56

Chapter 3 « Object Store, Directory, and Network Operations

Once you get down to the share level, you can connect to a drive with the

WNetAddConnection2 function.

This section shows you how to walk through the resource tree and also
how to gather information about connected resources. Note you will need to

include winnetwk.h to call the WNet functions.

Enumerating Network Resources

The code shown in Listing 3.7 demonstrates how to walk recursively through
all the resources available on your network. It starts with the network itself and
opens every container it finds until it reaches actual drives and printers that each
machine shares on the network. It is these drive and printer objects that receive

connections.

Listing 3.7 Lists all objects (shares and printers| on a network

// NB: include winnetwk.h

// This function handles WNet errors

void ErrorHandler (DWORD dwErrorNum, LPTSTR s)

{
cout << _T("Failure in: ") << s << _T("
<< GetLastError() << endl;

}

// This function displays the information in a

// NETRESOURCE structure

void DisplayStruct (LPNETRESOURCE nr)
{

cout << _T("Type: ");

switch (nr->dwType)

{

case RESOURCETYPE_DISK:
cout << _T("Disk") << endl;
break;

case RESOURCETYPE_PRINT:
cout << _T("Printer") << endl;
break;

case RESOURCETYPE_ANY:
cout << _T("Any") << endl;

}

cout << _T("Display Type: ");

switch (nr->dwDisplayType)

{

case RESOURCEDISPLAYTYPE_DOMAIN:
cout << _T("Domain") << endl;
break;

WNet Functions 57

case RESOURCEDISPLAYTYPE_GENERIC:
cout << _T("Generic") << endl;
break;

case RESOURCEDISPLAYTYPE_SERVER:
cout << _T("Server") << endl;
break;

case RESOURCEDISPLAYTYPE_SHARE:
cout << _T("Share") << endl;

}

if (nr->1pLocalName)

cout << _T("Local Name: ") << nr->lpLocalName
<< endl;
if (nr->1pRemoteName)
cout << _T("Remote Name: ") << nr->1pRemoteName
<< endl;
if (nr->1pComment)
cout << _T("Comment: ") << nr->1lpComment << endl;
if (nr->1lpProvider)
cout << _T("Provider: ") << nr->lpProvider
<< endl;

cout << endl;

}

// Recursive function to enumerate resources
BOOL EnumerateResources (LPNETRESOURCE nrStartingPoint)
{

DWORD dwResult, dwResultEnum, 1i;

LPNETRESOURCE l1pNRBuffer;

DWORD dwBufferSize = 16384;

DWORD dwNumEntries = OxXFFFFFFFF;

HANDLE hEnum;

dwResult = WNetOpenEnum (RESOURCE_GLOBALNET,
RESOURCETYPE_ANY,
0, nrStartingPoint, &hEnum) ;
if (dwResult != NO_ERROR)
{
ErrorHandler (dwResult, _T("WNetOpenEnum"));
return FALSE;

}
// allocate a buffer to hold resources
1pNRBuffer = (LPNETRESOURCE)
LocalAlloc (LPTR, dwBufferSize);
// loop through all the elements in the container
do
{
dwBufferSize 16384;
dwNumEntries = OxFFFFFFFF;
// Get resources
dwResultEnum = WNetEnumResource (hEnum,
&dwNumEntries, 1pNRBuffer, &dwBufferSize);

58 Chapter 3 « Object Store, Directory, and Network Operations

}

if (dwResultEnum == NO_ERROR)
{ .
// loop through each of the entries
for(i = 0; 1 < dwNumEntries; i++)
{

DisplayStruct (&1pNRBuffer[i]) ;

// if container, recursively open it

if (1lpNRBuffer[i] .dwUsage &

RESOURCEUSAGE_CONTAINER)
{

if (!EnumerateResources (
&1pNRBuffer[il))
cout <<
_T("Enumeration Failed.")
<< endl;

}
}
else if(dwResultEnum != ERROR_NO_MORE_ITEMS)
{
ErrorHandler (dwResultEnum,
_T("WNetEnumResource")) ;
break;
}
}
while (dwResultEnum != ERROR_NO_MORE_ITEMS) ;
// Clean up
LocalFree (1pNRBuffer) ;
dwResult = WNetCloseEnum(hEnum) ;
if (dwResult != NO_ERROR)
{
ErrorHandler (dwResult,
return FALSE;
}
return TRUE;

T ("WNetCloseEnum")) ;

void Listing3_7()

{

// Start the recursion at the net level
NETRESOURCE nr;
TCHAR szContainer [MAX_PATH + 1];
if (!GetTextResponse (

_T("Enter Container to list:"), szContainer,
MAX_PATH))
return;
memset (&nr, 0, sizeof(nr));
nr.lpRemoteName = szContainer;
nr.dwUsage = RESOURCEUSAGE_CONTAINER;
EnumerateResources (&nr) ;

WNet Functions 59

The program in Listing 3.7 starts in its Listing3_7 function by prompt-
ing the user for the container (either a domain or a server). It passes this con-
tainer to the EnumerateResources function, which recursively traverses the
container. The EnumerateResources function calls WNet OpenEnum.

Table 3.8 WNetOpenEnum—Opens a container

WNetOpenEnum

DWORD scope Scope of the search. This can be:
RESOURCE_CONNECTED for all currently connected resources.
RESOURCE_GLOBALNET for all resources on the network.
RESOURCE_REMEMBERED for all persistent connections.

DWORD type Type of items to enumerate. This can be:
RESOURCETYPE_ANY for all resources.
RESOURCETYPE_DISK for disk resources.
RESOURCETYPE_PRINT for print resources.

DWORD usage Type of objects to open. This can be:
0 for all resources.
RESOURCEUSAGE_CONNECTABLE for resources that can be connected to.
RESOURCEUSAGE_CONTAINER for container objects.

LPNETRESOURCE resource Specifies container (server or domain) to open. NULL for network.

LPHANDLE enumHandle Returned handle to the opened container.

DWORD Return Value NO_ERROR oOn success, or an error code.

The WNetOpenEnum function opens a container, returning a handle to
that container so that you can enumerate its contents. The Resource parameter
specifies the container that you want to open. The Scope, Type, and Usage pa-
rameters specify the type of objects that will be enumerated by the WNet Enum-
Resources function.

Initially, the WNetOpenEnum function receives the container specified by
the user for its resource. Once the container is open, Listing 3.7 enters a loop
that calls WNet EnumResources to get all the objects inside the container.

Table 3.9 WNNetEnumResources—Enumerates resources in an open container

WNetEnumResources

HANDLE enumHandle Handle to an open container

LPDWORD numEntries Number of entries desired/returned

LPVOID buffer Buffer to hold returned entries

LPDWORD bufferSize Original/returned size of buffer

DWORD Return Value NO_ERROR or ERROR_NO_MORE_ITEMS On success, or

an error code

60

Chapter 3 « Object Store, Directory, and Network Operations

The WNetEnumResources function accepts the handle returned by
WNetOpenEnum, the number of entries desired (or 0xFFFFFFFF if you want
them all), a buffer to place the entries into (allocated by Localalloc; see Chap-
ter 12 for details), and the size of the buffer (the documentation specifies that
16K is a reasonable value). In the buffer the function returns an array of NETRE-
SOURCE structures that contains information about each entry in the container.
typedef struct _NETRESOURCE {

DWORD dwScope;

DWORD dwType;

DWORD dwbDisplayType;

DWORD dwUsage;

LPTSTR lpLocalName;

LPTSTR lpRemoteName;

LPTSTR lpComment;

LPTSTR lpProvider;

} NETRESOURCE;

Much useful information is contained in a NETRESOURCE structure. The
DisplayStruct function near the top of Listing 3.7 displays most of this in-
formation. The Scope field tells the status of an enumeration.

¢ RESOURCE_CONNECTED The device is already connected.
@ RESOURCE_GLOBALNET The enumeration is not connected.
& RESOURCE_REMEMBERED There is a persistent connection to the device.

If connected or remembered, the enumeration must be a device, either a
printer or a drive, and the LocalName field contains the local name of the de-
vice. An enumeration marked as USAGE_GLOBALNET gives more information
about itself in the Usage field, which can have one of the following values:

¢ RESOURCEUSAGE_CONNECTABLE The enumeration is a connectable
device.

@ RESOURCEUSAGE_CONTAINER The enumeration is a container (a
domain or a machine).

In either case, the RemoteName field contains the name used to connect
to or open the enumeration. The Type field tells whether a connectable object
is a disk or a printer.

e RESOURCETYPE_ANY
e RESOURCETYPE_DISK
e RESOURCETYPE_PRINT

The DisplayType field tells how to display the object. This field is used
in Windows’ connection dialogs to determine the icon placed next to each item.

e RESOURCEDISPLAYTYPE_DOMAIN
& RESOURCEDISPLAYTYPE_GENERIC
& RESOURCEDISPLAYTYPE_SERVER
s RESOURCEDISPLAYTYPE_SHARE

Adding and Canceling Connections 6]

The NETRESOURCE structure also contains the comment and the name of
the provider.

Following the call to WNet EnumResources, Listing 3.7 loops through all
the NETRESOURCE structures in the buffer. First it displays each record’s con-
tents. Then it inspects each record to decide whether or not it is a container. If
it is a container, the EnumerateResources function recursively calls itself so
that it can open and display the container. If it is not a container, it is a drive or
a printer and a connection can be formed to it. Once the code has examined
all the entries in the buffer, it cleans up and returns.

The first time that you call WNetEnumResources for any container it
should return the error code NO_ERROR, as well as a buffer full of entries. How-
ever, there is no guarantee that the function was able to place all the entries
for a given container into the buffer on the first call. Therefore, you should call
it repeatedly until it returns ERROR_NO_MORE_ITEMS. This is the reason for the
do . . . while loop in the code.

If something goes wrong, the ErrorHandler function seen in Listing 3.7
handles any WNet error. In cases where the network provider reports an error,
the ErrorHandler function calls the GetLastError function to obtain error
information.

Adding and Canceling Connections

Once you know how to determine the resources on a network, the next stage
is to make a connection. Once a connection is made, the resource can be ac-
cessed through the entry in the \network directory in the Object Store. When
making a connection you must specify the resource’s UNC (such as "\\my-
server\myresource") and a local name (such as "mylocal"). Once the
connection is made, the local name can be used to access resources (such as
"\network\mylocal\myfile.txt").

Unlike Windows 98/NT/2000, remembered connections are not reestab-
lished automatically in Windows CE when the device is next powered-on. You
can, however, find out about remembered connections by accessing the
"\HKEY_Local_Machine\Comm\redir\connections" key in the registry
(see Chapter 4 for information on accessing the registry).

Listing 3.8 shows how to call WNetAddConnection3 to make a connec-
tion by specifying the UNC and local name.

Listing 3.8 Adds a network connection

void Listing3_8()

{ v
TCHAR szUNCPath[MAX_PATH + 1];
TCHAR szLocalName [MAX_PATH + 17;
NETRESOURCE nr;

62

Chapter 3 « Object Store, Directory, and Network Operations

if (!GetTextResponse (_T("Enter UNC to Connect to:"),
szUNCPath, MAX_PATH))
return;
if (!GetTextResponse (_T("Enter Local Name:"),
szLocalName,” MAX_PATH))
return;

nr.dwType = RESOURCETYPE_DISK;
nr.lpRemoteName = szUNCPath;
nr.lpLocalName = szLocalName;
// Microsoft Network is only provider
nr.lpProvider = NULL;
if (WNetAddConnection3 (hWwnd, &nr, NULL,
’ NULL, CONNECT_UPDATE_PROFILE) != NO_ERROR)
cout << _T("Error adding connection: ")
<< GetLastError() << endl;

The WNet AddConnection3 function is passed a NETRESOURCE structure
initialized with the type of resource to connect (RESOURCETYPE_DISK), and
strings containing the UNC and the local name. The provider name must be set
to NULL, since only Microsoft networks are supported. WNet AddConnection3
ignores the other NETRESOURCE members.

Table 3.10 WNetAddConnection3—Adds a connection to a shared resource
WNetAddConnection3

HWND hwnd Handle to a window used as a parent when displaying
dialog boxes (may be NULL).
LPNETRESOURCE Pointer to a NETRESOURCE structure holding information
netResource about the resource with which to connect.
LPTSTR password Password.
LPTSTR userName User name.
DWORD flags Use CONNECT_UPDATE_PROFILE to remember this

connection, otherwise 0.

DWORD Return Value ERROR_SUCCESS indicates success.

In Listing 3.8 the Password and Username parameters in WNetAddCon-
nection3 are passed NULL values, indicating that the default user name and
password will be used. The last parameter is passed CONNECT_UPDATE_PRO-
FILE, which causes the registry to be updated to store the UNC and local name
for the connection.

Listing 3.9 shows how to disconnect from a network connection. The
function prompts the user for the local or UNC name of the connection to be
broken, and a call is made to WNetCancelConnection?2.

Adding and Canceling Connections 63

w Disconnects a network connection

void Listing3_9()
{
TCHAR szPath[MAX_PATH + 1];
if (!GetTextResponse (
_T("Enter UNC or Local Name to disconnect:"),
szPath, MAX_PATH))
return;
if (WNetCancelConnection2 (szPath,
CONNECT_UPDATE_PROFILE, TRUE)
!'= ERROR_SUCCESS)
cout << _T("Error disconnecting: ")
<< GetLastError();

Table 3.11 WNNetCancelConnection2— Cancels a connection to a shared resource

WNetCancelConnection2

LPTSTR name Local name of the resource.

DWORD flag CONNECT_UPDATE_PROFILE removes connection infor-
mation from the registry, otherwise 0.

BOOL force TRUE to force disconnection even if resources are in use.

DWORD Return Value NO_ERROR 0On success.

Adding and Canceling Connections With Dialogs

The WNetConnectionDialogl function can be used to prompt the user with
a dialog for the UNC and local name, and then to make a connection using the
supplied information. The dialog displayed by Windows CE is not particularly
friendly, since it does not allow browsing. Listing 3.10 shows how the dialog
can be displayed and a connection made.

m Adds a network connection using a dialog box

void Listing3_10¢()

{
CONNECTDLGSTRUCT cs;
DWORD dwResult;
NETRESOURCE nr;

nr.dwType = RESOURCETYPE_DISK;
nr.lpRemoteName = NULL;
nr.lpLocalName = NULL;
nr.lpProvider = NULL;

64

Chapter 3 « Object Store, Directory, and Network Operations

cs.cbStructure = sizeof (cs);
cs.hwndOwner = hWnd;

cs.lpConnRes = &nr;
cs.dwFlags = 0;

dwResult = WNetConnectionDialogl (&cs) ;

if (dwResult == OXFFFFFFFF)
cout << _T("User cancelled") << endl;
else if(dwResult != WN_SUCCESS)
cout << _T("Error connecting: ") << dwResult
<< endl;

Two structures must be initialized. The NETRESOURCE structure specifies
the type of connection to make. The CONNECTDLGSTRUCT structure points to
the NETRESOURCE structure, and also specifies the handle of the window that
will own the connection dialog.

Table 3.12 WNetConnectionDialog 1—Displays a network connection dialog

WNetConnectionDialogl

LPCONNECTDLGSTRUCT Pointer to the CONNECTDLGSTRUCT structure, which
ConnectStruct establishes the dialog parameters.
DWORD Return ERROR_SUCCESS indicates success. 0xFFFFFFFF

indicates that the user canceled the dialog box.

The WNetDisconnectDialog function displays a list of all connections
and allows the user to select one for disconnection. Listing 3.11 shows a call
to this function.

m Disconnects a network connection using a dialog box

void Listing3_11¢()
{
DWORD dwResult;

dwResult = WNetDisconnectDialog (hWwnd, 0);

if (dwResult == OXFFFFFFFF)
cout << _T("User cancelled dialog") << endl;
else if (dwResult != NO_ERROR)

cout << _T("Error disconnecting: ")
<< GetLastError();

Adding and Canceling Connections 65

Table 3.13 WNetDisconnectDialog—Displays a network disconnection dialog

WNetDisconnectDialog

HWND hwnd Parent window for disconnect dialog.
DWORD dwType Ignored, pass as zero.
DWORD Return Value ERROR_SUCCESS indicates success. 0xFFFFFFFF

indicates that the user canceled the dialog box.

The WNetDisconnectDialogl function gives you more control over the
disconnection, such as allowing the disconnection even if resources are being
used. This function is passed a DISCDLGSTRUCT structure, and is described in
the next section.

Using Network Printers

Windows CE provides default support for PCL (Printer Control Language) print-
ers. This support includes using printers located on a network. Connections
can be made to network printers using the WNetAddConnection3 function.
The local name results in an entry being made in the \network directory in
the Object Store. Listing 3.12 shows how to map a printer to a local name.

Listing 3.12 Maps a printer to a local name

void Listing3_12()

{
TCHAR szUNCPath[MAX PATH + 1], szLocal[MAX_ PATH + 11];
NETRESOURCE nr;

if (!GetTextResponse (
_T("Enter Printer UNC to Connect to:"),
szUNCPath, MAX_PATH))
return;
if (!GetTextResponse (
_T("Enter Local name for printer:"),
szLocal, MAX_PATH))
return;

nr.dwType = RESOURCETYPE_PRINT;
nr.lpRemoteName = szUNCPath;
nr.lpLocalName = szLocal;
// Microsoft Network is only provider
nr.lpProvider = NULL;
if (WNetAddConnection3 (hwnd, &nr, NULL,
NULL, CONNECT_UPDATE_PROFILE) != NO_ERROR)
cout << _T("Error adding Printer connection: ")
<< GetLastError () << endl;

66 Chapter 3 ¢ Object Store, Directory, and Network Operations

Once mapped, the local name can be used to specify a network printer.
For example, if the shared printer "\\myserver\myprinter" is mapped
to the local name "PCLPrint", the printer can be referenced by the name
"\network\PCLPrint".

Listing 3.13 shows how to disconnect from a network printer resource
using the function WNetDisconnectDialogl.

M Disconnects from network printer

void Listing3_13()
{
DWORD dwResult;
DISCDLGSTRUCT ds;

TCHAR szUNCPath[MAX_PATH + 11;

if (!GetTextResponse (
_T("Enter Printer UNC to disconnect from:"),
szUNCPath, MAX_PATH))
return;
ds.cbStructure = sizeof(ds);
ds.hwndOwner = hWnd;
ds.lpLocalName = NULL;
ds.lpRemoteName = gzUNCPath;
ds.dwFlags = DISC_NO_FORCE ;
dwResult = WNetDisconnectDialogl (&ds);
if (dwResult != NO_ERROR)
cout << _T("Error disconnecting: ")
<< GetLastError();

The DISCDLGSTRUCT is initialized to specify the UNC of the printer from
which to disconnect. A dialog will only be displayed if an error occurs, and the
owner window handle is provided. The connection will not be broken if the
printer is currently in use since the DISC_NO_FORCE flag is used.

Table 3.14 WNetDisconnectDialog 1—Disconnects from a network resource

WNetDisconnectDialogl

LPDISCDLGSTRUCT Long pointer to the DISCDLGSTRUCT data structure,
DiscDlgStruc which specifies the behavior for the disconnect attempt.

DWORD Return Value ERROR_SUCCESS indicates success.

Getting User Names

You can retrieve the current user’s name or the name used to connect to any
network resource using the WNetGetUser function as shown in Listing 3.14.

Adding and Canceling Connections 67

m Lists security details for network connection

void Listing3_14/()
{
DWORD dwLen = 50;

TCHAR szConnection[MAX_PATH + 11;
TCHAR szUser[51];

if (!GetTextResponse (_T("Enter connection to list:"),
szConnection, MAX_PATH))
return;

if (WNetGetUser (szConnection, szUser, &dwLen)
!= ERROR_SUCCESS)
cout << _T("Error getting user information: ")
<< GetLastError() << endl;
else
cout << szConnection
<< _T(" connected as user ")
<< gzUser << endl;

Table 3.15 WNetGetUser— Get the name of the current user or a resource’s owner

WNetGetUser

LPTSTR localName Name of the local resource, or NULL for default username
LPTSTR userName Buffer to hold the username

LPDWORD bufferSize The size of the userName buffer

DWORD Return Value Returns ERROR_SUCCESS on success

If you pass zero or NULL in for the localName parameter, the function
returns the name of the current user. If you pass in a device name, the function
returns the name used to attach to the device when WNetAddConnection3
was called. The function returns an error code, or you can retrieve the error
code with GetLastError.

Listing Current Connections

Listing 3.15 uses FindFirstFile and FindNextFile to iterate through the
local connection names in the \network directory. These entries represent the
active connections, and WNetGetConnection is used to determine the UNC
to which the local name refers. This code will only show the active connections,
since Windows CE will not automatically reestablish the remembered connec-
tions. You can write code to list the remembered connections by listing the

68 Chapter 3 « Object Store, Directory, and Network Operations

registry entries under the key "\HKEY_Local_Machine\Comm\redir\con-
nections" (see Chapter 4).

Listing 3.15 Lists current connections

void PrintConnectionData (WIN32_FIND_DATA* 1pFD)
{

TCHAR szRemoteName [MAX_PATH + 1];

DWORD dwSize = MAX_PATH;

cout << _T("Connection: ")
<< 1pFD->cFileName;
if (WNetGetConnection (1lpFD->cFileName,
szRemoteName, &dwSize) == NO_ERROR)
cout << _T(" to ") << szRemoteName << endl;
else if (GetLastError() == ERROR_CONNECTION_UNAVAIL)
cout << _T(" not currently connected.");
else
cout << _T(" Error calling WNetGetConnection ")
<< GetLastError() << endl;

}

void Listing3_15()

{
HANDLE hFindFile;
WIN32_FIND_DATA fdData;
// get first file
hFindFile = FindFirstFile(

_T("\\network*.*"), &fdData);
if (hFindFile != INVALID_HANDLE_VALUE)
{
PrintConnectionData (&fdData) ;
while(FindNextFile (hFindFile, &fdData))
{
PrintFindData (&fdData) ;
}
FindClose (hFindFile);
}
else 1f (GetLastError() == ERROR_NO_MORE_FILES)
cout << _T("No shares");
else

cout << _T("Call to FindFirstFile failed: ")
<< GetLastError();

The function WNetGetConnection is passed the local file name (in
1pFD->cFilename), and returns the UNC name in a character buffer.

Conclusion 69

Table 3.16 WNNetGetConnection—Gets the UNC for a connection given the local name owner

WNetGetConnection

LPCTSTR LocalName Long pointer to a null-terminated string that specifies the local name of the
network resource. Set up this resource with the WNetAddConnection3
function.

LPTSTR RemoteName Long pointer to a buffer that receives the UNC.

LPDWORD Length Long pointer to a variable that specifies the size, in characters, of the buffer
pointed to by the 1pRemoteName parameter. If the function fails because
the buffer is not big enough, this parameter returns the required buffer size.

DWORD Return Value ERROR_SUCCESS on success.

Conclusion

There are many different and interesting ways to use the Object Store, Direc-
tory, and WNet functions described in this chapter. For example, you might want
to make a program that automatically copies files from your company network
into the Object Store, or onto a storage card. Or you might want to create a Find
program that searches every directory on every share on every machine on the
network. You might also want to create specialized applications that connect to
specific drives during a run and then disconnect from them automatically to
prevent users from accessing the drives randomly. You can create any of these
capabilities using the functions described in this chapter.

Property Databases and the Registry

Property databases in Windows CE allow your applications to store structured
data in records. The data is stored in properties, which are also called “fields”
or “items.” Each property has a defined data type, such as ‘two-byte integer’,
‘character string’, and so on. The major difference between Windows CE prop-
erty databases and more traditional databases on desktop or server PCs is that
records in a database can have varying numbers of properties.

Property databases are located in the Object Store in the “database” folder.
You will find standard databases in this directory, such as “Appointments Data-
base,” “Contacts Database,” and “Tasks Database,” together with databases cre-
ated by your own applications. Since Windows CE 2.10, databases can also be
placed in storage cards using database volumes. Database volumes are files with
a CDB extension.

Each property database has a unique Object ID (OID) (just like files and
directories) in the object store. Records in property databases also have OIDs,
since they are object store items in their own right. Each property in a record
is given an integer identifier by the programmer that is unique within the rec-
ord but may also be used by properties in other records to indicate instances of
the same property. Data stored in property databases is, by default, compressed.

The Win32 API allows you complete control over property databases, in-
cluding creating, opening, and accessing of data, and creation of up to four sort
orders (indexes) to speed up searching and retrieval. Analogous Remote API
(RAPD) functions allow you to access a device’s property databases from a desk-
top PC (see Chapter 10).

Property databases are available on most implementations of Windows CE
and are generally the first choice for storing structured data that can be organ-
ized into properties and records. Property databases can be as large as the avail-
able free space. Each property can be up to CEDB_MAXPROPDATASIZE (65,471)

70

Database Volumes 7]

bytes. The maximum record size is only limited by the amount of space used
by the property database for logging (which implements transactions to allow
roll-back in the event of failure). This value, CEDB_MAXRECORDSIZE, is set at
131,072 bytes.

Data is central to most applications. The data should be placed in a data-
base whenever it can be sensibly structured into fields and records. The possi-
bilities are:

¢ Creating a simple property database to store data locally on a Windows CE
device

e Opening and reading standard databases, such as the contacts database

e Sharing data between desktop databases and CE property/CDB databases,
perhaps with automatic synchronization of data

e Manipulating property databases on a Windows CE device directly from
a desktop PC using the Remote API (RAPI, see Chapter 10)

While property databases are used to store structured, or semi-structured,
data, the registry is used to store small amounts of application-specific data,
such as settings or preferences. This chapter looks at accessing data items in the
registry. The registry is included in this chapter since, just like property data-
bases, it is an integral part of the object store. The registry is not stored in a file,
as is the case with Windows NT/98/2000.

Database Volumes

Database volumes allow property databases to be created outside the Object
Store on devices such as storage cards. A property database is an integrated
part of the object store—each record has its own OID. To replicate this behav-
ior in other storage devices, a file (a “database volume”) needs to be created,
and one or more property databases will be created in that file. Database vol-
umes usually have a CDB extension.

Since database volumes are simply files, the user cannot use Explorer to
view the databases in the volume. CDB files are not necessarily hidden and can
be deleted by a user. Microsoft Pocket Access can be used to open a CDB file
and view the contents.

Database volumes need to be “mounted” before the databases in the vol-
ume can be accessed. Finally, when all the databases are closed, the database
volume should be unmounted.

(reating and Mounting Database Volumes

The function CEMountDBVol is used both to create new volumes and to open
existing volumes. Listing 4.1 shows how to create a new database volume and
mount the volume on a storage device called “Storage Card.”

72 Chapter 4 = Property Databases and the Registry

m Creates a database volume

void Listing4_1()
{
CEGUID pceguid;

if (!CeMountDBVol (&pceguid,
_T("\\Storage Card\\MyVolume.CDB"),
CREATE_NEW))
cout << _T("Could not create database volume")
<< endl;
else
cout << _T("Database volume created") << endl;

Table 4.1 CEMountDBVol—Creates and /or opens a database volume

CEMountDBVol

PCEGUID pceguid Pointer to a CEGUID that uniquely identifies the open
database volume

LPWSTR lpszDBVol String containing the path and CDB filename for the
database volume

DWORD dwFlags Flags specifying how the volume will be created/opened

BOOL Return Value Returns TRUE on success

The first argument, pceguid, is used to return a CEGUID value that is used
to reference the newly created and mounted database volume. The CEGUID
data type is a structure that contains four DWORD values, and although superfi-
cially similar to the GUID (Globally Unique Identifier) used in COM and ActiveX
(see Chapter 14), its use is restricted to Windows CE databases.

The constant values and semantics for dwFlags are the same as the dw-
CreationDisposition parameter used when opening and creating files us-
ing CreateFile (see Chapter 2). You need to take care when using CREATE_
ALWAYS and TRUNCATE_EXISTING since a// databases in an existing volume
can be deleted.

e CREATE_NEW—Create a new volume, fail if the volume already exists.

e CREATE_ALWAYS—Create a new volume, overwriting the volume if it al-
ready exists.

e OPEN_EXISTING— Open an existing volume, and fail if the volume does
not exist.

e OPEN_ALWAYS— Open an existing volume, and if it does not exist, create
the volume.

e TRUNCATE_EXISTING—Open an existing volume and empty the con-
tents. Fail if the volume does not exist.

Flushing a Database Volume 73

You can call GetLastError to determine the error code if the call to CE-
MountDBVol fails. If the function fails, pceguid will contain an invalid value.
This can be tested using the CHECK_INVALIDGUID macro, which takes a pointer
to the CEGUID.

if (CHECK_INVALIDGUID (&pceguid))
cout << _T("Invalid CEGUID");
else
cout << _T("vValid CEGUID");

Mounting an existing volume simply requires changing the dwFlags value:

CeMountDBVol (&pceguid,
_T("\\Storage Card\\MyVolume.CDB"),
OPEN_EXISTING) ;

Unmounting a Volume

You will need to unmount the database volume by calling CeUnmountDBVol
once you have finished accessing databases in the volume.

if (!CeUnmountDBVol (&peceguid))
cout << _T("Volume unmounted") ;
else
cout << _T("Volume could not be unmounted") ;

Table 4.2 CeUnmountDBVol—Unmounts a mounted database

CeUnmountDBVol
PCEGUID pceguid Pointer to the CEGUID for an open database volume
BOOI, Return Value Returns TRUE if database volume is unmounted

A reference count is maintained for each volume, and this is incremented
whenever an application mounts the volume. The volume is only unmounted
when the reference count returns to zero, which happens when the last appli-
cation<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>