Second Ediition

SIISAIRSIA S M TAYIAAVAML NN VL7 VMY Y A MM OV LV Y E A

9 ajiopm aY1/107

WRITING

UOHIP3 PUOJSS

CE DRIVERS

M MAMMTAVISTETVISASSAV VL | 1 i ™1 W A 1]] SRR

. SUIARIA F0IA3A .SOA-SIN ONILRIM ..,

" ROBERT S. LAI
pros THE WAITE GROUP

Writing MS-DOS"® Device Drivers
Second Edition

Writing MS-DOS® Device Drivers
Second Edition

Robert S. Lai/ The Waite Group®

A
vy

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was
aware of a trademark claim, the designations have been printed in initial capital letters or all
capital letters.

The authors and publishers have taken care in preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

Lai, Robert.
Writing MS-DOS® device drivers / Robert S. Lai —
— 2nd ed.
p. cm.
Rev. ed. of: Writing MS-DOS device drivers, 1987.
Includes bibliographical references and index.
ISBN 0-201-60837-5
1. DOS device drivers (Computer programs) 2. MS-DOS (Computer
file) I. Lai, Robert. Writing MS-DOS device drivers. II. Waite
Group. III. Title. IV. Title: Writing MS-DOS device drivers.
QA76.76.D49L35 1992
005..4’3--dc20 92-7898
CIP

Copyright © 1992 by The Waite Group®
The Waite Group® is a registered trademark of The Waite Group, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the United States of
America. Published simultaneously in Canada.

From The Waite Group:

Development Editors: Mitchell Waite and James Stockford
Editorial Director: Scott Calamar

Managing Editor: Joel Fugazzotto

Technical Editors: Harry Henderson and Kevin Jaeger
Illustrations: Carol Benioff and Pat Rogondino

Cover design by Ned Williams
Set in 10.5 point New Century Schoolbook by Context Publishing Services

Sponsoring Editor: Julie Stillman
Project Editor: Elizabeth G. Rogalin

ISBN 0-201-60837-5

123456 78 9-MW-9695949392
First printing, April 1992

To Ada Lee Lai

Acknowledgments

The author is very grateful for the suggestions, comments, help, and encour-
agement from Mitchell Waite, Jim Stockford, and Kevin Jaeger; and to my wife,
Ada, for her support.

Robert S. Lai

The Waite Group would like to thank Kevin Jaeger for his early develop-
mental and technical reviews and Carol Benioff for her excellent illustrations.
We would also like to thank Harry Henderson for his technical review and
suggestions for the second edition.

The Waite Group

Contents

Chapter 1 Introduction 1
About This Book 4
This Book’s Intended Readers 5
What You Will Need to Use This Book 6
Why This Book Was Written 7
Conventions Used in This Book 8
How to Use This Book 8
Overview of the Chapters 8
Summary 9
Questions 10
Chapter 2 Basic Concepts 11
Controlling Devices through Software 13
Refresher Course on DOS 27
DOS Services 31
DOS Device Management 33
The DOS Device Driver 36
Block and Character Devices 48
Device Driver Commands 50
Tracing a Request from Program to Device 56
The Mechanics of Building Device Drivers 58
Summary 61
Questions 62
Chapter 3 A Simple Device Driver 63
What Does a Device Driver Look Like? 65

An Overview of the Simple Device Driver Sections 65

vii

Writing MS-DOS Device Drivers, Second Edition

Instructing the Assembler 69
Main Procedure Code 71
The Device Header Required by DOS 72
Work Space for the Device Driver 75
The STRATEGY Procedure 77
The INTERRUPT Procedure : 77
Your Local Procedures 80
DOS Cofnmand Processing 81
The ERROR EXIT Procedure 83
The COMMON EXIT Procedure 84
The End of Program Section 85
The Entire Simple Device Driver 86
Building the Simple Device Driver 86
Using the Simple Device Driver 90
If It Does Not Work 90
Summary 91
Questions 91
Chapter 4 A Console Device Driver 93
The Console Device Driver 95
Designing Our Console Device Driver 96
An Overview of Writing a Console Device Driver 102
A Complete Look at the Console Device Driver 120
A Note about DOS Versions 120
Building the Replacement Console Device Driver 129
Summary 129

Questions 130

viii

Chapter 5

Chapter 6

A Printer Device Driver
Printer Types
I/0 Control and IOCTL Calls
The IOCTL Program
Building and Using the IOCTL Program
BIOS Services for Serial and Parallel Adapters
Inside the Printer Device Driver
Building the Printer Device Driver
Using the Printer Device Driver
Summary

Questions

A Clock Device Driver
The Clock/Calendar Chip
The Clock Device Driver Functions
Overview of PC Clocks and Timing Signals
Programming the MM58167A Clock Chip
Where Is the Clock?
Resident Programs
Using the Timer Interrrupt for Time Displays
Undefstanding the Clock Device Driver Program
Building the Clock Device Driver
The Clock Device Driver in Action
Summary

Questions

Contents

131
133
134
136
141
141
142
162
175
175
175

177
179
179
180
182
184
185
185
187
214
231
231
232

ix

Writing MS-DOS Device Drivers, Second Edition

Chapter 7

Chapter 8

Chapter 9

Introducing Disk Internals
The Physical Side of Disks
Organizing Data on Disk Drives
Technical Details of DOS Disk Support
The Boot/Reserved Area, FAT, and Clusters
The File Directory
Disk Sizing
Critical Disk Parameters
DOS Disk Device Drivers
Disk Device Driver Commands
Summary

Questions

A RAM Disk Device Driver
Using the RAM Disk Device Driver
RAM Disks and How They Work
The RAM Disk Device Driver
What Commands the RAM Disk Device Driver Will Use
The RAM Disk Device Driver Program Listing
The Whole RAM Disk Device Driver
Building the RAM Disk Device Driver
Modifying the RAM Disk Device Driver
Summary

Questions

Building a Complete Full-function
Device Driver

Required Tools
The Perfect Editor

233
235
236
240
241
249
253
255
260
265
271
271

273
275
276
277
281
282
302
303
303
316
317

319
321
322

Chapter 10

Chapter 11

An Overview of the Device Driver
Summary

Questions

Tips and Techniques
A Checklist for Writing Device Drivers
The Art of Debugging Device Drivers
Prototyping Device Drivers
Where Is My Device Driver?
Adding Debugging Routines
A New Stack
The Special Bit
Machine Incompatibilities
DOS Differences
DOS Version Differences
DOS 5 DEVICEHIGH
Summary

Questions

Advanced Topics
CD-ROM Devices
Writing Device Drivers in C
The C Device Driver Toolbox
The Printer Device Driver in C
Compiler Complications
Linker Madness
A Short Note on Testing the C Device Driver
Summary

Questions

Contents

328
378
378

379
381
384
385
385
399
401
406
408
409
409
413
414
414

415
417
423
426
442
447
456
456
458
458

xi

Writing MS-DOS Device Drivers, Second Edition

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

xii

An Overview of Intel Architecture
BIOS Interrupts

DOS Initialization

Special Features of the Hard Disk
CD-ROM Devices

Answers to Questions

Index

459
481
511
515
523
529

541

Preface

In the five years since the first edition of this book was written, many things in
the world of the PC have changed. PCs have 80486 processors with up to 64Mb
of memory and disks in the gigabyte range. DOS is at version 5 and is doing very
well! There are now graphical user interfaces such as GEM, Windows, and
GeoWorks. There are also more people programming on PCs than ever before. In
addition to the traditional C, Pascal, and BASIC languages, there are word
processors, spreadsheets, and CAD programs offering a wide range of program-
ming capabilities.

However, as the saying goes, the more things change, the more they stay
the same. This is especially true for device drivers. The device drivers that worked
in version 2 will still work in version 5. Because each day brings new devices for
the PC, device drivers have become less of a black art. In fact, it’s hard to find
PCs that don’t have one or two device drivers.

Of the many questions and comments I have received, there were two
topics that turned up quite frequently, how CD-ROMs interface to DOS, and
how to write device drivers in C. These two topics form the basis for a new
chapter in the updated version of this book for DOS 5.

Surprisingly, there are only minor changes to the basic structure of device
drivers for DOS 5. Most of the changes were for disk devices to allow them to
access more than 32Mb. These changes were carefully made in order to minimize
disruptions when moving to the latest versions of DOS. However, all in all, the
device driver structure has withstood the test of time and come through with
flying colors for this latest version of DOS.

The appendices have been extensively revised for the second edition. Appen-
dix A extends the overview of the Intel architecture to include the 80286, 80386,
and 80486 processors. Also included is a summary of the various methods of
accessing extended memory. Appendix B now includes BIOS extensions for VGA
adapters and AT-class machines. Appendix D includes the logical partition
extensions introduced with DOS versions 4 and 5. Lastly, a new appendix E
describes the CD-ROM disk structures.

I hope you enjoy this updated version of the book. The fun part of writing
this second edition was testing the original device drivers using DOS 5.

I would welcome suggestions, criticisms, and comments regarding the ma-
terial presented in this book. If you want to avoid the effort of typing in all of the
examples, you may order a disk of all the programs in this book by sending in the
coupon at the back of the book.

Robert S. Lai
Moss Beach, CA

xiil

Chapter 1

Introducti’on;

- About This Book
What You Will Need to Use This Bo’f K
Conventions Used in This Book
How to Use This Book
Overview of the Chapters

Introduction

i i elcome to the universe of device drivers. Device drivers are the core

of how MS-DOS controls the devices on your PC. If device drivers did not exist,
every program you execute would require you to customize your program to the
PC you are currently using. Device driver programs provide a standard interface
between MS-DOS and the PC by following a uniform set of programming rules.
These rules are common to both MS-DOS and PC-DOS for the IBM PC and
IBM-PC—compatibles. In this book, DOS refers to both MS-DOS and PC-DOS,
and PC refers to both the IBM PC and compatibles.

Most people understand that DOS is used to run application programs such
as utilities, databases, word processors, and spreadsheets. DOS provides built-in
“services” to store data, plot graphs, access the disk, and control external hard-
ware. Fewer people understand that DOS has its own built-in device drivers to
control hardware.

Standard DOS is set up to manage and control a set of standard PC devices,
including the keyboard, screen, disks, and serial and parallel adapters. Standard
device drivers are normally part of the operating system’s device management
and are not visible to the user. Prior to version 2.0, DOS did not provide a uniform
manner for accessing external hardware. Instead, each device that was added to
the PC required custom changes to DOS as well as changes to programs using
the new device. As a result, providing support for new devices was difficult; it
was not clear what DOS had to do compared to what the program had to do.

Beginning with version 2.0, DOS began allowing user-installable device
drivers. These user device drivers complement those provided in DOS and allow
a wider range of device support.

Device drivers must be written to the rules and regulations that Microsoft
has specified in order for them to be installed in DOS. These rules provide a
uniform interface to DOS, which allows DOS to treat a new device in the same
way as existing ones. These rules specify a special format for the device driver

Writing MS-DOS Device Drivers, Second Edition

program. Such a program must begin with a table that defines to DOS the
attributes and type of device controlled. There is a provision within this table
that tells DOS how to control (or call) the device driver. Lastly, the device driver
program must contain code to process the standard commands that DOS expects
of a device driver. These rules are not clearly defined in the DOS Technical
Reference manual.

Installable device drivers give you the ability to add a new hardware device
to the PC and use standard DOS services to access the device. Without installable
device drivers, you would have to change your programs for each new device you
wish to use. Newer versions of DOS would require you to modify your custom
programs to suit the changes in the new DOS. The lack of driver standards would
require each program to be different from others; no two programs would access
new devices in the same way.

Although many users take for granted the ease of using the PC to read and
write data, the steps taken to get a piece of data from the keyboard and then write
that data to a disk file represent a long and complex process involving the
software driver. It is hard to understand, because most users know so little about
it. However, it is not so complex that it cannot be broken down into pieces to make
it easier to understand the steps involved. That task is precisely what the early
parts of this book are intended to accomplish.

About This Book

This book will teach you how to write your own device driver to interface to any

"~ hardware device in your system. We will explore the various parts of DOS device
drivers by developing and coding several examples. In addition, we will examine
what device drivers do, how they interface to DOS, and how they interact with
various devices. Writing device drivers for new devices will be discussed, as well
as writing replacements for the standard DOS device drivers.

Writing device drivers is one of the most challenging aspects of programming
for the PC. Mastering this seemingly complex topic can be a rewarding experi-
ence. As a by-product of learning the secrets of device drivers, you will get a fairly
thorough course in DOS system calls and internals, and a refresher course in
assembly language. This is because understanding drivers requires using most
of the services built into the BIOS.

With the knowledge of how device drivers work, you can begin to modify the
device drivers in this book. You can change RAM disk device drivers to suit your
needs and write new device drivers to control hardware in your PC. The possibil-
ities are unlimited.

Introduction

This Book’s Intended Readers

This book has been written for many audiences. It will enable anyone who has a
basic understanding of DOS and the PC to learn more about how DOS is able to
manage the myriad of devices available for use on PCs. For those people who use
PCs in their jobs, this book provides a valuable tool, enabling them to expand the
capabilities of their PCs by adding more powerful devices. With this book, they
can create the software to control these devices without requiring the use of
outside professional help.

Educators will also find this book useful. Teachers of computer courses will
find many books on DOS and the PC but few that deal with the topic of device
drivers in more than a cursory manner. This book is intended to fill that gap.

All of these people have something in common: they have some understand-
ing of assembly language programming for the PC. In addition, a basic knowledge
of DOS and BIOS services is required.

Readers should be able to follow a simple 8086/8088 assembly language
program. If necessary, readers should purchase one of the numerous books
available that introduce the basic concepts of 8086/8088 assembly language
programming. One such book is Assembly Language Primer for the IBM PC and
XTby Robert Lafore (New York: Plume/Waite, New American Library, 1984). For
readers who have some experience in PC assembly language programming,
appendix A provides a refresher course on the 8086/8088 CPU, memory structure
and segmentation techniques, the I/O structure, and the register structure.
Readers who are not already acquainted with these aspects of the 8086/8088
architecture should take time now to read appendix A.

In addition, readers will find it useful to have some knowledge of the
interrupts and function calls provided by DOS. The Microsoft MS-DOS
Programmer’s Reference (Washington: Microsoft Press, 1991) is a good source of
information on DOS interrupts and function calls. Another book is DOS
Programmer’s Reference, 3rd Edition, by Terry Dettmann (Indiana: Que, 1992).

Readers should also have some familiarity with the BIOS code that resides
in ROM. All that readers need is a basic knowledge of the BIOS functions and
how they are used. For IBM systems, the hardware Technical Reference Manual
for each system documents the BIOS calls. Although it is difficult to find due to
its age, the Technical Reference Manual is worth having for its source listing of
the ROM BIOS. Suppliers of non-IBM systems usually publish similar reference
manuals.

Finally, because this book focuses on device drivers, readers should be
familiar with each device attached to their PC. This should include a general
understanding of the type of device (keyboard, printer, disk drive, etc.) and its
function (input, output, both).

Writing MS-DOS Device Drivers, Second Edition

What You Will Need to Use This Book

The first thing you will need to use this book is a lot of curiosity about device
drivers and DOS: what they are, what they do, what their various parts are, and
how to write one. We will attempt to encourage and satisfy this curiosity as we
present the various topics in this book.

~ To best utilize this book, you should be sure that certain hardware and
software requirements are fulfilled. The hardware and software requirements of
this book are listed below:

m [BM PC, XT, AT or compatible (clone) personal computer
® MS-DOS or PC-DOS operating system, version 2.0 or higher

m Microsoft or IBM’s MASM (8086/8088/80286 Macro Assembler) or
Borland’s Turbo Assembler

m LINK (this is the MASM Linker that resolves the address information
that is contained in the object output from MASM)

m EXE2BIN (this converts the Linker output into a form required by DOS
for device drivers)

m Text editor or word processor (this is used to input the source text of the
device driver)

The key requirement is that your computer system be based on the Intel
8086/8088/80286/80386 CPU chips and that the operating system be a variation
of MS-DOS, version 2.00 or higher.

Although systems based on the Intel 80286/80386 CPU chips, such as the
IBM PC AT, may also be used, we will base our code on the 8086/8088 member
of this family without considering the enhanced capabilities of the 80286/80386
systems. All references to your PC system will assume that it uses 8086/8088
chips, but the techniques will apply to all 80286/80386 systems as well. To use
the examples, your operating system must be an equivalent of MS-DOS or
PC-DOS, version 2.0 or higher (because MS-DOS and PC-DOS are functionally
equivalent, subsequent references to these operating systems will appear simply
as references to DOS). We will occasionally make reference to DOS versions 3, 4,
or 5. In particular, we will devote material to the special device driver require-
ments for DOS versions 3.20 and 5.0. These versions of DOS expand the role of
device drivers by providing more capability for the device driver in the areas of
physical control, networking, and device sharing.

Throughout this book, we will present examples of actual code for you to
copy, study, and use. Because the code provided is written in 8086/8088 assembly

Introduction

language, you will require three major DOS utilities: MASM, LINK, and
EXE2BIN.

LINK and EXE2BIN are standard utilities that are generally provided with
DOS. You should be able to find them on the disks that comprise the copy of DOS
provided by the supplier of your PC system. Current versions of most assemblers
will include a Linker program. These utilities assist you in building device
drivers.

MASM is the Microsoft Macro Assembler for MS-DOS/PC-DOS systems.
This product is offered from two sources, IBM and Microsoft. For the purposes of
this book, the IBM and Microsoft Macro Assemblers are identical, and we will
not distinguish one from the other. If you use a different assembler such as
Borland’s Turbo Assembler, be sure that the features used in the examples are
available or at least convertible to equivalent features on the assembler you use.

In addition to the three DOS utilities discussed above, you will need some
kind of text editor or word processor so that you can create ASCII text files of the
examples. The EDLIN program that is supplied with DOS is adequate for
entering some of the short examples. Because of the limited capabilities of
EDLIN, however, we recommend that you use one of the many flexible and
powerful word processors available on the market today.

Why This Book Was Written

In the years since 1981, when the IBM PC was introduced, an incredible number
of programs have been written for the PC. This has been matched by the amount
of information available in magazines, periodicals, and books. However, the
information on how DOS works with programs and devices has been either too
complex or incomplete. Finding the necessary information on device drivers
involved an unsatisfying process of combing through articles and books, looking
for clues on how they work.

This book was written to satisfy the need for one source of information about
writing and understanding device drivers. The information contained in this book
will appeal to the casual PC user who has questions about the inner workings of
DOS. The professional PC user will find information about why device drivers
are needed and why they are built the way they are. For the serious PC
programmer, the book provides information about how DOS services interact
with the device driver and the device. The book’s primary goal is to provide the
framework for writing device drivers; the theory behind such programs is also
discussed. On the practical side, this book contains several working device drivers
that can be used by most PCs.

Writing MS-DOS Device Drivers, Second Edition

Conventions Used in This Book

This book follows the conventions that are assumed by the many users of PCs.
Numbers used in this book are in hexadecimal form if they have a suffix of A,
otherwise they are in decimal form. DOS refers to both PC-DOS and MS-DOS
unless otherwise indicated. Disk refers to both hard and floppy disks. Diskettes
refers to the type of disks that are removable. A routine is a set of lines of code
that performs a function and have no particular format. A procedure is the set of
code lines that have a defined format and are invoked by a call.

How to Use This Book

This book presents material on device drivers in a progressive fashion; the book
is intended to be read from beginning to end. The beginning of this book is
introductory in nature; basic concepts are presented to assure that the reader
will not be lost in later chapters. Subsequent chapters present working device
drivers. With each chapter, more information is presented about various types of
device drivers. In the last chapters, we present an overall guide to building device
drivers from scratch, as well as tips and techniques in debugging such programs.

This book is also intended to be a reference document. Many of the figures,
listings, and tables contain information that is important to programmers who
wish to write their own device drivers. In this respect, chapter 9 (“Building a
Complete Full-function Device Driver”) and chapter 10 (“Tips and Techniques”)
are particularly useful.

Overview of the Chapters

Chapter 2 is a quick overview of the material needed to understand the role of
device drivers within the framework of the PC environment. We will see how
devices are programmed, what the various parts of DOS are, and how device
drivers fit into the whole picture. The rules and regulations for device drivers are
presented at the end of this chapter.

Chapter 3 introduces the first device driver. Although this short, rudimen-
tary driver does not do much, it introduces the basic concepts of writing device
drivers. Because the device driver is short in terms of code and small in terms of
function, you will “see” more of what device drivers do.

Introduction

Chapter 4 introduces the first of several real device drivers: the console
device driver. The console device driver is a working example that controls the
screen output device and the keyboard input device. We will add a feature to this
device driver to distinguish it from others: the ability to sound a tone for each
keystroke entered on the keyboard.

Chapter 5 presents a printer device driver that, unlike the standard printer
device driver, has the ability to control up to five printers. The DOS 1/O control
service is used to select which of the five printers should be used.

Chapter 6 describes the clock device driver. This driver requires a hardware
clock/calendar that is not standard equipment with the average PC but that is
available as an option to most multifunction cards for the PC. This clock device
driver retains the DOS time and date information intact between the time the
machine is turned off until the next time it is turned on. This eliminates the effort,
however slight, of re-entering the time and date each time DOS is booted.

Chapter 7 covers the preliminary material needed for you to understand
what disks and disk drives are all about.

Chapter 8 is devoted to a RAM disk device driver. Based on the information
presented in chapter 7, we will build a disk device driver that uses memory, rather
than an actual physical disk device, to store data. We will see how the device
driver stores file information as well as file data in memory.

Chapter 9 presents a general discussion on how to write device drivers. Each
part of such a program is covered in detail, including the information that DOS
expects to be present in a device driver.

Chapter 10 presents practical tips and techniques on how to debug device
drivers. There is also material on making device drivers work under the various
versions of DOS.

Chapter 11 concludes this book with advanced topics such as CD-ROM
extensions to device drivers and writing device drivers in a higher-level language.
The C programming language will be used to implement device driver routines
within an assembly language-based framework.

Summary

We begin our exploration of the world of device drivers by describing what you
will need to use this book. You will need an IBM PC or compatible, several of the
utilities that come with DOS, and a macro assembler. You will need to know about
the architecture of the IBM PC and about assembly language programming.
Appendix A reviews the major aspects of the Intel architecture.

Writing MS-DOS Device Drivers, Second Edition

Questions
1. Does it matter whether I use MS-DOS or PC-DOS?

2. I have several versions of DOS—which one should I use?

3. T'have a PC at home and an AT at work. Will I have problems if I use
both machines for the examples in this book?

Answers may be found in appendix F.

10

Basic Concepts
o DOS ‘Services
~ DOS Device Management
The DOS Device Driver
Device Driver Commands

Tracmg a Request from Program to
Device

The Mechamcs of Bulldmg Device
- Drivers

Basic Concepts

In this chapter, we will cover the basic software and hardware concepts
of DOS that you will need before you tackle your first device driver in chapter 3.
These basic concepts include programming PC hardware devices, internal oper-
ations of DOS, and how DOS interacts with devices.

The first part of this chapter describes the various devices found on most
PCs and how to access those devices through ROM BIOS. The second part
presents the ways in which programs interface to DOS for services and discusses
how devices are accessed through DOS. The third part begins an overview of
device drivers. In this section we cover some of the basic concepts behind device
drivers: what they are, what each part is, and how they interact with DOS. The
fourth part describes the steps needed to build a device driver.

Controlling Devices through Software

Overview of Device Fundamentals

We begin this section with an overview of the standard hardware of the PC. We
will start with what devices are, how they connect to the PC, and what the
standard devices of the PC are. This summary will help you get a better
understanding of how devices interface to the PC.

Devices for Your PC Youare usedto the keyboard, screen, printers, and disks
that are part of the PC you use on a daily basis. These devices are but a small
fraction of what can be added to the PC. Table 2-1 lists some of the more important
devices that can be added to the PC. These devices fall into several categories:
input, input and output, and output. You will learn to write device drivers for
these devices.

13

Writing MS-DOS Device Drivers, Second Edition

14

Type Device What They Do
Input Image digitizer Captures video images through a camera
and converts the image for computer use
CD-ROM Compact disk systems designed to store vast
libraries of data and video images
Bar code reader Reads computerized supermarket labels
using a light-based scanner device
Graphics digitizer Captures complex graphics images by
tracing the printed image
Mouse/track ball Mechanical pointing device designed to
provide user-friendly computer interfaces
A/D Converts analog signals to digital for use in
measurement
Input/ Local area network Connects several PCs together to allow data
output and device sharing
Tape drives Backs up data onto tape cartridges for
archival storage
Video cassette Displays video films using tape—also stores
recorder data
Bisync interface Allows communication with large computers
using a special communications protocol
Multifunction Adds serial and parallel device ports for
board printers and modems
Disk drive Floppy and hard disks for data storage
Output Plotter High-resolution graphics plotting systems
using vertically positioned pens
PROM burner Programs read-only-memory (ROM) chips

Laser printer

Fast and high-resolution printing using
laser technology

Synthesizer Artificial voice and sound generators that
produce computer-generated music
D/A Converts digital signals to analog signals for

control purposes

Table 2-1: Examples of add-on devices for the PC.

In addition to floppy disk drives and faster hard disk drives, other examples
of popular add-on devices are image digitizers, CD-ROMs, local area network
controllers and interface devices, tape drives, video disk players, plotters, PROM
burners, laser printers, bar code readers, music synthesizers, graphics digitizers,
“mouse” devices, joysticks, track balls, bisynchronous communication interfaces,
analog-to-digital (A/D) converters, and digital-to-analog (D/A) converters.

Basic Concepts

As you will see later in this book, it is the use of device drivers through DOS
that makes devices such as these accessible to you.

Controllers, Adapters, Interfaces Devices need to be added to a PC in such
away that the PC will recognize them. Devices often will work with printed circuit
boards that insert into a hardware slot inside your PC. These cards are given
various names, such as controllers, adapters, or interfaces. The generic function
of these cards is to provide an interface between the hardware device and the PC.
This allows the PC to control the device through signals passed between the PC
and the device on the bus. These signals are commonly called I/0 bus signals,
and they have a variety of functions. I/O ports or addresses are used to identify
devices attached to the PC. Data is transferred on the portion of the bus called
the data bus. Other control signals on the bus are used to coordinate all the
devices with the PC.

Typically, controller cards are plugged directly into the PC’s I/O bus on the
motherboard and become an integral part of the PC. The design feature of the PC
that allows controllers and devices to be added so easily is often referred to as an
open architecture. It is this open architecture that enables the PC to make such
widespread use of the variety of devices discussed earlier.

Although there are 64K I/O addresses or ports to choose from, each device
has a unique set of I/O addresses. This set of I/O addresses is used by the PC to
select a device for data transfer. For a given device, each 1/0 address performs a
unique function. For example, the printer device has an I/O address for the data
being transferred, an I/O address for the status of the data transfer, and an I/O
address for printer control.

When the PC transfers data to the device, the out instruction is used to select
an I/O address and a character to send. For example, to send an ASCII “A” out
to the printer, the following instructions are used:

mov dx,0378h ;I/0 address for printer
mov al,4lh ;ASCITI A
out dx,al ;send character to the printer

When the PC executes the out instruction, the I/O address is asserted on the
bus (the value 378h is placed on the address bus); the value in the AL register is
also placed on the bus (the value 41 is placed on the data bus). The controller for
the device is constantly monitoring the (address) bus for the values associated
with the device. Once it sees the value 378h on the bus, the controller will “grab”
the value on the data bus and pass it to the device.

Controllers perform the basic functions of controlling devices and transfer-
ring data between the PC and those devices by recognizing signals sent by the
8086/8088 on the address and data busses.

15

Writing MS-DOS Device Drivers, Second Edition

16

Standard Devices for the PC General-purpose controllers or multifunction
boards are designed to handle a group of devices, such as output ports, a clock, a
calendar, extra memory, and game I/O. The typical PC system today often
includes as standard equipment two such general-purpose controllers: the serial
device controller and the parallel device controller. Earlier PCs included a game
port to allow you to attach a joystick.

To allow external devices to be attached to such a controller, a connector is
provided on the outside edge of the controller card. Often referred to as ports,
these connectors merely serve as hardware-connection mechanisms. Both serial
and parallel device controllers use these connectors, which are called, respec-
tively, the serial port and the parallel port.

Note that the ports described above are not the same as the I/O ports
described in the overview of the Intel architecture discussed in appendix A. The
I/O ports of the 8086/8088 are internal ports used to access the device controllers
through the data bus using special CPU instructions (in and out). The ports
described in this section are external device ports (outside the bus, on the
interface board), used for connecting the devices to their respective controllers.

The easiest way to attach a new device to your PC often is to connect it to
your PC’s serial port, parallel port, or game port. These three ports differ
primarily in the type of electrical signals passed through them and in the manner
in which data transfers between the devices and the controllers.

Serial Devices The serial portisthe most versatile of the three ports described
above. This port is used to connect modems, mouse devices, and bar-code readers
to the PC. Data can be transferred in either direction (to or from the 8086/8088),
and speeds can range as high as 9600 baud. Printers, which are output devices,
also may be connected to the serial port, but it is more common to use the parallel
port for this purpose. The connector used to plug devices into the serial port is
defined as an RS-232-C connector because the protocol used to communicate to
the device attached to the port closely follows the EIA RS-232-C standard.
Therefore, the serial port is also referred to as the RS-232 port.

Parallel Devices The parallel port was originally designed for efficient han-
dling of output-only devices. Its primary design objective is to serve as a printer
interface. The electrical signals in this interface tend to be meaningful only to
printers and special output devices. The speed of data transfer can exceed 10K
per second. Because the parallel port is used for output-only devices, it is a bit
more limiting than the serial port. Therefore, there is a tendency to connect only
printers, print-buffer devices, and special-purpose output devices to the parallel
port. Originally developed by the Centronics Corporation, the parallel port is also
referred to as the Centronics port.

Basic Concepts

The Game Port Of the three standard ports provided on a PC, the game port
is the most limited. It is designed to handle very simple input signals with
minimal data transfer. The game port is generally used for connecting to the PC
simple input devices, such as joysticks and track balls.

High-speed and DMA Controllers Some devices, such as disk drives, trans-
fer data faster than the serial, parallel, or game device controllers can handle.
Such devices cannot use general-purpose controllers.

Toillustrate this, the serial controller can handle up to 9,600 bits per second
(approximately 1,200 characters/bytes per second). However, the hard disk
transfers data at well over 100,000 bytes per second. In addition to the require-
ment for high data-transfer speed, the hard disk drive also requires many control
signals that the serial controller cannot provide.

For these reasons, the hard disk drive needs a controller that can access the
PC’s data bus directly, and data needs to be able to be transferred directly
between the device and memory for maximum efficiency. This is called Direct
Memory Access (DMA). Many other devices also require high-speed DMA: exam-
ples are the video monitor, tape drives, and clock/calendars. As will be seen later
in this book, these devices, like the hard disk, require special-purpose controllers
and, therefore, have unique interfaces, different from those used by the usual
printers and other devices.

Character and Block Devices In the general PC environment, devices are
divided into two types: character devices or block devices. This distinction is based
on how these devices transfer data to and from the PC.

Character devices transfer data one character at a time. Examples of such
devices include printers, modems, keyboards, and mouse devices.

Block devices, on the other hand, manage their data in groups of characters
and transfer several bytes at one time in a block, such as 512 or 1,024 bytes.
Examples of block devices are disks and tapes; with these devices, the basic
method of storage is a group of characters. Block devices are usually chosen when
high data-transfer speeds are needed. If disks were somehow made into character
devices, the speed of the data transfer would be severely limited. Because the
disk rotates at a high speed, by the time one character is transferred, the disk
would no longer be in position to read a second character. Obviously, it would
take many revolutions of the disk to transfer a group of characters. On the other
hand, the block-device approach allows the disk to capture a block’s worth of data
under the read/write heads.

All sorts of controllers are available for the PC. These range from those found
on multifunction boards to special-purpose controllers. Writing drivers for the
controllers in this second category requires that the programmer have special
knowledge of the way these devices work.

17

Writing MS-DOS Device Drivers, Second Edition

18

The Console Device When we sit down to use a PC we naturally use the
keyboard to enter our commands, and we see the results displayed on the screen.
We don’t think anything of it; we assume that they are a part of the PC. But the
keyboard and the screen are also devices. The combination of the keyboard and
the screen is called the console.

The console device as the primary interface to the PC is an old concept. This
concept dates back to the earliest days of computers, when the console, a teletype
containing a keyboard and printer instead of a screen, was often the only means
of communicating with the computer. As the primary input device for a PC, the
keyboard allows commands to be input to the computer. The display, or screen,
allows you to view what is typed and the results of the commands.

Although we have briefly described some of the standard devices for the PC
in this section, chapter 7 covers disk devices in more detail because they are more
popular devices.

Program Control of Devices

If you want to use a particular device in your programs, complex software-control
routines will need to be included. Fortunately, you have a choice of two methods:
you can use the routines built into the PC’s Read-Only Memory or you can use
the services provided by DOS.

The Differences between ROM-BIOS and DOS Services Through the
ROM-based routines, collectively called the Basic Input-Output System (BIOS),
you can control the serial ports, the parallel ports, the keyboard, the screen, and
the disks. However, these routines provide only basic access mechanisms, such
as read or write; they do not organize data in a form that is easily managed. For
example, through the ROM routines, data can be written to disk sectors but the
concept of organizing data into files does not exist.

DOS, on the other hand, provides higher-level processing capabilities. In-
stead of writing separate routines to use the BIOS services for each device, you
can refer to devices by name in programs using DOS services. For disk data,
programs can let DOS organize the data in files instead of managing the disk
sectors in which the data resides. For transferring data to serial or parallel ports,
the program using BIOS services needs to check constantly for errors in trans-
mission. On the other hand, programs that use the DOS services for data
transmission need not check as often; DOS retries each operation if there are any
errors.

DOS itself uses the BIOS routines for device access and control. In doing so,
DOS adds an additional layer between the program and the BIOS routines. This
additional layer protects the program from the BIOS in many instances. We

Basic Concepts

mentioned earlier some of the features that DOS provides in addition to those
provided by BIOS services. One important reason for using DOS services is that
not all PCs have compatible BIOSs. Thus, programs built to one machine’s BIOS
may not work on another machine. Programs using only DOS services will work
on any machine that uses DOS.

To be fair to programs using BIOS routines, the additional layer between
programs and the BIOS when DOS services are used causes most programs to
run slower. For this reason, many programs bypass some of the DOS services and
go directly to the BIOS routines.

This is particularly true for programs that need to display screen data
quickly. In other cases, the DOS services cannot execute at a fast enough rate.
For example, although the serial port is designed to operate at 9600 baud, this
speed cannot be attained using DOS services for the serial port; the program must
access the serial port directly.

For the most part, DOS uses the BIOS routines in device drivers. It is within
the programs defined to DOS as device drivers that the calls to the BIOS code for
the respective devices are executed.

Programs that use DOS services for device access sacrifice speed, but, in
return, gain flexibility and portability.

BIOS Programming Many powerful low-level routines are built into the PC’s
ROM-based BIOS to allow programs to control most of the PC’s devices. Through
the use of the BIOS, you can control the serial, parallel, keyboard, screen, and
disk devices of the PC without having to write the code from scratch. The software
routines that are built into the ROM BIOS are accessed through the 8086/8088
interrupt mechanism. For a review of how interrupts work, refer to appendix A.

Each device has an associated BIOS interrupt and a unique routine in ROM.
The use of unique interrupts allows you to refer to these routines without having
to remember the exact address of the routine.

Using the BIOS interrupts is merely one method of accessing the PC’s
devices. Later in this chapter, we shall also see how DOS is used to access data
from devices. We describe the BIOS interrupts first because DOS also uses the
BIOS interrupts for device access.

Example of Using Interrupts with the Serial Adapter Let’s look at how
the serial port is controlled using BIOS. The BIOS interrupt for the serial adapter
is numbered 14h. This BIOS service contains routines that allows you to control
up to two serial adapters or devices (although the PC can support more than two
serial adapters, the BIOS routines are usually limited to two; to access more than
two, you would have to write your own code). The convention for identifying device
number is simple: devices are numbered starting at 0. For example, the device

19

Writing MS-DOS Device Drivers, Second Edition

20

attached to the first serial port is numbered 0, and the device attached to the
second serial port is numbered 1.

A description of the features of the serial adapter BIOS interrupt (14h) is
provided in table 2-2. The registers and values required are also shown. The
sequence for using this interrupt is to set up the required registers for the feature
desired, issue an int instruction specifying 14h, and check the appropriate
registers upon return for any errors that occurred during the call.

This interrupt provides four subfunctions. The first subfunction (when ah =
0) is used to initialize the individual devices. This function is used to set the
required characteristics for the serial adapter. Refer to appendix B for a full
description of the parameter settings used for initialization. The second subfunc-
tion (ah = 1) is used to send a single character through the serial adapter to the
device. The third subfunction (ah = 2) is used to receive one character through
the serial adapter. The last subfunction (ah = 3) returns the status of the serial
adapter so that the program can determine whether it can send another character
or whether the serial adapter is ready to read another character.

Listing 2-1 shows an example of using the first serial adapter. The first lines
of code check the status of the serial adapter using subfunction 3. The first test
instruction checks the status returned in ah. If the serial adapter’s transfer
register is empty and the Data Set Ready signal is high, a character can be sent
to the serial adapter. This occurs at label send through the use of subfunction 1.

The serial adapter BIOS routines provide the means to transmit and receive
a single character from a serial device. In addition, this interrupt is used to
initialize and perform a status check on the serial adapter.

Examples of Using Interrupts to Control the Parallel Adapter The BIOS
interrupt for controlling the parallel adapter is numbered 17h. Like the serial
adapter, parallel devices are numbered starting at 0. The register conventions

~ are slightly different, however, and the parallel adapter BIOS service has only

three functions. The first function (ah = 0) is used to transmit one character
through the parallel adapter. The second function (ah = 1) is used to initialize the
parallel port. The last function (ah = 2) is used to retrieve the printer status. As
you can see, the structure of a BIOS interrupt is fairly similar: initialize, output,
input, and status checking are the typical functions. Note that the parallel
adapter sends and cannot receive. This is shown in table 2-3.

The parallel adapter is programmed in the same way as the serial adapter.
Before each transmission of a character to the parallel adapter, you select the
parallel adapter (DX = 0) and check it for readiness (ah = 2). Then you send a
character out (ah = 0). Finally, you check the status register to ensure that the
character made it out correctly. This process is shown in listing 2-2.

Basic Concepts

Register Value Description

ah 0 Initialize serial port
1 Transmit 1 character
2 Receive 1 character
3 Get serial port status

al Character received (ah = 2) or
Character to transmit (ah = 1)

dx Serial port to use (0 or 1)

Status is returned in ax as follows:

&
o
o

If Set, Means

Timeout has occurred

Transmission shift register is empty
Transmission buffer is empty

A break has been detected

A framing error has occurred

A parity error has occurred

An overrun has occurred

Data is ready

O HDNWK T J

1

=1
=)
—o
[

If Set, Means

Receive line signal has been detected

Ring indicator has been detected

Data set ready asserted

Clear to send asserted

A change has occurred in receive line signal
A change has occurred in ring indicator

A change has occurred in data set ready

A change has occurred for clear to send

O HDNWHK TTO I

Table 2-2: The register set-up requirements for the serial adapter
BIOS interrupt 14 hex. This interrupt provides both transmit and
receive functions through the serial adapter.

21

Writing MS-DOS Device Drivers, Second Edition

Listing 2-1: An example of programming the serial adapter.

; assume that the bl register contains a character to
; be sent out to the first serial port

; check the first serial adapter to see whether it is
; ready to accept a character

mov dx, 0 ;select the first serial adapter
mov ah,3 ;status check subfunction for int 14h
int 14h ;BIOS serial adapter interrupt
;returns a status value in ah
test ah,20h ;is the transfer hold register empty?
jnz next ;ves (not busy) - go to next check
jmp error ;previous character still waiting
next:
test al,20h ;1s data set ready (=1) 2
jnz send ;ves - ready. to send
Jjmp error ;device is not ready - process error
; transmit the character to the first serial adapter
send:
mov al,bl ;move character to al for sending
mov ah, 1 ;transmit function
int 14h ;BIOS serial adapter interrupt
test ah, 80h ;any transmit errors?
jnz error ;yes - process error
;continue processing
error:

You will see more of this interrupt when you build the printer device driver
in chapter 5.

The Keyboard Each time you type a character on the keyboard a ROM BIOS
routine retrieves these keystrokes. Each keystroke can be defined by an ASCII
code, a scan code, or both. A scan code is a unique code assigned to each key of the
keyboard (this is still true for keys that are duplicated, such as the Shift key). For
keystrokes that have no meaning, such as function key 1, F1, the ASCII code is
zero and the scan code is an extended scan code. This allows the keyboard interrupt
routine to distinguish between normal keystrokes, those that produce printable
characters, and those that do not normally produce printable characters.

22

Basic Concepts

Register Value Description
ah 0 Transmit 1 character
1 Initialize parallel port
2 Get parallel port status
al Character to transmit (ah = 0)
dx Parallel port to use (0, 1, or 2)

Status is returned in ah as follows:

ah Bit If Set, Means

Printer is not busy

Parallel port acknowledge

Printer is out of paper

Parallel port selected

An T/O error has occurred
—1 Not used

A timeout has occurred

SN Wk Ot

Table 2-3: The register set-up requirements for the parallel adapter
BIOS interrupt 17 hex. This interrupt provides only transmit
functions through the parallel adapter.

The ROM BIOS routine that captures keystrokes is known as the BIOS
keyboard interrupt and is numbered 9h (see figure 2-1). Interrupt 9h is a
hardware interrupt and is not issued by a program. Its purpose is to capture up
to sixteen keystrokes and store them in a 32-byte buffer. A keystroke is made up
of two bytes: an ASCII code and a possible scan code, so the buffer must be 32
bytes long (16 * 2 = 32). The buffer allows keystrokes to be captured even when
the program is busy processing non-keyboard-related information.

To get a keystroke character into your program, you must use another
software interrupt call to the BIOS keyboard services routine. This BIOS key-
board services routine is numbered 16h and is responsible for retrieving charac-
ters from the buffer in which interrupt 9h has stashed these characters. This
process is shown in figure 2-1.

23

Writing MS-DOS Device Drivers, Second Edition

Listing 2-2: An example of programming the parallel adapter.

send:

assume that the bl register contains a character to
be sent out to the first parallel port

check the first parallel adapter to see whether it is
ready to accept a character

mov dx, 0 ;select the first parallel adapter

mov ah, 2 ;status check function

int 17h ;BIOS parallel adapter interrupt
;returns a status value in ah

test ah, 80h ;is the printer not busy?

jne next ;vyes (not busy) - go to send

Jjmp error ;no - busy

transmit the character to the first parallel adapter

mov al,bl ;move character to al for sending
mov ah, 0 ;transmit function
int 17h ;BIOS parallel adapter interrupt
test ah, 09%h ;I/0 Error or Timeout?
jne error ;Yyes - process error

;continue processing

error:

24

Interrupts 9h and 16h work hand in hand. The interrupt 9h routine is always
available in case you type a character on the keyboard. A program does not need
to issue a request for characters from the keyboard before interrupt 9h will go
into action. This allows you to type ahead, which means that you can type in
characters before they are requested from a program. The interrupt 16h routine
is responsible for returning the specified number of characters to the requesting
program from the buffer in which interrupt 9h has stored them.

Using the Keyboard Services Interrupt (INT 16h) Table 2-4 summarizes
the services available from this BIOS interrupt.

Interrupt 16h’s service is used to read a character from the keyboard buffer.
Service 1is used to determine whether there is a character in the keyboard buffer
for us to retrieve. The reason for this is simply to prevent a program from waiting
for a character to be struck if the buffer is empty. This saves time, but more

Basic Concepts

YOUR
PROGRAM
32 Byte buffer
D | R
INT 9h
ﬁtores
eystrokes
into a buffer INT 16h

gets

keystroke
/(EEEEE e\ fom
[) buffer

Figure 2-1: The role of the keyboard Interrupt 9h. When a key is
struck on the keyboard, Interrupt 9h stores the keystroke in the
keyboard buffer.

Contents of

ah Service

0 Read next keyboard character
1 Check for available character
2 Get shift status

Table 2-4: The three services for the keyboard interrupt.

importantly, the program is not holding up other things that DOS may need to
do. Service 2 returns the status of the shift keys. Holding the Shift key down will
not cause a character tc be sent from the keyboard to the buffer. However, the
program needs to acknowledge the use of the Shift key in conjunction with other
keys. For example, lower-case characters need to be distinguished from upper-
case characters. Function keys benefit from the use of the Shift function, because
a second set of functions is produced by using the Shift key with the function keys.

25

Writing MS-DOS Device Drivers, Second Edition

26

As you can see, the BIOS calls for the keyboard, like those for serial devices,
are straightforward. You will find examples of keyboard usage in the Console
Device Driver of chapter 4.

The Video Screen Displaying information on the screen is accomplished
through the use of BIOS interrupt 10h. This BIOS service also performs a
number of functions that are not apparent to the PC user. For example, regardless
of whether the PC has a color monitor, a monochrome monitor, or both, the BIOS
routines will send the information out to the appropriate screen adapter.

Programming Using the Video Services Interrupt INT 10h The range of
services provided by interrupt 10h covers reading and writing data to and from
the screen. Table 2-5 summarizes the services available for all screen adapters.
Extended services for individual screen adapters are listed in appendix B.
Many of the services listed in table 2-5 are used for special purposes. For
example, services 0Bh, 0Ch, and 0Dh are used for graphics displays on color

ah Reg. Service Function for 10h

Oh Set video mode

1h Set cursor size

2h Set cursor position

3h Read cursor position

4h Read light-pen position

5h Set active display page

6h Scroll window up

7h Scroll window down

8h Read character and attribute
9h Write character and attribute
ah Write character

bh Set color palette

ch Write pixel dot

dh Read pixel dot

eh Write character as TTY

th Get current video mode

13h Write character string

Table 2-5: Summary of the functions that the video display service
interrupt provides. Note that there is a break in the numbers between
the Get Current Video Mode (fh) and the Write Character as String
(13h) services.

Basic Concepts

monitors. Service 4h is seldom used, because it requires a light-pen. Services Oh
and OFh are important when changing monitor display modes, switching from
text to high-resolution modes, and vice-versa.

The video display service that is important to this book is Eh, “Write
Character as TTY.” This service allows you to write a character out to the screen
without knowing the cursor position. The character appears at the next location
after the last output. All characters that are written this way are treated as
simple TTY.

You will see an application for the video services interrupt in chapter 4’s
Console Device Driver.

Refresher Course on DOS

Since its introduction with the IBM PC, DOS has become the most popular
operating system in the world. From its humble beginnings, DOS has evolved
into a powerful tool, with features such as hierarchical disk structures, the ability
to control just about any device, and networking capabilities.

The conceptual model for DOS as the master supervisor of resources of a
computer system is shown in figure 2-2.

At the core of DOS is the kernel. The kernel provides control functions for
administrating and managing the resources of the PC. Memory management
routines provide space in which programs can execute. I/O requests from appli-
cation programs are managed and processed by the kernel. File-management
routines within the kernel organize the data for easy access by applications
programs. In addition, the kernel is responsible for initializing itself when DOS
is booted.

The DOS services interface provides a path for application programs to
request services from DOS. It is a defined interface mechanism that processes
requests by interacting with the kernel. DOS services include file I/O to devices
and disk files, time and date functions, and program control.

Strictly speaking, device drivers are part of the DOS kernel. They provide
a standard interface to the devices from within the DOS kernel. As a group, the
device drivers provide device management for DOS. Each device driver controls
a device and uses the PC’s BIOS routines. For example, the serial port device
driver uses the serial port BIOS interrupt.

Programs generally use DOS services to access and control devices. How-
ever, DOS does not prevent a program from directly accessing the BIOS routines.
The “back-door” approach is used by many programs to attain higher performance
or to perform a task that DOS does not provide. For example, many word
processors use the keyboard BIOS interrupts to speed up the keyboard input

27

Writing MS-DOS Device Drivers, Second Edition

PROGRAMS COMMAND.COM

DOS KERNEL
DOS SERVI INTERFACE

DEVICE DRIVERS
L ROM | BIOS ROUTINES

o B
Modem - Disks
> B
Monitors /@%@@ Printers

= |

Keyboards
Figure 2-2: The functional parts of DOS.

rates. Another example is programs that use the PC’s built-in speaker; DOS does

not provide a service for speaker control.

DOS itselfis composed of several programs that assist in bringing DOS into
memory when DOS is booted. There are additional external utility programs that
help you when you use DOS. Among these are FORMAT, PRINT, BASIC, and
CHKDSK. Although application programs are distinguished from utility pro-
grams, they both request the same services from DOS and follow the same rules

that DOS expects from programs.

The most important utility program, and the one that users are most
familiar with, is COMMAND.COM. This program runs automatically when DOS
is booted. COMMAND.COM provides the interface for users to communicate with
DOS. The commands that are entered on the keyboard are translated to services
requested of DOS. For example, COMMAND.COM is used to set the time and

date, to run programs, and to control the devices attached to the PC.

28

Basic Concepts

Lastly, application programs request the PC’s resources through the DOS
services interface. Without DOS, these programs would have to incorporate all
ofthe services provided by DOS and would, in all likelihood, be incompatible with
other application programs. DOS provides a common set of features and services
that allows all applications programs to share the PC and its data storage. These
applications programs use the services provided by the DOS kernel by requesting
services through programming calls to DOS. We will discuss this topic in more
detail later in this chapter.

Devices for DOS

As we have seen, DOS allows programs to control a set of standard PC devices:
keyboard, screen, disks, and serial and parallel adapters. Each DOS device has
a unique name assigned to it, and it is through these names that programs are
able to access the devices. Table 2-6 lists the names of the standard DOS devices
as they are currently defined for version 2.00 and higher.

In order to use a device in a program or DOS command, you need to specify
the assigned device name in the command line or program statement that
references the device. These reserved device names have a special meaning for
DOS, and any reference to these reserved names will cause DOS to access the
device. Therefore, you cannot use reserved names to access another type of device.

DOS Device Name Standard Device

con: Keyboard/screen

coml: Serial port #1

aux: Auxiliary port
(identical to com1:)

com2: Serial port #2

Iptl: Printer port #1

1pt2: Printer port #2

Ipt3: Printer port #3

prn: Logical printer port
(identical to Ipt1:)

nul: Null device

clock$ Software clock

A: First diskette unit

B: Second diskette unit

C: Hard disk (normally)

Table 2-6: The standard device names assigned by DOS.

29

Writing MS-DOS Device Drivers, Second Edition

30

The con: device name refers to the console device, which, as you've seen, is
composed of the keyboard and screen that is the primary interface to the PC.
When you refer to con: in a program that does output you are referring to a video
device attached to the video controller.

The aux: is the auxiliary logical device and is assigned to the com1: port,
which is the first of several serial adapters that may be attached to a PC. Most
MS-DOS systems provide support for up to two serial ports; these are typically
named com1: and com2:. Additional serial ports are numbered com3:, com4:, etc.

In addition to the two serial adapters noted above, most MS-DOS systems
also provide support for up to three parallel adapters or ports. These are intended
primarily for use with parallel printers and are assigned the names Ipt1:, [pt2:,
and [pt3:. The logical printer device, prn:, is assigned to the first printer port
Ipt1:, so both prn: and lptl: may be used to refer to the same device unless prn:
is changed.

The nul: device is a special device for DOS. This null device acts as a
“bit-bucket” for output operations. If you write to this device, nothing will happen;
the data is effectively thrown away (the bucket has a hole in it). This is desirable
when a program generates output that should not be captured or saved in any
form. By temporarily directing the output to the nul: device, the program can
function in its normal fashion without worrying if it outputs garbage.

The clock$ device is another special device defined for most MS-DOS
systems. It really is not a device in the physical sense; no hardware keeps track
of the date or time (there is a timer that is used to keep the clock up to date). By
providing this software “device,” DOS makes it possible for you to access the
system time and date easily through standard I/O mechanisms.

The standard disks found on PC systems today are generally diskettes
(floppy disks) and hard disks. Disks are not given reserved device names but are
assigned alphabetic letters. These drive letters begin with A: and can run up to
Z:. Most DOS systems come equipped with two floppy disk drives and these are
assigned the drive letters A: and B:. In some cases when only a single diskette
drive is supplied with a PC system, the drive letters A: and B: are used to refer
to the single drive. Hard disks are usually assigned device names starting with
the letter C:; that is, the first hard disk is C:, the second hard disk is D:, and so
on. Although these drive letters are assigned by DOS, several PC manufacturers
change DOS to reflect different drive letter assignments. Some manufacturers
refer to the hard disk as E: if there are four floppy disk drives, the hard disk could
be referred to as B: if there is only one floppy disk in the PC. Often a single hard
disk drive may be partitioned, with each partition being assigned its own unique
drive letter, as if the partition was itself an independent hard disk drive.

Basic Concepts

DOS Services

The DOS Interrupts

DOS provides access to devices, files, and various services through the use of the
8086/8088 software interrupt mechanism and the int instruction. Programs call
DOS through documented interrupt numbers which are in the range of 20h to
3Fh. These interrupt numbers are reserved for use by DOS; they should not be
used by your programs. These 32 interrupts are shown in table 2-7.

Eight DOS interrupts have been documented for use by programs. The
remaining interrupts (28h through 3Fh) are reserved for use by DOS.

The Terminate Program interrupt (20h) terminates the current executing
program as well as closing all files and flushing all data buffers to disk. It is
commonly used in .COM programs.

The DOS Services interrupt (21h) is the primary interface between an
application program and DOS. All requests for system services are made through
this call. We will discuss these services in more detail in the next section of this
chapter.

The interrupt at 22h, Terminate Address, is not an interrupt call but rather
is used to store an interrupt vector (22h is the address to transfer to when a
program terminates).

The interrupt defined for 23h is not an interrupt call but defines an interrupt
vector at 23h to contain the address to transfer to when a user types CONTROL-C
at the keyboard. Usually programs use this interrupt to define a memory address
to which control should be passed when a CONTROL-C is issued. The default is

20h DOS terminate program

21h DOS function call

22h DOS terminate address

23h DOS CTRL/break exit address
24h DOS vector for fatal error

25h DOS absolute disk read

26h DOS absolute disk write

27h DOS terminate but stay resident

28h—3fh DOS reserved

Table 2-7: The list of DOS interrupts (not BIOS). Note that the last 24
interrupts (28h through 3Fh) are reserved for use by DOS.

31

Writing MS-DOS Device Drivers, Second Edition

32

to cause a break if CONTROL-C is issued at the A> prompt. The use of this
interrupt allows the program to continue processing rather than being summarily
aborted.

For example, figure 2-3 shows a situation in which a program intercepts a
CONTROL-C interrupt and sets a flag. At a later (and safer) time, the program
checks to see if the flag is set; if so, the program aborts. This allows the program
to terminate in an orderly way instead of just aborting.

The Fatal Error interrupt (24h) is not an interrupt call but rather defines
the address to which control should be transferred when an error occurs during
disk I/0O. This allows the program to continue processing instead of being aborted.

The Absolute Disk Read interrupt (25h) is used by programs to read absolute
sectors on the disk. The absolute sectors are numbered from 0 to the highest
available sector. Interrupt 25h allows a program to read the special sections on

- CONTROL-C Processing in a Program

1. YOUR
SEEEER TR PROGRAM

A CONTROL-C
interrupts
YOUR PROGRAM

3.

Later
YOUR
PROGRAM

processing
finishes,
control is
returned to
the Main
Processing
Loop

Figure 2-3: A typical example where the program sets up a
CONTROL-C address. At this address a flag is set if the CONTROL-C
key is struck. A flag is set and processing resumes. At some later point
the flag is checked, and if set, the program is then terminated.

Basic Concepts

a disk that are not normally readable from DOS: the boot record where informa-
tion on the format of the disk is kept; the file allocation table, which indicates
where files are located on the disk; and the file directory, which contains
information about the files on the disk. Normal DOS services can read only the
user data area of the disk, not the special sections. The Absolute Disk Write
interrupt (26h), the counterpart to interrupt 25h, gives programs the ability to
write absolute sectors on the disk, including those in the special sections of a disk.

Interrupt 27h is the Terminate but Stay Resident interrupt. This interrupt
call allows the program to remain in memory but to pass control back to the calling
program. It is useful in writing programs that perform a background task. The
PRINT spooling program uses this interrupt to stay in memory and provide
printing services.

DOS Services

By DOS services, we refer to the various functions for input/output, file access,
device access, and program control that are accessed through DOS interrupt 21h.
Each DOS service is requested by specifying the requested service in the ah
register. Table 2-8 lists the DOS services available through interrupt 21h.

Using DOS Services

Programs issue requests for DOS functions through interrupt 21h. This is one of
the more commonly used interrupts, because it controls so many facilities.
Interrupt 21h is used to open files before reading or writing to them. Interrupt
21h lets you close files to ensure that the data is safely stored on your devices
and to prevent further access of the device. In short, DOS services offer you the
ability to control what you want your programs to do.

DOS Device Management

To access a device using DOS, your programs need to indicate what file or device
to use; this is called opening the file or device. DOS requires that the name of the
file or device be specified through the DOS Open service (3Dh). After this
interrupt is received, DOS sets up a file handle, which is used as a standard
mechanism to access the device. This file handle is also used to keep information
regarding use of the file or device. A device such as the serial port must be opened
using com1: as the device name. Then you can read or write to this device using
DOS service calls.

33

Writing MS-DOS Device Drivers, Second Edition

Hex Function Number Description
0 Terminate program
1 Read keyboard and echo
2 Display character
3 Auxiliary input
4 Auxiliary output
5 Print character
6 Direct console I/0
7 Direct console input
8 Read keyboard
9 Display string
A Buffered keyboard input
B Check keyboard status
C Flush buffer, read keyboard
D Disk reset
E Select disk
F Open file
10 Close file
11 Search for first entry
12 Search for next entry
13 Delete file
14 Sequential read
15 Sequential write
16 Create file
17 Rename file
19 Current disk
1A Set disk transfer address
21 Random read
22 Random write
23 File size
24 Set relative record
25 Set vector
27 Random block read
28 Random block write

Table 2-8: DOS services.

When DOS services arequest that requires device access, DOS will translate
this request according to a standard set of rules imbedded in code. These rules
are uniform across all devices, from simple output-only parallel devices to
complex input and output devices, such as disks.

34

Basic Concepts

Hex Function Number

Description

29
2A
2B
2C
2D
2E
2F
30
31
33
35
36
38
39
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
54
56
57

Parse file name

Get date

Set date

Get time

Set time

Set/reset verify flag

Get disk transfer address

Get DOS version number

Keep process

CONTROL-C check

Get interrupt vector

Get disk free space

Get country-dependent information
Create sub-directory

Write to file/device

Delete a directory entry

Move a file pointer

Change attributes

I/0 Control for devices
Duplicate a file handle

Force a duplicate of a handle
Return text of current directory
Allocate memory

Free allocated memory

Modify allocated memory blocks
Load and execute a program
Terminate a process

Get the return code of a child
Find match file

Step thru directory matching files
Return current setting of Verify
Move a directory entry

Get/set date/time of file

Table 2-8: DOS services (Continued).

These requested services, once converted to a specific command, are then
passed to a certain set of routines that process the command. These routines are
not common to all devices; rather, each device has a unique set of routines. These
routines are the actual DOS device drivers.

35

Writing MS-DOS Device Drivers, Second Edition

DOS has device drivers for each of the devices attached to the PC. Each
service request, however complex, is eventually converted by DOS into a series
of simple driver commands and passed to the appropriate device driver.

Translating Service Calls to Device Driver Commands

Device drivers are designed to handle simple commands from DOS. The two most
common DOS services used to access devices are interrupt 21’s read (ah = 3F)
and write (ah = 40). These DOS services are relatively complex and may not be
translatable to single device driver commands. DOS will issue as many com-
mands to the appropriate device driver as necessary to satisfy the DOS service
request.

For example, a program that writes to the disk may issue a write command—
interrupt 21h (ah = 40)—that happens to append data at the end of the file. DOS
may have to process this single service request by issuing several commands to
the disk device driver. The first of these driver commands will need to find more
space on the disk for the new data. A driver command will be issued to read the
File Allocation Table in which the information on disk space is kept. Then, if
there is room on the disk, DOS will write the new data to the disk file by issuing
a write command to the disk device driver. Lastly, DOS will update the disk to
indicate the time of last access by issuing another driver command to write to the
disk. Although this scenario has been simplified, the idea here is that DOS
converts a single service request into one or more device driver commands. This
is shown in figure 2-4.

Now that you have seen how DOS processes requests for device access by
passing the request in the form of smaller, simpler commands to the device
driver, you are ready to explore device drivers themselves.

The DOS Device Driver

36

Device Drivers for New Devices

DOS device drivers are device-controlling software routines that actually become
part of DOS. Because these programs are written to Microsoft-designed specifi-
cations, DOS can recognize these new devices and can integrate them with the
rest of its standard devices. Once DOS knows about these devices through their
specific device driver routines, the devices can be accessed as easily as the
standard disk and screen devices.

The rules and regulations that Microsoft specifies for device drivers also
allows their installation. You will see more about these rules shortly. It is these
rules that make device drivers present a uniform interface to the DOS kernel. As

Basic Concepts

YOUR
PROGRAM

Write 1.Read disk space table
arecord 2.Write to disk file

atend 3.Update disk directory
of file 4. Update disk space tabl

FLOPPY
DISK

===

Figure 2-4: A simple service request to write data to the file converted
to several possible disk device driver commands. DOS manages each
request, making one or more simple driver commands until the
request is complete.

you will see, DOS needs to know only that the device driver is controlling a
particular device, identified by a device name, and that it is capable of processing
standard device driver commands.

Without installable device drivers that have a uniform interface to DOS,
adding a new device to DOS would be difficult. The manufacturer of the device
would have to supply a custom-modified version of DOS in order for you to use
the new device. This would create a number of problems. First, you could not use
anewer release of DOS unless the newer version was also modified to control the
new device. Second, because each device manufacturer uses different methods of
modifying DOS, incompatibility problems would arise.

The DOS device driver is the most universal and meaningful method of
software control for devices. New devices become standard devices in DOS,
available for accessing at any time, from within programs and outside of pro-
grams, such as from the command level.

37

Writing MS-DOS Device Drivers, Second Edition

38

Replacement Drivers (ANSL.SYS)

Occasionally you may find that the standard device drivers built into DOS (disk,
screen, etc.) do not accomplish what you need to do. For example, you may need
a console driver that provides control for a color card that displays more colors
and resolution than the CGA/EGA/VGA driver. To handle this situation, you can
replace an existing device driver with a customized one.

This is the technique employed by the popular ANSI.SYS device driver
provided with DOS. The ANSI.SYS driver is a replacement device driver for the
standard console device driver. Over the past few years, the American National
Standards Institute (ANSI) has designed a set of standard escape sequences that
can be used to perform specific functions for any video monitor and keyboard (an
escape sequence is a group of characters preceded by an escape character, ASCII
1Bh). These functions include such things as setting foreground and background
colors, turning on and off reverse video display, and assigning special codes to
designated keys on the keyboard. These standard escape sequences provide
greater “portability” for software programs, because they allow developers to
create programs that require complex control of the monitor and keyboard
without any regard for the specific hardware involved.

Thus, you may add device drivers to DOS for two reasons: first, to add
support to DOS for devices that are not part of the standard set of DOS devices,
and second, to replace the original device driver with a new one that may have
more capability or portability than the old one.

Looking at Old and New Device Drivers

As we discussed earlier in this chapter, DOS manages requests for device access
from programs by issuing commands to the appropriate device driver. Each device
driver contains the name of the specific device it is controlling, and DOS locates
the appropriate device driver by searching through the list of installed device
drivers.

DOS maintains a linked list of the device drivers starting with the nul: device.
The device driver for NUL: is the first in the list and contains a pointer to the next
device driver. In turn, each device driver points to the next. The pointer for the
last device driver will contain the value -1, thus signaling the end of the list.

DOS manages the standard, replacement, and new device drivers using a
relatively simple mechanism. As shown in figure 2-5, the list of DOS standard
device drivers begins with NUL: and continues with CON:, AUX:, and so forth.
These device driver programs reside in the area of the PC memory that DOS uses.

Basic Concepts

HEAD OF
DEVICE CHAIN

New
device
driver

added
here NUL:

CON:
LPT:

LPT:
Before After
installing installing
device driver
driver NEW:

Figure 2-5: What the list of DOS device drivers looks like before and
after we add a new device driver. Note that each driver contains the
device name and a field that points to the next device driver.

Whenever a new device driver is installed, DOS inserts it in the list just after the
NUL: device. This allows you to replace a standard device driver, because any
device request will cause DOS to search this list starting from the first, which is
nul:. If you replace a standard device with one of your own, DOS will find the new
device first and will never reach the original device of that name, which is now
second in the list. Similarly, new devices with new device names will be added to
this list. Thus, DOS will be able to access new, replacement, and standard device
drivers simply by searching this list.

This list of DOS device drivers is called the device chain and is a linked list
of the actual device driver programs. To access drivers all DOS needs is a pointer
to the first item, the device nul:. DOS can then find the rest of the device drivers.

39

Writing MS-DOS Device Drivers, Second Edition

40

Customized Drivers for Standard Devices

Besides writing drivers for new devices, you can always improve upon the DOS
standard device drivers. Let’s explore this for a moment.

With the exception of the NUL: device, which must be the first in the device
chain, all of the DOS standard drivers can be replaced by alternate drivers.
Improved drivers for the standard PRN:, COM1:, and CLOCK$ devices can be
installed into DOS. The PRN: driver is especially likely to be replaced, because
many printers have features that are not accessible using the standard PRN:
driver. For example, you might need to get a status from the printer that the
normal PRN: driver does not handle; such a status might be used to determine
whether the printer is in text or graphics mode or whether the printer is out of
paper. You might also want to send special vector commands for plotting, using
routines built into an intelligent printer.

Another candidate for replacement is the COM1: driver. You could add your
own customized version in order to change the speed of data transfer through the
serial port by having your device driver detect a certain character sequence. This
would greatly ease the procedures for controlling the serial port device, because
it would eliminate the need to issue a special DOS command to perform this
function. Your own language could be formed.

The standard PC clock driver is used to retrieve or set the time and date.
You can write a driver for the CLOCKS$ device to support a special hardware
device that stores the date and time (this may be integrated along with other
hardware on a multifunction board). A new CLOCKS$ device driver will have to
understand how the hardware clock/calendar works, be able to control the setting
of the time and date, and be able to perform other tasks, such as allowing user
programs to access the clock as a timer for pulses. The concepts of replacing
standard DOS drivers with customized versions will be developed further in later

chapters. In fact, we will develop examples of CON:, PRN:, and CLOCKS$ device

drivers that replace the standard device drivers that DOS supplies.

The possibilities for using customized device drivers are endless. For exam-
ple, one interesting use of a con: replacement would be to simulate a DVORAK
keyboard, on which the keys are in different positions than on the standard
QWERTY keyboard. The purpose of the DVORAK keyboard is to place the
most-used keys together, supposedly to facilitate faster typing. Another CON:
replacement could be a terminal emulator, a software program that allows the
PC’s normal screen and keyboard to simulate a keyboard of a specific terminal.
This is useful when the PC is used to communicate to a mainframe computer.
Such an emulator would solve the problem that arises when the PC’s function
key codes are not recognized by the mainframe computer. You could create a new
keyboard/screen driver to translate the PC’s function key codes to those that the
mainframe computer can recognize.

Basic Concepts

Deviceless Drivers

We have discussed drivers for new peripheral hardware devices and drivers that
replace standard DOS ones. Another type of drivers also exists: those that do not
control real hardware devices. Commonly known as virtual devices, these device
drivers simulate a hardware device. There are numerous examples. The RAM
disk is a virtual disk that can improve the speed of “disk-bound” applications
(those with lots of disk activity). The RAM disk driver reserves memory to
simulate bytes on the disk and manages this memory as if it were the real disk.
Reads and writes to this RAM disk do not go out to a real disk but rather are sent
to the memory reserved by the RAM disk. Thus, instead of spending time waiting
for a disk to access the data at disk speeds, the RAM disk can access the data at
memory speeds. Later on in this book, we will devote two chapters to designing
and implementing a RAM disk device driver.

Overview of a Driver’s Program Structure

A device driver program consists of five parts: the Device Header, data storage
and local procedures, the STRATEGY procedure, the INTERRUPT procedure,
and the command-processing routines (see figure 2-6). We will discuss each of
these parts in this chapter as well as in later chapters as we develop actual device
drivers.

Let’s look at these five sections briefly. The beginning of a device driver
program does not contain code the way normal programs do. Rather, the Device
Header contains information about the device driver itself. This information is
used by DOS and includes the device name for the driver and the pointer to the
next driver.

The second part of the driver is used to store local data variables and local
routines and procedures.

The third and fourth parts of the device driver contain what Microsoft calls
the STRATEGY and INTERRUPT procedures. These two procedures are integral
to processing each command that is passed from DOS to the device driver. They
allow DOS to pass control to the driver. We will discuss these in detail later in
this section.

The last part of the driver contains the actual code routines that process
each of the commands that DOS passes to the device driver.

"How DOS Communicates with the Driver

Let’s see how DOS and the driver work together. Figure 2-7 shows that when
DOS calls the driver it passes a packet of data to the device driver. This call might
be to write to a RAM disk or send some special character to a graphics board.
This packet of data is called a Request Header and contains information for the

41

Writing MS-DOS Device Drivers, Second Edition

42

Device
Header

Data Storage
and
Local Procedures

STRATEGY
Procedure

INTERRUPT
Procedure

Command
Processing

Figure 2-6: The five basic parts of the device driver.

device driver such as the data to be written to the device. DOS sets up the registers
ES and BX to contain the address of the Request Header when DOS calls the
device driver.

The Request Header The Request Header is a packet of data that is passed
from DOS to the driver; this data tells the driver what to do and the location of
the data involved in the work to be performed. For example, if DOS wants to write
a character to the serial port, it needs to specify the write command and the
character (data) to write. Therefore, DOS needs to pass to the driver both a
command and some data. Both of these are contained in the Request Header.
(Note: Do not confuse the Request Header with the Device Header. The Device
Header tells DOS about the driver program, and the Request Header contains

DOS

REQUEST
HEADER

Length of packet

Device unit code

Command number

Status

Reserved

Address of data

Basic Concepts

DRIVER

Figure 2-7: DOS calling the device driver with a pointer to the request
header. Contained within the request header is the command code for
the device driver. This instructs the device driver what functions to

perform on the device for DOS.

the data on which the device driver works.) The Request Header is described in

table 2-9.

As shown in table 2-9, the Request Header is a variable-length packet of
data. Within this packet, the length of the Request Header is contained in the
first entry. The second entry contains the unit code of the device. This is normally
used when more than one device is attached to the controller. An example of this
is the floppy disk controller, which often controls two drives. The A: drive would
be unit 0, the B: drive would be unit 1, and so forth. The third entry is the
command code, which tells the device driver what action to take. The fourth entry
is used as a status indicator. The fifth entry is reserved for use by DOS (its use

43

Writing MS-DOS Device Drivers, Second Edition

44

Entry Length
(bytes) Description

1 1 Length in bytes of this Request Header (varies with the
amount of data in the request)

1 Unit code of the device

1 Command code

2 16-bit word for the status upon completion
8 Reserved for DOS

Varies Data specific for a command

SO W N

Table 2-9: Definition of the Request Header that is passed to the
device driver. The Request Header contains information regarding its
length, the unit code of the device, the command to be performed, and
data for the command.

is undocumented). Finally, the last entry is the data field. This field varies in
length depending on the command in the third field. You will see more of this
data field in later chapters.

DOS automatically sets up a Request Header whenever a program makes a
request to DOS that involves a device driver. This data packet resides in DOS’s
reserved memory space and is built with information provided from the calling
program. The address of the Request Header is passed to the device driver when
DOS passes control to the driver. This address is stored in the driver’s local
storage area. You need to specify both the segment address and the offset address
of this Request Header, because the Request Header can be anywhere in the PC’s
640K memory. Specifying only an offset address assumes that the packet will
be in the current segment of memory in which the program is executing. DOS
passes this segment and offset address in the ES and BX registers of the 8088,
respectively.

You will see more of Request Headers in later chapters when you process
driver commands in the various device drivers.

Driver Calls from DOS You might assume that each command DOS passes
to the driver involves a single call to the driver. Alas, this is not the case. Recall
that DOS expects the device driver to have two procedures defined—the STRAT-
EGY and the INTERRUPT procedures. Let’s explore the two-step call that DOS
makes to the device driver for each command request.

Basic Concepts

The Two-step Call to the Device Driver Each time DOS asks the device
driver to process a command, for example a read or write command, DOS will call
the device driver twice. The first time, DOS will pass control to the STRATEGY
procedure defined for the device driver. The second time, the device driver will
be called at the address specified for the INTERRUPT procedure.

Think of the STRATEGY procedure as instructions that perform the set-up
and initialization for the driver. The INTERRUPT procedure then uses the
information from the STRATEGY procedure to process the command request
from DOS. This process is shown in figure 2-8.

Although it is not apparent from the DOS manuals, this two-step approach
allows DOS to distinguish between the request for the driver (the set-up) and the
actual work to be done by the driver. You can think of this two-step process as
analogous to writing a check and cashing it at a bank. You may write the check
on Monday (the set-up) and not cash it (the work) until Friday. In the same way,
DOS notifies the driver that there is work to be done with a call to STRATEGY
and then calls the driver again through INTERRUPT to allow it to work.

Let’s develop a scenario to see why STRATEGY and INTERRUPT are
necessary. Assume that your PC, through DOS, can multitask, which means that

DEVICE

DRIVER
1. DOS
calls
STRATEGY
first STRATEGY:

Sets
up
driver
. DOS .

calls

INTERRUPT INTERRUPT:

second Performs
actual
work

Figure 2-8: When DOS issues a request to the device driver, the device
driver is actually called twice.

45

Writing MS-DOS Device Drivers, Second Edition

46

it can perform several tasks at one time. This permits you to do more work in a
given period of time. Although DOS does not provide this capability currently, it
is an important feature that future versions of DOS will have.

It is likely that the various multiple tasks will differ in importance. If you
prioritize these tasks in order of importance, the calls they make to device drivers
also need to be prioritized. For example, a task that is downloading a file using
a modem might be higher priority than a task that is updating a collection of
addresses. The two-entry point approach allows DOS to do this. DOS can process
the device driver calls in the priority order of the calling task. This is accom-
plished by linking into a chain all driver request calls (all the calls to STRATEGY)
and putting all the actual work calls (calls to INTERRUPT) into another chain
in priority order. After DOS calls all the device drivers through the STRATEGY
routine, it then inspects the INTERRUPT chain to see which one has the highest
priority. The closer a device driver is to the beginning of the chain, the higher its
priority.

Without this two-step mechanism to set up and perform the actual work,
DOS would call the device drivers on a first-come, first-served basis.

To make this scenario a little easier to understand, let’s use an example.
Assume that there are three outstanding driver requests:

® Request A has a low priority
® Request B has a medium priority

® Request C has a high priority

The STRATEGY and INTERRUPT chains are illustrated in figure 2-9.

As this figure shows, each program request for device driver service causes
DOS to place the first (set-up) call in the STRATEGY chain and the second (work)
call in the INTERRUPT chain. When three programs make device driver re-
quests, the set-up calls are linked into the STRATEGY chain in order of arrival,
and the work calls are placed in the INTERRUPT chain in priority order. Think
of this as writing checks in order during the week and then sending out the most
important checks first on Saturday. In effect, you are handling all the incoming
items as they arrive but sorting the most important items into a work list for
processing.

What the STRATEGY Procedure Does When the driver is first called, the
STRATEGY routine saves the address of the Request Header, which is contained
in the ES and BX registers. This is done to prepare the driver for the second call
toits INTERRUPT procedure.

Basic Concepts

STRATEGY
chain is Set up

linked in ' is performed
arrival in this
order order

linked in performed
priority in this
order C order

INTERRUPT
chain is Work is

Figure 2-9: The effect of three driver requests. DOS links the three
requests in the STRATEGY chain in the order of arrival. The
INTERRUPT chain sorts the same three requests in order of priority.

The sequence of events is shown in figure 2-10, in which DOS prepares to
call the device driver by building a Request Header, and in figure 2-11, in which
DOS calls the device driver at the STRATEGY procedure.

47

Writing MS-DOS Device Drivers, Second Edition

REQUEST
HEADER
Length 13
Unit Code (]
Command 5
Number
Status (7]

DOS

ES: BX

Figure 2-10: DOS preparing to call the device driver for the first time.
A Request Header which contains information for the device driver to
process is built. The address of this Request Header is stored in the
ES and BX registers.

What the INTERRUPT Procedure Does When DOS calls the device driver
the second time, it does so through the INTERRUPT procedure. Here the real
work of the device driver begins. The Request Header that contains information
for the driver to process is handled by the code located in the INTERRUPT
procedure. Control is then passed to the command-processing routines. This is
shown in figure 2-12.

Block and Character Devices

DOS drivers need to distinguish between character and block devices. Recall that
a block device transfers data in groups of characters, and character devices
transfer data one character at a time. Of the control commands that the device

48

DOS

DOS
calls

Basic Concepts

DEVICE
DRIVER

STRATEGY

REQUEST
HEADER

DEVICE
HEADER

LOCAL
DATA
STORAGE

ES : BX

STRATEGY

STRATEGY

saves the

address of the
REQUEST HEADER
in LOCAL DATA
STORAGE

Figure 2-11: The STRATEGY procedure storing the address of the
Request Header in local data storage.

driver issues to the device, some are appropriate to character devices and some
to block devices. The Media Check command is one example of a block device
command. Because diskettes can be formatted for single-sided or double-sided
use, the DOS disk device driver needs to know which format has been used. To
find out, DOS issues a Media Check command to the disk device driver, which in
turn reads a block of data from the disk. From the information returned in this
block of data, DOS can determine if the diskette is single- or double-sided. The
Media Check command is unique to disk block devices and is not applicable to

character devices.

49

DEVICE
DRIVER

DEVICE
HEADER

2. INTERRUPT
retrieves
the address
of the REQUEST
HEADER and

T N

— passes it to
TRATEGY command
processing
1. DOS calls
INTERRUPT
to perform
work

INTERRUPT.

Figure 2-12: How the Request Header is retrieved by the INTERRUPT
routine. Control is then passed to the command processing routines.

DOS also needs to know which type of device its driver is controlling in order
to determine the appropriate commands the device driver can perform. This topic
will be covered in detail in later chapters as we develop various device drivers.

Device Driver Commands

50

So far, we have provided a lot of material on the various parts of a device driver.
The information presented so far has been on the flow of control around and in
device drivers. Now we have come to the core of device drivers: command
processing.

Recall that programs make service requests of DOS. Each of these service
requests translates to a specific set of commands that the driver understands.
These commands are common to all device drivers.

Basic Concepts

Number Command Description
0 Initialization
1-2 Not applicable
3 IOCTL Input
4 Input
5 Nondestructive Input
6 Input Status
7 Input Flush
8 Output
9 Output With Verify
10 Output Status
11 Output Flush
12 IOCTL Output
13* Device Open
14%* Device Close
15% Not applicable
16* Output Til Busy
17-18%* Undefined
19* Not applicable
20-22%%* Undefined
23** Get Logical Device
24%* Set Logical Device
25%F* IOCTL Query

* = DOS version 3+ only
** = DOS version 3.2 only
*+% = DOS version 5.0 only -

Table 2-10: The list of commands for character-oriented devices.
There are 25 commands, numbered from 0 through 24. Commands 13
through 16 are valid for DOS versions 3.00 or 3.10. Commands 17
through 24 are valid for DOS versions 3.20 or greater. Command 25 is
valid for DOS version 5.0.

Commands defined by Microsoft for device drivers are listed by device type
in table 2-10 for character devices and in table 2-11 for block devices. Note that
not all of the commands are available for all versions of DOS.

In the following pages, we will review these driver commands. You can find
out more about them in chapter 9.

51

Writing MS-DOS Device Drivers, Second Edition

52

Number Command Description
0 Initialization
1 Media Check
2 Get BIOS Parameter Block
3 IOCTL Input
4 Input
5 Not applicable
6 Not applicable
7 Not applicable
8 Output
9 Output With Verify
10 Not applicable
11 Not applicable
12 IOCTL Output
13* Device Open
14* Device Close
15% Removable Media
16* Not applicable
17-18%* Undefined
197 Generic IOCTL
20-22%* Undefined
23%* Get Logical Device
24+ Set Logical Device

25k IOCTL Query

* = DOS version 3+ only
** = DOS version 3.2 only
*** = DOS version 5.0 only

Table 2-11: The list of commands for block-oriented devices. There are
25 commands numbered from 0 through 24. Commands 13 through 16
are valid for DOS versions 3.00 or 3.10. Commands 17 through 24 are
valid for DOS versions 3.20 or greater. Command 25 is valid for DOS
version 5.0.

Initialization Command

Command 0 is the Initialization command. DOS always calls the device driver
with this command immediately after the driver is loaded into memory. This
allows the device driver to perform its device’s unique initialization functions,
such as writing a message to the console, clearing registers, or other set-up

Basic Concepts

functions. DOS service calls can be issued from within the driver program only
when the driver is processing the Initialization command. For all other com-
mands, the driver cannot issue DOS service calls; if it attempts to do so, DOS will
crash, because the driver is part of DOS and DOS cannot call itself (when the
driver is processing the Initialization command it is not considered to be part of
DOS). When the driver returns control to DOS, DOS will assume that the driver
is ready to perform other commands.

Media Check and Get BIOS Parameter Block Commands

Commands 1 and 2 are applicable to block devices only; these will be discussed
in chapters 7 and 8. You need not concern yourself about these commands at this
time.

IOCTL Input Command

Command 3 is IOCTL Input. You will see IOCTL often—it stands for I/O Control.
This command is used by the device driver to return control information to the
program regarding the device. For example, if the device is a printer, you can
have the device driver return status information, such as the baud rate at which
the printer device is set to receive data. When the driver returns I/O control
information to the program, it is called input. Although this is quite useful, it is
not a normal feature of device drivers. There are many reasons for this. The first .
is that there is only one DOS call that allows I/O control—DOS service 44h. Most
programs do not use this DOS service, because they do not expect a device driver
to return this type of information. The second reason is that adding I/O control
to a device driver is not easy; the device driver does not know what type of
information to return. For I/O control to work properly, both the program issuing
an IOCTL call and the device driver accepting IOCTL calls must agree on the
information to be passed back and forth.

Input Command

Command 4 is the driver’s Input command. This command instructs the driver
toread data from a device. This data is then returned to DOS, which then returns
it to the calling program.

Nondestructive Input Command

Command 5 is the Nondestructive Input command. This command is used to
determine whether there is any data from the device without actually passing
the data back to the calling program through DOS. This is often a means of testing
to see whether you are ready to read from the device. If there are characters
waiting to be read, you simply issue an Input command. If there are no characters,

53

54

Writing MS-DOS Device Drivers, Second Edition

you tell DOS that there are no characters to be read. In effect, you are looking
ahead to see whether there is any input.

Input Status Command

Command 6 is Input Status. This call allows DOS to check the status of a device.
If the device is not ready, no Read or Input call would be issued. On the other
hand, if the status of the device indicates a ready condition, a Read command for
the device could be issued immediately. Note that this command is not the same
as the Nondestructive Input command. The Input Status command checks the
status of a device; the Nondestructive Input command checks for a character in
the device’s buffer.

Inpﬁt Flush Command

Command 7 is the Input Flush command. This command allows you to discard
any input for the device by clearing out the buffer associated with the device. This
can be important in just about any program. Suppose a program asks the user if
he or she wants to erase all the files on a disk. If you did not use a call to flush or
get rid of all characters that had been typed ahead, you could accidentally erase
all files if the type-ahead buffer happens to contain the character that the user
would press to erase all the files. You should use this call to get rid of any possible
extraneous characters just before you read some critical data from a device.

Output Command

Command 8 is the Output command. This command tells the driver to write a
specified amount of data to the device.

Output With Verify Command

Command 9 is the Output With Verify command. This command is similar to the
Output command but has one additional function: when the VERIFY switch is
set ON at the DOS command level, the driver will read the data after each Write.
This is a useful feature when you need to know that critical data has actually
been written properly. Of course, this presumes that the device you are writing
to can read the same data. This feature is not meaningful for printers and screens,
because such devices cannot read what was written.

Output Status Command

Command 10 is the Output Status command. This command instructs the driver
to check the status of the device you are using for output. This has no meaning
for devices that can only read data.

Basic Concepts

Output Flush Command

Command 11 is the Output Flush command. This command tells the driver to
send a signal to the device, informing it that any data currently still in the output
device should be discarded.

IOCTL Output Command

Command 12 is the IOCTL Output command. This command is sent to the driver
when DOS needs to pass data to the driver for use by the driver itself. This is not
the command that DOS uses to send data to the device. If this command is
implemented in the device driver, you use the data to control the device rather
than to send data to the device. As mentioned previously with reference to the
IOCTL Input command, programs that issue the IOCTL call must agree with the
device driver on what information is to be passed.

Device Open Command

Command 13 is the Device Open command, which can be used by the driver to
keep track of all the times the device is opened. This command is available in
DOS versions 3.0 or later if the Device Open/Device Close/Removable Media bit
in the Attribute word of the Device Header is set. You will see how this is set in
a later chapter. The driver can perform a number of functions when it receives
this call. For example, it can reinitialize a device or prevent access to the device
if another program has opened it.

Device Close Command

Command 14 is the Device Close command. You can use this command if the DOS
version is 3.0 or later, the Device Open/Device Close/Removable Media bit is set,
and a program closes the device. This command is used with the Device Open
command to implement a count of the number of opens for the device. In turn,
the driver can perform a function for the device, such as flushing any information
that may be within the driver out to the device.

Removable Media Command
Command 15, the Removable Media command, is valid for block devices. This
command asks the driver whether the device contains removable media.

Output Til Busy Command

Command 16 is the Output Til Busy command. This command is valid for
character-oriented devices if bit 13 is set in the Attribute word of the Device
Header. This command is most useful for printers that have a buffer to receive

55

Writing MS-DOS Device Drivers, Second Edition

data. Instead of outputting a small number of characters, the driver would send
enough data to fill the printer device’s buffer. This minimizes the number of times
that DOS needs to call the driver with data for the printer. The PRINT spooler
program uses this feature.

Other Commands

Commands 17 through 25 are advanced commands that are available under DOS
versions 3.20 or later. These commands will be treated in detail in chapter 9.

Tracing a Réquest from Program to Device

56

To finish this section, we will look at an example of what happens along the way
as a program calls a device driver. Let’s assume that a program has asked you to
type some data from the keyboard into a file called MYFILE. Let’s say the
program will then write the data into a record in a disk file. Figure 2-13 shows
the various steps performed by your program, DOS, the disk device driver, the
BIOS, and the device itself.

When you have typed in all the data, your application program will issue a
Write to a previously opened disk file named “myfile.” The data to be written is
contained in a record or variable block of data named “newdata.” The Write is a
call to a library function in the programming language used in your program.
This function will take your Write command and convert it to a DOS function
call. There are many DOS calls that write data to a file; for this example, we will
assume that it is simply a Write Sequential File Record call. The library function
is generally written in assembly language. It will set up the data for a Write
Sequential File Record as DOS needs it and will then call DOS by issuing
interrupt 21h. _

The first part of DOS that is used is the call handler, which is where control
goes when the interrupt 21h is executed. It is here that DOS inspects the type of
function that the caller has set up (as found in the AH register). In this case the
function is hex 15, which means Write Sequential File Record to DOS.

DOS then internally locates the relative position of the disk file to which your
record is to be written. Next, DOS finds the starting address, relative to the
beginning of the disk, of the file “myfile.” This is done by searching through the
disk directory for information on where “myfile” resides. The relative position of
the record to be written to is added to the position of the start of the file; this yields
the absolute position on the disk at which the “newdata” record should be stored.
This part of the DOS call handler is responsible for determining all the information
for a given disk and all the information for the files on this particular disk. -

YOUR

PROGRAM
Write
('ng-tg", 1. Program
") fpos
service |INTERRUPT
INT 21h trg?nlzjr?tzt ROUTINES
1 [20S
Services
L

2.DOS services

translates 26h \)‘\}’,?t‘;';"e Disk
write request
to physical
address for
a drive 3.DOS determines
appropriate
disk driver
and calls
the driver
BIOS
ROUTINES
10h | Video
13h | Disk
DISK 3h bt
5. The BIOS
disk routine
writes to
the disk

Basic Concepts

DISK
DEVICE
DRIVER

4. The DRIVER
issues a
BIOS call
to the disk
routines with
a request
to write

Figure 2-13: Block diagram of the paths taken to write a block of data

to the disk.

57

Writing MS-DOS Device Drivers, Second Edition

The next step performed is that this data is sent to the general disk handler,
which is also the DOS Absolute Disk Write routine (also known as interrupt 26h).
This is called from the DOS kernel.

Interrupt 26h or the DOS Absolute Disk Write routine requires two basic
pieces of information. The first piece of information identifies the drive to which
DOS needs to write the data. The second piece defines the location of the write
relative to the beginning of the disk (that is, the starting sector). The reason for
this routine is that DOS treats all disks alike: all of the sectors of each disk are
numbered from 0, starting at the beginning of the disk. Thus, the file handler
finds the relative position of the record within the file, and the general disk
handler calculates the relative position within the disk. What the DOS Absolute
Disk Write routine does is to determine the actual physical address to which the
data should be written, using the relative information calculated by the original
int 21h service Write Sequential. The physical address referred to here is the
relative physical sector on the disk to which data should be written. Finally, this
information is passed to the disk device driver.

In turn, the disk device driver is responsible for converting the physical
address to a track, a sector, and a surface; it also performs the actual write.

A point should be made here about the BIOS routines. The disk device driver
uses the disk BIOS routines to perform the actual reads and writes to the disk.
This is accomplished by executing an interrupt 13h after specifying the appropri-
ate subfunctions for read or write.

Once the disk device driver has finished the write operation, it will return
a status to the Absolute Disk Write routine, which, through the DOS call handler,
will return the status to the original calling program. Just as the original write
request passed through the DOS call handler, the Absolute Disk Write routine,
the disk device driver, and the disk BIOS routine, the status “percolates” through
the layers back to the original program. '

So the device driver plays a vital role in ensuring that your data is written
to the disk. This illustration of the complicated process of writing a record to the
disk hasinvolved many steps. You have seen the relative roles of the device driver,
DOS, and the BIOS. The interactions for all device drivers are similar to those
in the example.

The Mechanics of Building Device Drivers

58

Inthis last section of the chapter we will cover the mechanical aspects of building
device drivers. We will survey the steps in building device drivers and the utility
programs needed for each step.

Basic Concepts

Writing a Device Driver Program

A device driver is a program that is built using a set of rules. DOS has defined
these rules in order for the device driver to work properly. We will define the
various sections of code that make up a device driver. Each of these sections
contains assembly language instructions or data. Instructions in 8088 assembly
language are written and grouped into procedures. Variables are defined in
memory and are used to store data that DOS passes to the device driver. Other
variables are also needed to store text messages that will be displayed on the
video screen.

A word processor is used to input the source text of a device driver. Then the
text is assembled using the Macro Assembler. The object code output from the
assembler is linked to create an executable file. Then this executable file is
converted to a memory image file for proper execution by DOS.

Once the device driver is built, it is loaded into memory. This is done by
specifying the device driver file in the CONFIG.SYS file and rebooting DOS.
During its initialization phase, DOS will read the CONFIG.SYS file and copy the
contents of the device driver file into DOS’s memory. Then DOS will call the driver
to initialize it. DOS initializes all device drivers to ensure that they are ready for
use. For more information on DOS initialization, refer to appendix C.

Assembling the Device Driver

After you key in the source code of the device driver using a word processor, the
device driver is ready to be assembled. Use the Macro Assembler as follows:

Microsoft (R) Macro Assembler Version 5.10A
Copyright (C) Microsoft Corp 1981, 1989. All rights reserved.

46008 Bytes symbol space free

0 Warning Errors
0 Severe Errors

The first command parameter to the Macro Assembler is the name of the
text source file. The second command parameter specifies the name of the file
that will contain the generated object; the file name extension will be .OBdJ. The
third command parameter specifies the name of the file that will contain the
output listing from the Macro Assembler; it will have a file name extension of
.LST. The fourth and last command parameter specifies the name of the cross-
reference file.

59

Writing MS-DOS Device Drivers, Second Edition

60

Linking the Device Driver

This step will convert the object file into an executable file that is commonly called
an .EXE file. These files are normally program files that are executed by DOS
and are prepared by the linker when it reads the object code. However, when
device drivers are .EXE files, they cannot be executed by all versions of DOS,
because in earlier versions the device drivers must be in .COM format.

As was mentioned earlier in this section, device drivers are usually memory
image files. This means the driver must be in .COM format. First, create the EXE
file by using the linker program, LINK:

C>1link driver,driver,driver,null

Microsoft (R) Segmented-Executable Linker Version 5.10
Copyright (C) Microsoft Corp 1984-1990. All rights reserved.

Libraries [.LIB]:
Definitions File [NUL.DEF]:
LINK : warning L4021: no stack segment

This step will create two separate files: the .EXE file and DRIVER.MAP,
which is the listing of the .EXE file in terms of variable names and addresses
used. Note that there was one warning detected. Do not be alarmed by this. A
STACK segment can be defined within a program and is used as a storage area
for variables. The LINK program has been designed to assume that all programs
will define a STACK. Most device drivers do not define a STACK segment,
because a device driver is part of DOS and not an ordinary program. DOS has
defined a stack, so device drivers use it instead of defining one.

Convert .EXE to .COM Format

You are encouraged to convert the device driver to a .COM format program,
which is a memory image of what the driver should look like when it is loaded
into memory. Although this is not a requirement of DOS, it is highly recom-
mended, and is accomplished by using the EXE2BIN.COM utility that is supplied
with DOS:

C>exe2bin driver.exe driver.sys

Note here that we have named the .COM output file DRIVER.SYS. Device
driver files should be named .SYS for several reasons. The first is that if they are
left named .COM after the EXE2BIN conversion, there is the possibility of
someone accidentally executing the driver program, causing the inevitable ma-
chine crash.

Basic Concepts

Caution: You cannot run a device driver directly the way you
would a normal program!

The second reason that device drivers should be named .SYS is that .SYS
has become the standard naming convention for such programs. This dis-
tinguishes the device driver files from all other files.

Installing Device Drivers into DOS

Before rebooting the machine to try out any device drivers, you will need to tell
DOS to load these drivers into memory. This is done by creating a file named
CONFIG.SYS that resides in the root directory of the disk from which you are
booting. Assuming that you use the C: drive as your hard disk, build the
CONFIG.SYS file as follows:

C>copy con: config.sys
break = on

device = driver.sys

~Z

1 File(s) copied

When DOS initializes, it will read the CONFIG.SYS file and look for any
device driver files. It detects these by searching for the keyword device. DOS then
reads this file into memory. For more information, refer to appendix C.

If you already have a CONFIG.SYS file, you can include a device driver in
that file by adding the following line to your CONFIG.SYS file:

device = driver.sys

After you create a CONFIG.SYS file, you can simply warm-start your
machine by depressing the CONTROL, ALT, and DEL keys. The new device
driver will be loaded into memory.

Summary

In this chapter, we have covered the hardware aspects of devices and controllers,
the programming of devices using BIOS interrupts, and the need for software to
control devices; we have also discussed the reasons why device drivers offer the
best solution to the problem of device access by DOS. In addition, we have covered
how the device driver is used by DOS and how the device driver controls devices.

61

Writing MS-DOS Device Drivers, Second Edition

In short, you now have enough information about the external features of device
drivers to look into writing a device driver.

In the next chapter, we will present a simple device driver. You will learn
about the structure of a device driver program, the Device Header that describes
to DOS the type of device we are controlling, the INTERRUPT and STRATEGY
routines, and the driver command processing.

Questions
1. Could I use the same device driver under PC-DOS as well as MS-DOS?

2. Are BIOS calls required in device drivers?

3. Why is DOS version 2.00 or greater required for adding device driver
programs?

How many printer devices does DOS normally support?
How many serial devices does DOS support?

If a new device driver is added to DOS, which standard device does it
follow?

7. IfI add two new devices to DOS, for example, newl:, then new2:, what
order would they be in after nul:?

Answers may be found in appendix F.

62

Chapter 3

A Simple Device
Driver

The Device Header Required by DOS
The STRATEGY Procedure

The INTERRUPT Procedure

Your Local Procedures

DOS Command Processing

The ERROR EXIT Procedure

The COMMON EXIT Procedure

A Simple Device Driver

This chapter will show you a real but very plain device driver program,
one that makes a simple “beep” and prints a message on the screen. Although
this example will not win awards for functionality and processing power, it does
allow us to present clearly the various parts of a device driver and to develop the
8088 assembly code for each section. These code sections will contain the func-
tions that DOS requires in a device driver—some that we have already covered
and some new ones as well.

Because this is the first device driver in the book, we will cover each section
in detail. What you will learn in this chapter will prepare you for the device
drivers in the following chapters.

What Does a Device Driver Look Like?

Listing 3-1is an empty MASM 8086/8088 assembly language listing of a program
we will call the Simple Device Driver. This driver will refer to a nonexistent device
named SIMPLES. The source code is composed only of comment statements; such
a source code is known in programming circles as a skeleton. The comment
statements are grouped together in sections delineated by a banner consisting of
asterisks. Each of these sections is required for a device driver. Some of the
sections are definitions that are necessary to the Macro Assembler; others are
necessary for the procedures you need for the device driver itself. We will describe
each section in detail in this chapter. At the end of this chapter, we will present
the finished result.

An Overview of the Simple Device Driver Sections

Listing 3-1 will be expanded as we go on and will form the basis for the simple
device driver as well as for all the other device drivers that you will encounter in

65

Writing MS-DOS Device Drivers, Second Edition

Listing 3-1: A skeleton listing from which we will develop the Simple Device
Driver.

SRS S S SRS EEEEEEE SRS EEEEREEREEEEEEEEEEEEEEEEEEEREEESEEEEEEEEEE S
2

1 ; * COMMENT SECTION HEADER *

RS E S EEEEESSSESEEEEEEEESE SRS RS EE R R RS EEEEEEEEEEEEEEEEEE S
7

SRS S S SRS S S SRS RS R S S SRS RS S EEEREEEEEEEEEEEEEEEEEEEEEEEE]
7

2 ;* INSTRUCTING THE ASSEMBLER *

RS RS RS S RS R RS RS RS RS RS EE RS SRS SRS RS ESEEEEEEEEEEEEEEEEEE RS
7

RS S S SRS EEEEEE SRR EEEEEREEREEEEEEEESESEREEEESEEESEEEEEEEEEE S
7

3 ; * MAIN PROCEDURE CODE *

IS SRR SRS S SRS S SRR S S S SRR EEE SRS EREESEEEEEEEEEEEEEEEREEESS
’

IR RS EEE S EEEESEEEEEEEEEEEEEEEEEEEEESEEEESEEEE SRS EESEEEEEEEEEEEEEEES
’

4 ;* DEVICE HEADER REQUIRED BY DOS *

;**

IR SRR EEEEEEESEEEEE SRS RS EEEEEEEEEEEEEEEEEEESEEEEEEEEESEEESEEEEEESES
7

5 ;* WORK SPACE FOR THE DEVICE DRIVER *

;**

IR RS RS SR SR SRS S SRS R RS SE RS RS E RS E R SRS E SRR EEEEEEEEEEE RS
’

6 ;* THE STRATEGY PROCEDURE *

RS LSS SRS SRS SRS SRS SRR EEEEEEEEESEEEEEEEEEEEEEEEE]
7

IR EEE SRS SRS SR SRS SR EESEEEEEEEEEEEEEREEEEEEEEEESEEEEEEEEEEREEE RS
7

7 ;* THE INTERRUPT PROCEDURE *

;**

IS SRS R R RS S S SRR R R SRS R EEEEEEEEEEEERESEEEEEEEEEEEEESEEEEEESEESEEEES]
’

8 ;* YOUR LOCAL PROCEDURES *

IR SRS E S SRR RS EEEES SRS RS EEEEEEEEREEREEEEEEEEEEEEEEEEEESEEESEEEEEEES
’

;**

9 ;* DOS COMMAND PROCESSING *

PR R R R R EEEEEEEEEEEEREEEEEEEEEEEEEESEEEEEEEEEEESEEEEEEEEEEEEESEESS
7

IEE R SRS RS RS S LSS RS RS RS EE SRR SRS EEEEEREEEEEEEEEREEREEEEEEEEEEEEEEEEESES
7

10 ;* ERROR EXIT *

;**

ISR SRR EEEEE SR EEEEEESEEEEEEESEEEEEEEEEEEEREEEEEEEEEEEEEEEEESEEES]
7

11 ;* COMMON EXIT *

IR RS SRS R LRSS SRS SRS SRR R EEEEEEEEREEEEEEEEEEEEESESESESESEEESESES]
7

;**

12 ;* END OF PROGRAM *

RS S ES S SRS RS SRS RS RS ES RS EEEERERSEEEEEEEEEEEEREEEEEEESESEERES]
7

66

A Simple Device Driver

this book. Each of the various sections of this driver plays a vital role in
contributing to all device drivers. These sections are described below.

Comment Section Header

All well-written programs have brief descriptions at the beginning of the program
that identify what the program does, when it was created, the author’s name and
address, and other information. What appears obvious to the author of the
program may not be clear to another person, and even the original author forgets.
Other kinds of information that can be placed in this section are a history of
program modifications, including the dates of the changes made to the program,
as well as a description of each change.

Instructions to the Assembler

When you are writing in assembly language, you will need to include numerous
commands to the Macro Assembler that are not actual instructions to the
processor. Rather, these commands instruct the Macro Assembler itself to per-
form some functions on behalf of your program. Examples of commands include
how the program will use memory, some control over the listing that the Macro
Assembler produces, and definitions that the program will use.

Main Procedure Code

This is the next section within the simple device driver. This section is responsible
for defining to the Macro Assembler the overall organization of the program. For
the simple device driver, as well as for all other device drivers in this book, there
is only one main procedure. The simple device driver sounds a beep and then
prints a string. Device driver programs are built with a single main procedure
for a number of reasons. The first reason is that DOS assumes that the device
driver is a single procedure. Recall from the Macro Assembler Reference Manual
that when procedures are called, control passes to the first instruction at the
beginning of the procedure; the procedure then exits through a RETURN instruc-
tion. Because the device driver begins with a Device Header table, DOS cannot
call the main procedure of the device driver. Instead, DOS uses information in
the Device Header table to pass control to the device driver. The second reason
that there is just one procedure is that there is no reason for device drivers ever
to contain more than a single procedure. Code that is modularized into procedures
may always be contained within the main procedure. So, for all the device drivers
in this book, you will see many procedures nested within the main procedure.

67

Writing MS-DOS Device Drivers, Second Edition

68

Device Header Required by DOS

This is a table of fixed values that DOS requires of all device drivers and that is
located in the beginning of the program. The Device Header defines five key
values to DOS. The first value tells whether there is another device driver
following the simple device driver. The second value tells DOS what type of device
this device driver is controlling (block or character). The third and fourth entries
in the Device Header are addresses of the STRATEGY and INTERRUPT proce-
dures in the device driver. Although these two procedures are not procedures in
the strictest programming sense, they behave like procedures in that they both
execute RETURN instructions to exit. DOS expects each to perform according to
the rules that you saw in chapter 2. Then, upon completion, they exit back to DOS
through a RETURN instruction. Recall from chapter 2 that DOS uses a two-step
call to request work from a device driver. The STRATEGY routine is the first
routine called, and the INTERRUPT routine is the second. The last entry in the
Device Header table is the name of the device for the device driver.

Work Space for the Device Driver

This is the section in the program in which data storage is defined for any
variables the simple device driver will need. Variables are defined here that store
information for controlling the device in the simple device driver. The space these
variables consume is defined here as well.

The STRATEGY Procedure

This section contains code for performing the first task of the simple device driver
in processing DOS requests, which is usually the task of handling set-up require-
ments. As the name implies, the STRATEGY routine performs set-up work; it is
the first of two calls from DOS.

The INTERRUPT Procedure

This section contains the code for the second part of command processing. DOS
passes control to this procedure during the second call to the simple device driver.
The INTERRUPT procedure has a command for the device as well as the data for
the device.

Your Local Procedures

This section contains any necessary procedures the simple device driver will
require. These local procedures support and assist the simple device driver
program.

A Simple Device Driver

DOS Command Processing

This is the heart of all the device drivers. Whenever a program uses the simple
device driver, a command, such as one telling the device to read or write, is passed
through DOS to the simple device driver. This command is then actually per-
formed by the code in this section. We presented a summary of the standard
commands that drivers process in the previous chapter in table 2-9; in this
chapter we will begin to implement these commands.

Error Exit

This is the section of code in which the simple device driver processes any errors
that occur.

Common Exit

This is the section of code that the simple device driver will execute when it is
finished processing the driver request that DOS has made, such as a command
to read or to write. This section of code returns status information to DOS,
indicating a successful operation.

End of Program

This is the section of code that signals to the Macro Assembler the end of the
simple device driver.

We have seen, briefly, the twelve sections that make up an assembly
language program for a device driver. Now let’s take a closer look at the actual
code in each of these sections.

Instructing the Assembler

Every device driver program has a certain number of assembler directives.
Assembler directives are special instructions to the Macro Assembler that do not
cause the Macro Assembler to generate instruction code. Such instructions
merely tell the Macro Assembler to treat your code in a particular way, depending
on which directive you use.

The Microsoft MASM Macro Assembler used in this book allows directives
and instructions to be entered in any column. For ease of reading, we will use
four basic columns (see listing 3-2). The first column is for labels and variable
names. This allows you to glance at the listing to see where you have defined
these labels and variables. The second column is for instruction code and direc-
tives to the Macro Assembler (think of this second column as the commands you

69

Writing MS-DOS Device Drivers, Second Edition

Listing 3-2: Assembler directives for the Simple Device Driver set the
program into the segment called cseg Here.

IR EEEEEEEEEEEEE SRR S EREEEEEEEEESEEEEEEEEEEEEREEEEEEEEEEEEEE S S
’

.k
7

INSTRUCTING THE ASSEMBLER *

IR EEEEE S S S S E SRS EE SR SRS SRS SRS SRS RS EEEEEEEEEEEEEEEEEEEEE]
7

lcolumn 1 lcolumn 2!column 3!column 4
cseg segment para public ‘code’
simple proc far

labels

assume cs:cseg, es:cseg,ds:cseg

code options comments
macros

70

need in the program). The third column contains required information or options
for instruction code and directives; the number of options will depend on the
command in the second column. The fourth and last column is an optional
comment field in which you explain what a particular command is doing. Now
let’s examine the code.

The first thing you will see in column one of listing 3-2 is the name cseg. This
is the name you choose for the label you are assigning to a segment. In appendix
A, segment is the term that defines a block of memory of up to 64K. The term
segment is also an assembler directive that tells the assembler that you are
defining a block of memory. The assembler will calculate how large this segment
is (up to 64K) after it assembles the program. The directive segment defines the
start of the 64K-maximum segment, and the ends directive defines the end of the
segment. The required ends directive is found in the End of Program section.

Additional information for the segment directives follows the directive
segment. The word para is a directive that tells the assembler to align this
segment in memory on a paragraph boundary. In appendix A, a paragraph is
defined as 16 bytes, which, in hex, is a 0 in the least-significant position. This fits
in nicely, because the address of a segment assumes that the low-order address
position is Oh. The next piece of information on the first line is the public directive,
which tells the assembler that the segment containing your code can be refer-
enced externally from another program. The last piece of information after public
is code, which tells the assembler this segment will contain instruction code. You
may notice that there is only one segment directive in this program; this indicates
to the Macro Assembler that only a single block of memory is being used in your
device driver program.

A Simple Device Driver

The second line in listing 3-2 defines to the assembler a procedure named
simple. The directive proc defines the start of your main procedure (at the End
of Program section, endp will signal the end of the simple procedure). The
keyword far on this line is required and tells the assembler that this is a far
procedure, which can be anywhere in memory. When DOS calls the simple device
driver, it will use the long form of the call instruction which is known as a far
call. These far calls are calls to routines that cannot be assumed to be within the
same 64K segment as the calling routine. Such calls take slightly longer to
execute than near calls. The simple procedure will contain all of your code for the
device driver. Thus, your short device driver program will have one procedure
within one segment.

The assume directive on the third line tells the Macro Assembler that the
CS, ES, and DS registers of the 8088 CPU will reference items that are defined
within this one segment (see appendix A for a detailed explanation of segment
usage). Your Simple Device Driver program will need to use these three registers.
Thus, cs:cseg means that cs will refer to items in the current segment cseg.
Programs can thus use the CS register to reference the code segment, the DS
register to reference the data segment, and the ES register to reference the extra
segment. The CS, ES, and DS registers contain the starting address of the code
segment, the extra segment, and the data segment for the current segment.
Because all three segments share the same segment, the addresses that are
generated for these segment registers will be relative to the beginning of the cseg
segment in your program. Normally, each of these three registers has a separate
segment or block of memory assigned. In this simple device driver program, each
of these three segment registers will share the same block of memory in the
segment named cseg. In other device driver programs this may not be the case.

You will find these assembler directives in every device driver program.
They may differ depending on whether or not they share segments.

Main Procedure Code

The main procedure is where the simple device driver program starts. Contained
within this main procedure is the code that performs all the work. You must tell
the Macro Assembler that the instruction code and data addresses start at this
location.

The begin label is a label given to the start of the program:

IR R RS R EE RS SRS EEEEEE SRR EEEEEREEREEREEEEEEREEEEEEEE R R
’

Fad MAIN PROCEDURE CODE *

;**

begin:

71

Writing MS-DOS Device Drivers, Second Edition

Normally, you should use this begin label to instruct the assembler (by specifying
this label to anend directive at the end of the program) that you want the program
to start execution at begin. However, begin is used here more as a place-marker.
Device driver programs, like many other normal programs, need not start
execution at the beginning of the program. Rather, begin is placed at address 0
to mark the beginning of the program. Right after the begin label comes the data
and instructions for the simple device driver.

The Device Header Required by DOS

We now have our comments, main procedure, and assembler directives set up.
The Device Header is a table of required data for DOS. Device drivers, as you
have seen, come in different types. When DOS loads a device driver, it needs to
identify the type of device driver it is, so you should specify this in the Device
Header.

A device driver can replace a standard DOS device driver, such as the con:
driver, or it can be a totally new driver for which DOS knows nothing. In either
case, DOS needs to know if it is a character-oriented driver or a block-oriented
driver. Recall from chapter 2 that character devices transfer data one character
at a time, and block devices transfer data in groups of characters. This identifi-
cation information for DOS is contained in the Device Header, as shown in listing
3-3. Each of the entries in the table comprising the Device Header will contain
varying information of varying lengths. The assembler knows the length of your
entries from your use of define directives: define 8-bit bytes using db, 16-bit words
using dw, and double 16-bit words using dd.

The five entries that constitute the Device Header will be examined in the
next sections.

Listing 3-3: The Device Header, which specifies the device characteristics
and driver information to DOS.

AR R R RS SR R R R SRR R SRR RS E SR RS RS EE SR EE SR EREEEEEEEEEEEEEEEEESS
’

. x
’

DEVICE HEADER REQUIRED BY DOS *

AR RS R RS SRS SRS E SRR R EEEEE SRR EEEEEEEEEEEEEEEEE SRS EEEEEES]
I

next_dev dd -1 ;no other device drivers
attribute dw 8000h ;character device
strategy dw dev_strategy ;address of 1lst dos call
interrupt dw dev_int ;address of 2nd dos call
dev_name db 'SIMPLES ' ;name of the Driver

72

A Simple Device Driver

The Next Device

The variable next_dev is a double word (dd in MASM) that is used to indicate to
DOS whether another device driver “follows” this one. If there is, the segment
and offset addresses of the next device driver are placed in next_dev. As you saw
in chapter 2, this is how DOS keeps track of drivers and puts them in a chain. If
no driver follows this one, a -1 for both the segment and offset address indicates
to DOS that there is only one device driver. The address order for next_dev is
offset first and segment second.

The technique of using next_dev allows DOS to place more than one device
driver program into one file; DOS saves time by having to open and read only one
file instead of several. DOS uses the next_dev field to link the device drivers into
the device chain. As was discussed in chapter 2, device drivers are linked in a
chain, and new device drivers are added to the beginning of the chain after the
nul: device driver. DOS uses this device chain to search for the appropriate device
driver whenever a device access is requested.

If there is another device driver following the simple device driver, you
should place the segment and offset address in this field. Thus, this field tells
DOS where the next device driver is. The last device driver will have the -1 in
both words.

Attribute

The label attribute contains a 16-bit word that describes to DOS what type of
driver this is. Table 3-1 summarizes the more popular bit settings. In chapter 9,
we will define other bits.

As you can see from table 3-1, the attribute word can describe many types
of devices. The entries in this table are discussed briefly in the next sections; they
will be covered in greater depth in later chapters. In the simple device driver
example, the attribute word is set to 8000h. If you convert this to binary format
you will find that bit 15 is on, which signifies that this is a character device. Note
that all other bits are set to 0 to prevent DOS from assuming that other attribute
bits are desired.

The STRATEGY and INTERRUPT Routines

As you learned in chapter 2, a STRATEGY procedure is a set of instructions that
performs the set-up for the device driver, and the INTERRUPT procedure uses
the information from the STRATEGY procedure to perform the required work.
Recall from chapter 2 that DOS uses a two-step mechanism to pass commands
to the device driver. The STRATEGY procedure is called first, followed by a call
to the INTERRUPT procedure.

73

Writing MS-DOS Device Drivers, Second Edition

74

Bits Description for Bit Set to 1
0 Standard input device
1 Standard output device
2 Null device
3 Clock device
4 Special
5 Reserved (must be set to zero)
6 Generic IOCTL **
7 IOCTL Queries***
8-10 Reserved (must be set to zero)
11 Device supports OPEN/CLOSE/REMOVABLE MEDIA*
12 Reserved (must be set to zero)
13 Non-IBM Format
14 IOCTL
15 Character device (set to 0 for block device)
* DOS 3.0 and later
** DOS 3.3 and later
*** PDOS 5.0

Table 3-1: The attribute bits for the Device Header.

In listing 3-3, strategy and interrupt are the names for the addresses of the
two routines that DOS uses in the device driver. These 16-bit words contain
addresses that DOS uses to get to the two routines, dev_strategy and dev_int. The
first time, DOS passes control to the device driver program at the address you
specify at strategy. The second time, DOS will enter the device driver at the
address you specify at interrupt.

Device Name

Device name is the name assigned to the character device in the device driver.
You may recall from chapter 2 that character devices are named in the device
driver and disk devices have drive letters assigned. Use this name in a program
to make DOS call the device driver. In listing 3-3, the dev_name label contains
the name SIMPLES$, which defines to DOS the name of the device driver, in the
Special Device Header. You may name the device anything as long as it meets
two DOS requirements. First, the name cannot be NUL, because DOS does not
allow the replacement of this particular reserved name. Second, the name must
be less than or equal to eight characters in length and must be padded with

A Simple Device Driver

blanks. We have named this device SIMPLE$. Because the dev_name field is
eight characters in length and SIMPLES$ is seven characters in length, we have
added a blank to the end of ‘SIMPLES’ so that the name is ‘SIMPLES$.

Work Space for the Device Driver

As shown in listing 3-4, Work Space for the device driver is the section of the
simple device driver that contains the local variables for procedures. The INTER-
RUPT procedure requires two variables, and the initial procedure for the simple
device driver, which we will present later, requires a single variable for a print
message. These three variables will be referenced from within the respective
procedures, but we defined them here because defining the variables in one
section makes it easier to find them later.

The three variables occupy memory right after the Device Header table. The
variables ri_ofs and rh_seg will be used to store information that DOS passes to
the device driver. You will see the significance of these two variables soon. The
variable msgl will be printed when the device driver program executes. The
string of bytes you define for msg1 is composed of hex codes and of text contained
within quotation marks. Hex codes allow you to control the cursor on the screen
or use special functions of the PC. In this case, the 074 is the code for a “beep”
(CONTROL-G). This makes the speaker beep before the program prints the text
ofthe message. The Odh and Oah signify that the message is followed by a carriage
return and line feed to prevent other messages from writing to the same screen
display line. Finally, the PC beeps again. At the end of the string of bytes you
must signal to the assembler that your variable is complete by using the special
symbol “$” enclosed in quotation marks.

As was mentioned in chapter 2, the Request Header is the name given to
the packet of data that is passed from DOS to the device driver. You may also
recall that DOS will call the device driver twice for any command requested of a

Listing 3-4: Some local variables needed for the simple device driver.

;**

. %
’

rh_ofs
rh_seg
msgl

WORK SPACE FOR THE DEVICE DRIVER *
;**
dw ? ;request header offset
dw ? ;request header segment
db 07h
db ‘The Waite Group Simple Device Driver!
db 0dh,0ah,07h, '$"

75

Writing MS-DOS Device Drivers, Second Edition

Top of Memory
The application —
program issues Application
a DOS call for program
device access TheINTERRUPT routine uses
rh_seg and rh_ofs to
INTERRUPT locate the REQUEST HEADER
routine The STRATEGY
————| STRATEGY routine saves
routine the REQUEST
HEADER address
rh_seg (ES :BX) in
rh_ofs rh_seg and rh_ofs
REQUEST HEADER DOS builds a
Length: REQUEST HEADER
Unit Code: in memory an?
‘ passes contro
Command Number to the device driver.
Status
Address of Data ES :BX H
. NN
En%g alétomatlcally The address of =]
device driver is placed in ES : BX
—> >

Bottom of Memory

Figure 3-1: DOS builds a Request Header in memory and passes the
address in ES:BX to the device driver. The strategy routine saves this
address in variables rh_seg and rh_ofs.

device driver by an applications program. The variables ri_seg and rh_ofs are
used to save the segment and offset addresses of the Request Header, which
contains the information that the device driver needs in order to process a
command.

Figure 3-1 traces the path of the Request Header from DOS through the
device driver. The program requesting a service from the simple device driver
first passes control to DOS. DOS then takes the request and builds a Request
Header that contains the request. Control is then passed to the STRATEGY
routine, which saves the ES and BX registers in the variables ri_seg and rh_ofs.
Lastly, the INTERRUPT routine uses these two variables to retrieve the Request
Header in order to process the requested command.

76

A Simple Device Driver

Listing 3-5: The STRATEGY procedure.

IR RS SRR R SRR EEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEESEEEEEEEEEEEEEEEEE S
7

P * THE STRATEGY PROCEDURE *
;**
dev_strategy: ;First call from DOS
mov cs:rh_seg, es ;save request header ptr segment
mov cs:rh_ofs,bx ;save request header ptr offset
ret
The STRATEGY Procedure

The STRATEGY procedure (see listing 3-5) contains the first piece of actual
program instruction code in this program. It is the code executed when DOS calls
this device driver for the first time. This is called the STRATEGY procedure
because this is the mechanism that DOS will use to plan or structure all the device
driver requests (an initialization function).

The only task of the STRATEGY code is to save the address of the Request
Header into variables we call ra_seg and ri_ofs so that the driver can determine
what command and data it is to process. Once the address is saved in rAi_seg and
rh_ofs, control returns to DOS to allow DOS to continue processing by calling the
device driver again. The device driver can now use rh_segs and rh_ofs to access
the code for processing in the driver. This will be done with the interrupts call,
as you will see in the following section.

A mov instruction is used to save the ES and BX registers. Note that the cs
segment override tells MASM to generate addresses relative to the cs (code)
segment and not the default ds (data) segment. The reason for the cs segment
override is that the ds register is not valid when control passes to the device
driver. If the cs segment override were omitted, the addresses for the two
variables would be relative to some unknown value of ds. When the STRATEGY
routine completes, control returns to DOS.

The INTERRUPT Procedure

The INTERRUPT procedure (see listing 3-6) is the section of code that determines
what command the device driver will execute and that uses the code for that
command within the driver. When DOS calls the INTERRUPT procedure, control
is passed to the code, which we have labeled dev_int.

77

Writing MS-DOS Device Drivers, Second Edition

Listing 3-6: The INTERRUPT procedure.

l.***k****‘k*****************************‘k*****‘k*****‘k**************

P * THE INTERRUPT PROCEDURE *
;**
dev_int: ;Second call from DOS

cld ;save machine state on entry

push ds

push es

push ax

push bx

push cx

push dx

push di

push si

;perform branch based on the command passed in the req header

mov al,es: [bx]+2 ;get command code

cmp al,o ;check for 0

jnz exit3 ;no - exit go to error exit
rol al,1l ;get offset into table

lea di,cmdtab ;get address of command table
mov ah, 0 ;clear hi order

add di,ax ;add offset

jmp word ptr(di] ;jump indirect

;command table

7

i

cmdtab

the command code field of the static request
field contains the function to be performed

label byte ;
dw init ; initialization

78

The first part of the INTERRUPT code shown in listing 3-6 saves the state
of the microprocessor registers. This is done by storing all the registers onto the
stack using push instructions. Any or all of the registers may be used.

At the end of the device driver, upon exit, you must be sure to restore the
original values to the registers. Note that the DOS stack is not large; it will allow
only about 20 pushes. Be careful about how many bytes you push onto the stack.
For the most part there is more than enough room for saving the registers.

The second part of the INTERRUPT code is used to find out what command
DOS wants the device driver to perform. Recall that the driver is being called
from DOS in response to a program requesting that DOS perform a specific
function. A “command” code for this function is passed to the device driver in the

A Simple Device Driver

second entry of the Request Header. Examples of commands or requests are Read,
Write, and Initialize. The simple device driver allows only one command to be
accepted; this is the Initialize command, which is specified by the value 0.

Each command requires a procedure in the driver to carry out the operation
defined for it. Because each command has a unique value associated with it, you
can set up a table for all commands, and each entry in the table can contain an
address of a procedure in the driver to execute the function. The first entry will
contain the address of the procedure to process command code 0, the second entry
will contain the address of the procedure to process command code 1, and so on.
For example, for ten possible values a table of ten entries is constructed. Each
entry then contains the address of the procedure to be executed for the particular
ordinal value.

For each command to be processed by your driver, you must use the value
of the command code in the Request Header to position into the table (this is
commonly called indexing). Control is then passed to this address and the code
in the procedure is executed. This table is also called a jump table, because the
Jump instruction is used to pass control to an address contained in the table.

Let’s take a look at the rest of the code in listing 3-6. The first instruction
references the Request Header by using the ES and BX registers. The +2
references the third byte, which is the command code for the device driver.
Because the command code is a byte value, mov puts it into the low-order portion
of the AX register, which is AL.

The next two instructions are unique to the simple device driver and will
not appear in subsequent device drivers. The reason is that this simple device
driver will accept only one command, the Initialize command. The command code
(which is now in AL) is compared with 0 (which is the value for Initialize). If it is
not 0 it will jump to exit3.

The instruction that contains rol starts the code to find the procedure for
INITIALIZE. The table containing addresses of procedures is composed of 16-bit
entries, and the command code is a byte quantity. This presents a problem. If you
use the byte value of the command code to index into the table, you will be
indexing by bytes. This will give half of the 16-bit address rather than the
two-byte address needed. Therefore, in order to index into the table properly you
must convert the byte value into a word value. This means that command value
0 gets the first 16-bit address, command value 1 gets the second 16-bit address,
and so on. Do this by multiplying the command value by two using rol, which is
a left-shift instruction.

The next instruction of listing 3-6 retrieves the address of the command table
(cmdtab). The lea (load effective address) instruction picks up the jump table for
determining the proper command procedure to which the driver should jump.

Then the add instruction adds the converted command code to the address
of the command table. In effect, we are indexing into the table. The index register

79

Writing MS-DOS Device Drivers, Second Edition

di now contains the address of the procedure for command value 0. The instruc-
tion to mov a 0 to the AH register is a safety precaution, because the command
values will not use AH.

Lastly, an indirect jump through the di register passes control to the
INITIALIZE procedure and performs this driver’s task.

When the INTERRUPT code is called, the device driver jumps to the
appropriate routine as specified in this table. In this case, it jumps to the routine
that starts at init, which we will cover soon. Note that the table cmd¢ab has only
one entry, whereas a more complex driver would have several (one for each
command).

Your Local Procedures

Local procedures are routines you write to assist in performing device driver
functions. In this code you will need to use only one procedure. It is named init
(to initialize the driver). (See listing 3-7.) Its function here is to make a “beep,”
display a message to the screen, and “beep” again. These procedures allow you to
modularize the driver and, thus, change code without affecting the entire driver.

The initial proc is the procedure that displays a message on the monitor
when the device driver is initially loaded by DOS. The text for the message is
contained in the variable msg1, which was defined in the section Work Space for
the device driver. DOS function 9 is used to display a message to the screen.

The initial proc is called when the driver is loaded by DOS. DOS calls the
device driver with the command number 0, which is initialization. This is always
done for every device driver. For this program, you will see the following message
on the screen:

The Waite Group Simple Device Driver!

Listing 3-7: The procedure Initial.

IEEEEEEEEEE SRS EEEEEEEEEEEEEERERERERESEEREEEEEEEEESEEEEEE SRR RS SR
’

.ok
’

YOUR LOCAL PROCEDURES *

ehkhkhkhhhkdhhk kA Ak hkhk Ak hhhkhkhkhkhhdkhkdhdhhhkhkhdhdhhhkhhkhhkhhkdhkdhkhhkdhkdhhdrAxdrxxdhdxx%x*
’

initial proc near
lea dx,msgl ;initialization
mov ah,9 ; message
int 21h ;doscall
ret ;return

initial endp

80

A Simple Device Driver

Caution: DOS function calls are allowed only in processing the
Initialization command. The function calls allowed are 01h
through 0Ch and 30h. Because DOS has not finished initializing
itself, using other function calls will cause it to crash. If DOS
was reentrant, this would not be true.

DOS Command Processing

The DOS Command Processing section of a device driver contains the procedures
for processing the command codes; in our driver we process only command 0. In
listing 3-8, the init routine begins with a call to the procedure named initial that
was discussed above. Then the Break Address is set. This tells DOS where the
end of the simple device driver is. We will cover this in more detail in the next
chapter. The last instruction is a jump out to the exit procedure.

Few device drivers will be this simple. Most will do much more processing
than this, but all will have this structure. In later chapters we will add more
commands to this device driver. Each command will require code to perform the
requested function. As an example, to pass data to the device, DOS calls the driver
with a Write command (command = 8).

The Request Header Status Word

For each command requested of the device driver, DOS expects a success/failure
status indicator when the driver is finished processing. The Request Header that
DOS passes to the device driver is returned to DOS with the status word set to

Listing 3-8: The init procedure.

R SRR R EEESEREEEEEEREEEEEEEEE SRR SR EEEEEEEEEEEEEEEEET
’

.k
’

DOS COMMAND PROCESSING *

IEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR SRS R SRR R Ik Ik Ik ik
7

;command = 0 initialization

init: call initial ;display a message
lea ax,exit ;get end address (offset)
mov es: [bx]+0eh, ax ;store offset address
push cs ;get end
pop ax ; address (segment)
mov es: [bx]+10h, ax ;store in Break Address
jmp exit?2

81

Writing MS-DOS Device Drivers, Second Edition

82

Name Bits Description

ERROR 15 Set by driver to indicate error—see table 3-3

DONE 8 Must be set by device driver upon exit

BUSY 9 Set by device driver, if needed, to prevent
further operations

ERROR__CODE 0-7 Standard DOS error code; see table 3-3

10-14 Reserved

Table 3-2: Description of the status word. The ERROR, DONE, and
BUSY bits may be set.

indicate the outcome. The status word has bits that can be set on to indicate
several conditions. Table 3-2 shows the various conditions and bit settings. If
there is an error, a 1 in bits 0 through 7 forms the error code. Table 3-3 shows the
list of standard DOS error codes.

Note that a combination of the status word bits can be used in any given
status. For example, if the driver has processed a request and no error has
occurred, the driver must set the DONE bit, but if an operation completes and
an error has occurred, both the DONE and the ERROR bits must be set.
Additionally, an error code should be returned that tells DOS (and eventually the
user) what caused the error. Note that it is up to your driver program to figure
out the error and set the right bits. _

In the simple device driver, there are only two possible conditions and,
therefore, two possible status codes. The first condition is when DOS calls the
device driver with command = 0 (Initialization) when the device driver is loaded.
The second condition is when DOS has called the device driver with a command
other than 0. This can happen in several ways.

For example, assume that you make an attempt to copy the contents of a file
to SIMPLE$ (which DOS assumes to be a device) using the following DOS
command-level statement.

A> Copy simple.asm simple$

This statement will cause DOS to call the device driver with command number
8, which is Output or Write (one of sixteen possible device driver commands).
Because the simple device driver does not process any commands other than 0
(Initialization), this causes an error.

The following two sections describe the processing for error conditions and
normal conditions.

A Simple Device Driver

Hex Code Description of Error Code

Write protect violation
Unknown unit

Drive not ready

Unknown command

CRC error

Bad drive request structure length
Seek error

Unknown media

Sector not found

Printer out of paper

Write fault

Read fault

General failure

Reserved (DOS 3+)

Reserved (DOS 3+)

Invalid disk change (DOS 3+)

HEHOOQmE D © 090 Utk W RO

Table 3-3: The error codes listed here form the standard error codes
for DOS device drivers.

The ERROR EXIT Procedure

In the event of an error, you must provide a means for the device driver to exit
the program and tell DOS that something has gone wrong. DOS can then return
this error message to the program that requested the device driver. The program
might then retry the operation after displaying a message indicating the error.
A typical error for a disk might be attempting to write to a diskette that has a
write-protect tab. The error that you will see from DOS is:

Write protect error writing drive A
Abort, Retry, Ignore?

When the simple device driver encounters an error, control is passed to exit3.
The error caused by a write to SIMPLE$ via the copy described above is one such
path to exit3. As listing 3-6 shows, the command code of 8 will fail the compare
with the legal command code O in the code of the INTERRUPT procedure. This
will cause a jump to exit3.

The code for processing errors in the simple device driver is shown in
listing 3-9.

83

El

Writing MS-DOS Device Drivers, Second Edition

Listing 3-9: The fourth field of the Request Header, a 16-bit status word that
contains the value 8103h.

IR R RS EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEE SRS
7

. %
’

ERROR EXIT *

R RS E R R R RS R SRR R E RS EEEREEEEEEEEEEEEREREEEEEEEEEEEEEESEES]
7

;Set the Done flag, error flag, and unknown command error code

exit3:

mov es:word ptr 3[bx],8103h
jmp exitl ;restore environment

As shown in listing 3-9, ES and BX refer to the Request Header, and the
fourth byte (relative byte 3) begins the word used to store a status. This 16-bit
word returns a code to DOS indicating the outcome of the work performed by the
driver. If your program has code that causes a branch to exit3, this will set bits
in this status field to indicate certain information, such as the fact that an error
has occurred, and the type of error encountered. The value 8103k shown in listing
3-9 is broken down as follows: the DONE bit (bit 8) is set on, the ERROR bit (bit
15) is set indicating an error has occurred, and the ERROR_CODE bit is set to 3
(bits 0 and 1 set on). An ERROR_CODE of 3 is used to tell DOS that an unknown
command has been encountered in the simple device driver.

By returning this status to DOS through the Request Header, you ensure
that DOS has information concerning the command processed by the driver. In
turn, DOS returns this information to the calling program, which can use it to
decide how to display an error. We shall examine driver completion without errors
in the following section.

The COMMON EXIT Procedure

84

Upon exit from the device driver, you will need to restore the state of the
microprocessor registers as they were before your device driver took control (see
listing 3-10).

The first step in restoring the environment is to set the status value for DOS,
because DOS expects to know the status of the operation in the device driver. If
the program branched to the exit3 routine because of an error condition, as
described in the preceding section, then it does not need to set the status.

The first instruction at label exit2 of listing 3-10 sets the Request Header
Status word to indicate DONE—0100h.

The second step in restoring the environment is to restore the ES and BX
register. As you may recall from the section on the STRATEGY procedure, the

A Simple Device Driver

Listing 3-10: Common exit.

IR R EEEEEE SRS SRS SRR EEEEEEEEREREREEEEEEEEEEEEEREEEEEEEEEEEEEEEEESE]
’

.k
’

COMMON EXIT *

IR RS SRS SRR RS E SRR RS S SRS E RS EEEE SRS E RS RS EEEEEEEREEEEEEEEE R
7

;common exits fall thru code

7
’
’

7

exit2:

exitl:

exit0:

exit:

2 sets status to done and no error
1 restore callers es:bx
0 restore machine state and exit

; Set done flag and no error

mov es:word ptr 3[bx],0100h

mov bx,cs:rh_ofs ;restore reqg hdr to bx and es
mov es,cs:rh_seg ;as saved by dev_strategy
pop si ;restore all registers
pop di

pop dx

pop cx

pop bx

pop ax

pop es

pop ds

ret

ES and BX registers were saved in variables rh_seg and rh_ofs. These variables
held the address of the Request Header; the driver needed to use those registers
to process the command and data in your device driver program. Now you must
reverse the process and set ES and BX so that DOS gets a status indicator
regarding what occurred in the program.

The third step in restoring the environment is to restore all the registers
saved on the stack using the pop instruction. Keep in mind that the order in which
you saved the registers must be reversed when you restore them. Lastly, the ret
instruction returns control to DOS.

The End of Program Section

This final section (see listing 3-11) is where you ensure that the driver ends
properly using MASM directives. You should declare the end of the simple
procedure, as well as the end of the cseg segment, with endp and ends. On the
end assembler directive, specify the label begin. This tells the Macro Assembler

85

Writing MS-DOS Device Drivers, Second Edition

Listing 3-11: The end of program processing consists of the assembler
directives that tell the assembler that you are defining the end of the simple
procedure, as well as the end of the cseg segment.

IR SRS S SRS RS EEEEEE R SRS SR SRS S SRS ESEEEEEEEEEEEEEEEEE LR EREEEE
’

. %
’

simple
cseg

END OF PROGRAM *
;**

endp

ends

end begin

; that’s all folks

that your device driver begins execution at the begin label. The Macro Assembler

does this by generating a program start address at begin.

The Entire Simple Device Driver

Listing 3-12 is a complete listing of all the code we have developed for the simple
device driver.

Building the Simple Device Driver

86

Listing 3-12 shows the source assembly code for the entire driver. To build the
simple device driver, you first need to enter the source code into a file using a
word processor. Then you must assemble, link, and convert the code to .COM
format. The normal output from the LINK utility is in .EXE format, which
contains relocation information and is not always usable. Early versions of DOS
do not have the ability to load relocatable code at initialization time. To tell DOS
to use the simple device driver, you must add a DEVICE= command in your
CONFIG.SYS file. Note that the CONFIG.SYS file must be in the root directory
of your boot disk.

If you already have a CONFIG.SYS file, for the time being, rename your
CONFIG.SYS file to another name. You could also include this driver in your
CONFIG.SYS file by adding the following line to your CONFIG.SYS file:

device = simple.sys

A Simple Device Driver

Listing 3-12: A Simple Device Driver.

R R R RS S EE R R R R EEE SRR R R R R R R R R R R R R R EEE R R R R
’

P * This is a Simple Device Driver *
;**

IR EEEE SRS SR SRR SRS EEE SRS EEE SRS RS R R Rk ok kR
’

;* INSTRUCTING THE ASSEMBLER *

R EEEEEEEEEEEEEEEEEEEEEEREREERESESEEEEESEEEEEEEEE R SR EEEEEEEEEEEEEES
7

cseg segment para public ‘code’
simple proc far
assume cs:cseg,es:cseg,ds:cseg

AR RS LRSS RS RS RS S SRR SRS SRR SRS SRR REEEEEEEEEEEEREEEESEEEE]
’

Hd MAIN PROCEDURE CODE *
R R RS RS S S S S SRS RS SRS ER R SRR SRR EEEEEEEEEEEEREEEEEESEREEEEEEEEEEESERS
’

begin:

ek Kk hkhhkd kA hkhkrkhhkhhhkhhhkhkhhkhkhdkhkhhkhkhkrdkhkhkdhhkhk bk rkhdkhkhkdkhkhdkrkkhkxhkdrhkhhkdkxxkxxk
’

;* DEVICE HEADER REQUIRED BY DOS *

RS R R R R RS RS EE R E R R EE R R R R R R R R R R R R R R R R R R R
’

next_dev dd -1 ;no other device drivers
attribute dw 8000h ;character device
strategy dw dev_strategy ;address of 1st dos call
interrupt dw dev_int ;address of 2nd dos call
dev_name db 'SIMPLES ;name of the Driver

PR R R R R R R R R R I I i I I I I I S I R R I i i
’

;* WORK SPACE FOR THE DEVICE DRIVER *

RS SRR SRS RS R E S LSS SRR RS EEEE SRR R EEEREEEEEEEREEEEREEEEEEEEE]
’

rh_ofs dw ? ;request header offset

rh_seg dw ? ;request header segment

msgl db 07h
db "The Waite Group Simple Device Driver!
db 0dh,0ah,07h, " $"

PR EEEEEEEEEEEESEIEEEE SRS I I I R
7

P * THE STRATEGY PROCEDURE : *

AR EE SRS SR SRS RS E RS EEEEE S E S EES SRS SRR EREREREEEEEEEEEEEEEEE]
7

dev_strategy: ;First call from DOS
mov cs:rh_seg, es ;save request header ptr segment
mov cs:rh_ofs, bx ;save request header ptr offset
ret

ehkkhkhkhkhkk kA kI hkhdkhdhhhdhkhddhkddrhkhhddhhhhdhdhhkdrhdhkhkhdrhkhkhkdrhhkddxdxx
’

P * THE INTERRUPT PROCEDURE *

R RS R SRR R R RS R R SRS S S S SRR SRR R EEEEREEEEEEEEEEERERESEEREEEEEES
’

87

Writing MS-DOS Device Drivers, Second Edition

Listing 3-12: (cont.)

dev_int: ;Second call from DOS

cld ;save machine state on entry
push ds
push es
push ax
push bx
push cx
push dx
push di
push si

;perform branch based on the command passed in the reqg header

mov al,es: [bx]+2 ;get command code

cmp al,o ;check for 0

jnz exit3 ;no - exit go to error exit
rol al, 1l ;get offset into table

lea di,cmdtab ;get address of command table
mov ah,0 ;clear hi order

add di,ax ;add offset

jmp word ptr[dil ;jump indirect

;command table
; the command code field of the static request
; field contains the function to be performed

cmdtab label byte ;
dw init ; initialization

chkk kA hkhk kA kI r kA h Ak h Ak Ak hkxkhkdxhk bk hkxhhkkdhkhkhdkrxhhkrxhkdrhhrxhdhkdhhdxhkx
’

I YOUR LOCAL PROCEDURES *

PR R R R R R R R R R I I I I S R R S S
’

initial proc near
lea dx,msgl ;initialization
mov ah,9 ; message
int 21h ;doscall
ret ;return

initial endp

IR SR SRS SRS RS E R R SRR E RS RS S RS E SRS EEREESEEEREEEEEEEEEEEEE]
7

P * DOS COMMAND PROCESSING *

RS R RS R RS E R RS SRS RS E RS SEE SRS EE R R EEE R RS RS RS
’

;command 0 initialization

init: call initial ;display a message
lea ax,exit ;get end address (offset)
mov es: [bx]+0eh, ax ;store offset address

88

A Simple Device Driver

Listing 3-12: (cont.)

push cs ;get end

pop ax ; address (segment)

mov es: [bx]+10h, ax ;store in Break Address
Jjmp exit?2

ckkkkkhkkkkhkkhhkkkhkkkk ok hkkhkhkhkkkhkkhk kA kA khkkhkkhkhkkhkkkhkkhkkhkkkkk Kk kK * ok
7

;* ERROR EXIT *

IEAE SRS S S S S SEE SRR SRR RS REEEREEEEEEREEEREEREEEE SR
’

;Set the Done flag, error flag, and unknown command error code

exit3: mov es:word ptr 3[bx],8103h
jmp exitl ;restore environment

;**

;x COMMON EXIT *

I.**

;common exits fall thru code

; 2 sets status to done and no error
; 1 restore callers es:bx

: 0 restore machine state and exit

7

exit2: ; Set done flag and no error
mov es:word ptr 3[bx],0100h
exitl: mov bx,cs:rh_ofs ;restore req hdr to bx and es
mov es,cs:rh_seg ;as saved by dev_strategy
exit0: pop si ;restore all registers
pop di
pop dx
pop cx
pop bx
pop ax
pop es
pop ds
ret
exit:

;**

;* END OF PROGRAM *

;**

simple endp
cseg ends
end begin

; that’s all folks

89

Writing MS-DOS Device Drivers, Second Edition

Using the Simple Device Driver

After you create a CONFIG.SYS file, you can simply warm-start your machine
by depressing the CONTROL, ALT, and DEL keys. DOS will begin loading and
you will hear a tone and see the following message:

The Waite Group Simple Device Driver!

Congratulations! You have just loaded the simple device driver!

What You Can Try

You can customize the simple device driver by changing the contents of msg1 to
any string you desire. As a suggestion, try using your name in the message that
is displayed.

If It Does Not Work

90

Because this driver is very simple, you should not encounter any problems
installing it. However, there is always the possibility of making mistakes along
the way. Here are a few things to look for if problems develop.

First, look for any typing mistakes. Most of the time, the Macro Assembler
will catch mistyped variable names, but any values that were keyed in incorrectly
will not be caught by MASM. Print out a copy of the MASM listing output and
compare it with the source in listing 3-12. Reassemble the driver if you make any
changes to the source.

Second, if there are no apparent source errors, look for errors in the LINK
stage. Note that there will be one warning message (“Warning: No Stack Seg-
ment”) from a normal LINK of a device driver. Any other error will require going
back to the source to see how the error was generated. Normally, errors from the
LINK step occur when the segment definitions are out of order or incorrect. Check
to see that the order and the sequence of the assembler directives segment,
assume, proc, endp, ends, and end match those in listing 3-12.

Next, check to see that EXE2BIN has been used to convert the driver into
.COM format. This is important, because DOS does not expect any code or data
relocation information in the device driver file.

Lastly, ensure that the name of the file has been correctly specified in the
DEVICE= command for the CONFIG.SYS file.

A Simple Device Driver

Summary

The simple device driver presented in this chapter is the simplest device driver
imaginable. It does nothing but beep at you when it initializes. The material you
have seen in this chapter is very important, however. You can build on it because
it has all of the sections necessary for a complex device driver.

We have looked at a sample device driver and have broken it down into pieces
that are more manageable and understandable. You should now understand the
reasons for each of the various sections and why DOS expects each one in a certain
format.

Questions

Are DOS calls allowed in a device driver?

2. What instruction would DOS use to call your device driver?

3. What is the purpose of the STRATEGY procedure?

4. Within the Device Header, there is an entry that tells DOS if it is the
only device driver. Which entry is this? What is the reason for this?

5. When is the device driver initialized?

6. How many characters in length could the name of a device be in a device

driver?

Answers may be found in appendix F.

91

Chapter 4 |

A Console Device
Driver

Designing Our Console Device Driver

An Overview of Writing a Console
Device Driver

A Complete Look at the Console
Device Driver

A Note about DOS Versions

Building the Replacement Console
Device Driver

A Console Device Driver

In the last chapter, we developed a simple device driver in a step-by-step
fashion. The new simple driver became part of DOS. In this chapter, we will
develop a console device driver that will control the keyboard and screen. This
driver, called con:, will replace the standard DOS device driver for the console,
which is also called con:. When the device name of a user-supplied driver matches
the name of an existing device, as it does in this case, the new driver effectively
replaces the old one. This is what we will be doing in this chapter: replacing the
standard console driver con: with a new enhanced driver, also called con..

The Console Device Driver

The standard driver that controls the keyboard and screen for the PC is known
as the con: device. This device is an integral part of DOS and is the primary
interface between the user and the PC. Almost all programs use the con: device
in this manner. As we develop our Console Device Driver, you will see what
happens when a program requests keyboard input, how a character is displayed
on the screen, and some of the control functions that are largely invisible to you
but that you may have wondered about.

For example, you may have noticed that you can type ahead in DOS (this is
the ability to type characters faster than the program can accept them). The
type-ahead function is handled by the BIOS interrupt routine for the keyboard
(9h). Occasionally, you may have noticed that certain programs cannot use your
type-ahead characters. Within DOS, there is a command to “flush” out the
contents of the keyboard buffer (the storage area in which your type-ahead
characters were stored). The console driver is responsible for flushing characters
from the keyboard buffer when the DOS service Ch is used from within a program.

In developing our Console Device Driver, we will expand many of the
sections that were used in writing the simple device driver in chapter 3. Like all

95

Writing MS-DOS Device Drivers, Second Edition

device drivers, this one will contain some sections that are common to all device
drivers and other sections that are tailored to this driver. Many of the sections
that were summarized in a rather quick manner in chapter 2 will be treated in
more detail in this and following chapters. Our goal is to bring you closer to how
drivers work in an input/output mode.

Designing Our Console Device Driver

96

Before you can write a program, you need to determine how it should be
implemented. This is true of writing a console device driver. The two questions
that arise in determining how to implement this driver are: How should you write
the code to control the console, and what features do you want the console device
driver to have.

Design Issue #1: ROM BIOS vs. Input/Output Instructions

The first design issue for a console driver concerns the types of instructions to
use for input and output. You have a choice of using ROM BIOS calls or direct
access via IN/OUT instructions. Note that the console driver cannot use DOS
calls, because it is considered part of DOS.

Should you use ROM BIOS calls or direct I/O calls? If a driver makes use of
ROM BIOS calls, other machines that use that driver will also have to contain
identical, or functionally identical, ROM BIOS routines. This may rule out some
PC clones. If a device driver uses direct I/O calls, other machines must have
similar devices and must address them in the same manner.

It is important to understand that the ROM BIOS routines also use IN/OUT
instructions to control a particular device. Device drivers that use direct I/O calls
rather than BIOS do so for speed or because there are no ROM BIOS routines
that access the device.

For the console device driver in this chapter, we decided to use the ROM
BIOS method for device control. This decision allows the console device driver to
be used on a wide variety of PCs, regardless of the particular keyboard or screen
attached. By using the ROM BIOS for I/O, we are, in effect, masking or hiding a
great deal of the machine-dependent programming from the user.

In this and future chapters we will be noting differences between using BIOS
for I/0 and using direct I/O calls.

Design Issue #2: Features of the Console Device Driver

The second issue in designing a console device driver is deciding what features
should be included. Because DOS supplies a console device driver as part of its

A Console Device Driver

standard complement of drivers, we chose to make our replacement console device
driver somewhat unusual (or else why replace it?). Because one of the features
of the PC is the ability to produce sounds, we can use this built-in ability to
produce sounds whenever a keystroke is entered using the keyboard. In effect,
we are going to design a device driver for a musical keyboard.

Characters that users type in will cause the PC’s speaker to sound with short
tones. Numbers will have high pitches, letters will have very high pitches, and
the function keys will have low pitches.

ROM BIOS Calls for the Console Device Driver

You may recall from chapter 2 that the console device is actually composed of two
parts that must be controlled: the keyboard and the screen. The keyboard ROM
BIOS routines are referenced through interrupt 16h and are described in table
4-1. The video-services ROM BIOS routines are referenced through interrupt 10h
and are described in table 4-2. For more details on what each of the interrupt
services are, refer to chapter 2 or to appendix B.

In summary, the standard console device driver is composed of a keyboard
device handler as well as a screen device handler. We use standard ROM BIOS
interrupts to control these two devices.

Assembly Language Conventions

In the previous chapter, we used assembly language instructions to get informa-

tion from and return it to the Request Header. Let’s examine the code we used

in the simple device driver and see how we can make it easier to understand.
Examine the following mov instruction:

mov es: word pointer[bx]3,8100h

ah Service

Oh Read next keyboard character
1h Check for available character
2h Get shift status

Table 4-1: The three services for the keyboard interrupt. In this
chapter, we will be using only the first two services of this BIOS
interrupt.

97

A

Writing MS;DOS Device Drivers, Second Edition

98

ah Service

Oh Set video mode

1h Set cursor size

2h Set cursor position

3h Read cursor position

4h Read light-pen position

5h Set active display page

6h Scroll window up

7h Scroll window down

8h Read character and attribute
9h Write character and attribute
ah Write character

bh Set color palette

ch Write pixel dot

dh Read pixel dot

eh Write character as TTY

fh Get current video mode

13h Write character string

Table 4-2: The services provided by the video display service
interrupt 10h.

Its purpose is to store 8100 hex into what DOS has defined as the status
word of the Request Header. The location in memory at which this value must be
stored has an offset address of the contents of the BX register incremented by
three. The segment in which the Request Header is located is contained in the
ES register. The assembler phrase word pointer is used t6 indicate to the
assembler that the memory location being referenced is a word and not a byte.

There are two problems with the use of this assembler construction. The
first problem is that the word pointer phrase is annoying, for it breaks up the
flow of the instruction. The second problem is that if DOS changes the location
of the status word in the Request Header, we will have to go through the program
line by line, changing all references from 3 to the new location of the status word.
For the current versions of DOS, the status word is located at offset 3, but this
could be changed in future versions, although it is not likely.

We can eliminate this problem by using equates in our program, as follows:

status_field equ 3

mov ES:word pointer status_field[BX],8100h

A Console Device Driver

However, note that this type of construction still includes the word pointer
phrase. The next section describes a method that can be used to eliminate this
problem.

Structures

The Macro Assembler (MASM) has a definition type called struc, which is short
for structure. Structures are used to define a group of data fields in a certain
sequence. The size of each of the fields in this data group is also specified. Thus,
struc is used to tell the assembler the location and size of each field. After struc
is defined, when you reference these fields in an instruction you need not instruct
the assembler for each instruction. Listing 4-1 shows an example of the Request
Header and the fields contained in it defined as a structure.

Structures allow you to build templates for your data. As is true for equates,
the assembler does not allocate storage when you define strucs. You use these
field names to define the relative offset of each field you reference. In addition,
these templates save you the effort of specifying to the assembler whether you
are using bytes, words, or double words in your instruction references. The
assembler has a definition of the variable from the use of the struc name.

The mov instruction in the section above can now be made easier to read:

mov es:bx.rh_status,8100h

The word pointer phrase in the instruction has been eliminated, which saves
space on the line that can be used more profitably for comments. This instruction

Listing 4-1: A structure defined for the Request Header. The struc name is rh,
and there are four fields of data defined within it. Each of the fields has a
define data statement that tells the assembler the size of that field. The struc
ends with an ends phrase.

rh struc
rh_len db ?
rh_unit db ?
rh_cmd db ?
rh_status dw ?
rh ends

99

Writing MS-DOS Device Drivers, Second Edition

100

also eliminates the need to change instruction coding when a variable changes
in size. Simply change the size within the definition in the struc.

DOS Requests and Console Device Driver Commands

The simple device driver in the previous chapter was capable of processing only
one command, the Initialization command. When DOS loads the device driver
into memory, it immediately calls the device driver with the initialization
command. This allows the device driver to set itself up to handle further calls
from DOS. The process of initialization tells DOS that the device driver is ready
to process requests.

With the exception of the Initialization command, other commands that
device drivers process are on behalf of programs that request device access. Recall
from chapter 2 that programs that use a device will issue an appropriate DOS
service call through INT 21h. Typically, these are calls to read from or write to a
device. DOS translates these requests into one or more commands to the device
driver. These commands are contained in the Request Header that is passed to
the device driver. The command information is in the form of a number that
identifies to the device driver the type of command that DOS expects the device
driver to perform.

The commands that DOS expects device drivers to handle are defined by
Microsoft and include commands for both character-oriented and block-oriented
devices. For the purposes of our Console Device Driver, we will concentrate on
the commands that are valid for character devices. These are shown in table 4-3.
For a description of each command, refer to chapter 2.

For the console device driver, we will implement only six out of the 25
commands. These six are required for a full-function device driver.

The first command that will be used is the Initialization command (0), which
allows the console device driver to perform initialization tasks, such as writing a
message to the console and setting up hardware registers.

The second command is the Input command (4), which instructs the console
device driver to read data from the keyboard. This data is then returned to DOS,
which returns it to the calling program.

The third command is the Nondestructive Input command (5), which is used
by the console device driver to test whether the keyboard has any data to be read.
In effect, this command is used to look ahead to see whether there is any input.

The fourth command is the Input Flush command (6), which allows the
console device driver to discard any data in the keyboard buffer. This is important
to console device drivers in situations in which a program does not want old
keyboard data. In short, this command flushes all characters that had been typed
ahead by the user to prevent unwanted characters from being returned to a
program.

A Console Device Driver

Number Command Description
0 Initialization
1-2 Not applicable
3 IOCTL Input
4 Input
5 Nondestructive Input
6 Input Status
7 Input Flush
8 Output
9 Output With Verify
10 Output Status
11 Output Flush
12 IOCTL Output
13* Device Open
14%* Device Close
15% Not Applicable
16* Output Til Busy
17-18** Undefined
19%* Not Applicable
20-22%* Undefined
23%* Get Logical Device
24%% Set Logical Device
25HH* IOCTL Query

* = DOS version 3+ only
** = DOS version 3.2+ only
8% = DOS version 5.0 only

Table 4-3: The list of commands that are applicable for character-
oriented devices. Bold-faced commands are those that the console
device driver will use.

The fifth command is the Output command (8), which causes the console
device driver to write a specified amount of data to the screen.

Finally, the sixth and last command is the OQutput With Verify command
(9). This is similar to the Output command but has one additional function. When
the VERIFY switch is set ON at the DOS command level, the driver will read the
data after each write. This is useful to ensure that critical data has actually been
written. However, the console device driver cannot read back in what was written;
this command would make more sense for a disk device driver.

101

Writing MS-DOS Device Drivers, Second Edition

An Overview of Writing a Console Device Driver

102

Listing 4-2 is the skeleton that we used in chapter 3 to develop the simple device
driver. We use it again here to review the various parts of code that need to be
written.

This Is a Console Device Driver

This section describes the device driver, the author, the date written, and the
purpose of the driver. The console device driver replaces the standard DOS
console driver.

Assembler Directives

In this section we will be expanding the assembler directives that you saw in
chapter 2. We will add structures called strucs for the various requests that DOS
will pass to the console device driver (see listing 4-3). Structures relieve us of the
burden of remembering numerical offsets which can cause typing errors. They
also streamline the amount of code needed by eliminating extraneous words.

Listing 4-3 shows only one segment in our program, the segment named
cseg. It is to begin on a paragraph (para) boundary, it is available to other
programs (public) and it contains code (‘code’).

We define only one procedure in our program, and it is named console. It is
a far procedure, which means that any routine calling our Console Device Driver
must use a long call, one that assumes it is not necessarily in the same segment
as the caller. Because this program can sit anywhere in memory, we must use a
segment address as well as the offset address.

We define strucs for only the commands that are applicable to our Console
Device Driver. These are listed below:

® Initialization

Input
Nondestructive Input
Input Flush

Output

® Qutput With Verify

These strucs define the fields required for each of the various headers. The
assembler pseudo-ops used are define byte (db), define word (dw), and define
double (dd). Each of the Request Headers is named rax, where x is the command

A Console Device Driver

Listing 4-2: The skeleton from which we will develop the console device
driver.

IR R RS SRR R SRS S SRS SRR EEE SRS EEREEESEEEREEEEEEEEEEEEESEEEESES]
’

P * This is a Console Device Driver *
P Author: Robert S. Lai *
i Date: 2 November 1991 *
P Purpose: To replace the standard console driver *

LR R R R R R R R R I I I R I S S R kS R I I R A

R S RS RS RS SRR R SRS EEEEEEEEEEEEEE SRR R
’

* ASSEMBLER DIRECTIVES *

AR E R R SRR RS E SRS SRS SRS SRS SRS EESEEREREEEEEEEEREEEEEERSESEEEE]
’

~e

RS R RS SRR E R SRR R EEEEEEEEREEEEEEEEEEE SR EEEE RS
I

* MAIN PROCEDURE CODE *

IREEESEES SRS SRS RS RS SRR EESEEREEREEEEEEREEEESEEEESEEEESEERESEEEEEESES]
2

~.

IR R RS RS SRR SRR SRR SRS SRR SRR RS EEEEEREEEEEEEEEEEE SRS EEESESEREEEE]

* DEVICE HEADER REQUIRED BY DOS *

EEEEE S SRS SRR SEEEEEEEEEEEEEEREEEEEESEEEEEEEREEEEEEEEEEEEEEEEEEEIEEE]

~e ~e

~.

AR E SRS SRR SRS RS SEEEEEEEEEEEEEEEEEEEEEEEEEESEEEESESEEERESESEEEEEES
7

* WORK SPACE FOR OUR DEVICE DRIVER *

AR RS RS SRR SRR RS S SRS EERE RS EEESEEREEESESEEEEREEEESEEEEEESEEEESESEES
’

BREEE S E S S S S SRS RS EEESEREEEEEEEESEREEEESEEEESESEESEREEEESEESESEEEESES
7

* THE STRATEGY PROCEDURE *

ISR S SRS SRR SR SRS SRR SR EREEEEREREEEEEEEEEEEEESEEEESERERESESEEESSESES
’

~e

chkKrhhhkhkdhkhhhkhhkhhkdhkdhhhddhhhkhhhhkhhhkhdhhhrhrhhkrhhhhhhhhhhhdhhhhhhdhhdk
’

P * THE INTERRUPT PROCEDURE *

REEE SRS SRS S SRR EEEEEEEEEEEEEEEEESEREEESEEEESEEEEEEEEEREEEEEEEEES
7

R R R R RS RS E LR EEREE RS SRR R R R SRR EEEEEEEEEEEEEEEEES
’

Fd YOUR LOCAL PROCEDURES *

AR RS S SRR RS SRR R RS RS E R SRR S RS EEERE SRS EEREEEEEEEEEEEEEEEES
’

;**

P * DOS COMMAND PROCESSING *

;**

RS SR SRR SR SRR RS EREEEEE R SRR EEREESEEEEEEEREEEEEEESEEEEEEEESES
’

3 x ERROR EXIT *

;**

;**

;* COMMON EXIT *

NEEEEEEEE SRS SRS R SRR SRS EEEEREESEEEEEEEEEEEEESESEEEEEERESEEEEEEESES
7

;**

P * END OF PROGRAM *

;**

103

Writing MS-DOS Device Drivers, Second Edition

Listing 4-3: The assembler directives that we will be using for the console
device driver. We name our main procedure console. All segment registers
used (CS, ES, DS) are to have addresses relative to the beginning of cseg,
which is our only defined segment.

R R RS SRS EEEEEE SR EEEREEE SRS
’

e ASSEMBLER DIRECTIVES *

R S RS SRR SRR RS RS EREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
’

cseg segment para public ‘code’
console proc far
assume cs:cseg, es:cseg, ds:cseg
;structures
rh struc ;fixed request header structure
rh_len db ? ;len of packet
rh_unit db ? ;unit code (block devices only)
rh_cmd db ? ;device driver command
rh_status dw ? ;returned by the device driver
rh_resl dd ? ;reserved
rh_res2 dd ? ;reserved
rh ends ;
rh0 struc ;request header for Initialization (command 0)
rhO_rh db size rh dup (?) ;fixed request header portion
rhO0_nunits db ? ;number of units (block devices only)
rh0_brk_ofs aw ? ;offset address for break
rh0_brk_seg aw ? ;segment address for break
rh0_bpb_tbo dw ? ;offset address of pointer to BPB array
rh0_bpb_tbs dw ? ;segment address of pointer to BPB array
rh0_drv_1ltr db ? ;first available drive (DOS 3+) (block only)
rho0 ends H
rh4 struc ;request header for INPUT (command 4)
rh4_rh db size rh dup(?) ;fixed request header portion
rhid_media db ? ;media descriptor from DPB
rhd_buf_ofs dw ? ;offset address of data transfer area
rh4_buf_seg dw ? ;segment address of data transfer area
rh4_count dw ? ;transfer count (sectors for block)
; (bytes for character)
rhd_start dw ? ;start sector number (block only)
rh4 ends ;
rhb struc ;request header for ND_INPUT (command 5)
rh5_rh db size rh dup (?) ;fixed request header portion
rh5_return db ? ;character returned
rh5 ends ;
rh7 struc ;request header Input_Flush (command 7)
rh7_len db ? ;len of packet

104

A Console Device Driver

Listing 4-3: (cont.)

rh7_unit db ? ;unit code (block devices only)
rh7_cmd db ? ;device driver command
rh7_status dw ? ;returned by the device driver
rh7_resl dd ? ;reserved
rh7_res2 dd ? ;reserved
rh7 ends ;
rh8 struc ;request header for OUTPUT (command 8)
rh8_rh db size rh dup(?) ;fixed request header portion
rh8_media db ? ;media descriptor from DPB
rh8_buf_ofs dw ? ;offset address of data transfer area
rh8_buf_seg dw ? ;segment address of data transfer area
rh8_count aw ? ;transfer count (sectors for block)

; (bytes for character)
rh8_start aw ? ;start sector number (block only)
rh8 ends ;
rh9 struc ;request header for OUTPUT_VERIFY (command 9)
rh9_rh db size rh dup(?) ;fixed request header portion
rh9_media db ? ;media descriptor from DPB
rh9_buf_ofs dw ? ;offset address of data transfer area
rh9_buf_seg dw ? ;segment address of data transfer area
rh9_count dw ? ;transfer count (sectors for block)

; (bytes for character)
rh9_start dw ? ;start sector number (block only)
rh9 ends ;

number associated with the Request Header. Each field within a Request Header
is assigned the name rax_y, where y is the name of the field within the header.

You will notice that some of the Request Headers have a field name media
with a comment describing it as the media descriptor from DPB. The media
descriptor is valid for block devices, such as disks, and is passed to device drivers
from a table that DOS maintains regarding the disk. DOS names this internal
table the Disk Parameter Block (DPB), and it is used to keep track of the various
disks DOS uses.

Main Procedure Code

The main procedure code is simply a label named begin:

RS SR SRR SRS SE RS SRS ERERESEEEEREEESEEEESEEEEEEEEEEEEEEEEEEEESES
’

P* MAIN PROCEDURE CODE *

A EEEE RS SR EE SRR SR EEEEERE RS SR EEEEEEEEEE SRS EEEEEEEEEEEEEEEEEESE]
’

begin:

105

Writing MS-DOS Device Drivers, Second Edition

106

The Device Header

The first code that must be written is the device header for the console device
driver. It is not code in the form of instructions, with which you are familiar, but
a table of values. This table informs DOS of the particular characteristics that
your Console Device Driver will have. Table 4-4 contains the definition of the
Device Header; the five required data fields are discussed below.

Next_dev Because our program will contain only one device driver, we will set
the next_dev field to a value that tells DOS there are no other device drivers
following this one. We do this by setting both the offset and the segment addresses
to-1.

If there were device drivers following the console device driver, we would set
the segment address to the current segment, which is cseg, and the offset address
would be the label that begins the next device driver.

Attribute The attribute field is a single-word field that has bits set to indicate
to DOS the characteristics of the console device driver. Basically, it is the driver’s
fingerprint. Most of the important attribute bit settings are defined in table 4-5.
The other attribute bits will be discussed in later chapters as we build other device
drivers.

For our Console Device Driver, we will set bits 15, 1, and 0 to 1. This tells
DOS that our device driver is a character device, it is the replacement for the
standard DOS output device, and it is also the replacement for the standard DOS
input device.

Name Start Length Description

next__dev 0 4 The offset and segment address of the
next device driver (if any) following our
Console Device Driver

attribute 8 2 Bit field that defines our Console Device
Driver

strategy 10 2 Address of the strategy routine in our
Device Driver

interrupt 12 2 Address of the interrupt routine in our
Device Driver

dev__name 14 8 The name of our Console Device Driver

Table 4-4: The Device Header fields. The Device Header table must be
defined at the very beginning of the device driver program.

A Console Device Driver

Bit Value Description
15 0 Block device driver
1 Character device driver
14 1 Supports IOCTL DOS call (44h)
13 1 Allows output until busy driver commands for character
devices (DOS 3+ only)
12 0 Not used; must be set to 0
11 1 Device Open/Close and Removable Media calls to the
device driver allowed (DOS 3+ only)
10-9 0 Not used; must be set to 0
4 1 Special; allows special writes to the screen through
interrupt 29h
3 1 If set, this device driver is the current clock device and
replaces the standard DOS clock device driver
2 1 If set, this is the current NUL: device
1 1 If set, this device driver is the standard output device and
replaces the standard DOS output device
0 1 If set, this device driver is the standard input device and

replaces the standard DOS input device

Table 4-5: The attribute field and the various bits defined. Each bit, if
set, will inform DOS of a special characteristic of our device driver.
Unused bits must be set to 0.

Strategy and Interrupt The two words that contain the addresses of the
STRATEGY and INTERRUPT routines will be represented by the variables
dev_strategy and dev_interrupt, respectively.

Dev_name The device name we will be using is CON, which is the same as the
DOS console driver that we are replacing. We fill the field with CON and pad out
the rest of the field with blanks. Note that we do not add a colon to the name;
DOS requires the colon to distinguish CON as a device name at the operator and
program level, not in the device name field.

Here is the Device Header for our Console Device Driver:

P R R i R R R
7

; DEVICE HEADER REQUIRED BY DOS *
,.**********************'k***
next_dev dd -1 ;no other drivers following
attribute dw 8003h ;character, output, input
strategy dw dev_strategy ;Strategy routine address
interrupt dw dev_interrupt ;Interrupt routine address
dev_name db 'CON ’ ;name of our Console driver

107

Writing MS-DOS Device Drivers, Second Edition

108

Work Space for Our Console Device Driver

Work space is where we put the variables for our driver. The console device driver
will require very little work space, because it needs only three variables. The first
two variables, rh_ofs and rh_seg, are used to store the ES and BX registers that
are passed to our device driver. The third variable is used to save the character
that we will be getting from the keyboard. Here is the filled-in work space code:

IREEEEE S S SRS SRR S SE S S S EEEEEEEEEEEEEEEEEEEEEREEREEEEEEEEERERERERSE]
7

i WORK SPACE FOR OUR DEVICE:DRIVER *

IR EEEEEEE SRS RS EEESS R E RS SRR SRS SRS SRR SRS EEREEEEEEEEEEEREEEESEESR]
7

rh_ofs dw ? ;offset address of the request header

rh_seg dw ? ;segment address of the request header

char db 0 ;character saved from the keyboard
The STRATEGY Procedure

The code for the STRATEGY procedure is quite simple. DOS expects the console
device driver to save the segment and offset address of the Request Header for
future references. DOS passes this in the ES and BX registers, respectively. We
store these two registers in ri_seg and rh_ofs. The use of the segment override,
cs:, insures that when we execute these instructions we refer to the variables
through the CS register rather than through the DS register. We do this for
several reasons. First, we cannot assume that the DS register is properly pointing
to our data when control passes to our Console Device Driver. Second, and more
important, we originally set up this program to use only one segment. We
reference both code and data through the CS register; data storage shares the
same segment as the instruction code.

Because the STRATEGY procedure is called from DOS with a CALL instruc-
tion, we use a return (ret) instruction to exit to DOS:

IR RS SRS S SRS S S SR SRR SRS SR SRS E RS SE RS SRS RS SRR EEEEEEEEEEEEEEE]
’

P* THE STRATEGY PROCEDURE *

IR E SRS SRR SR SRS E S R S ER S R S SRS RS RS R R RS E RS EEEEEEEEEEE
7

dev_strategy: mov cs:rh_seg,es ;save the segment address
mov cs:rh_ofs,bx ;save the offset address
ret ;jreturn to DOS

The INTERRUPT Procedure

The INTERRUPT procedure is called by DOS immediately after the STRATEGY
procedure. It is this procedure that performs all the work that DOS requests of
our Console Device Driver.

A Console Device Driver

DOS passes commands and data relating to the command in the Request
Header. The driver must use the Request Header to find out what command it is
to perform.

To find the command that DOS expects our Console Device Driver to
perform, we retrieve the segment and offset address of the Request Header that
we stored during the STRATEGY call. Next, we jump to the routine that is
appropriate for the command. Listing 4-4 shows the code that accomplishes this.

In the section called “Instructing the Assembler,” we mentioned that we will
not be processing all of the possible device driver commands. For the sake of
completeness, however, we specify all routines in the command table, CMDTAB,
although we do not write code for all of the routines listed.

Listing 4-4: The INTERRUPT routine and the command table that follows.

IR RS SRR E R EEEEEEE SRR R E R RS R R R R R R I R
7

P * THE INTERRUPT PROCEDURE

*

R SRR EEEE RS S SRR R R R R R TR EEE RS SRR S S SRR EEEEEEEEEEEE SRS EET
7

;device interrupt handler - 2nd call from DOS

dev_interrupt:

cld

push
push
push
push
push
push
push
push

mov
mov
mov

ds
es
ax
bx
cx
dx
di
si

ax,cs:rh_seg
es,ax
bx,cs:rh_ofs

;save machine state on entry

;restore ES as saved by STRATEGY call

;restore BX as saved by STRATEGY call

;jump to appropriate routine to process command

mov
rol
lea
mov
add

jmp

al,es: [bx].rh_cmd ;get request header command

al,1 ;times 2 for index into word table
di,cmdtab ;function (command) table address
ah,0 ;clear hi order

di,ax ;add the index to start of table

word ptr(di]

;jump indirect

;CMDTAB is the command table that contains the word address
; for each command. The reguest header will contain the
;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

109

Writing MS-DOS Device Drivers, Second Edition

Listing 4-4: (cont.)
CMDTAB label byte ;* = char devices only
dw INITIALIZATION ; initialization
dw MEDIA_CHECK ; media check (block only)
dw GET_BPB ; build bpb
dw IOCTL_INPUT . ; 1octl in
dw INPUT ; input (read)
dw ND_INPUT ; *nondestructive input no wait
dw INPUT_STATUS ;*input status
dw INPUT_FLUSH ;*input flush
dw OUTPUT ; output (write)
dw OUTPUT_VERIFY ; output (write) with verify
dw OUTPUT_STATUS ;*output status
dw OUTPUT_FLUSH ; *output flush
dw IOCTL_OUT ; loctl output
dw OPEN ; device open
dw CLOSE ; device close
dw REMOVABLE ; removable media
;*output til busy

dw OUTPUT_BUSY

110

Your Local Procedures

For this section, we have only one main routine because we are only implementing
one command. Each character that we read from the keyboard will be used to
make a different frequency sound on the speaker. This routine is named TONE
and is shown in listing 4-5.

The TONE routine uses the PC’s programmable timer chip, the 8253-5 (the
AT uses a different chip for this purpose). Each key retrieved from the keyboard
buffer will be sent to this routine. We set up the timer-chip control word by
sending the value 0b6h to the port numbered 43h. This sets up the 8253-5 chip
to produce sounds at a later point. We generate a sound with an audible frequency
of less than 14,000 cycles per second. Because most keys will be represented by
values that range from 0 to 127 or so, we divide 14,000 by each key’s value. This
key-dependent frequency is loaded into port 42h. Then we turn on the speaker
and timer by setting bits 0 and 1 in port 61h.This allows us to hear the sound
from the speaker. At label d1 we loop for approximately 50 milliseconds, which
allows us to hear the sound without slowing down the keystroke input rate
excessively. Finally, we turn off the speaker and timer by setting bits 0 and 1 to
0 in port 61h just before we exit from the TONE routine.

A Console Device Driver

Listing 4-5: The code for the only local procedure, TONE.

R EEEEEEEEEEEEEESEREESEREEEEEEIEEE DS SRS EEEEEEE SRR SRR RS RIS
’

.k
’

YOUR LOCAL PROCEDURES *

;**

TONE

dl:

Tone

proc near ;tone

mov ah,0 ;clear ah

push ax ;save ax

mov al,0b6h ;timer chip control word
out 43h,al ;send to timer

mov dx, 0 ;clear dividend (hi)

mov ax,14000 ; frequency

pop cx ;restore key value as divisor
inc cx ;add 1 to prevent div by 0
div cx ;quotient is ax

out 42h,al ;output lo order byte
xchg ah,al ;reverse

out 42h,al ;output hi order byte

in al,6lh ;get speaker/timer value
or al,3 ;turn on timer & speaker
out 61h,al ;set timer chip

mov cx,15000 ;value for 50 milliseconds
loop dl ; loop

in al,6lh ;get timer chip value

and al,O0fch ;turn off speaker & timer
out 61lh,al ;set timer chip

ret ;return to caller

endp ;end of tone

DOS Command Processing

DOS Command Processing is the heart of the console device driver. Table 4-3
shows that there are 17 commands for device drivers, numbered from 0 to 16.
Each command provides a unique but standard action with the driver. Some
commands are required to return a busy and a done indication or just a done
indication in the status word, even though the command is not applicable.

Command 0—Initialization DOS will always call our Console Device Driver
with the Initialization command immediately after the driver is loaded into
memory. This allows the device driver to set up its program code and data. DOS
assumes that the device driver is ready for further commands once it returns
control to DOS.

111

Writing MS-DOS Device Drivers, Second Edition

112

Initialization is called only once. We can use only certain DOS services inside
the Initialization procedure. These permitted services are numbered 1 through ¢
hex, and 30 hex. The reason for this limitation is that DOS is still in the process
of initializing itself, and not all of the services are available for use.

Keep in mind that once we exit from the device driver, we can no longer use
DOS services. After DOS calls our device driver with the Initialization command,
the driver is part of DOS and cannot issue DOS calls.

One question that is often asked involves the fact that some of the DOS
services a driver can issue involve the use of the keyboard and screen. How can
that be if the new driver is the replacement for the console device? The answer
is simple—DOS loads the standard console device driver before the driver
replacement is installed. The DOS service calls issued by the driver use the
standard console device driver, but once the driver is finished with the Initializa-
tion phase and control returns to DOS, requests for the console are handled by
the new console device driver.

Here is the code for the initialization procedure:

IR EEESE RS EEEEEEEEEEEEEEEEEEESEE SRR SRS EEEEEEEEE S EEE SRS SRR SRS ST
7

i* DOS COMMAND PROCESSING *

AR RS SRS S S S S S SRR R SRS EEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEE SRS
’

;command 0 Initialization
Initialization:
call initial ;display message
lea ax,initial ;set Break Addr. at initial
mov es: [bx].rh0_brk_ofs,ax ;store offset address
mov es: [bx].rh0_brk_seg,cs ;store segment address
jmp done ;set done status and exit

The Break Address referred toin this procedure tells DOS the next available
memory location after our code; this address must be provided to DOS. DOS uses
this address to determine where to load other device drivers or operating-system
code after the new driver has been installed.

The driver can also specify a Break Address that is within the console device
driver. This tells DOS to overwrite some of our code. We may do this to take
advantage of the fact that the Initialization is called only once. If, during the
Initialization command, we call a routine that is used only once, and we place the
code at the end of our Console Device Driver, we can set the Break Address to the
starting address of this routine. In effect, we save space by allowing DOS to reuse
some of our memory locations. For this example, we will place a procedure called
initial at the end of our program. This procedure will display a message and
return to the Initialization code.

A Console Device Driver

If there is some condition that prevents the console device driver from
working properly, the driver signals DOS to abort the device driver. This is done
by specifying a Break offset address of 0 and a Break segment address of our
current code segment register, CS. This tells DOS that the next available location
in memory is the beginning of our device driver, in effect, ignoring our device
driver.

In the Initialization code, the driver will display a message on the console,
set the Break Address in the Request Header, and exit.

Commands 1 through3 The commands Media_Check, Get_BPB, and
IOCTL_Input are not implemented in our Console Device Driver. The DONE bit
is set in the status word of the Request Header for Media_Check and Get_BPB.
For the IOCTL_Input command, the driver jumps to unknown to set the ERROR
bit. The code is as follows:

;command 1 Media_Check
Media_Check:

jmp done ;set done bit and exit
;command 2 Get_BPB
Get_BPB:

jmp done ;set done bit and exit
;command 3 IOCTL_Input

IOCTL_Input:

Jjmp unknown ;set error bit/code and exit

Command 4—Input Our Console Device Driver uses the Input command to
input characters from the keyboard buffer via int 16h. See listing 4-6.

DOS passes through the Request Header to the driver the count of the
number of characters to be input, as well as the address at which the characters
are to be stored.

The keyboard BIOS interrupt 16h returns an ASCII value of the character
in al and the corresponding scan code in ah. Recall that the scan code is a number,
one of which is assigned to each key on the keyboard. For example, the Shift key
on the left side of the keyboard generates a scan code of 42, whereas the Shift key
on theright side of the keyboard generates a scan code of 54. This allows programs
to distinguish which Shift key was used if necessary.

Most of the PC’s keys will generate both an ASCII value and a scan code.
However, some keys will not generate an ASCII value. For these keys, which are

113

Writing MS-DOS Device Drivers, Second Edition

Listing 4-6: The code for the Input command. Interrupt 16h is used to
retrieve characters from the keyboard buffer and pass them back to DOS in
the buffer specified by the Request Header. Each character that is retrieved

will cause a distinct sound on the speaker.

;command 4 Input
Input:
mov cx,es: [bx] .rh4d_count ;load input count
mov di,es: [bx].rh4_buf_ofs ;load offset address
mov ax,es: [bx].rh4_buf_seg ;load segment address
mov es,ax ; move to es
readl: mov ax, 0 ;clear ax
xchg al,sav ;pick up saved character
cmp al,o ;is it 07
jne read3 ;no - we return it
read2: mov ah,0 ;service = read
‘ int 16h ;Keyboard BIOS call
cmp ax,0 ;is key = 07
je read?2 ;yes - go get another
cmp al,o ;is it an extended key?
jne read3 ;no - we return it
mov sav,ah ;save scan code
read3: mov es:[di],al ;store key value in buffer
inc di ;point to next buffer loc
push cxX ;save cx
call tone ;sound a tone
pop cx ;restore for loop control
loop readl ;continue til count = 0
mov ax,cs:rh_seg ;restore es
mov es,ax ; from rh_seg
mov bx,cs:rh_ofs ;restore bx
jmp done ;set done bit and exit

called the extended keys, int 16h returns an ASCII value of 0 in al and the scan
code in ah. For example, the function keys (F1-F10) and their variations (using
Shift and Alt) will not generate ASCII values; scan codes are required to figure
out what key is pressed.

This presents an interesting situation. When a key that has an ASCII value
is struck, only the ASCII value is returned to DOS from the keyboard buffer.
When an extended key is struck, however, DOS expects two values: first, the
ASCII code of 0, and second, the key value of the scan code.

Therefore, in our Console Device Driver we must return to DOS, in the
Request Header, the ASCII value of a key for every key and its scan code if it is

114

A Console Device Driver

an extended key. In listing 4-6 this is accomplished with the variable sav. The
program checks the value of sav and passes it back to DOS if it is not 0. If it is O,
ah is saved into sav. In short, we save the scan code of an extended key in sav
and pass it back to DOS at the next request for a character from the device driver.

In listing 4-6, the basic code to retrieve characters from the keyboard buffer
is placed in a loop for a count of the number of characters or keys that DOS
requires to be passed back from the device driver. DOS does not request more
than one character at a time.

Once a character has been retrieved by issuing an int¢ 16h, the character is
stored in the DOS data buffer and the TONE procedure is called. TONE will
convert the value of the key into a sound with a frequency below 14,000 cycles
per second. This sound will last for approximately 50 milliseconds.

The driver ends after the tone has been generated. The driver will restore
ES and BX, because these registers are needed to point back to the data buffer
in which DOS expects to find the retrieved characters. The driver then jumps to
done to set the DONE bit in the status word and exits back to DOS.

Command 5—Nondestructive Input This command allows DOS to look
ahead one character without actually retrieving a character from the keyboard
buffer. It is included because a program can issue the DOS service for Input
Device Check (0Bh). The driver uses the ah=1 service of int 16h to perform a
status check of the keyboard buffer. It tells DOS that the keyboard buffer is empty
or it passes back the next character in the buffer without actually removing it
from the buffer.

We have one situation where we need to read a character from the keyboard.
This is when the status check returns a 0 for both the ASCII value and the scan
code, which occurs when the keyboard buffer is exhausted.

The instructions that check the scan code for a possible value are shown in
listing 4-7. If there is a nonzero value, it is passed back to DOS. Otherwise, the
driver issues a status check call to int 16A (ah=1). The only tricky part of this call
is that the Zero Flag (ZF) is set to 1 if there are no characters in the buffer. If this
is so, we set the busy bit in the status word and return to DOS.

Command 6—Input Status Command 6 is the Input Status command and is
not applicable to the console device driver. It is typically used for character-
oriented input devices that maintain a status that a program can request through
this command. For the console device driver, we simply set the done bit and exit:

;command 6 Input_Status
Input_Status:

jmp done ;set done bit and exit

115

Writing MS-DOS Device Drivers, Second Edition

Listing 4-7: The code for the Nondestructive Input command, which allows
DOS to look at the next character in the keyboard buffer without actually
removing the character from the buffer.

;command 5 ND_Input

ND_Input:
mov al,sav ;pickup saved character
cmp al,o ;is it 07
jne ndl ;no - return it to DOS
mov ah,1 ;service = status check
int 16h ;Keyboard BIOS call
jz busy ;ZF1 means no key in buffer
cmp ax, 0 ;is key = 0?2
jne ndl ;no - return it to DOS
mov ah,0 ;service = read
int 16h ;Keyboard BIOS call
jmp ND_Input ;check again

ndl: mov es: [bx].rh5_return,al ;return key to DOS
jmp done ;set done bit and exit

116

Command 7—Input Flush The Input Flush command allows DOS to flush
the contents of the keyboard buffer. This typically is used to prevent characters
that are typed ahead from being used by a program. In some cases, such
accidentally entered characters may affect critical input responses. For example,
the FORMAT program flushes all keyboard input when asking whether to format
the disk. This prevents the existence of a character in the buffer from starting an
unwanted format.

The code for this command is shown in listing 4-8 and is relatively simple.
Calls are issued by the driver to BIOS interrupt 16h to check the status of the
keyboard buffer. If there is a character in the buffer, it is retrieved but not passed
back to DOS. This process is repeated until the buffer is empty of any characters.

Command 8—Output The Output command is used to write characters to the
screen and must be implemented by our CON: replacement driver. The video
BIOS interrupt 10h is used to do this. The code shown in listing 4-9 shows the
use of the output character count in a loop which calls Video BIOS routine 10h
with ah=0Eh. The Oeh is the service called Write Character as TTY. When the
driver is done, it restores the ES and BX registers, which were used to retrieve
the characters in the DOS data buffer.

A Console Device Driver

Listing 4-8: The code for flushing the keyboard input buffer.

;command 7
Input_Flush:

mov

IF1l: mov
int
jz
mov
int
jmp

Input_Flush

sav, 0
ah,1
16h
done
ah,0
16h
IF1

;clear saved key
;service = check status
;Keyboard BIOS call

;Z2F1 means buffer empty
;service = read
;Keyboard BIOS call
;loop until buffer empty

Command 9—Output With Verify This command is identical to the Qutput
command except that it is sent to our Console Device Driver when the VERIFY
switch is set ON at the DOS command level.

Normally, the Output With Verify command is used for devices that can read
the data that was just written. It is typically used to ensure that the data has
been correctly written to the device. Here is the code for processing the Output
With Verify command:

;command 9

.

Output_Verify:

jmp output

Output_Verify

;same as output

Listing 4-9: The processing of an Output command.

;command 8
Output:

mov
mov
mov
mov
mov

outl: mov
inc
mov
int
loop
mov
mov
mov
jmp

Output

cx,es: [bx].rh8_count
di,es: [bx].rh8_buf_ofs
ax,es: [bx].rh8_buf_seg
eg, ax

bx, 0

al,es: [di]

di

ah,Oeh

10h

outl

ax,cs:rh_seg

es,ax

bx,cs:rh_ofs

done

;load output count

;load offset address

;load segment address

; into es

;clear bx

;pick up character to output
;point to next location
;service = write char as tty
;Video BIOS call

;loop til count = 0

;restore request header

; segment adress as es
;restore bx

;set done bit and exit

117

R T

S ks S

Writing MS-DOS Device Drivers, Second Edition

Listing 4-10: The processing of commands 10 through 16.

;command 10 Output_Status
Output_Status:

jmp done ;set done bit and exit
;command 11 Output_Flush
Output_Flush:

Jmp done ;set done bit and exit
;command 12 IOCTL_Out
TOCTL_Out:

Jmp unknown ;set error bit/code and exit
;command 13 Open
Open:

Jjmp done ;set done bit and exit
;command 14 Close
Close:

Jmp done ;set done bit and exit
;command 15 Removable
Removable:

Jmp unknown ;set error bit/code and exit
;command 16 Output Til Busy

Output_Busy:

Jjmp unknown ;set error bit/code and exit

Commands 10 through 16 Commands 10 through 16 are not required by the
CON: replacement driver, but the code must be included in case they are
accidentally sent to the driver. Note that each command will jump to either done
or unknown. See listing 4-10.

Error and Common Exits

In this section of code, the driver will set the status word in the Request Header
toinform DOS of the outcome of the driver’s work. DOS always expects the DONE
bit to be set. In addition, other bits can be set to indicate other conditions, such
as BUSY and ERROR. Refer to table 3-2 for a detailed layout of the status word.

118

A Console Device Driver

Listing 4-11: The code for processing errors and exiting from the console
device driver. The DONE bit is set in the status word, the registers are
popped from the stack, and control returns to DOS.

IR EEESE S S SRS SRR RS ESEREESEEEESER SRR SRS EESEEEREEEEEEEEEEEREE ST
’

i * ERROR EXIT *

IR RS S S S S S S SRR SRS SRR SR SRS RS SR EE S SRS SRR RERSERSEEEREEEEEEEEESEREEE]
7

unknown :

or es: [bx].rh_status,8003h ;set error bit and error code

jmp done ;set done and exit
;**
Had COMMON EXIT *
;**
busy: or es: [bx].rh_status,0200h ;set busy bit
done: or es: [bx].rh_status,0100h ;set done

pop si ;restore all registers

pop di

pop dx

pop cx

pop bx

pop ax

pop es

pop ds

ret ;return to DOS

Listing 4-11 shows the code for setting the status word to UNKNOWN,
BUSY, or DONE. For UNKNOWN, bit 15 is set to indicate an error, and the error
code in bits 0 through 7 is set to a 3, which is the Unknown command. For BUSY,
bit 9 is set. For DONE, bit 8 is set.

To exit from the console device driver, the registers are popped from the
stack and the code executes a return (ret) instruction.

End of Program

In the End of Program section is the procedure initial, which displays a message
on the screen when the console device driver is first loaded into memory by DOS.
Earlier, the driver informed DOS that the Break Address or the address of the
next available location is at the same location as initial. Because the driver calls
the initial procedure only once and never needs it again, DOS overwrites this
area after the driver exits from the Initialization command processing.

Listing 4-12 shows the code for the End of Program section.

119

Writing MS-DOS Device Drivers, Second Edition

Listing 4-12: The code for the End of Program section. The procedure initial
is placed here. The message it displays on the screen occurs at Initialization
time, just after DOS loads our Console Device Driver.

IR R EEEE S SRS EEE RS RS E R E R SE R SEEREEEEEREEEREEEEEEEEEEEEEEEEE]
7

P* END OF PROGRAM *

5l RS S SRS S SRS EEEEEEEEEEEEEEEEESEEEEEEEEEEEESEREREEEEEEEESEEEESEER]
| 7

;this procedure is called from the Initialization command and

;is executed only once. We can tell DOS that the next available
;memory location (Break Address) is here. This allows DOS to over
;write this code; we save space.

initial proc near ;display message on console
| lea dx,msgl ;message to be displayed
mov ah,9 ;display
int 21h ;DOS call
! ret ;return to caller

initial endp

1 msgl db 'The Waite Group Console Driver’,0dh,Oah, 'S’
! console endp ;end of console procedure
cseg ends ;end of cseg segment
end begin ;end of program

A Complete Look at the Console Device Driver

In the previous sections, we have discussed the various parts of a device driver
) and what we need in order to build our Console Device Driver. We are now

finished with our tour of inspection, and the complete console device driver is
! shown in listing 4-13.

A Note about DOS Versions

Although the console device driver was built to handle the 17 basic commands
for DOS version 3.0 or later, the five command-processing sections are also valid
for version 2.0. The Attribute bits defined for DOS version 3.0 were not set, and
as a result, the additional command functions of version 3.0 will not be sent to
the console device driver.

120

A Console Device Driver

Listing 4-13: The complete listing for the console device driver.

IR EE R EEREEREEEEEEEESEEEEEEEIIEEE S SIS E S SIS I S S
’

;* This is a Console Device Driver *
i Author: Robert S. Lai *
P Date: 2 November 1991 *
P Purpose: To replace the standard console driver *

RS SRR R SR SRR R R R RS RS R SRR R R EEE R EEEE R SRS SRR EEEE R R R
7

R RS SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEIEEEEEEEEEEEE SIS
’

i ASSEMBLER DIRECTIVES *

PR R R R R R R R EEEE R R S S S R R
1

cseg segment para public ‘code’
console proc far
assume cs:cseg, es:cseg, ds:cseg
;structures
rh struc ;fixed request header structure
rh_len db ? ;len of packet
rh_unit db ? ;unit code (block devices only)
rh_cmd db ? ;device driver command
rh_status dw ? ;returned by the device driver
rh_resl dd ? ;reserved
rh_res?2 dd ? ;reserved
rh ends ;
rh0 struc ;request header for Initialization (command 0)
rh0_rh db size rh dup (?) ;fixed request header portion
rh0_nunits db ? ;number of units (block devices only)
rh0_brk_ofs dw ? ;offset address for break
rh0_brk_seg dw ? ;segment address for break
rh0_bpb_tbo dw ? ;offset address of pointer to BPB array
rh0_bpb_tbs dw ? ;segment address of pointer to BPB array
rhO_drv_1tr db ? ;first available drive (DOS 3+) (block only)
rh0 ends ;
rhd struc ;request header for INPUT (command 4)
rhd_rh db size rh dup(?) ;fixed request header portion
rh4_media db ? ;media descriptor from DPB
rhd_buf_ofs dw ? ;offset address of data transfer area
rhd_buf_seg dw ? ;segment address of data transfer area
rh4__count dw ? ;transfer count (sectors for block)
; (bytes for character)
rhd4_start daw ? ;start sector number (block only)
rh4 ends ;
rh5 struc ;request header for ND_INPUT (command 5)
rh5_rh db size rh dup (?) ;fixed request header portion
rh5_return db ? ;character returned
rh5 ends ;

121

ihleid = aa i

Writing MS-DOS Device Drivers, Second Edition

Listing 4-13: (cont.)

rh7 struc ;request header Input_Flush (command 7)
rh7_len db ? ;len of packet
rh7_unit db ? ;unit code (block devices only)
rh7_cmd db ? ;device driver command
rh7_status dw ? ;returned by the device driver
rh7_resl dd ? ;reserved
rh7_res2 dd ? ;reserved
rh7 ends ;
rh8 struc ;request header for OUTPUT (command 8)
rh8_rh db size rh dup(?) ;fixed request header portion
rh8_media db ? ;media descriptor from DPB
rh8_buf_ofs aw ? ;offset address of data transfer area
rh8_buf_seg dw ? ;segment address of data transfer area
rh8_count dw ? ;transfer count (sectors for block)

; (bytes for character)
rh8_start dw ? ;start sector number (block only)
rh8 ends ;
rh9 struc ;request header for OUTPUT_VERIFY (command 9)
rh9_rh db size rh dup(?) ;fixed request header portion
rh9_media db ? ;media descriptor from DPB
rh9_buf_ofs dw ? ;offset address of data transfer area
rh9_buf_seg dw ? ;segment address of data transfer area
rh9_count dw ? ;transfer count (sectors for block)

; (bytes for character)
rh9_start dw ? ;start sector number (block only)
rh9 ends ;

’

;**

P * MAIN PROCEDURE CODE

*

,.**

begin:

;**

H DEVICE HEADER REQUIRED BY DOS *

;**

next_dev dd -1 ;no other drivers following
attribute aw 8003h ;character, output, input
strategy dw dev_strategy ;Strategy routine address
interrupt dw dev_interrupt ;Interrupt routine address
dev_name db 'CON ! ;name of our Console driver

;**

I WORK SPACE FOR THE DEVICE DRIVER *

;*****************'k**

122

A Console Device Driver

Listing 4-13: (cont.)

rh_ofs dw ? ;offset address of the request header
rh_seg dw ? ;segment address of the request header
sav db 0 ;character saved from the keyboard

RAEE S S S S SRS RS S S S E SRR SRR R SRR SRR R R RS R EEE RS R RREERRERREEEEEEEESEEEES
’

P * THE STRATEGY PROCEDURE *

IR SRS E R SRS R RS RS R R SRR SRS R RS RS EREERERRREREEEREEREREREREEESERESERESS]
’

dev_strategy: mov cs:rh_seg,es ;save the segment address
mov cs:rh_ofs,bx ;save the offset address
ret ;jreturn to DOS

ehkkkkhkkkhkhkkhkkhkhkhkkhkhkrdhbkkhbkhdhhhdkhkdhhhhkhkdhhhkhkdhhkhkhkrhkhhhkrkhkhkhkhkkhkkhkkxk
’

P THE INTERRUPT PROCEDURE *

,.**

;device interrupt handler - 2nd call from DOS

dev_interrupt:

cld ;save machine state on entry

push ds

push es

push ax

push bx

push cxX

push dx

push di

push si

mov ax,cs:rh_seg ;restore ES as saved by STRATEGY call
mov es,ax ;

mov bx,cs:rh_ofs ;restore BX as saved by STRATEGY call

;jump to appropriate routine to process command

mov al,es: [bx].rh_cmd ;get request header header command
rol al,1l ;times 2 for index into word table
lea di,cmdtab ;function (command) table address
mov ah,0 ;clear hi order

add di,ax ;add the index to start of table
jmp word ptr(di] ;jump indirect

;CMDTAB is the command table that contains the word address
;for each command. The request header will contain the
;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

123

Writing MS-DOS Device Drivers, Second Edition

Listing 4-13: (cont.)

CMDTAB label
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

byte
INITIALTIZATION
MEDIA_CHECK
GET_BPB
IOCTL_INPUT
INPUT
ND_INPUT
INPUT_STATUS
INPUT_FLUSH
OUTPUT
OUTPUT_VERIFY
OUTPUT_STATUS
OUTPUT_FLUSH
IOCTL_OUT
OPEN

CLOSE
REMOVABLE
OUTPUT_BUSY

;* = char devices only

; initialization

; media check (block only)
; build bpb

; loctl in

; input (read)

;*non destructive input no wait
;*input status

;*input flush

; output (write)

; output (write) with verify
; *output status

;*output flush

; loctl output

; device open

; device close

; removable media

; *output til busy

R R R RS R SRS R SRR RS RS EEEEE RS R R EE R R R EEEEE RS
7

P YOUR LOCAL PROCEDURES

RS S SEE SRS SRS SRR EEEEEEEEEEREEEEEEEEEEEEEEEEEEEERER]
1

TONE proc
mov
push
mov
out
mov
mov
pop
inc
div
out
xchg
out
in
or
out
mov

dl: loop
in
and
out
ret

Tone endp

124

near
ah,0

ax
al,Ob6h
43h,al
dx, 0
ax,14000
cx

cx

cx
42h,al
ah,al
42h,al
al,61lh
al,3
61h,al
cx,15000
dl
al,6lh
al,0fch
61lh,al

*

;tone
;clear ah
;save ax

;timer chip control word
;send to timer

;clear dividend (hi)

; frequency

;restore key value as divisor
;add 1 to prevent div by 0
;quotient is ax

;output lo order byte
;reverse

;output hi order byte

;get speaker/timer wvalue
;turn on timer & speaker
;set timer chip

;value for 50 milliseconds
; loop

;get timer chip value
;turn off speaker & timer
;set timer chip

;return to caller

;end of tone

A Console Device Driver

Listing 4-13: (cont.)

shhhkhhhkhhhkhhhhdhhhhdkhhdhhdkhhdkhkhhddkhkhhhkhkhhhdhkohdkkohkkkhhkkhkkokhkdkkhkhkkx
i

P* DOS COMMAND PROCESSING

AR SR SRS SRS SRR RS SRR E SRR RS S S ER SRR RS REESEEEREEEEEESE]
’

;command O
Initialization:
call
lea
mov
mov
jmp
;command 1
Media_Check:

jmp

; command 2
Get_BPB:

jmp

;command 3
TOCTL_Input:

jmp

;command 4
Input:

mov
mov
mov
mov
mov
xchg
cmp
jne
mov
int
cmp
je
cmp
jne
mov
mov
inc
push
call
pop
loop

readl:

read?2:

read3:

Initialization

initial

ax,initial

es: [bx].rh0_brk_ofs, ax
es: [bx].rh0_brk_seg,cs
done

Media_Check

done ;set
Get_BPB
done ;set

IOCTL_Input

unknown

Input

cx,es:bx.[rhd4]_count
di,es:bx.[rhd4]_buf_ofs
ax,es:bx.[rh4]_buf_seg
es,ax

ax, 0

al,sav

al,o

read3

ah, 0

16h

ax,0

read2

al,0

read3

sav,ah

es:[di],al

di

cx

tone

cx

readl

*

;display message

;set Break Addr. at initial
;store offset address
;store segment address

;set done status and exit

done bit and exit

done bit and exit

;set error bit/code and exit

;load input count
;load offset address
;load segment address
; move to es

;clear ax

;pick up saved character
;is it 07

;no - we return it
;service = read
;Keyboard BIOS call

;is key = 0?

;yes - go get another

;is it an extended key?
;no - we return it

;save scan code

;store key value in buffer
;point to next buffer loc
;save cx

;sound a tone

;jrestore for loop control
;continue til count = 0

125

Writing MS-DOS Device Drivers, Second Edition

Listing 4-13: (cont.)

mov
mov
mov
jmp

;command 5
ND_TInput:

mov
cmp
jne
mov
int
jz
cmp
jne
mov
int
jmp

ndl: mov
jmp

;command 6
Input_Status:

jmp

; command 7
Input_Flush:

mov

IF1: mov
int
jz
mov
int
jmp

;command 8
Output:

mov
mov
mov
mov
mov
mov
inc

outl:

126

ax,cs:rh_seg
es,ax
bx,cs:rh_ofs
done

ND_Input

al,sav
al,o

ndl

ah,1

16h
busy
ax, 0

ndl

ah,0

16h
ND_TInput
es: [bx].rh5_return,al
done

Input_Status

done

Input_Flush

sav, 0
ah,1
16h
done
ah,0
16h
IF1

Output

cx,es: [bx] .rh8_count
di,es: [bx].rh8_buf_ofs
ax,es: [bx] .rh8_buf_seg
es,ax

bx,0

al,es: [di]

di

;restore es

; from rh_seg

;restore bx

;set done bit and exit

;pickup saved character
;is it 07

;no - return it to DOS
;service = status check
;Keyboard BIOS call
;ZF=1 means no key in buffer
;is key = 0?

;no - return it to DOS
;service = read
;Keyboard BIOS call
;check again

;return key to DOS

;set done bit and exit

;set done bit and exit

;clear saved key
;service = check status
;Keyboard BIOS call
;Z2F=1 means buffer empty
;service = read »
;Keyboard BIOS call
;loop until buffer empty

;load output count

;load offset address

;load segment address

; into es

;clear bx

;pick up character to output
;point to next location

A Console Device Driver

Listing 4-13: (cont.)

mov ah, Oeh ;service = write char as tty

int 10h ;Video BIOS call

loop outl ;loop til count = 0

mov ax,cs:rh_seg ;restore request header

mov es,ax ; segment adress as es

mov bx,cs:rh_ofs ;restore bx

jmp done ;set done bit and exit
;command 9 Output_Verify

Output_Verify:
jmp output ;same as output

;command 10 Output_Status
Output_Status:

jmp done ;set done bit and exit

;command 11 Output_Flush
Output_Flush:

jmp done ;set done bit and exit
;command 12 IOCTL_Out
TOCTL_Out:

jmp unknown ;set error bit/code and exit
;command 13 Open
Open:

jmp done ;set done bit and exit
;command 14 Close
Close:

jmp done ;set done bit and exit
;command 15 Removable
Removable:

jmp unknown ;set error bit/code and exit
;command 16 Output Til Busy

Output_Busy:

jmp unknown ;set error bit/code and exit

127

Writing MS-DOS Device Drivers, Second Edition

Listing 4-13: (cont.)

;**

P x ERROR EXIT *

;**

unknown :
or es: [bx].rh_status,8003h ;set error bit and error code
jmp done ;set done and exit

;**

P COMMON EXIT *

;**

busy : or es:[bx].rh_status, 0200h ;set busy bit
done: or es: [bx].rh_status,0100h ;set done

pop si ;restore all registers

pop di

pop dx

pop cx

pop bx

pop ax

pop es

pop ds

ret ;return to DOS

;**

P END OF PROGRAM *

;**

;this procedure is called from the Initialization command and

;is executed only once. We can tell DOS that the next available
;memory location (Break Address) is here. This allows DOS to over
;write this code; we save space.

initial proc near ;display message on console
lea dx,msgl ;message to be displayed
mov ah,9 ;display
int 21h ;DOS call
ret ;return to caller

initial endp

msgl db 'The Waite Group Console Driver’, 0dh, Oah, '$’
console endp ;end of console procedure
cseg ends ;end of cseg segment

end begin ;end of program

128

A Console Device Driver

Building the Replacement Console Device Driver

Before you can use this console device driver, you will need to enter the source
code of listing 4-13, assemble that code, and link it. Use your favorite word
processor to enter the source code and name the file console.asm. Then use the
Macro Assembler to assemble the source file. The next step is to LINK the object
files to produce an executable file. Then convert the .EXE file into a .COM file
using the EXE2BIN utility. Lastly, rename the .COM file into a .SYS file.

For DOS to be able to use the console device driver, you will need to specify
to DOS that you have a device driver to be loaded at boot time. This is done by
specifying the device driver .SYS file in a CONFIG.SYS file using the device=
command:

device = console.sys

After youboot DOS with a CONFIG.SYS file that specifies the console device
driver, you will see on the screen:

The Waite Group Console Driver

This message lets you know that the driver was successfully installed. The
next characters you type in will cause the speaker to sound with short musical
tones.

Summary

In this chapter, we have built a device driver that replaces the standard DOS
console device driver. Our replacement driver will do everything the standard
driver does, and, in addition, each key struck will generate a tone from the
speaker. The console device driver will work on versions 2.0 through 5.0 of DOS.
We have seen the various commands that DOS might send to the device driver
and what actions we should take for each of these commands. We have seen the
requirements of the Device Header, the STRATEGY procedure, the INTERRUPT
procedure, the device driver command processing, and lastly, the setting of the
various bits of the status word.

129

Writing MS-DOS Device Drivers, Second Edition

Questions
1.

130

AR o

Are all DOS service calls allowed in the Initialization command?

Are there other examples of a console device driver?

Can I customize the console device driver to display color characters?
Why does the console device driver use the ROM BIOS routines?

Why does the console device driver use only the Write Character as TTY
service (OEh) of the video ROM BIOS interrupt?

Why is the colon in CON: not included in the device name field of the
Device Header?

Ifind that the console device driver is too long to type in. Can I condense
some of the code, particularly in the areas of unimplemented commands?

Answers may be found in appendix F.

Chapter 5

A Printer Device
Driver

Printer'Types
I/0O Control and IOCTL Calls
The IOCTL Program

Building and Using the IOCTL
Program

BIOS Services for Serial and Parallel
Adapters

Inside the Printer Device Driver

A Printer Device Driver

In this chapter, we will develop a printer device driver. Instead of
building a driver that just replaces the DOS version, as we did in our console
device driver example, we will develop one that has many more bells and whistles
than a standard printer device driver.

In the previous two chapters, we have learned how to build device drivers
that essentially perform simple functions. The printer device driver presented in
this chapter will be more powerful and will use more of the features of DOS.

Specifically, in this chapter we will build a device driver for prn: that will
support both the parallel and serial printers. DOS supplies several printer
drivers; each will support either the serial or the parallel port. The dual-role
driver developed here allows one DOS device name to be used to access different
printers at different times. You save time by not having to change printer device
names in your programs when you direct the output to different printers.

To allow the device driver to switch between printers, we will implement
the I/O Control command within the printer device driver. I/O Control is a driver
feature that, though rarely used, allows programs to communicate directly with
device drivers. Normally, data is passed to drivers only for outputting to a device.
With I/O Control, special commands can also be sent; these can be used by the
device driver to perform special functions.

Printer Types

Printers are commonly connected to a PC using a serial or a parallel interface.
DOS supports up to three printers, attached to parallel adapters called LPT1:,
LPT2:, and LPT3:. PRN: is used to refer to the printer attached as LPT1:. In
addition, two additional printers may be attached to the PC through serial
adapters; these adapters are called COM1: and COM2:. This allows us a maxi-
mum of five printers we could use. The MODE command can be used to redirect

133

Writing MS-DOS Device Drivers, Second Edition

the parallel printer output to another device. For example, MODE is used to
specify printer output to either COM1: or COM2..

Selecting one of these five possible printers from DOS or from a program is
tedious at best. Programs need to be changed each time a different printer is
desired. MODE commands may be placed in batch files to select printers before
a program executes. The print-spooling TSR program, PRINT, does allow the
selection of the output device (once PRINT starts executing, however, selecting
another printer for output is not possible until PRINT is terminated and restarted
with another type of printer specified). The most convenient place to select
printers is within the printer device driver itself.

Printers and DOS

DOS supplies four standard printer device drivers. These are PRN:, LPT1:,
LPT2:, and LPT3:. These control the three parallel ports. PRN: references the
same parallel port as LPT1:. Therefore, there are three parallel printers and four
possible names.

The printer device driver we will build in this chapter will not be restricted
to one of these three choices. Rather, our Printer Device Driver will have the
ability to control up to five printers: three using the parallel ports and two using
the serial ports. Of course, if we do not have five printers attached to the PC, we
can control only those that are attached.

Controlling printers is simple. First, we create a device driver with the
device name of PRN: and we write the code to send data to both the parallel and
serial adapters. Then we need a method of selecting the appropriate output port.

We will use the I/0 Control Write commands to select the printer and the
I/0 Control Read commands to determine which printer was selected. This special
code needs to be built into the printer device driver along with a special program
to send and receive I/0 Control strings to and from the printer device driver. The
process of controlling printers this way is shown in figure 5-1.

I/0 Control and IOCTL Calls

134

I/0 Control, abbreviated IOCTL, is a feature of DOS device drivers that allows
control information to be sent to the device driver without being passed through
to the device. This control information, also called I/O Control strings, can be read
from or written to the device driver. This allows us to communicate with the
device driver to pass information back and forth between a program and the
device driver. Think of this as a special communication link between DOS and a
driver, handling information that does not get sent to the device. Without this
feature, we would not be able to direct or control the device driver.

A Printer Device Driver

A
PRINTER LPT1
DEVICE
DRIVER ‘
. ‘L-A
Print data »> LPT2
/'
Switch
printer
i 7
Which . -
printer
\ selected ?
[Com2: —

Figure 5-1: Printer device driver controlling up to five printers. The
IOCTL program is used to send I/O Control strings to select a printer
and to receive I/O Control strings to determine which printer was
selected. I/O Control strings are written to and read from the device
driver and are not treated as data.

We need to look at both sides of the IOCTL feature: programs that read and
write control strings and the actions the device driver must take when it
encounters these control strings.

The 1/0 Control for Devices Call

DOS provides a service through interrupt 21h that allows a program to perform
I/0 Control with its driver. With this service (44h), we can request a number of
functions that pass data to and from the device driver. Table 5-1 shows the various
operations of the I/O Control for Devices service routine, called IOCTL from here
on. Some of the operations require the registers to be set up differently than
described in table 5-1. Refer to the Microsoft MS-DOS Programmer’s Reference
for more details.

Our program will use only two of the basic twelve operations of IOCTL.
Operation 2, IOCTL Read, is used to read an IOCTL string from the driver, and

135

Writing MS-DOS Device Drivers, Second Edition

Register Value Description

ah 44h Service = I/0 Control

al I/O operation requested

Get device information

Set device information

Read

Write

Read from disk drive

Write to disk drive

Get input status

Get output status

Is device media removable?
Is drive local or remote?

Is file handle local or remote?
Changing the retry of a shareable entry

T OO0 TR WN O

bx File handle returned from open a file handle call

cx Count of the number of bytes to be transferred
dx With DS this is the address of the data transfer buffer

Table 5-1: The DOS I/O Control service call. Each of the operations
requested will require different uses of the various registers.

operation 3, IOCTL Write, is used to write an IOCTL string to the driver. IOCTL
Read allows us to determine which printer was last selected. IOCTL Write
(operation 3) allows us to select a printer.

When we select a printer, we indicate that any output written to PRN: will
be directed to that printer. All subsequent writes to PRN: will continue to use
this printer until we select another printer. Conversely, an IOCTL Read operation
allows our program to determine which printer is in use.

The IOCTL program is used to select one of five printers for program access
using the name PRN:. This removes the requirement that programs change their
printer output names to reflect the different printer desired.

The IOCTL Program

The IOCTL program will be used to control which printer the printer device driver
will write to when programs use the device name PRN:.

A Printer Device Driver

When IOCTL operations are used to read and write, the format of the IOCTL
string must be determined. We cannot just write a string of data and expect the
device driver to understand what it means: a convention of what the data should
look like—a common language—must be established.

Fortunately, this can be done easily. We can set up an arbitrary convention,
or protocol, that requires only two bytes. The first byte indicates which type of
printer adapter should be used. A P indicates the parallel printer adapter; an S
indicates the serial printer adapter. With this first byte, the IOCTL program will
tell the driver which printer adapter to select. The driver will use this byte to
return the printer adapter selected.

The second byte contains the adapter number—that is, the device number
for that particular type of adapter. For parallel printers, we can use 0, 1, or 2 to
indicate LPT1:, LPT2:, or LPT3:. For serial printers, we can specify 0 or 1 to
represent COM1: or COM2:. The second byte is used by the IOCTL program to
tell the driver which device number to select and by the driver to return the device
number selected.

The IOCTL program is simple in concept. Basically, we select which type of
printer adapter to use by indicating a P or an S. Then we select the device
number for that particular adapter by specifying a 0, 1, or 2. Next, we open PRN:,
using the DOS service for opening a file. Then we select the appropriate IOCTL
operation, either Write or Read. Finally, we display the IOCTL string before we
exit from the program. The listing of the IOCTL program is shown in listing 5-1.

Listing 5-1: The code for the IOCTL program. We use standard DOS services
to write to the console, read from the keyboard, open files, and perform I/O
Control for Devices.

title

IOCTL Program

;This program is designed to use the I/0 Control (IOCTL)
;commands of the The Waite Group Printer Device Driver

; (PRN:) .

The DOS service 44h provides a read and write function

;for I/0 Control strings to device drivers that allow IOCTL.

code

main
start:

segment ;define segment as code
assume cs:code, ds:code ;COM file DS=CS
org 100h ;COM file start
proc ;main procedure
; start

;display a message to the console

lea dx,msgl ;banner
call display ;console display

;Determine if it is a Serial or a Parallel printer

137

Writing MS-DOS Device Drivers, Second Edition

Listing 5-1: (cont.)

ptype: lea
call
call
cmp
je
cmp
je
lea
call
jmp

ptypel: mov

;get the device

dx,msg2 ;prompt for printer type
display ;console display

input ;get input character
al,'p’ ;is it a [P]larallel printer?
ptypel ;yes - store it

al,’s’ ;is it a [Slerial printer?
ptypel ;yes - store it

dx,msg2e ;error message

display ;console display

ptype ;it’s neither - go back
buf,al ;store the 'P’ or 'S’

number: 1, 2, or 3

;convert this to 0, 1, or 2 for use by the BIOS.

pdev: lea
call
call
cmp
ja
cmp
jb
sub
dec
mov
jmp

perrl: lea
call
jmp

;open PRN using

fopen: mov
mov
lea
int
jc
push
lea
call
jmp

openerr:lea
Jmp

dx,msg3 ;prompt for device number
display ;console display

input ;get input character

al, 3’ ;is it greater than 32
perrl ;yes - too large

al, "1’ ;is it below 1?

perrl ;yes - too small

al,30h ;convert ASCII to binary
al ;subtract one for driver use
buf+l,al ;store device number

fopen ;go open PRN: file
dx,msg2e ;incorrect selection message
display ;console display

pdev ;go back & try again

file handle call

al,2 ;read/write access

ah,3dh ;open file handle

dx, file ;address of filename

21h ;DOS call

openerr ;error (carry set)?

ax ;save file handle

dx, filemsg ;no error - tell user
display ;console display

ioctl ;get IOCTL function
dx,msg5 ;error message

exit ;exit - problem in program

;get function type: Write IOCTL or Read IOCTL

ioctl: lea
call
call
cmp
je

138

dx,msg4 ;Read or Write IOCTL
display ;console display
input ;get input character
al,’'R’ ;is it [R]ead?
ioread ;yes - process it

A Printer Device Driver

Listing 5-1: (cont.)

ioread:

iowrite:

doioctl:

;check error from IOCTL call

chkerr:

errl:

err2:

err3:

errd:

err5:

cmp
je
lea
call
jmp

mov
jmp
mov

pop
mov
mov
lea
int
jc
or
mov
mov
or
mov
lea
call
jmp

cmp
jne
lea
jmp
cmp
jne
lea
jmp
cmp
jne
lea
jmp
cmp
jne
lea
jmp
cmp
jne
lea
jmp
cmp
jne

al, "W’
iowrite
dx,msg2e
display
ioctl

al,2
doioctl
al,3

bx

ah, 44h
cx,2
dx,buf
21h
chkerr
al,30h
msgéa, al
al,buf+l
al,30h
buf+l,al
dx,msg6
display
exit

ax,1
errl

dx, emsgl
err

ax,4
err2

dx, emsg2
err

ax,5
err3

dx, emsg3
err

ax, 6
errd

dx, emsg4
err
ax,0dh
err5

dx, emsg5
err
ax,0fth
err6

;is it [Wlrite?
;yes - process it
;N0 - error message
;console display
;try again

;read IOCTL string from driver
;process it
;write IOCTL string to driver

;restore file handle to bx
;service = IOCTL

;count = 2 bytes
;address of buffer

;DOS call

;error (carry set)?
;make count ASCII
;store count

;get device unit number
;make it ASCII

;store it back

;display results
;console display

;we are done!

;invalid function number?
;No

iyes

;display & exit

;no handle?

;no

iyes

;access denied?
;o

;yes

;display & exit
;invalid handle or not open?
;o

iyes

;display & exit
;invalid data?
;o

;yes

;display & exit
;invalid drive?
;No

139

Writing MS-DOS Device Drivers, Second Edition

Listing 5-1: (cont.)

lea dx, emsgb ;yes
jmp err ;display & exit
erro6: lea dx, emsg’ ;unknown error
err: call display ;display
d exit: lea dx,msg7 ;goodbye message
call display ;console display
| int 20h ;exit back to DOS
display proc near ;display message on screen
mov ah,9 ;service = display
int 21h ;DOS call

ret ;return to caller
display endp ;

input proc near ;get 1 character from the keyboard
mov ah,1 ;service = keyboard input
int 21h ;DOS call
ret ;return to caller

input endp ;

msgl db "IOCTL PROGRAM’, 0dh,Oah, ’$’
msg?2 db 0dh, 0Oah, 'Select Printer type ’,0dh,0Oah,
db r m"g" for serial or "P" for parallel :’,’S’
msg2e db 0dh, 0Oah, 'bad selection - try again!’,0dh,0ah, 'S’
msg3 db 0dh, Oah, 'Enter printer number [1,2,3] :$°
msg4 db 0dh, Oah, 'IOCTL type [W]lrite or [R]lead :$'’
msg5 db 0dh, 0ah, ‘cannot open PRN!’,0dh,0ah, 'S’
msgb db 0dh, Oah, "IOCTL call OK’,0dh,0ah,’ count transferred = ',
pmsgba db '0’,0dh, 0ah,’ IOCTL string = ',
buf db ‘S’,0h,0dh, 0ah, 'S’
msg’ db 'Goodbye for now’,0dh,0ah, 'S’
filemsg db 0dh, 0ah,
file db 'PRN’, Oh,
db ' has been opened!’,0d,0ah,’$’
emsgl db 0dh, 0ah, "invalid function number’, 0dh, 0ah, 'S’
emsg2 db 0dh, 0ah, 'no file handle’,0dh, Oah, 'S’
emsg3 db 0dh, 0Oah, 'access denied’, 0dh,0ah, 'S’
emsgd db 0dh, 0Oah, ‘invalid handle or not open’,0dh,0ah,’$’
emsgh db 0dh, Oah, 'invalid data’,0dh, O0ah, 'S’
emsgb db 0dh, 0ah, 'invalid drive number’,b 0dh,Oah,’'$’
emsg’ db 0dh, Oah, ‘unknown error number’,0dh,0ah, 'S’
main endp ;end of main procedure
code ends ;end of code segment
end start ;

140

A Printer Device Driver

Building and Using the IOCTL Program

Use your favorite word processor to enter the text as shown in listing 5-1. Name
the source file IOCTL.

Running the IOCTL program requires that an S be entered to specify a serial
interface or a P to specify a parallel interface. In addition, the number 1, 2, or 3
must be entered to indicate which printer should be enabled. Any previously
enabled printer will be disabled. The number 1, 2, or 3 is called the adapter
number, and the S or P is called the adapter type. The IOCTL program will
translate the printer numbers (1, 2, 3) to the required internal designations (0,
1, 2). Here is a sample execution:

C>ioctl
IOCTL PROGRAM

Select Printer type

"S" for serial or "P" for parallel :S
Enter printer number [1,2,3] :1
PRN has been opened!

IOCTL type [W]lrite or [Rlead :W
IOCTL call OK

count transferred = 2

IOCTL string SO
Goodbye for now

Note that the program does not automatically convert lower-case input to
upper-case input. All keyboard input must be upper-case.

BIOS Services for Serial and Parallel Adapters

As was discussed in chapters 1 and 2, the BIOS routines for the serial and parallel
adapters are found in the ROMs of IBM and IBM-compatible PCs. Programs can
use either DOS services or BIOS services to access devices on the serial or the
parallel adapters. Using the ROM BIOS routines means bypassing DOS and
losing some of the extensive services available. However, using the ROM BIOS
routines provides greater control over the device and faster response times. In
addition, once a driver is installed, it becomes part of DOS; because DOS is not
reentrant, the driver cannot call DOS and therefore cannot use those DOS
services in any case.

The ROM BIOS routines allow us to send data to the device, to check the
status of the adapter, and, in the case of the serial adapter, to receive data (the

141

Writing MS-DOS Device Drivers, Second Edition

serial adapter may have a modem). The printer device driver uses the ROM BIOS
routines for the serial and parallel adapters to access the serial and parallel
printers.

The specific BIOS interrupts we will be using are 14h, which controls the
serial adapters, and 17h, which controls the parallel adapters. These two BIOS
interrupts perform similar functions, but they have different register conven-
tions. For both interrupts, all devices are numbered starting at 0. At the DOS
level, these device numbers start at 1; therefore, the IOCTL programssubtracts
1 from the device number to get the BIOS device number.

The functions provided by the serial adapter BIOS interrupt (14h) are shown
in table 5-2. The printer device driver will use only two of the four functions
provided by this BIOS service: the Transmit function (ah = 1) and the Get Status
function (ah = 3). For more complete descriptions, refer to the DOS Programmer’s
Reference.

The parallel port BIOS interrupt (17h) is shown in table 5-3. The printer
device driver will use the Transmit function (ah = 0) and the Get Status function
(ah = 2) of this interrupt. For further information, refer to chapter 2 and
appendix B.

In summary, the printer device driver will use only two services provided by
the two BIOS interrupts; the Transmit Function and the Get Status function.

Inside the Printer Device Driver

142

The printer device driver takes the same format as the console device driver in
chapter 4. The overall framework for device drivers will not change, except for
items that are specific to each device driver. In many cases, when you are creating
a new driver, you can use the code from another driver with little modification.

The first three sections are shown in listing 5-2. There are only two differ-
ences between these sections and those in the console device driver. The first
change is the name of the main procedure, which is now PRINTER. The second
is within the assembler directives. We no longer need the strucs for commands 4
(Input), 5 (Nondestructive Input), and 7 (Input Flush); these have been deleted.
For the Printer Device Driver, we add the strucs for commands 3 (IOCTL Input),
10 (Output Status), 12 (IOCTL Output), and 16 (Output Til Busy). We will use
these strucs in the DOS command processing section.

The Device Header

The next section is the Device Header. Normally, this section sets the appropriate
bits in the Attribute word to describe the type of driver this is and changes the
name of the device driver to the new name. In this case, however, we have a

A Printer Device Driver

Register Value Description
ah 0 Initialize serial port
1 Transmit 1 character
2 Receive 1 character
3 Get serial port status
al Character received (ah = 2) or
Character to transmit (ah = 1)
dx Serial port to use (0 or 1)

Status is returned in ax as follows:

ah Bit If Set, Means

Timeout has occurred

Transmission shift register is empty
Transmission buffer is empty

A break has been detected

A framing error has occurred

A parity error has occurred

An overrun has occurred

Data is ready

O HDNWPKR T

£
=]
e
o+

If Set, Means

Receive line signal has been detected

Ring indicator has been detected

Data set ready asserted

Clear to send asserted

A change has occurred in receive line signal
A change has occurred in ring indicator

A change has occurred in data set ready

A change has occurred for clear to send

O HDNWPK OO I

Table 5-2: The register set-up requirements for the serial adapter
BIOS interrupt 14h. This interrupt provides both transmit and receive
functions through the serial adapter.

143

Writing MS-DOS Device Drivers, Second Edition

144

Register Value Description
ah 0 transmit 1 character
1 initialize parallel port
2 get parallel port status
al character to transmit (ah = 0)
dx parallel port to use (0, 1, or 2)

Status is returned in ah as follows:

ah Bit If Set, Means

printer is not busy

parallel port acknowledge

printer is out of paper

parallel port selected

an I/O error has occurred
-1 not used

a timeout has occurred

O Wk Tt 3

Table 5-3: The register set-up requirements for the parallel adapter
BIOS interrupt 17h. This interrupt provides only transmit functions
through the parallel adapter.

decision to make with respect to the command functions that the printer device
driver will support.

The decision to be made involves the DOS version with which we wish the
printer device driver to work. With DOS versions 3.0 or higher, four additional
device driver commands are available: 13 (Device Open), 14 (Device Close), 15
(Removable Media), and 16 (Output Til Busy). For this driver, we would like the
ability to use the Output Til Busy command. This requires the Attribute word to
have the appropriate bit (13) set. Unfortunately, this is not acceptable for DOS
versions 2.x.

To allow you to experiment with the new DOS 3.0 driver calls, we present
two versions of this driver, one with and one without code for the Output Til Busy
command. Two different versions of the Device Header are provided; the first
version will work for both versions of DOS and the second version will work only
with DOS 3.0. Therefore, there will be two printer device drivers, differing only
in the Device Header used. If you use the second Device Header, you will need to

A Printer Device Driver

Listing 5-2: The code for the first part of the printer device driver. Note that
the main procedure is now called printer. Also note that the strucs have been
changed to reflect the requirements of the printer device driver.

IEEEEE S EE S SRS ESEESSEEEEREEEE S SRR SESREE RS RS ERREEEEEEEEEEEEEEEEREES
7

P * This is a Printer Device Driver *
;* Author: Robert S. Lai *
s % Date: 15 November 1991 *
;* Purpose: to replace the standard printer driver *

IR EE RS SRS RS S S S SRS SR EEEEEEE SRS SRS SRS RS ERS SRS SR SRR SRR SRR EEEEEEEE RS
’

AR ES RS SR SRR SR LSS SRS RR SRS SRS EESEE SRS SRS EREESEESEREEEEEEEEEEEE S
’

P * ASSEMBLER DIRECTIVES *

PR i R R I e S S R R R I I R R I i
’

cseg segment para public 'code’
printer proc far
assume cs:cseg, es:cseg, ds:cseg

;Request Header structures

rh struc ;request header
rh_len db ? ;len of packet
rh_unit db ? ;unit code

; (block devices only)

rh_cmd db ? ;device driver command
rh_status dw ? ;returned by device driver
rh_resl dd ? ;reserved
rh_res2 dad ? ;reserved
rh ends ;
rh0 struc ;Initialization (command 0)
rh0_rh db size rh dup (?) ;fixed portion
rh0_nunits db ? ;number of units
; (block devices only)
rh0_brk_ofs dw ? ;offset address for break
rh0_brk_seg dw ? ;segment address for break
rh0_bpb_tbo dw ? ;offset address of pointer
;to BPB array
rh0_bpb_tbs dw ? ;segment address of pointer
;to BPB array
rh0_drv_1ltr db ? ;first available drive
; (DOS 3+) (block only)
rh0 ends H

;*** The following is a new struc ***

rh3 struc ; IOCTL_INPUT (command 3)
rh3_rh db size rh dup(?) ;fixed portion
rh3_media db ? ;media descriptor from DPB

145

Writing MS-DOS Device Drivers, Second Edition

Listing 5-2: (cont.)

rh3_buf_ofs dw ? ;offset address of
;data transfer area

rh3_buf_seg dw ? ;segment address of
;data transfer area

rh3_count dw ? ;transfer count

B ; (sectors for block)
; (bytes for character)

rh3_start dw ? ;start sector number
; (block only)
| rh3 ends ;
rh8 struc ;OUTPUT (command 8)
rh8_rh db size rh dup(?) ;fixed portion
rh8_media db ? ;media descriptor from DPB
rh8_buf_ofs dw ? ;offset address of
;data transfer area
rh8_buf_seg dw ? ;segment address of
;data transfer area
rh8_count dw ? ;transfer count

; (sectors for block)
; (bytes for character)

{ rh8_start dw ? ;start sector number
| ; (block only)
rh8 ends . ;
rh9 struc ;OUTPUT_VERIFY (command 9)
‘ rh9_rh db size rh dup(?) ;fixed portion
: rh9_media db ? ;media descriptor from DPB
rh9_buf_ofs dw ? ;offset address of
;data transfer area
rh9_buf_seg dw ? ;segment address of
j ;data transfer area
rh9_count dw ? ;transfer count

; (sectors for block)

; (bytes for character)
rh9_start dw ? ;start sector number (block only)
rh9 ends ;

;*** The following is a new struc ***

i rhl0 struc ;Output_Status (command 10)
i rh10_len db ? ;len of packet

‘ rhl10_unit db ? ;unit code
; (block devices only)

i rh10_cmd db ? ;device driver command
; rh10_status dw ? ;returned by device driver
i rh10_resl dd ? ;reserved
| rhl0_res?2 dd ? ; reserved
rhl0 ends ;

146

A Printer Device Driver

Listing 5-2: (cont.)

;*** The following 1s a new struc ***

rhl2

rhl2_rh
rhl2_media
rhl2_buf_ofs
rhl2_buf_seg

rhl2_count

rhl2_start

rhl2

struc
db
db
dw
dw

dw

dw

ends

size rh
?
?

; IOCTL_OUTPUT (command 12)
dup(?) ;fixed portion
;media descriptor from DPB
;offset address of

;data transfer area
;segment address of

;data transfer area
;transfer count

; (sectors for block)

; (bytes for character)
;start sector number

; (block only)

’

;*** The following is a new struc ***

rhl6

rhl6_rh
rhl6_media
rhl6_buf_ofs
rhl6_buf_seg

rhl6_count

rhlé

struc
db
db
dw
dw
dw

ends

size rh
?
?

;OUTPUT_BUSY (command 16)
dup (?) ;fixed portion
;media descriptor

;offset address of

;data transfer area
;segment address of

;data transfer area

;byte count returned
;from device driver

7

;commands that do not have unique portions to the request header:
; INPUT_STATUS
; INPUT_FLUSH
; OUTPUT_STATUS
; OUTPUT_FLUSH

; OPEN
; CLOSE

; REMOVABLE

(command
(command
(command
(command
(command
(command
(command

.********************~k*******3&'********‘k**************************
’

P * MAIN PROCEDURE CODE

IR RS S SR SRS S SR EEEEEEEEEEEEEEEE SRS EEEEEEEEEEEEEEEEEEEEEESEEE SRS
’

begin:

*

147

I TTTMEESAT TR R

Writing MS-DOS Device Drivers, Second Edition

148

DOS

Device Driver Version Attribute Description

DOS PRN: 2.0 8000h Character device

DOS PRN: . 3.0 8800h Character device
(open/close/removable)

DOS PRN: 3.1 a000h Character device
(Output Til Busy)

The Waite Group 2.0, 3.0 c000h Character device

_ (supports IOCTL)

The Waite Group 3.0 e000h Character device
(supports IOCTL
Output Til Busy)

Table 5-4: The various Attribute words for the printer device drivers.
Note that the printer device driver in this chapter will have two
versions, one that works under DOS 2.0 and 3.0, and one that works
only under DOS 3.0 or greater.

have DOS 3.0 or greater. In chapter 10, you will see how to make a single version
of the printer device driver that will adapt itself to either version of DOS without
sacrificing features.

Changes are made to the Attribute word in the Device Header to distinguish
the two versions. Interestingly enough, DOS has redefined the Attribute word
over the years. Both versions of the Waite Group printer device driver Attribute
words are shown in table 5-4. The two Device Headers are shown in listing 5-3.

Work Space for Our Device Driver

The printer device driver retains the familiar variables rh_seg and rh_ofs, which
hold the ES and BX registers that point to the Request Header that DOS passes
to the device. In addition to these two variables, we declare two more variables.
The first variable is device, which contains a value that indicates which type of
adapter will be used; device will contain a 0 to use the parallel adapters and a
1 to use the serial adapters. The second variable added is dev_num, which
contains the number of the adapter to use. The range of values for this variable
will be 0 to 2 for parallel adapters and 0 to 1 for serial adapters. This is shown
in listing 5-4.

A Printer Device Driver

Listing 5-3: The two versions of the Device Header. The first version is for
use in DOS versions 2.0 and 3.0. The second version is used with DOS version
3.0 or greater. You will use only one of these Device Headers.

R R R R R RS R SRR RS E S EE S S SR RS SR SRR R SRR RS EEEEEEEEEEEEESEEEEEE S
7

P * DEVICE HEADER REQUIRED BY DOS 2 *

RS E S E S EEEEESEEEREEEEEEREEEEEEEEEEEEEEEEREEEEEEEEEEEREEEES
’

next_dev dd -1 ;no other drivers following
attribute dw 0c000h ;char, IOCTL

strategy dw dev_strategy ;Strategy routine address
interrupt dw dev_interrupt ;Interrupt routine address
dev_name db ' PRN ! ;name of our Console driver

IR EEEE RS EEEE SRR RS SRS RS SIS RS I R S i
’

;* DEVICE HEADER REQUIRED BY DOS 3 OR GREATER *

SRS SR RS SRS EEEEEEEEEEEEEREEEEESEEEEEEEEEEEEEE SRS SRR EEEEESEEEEE S
7

next_dev dd -1 ;no other drivers following
attribute dw 0e000h ;char, IOCTL,output til busy
strategy dw dev_strategy ;Strategy routine address
interrupt dw dev_interrupt ;Interrupt routine address
dev_name db ' PRN ! ;name of our Console driver

The STRATEGY, INTERRUPT, and Local Procedures

The STRATEGY and INTERRUPT procedures used in the console device driver
do not change for the printer device driver. The TONE procedure has been
removed from the console device driver, because there is no need for it. This is
shown in listing 5-5.

Listing 5-4: The declarations for the variables we will be using in the printer
device driver.

R EEE S S S SRR R SRR EEEEE SRS SRR R SRR SR EEEEEEEEEEEEEEEEEEEEREEEESES]
7

P * WORK SPACE FOR THE DEVICE DRIVER *

S EE SRR SRS S S S S SRS S SR SRR RS EEEEEEEEEEEEESEEEEEEEEEEEEEEREEEEEE S
’

rh_ofs dw ? ;offset address of the request header
rh_seg dw ? ;segment address of the request header
device db 0 ;0=parallel, 1= serial

dev_num db 0 ;0,1,2 depending on configuration

149

Writing MS-DOS Device Drivers, Second Edition

Listing 5-5: The code for the STRATEGY, INTERRUPT, and local procedures
used by the printer device driver.

R P e R R R R SRR R R R R R R R R R SRR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
’

P * THE STRATEGY PROCEDURE *

R SR SRS LR EREEEEEEEEEEEEEEEEEEEEE RIS RS EEEEE RS SIS
’

dev_strategy: mov cs:rh_seg,es ;save the segment address
mov cs:rh_ofs,bx ;save the offset address
ret ;jreturn to DOS

IR RS EE RS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEESEREEEEEEEEE]
7

Hd THE INTERRUPT PROCEDURE *

R RS RS E R RS S E S E RS RS EEE RS RS R SRR EEEEEEEEEEEEEEEEEEEEEEREEEESE]
i

;device interrupt handler - 2nd call from DOS

dev_interrupt:

cld ;save machine state on entry

push ds

push es

push ax

push bx

push cx

push dx

push di

push si

mov ax,cs:rh_seg ;restore ES as saved by STRATEGY call
mov es,ax ;

mov bx,cs:rh_ofs ;restore BX as saved by STRATEGY call

;jump to appropriate routine to process command

mov al,es: [bx].rh_cmd ;get request header command

rol al,1 ;times 2 for index into word table
lea di, cmdtab ; function (command) table address
mov ah, 0 ;clear hi order

add di,ax ;add the index to start of table
jmp word ptr[di] ;jump indirect

;CMDTAB is the command table that contains the word address
;for each command. The request header will contain the
;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

CMDTAB label byte ;* = char devices only
dw INITIALIZATION ; initialization
dw MEDIA_CHECK ; media check (block only)

150

A Printer Device Driver

Listing 5-5: (cont.)

dw GET_BPB ; build bpb

dw IOCTL_INPUT ; loctl in

dw INPUT ; input (read)

dw ND_INPUT ; *nondestructive input no wait
dw INPUT_STATUS ; *input status

dw INPUT_FLUSH ;*input flush

dw OUTPUT ; output (write)

dw OUTPUT_VERIFY ; output (write) with verify
dw OUTPUT_STATUS ; *output status

dw OUTPUT_FLUSH ;*output flush

dw IOCTL_OUT ; iloctl output

dw OPEN ; device open

dw CLOSE ; device close

dw REMOVABLE ; removable media

dw OUTPUT_BUSY ;*output til busy

IR SRR R RS RS E R R E SRR SRS E SRS R RS EEREEREEEEEEEEREEEEESE]
’

P * YOUR LOCAL PROCEDURES *

RS RS S SRS RS R R R R R R RS RS E R EEEEEREEEEEEEEEEEREEEEEEE
7

DOS Command Processing

Of the 21 commands for DOS version 5.0 device drivers, only a few will actually
be implemented for a particular device driver. The printer device driver will
implement commands 0 (Initialization), 3 (IOCTL Input), 8 (Output), 9 (Output
With Verify), 10 (Output Status), 12 (IOCTL Output), and 16 (Output Til Busy).

The rest of the commands require the printer device driver to return in the
Status word either the BUSY or the ERROR bit set in addition to the DONE bit.
Table 5-5 shows the Status word bits set for commands that are not applicable
in our Printer Device Driver. ,

The code for the commands listed in table 5-5 that are not used by our Printer
Device Driver (those marked “**” in table 5-5) is shown in listing 5-6.

The code needed to implement the new device driver commands, such as
IOCTL Input, IOCTL Output, Output, Output With Verify, Output Til Busy, and
Initialization, is presented in the next sections.

Command 0—Initialization The Initialization command does not change
much. The driver calls the initial procedure to display a banner and information
about the serial and parallel adapters. You will see more of this procedure in a
later section of this chapter. Again, the driver destroys the space occupied by the
Initialization procedure, and the driver specifies this. The memory used is
returned to DOS. The Break Address, which signals the last memory location

151

Writing MS-DOS Device Drivers, Second Edition

152

Number Command Description Status Bits Set
0 Initialization wE
1 Media Check DONE
2 Build BPB DONE
3 IOCTL Input **
4 Input wE
5 Nondestructive Input BUSY
6 Input Status DONE
7 Input Flush DONE
8 Output wE
9 Output With Verify wk
10 Output Status o
11 Output Flush DONE
12 ‘ IOCTL Output *k
13 Device Open DONE
14 Device Close DONE
15 Removable Media ERROR
16 Output Til Busy wk
*k The printer driver performs some processing for these

commands. The Status word setting will depend on the

outcome of the processing. The balance of unused commands
will jump to DONE or UNKNOWN.

Table 5-5: The Status word bit setting for those commands that have
no meaning in our Printer Device Driver.

that the printer device driver uses, is returned to DOS. Recall that the Break
Address is used to tell DOS where the next available location is following the
printer device driver. This is shown in listing 5-7.

Command 3—IOCTL Input The IOCTL Input command instructs the
printer device driver to return to the calling program an I/O Control string. As
was discussed earlier, the IOCTL data is two bytes in length, with the first byte
indicating the printer adapter type and the second byte indicating the adapter
number.

Listing 5-8 shows that the address of the data transfer area is contained in
rh3_buf _seg and rh3_buf ofs and is used to store two protocol bytes received by

A Printer Device Driver

Listing 5-6: The code for commands that have no meaning in the printer
device driver.

ehkkkhhkhkhkk kA hkkdkhkhhkkhkhkhkhhkhkhkhkhkdhkdhhkhhkhdhkdhhrhkhkhkhhkhkhdrdhhkdrhrkkkhxkhxkhx
’

;* DOS COMMAND PROCESSING FOR UNUSED COMMAND *

ehk kA hkhkhkkhhkhhkkdk A hdkhk Ak hkhkhkkhkhkxdhkhhkhhkhdhhkhrhdhkhhkrhhkrhhhhkrxhrhhkdhhdxkhh
’

;command 1 Media_Check
Media_Check:

jmp done ;set done bit and exit
;command 2 Get_BPB
Get_BPB:

jmp done ;set done bit and exit
;command 4 Input
Input:

jmp done ;set done bit and exit
;command 5 ND_Input
ND_Input:

jmp busy ;set busy bit and exit
;command 6 Input_Status

Input_Status:
jmp done ;set done bit and exit

;command 7 Input_Flush
Input_Flush:

Jmp done ;set done bit and exit

;command 11 Output_Flush
Output_Flush:

jmp done ;set done bit and exit

;command 13 Open
Open:
jmp done ;set done bit and exit
;command 14 Close
Close:

153

Writing MS-DOS Device Drivers, Second Edition

Listing 5-6: (cont.)

Jjmp done - ;set done bit and exit
;command 15 Removable
Removable:

jmp unknown ;set error bit/code and exit

the driver. The variable device is checked with a compare (cmp) instruction to
determine whether the lower byte specifies a parallel adapter (value is 0) or a
serial one (value is 1); the driver stores a ‘P’ or an ‘S’ in the data transfer area.
This value is subsequently returned to the IOCTL program. Similarly, the driver
returns the variable dev_num, which contains the adapter number.

Before the driver exits and sets the DONE bit of the Status word, the ES
and BX registers, which were used to store our IOCTL information, are restored.

Command 8—OQutput This command is the heart of the printer device driver.
Data sent to PRN: to be printed by a program calling our driver is processed in
this section. Each character is output to the selected printer one byte at a time.
See listing 5-9. Note that this is not related to IOCTL Output, but deals with data
to be printed.

The initial part of the Output procedure sets up the various registers used
to retrieve data from the DOS buffer pointed to by the address contained in
rh8_buf _seg and rh9_buf ofs. This particular buffer was defined in the struc
section and will be the output buffer.

Listing 5-7: The Initialization command processing. We call the initial
procedure to display information about the printer device driver. Then we
return the Break Address to DOS.

;command 0 Initialization
Initialization:
call initial ;display message
lea ax,initial ;set Break Addr. at initial
mov es: [bx].rh0_brk_ofs,ax ;store offset address
mov es: [bx].rh0_brk_seg,cs ;store segment address
Jmp done ;set done status and exit

154

A Printer Device Driver

Listing 5-8: The code for the IOCTL Input command. This command instructs
the printer device driver to return an IOCTL string.

;command 3 IOCTL_Input
JOCTL_Input:

mov di,es: [bx].rh3buf_ofs ;get buffer offset
mov ax,es: [bx].rh3_buf_seg ;get buffer
mov es,ax ; segment to es
cmp cs:device, 0 ;is it currently parallel?
jne iniol ;no - check for serial
mov al,'p’ ;yes - ASCII P
Jjmp inioctl ;store it
iniol: mov al,’s’ ;assume [Slerial
inioctl:mov es:[di],al ;Store printer type
inc di ;next location
mov al,cs:dev_num ;get device number
mov es:[di],al ;store it
mov cx,cs:rh_seg ;restore request header
mov es,Ccx ; segment to es
mov bx,cs:rh_ofs ;same for offset
jmp done ;set done bit and exit

The program then determines the printer adapter number and the printer
adapter type. Based on the value for the printer adapter, contained in the variable
device, the program branches to either the parallel or the serial output routines.

The section of the driver labeled pout outputs data using the parallel
adapter BIOS interrupt 17h. The basic loop checks the status of the parallel
adapter (ah = 2) before transmitting 1 character (ah = 0). Normally, we do not
need to check the status before sending a character. DOS issues an Output Status
(command 10) and checks to see if the printer device driver is ready to output
more characters. If so, DOS will call the printer device driver with an Qutput
command.

A status check is performed by the printer device driver for two reasons.
First, some programs bypass the DOS printer device driver by issuing interrupt
17h calls directly. This can cause the printer to become busy when our Printer
Device Driver attempts to write to it. The printer device driver then waits,
unnecessarily, until the device is no longer busy. The status check code detects
the possibility of this condition. Instead of having the printer device driver wait
until the printer is ready, we will detect the fact that the device is busy, and
return a busy indication to DOS. This allows DOS to check the status (through
an Output Status command) and when the device is not busy, resend the

155

Writing MS-DOS Device Drivers, Second Edition

Listing 5-9: The code for the printer driver output command. The code
determines the adapter type and number and branches to the appropriate

serial or parallel output routines.

;command 8 Output
Output:
mov cx,es: [bx] .rh8_count ;load output count
mov di,es: [bx].rh8_buf_ofs ;load offset address
mov ax,es: [bx] .rh8_buf_seg ;load segment address
mov es,ax ; into es
mov dl, cs:dev_num ;load printer #
mov dh, 0 ;clear hi-order DX
mov bx, 0 ;set current count to 0

;check for device type

cmp cs:device, 0 ;to parallel device?
je pout ;yes
Jjmp sout ;no - assume serial

;process output

to parallel printer

pout: cmp bx,cx ;1s current = output?
je pout?2 ;yves - we are done
mov al,es: [di] ;get output character
inc di ;point to next byte
mov ah, 2 ;service = status check
int 17h ;Printer BIOS call
test ah, 80h ;not busy (=1)7
jne poutl ;yes - continue
Jjmp pout3 ;no - exit with error
poutl: mov ah,0 ;service = print
int 17h ;Printer BIOS call
test ah, 9h ;I/0 error or Timeout?
jne perrl ;ves
inc bx ;increment current count
jmp pout ;go back for more

;process printer errors

pout2: mov ax, 0 ;N0 error
Jjmp load_status ;load status & exit

pout3: mov ax,8002h ;set error bit & ’'not ready’
jmp load_status ;load status & exit

perrl: test ah, 1 ; Timeout?
jz perr2 ;no - go to next test
mov ax,8002h ;set error bit & not ready
Jjmp load_status ;go to cleanup

perr2: test ah,8 ;I/0 Error?
jz perr3 ;no - go to next test

156

A Printer Device Driver

Listin 5-9: (cont.)
mov ax,800ah ;set error bit & Write Fault
jmp load_status ;go to cleanup
perr3: test ah, 20h ;No Paper (printer off)?
jz perrd ;no - go to last step
mov ax,8009h ;set error bit & No Paper
jmp load_status ;go to cleanup
perrd: ax,800ch ;set error bit & General Failure

;pbrocess output

sout:

stl:

soutl:

sout?2:

sout3:

mov
jmp

cmp
je
mov
int
test
jnz
jmp
test
jnz
jmp
mov
inc
mov
int
test
jnz
inc
jmp

mov
jmp
mov
jmp

load_status
to serial printer

bx, cx
sout?2
ah,3
14h
ah,20h
stl
sout3
al,20h
soutl
sout3
al,es: [di]
di
ah,1
14h
ah, 80h
sout3
bx
sout

ax,0
load_status
ax,800ah
load_status

;go to cleanup

;1s current = request count?
;yes - set status & exit
;service = status check
;RS232 BIOS call

;xfer hold register empty?
;ves (implies not busy)

;N0 - set error & exit

;is data set ready =12

;ves (implies not busy)

;no - set error & exit

;get output character
;increment for next char
;service = transmit 1 char
;RS232 BIOS call

;transmit error?

;yes - set error & exit

;no - increment output count
;go back for more

;no errors - we are done

;load status word & exit

;set error bit & 'write fault’
;set status word & exit

character to the printer device driver for printing. Thus, we prevent a “hung”
situation, which occurs when the printer is too busy to accept more characters.
The second, perhaps more convoluted, reason for a status check is that the
same output code can then be used for the Output Til Busy command. If the driver
uses the same code for processing the Output Til Busy command but does not
have the status check code, the driver can wait endlessly for the printer to free
up when passing a stream of characters. In short, the status check is doubly
justified when the Output Til Busy command shares the same code as the Output
command; the chance of the printer being busy is greatly increased if the driver

157

Writing MS-DOS Device Drivers, Second Edition

158

sends a block of characters to be printed. In either case, the status check code is
important in minimizing the time spent by the driver waiting for the printer to
be free.

The driver section labeled pout2 checks for errors that occur in the status
check and the output sections for the parallel adapter. If an error arises, the
program sets the ERROR bit and stores an appropriate error number in the status
word before exiting.

The section labeled sout transmits print data through the serial adapter
interface using interrupt 14h. The code first checks the status to ensure that the
serial adapter and the printer are ready to receive a character from the printer
device driver. If there are any errors, the driver will exit with a write fault error.
DOS does not distinguish among the different error conditions returned from the
serial adapter; the write fault error is intended to represent all such errors.

A status check is performed before a character is transmitted to the serial
adapter for the same reasons as described for the parallel adapter output. Any
busy conditions are returned to DOS, and DOS keeps checking, waiting until the
printer is ready before resending the character to the printer device driver. This
code is also used to process the Output Til Busy command.

The Output command code is shown in listing 5-9.

Command 9—OQOutput With Verify The Output With Verify command is
called from DOS when print output is desired and the command-level switch
VERIFY is set ON. This command is the same as an Output command and is
processed by jumping to the Output routine. The code for this command is shown
below:

;command 9 Output_Verify
Output_Verify:

jmp output ;same as output

Command 10—Output Status The Output Status command is sent to the
printer device driver whenever DOS is about to send an Output command to print
data. DOS needs to know the status of the output device before it sends an Output
command to the device driver. (From an efficiency viewpoint, it is better to let
DOS check and wait for a ready indication than it is for the device driver to keep
checking.) This is particularly true if DOS has other work to perform; it could not
do so if the device driver was in a loop waiting for a device to become ready to
accept data. DOS can also retry an operation several times before displaying an
error message on the console.

The Output Status routine determines the adapter type and number before
issuing an appropriate BIOS status check interrupt. The DOS BUSY bit is set in
the Status word if the device is not ready. Note that the parallel adapter status

A Printer Device Driver

bit returned by the BIOS call is reversed in meaning from the BUSY bit in the
device driver’s Status word. When interrupt 17h returns bit 7 in the ah register,
the device is not busy. Therefore, if this bit is set we do not set the BUSY bit of
the Status word. The code for this command is illustrated in listing 5-10.

Listing 5-10: The code for processing the Output Status command. The driver
sets the BUSY bit of the Status word if the device is not ready for more
output.

;command 10 Output_Status
Output_Status:

;The DOS BUSY bit of the status word is set to indicate to DOS
;that DOS should wait. If BUSY is not set (eg DONE bit only),
;this means that device is ready for more output.

;determine device type and unit number
mov dl, cs:dev_num ;load printer #
mov dh, 0 ;clear hi-order DX

;check for device type

cmp cs:device, 0 ;to parallel device?
je pstatus ;yes
jmp sstatus ;no - assume serial

;get status from parallel device
; 1f bit 7 in ah is set this means device is not busy
; so we do not set BUSY in status word.

pstatus:

mov ah,2 ;service = status check

int 17h ;Printer BIOS call

test ah,80h ;not busy or other?

jne pstatl ;yes

Jjmp busy ;no (not busy) - set BUSY!
pstatl: test ah, 9h ;I/0 Error or Timeout?

jz pstat2 ;no - exit with BUSY not set!

mov es: [bx].rh_status,8009h ;set error bit & 'No Paper’
pstat2: jmp done ;set done bit and exit

;get serial printer status

sstatus:
mov ah,3 ;service = status check
int 14h ;RS232 BIOS call
test ah,20h ;xfer hold register empty?
jz sstat ;no - set BUSY!
test al,20h ;jdata set ready?
jz sstat ;no - set BUSY!
Jjmp done ;device is ready!
sstat: Jmp busy ;device is not ready!

159

Writing MS-DOS Device Drivers, Second Edition

160

Command 12—IOCTL Output The IOCTL Output command is sent to the
printer device driver whenever a program issues a 44h service call to DOS via
interrupt 21h with a Write Request operation (al = 3). This command is processed
by inspecting the data buffer specified by DOS in the address rh12_buf seg and
rh12_buf ofs.

As defined earlier in this chapter, the IOCTL data used by both the device
driver and the program issuing an IOCTL service follows a set format. It has two
bytes, the first of which is a P or an S which indicates the parallel or the serial
adapter, and the second of which is the adapter number (0-2).

The IOCTL Output section of code converts the adapter ASCII letter P to a
0 for a parallel adapter and the S to a 1 for the serial adapter. This value is stored
in the variable device. Similarly, the second byte in the data buffer is saved in
the variable dev_num.

If the first byte in the data buffer is not a P or an S, the driver returns to
DOS with an error. Otherwise, the driver sets the DONE bit of the Status word
and exits. The code for this command is shown in listing 5-11.

Command 16—OQutput Til Busy The Output Til Busy command, which is
valid only when DOS 3.0 or greater is used, is sent to the printer device driver
when it is desirable to send an entire buffer of characters to the printer rather
than one character at a time. The command sends data until the printer device
is busy and cannot accept any more. It finds out when the printer is busy by
checking the printer’s status before sending out each character. This speeds
processing, because DOS normally calls the printer device driver each time there
is a character to be printed.

Most printers today have an internal RAM buffer that holds many charac-
ters and that acts as a temporary storage area to moderate between the relatively
fast speeds of transferring data to the printer and the slower speeds of printing
characters. The Output Til Busy command uses this feature of printers to fill up
the buffer in one shot before returning to DOS with a busy indication.

The Output Til Busy command is processed by the Output command code.
The Output command section sends characters to the printer until either the
count of output characters is exhausted or the status check code indicates the
printer is busy. If the printer returns a busy status, the driver returns to DOS
with the Status word set and the number of characters transferred. The code for
processing the Output Til Busy command is simply a jump to the Output routine.

Error Exit This section sets the Error bit of the Status word, sets the error
number, and then exits. This code has not changed from the previous chapter’s
driver and is shown in the listing of the complete printer device driver at the end
of this chapter.

A Printer Device Driver

Listing 5-11: The processing for the IOCTL Output command. The driver
converts and stores the adapter type and number.

;command 12 TIOCTL_Out
TOCTL_Out:
mov cx,es: [bx].rhl2_count ;load output count
mov di,es: [bx].rhl2_buf_ofs ;load offset address
mov ax,es: [bx].rhl12_buf_seg ;load segment address
mov es,ax ; into es
mov al,es:[di] ;pickup Device
cmp al,'p’ ;1s 1t parallel?
jne IOCTL1 ;no - test for serial
mov cs:device, 0 ;yes - move 0
jmp IOCTL2 ;now get device number
TIOCTL1: cmp al,’s’ ;is it serial?
jne IOCTL3 ;no - wrong IOCTL data
mov cs:device, 1 ;yes - move 1
IOCTL2: inc di ;next character
mov al,es:di ;pickup device number
mov cs:dev_num,al ;store it
mov ax,0 ;IO error
jmp TIOCTL4 ;load status & exit
IOCTL3: mov ax,8003h ;not P or S - error
IOCTL4: mov cX,cs:rh_seg ;restore request header
mov es,Ccx ; segment to es
mov bx,cs:rh_ofs ;restore offset also
nov es: [bx].rh_status,ax ;return status
Jjmp done ;set done bit and exit

Common Exit This section completes the Output command processing by
restoring the ES and BX registers and returning the error code and the number
of bytes transferred to the printer adapter.

The BUSY bit is set if needed. For the printer device driver, this bit needs
to be set if the Output Status command processing code finds the printer busy.
Lastly, the DONE bit of the Status word is set before returning to DOS. Listing
5-12 illustrates the code required by the Common Exit routines.

End of Program We finally have reached the end of the printer device driver!
The driver simply displays a banner indicating the number of serial and parallel
adapters that the printer device driver will support. The Equipment Check
interrupt (11h) is used to return the number of serial and parallel adapters

161

Writing MS-DOS Device Drivers, Second Edition

Listing 5-12: The Common Exit processing. The Output command results are
processed at the label load_status.

RS SR SRR S EEEEEEEEEEEEEEEEEESEEEEEEEE SRS SRS RS
7

Hd COMMON EXIT *

AR EEESERESEEEEEEEEEE]
7

load_status:

mov cxX,Ccs:rh_seg ;restore request header
mov es,Ccx ; segment to es
mov cx,cs:rh_ofs ;restore offset also
xchg bx,cx ;switch them
mov es: [bx].rh_status, ax ;return status
mov es: [bx].rh8_count, cx ;return output count
jmp done ;set done bit and exit
busy: or es: [bx].rh_status, 0200h ;set busy bit
done: or es: [bx].rh_status,0100h ;set done
pop si ;restore all registers
pop di .
pop dx
pop cx
pop bx
pop ax
pop es
pop ds
ret ;return to DOS

supported by the PC. Because the driver cannot tell if printers are attached to
these adapters, it only indicates what adapters are present.

The initial procedure is executed only once by the Initialization command,
so the routine is placed at the end of the device driver instead of in the section
called “Local Procedures.” This is done so that DOS can reuse these memory
locations once the Initialization phase is complete. Listing 5-13 shows the code
for the End of Program processing.

Building the Printer Device Driver

To build the printer device driver discussed in this chapter, use a word processor
to enter the text shown in listing 5-14, which is the complete listing of the printer
device driver. Name the text file printer.asm.

162

A Printer Device Driver

Listing 5-13: The code required for the End of Program processing. The
initial procedure is placed at the end of the Printer Device Driver so that we
can tell DOS to overwrite it. We do this by specifying the Break Address at
the initial procedure.

ISR S SRS EE SRR EEEEEEEEEEEEEEESEEEEEREEEEEEEEEREEESEEEEEEEEESESEES]
’

i END OF PROGRAM *

IR R SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEREEREEEESEEEEEEEEEEEEEREEEESEEES]
’

;this procedure is called from the Initialization command and

;1s executed only once. We tell DOS that the next available
;memory location (Break Address) is here. This allows DOS to over
;write this code; we save space.

initial proc near ;display message on console
int 11h ;equipment check
push ax ;save for parallel calculation
mov cl,9 ;shift count
shr ax,cl ;get serial ports
and al,’7 ;keep 3 right bits
add al,30h ;make it an ASCII number
mov msglc,al;store it
pop ax ;restore for parallel calculation
mov cl,14 ;shift count
shr ax,cl ;get parallel ports
and al,3 ;keep 2 right bits
add al,30h ;make it an ASCII number
mov msglb,al;store it
lea dx,msgl ;message to be displayed
mov ah,9 ;display
int 21h ;DOS call
ret ;return to caller
initial endp
msgl db ‘The Waite Group Printer Driver’,0dh,Oah,
db ' supporting’, 0dh, Oah,’ ’,
msglb db '0 parallel printers’, 0dh,O0ah,’ ',
msglc db '0 serial printers’, 0dh, Oah, 'S’ ,
printer endp ;end of printer procedure
cseg ends ;end of cseg segment
end begin ;end of program

Remember to use the Device Header that matches the version of DOS being
used. Then assemble, link, and convert the driver to a .COM format. To install
the driver, build a CONFIG.SYS file, specifying the printer device driver file in
a device= command.

163

Writing MS-DOS Device Drivers, Second Edition

Listing 5-14: The complete listing for the printer device driver.

page 60,132
title A Printer Device Driver

IEEEE SRS E SRS SR SRR SRS RS R RS RS SRR EEEE
7

;* This is a Printer Device Driver *
;* Author: Robert S. Lai *
Fad Date: 15 November 1991 *
;* Purpose: to replace the standard printer driver *

RS S SRS RS RS S SRR S SRS SRS R R SRS E SRR EEE R SRR EEEEEEEEEEEEES
7

RS SRS SR SRS RS R RS RS EEE R SRR SRR EEEEEEE R
’

P* ASSEMBLER DIRECTIVES *

IEEE S S EEE S S EESSEREREEEESE SRR SRS EEEREEEEEEESEEEEEEEEEEESEESS
7

cseg segment para public ‘code’
printer proc far
assume cs:cseg, es:cseg, ds:cseg

;Request Header structures

rh struc ;request header
rh_len db ? ;len of packet
rh_unit db ? ;unit code

; (block devices only)

rh_cmd db ? ;device driver command
rh_status dw ? ;returned by device driver
rh_resl dd ? ;reserved
rh_res2 dd ? ;reserved
rh ends ;
rh0 struc ;Initialization (command 0)
rh0_rh db size rh dup (?) ;fixed portion
rh0_nunits db ? ;number of units
; (block devices only)
rh0_brk_ofs dw ? ;offset address for break
rh0_brk_seg dw ? ;segment address for break
rh0_bpb_tbo dw ? ;offset address of pointer
;to BPB array
rh0_bpb_tbs dw ? ;segment address of pointer
;to BPB array
rhO_drv_1tr db ? ;first available drive
; (DOS 3+) (block only)
rh0 ends ;

;*** The following is a new struc ***

rh3 struc ; IOCTL_INPUT (command 3)
rh3_rh db size rh dup(?) ;fixed portion
rh3_media db ? ;media descriptor from DPB

164

A Printer Device Driver

Listing 5-14: (cont.)

rh3_buf_ofs
rh3_buf_seg

rh3_count

rh3_start
rh3

rh8

rh8_rh
rh8_media
rh8_buf_ofs
rh8_buf_seg

rh8_count

rh8_start
rh8

rh9

rh9_rh
rh9_media
rh9_buf_ofs
rh9_buf_seg
rh9_count

rh9_start
rh9

dw

dw

dw

dw
ends
struc
db
db
dw
dw

dw

dw
ends
struc
db
db
dw
dw
dw

dw
ends

size rh
?
?

size rh

dup(?)

dup (?)

;joffset address of
;data transfer area
;segment address of
;data transfer area
;transfer count

; (sectors for block)

; (bytes for character)

;start sector number

; (block only)

’

;OUTPUT (command 8)
; fixed portion

;media descriptor from DPB

;offset address of
;data transfer area
;segment address of
;data transfer area
;transfer count

; (sectors for block)

; (bytes for character)

;start sector number

; (block only)

7

;OUTPUT_VERIFY

(command 9)
;fixed portion

;media descriptor from DPB

;offset address of
;data transfer area
;segment address of
;data transfer area
;transfer count

; (sectors for block)

; (bytes for character)

;start sector number

’

;*** The following is a new struc ***

rhl0
rhl1l0_len
rh10_unit

rh10_cmd
rhl1l0_status
rhl0_resl
rhl10_res2
rhl0

struc
db
db

db
dw
dd
ad
ends

CRRIVERIVER V)

(block only)

;Output_Status (command 10)

;len of packet

;unit code

; (block devices only)

;device driver command
;returned by device driver

;reserved
;reserved

’

165

Writing MS-DOS Device Drivers, Second Edition

Listing 5-14: (cont.)

;*** The following is a new struc ***

rhl2

rhl2_rh
rh12_media
rhl2_buf_ofs
rhl2_buf_seg

rhl2_count

rhl2_start

rhl2

;*** The following 1s a new struc ***

rhl6

rhl6_rh
rhl6_media
rhl6_buf_ofs
rhl6_buf_seg

rhl6_count

rhl6

struc
db
db
dw
dw

dw

dw

ends

struc
db
db
dw
dw
dw

ends

; IOCTL_OUTPUT
size rh dup(?)

’

;OUTPUT_BUSY

size rh dup

’

(command 12)
;fixed portion
? ;media descriptor from DPB
? ;offset address of
;data transfer area
? ;segment address of
;data transfer area
? ;transfer count
; (sectors for block)
; (bytes for character)
? ;start sector number
; (block only)

(command 16)

;fixed portion

? ;media descriptor

? ;offset address of
;data transfer area

? ;segment address of
;data transfer area

? ;byte count returned
;from device driver

;commands that do not have unique portions to the request header:
; INPUT_STATUS
; INPUT_FLUSH
; OUTPUT_STATUS
H OUTPUT_FLUSH

; OPEN
; CLOSE

; REMOVABLE

(command
(command
(command
(command
(command
(command
(command

6)

7)

10)
11)
13)
14)
15)

;**

P* MAIN PROCEDURE CODE

;****************'k***‘k*****

begin:

166

*

A Printer Device Driver

Listing 5-14: (cont.)

RS SRR S EE SR L SRS EE SRS RS SRS ER SRS SRS SRS REEEERE SRR EEEEEEEEEESS
’

P * DEVICE HEADER REQUIRED BY DOS 3 OR GREATER *

IR RS S S SRS SRS SRR R R RS S SRS SRR SRS EERERE RS RS EEEEEREREEREEEEEREEERESRS
7

next_dev dad -1 ;no other drivers following
attribute dw 0e000h ;char, IOCTL, output til busy
strategy dw dev_strategy ;Strategy routine address
interrupt dw dev_interrupt ;Interrupt routine address
dev_name db ' PRN ! ;name of our Console driver

A SRR SRR SRR SRS REEERSE SRR SRR RS SRS ERE SR RS EEEEEREEEEEEEEEEEEEES]
’

P * WORK SPACE FOR THE DEVICE DRIVER *

IS S E S SEE R SRR RS RS R RS S S S E SRS E S SR EREREREEEEEREREREEREEREEREEEEEEEEEES]
’

rh_ofs dw ? ;offset address of the request header
rh_seg dw ? ;segment address of the reguest header
device db 0 ;0=parallel, 1= serial

dev_num db 0 ;0,1,2 depending on configuration

IR RS SRR R R RS R SRR R SRR R SRS R RS S EEREREEE R R EEREREEREEEREEEEEEEEEEEES]
7

P* THE STRATEGY PROCEDURE *

IR RS S SRR R R R R R R R SRS RS R R RS EEE R R R R RS R R R EEEEEE RS RS
7

dev_strategy: mov cs:rh_seg,es ;save the segment address
mov cs:rh_ofs,bx ;save the offset address
ret ;jreturn to DOS

I.**

e THE INTERRUPT PROCEDURE *

EEEEEEEEEER S SR EE SRS RS R R R RS SES R SRR RS EEEEEREEEEEEEESEESS
’

;device interrupt handler - 2nd call from DOS

dev_interrupt:

cld ;save machine state on entry

push ds

push es

push ax

push bx

push cx

push dx

push di

push si

mov ax,cs:rh_seg ;restore ES as saved by STRATEGY call
mov es, ax H

mov bx,cs:rh_ofs ;restore BX as saved by STRATEGY call

167

Writing MS-DOS Device Drivers, Second Edition

Listing 5-14: (cont.)

;jump to appropriate routine to process command

mov
rol
lea
mov
add
jmp

al,es: [bx].rh_cmd

al,1
di,cmdtab
ah,0

di,ax

word ptr[di]

;get request header command

;times 2 for index into word table
;function (command) table address
;clear hi order

;add the index to start of table
;jump indirect

;CMDTAB is the command table that contains the word address
;for each command. The request header will contain the
;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

CMDTAB label
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
aw

byte
INITIALIZATION
MEDIA_CHECK
GET_BPB
TIOCTL_INPUT
INPUT
ND_INPUT
INPUT_STATUS
INPUT_FLUSH
OUTPUT
OUTPUT_VERIFY
OUTPUT_STATUS
OUTPUT_FLUSH
IOCTL_OouT
OPEN

CLOSE
REMOVABLE
OUTPUT_BUSY

2

’

2

* = char devices only

initialization

media check (block only)
build bpb

ioctl in

input (read)
*nondestructive input no wait
*input status

*input flush

output (write)

output (write) with verify
*output status
*output flush

ioctl output

device open

device close

removable media

*output til busy

;*************‘k**

P * YOUR LOCAL PROCEDURES

;**

*

;**

Had DOS COMMAND PROCESSING

;**

;command 0

Initialization:

call
lea
mov
mov

jmp

168

Initialization

initial
ax,initial

es: [bx].rh0_brk_ofs,ax
es: [bx].rh0_brk_seg,cs

done

*

;display message

;set Break Addr. at initial
;store offset address
;store segment address

;set done status and exit

A Printer Device Driver

Listing 5-14: (cont.)

;command 1
Media_Check:

jmp

;command 2
Get_BPB:

jmp

;command 3
IOCTL_Input:

mov
mov
mov
cmp
jne
mov
jmp
iniol: mov
inioctl:mov
inc
mov
mov
mov
mov
mov
jmp

;command 4
Input:

jmp

;command 5
ND_TInput:

jmp

;command 6
Input_Status:

jmp

;command 7
Input_Flush:

jmp

Media_Check

done

Get_BPB

done

IOCTL_Input

; set

; set

di,es: [bx].rh3_buf_ofs
ax,es: [bx] .rh3_buf_seg

es,ax
cs:device, 0
iniol

al,’'p’
inioctl
al,’s’
es:[di],al
di

al,cs:dev_num
es:[di],al
cx,cs:rh_seg
es,cx
bx,cs:rh_ofs
done

Input

done

ND_TInput

busy

Input_Status

done

Input_Flush

done

done bit and exit

done bit and exit

;get buffer offset

;get buffer

; segment to es

;1s it currently parallel?
;no - check for serial
;yes - ASCII P

;store it

;assume [Slerial

;Store printer type
;next location

;get device number
;store it

;restore request header
; segment to es

;same for offset

;set done bit and exit

;set done bit and exit

;set busy bit and exit

;set done bit and exit

;set done bit and exit

169

Writing MS-DOS Device Drivers, Second Edition

Listing 5-14: (cont.)

;command 8
Output:

mov
mov
mov
mov

mov
mov
mov

Output

cx,es: [bx] .rh8_count
di,es: [bx].rh8_buf_ofs
ax,es: [bx] .rh8_buf_seg
es,ax

dl, cs:dev_num
dh, 0
bx, 0

;check for device type

cmp
je
jmp

;process output

pout: cmp
je
mov
inc
mov
int
test
jne
Jmp

poutl: mov
int
test
jne
inc
Jjmp

cs:device, 0
pout
sout

to parallel printer
bx, cx
pout2
al,es: [di]
di

ah,2

17h

ah, 80h
poutl
pout3
ah,0

17h

ah, %h
perrl

bx

pout

;process printer errors

pout2: mov
Jmp
pout3: mov
jmp
perrl: test
jz
mov
Jmp
test
jz
mov
Jmp

perr2:

170

ax,0
load_status
ax,8002h
load_status

ah,1

perr2
ax,8002h
load_status
ah,8

perr3

ax, 800ah
load_status

;load output count
;load offset address
;load segment address
; into es

;load printer #
;clear hi-order DX
;set current count to 0

;to parallel device?
iyes
;no - assume serial

;is current = output?
;yes - we are done

;get output character
;point to next byte
;service = status check
;Printer BIOS call

;not busy (1)°?

;yes - continue

;no - exit with error
;service = print
;Printer BIOS call

;I/0 error or Timeout?
iyes

;increment current count
;go back for more

;N0 error
;load status & exit
;set error bit & ’'not ready’
;load status & exit

; Timeout?

;no - go to next test

;set error bit & not ready
;g0 to cleanup

;I/0 Error?

;no - go to next test

;set error bit & Write Fault
;go to cleanup

A Printer Device Driver

Listing 5-14: (cont.)

perr3:

perrd:

;process output

sout:

stl:

soutl:

sout?2:

sout3:

test
jz
mov
jmp
mov
Jjmp

cmp
je
mov
int
test
jnz
jmp
test
jnz
jmp
mov
inc
mov
int
test
jnz
inc
jmp

mov
jmp
mowv
jmp

;command 9

Output_Verify:

jmp

;command 10

Output_Status:

ah,20h
perr4
ax,8009%h

load_status

ax, 800ch

load_status

to serial printer

bx, cx
sout?2
ah,3
14h
ah,20h
stl
sout3
al,20h
soutl
sout3
al,es: [di]
di
ah,1
14h
ah, 80h
sout3
bx
sout

ax, 0

load_status

ax,800ah

load_status

Output_Verify

output

Output_Status

;No Paper (printer off)?

;no - go to last step

;set error bit & No Paper

;g0 to cleanup

;set error bit & General Failure
;go to cleanup

;1s current = request count?
;vyes - set status & exit
;service = status check
;RS232 BIOS call

;xfer hold register empty?
;ves (implies not busy)

;no - set error & exit

;1s data set ready =17

;ves (implies not busy)

;no - set error & exit

;get output character
;increment for next char
;service = transmit 1 char
;RS232 BIOS call

;transmit error?

;yes - set error & exit

;no - increment output count
;g0 back for more

;no errors - we are done

;load status word & exit

;set error bit & ‘write fault’
;set status word & exit

;same as output

;The DOS BUSY bit of the status word is set to indicate to DOS

;that DOS should wait.

If BUSY is not set (eg DONE bit only),

;this means that device is ready for more output.

;determine device type and unit number
dl, cs:dev_num

mov
mov

dh, 0

;load printer #
;clear hi-order DX

171

Writing MS-DOS Device Drivers, Second Edition

Listing 5-14: (cont.)

;check for device type

cmp cs:device, 0 ;to parallel device?
je pstatus ;yes
Jjmp sstatus ;no - assume serial

;get status from parallel device
; 1f bit 7 in ah is set this means device is not busy
; so we do not set BUSY in status word.

pstatus:

mov ~ ah,2 ;service status check

int 17h ;Printer BIOS call

test ah, 80h ;not busy or other?

jne pstatl _ ;ves

Jjmp busy ‘ ;no (not busy) - set BUSY!
pstatl: test ah,9h ;I/0 Error or Timeout?

jz pstat2 ;no - exit with BUSY not set!

mov es: [bx].rh_status, 8009h ;set error bit & 'No Paper’
pstat2: jmp done : ;set done bit and exit

;get serial printer status

sstatus:
mov ah,3 ;service = status check
int 14h ;RS232 BIOS call
test ah,20h ;xfer hold register empty?
jz sstat ;no - set BUSY!
test al,20h ;data set ready?
jz sstat ;no - set BUSY!
Jjmp done ;device is ready!
sstat: Jmp busy ;device is not ready!
;command 11 Output_Flush

Output_Flush:

Jjmp done ;set done bit and exit
;command 12 IOCTL_Out
IOCTL_Out:

mov cx,es: [bx].rhl2_count ;load output count

mov di,es: [bx].rhl2_buf_ofs ;load offset address

mov ax,es: [bx].rhl12_buf_seg ;load segment address

mov es,ax ; into es

mov al,es: [di] ;pickup Device

cmp al,'p’ ;is it parallel?

jne IOCTL1 ;no - test for serial

mov cs:device, 0 ;vyes - move 0

Jmp IOCTL2 ;now get device number
IOCTL1l: cmp al,’s’ ;is it serial?

jne IOCTL3 ;no - wrong IOCTL data

mov cs:device, 1 ;yes - move 1

172

A Printer Device Driver

Listing 5-14: (cont.)

IOCTL2: inc
mov
mov
mov

Jjmp
IOCTL3: mov

IOCTL4: mov
mov
mov
mov

jmp

;command 13
Open:

jmp

;command 14
Close:

jmp

;command 15
Removable:

jmp

;command 16

Output_Busy:

jmp

di

al,es: [di]
cs:dev_num,al
ax, 0

IOCTL4
ax,8003h
cx,cs:rh_seg
es,cx
bx,cs:rh_ofs
es: [bx].rh_status, ax
done

Open

done

Close

done

Removable

unknown

Output Til Busy

output

;next character
;pickup device number
;store it

;N0 error

;load status & exit

;not P or S - error
;jrestore request header
; segment to es
;restore offset also

;return status
;set done bit and exit

;set done bit and exit

;set done bit and exit

;set error bit/code and exit

;use Output code to process

;**

P * ERROR EXIT

;**

unknown:
or

jmp

es: [bx].rh_status,8003h

done

*

;set error bit and error code
;set done and exit

;**

P * COMMON EXIT

;**

load_status:

mov
mov
mov

cx,cs:rh_seg
es,cx
cx,cs:rh_ofs

*

;restore request header
; segment to es
;jrestore offset also

173

Writing MS-DOS Device Drivers, Second Edition

Listing 5-14: (cont.)

xchg bx,cx ;switch them

mov es: [bx].rh_status,ax ;return status

mov es: [bx].rh8_count,cx ;return output count

Jjmp done ;set done bit and exit
busy: or es: [bx].rh_status,0200h ;set busy bit
done: or es: [bx].rh_status,0100h ;set done

pop si ;restore all registers

pop di

pop dx

pop cx

pop bx

pop ax

pop es

pop ds

ret ;return to DOS

;**

P * END OF PROGRAM *

;**

;this procedure is called from the Initialization command and

;1s executed only once. We tell DOS that the next available
;memory location (Break Address) is here. This allows DOS to over
;write this code; we save space.

initial proc near ;display message on console
int 11lh ;equipment check
push ax ;save for parallel calculation
mov cl,9 ;shift count
shr ax,cl ;get serial ports
and al,7 ;keep 3 right bits
add al,30h ;make it an ASCII number
mov msglc,al;store it
pop ax ;restore for parallel calculation
mov cl,14 ;shift count
shr ax,cl ;get parallel ports
and al,3 ;keep 2 right bits
add al,30h ;make it an ASCII number
mov msglb,al;store it
lea dx,msgl ;message to be displayed
mov ah,?9 ;display
int 21h ;DOS call
ret ;return to callerx

initial endp

174

A Printer Device Driver

Listing 5-14: (cont.)

msgl db ‘The Waite Group Printer Driver’,0dh, Oah,
db " supporting’, 0dh, Oah, " ',

msglb db '0 parallel printers’,0dh,Oah,” ',

msglc db "0 serial printers’, 0dh, 0ah,’s$’

printer endp ;end of printer procedure

cseg ends ;end of cseg segment
end begin ;end of program

Using the Printer Device Driver

The printer device driver normally will access the printer attached to the first
parallel adapter interface when it is first booted. When you wish to use another
printer, use the IOCTL program again to change the printer selection.

Summary

In this chapter, we have built a printer device driver that takes advantage of the
PC’s ability to support up to five printers. Additional device driver commands,
such as IOCTL Input and IOCTL Output, have been explored. In addition, we
have also provided a quick overview of the powerful I/O Control commands from
both the program’s viewpoint and the printer device driver’s viewpoint. Some of
the differences between DOS versions 2.0 and 3.0 and higher that affect device
drivers have also been discussed. The printer device driver in this chapter has
more features than are available with the standard DOS device drivers. In the
next chapter, we will continue this idea and build an even more powerful clock
device driver.

Questions

1. Are there practical reasons for using printers on parallel ports rather
than on serial ports?

Why does the printer device driver support only two serial printers?

Can you put printer initialization code into the printer device driver?

175

Writing MS-DOS Device Drivers, Second Edition

176

4. Inthe section “Command 8—OQOutput,” the discussion on status checking
indicated that one program using BIOS interrupts to the printer can
interfere with another program using the printer device driver. How is
this possible? I thought DOS could only execute one program at a time.

5. What other functions can be added to I/O Control processing?

6. Why does the IOCTL program ask for adapter type first, rather than for
IOCTL Read or Write?

Answers may be found in appendix F.

- Chapter 6

A Clock Device
Drlver

| f"I‘he Clock/Calendar Chlp
' The Clock Dev1ce Driver Functions

Overview of PC Clocks
' and Timing Signals

| Programmmg the MMB58 167A
- Clock Chip

Where Is the Clock‘7
,Res1dent Programs o

~ Usingthe Timer Interrupt
o ,”Hii,for Tlme D1splays e

A Clock Device Driver

I n this chapter, we will build a clock device driver. This driver will be used
to set the system time and date automatically. The driver will also display the time
continually on the PC’s screen. The standard clock driver that is built into DOS can
program a standard clock; our driver will replace it.

Unlike the device drivers of chapters 3 and 4, which used standard PC
hardware, the clock device driver will require nonstandard add-on hardware—a
clock/calendar chip. You may already have this chip on a multifunction card that
also provides additional memory, a parallel and/or a serial port, and perhaps a
modem.

The clock driver will contain code to determine where the address of the clock
chipis on the PCbus. The driver will alsoillustrate how the time and date is retrieved
from the clock chip to set the DOS time and date. Finally, to keep the time on screen
continuously, we will add Terminate but Stay Resident code to the driver.

The Clock/Calendar Chip

The clock device driver is based on the National Semiconductor clock/calendar chip
MM58167A. This chip is present on many multifunction cards made by third-party
manufacturers, such as AST Research.

When the PC is turned off, the MM58167A chip maintains the time and date
by drawing power from a battery. The clock device driver will read the chip for the
time and date, display it on the screen, and write a new time and date to the chip
when requested. Although the clock device driver in this chapter will be written to
program the MM58167A, it can be changed easily to suit other types of clock chips.

The Clock Device Driver Functions

The clock device driver will replace the standard DOS clock device driver. Whenever
you boot the PC, DOS will request the time and date via the standard clock device

179

Writing MS-DOS Device Drivers, Second Edition

driver, which is normally set to midnight of January 1, 1980. Thus, when using
the standard clock driver, you will need to set the time and date through the
TIME and DATE commands.

The clock device driver in this chapter will read the MM58167A chip upon
a Read command from DOS. The Read command is requested only once of the
driver, during the boot phase. Whenever you use the TIME and DATE commands
to set the time and date, DOS will send a Write command to the clock device
driver. This Write command signals the driver to set the MM58167A chip with
the time and date passed by DOS.

When DOS sends a Read command, the clock device driver will read the time
and date stored in the MM58167A clock chip and return it to DOS, which stores
it in a special location. Whenever the time and date is set by the user, DOS sends
a write command to the clock device driver, which causes the new time to be
written into the MM58167A clock chip.

In addition to normal clock and calendar functions, we will build into the
clock device driver the ability to display the time on the screen. This is accom-
plished through a feature of DOS that allows programs to “terminate but stay
resident.” These programs are loaded into memory like ordinary programs, but
when they have finished, they do not exit and are not removed from memory.
Instead, they reside in memory and can perform a function on demand regardless
of what other programs may be running. For example, a key press, a timer
interrupt, or a call to a special interrupt may activate the resident program. This
ability to perform a function on demand is used in the clock device driver to
display the time on the screen.

Another feature we will build into the clock device driver is the ability to
find the hardware address of the clock calendar chip. Normally when clock
calendars are available as options on a PC bus card, they can be set to several
addresses using tiny DIP switches. This prevents conflicts if another device
already uses a certain address. Because most clock calendars have this select-
able-address feature, we will build the clock device driver so that it can address
the correct clock chip ports. To do so, the driver searches through typical clock
chip ports, storing the address of a valid port determined through testing, and
writing the code to reference this port. In effect, the software is matched to the
hardware settings. Without this feature, the clock device driver software would
have to be modified each time the hardware address changes.

Overview of PC Clocks and Timing Signals

There are literally dozens of clocks within the software and hardware of the PC.
You will need to understand the function of these clocks in order to write and use
the clock device driver.

180

A Clock Device Driver

The most basic of all clocks is the system clock, which is a simple circuit that
generates a 14.31818-MHz frequency. This frequency is used to control the color
video adapter. Itis divided by 3 to generate a 4.772727-MHz frequency that drives
the Intel 8088 microprocessor, and the frequency that drives the 8088 is divided
by 4 (producing 1.1931817 MHz) and fed to the 8253-5 timer chip. The PC uses
the timer chip to perform a variety of functions, such as memory refresh and
generating a timer interrupt. Every 64K cycles, the 8253-5 timer chip, running
at 1.19 MHz, will generate a hardware interrupt to interrupt 8h at a rate of 18.2
times per second. Thus, the basic clock for DOS is through interrupt 8h and occurs
18.2 times per second. As you will see shortly, this is important to software clock
functions. Figure 6-1 ties all of these clocks together.

14.318 MHz

14.318 MHz

Crystal 8284A

i

SYSTEM
BUS

2.38 MHz
divided
by 2

4.77 MHz

8253-5 generates an
1.19 MHz Timer INTERRUPT (8h)
18.2 times
per second

Figure 6-1: The major hardware clocks within the PC. We will need
the timer interrupt that is generated from the 8253-5 timer chip 18.2
times per second.

181

Writing MS-DOS Device Drivers, Second Edition

The Timer Interrupt

The timer interrupt, 8h, is important to the clock functions within the PC. It is
generated 18.2 times per second by the 8253-5 timer chip and is used by DOS to
update a time-of-day counter in low memory (locations 46Ch through 46Fh). This
counter contains the number of timer ticks since midnight of the starting day.
The value of this counter will range from 0 (start of day) to 1,573,040 (1800B0h),
which represents midnight of the starting day. DOS uses this time-of-day counter
to calculate the hours, minutes, and seconds that you use through programs.

The time-of-day counter can be read or set from a program by using the 1Ah
interrupt. However, it is not recommended that you use this interrupt, because
once you use interrupt 1A, you must process the rollover from one day to another.
Doing so is unnecessary and a lot of work.

In addition to setting the time-of-day counter, interrupt 8h will generate -
an interrupt (1C) 18.2 times per second. Many programs take advantage of
this interrupt to perform some time-dependent function. We will use this partic-
ular interrupt to refresh the time on our screens.

Figure 6-2 shows the relationships among the 8h, 1Ah, and 1Ch interrupts.

| Programming the MM58167A Clock Chip

182

The MM58167A clock/calendar chip contains counters for the various parts of the
time and date. Each counter is referenced by an offset relative to the port address
that has been selected by DIP switches for the clock chip. In table 6-1, you can
see that the counter for 1/10,000ths of a second is assigned to the first port address
(0) of the clock chip. The second port address (1) is used for tenths and hundredths
of a second, the third port is used for seconds, and so on.

RAM locations on the chip are used to store certain information for which
the chip does not provide a counter (see ports 8-F). For example, port 9 can be
used to store the previous month, and port ah can be used to store the year. This
feature of the MM58167A chip will be used by our driver to retain information.
The battery that is part of the clock chip circuit will maintain the contents of the
RAM after the PC is turned off. This allows the clock device driver to determine
whether the month or year has changed since you last used the PC.

We program the MM58167A chip using IN and OUT instructions like this:

mov dx,340h ;base address of our clock board is 340h
add dx, 2 ;+2 to access the seconds counter
in al,dx ;get the seconds count from the chip

A Clock Device Driver

1/18.2 seconds —| |=—
1IU UL INTERRUPTSh | | Updates
18.2
times _—
per second <= = 46C Low
46E High
INTERRUPT 1Ch
Time of Day Counter
18.2 times INTERRUPT 1Ah Read
per second
Set

USER
PROGRAM

Figure 6-2: The 8h, 1Ch, and 1Ah interrupts. The 1Ch interrupt is used
in the clock device driver to display the time on the screen. 8h updates
the time of day counter and 1A can be used by a user program to read
or set the time of day counter.

Binary Coded Decimal Values

Unfortunately, you cannot just read or set the MM58167A chip using binary data.
The chip has been designed for use with Binary Coded Decimal (BCD) values.

BCD numbers are simply binary numbers that occupy four bits and contain
a value from 0 to 9. An 8-bit byte contains two such BCD numbers: the left four-bit
BCD number represents the ten’s value and the right four bits represent the
one’s value.

The MM58167A chip used BCD values in the counters that keep track of
time. You decide whether the RAM locations will use BCD or plain binary values.

183

Writing MS-DOS Device Drivers, Second Edition

Base Port

Address Description

+0 1/10,000ths counter
+1 1/100 +1/10 counter
+2 Seconds counter

+3 Minutes counter

+4 Hours counter

+5 Day-of-week counter
+6 Day-of-month counter
+7 Month counter

+8 1/10,000ths RAM

+9 1/100 + 1/10ths RAM
+a Seconds RAM

+b Minutes RAM

+C Hours RAM

+d Day-of-week RAM

+e Day-of-month RAM
+f Months RAM

+10 Interrupt status register
+11 Interrupt control register
+12 Counter reset

+13 RAM reset

+14 Status bit

+15 GO command

+16 Standby interrupt
+1f Test mode

Table 6-1: The port addresses for the counters and RAM locations
within the MM58167A clock/calendar chip.

For the clock device driver, some procedures must be developed in order to
convert BCD values to hex and vice versa. The point here is that when you read
or write the chip counters you have to be careful of the data that you use.

Where Is the Clock?

184

As mentioned earlier, the clock device driver will contain a procedure that will
determine the port location of the clock chip automatically. It is important to be
careful in doing this, because arbitrary poking around in port addresses may
disturb other devices.

A Clock Device Driver

The wrong way to check for a clock chip would be to write values to all the
ports, and to wait for one of the ports to be updated because it is a clock port.
Doing so would destroy valuable control-status information for most of the devices
that are part of the PC.

The best method for finding the clock is to read some commonly assigned
port addresses at which the clock chip usually resides, checking for a valid
number in one of them. This method takes advantage of the fact that when an
IN instruction is used, ports that do not have associated hardware will return
FEh or FCh. For example, if the counter for seconds is checked, the values
returned cannot be higher than 59. If they are, then there are two assurances
that the procedure for determining the clock chip address is correct.

Resident Programs

In order for the clock device driver to display the time on the screen, the
Terminate but Stay Resident programming feature is used. Programs that use
this feature do so by issuing a DOS interrupt (21h) for the 31h service. This allows
the program to continue residing in memory after it has passed control back to
DOS. Because it is in memory it can be activated at any time, without the delay
normally associated with reading a program from a disk.

Once they have given control back to DOS, resident programs never get
control again unless the program itself takes over an interrupt. Taking over an
interrupt involves changing the address of a procedure to which an interrupt
points. Instead of pointing to some original procedure, the interrupt would point
to the resident program. Thus, whenever a particular interrupt occurs, the
interrupt would point to the new procedure within the resident program, thus
causing the resident program to become active. Figure 6-3 shows the use of an
interrupt to pass control to a resident program.

The timer interrupt (1Ch) is one of the most popular interrupts to steal for
a resident program. This is because this interrupt always occurs at a rate of 18.2
times per second. Therefore, your resident program has a chance to be activated
often. For example, the DOS PRINT utility is actually a resident program, and
it uses the timer interrupt to print characters in the print buffer by passing them
to the BIOS routines.

Using the Timer Interrupt for Time Displays

As we have said, a feature of the clock device driver is the ability to display the
time on the screen. You can, of course, write a resident program just to do this
function, but you will have the unnecessary nuisance of two programs to write
and maintain. ,

185

Writing MS-DOS Device Drivers, Second Edition

186

BEFORE taking over
INTERRUPT 1Ch

70h Offset

INTERRUPT 1C
72h Segment points to

original
procedure

AFTER taking over
INTERRUPT 1Ch

70h Offset

INTERRUPT 1C points to
72h Segment resident program after
taking over the 1C
INTERRUPT

Figure 6-3: The 1C interrupt containing the segment and offset
address that points to the resident program.

The basic task in displaying the time on the screen is simply writing to the
screen whenever an interrupt 1Ch passes control to our clock device driver, which
occurs 18.2 times a second. Our driver reads the MM58167A chip for the time
stored, converts the BCD values it reads to ASCII values, and then writes those
values to the screen.

As you have seen, writing to the screen is normally performed through BIOS
or DOS function calls. The clock device driver will not use this technique, because
DOS function calls are not permitted in device drivers except when processing
the Initialization command.

Most video controllers are designed using the technique of memory-mapping
in which the video controller and the PC share a part of memory. Memory-
mapping is the term that defines a memory address that, when referenced,
actually “maps” or accesses a controller’s memory. In this case, a chunk of the
PC’s main memory is used to store the data that is displayed on the screen. Any

A Clock Device Driver

access of this memory by a program is also an access of the screen’s contents.
Writes to this area are immediately shown on the screen.

Todisplay the time and date on the screen, two basic functions are performed
by the clock device driver. First, it changes the data read from the clock to a format
needed to write to the display. This is done during the initialization phase of the
clock device driver and before any writing to the screen. Second, whenever the
1Ch interrupt passes control to the clock device driver (18.2 times per second),
the time is read from the chip and displayed on the screen.

Understanding the Clock Device Driver Program

The clock device driver will be presented in the same style used in chapters 3, 4,
and 5. Because it has only the Read and Write commands to process, the clock
device driver is simple compared to the previous console and printer drivers.
However, more code is used for these two commands than was present in previous
device drivers, because more processing of the clock chip is required. The resident
portion of the driver also makes it more complex.

One reason this driver is more complex than others is that the clock device
driver is processing several pieces of information (hours, minutes, seconds,
month, day, and year). Drivers that process only one byte at a time, such as a
console driver, are far less complicated.

The Beginnings

In listing 6-1, you can see that the first three sections have as their basis the code
that you have seen in previous chapters. However, there are some differences.
First, the main procedure is called clock. Second, and more important, the
Assembler Directives section has several additional declarations. The first is
another segment declaration named ¢timer. The clock device driver needs to refer
to this segment when processing the 1Ch interrupt, because control is passed to
the original timer interrupt routine.

Notice that there is an org statement that declares Ich*4. This is how timer
is translated to the 1Ch interrupt vector. The statement Ich*4 uses the correct
form for referencing the segment and offset address associated with a particular
interrupt. Because each interrupt location is composed of a 2-byte segment
address and a 2-byte offset address, the addresses of a particular interrupt are
calculated by simply multiplying the interrupt value by 4. The 1ch interrupt
defined as timer will point to a procedure (clkint) within the clock device driver;
control will pass to it 18.2 times per second to allow the time to be displayed on
the screen.

187

Writing MS-DOS Device Drivers, Second Edition

Listing 6-1: The beginning of the Clock Device Driver. Note that there is an
additional segment definition for timer, which is used to take over interrupt
1C so that the timer interrupt passes control to the clock device driver.

page 60,132
title A Clock Device Driver

EEEEEEEEEE SR EEEESEEEE SRR SRS SRR SRR EREEEEREREERERERERESREREEESESE RS
’

;* This is a Clock Device Driver *
;* Author: Robert S. Lai *
;* Date: 27 November 1991 *
P * Purpose: A Clock Driver based on the MM58167A clock chip *

SRS S S SRR R RS R R RS R R R SRS RS R SRR EE R R R R R SRR
I

IEEEEEE S S SRS SRS R RS EEREEEEEEEEEEEEEEESEREREEEEEEREEREEEEEEEEEEESEEESE]
’

P ASSEMBLER DIRECTIVES *

;**

timer segment at Oh ;int 1lc segment
org lch*4

timer_ofs label word

timer_seg label word

timer ends

cseg segment para public ‘code’

clock proc far
assume cs:cseg, es:cseg, ds:cseg

;structures for the Device Driver

dosdate struc

dos_day dw ?
dos_min db ?
dos_hr db ?
dos_hun db ?
dos_sec db ?
dosdate ends
;structures

rh struc
rh_len db
rh_unit db
rh_cmd db
rh_status dw
rh_resl dd
rh_res2 dd
rh ends
rh0 struc
rhO_rh db

188

;DOS DATE structure
;days since 1/1/80
;minutes

;hours

;hundredths of a second
; seconds

;end of struc

;request header
? ;len of packet
;unit code
; (block devices only)
;device driver command
;returned by device driver
;reserved
;jreserved

~J

[AVERSVER VIR V]

;Initialization (command 0)
size rh dup (?) ;fixed portion

A Clock Device Driver

Listing 6-1: (cont.)

rh0_nunits
rh0_brk_ofs
rh0_brk_seg
rh0_bpb_tbo
rh0_bpb_tbs
rhO_drv_1ltr
rh0

rh4

rh4_rh
rh4_media
rhd_buf_ofs
rhd_buf_seg

rh4_count

rh4_start
rh4

rh8

rh8_rh
rh8_media
rh8_buf_ofs
rh8_buf_seg

rh8_count

rh8_start
rh8

rh9

rh9_rh
rh9_media
rh9_buf_ofs
rh9_buf_seg

rh9_count

db
dw
dw
dw
dw
db

ends

struc
db

dw

dw

dw

ends
struc
db
db
dw
dw

aw

dw
ends
struc
db
db
aw
dw

dw

size rh

size rh
?
?

size rh
?
?

;number of units

; (block devices only)
;offset address for break
;segment address for break
;offset address of pointer
;to BPB array

;segment address of pointer
;Lo BPB array

;first available drive

; (DOS 3+) (block only)

’

; INPUT (command 4)
dup(?) ;fixed portion
;media descriptor from DPB
;offset address of
;data transfer area
;segment address of
;data transfer area
;transfer count

; (sectors for block)

; (bytes for character)
;start sector number

; (block only)

7

;OUTPUT (command 8)
dup(?) ;fixed portion
;media descriptor from DPB
;offset address of
;data transfer area
;segment address of
;data transfer area
;transfer count

; (sectors for block)

; (bytes for character)
;start sector number

; (block only)

7

;OUTPUT_VERIFY (command 9)
dup(?) ;fixed portion
;media descriptor from DPB
;offset address of

;data transfer area
;segment address of

;data transfer area
;transfer count

; (sectors for block)

; (bytes for character)

189

Writing MS-DOS Device Drivers, Second Edition

Listin 6-1: (cont.)
rh9_start dw ? ;start sector number (block only)
rh9 ends ;

7
7
7
’
7
7
7
7
7

;commands that do not have unique portions to the request header:

INPUT_STATUS (command 6)
INPUT_FLUSH (command 7)
OUTPUT_STATUS (command 10)
OUTPUT_FLUSH (command 11)
(command 13)
()
()

OPEN
CLOSE command 14
REMOVABLE command 15

IR S E S SRS SRR SRS EEEEEEEEEEREEEEEEESEREEEEESEEREREET

’
. %
7

MAIN PROCEDURE CODE *

IR S S SRS S S S EEE RS E SR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEES

190

A new struc, dosdate, has been added right after the cseg and clock declara-
tions. This struc is used to access the time and date from within the clock device
driver. The Read command will use this structure to set the clock chip time and
date. A Write command sent to the clock device driver will read the clock chip
and use the struc to pass the time and date back to DOS.

Notice, however, that the struc does not define the date in the normal form
of month, day, and year. Instead, the date is defined as the number of days since
January 1, 1980. This is the format that DOS uses to pass the date to and from
clock drivers. Most of the code in the clock device driver is devoted to conversions
from one format to the other.

Some strucs have been removed. The only ones we use are for commands 0
(Initialization), 4 (Input), 8 (Output), and 9 (Output With Verify). Recall that the
Input command is used to pass data from the device back to DOS, and the Output
command is used to pass data from DOS to the device.

The Device Header

The Device Header is shown in listing 6-2. For the clock device driver, the bits in
the Attribute word are set to indicate a character device (bit 15). Bit (3) is set to
indicate to DOS that the device is a clock. The device name is set to CLOCKS.

A Clock Device Driver

Listing 6-2: The Device Header section. Note that the Attribute and the

device name are the only entries that change in the various device drivers in

this book.
,.**
P DEVICE HEADER REQUIRED BY DOS *
I.*********************k*******‘k****‘k******************************
next_dev dd -1 ;no other drivers following
attribute dw 8008h ;char,clock device

strategy dw dev_strategy ;Strategy routine address
interrupt dw dev_interrupt ;Interrupt routine address
dev_name db 'CLOCKS ;name of our Clock driver

Work Space for the Clock Device Driver

A number of variables are defined in the Work Space to support the clock device
driver. Listing 6-3 shows the variables declared.

The familiar variables rh_ofs and rh_seg are first. Recall that you will use
these variables to store the ES and BX registers that point to the address at which
the Request Header is stored in DOS’s memory space.

The next variable is a table suitably named table, which is used to store the
number of days for each month of the year, one day (28, 30, or 31) per byte. The
driver will use this table to calculate two items: the number of days since the
beginning of the year, given the month and day, and the month and day, given
the number of days since the beginning of the year.

The word variable clock_port is used to store the 16-bit port address of the
clock chip in the procedure that finds the clock chip hardware address.

The label old1c and the two word variables old1c_ofs and old 1c_seg are used
to reference the offset and segment address of the original timer interrupt (1Ch)
procedure. This address is used to store the address of the original procedure, so
that the driver can call that procedure before passing control to the code that
displays the time on the screen. This allows the 1Ch interrupt to be used by
others.

The balance of the Work Space variables are used when the time is displayed
on the screen. The mode variable is used to store a flag that indicates whether
the screen is controlled by a monochrome or a color adapter. This flag displays
the type of monitor adapter used in the initialization code.

191

Writing MS-DOS Device Drivers, Second Edition

Listing 6-3: The Work Space variables allocated for the clock device driver.
Note that the order of the variables is not important.

IR RS S S S E SRR EEEEEEE R RS EEREEREREEEEEEEEEEREEEEREEEEEEEEEEEEEEEEREE]
’

P * WORK SPACE FOR CLOCK DEVICE DRIVER *

IBEEEEE S S EEEESEEEEEE SRS SRR SRR SRR EEEEEREEEE R R EEEEEEEEEESEEREREE]
7

rh_ofs dw ? ;offset address of the reqguest header
rh_seg dw ? ;segment address of the request header

table label byte

jan db 31

feb db 28

mar db 31

apr db 30

may db 31

jun db 30

jul db 31

aug db 31

sep db 30

oct db 31

nov db 30

decm db 31

dosdays dw 0 ;DOS date (days since 1/1/80)

clock_port dw 0 ;clock chip base address

oldlc label dword ;old timer interrupt 1C

oldlc_ofs dw ? ; offset

oldlc_seg dw ? ; segment

refresh dw 0 ;screen update indicator

mode db 0 ;color = 0, mono = 1

scn_pos dw 144 ;column 72 (includes attribute)

scn_port dw 03dah ;video status port for color
;03bah for mono

scn_seg dw 0b800h ;video memory address for color
;0b000h for mono

time dw 8 dup (003ah) ;time display

The variable scn_pos is the number of the column in which the time is
displayed. The actual number (144) reflects the fact that each column is composed
of two bytes, the first containing the data to be displayed and the second
containing the screen attribute for the data byte. Screen attributes are used to
color or highlight the data byte. The time display starts at column 72 of the
top line.

192

A Clock Device Driver

The variable scn_port is used to store the video adapter status port for the
particular type of monitor adapter. This status port is used to determine when
to write a byte to the screen. ’

The variable scn_seg is used to store the segment address of the screen
memory for the particular type of monitor adapter being used. The default is the
color adapter (the color and monochrome adapters have different segment ad-
dresses).

As we said earlier, rather than use BIOS calls to display the time, we chose
to use a write to the screen memory segment. Because the screen memory is
mapped to the screen display, when you write to the screen memory segment the
data will appear on the screen.

Lastly, the variable time is used to store the time you wish to display on the
screen in a suitable format. Eight words are declared. Each word will contain a
data byte and a byte for the screen attribute. Eight data bytes will be displayed:
two bytes for the hours, two for the minutes, two for the seconds, and two for the
colons in between.

The STRATEGY and INTERRUPT Procedures

The STRATEGY and INTERRUPT procedures for the clock device driver have
not changed from those for the printer driver; they will remain unchanged for the
rest of the device drivers in this book. The code for these procedures is contained
in listing 6-4.

Local Procedures for the Clock Device Driver

As shown in listing 6-5, there are five local procedures for the clock device driver:
hex2bcd, bed2hex, cvt2asc, display, and clkint. All of these are near procedures,
because they are defined and referenced from within the same segment.

The first two procedures, hex2bcd and bcd2hex, are used to convert a
hexadecimal number to Binary Coded Decimal (BCD) format and vice versa. (The
MM58167A chip uses BCD values, and the clock device driver needs to convert
them to hex for calculations and then back to BCD for setting the clock chip.)

The third procedure, cvt2asc, is used by the fourth procedure display.
Procedure cvt2asc (“convert to ASCII”) is used to input a value from a particular
clock chip port and to convert the two BCD digits into two ASCII display bytes
for the screen.

The display procedure is used to build a string that contains the time the
clock device driver displays on the screen. The variable time is used to store the
hours, minutes, and seconds, which are separated by colons. Each piece of data

193

Writing MS-DOS Device Drivers, Second Edition

Listing 6-4: The code for the STRATEGY and INTERRUPT procedures.

;************'k******‘k**

d THE STRATEGY PROCEDURE *

IEEEEEEEEEEEEEREEEEEESEEEEEEEESEEEEEEEEREEREEEEEEEEEEEREEEEEEEEEEE SRR
7

dev_strategy: mov cs:rh_seg,es ;save the segment address
mov cs:rh_ofs,bx ;save the offset address
ret ;return to DOS

ehkkhhkh Ak hkhkhhkhhkhkhkhhhkhkhdhhkhkhhrhhdhdhhhkhhkdkh bk dkdkdhdhhdkrdhkhrxhhkhkrrdrrdxkhx
’

P * THE INTERRUPT PROCEDURE *

chhkh Ak kA Ak kA Ak hkd kA dkh bk hhk ko hkhkhhkhhkkhdkhhkdkdkhxhkdkrhkFhkdhkhrhkdhhkxhhkhxr*k
’

;device interrupt handler - 2nd call from DOS

dev_interrupt:

cld ;save machine state on entry

push ds

push es

push ax

push bx

push cx

push dx

push di

push si

mov ax,cs:rh_seg ;restore ES as saved by STRATEGY call
mov ~ es,ax ;

mov bx,cs:rh_ofs ;restore BX as saved by STRATEGY call

;jump to appropriate routine to process command

mov al,es: [bx].rh_cmd ;get request header command

rol al,1 ;times 2 for index into word table
lea di, cmdtab ;function (command) table address
mov ah, 0 ;clear hi order

add di,ax ;add the index to start of table
jmp word ptr[di] ;jump indirect

;CMDTAB is the command table that contains the word address
; for each command. The request header will contain the
;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

CMDTAB label byte ;* = char devices only
dw INITIALIZATION ; initialization
dw MEDIA_CHECK ; media check (block only)

194

A Clock Device Driver

Listing 6-4: (cont.)
dw GET_BPB ; build bpb
dw IOCTL_INPUT ; loctl in
dw INPUT ; input (read)
dw ND_INPUT ;*nondestructive input no wait
dw INPUT_STATUS ; *input status
dw INPUT_FLUSH ;*input flush
dw OUTPUT ; output (write)
dw OUTPUT_VERIFY ; output (write) with verify
dw OUTPUT_STATUS ; *output status
dw OUTPUT_FLUSH ; *output flush
dw IOCTL_OUT ; loctl output
dw OPEN ; device open
dw CLOSE ; device close
dw REMOVABLE ; removable media
dw OUTPUT_BUSY ; output til busy

Listing 6-5: The five local procedures for the clock device driver.

s KKK K I AR AKX A KA KA AR KA AT I AR KA A AR KRAAKIAKN A AR I A A A A AR I A A A A A F Ak rdhkhkhkrhkkdkdhkk
’

i* YOUR LOCAL PROCEDURES

EEEEEEEESEEEEEE SRS SR SRR SRS EEEEREEREEEEE SRR EEREEEEEEEEEEEEESE]
7

hex2bcd proc near ;jconvert AL from Hex to BCD
;uses ax,cx

push cx

mov cl,10 ;divide by 10

mov ah, 0 ;setup for divide

div cl ;get 10's digits

mov cl,4 ;shift count

shl al,cl ;place 10’s in left half

or al,ah ;add back 1's

pop cx

ret ;return to caller

hex2bcd endp

bcd2hex proc near ;convert AL from BCD to hex
;uses ax,cx

push cx

mov ah,0 ;setup for divide

push ax ;save for 1’s processing

mov cl,16 ;divide for left half of byte

div cl ; to get 10’s digits

mov ah,0 ;have 10’s digits

mov . cl,10 ;convert to base 10

mul cl ; by multiplying by 10

195

Writing MS-DOS Device Drivers, Second Edition

Listing 6-5: (cont.)

pop
and
add
pop
ret
bcd2hex endp

cvt2asc proc
in
mov
mov
div
or
ret

cvt2asc endp

display proc
push
push
push
push
mov
add
call
lea
mov
mov
dec
call
mov
mov
dec
call
mov
mov
pop
pop
pop
pop
ret

display endp

;Clock Driver’s

clkint proc
push
push
push
push

196

cx ;process 1’s digits
cl,0fh ;keep 1’'s only
al,cl ;add 1's to 10’'s

cx
;return to caller

near ;gets chip data & converts to ASCII
al,dx ;get (BCD) chip data
ah,0 ;clear high
cl,10h ;separate 10's digits
cl ;al=10"'s, ah=1’'s
ax,3030h ;convert to ascii

;return to caller
near ;calculates time for display
ax ;save registers used
bx |
cx
dx
dx,cs:clock_port;get chip’s base address
dx, 4 ;base+4 = hours
cvt2asc ;get hours and convert

bx,cs:time
cs: [bx],al
cs: [bx+2],ah
dx

cvt2asc

cs: [bx+6],al
cs: [bx+8],ah
dx

cvt2asc

cs: [bx+12],al
cs: [bx+14],ah
dx

cx

bx

ax

;move to Time string
;tens of hrs

;hrs

;base+3 = minutes

;get minutes and convert
;tens of minutes

;ones

;base+2 = seconds

;get seconds and convert
;tens of seconds

;ones

;restore saved registers

;jreturn to caller

replacement code for interrupt 1Ch

near ;new timer interrupt code

ax ;save registers used
cx

di

si

A Clock Device Driver

Listing 6-5: (cont.)

notime:

hlow:

hhigh:

clkint

push es
pushf ;must push flags
call cs:oldlc ;call old timer int
mov cx,cs:refresh ;get refresh counter
inc cx ;increment
cmp cx,18 ;18th time?
jb notime ;no need to recalc time
call display ;ves we do
mov cx,0 ;reset counter
mov cs:refresh,cx ;store it
mov dx,cs:scn_port ;screen status port
mov di,cs:scn_pos ;screen display position
lea si,cs:time ;time string source
mov CcX,Cs:scn_seg ;screen segment
mov es, cx ; in es
mov cx, 10 ;move 10 bytes
cli ;clear interrupts
;wait for horizontal scan
in al,dx ;get video port status
test al,1 ;wait for low = 1
inz hlow ;back
mov ah,cs: [si] ;get byte to be displayed
in al,dx ;status must go hi after lo
test al,l ; before a screen write
jz hhigh ;wait til high = 0
mov es:[di],ah ;1 byte at any one time
inc di ;increment screen position
inc si ;increment source position
loop hlow ;loop thru all bytes
sti ;restore interrupts
pop es ;restore all saved registers
pop si
pop di
pop cx
pop ax
iret ;interrupt return
endp

is read from the clock chip by calling the cvt2asc procedure, which also converts
the data to ASCII.

The procedure clkint is not called as part of the processing that the clock
device driver performs. It is the procedure that is called when the timer interrupt
(1Ch)isinvoked. Every 55 milliseconds, or 18.2 times per second, control is passed
to the timer interrupt. It contains the address of clkint, which displays the time

197

Writing MS-DOS Device Drivers, Second Edition

198

string on the screen. See figure 6-4 for a summary of how the 1Ch interrupt
passes control to the clock device driver to display the time.

In clkint, the first check is to see whether this is the 18th time the timer
interrupt has passed control to the driver. The number 18 is used as an approx-
imate countdown for determining when to reread the time from the clock chip. If
itisthe 18th time, the display procedure is called. Then the fun begins: displaying
the time on the screen. '

Because of the design of the color monitor adapter, you cannot simply write
the time to the screen. This would cause the screen to flicker, or snow. Snow is
caused by interference with the hardware display functions. When the color
monitor adapter performs line scans in displaying information on the screen, the
screen memory it is reading from needs to be dedicated to the operation. When
your program writes directly to this same screen memory, you are disturbing this
parallel hardware operation. To avoid this problem, you should write to screen
memory only when the color adapter status port indicates that a horizontal
retrace is being performed. This is the time when the screen’s electron beam has
reached the right edge and is turned off, returning to the left side and the next
line down on the screen. You can write to the screen memory during this
horizontal retrace without causing snow by interference.

CLOCK
DRIVER

18.2 times per second

CLKINT:

1Ch
vectors

to
CLKINT

CLKINT

1Ch reads time
TIMER from clock chip
INTERRUPT and displays

on the screen

Figure 6-4 The 1Ch interrupt passes control to the clock driver.

A Clock Device Driver

In listing 6-5 above, you will notice the code at labels hlow and hhigh. This
code handles the actual screen writes. Writes are allowed when the video port
status bit 0 is high. Even when it is high, however, there may not be enough time
to perform a write, because we are selecting a random point during the retrace.
To handle this situation, two loops are provided: the first loop, the label Alow,
catches the first high status (a retrace), and the second loop, at hhigh, waits out
the low status. When this second loop finishes, the start of a new high status
occurs. If the write begins at the start of this high status, there will be enough
time to write out a single character without interference.

Remember that this snow-protection code is necessary only for writing text
characters using the color monitor adapter. If you are in color graphics mode or
if you are using the monochrome monitor adapter, such code is unnecessary;
instead, you can use the horizontal-retrace time to update screen memory without
harm. Because the clock device driver is written for both color and monochrome
adapters, the special code for snow-free display will remain.

Our driver writes to the screen memory by specifying the screen memory
segment address (scn_seg) and the offset address (scn_pos) at which you want the
time displayed. Because the screen is memory-mapped, these addresses specify
a screen cell. Interrupts are turned off during the two wait loops and turned back
on after a byte is moved to the screen memory. This on/off pattern is used because
there is enough time to display only one byte (one character or attribute) during
the horizontal retrace period. Thus, during this time we do not want any
interference from interrupts. Simply put, while we are trying not to interfere with
the color adapter, we do not want to be interfered with!

So far you have seen how the clkint procedure takes control when a timer
interrupt occurs. The last section in this chapter discusses how to actually divert
the timer interrupt to run our procedure.

DOS Command Processing

Of the 17 allowable commands that DOS passes to the device drivers, only four
commands are processed by the clock device driver. The Initialization command
is always one of them. In addition, the clock device driver will process the Input,
Output, and Output With Verify commands. Let’s see how these routines work.

Command 0—Initialization The Initialization command will, once again,
call the procedure initial. However, the driver will need to check the results from
the call to initial, because the code that determines the address of the clock chip
may not find such an address. If no address is found, you cannot allow DOS to
load this device driver. If the variable clock_port contains a 0, the driver tells
DOS not to use this device driver by simply placing the address of the clock device
driver as the next available address. Thus, by setting the Break Address to the

199

Writing MS-DOS Device Drivers, Second Edition

200

beginning of this driver, DOS overwrites the clock device driver’s memory space
upon return to DOS. In effect, the clock device driver has not been loaded at all.
However, if the clock_port contains a value other than 0, indicating that a clock
chip address has been found, the Break Address is set to the memory address of
initial and the driver returns to DOS. The code for the Initialization command is
shown in listing 6-6.

Commands Not Applicable to the Clock Device Driver The Media Check,
Get BIOS Parameter Block, and IOCTL Input commands are not applicable to
the Clock Device Driver, because the device is not a disk device. Here is the code
for these sections:

;command 1 Media_Check
Media Check:

jmp done ;set done bit and exit
;command 2 Get_BPB
Get_BPB:

Jjmp done ;set done bit and exit
;command 3 IOCTL_Input

IOCTL_Input:

jmp unknown ;set error bit/code and exit

Command 4—Input The Input command is sent to the clock device driver by
DOS whenever DOS needs to read the time and date. This usually occurs from
the command level when the TIME and DATE commands are issued by a user or
from within programs that request DOS services.

The basic function of the Input command is to read the clock chip and pass
the time and date back to DOS, which then stores it. As you saw earlier, the clock
chip’s data, which is in BCD format, needs to be converted to hex.

At label Input in listing 6-7, there is code that points to the data in which
DOS expects the time and date to be returned. The registers ES and BX are used
to point to the beginning of the data-transfer area. The struc dosdate is used to
index into the table when the time is returned. The time is retrieved from the
clock chip by reading into al the respective time counters. The hundredths of a
second, the seconds, the minutes, and the hours are read from the clock chip and
converted from BCD to hex values.

At the label incheck there is a check to see whether the month has changed
since the clock chip was last read during a similar Read command. This check is

A Clock Device Driver

Listing 6-6: The code for the Initialization command. If the procedure initial
does not find a valid clock chip port address, DOS is allowed to overwrite the
clock device driver. This is accomplished by setting the Break Address to the
beginning of the device driver.

,.**

P * DOS COMMAND PROCESSING *
I.**
;command 0 Initialization
Initialization:

call initial ;display message
;determine whether we found a clock chip

cmp cs:clock_port, 0 ;is chip base = 0?

jne initl ;no - there is a chip
;no chip found - we must abort loading this driver

mov ax,0 ;set address to beginning

jmp init2 ;store break offset
initl: lea ax,initial ;set Break Addr. at initial
init2: mov es: [bx].rh0_brk _ofs,ax ;store offset address

mov es: [bx].rh0_brk_seg,cs ;store segment address

jmp done ;set done status and exit

performed because you may have used the PC past midnight of the last day of a
month or you may not have used the PC since the end of the last month. The RAM
memory location on the clock chip is used to store the month in which you last
accessed the clock chip. This allows the driver to check the clock chip months-
counter against the last time the driver read the clock chip. If the driver finds
that the clock chip months-counter has been incremented, further calculations
may determine that it is a new year. If the clock chip had an automatic counter
for years, all this work would not be required.

Next, the driver reads the months-counter and checks the number returned
against the number that was last stored in the months RAM location. If the
months-counter has been incremented by 1, the driver stores the new count in
the months RAM location. However, if the months-counter is less than the last
value stored in the months RAM location, the driver assumes that the month has
changed from December 12 to January 1; the years count is then incremented
and stored in the years RAM location, and the new month is stored in the months’
RAM location.

Once the driver has the correct count of the months and years, it can
calculate the number of days since January 1, 1980, up to the beginning of the

201

Writing MS-DOS Device Drivers, Second Edition

Listing 6-7: The code for the Input command. The clock chip time and date is
read and these values are returned to DOS. The date needs to be converted

from month, day, and year into days since 1/1/80.

;command 4
Input:

Input

Read clock chip and return to DOS

;Read and convert clock chip date and time to DOS date format

mov dx,es: [bx].rhd4_buf_ofs
mov ax,es: [bx] .rhd4_buf_seg
mov es,ax
mov bx,dx

;ES:BX points to the DOS date buffer
push es
push bx

;first read the clock chip for time
mov dx,cs:clock_port
inc dx
in al,dx
call bcd2hex
mov es: [bx].dos_hun, al
inc dx
in al,dx
call bcd2hex
mov es: [bx].dos_sec,al
inc dx
in al,dx
call bcd2hex
mov es: [bx].dos_min,al
inc dx
in al,dx
call bcd2hex
mov es: [bx].dos_hr,al

;jget dos date data area
;set up es
;set up bx

;save segment for later
;save offset for later

;get the clock base address
;base+1

;get hundredths
;convert data
;store hundredths
;base+2

;get seconds
;convert data
;store seconds
;base+3

;get minutes
;convert data
;store minutes
;base+4

;get hours
;convert data
;store hours

;now convert chip date (BCD format) to DOS date format (hex)

;first check to

incheck:

mov
add
in
call
mov
add
in
call
cmp
jg
jl
jmp

see if month (and therefore year) has changed
;by comparing the months COUNTER against the month RAM location

dx,cs:clock_port
dx, 7

al,dx
bcd2hex
bl,al

ax, 2

al,dx
bcd2hex
al,bl
newyear
updatemonth
prev_days

;get base clock address
;base+7

;get chip’s month counter
;convert to hex

;save in bl

;base+9

;get RAM version of month
;convert to hex

;is RAM & counter same?

;last month > current (12>1

;last month < current
;same month

;December rolled over to January - update the Year count in RAM

newyear:

202

A Clock Device Driver

Listing 6-7: (cont.)

inc dx
in al,dx
inc al
out dx,al
dec ax
;now update month in RAM
updatemonth:
mov al,bl
call hex2bcd
out dx,al

;determine days
prev_days:

in previous years

inc dx

in al,dx
mov ah,0
push ax
mov bx,365
mul bx
xchg bx,ax
mov cl,4
pop ax
div cl

mov cl,ah

;BX has total days and cl has leap year

mov ah,0
add bx,ax

;base+10

;get year (stored in RAM)
;add 1 vyear

;store in RAM year

;make it base9

;set current month
;convert for clock chip
;update month RAM

;base+10 (RAM)

;get years since 1980

;set up for multiply

;save for leap year processing
;days per year

;times years - AX has days
;save days in BX

;leap divisor

;get year count again

;divide for leap years elapsed
;save leap year indicator
indicator

;set up for add

;add leap days to total

;we have days since 1/1/80 for all previous years including

; the extra days in leap years past
curr_days:

push bx

mov dx,cs:clock_port

add ax, 7

in al,dx

call bcd2hex

mov ah,0

push cs

pop es

lea di,cs:table

mov cx,0

xchg ax,cx

push cx

mov bh, 0
cvt2days:

mov bl,es: [di]

inc di

add ax,bx

loop cvt2days

;save total days past

;get base clock chip address
;base+7

;get month counter

;convert to hex

;set up for index

;days per month table

; addressed by ES

; and DI

;clear current year day count
;month loop count in c¢cx
;save for leap year check
;clear hi-order

;days in this month
;increment for next month
;add to total days

;until month count exhausted

203

Writing MS-DOS Device Drivers, Second Edition

Listing 6-7: (cont.)
pop cx ;restore months
pop bx ;total days past
add ax, bx ;add to days in current year
cmp cl,3 ;past March?
Jjl leapyr ;no
inc ax ;ves - add 1 for 2/29
leapyr: pop bx ;restore DOS date offset
pop es ;restore DOS date segment
mov es: [bx].dos_day, ax ;return days since 1/1/80
mov ax, 0 ;status ok
mov bx, 6 ;count of 6
Jjmp load_status ;restore es:bx exit

current year. This calculation, which is performed at the label prev_days, involves
multiplying the number of years by 365 and adding one day for each of the
previous years that were leap years.

Finally, at the label curr_days, the days in the current year are added to the
total. If the date is past March 1 and the current year is a leap year, one day is

-added to the total days since January 1, 1980. This number is returned to DOS

204

through the struc that points to the data transfer area. The clock device driver
then returns control to DOS. The code for the Input command is shown in
listing 6-7.

Other Input Commands The clock device driver does not need to process the
other Input commands, Nondestructive Input, Input Status, and Input Flush.
These commands are not applicable, so the driver jumps to the BUSY and DONE
routines to exit. The code for these commands are shown as follows:

;command 5 ND Input
ND Input:

jmp busy ;set busy bit and exit
;command 6 Input Status

Input Status:
jmp done ;set done bit and exit

;command 7 Input Flush
Input Flush:

jmp done ;set done bit and exit

A Clock Device Driver

Command 8—OQOutput The Output command is used to set the clock chip time
and date. DOS passes to the clock device driver the time and days since January
1, 1980. The driver converts these values to time, month, day, and year. In listing

6-8, you will see each of the calculations needed to perform this conversion.

Listing 6-8: The code for the Output command, which sets the time and date
on the MM58167A clock chip.

;command 8
Output:

Output Set the Clock Chip Time and Date

;Convert the date in DOS date format to clock chip format
;for writing to the clock chip

;let ES:BX point to beginning of the DOS date

mov
mov
mov
push
push
push
pop
lea
mov
cld
rep
push
DPop

si,es: [bx].rh8_buf_ofs
ax,es: [bx] .rh8_buf_seg
ds,ax

si

ds

cs

es

di,cs:dosdays

cx, 2

movsb
cs
ds

;get data offset

;get data segment

;to DS for (DS:SI use)
;save offset

;save segment

;ES points to here
;destination address
;move count = 2
;direction is forward
; from DOS to us
;restore DS

; by using CS

;update clock chip with time from DOS date data

outchip:
pop
pop
mov
inc
mov
call
out
inc
mov
call
out
inc
mov
call
out
inc
mov
call
out

es

bx
dx,cs:clock_port
dx

al,es: [bx].dos_hun
hex2bcd

dx,al

dx
al,es: [bx] .dos_sec
hex2bcd

dx,al

dx

al,es: [bx].dos_min
hex2bcd

dx,al

dx
al,es: [bx] .dos_hr
hex2bcd

dx,al

;restore DOS date segment
;restore DOS date offset

;get clock port
;base+1

;get hundredths
;convert for clock use
;send to clock chip
;base+2

;get seconds

;convert for clock use
;send to clock chip
;base+3

;get minutes

;convert for clock use
;send to clock chip
;base+4

;get hours

;convert for clock use
;send to clock chip

205

Writing MS-DOS Device Drivers, Second Edition

Listing 6-8: (cont.)

;chip loaded with time - now calc chip date from DOS date

out_years:
mov ax,cs:dosdays ;get days since 1/1/80
cmp ax, 0 ;date not set?
je out8 ;skip everything
mov bx, 0 ;BX = year count
outl: cmp ax,365 ;day count within a year?
jle out2 ;ves
sub ax,365 ;no - subtract 365
inc bx ;increment year count
Jjmp outl ;continue until w/i 1 yr
;BX has years since 1980 - now adjust for leap years
out2: push ax ;save leftover days
mov ax,bx ;AX now has years
mov cl,4 ;divisor for leap years
div cl ;alleaps, ah=remainder
mov cl,ah ;remainder=0 is leap itself
mov ah,0 ;set up for subtract
inc ax ;add 1 to leap year count
mov dx,ax ;DX has 1 day/leap yr passed
pop ax ;restore days remaining
sub ax,dx ;subtract 1 day for each leap yr
cmp ax,0 ;are we negative?
Jjg out3 ;no - we are ok
add ax,365 ;add back 365 days
dec bx ;subtract 1 year
out3: push bx ;save year count
cmp cl,0 ;leap year if 0
jne outh ;not a leap year
cmp ax,59 ;Feb 297
je out4 ;ves - set and exit
Jjg outh ;past Feb 29
inc ax ;before - reverse subtraction
jmp ouths ;
outd: mov cx, 2 ;Feb
mov ax,29 ; 29
jmp out7 ;exit
;AX has days left in current year - now find month and day
outh: mov cx, 1 ;month count
lea di,cs:table ;days per month
mov bh, 0 ;clear hi-order
out6: mov bl,es: [di] ;get days in each month
inc di ;increment to next month
cmp ax,bx ;less than last day?
jle out?7 ;ves (in current month)
sub ax, bx ;no subtract days in month
inc cx ;increment month count
jmp outb6 ;continue until month found

206

A Clock Device Driver

Listing 6-8: (cont.)

;AX has days, CX has month - now get years since 1980

out7:

out8:

out9:

pop bx ;restore year count
jmp out?9 ;go load chip

;no date set (special case)
mov bx, 0 ;1980
mov cx, 1 ;Jdan
mov ax,1 ; lst

;BX years since 1980, CX = month, AX = days - now load clock chip
mov dx,cs:clock_port ;get chip base address
add dx, 6 ;base+6
push cx ;Hex2bcd destroys cx
call hex2bcd ;convert for chip use
out dx,al ;set days counter
inc dx ;base+7
pop ax ;jrestore month count
call hex2bcd ;convert for chip use
out dx,al ;set months counter
add dx, 2 ;base+9
out dx,al ;set months RAM
inc dx ;base+10
xchg al,bl ;move years to al
out dx,al ;set years since 1980 RAM
mov ax, 0 ;status ok
mov bx, 6 ;count of 6
jmp load_status ;set status word & exit

At the label Output, the registers ES and BX are set up to point to the
data-transfer area in which DOS has passed the time and date. The struc dosdate
is used to reference each piece of data. First, the value for the number of days
since January 1, 1980, is moved to the local variable dosdays. This variable is
needed later on, when the driver converts its value to month, day, and year.

At the label outchip, the time is retrieved. These values are stored in the
clock chip after a hexadecimal-to-BCD conversion is performed for each of the
values.

At the label out_years, the number of years since 1980 is calculated, given
the days since 1/1/80. The loop at outl simply subtracts 365 from the total days
and increments the BX register for the count of years elapsed. Upon completion,
the driver has the number of years elapsed since 1980 and the count of the days
in the current year.

At the label out2, the driver calculates the number of extra days resulting
from the number of leap years passed. The number of these extra days is

207

Writing MS-DOS Device Drivers, Second Edition

208

subtracted from the days left in the current year. If the number of extra days is
greater than the number of days in the current year, the driver needs to adjust
the days-left count and the number of years since 1980.

At the label out3, the driver tests for the number of days left in the current
year against the leap year indicator. If the current year is a leap year, the driver
needs to determine whether the current date is before, at, or after February 29.
If the current date is before February 29, the driver needs to add back the one
day that was subtracted earlier when it was determined that the current year is
a leap year. If the current date is February 29, the month and day is set
accordingly.

At the label out5, the driver uses the days left in the current year and
calculates the month and day by using the days-per-month table named table.
The code loops, subtracting each time, the number of days per month for each
month in table from the days left in current year, until the remainder is less than
the number of days in the next month in the table. Finally we have the month,
day, and years since 1980.

At the label out9, the date is converted from hex to BCD and the clock chip
is loaded with these values.

The Rest of the Commands Listing 6-9 contains the code for the rest of the
driver commands. Output With Verify (command 9) is processed by the same code
as Output, so the driver jumps to the Output procedure. The commands Output
Status (10), Output Flush (11), I/O Control Output (12), Device Open (13), Device
Close (14), Removable Media (15), and Output Til Busy (16) are not applicable,
so the clock device driver jumps to the appropriate routine, sets DONE or ERROR,
and exits.

The Error Exit Section

The Error Exit section for the clock device driver is the same as that for the device
drivers of the previous chapters. Control is passed to the Error Exit routine from
the commands Removable Media and Output Til Busy if the clock device driver
receives these commands. The ERROR bit of the Request Header status word is
set. The error code is set to 3, which indicates an Unknown command. Here is the
code for the Error Exit section:

SRR SRS S EEEEEEEEEREE LSS SRR EEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEES
i

i* ERROR EXIT *
,.************************'k***************************************
unknown :
or es: [bx] .rh_status,8003h ;set error bit and error code
jmp done ;set done and exit

A Clock Device Driver

Listing 6-9: The code for the commands following the Output command (8).

;command 9

Output_Verify:

jmp

;command 10

Output_Status:

jmp

;command 11
Output_Flush:

jmp

;command 12
IOCTL_Out:

jmp

;command 13
Open:

jmp

;command 14
Close:

jmp

;command 15
Removable:

jmp

;command 16
Output_Busy:

jmp

Output_Verify

output ;same as output

Output_Status

done ;set done bit and exit

Output_Flush

done ;set done bit and exit
IOCTL_Out

unknown ;set error bit/code and exit
Open

done ;set done bit and exit

Close

done ;set done bit and exit
Removable

unknown ;set error bit/code and exit

Output Til Busy

unknown ;set error bit/code and exit

The Common Exit Section

The clock device driver passes control from the Input and Output commands to
the Common Exit routine at the label load_status. The status in the AX register
and the count in the BX register are set before the program jumps to this section.

209

i,

Writing MS-DOS Device Drivérs, Second Edition

Listing 6-10: The code for the Common Exit processing. The ES and BX
registers are restored, the status and count are saved, and the driver exits.

ekhkhkkhkkhkhkkhkhkkhkhhkhkkhhkkhkhhkdhhhhhhhhkhhhhkhhkhhhhkhhkdhhkhkhhkhkhhhdhrxhhkhkhhhrdhxhxx*k
7

.k
’

COMMON EXIT *

RS S SRS RS RS RS EE SRR SRR SRS EEEEEEEEEEEEEE SRS EEEEEEEEEEEESS
’

load_status:

busy:

done:

mov cx,cs:rh_seg ;restore request header
mov es,Ccx ; segment to es

mov cx,cs:rh_ofs ;restore offset also
xchg bx,cx ;switch them

mov es: [bx].rh_status,ax ;return status

mov es: [bx].rh8_count, cx ;return output count
jmp done ;set done bit and exit
or es: [bx].rh_status, 0200h ;set busy bit

or es: [bx].rh_status,0100h ;set done

pop si ;restore all registers
pop di

pop dx

pop cx

pop bx

pop ax

pop es

pop ds

ret ;jreturn to DOS

210

The status word is set to 0 to indicate that there are no errors, and the count is
always set to 6.

Next, the driver restores the ES and BX registers, which point to the Request
Header; the status and count are stored before the clock device driver exits. In
addition, commands that jump to BUSY are processed here. The Common Exit
code is shown in listing 6-10.

The End of Program

The code contained in the initial procedure, which is called from the Initialization
command, is placed at the end of the device driver because it is used only once.
As you have seen in previous examples, the driver allows DOS to overwrite the
memory used by this procedure by setting the Break Address to point to this
memory space. The amount of memory for other DOS code is thus increased.

In listing 6-11, you will see that the first function that the initial procedure
performs is to find the MM58167A clock chip hardware port address. The driver

A Clock Device Driver

Listing 6-11: The End of Program section. This section is used only once; DOS
is permitted to overwrite this code after it has been executed. The code finds
the base port address of the clock chip, determines the type of video adapter
being used, sets up the timer interrupt, and displays a console message in

two parts.

SR RS S SRS SRS RS SRR SRS SRS RS SRR SR RS REREEREEEEEEEEEESESEES
’

P * END

OF PROGRAM

*

RS EEEEEEEEEEE SRR SRR S SRR REEEE SR EEEEEREREEREEEREEEREERESEREEESESEESS
’

;this procedure is called from the Initialization command and
;1s executed only once. We tell DOS that the next available

;memory location (Break Address)

;write this

code; we save space.

is here.

This allows DOS to over

;display message on console
;part 1 of message

;display on console

;DOS call

;get address of table
;three addressess

;get 1lst address

;base+2 = seconds

;get seconds

;high order bit set?

;no - not empty port
;next address

;search thru clock table

;no port found
;display on console
;DOS call

;exit

;convert back to port
;port position

;double it

;address of chip table
;word index

;jget port

;save it

jconvert to ASCII

;for later display

of Video Display adapter in system

;get video mode
;Video BIOS call

;mono?
;no - assume color
;mono 1

;mono video port

initial proc near
lea dx,cs:msgl
mov ah,9
int 21h
;First find clock chip base address
lea si,cs:clock_table
mov cx,3
findl: mov dx,cs: [si]
add dx, 2
in al,dx
test al,80h
jz find2
add si,2
loop findl
;no port found - don‘t continue with setup
lea dx,cs:msgd
mov ah,9
int 21h
ret
;Clock Chip port found
find2: mov dx, 3
sub dx, cx
shl dx, 1
lea di,cs:clock_table
add di,dx
mov dx,cs: [di]
mov cs:clock_port,dx
lea di,cs:msgla
call hex2asc
;Determine type
mov ah,0fh
int 10h
cmp al,7
jne calc
mov cs:mode, 1
mov cs:scn_port, 3bah
mov cs:scn_seg, 0b000h

;mono screen address

211

Writing MS-DOS Device Drivers, Second Edition

Listing 6-11: (cont.)

;Calculate time string

calc: call display ;setup initial time
cli ;clear interrupts
assume es:timer ;new directive

| mov ax, timer ;get segment addr
A mov es,ax ;set ES
mov ax,es:timer_ofs ;get old timer offset
mov cs:0ldlc_ofs,ax ;save it
mov ax,es:timer_seg ;get old timer segment
mov cs:0ldlc_seg,ax ;save it
lea ax,clkint ;get new offset
mov _es:timer_ofs,ax ;set new offset
mov es:timer_seg,cs ;also segment
assume es:cseg ;restore directive
sti ;restore interrupts
lea dx,cs:msg2 ;part 2 of message
mov ah,9 ;display on console
int 21h ;DOS call
cmp cs:mode, 1 ;mono?
jne exit2 ;No
lea dx,cs:msg3a ;yes

Jjmp exit3 ;go print mono message

exit2: lea dx,cs:msg3b ;color

exit3: mov ah,9 ;display on console
int 21h ;DOS call
mov bx,cs:rh_ofs ;restore BX
mov ax,cs:rh_seg ;restore segment
mov es,ax ; to ES
ret ;return to caller

initial endp

msgl db 'The Waite Group Clock Device Driver’, 0dh, Oah, 'S’
msg2 db ’ using device address '’
msg2a db '0000H’, 0dh, 0ah, 'S$”
msg3a db ' with monochrome adapter’,0dh,0Oah,’s$’
msg3b db ' with color adapter’, 0dh, O0ah, 'S’
msg4 db ' No Clock Found - Driver Aborted’,0dh,0ah,’S$S’
clock_table label byte ;table of possible chip addresses
dw 0240h ;
dw 02cOh ;
dw 0340h ;

hex2asc proc

;requires:

&

= binary number
address of ASCII string

;
; di
;uses:

; ax - for character conversion

212

A Clock Device Driver

Listing 6-11: (cont.)

’

cx - loop control

;returns:
; nothing
push cx ;save cx
push ax ;save ax
mov cx,4 ;number of hex digits
hl: push cx ;save cx inside this loop
mov cl,4 ;shift count (bits/hex digit)
rol dx,cl ;rotate left 1 hex digit
mov al,dl ;move hex digit to al
and al,0fh ;mask off desired hex digit
cmp al,0ah ;is it above 9h?
jge h2 ;yes
add al,30h ;numeric hex digit
jmp h3 ;skip
h2: add al,37h ;alpha hex digit
h3: mov cs:[di],al ;store hex digit in string
inc di ;next string address
pop cx ;get saved loop count
loop hl ;loop start
pop ax ;restore ax
pop cx ;restore cx
ret ;return to caller
hex2asc endp
clock endp ;end of clock procedure
cseg ends ;end of cseg segment
end begin ;end of program

uses a table named clock_table that contains the typical values of the base port
addresses used for the MM58167A chip.

The clock device driver uses a simple algorithm to find the clock chip port
address. Because the counter for seconds is at location 2 relative to the base port
address, this counter is read using the base chip ports from the clock_table. The
driver also assumes that the MM58167A chip will return a BCD value in the
range from 0 to 59. Therefore, if a clock chip exists at the base port address, any
seconds values that are read in will not have the high-order bit (8) set, and the
values will be less than 80h. If the driver finds that the seconds value does not
have this high-order bit set, it assumes that a clock chip has been found at the
base port address.

The base port address is saved in the variable clock_port, which will be used
by the rest of the clock device driver to determine how to read from and write to
the MM58167A clock chip. If a base port address is not found, then the driver

213

Writing MS-DOS Device Drivers, Second Edition

returns to the Initialization command, whose code will check for a valid clock_port
and will abort the loading of the clock device driver.

Once the clock chip base port address is found, the driver continues by
determining the type of video display adapter that is present in the PC. A BIOS
interrupt (10h) is issued and the value returned in al is checked. Based on the
type of display adapter, the driver will set the screen memory segment address
(BOOO for monochrome or B800h for color), the screen status port address (3BAh
for monochrome or 3DAh for color), and the variable mode to indicate if the driver
found a monochrome adapter (1) or a color adapter (0).

At the label calc, the driver calls the procedure display to initialize the time
display that will appear on the screen. The timer interrupt (1Ch) is changed to
point to our clkint procedure. This is done by saving the segment (¢imer_seg) and
offset (timer_ofs) address of the original timer interrupt in the variables oldIc_seg
and oldI1c_ofs. Then the driver sets the timer interrupt segment and offset
addresses to the segment and offset address of the clkint procedure.

Note: A good programming practice is to turn interrupts off when swapping
interrupt addresses. An interrupt cannot be allowed to disturb you while you are
changing interrupt addresses. More importantly, you do not want a timer inter-
rupt to occur when you are changing the timer interrupt itself. Unfortunately,
because DOS restricts the use of DOS services to those numbered 1 through 0Ch
and 30h (in device drivers only during Initialization command processing), the
proper DOS services cannot be used. Get Interrupt Vector (35h) and Set Interrupt
Vector (25h) are the correct ways to determine and set interrupt vectors. Although
it is a good practice to turn interrupts off when you are changing interrupt
addresses, it is not the approved method. However, it is the only way you can do
so from within a device driver.

As a last note, the display of the console message during the driver initial-
ization process is split into two parts. The first part is displayed when the initial
procedure is first executed. The second part of the message is displayed at the
label exit2 upon exit from the procedure. Splitting the display code in this way is
a good practice when there is a lot of code in the initialization procedure. If there
are any problems with this code, the second part of the console display will not
be displayed. This will alert you that there is a problem with the code.

The procedure hex2asc is used to convert the base port address of the
MM58167A chip to ASCII for display on the console.

Building the Clock Device Driver

214

To build the clock device driver in this chapter, enter the source code of the driver
into a file using a word processor. Name the file clock.asm. The listing of the
entire clock device driver is shown in listing 6-12.

A Clock Device Driver

Listing 6-12: The entire listing of A Clock Device Driver.

page 60,132
title A Clock Device Driver

IS ES S S S S S EREEESES]
’

;* This is a Clock Device Driver *
;x Author: Robert S. Lai *
i Date: 27 November 1991 *
;* Purpose: A Clock Driver based on the MM58167A clock chip *

A SRS S S S ERS RS EEEE SRS SR SRS SRR SRS SRR EEEEEEEEEEEEEERESE]
’

RS S SRS R SRR RS S S SRR EEEE S S S S S EEEEEEEEEEEEREEEEEEEEEEESET
7

P * ASSEMBLER DIRECTIVES *

R TS E S S S EEEE S SRS RS R SRS S SRS SRR SRR EE SRR EEEE SRS SR
7

timer segment at Oh ;int 1lc segment
org lch*4

timer_ofs label word

timer_seg label word

timer ends

cseg segment para public ‘code’

clock proc far
assume cs:cseg, es:cseg, ds:cseg

;structures for the Device Driver

dosdate struc ;DOS DATE structure
dos_day dw ? ;days since 1/1/80
dos_min db ? ;minutes

dos_hr db ? ;hours

dos_hun db ? ;hundredths of a second
dos_sec db ? ; seconds

dosdate ends ;end of struc
;structures

rh struc ;request header
rh_len db ? ;len of packet
rh_unit db ? ;unit code

; (block devices only)

rh_cmd db ? ;device driver command
rh_status - dw ? ;returned by device driver
rh_resl dd ? ;reserved
rh_res2 dd ? ;reserved
rh ends ;
rho0 struc ;Initialization (command 0)
rh0_rh db size rh dup (?) ;fixed portion
rh0_nunits db ? ;number of units

; (block devices only)
rh0_brk_ofs dw ? ;offset address for break

215

Writing MS-DOS Device Drivers, Second Edition

Listing 6-12: (cont.)

rh0_brk_seg
rh0_bpb_tbo

rh0_bpb_tbs
rh0_drv_1tr
rh0

rh4

rh4_rh
rh4_media
rhd_buf_ofs
rh4_buf_seg

rhd4_count

rh4_start
rh4

rh8

rh8_rh
rh8_media
rh8_buf_ofs
rh8_buf_seg

rh8_count

rh8_start
rh8

rh9

rh9_rh
rh9_media
rh9_buf_ofs
rh9_buf_seg
rh9_count

rh9_start
rh9

216

dw
dw

dw

db

ends

struc

db
dw

dw

aw

dw

ends

struc

db
dw

dw

dw

dw
ends
struc
db
db
dw
dw
dw

dw
ends

size rh

size rh
?
?

size rh
?
?

;segment address for break
;offset address of pointer
;to BPB array

;segment address of pointer
;to BPB array

;first available drive

; (DOS 3+) (block only)

’

; INPUT (command 4)
dup(?) ;fixed portion
;media descriptor from DPB
;offset address of
;data transfer area
;segment address of
;data transfer area
;transfer count

; (sectors for block)

; (bytes for character)
;start sector number

; (block only)

7

;OUTPUT (command 8)
dup(?) ;fixed portion
;media descriptor from DPB
;offset address of
;data transfer area
;segment address of
;data transfer area
;transfer count

; (sectors for block)

; (bytes for character)
;start sector number

; (block only)

’

;OUTPUT_VERIFY (command 9)
dup(?) ;fixed portion
;media descriptor from DPB
;offset address of

;data transfer area
;segment address of

;data transfer area
;transfer count

; (sectors for block)

; (bytes for character)

;start sector number (block only)

’

A Clock Device Driver

Listing 6-12: (cont.)

;commands that do not have unique portions to the request header:

; INPUT_STATUS (command 6)

; INPUT_FLUSH (command 7)

; OUTPUT_STATUS (command 10)
H OUTPUT_FLUSH (command 11)
; OPEN (command 13)
: CLOSE (command 14)
; REMOVABLE (command 15)

chhkhhkkhkrd Ak hkhkhkhkhkkhkkhkhkhhkhkdkhhhkhkhkhhkhhkhkhkhhkhkhkhhhkhhkhkhdhkhhkkhkkkdhkhkdkhkdkhxkx
’

;* MAIN PROCEDURE CODE *
ISR EE SRS SRS RS RS S R RS R EES SRR R SR EEE SR SR EREEEEEEEEEEEEESEEESESESE]
;

begin:

SRS S S SRS SR SRR S E SRR EEREEEEEERREEEREEEEEEEEEEEESEEESEEEEEEEEEE SIS S
7

;¥ DEVICE HEADER REQUIRED BY DOS *

ek khkhkhkhkhkhhkhhk Ak hkhkhhkhkkhkhkhk kb hkhkhkh bk hkhkhhkhkhkdhhkhdkhkhhkhkkdkrhkhkdhkhkhkhkhhkhhkkhkxkx
7

next_dev dd -1 ;no other drivers following
attribute dw 8008h ;char,clock device

strategy dw dev_strategy ;Strategy routine address
interrupt dw dev_interrupt ;Interrupt routine address
dev_name db 'CLOCKS ;name of our Clock driver

sk khkhkhhhkhk Ak hkhkkhkkhkhkhhhkhhkhkhkhkhkhkhkhhkhhkkhhhkhhhhkhkhhkhkdk bk hkdkrhkhkdkhkkkdxkkkk*x
’

i * WORK SPACE FOR CLOCK DEVICE DRIVER *

AR SRS SRR SRS R RS SRR RS SRR RS EEES RS SRS REREREEEEEEEEEEEESEESS
’

rh_ofs dw ? ;offset address of the request header
rh_seg dw ? ;segment address of the request header

table label byte

jan db 31

feb db 28

mar db 31

apr db 30

may db 31

jun db 30

jul db 31

aug db 31

sep db 30

oct db 31

nov db 30

decm db 31

dosdays dw 0 ;DOS date (days since 1/1/80)
clock_port dw 0 ;clock chip base address

217

Writing MS-DOS Device Drivers, Second Edition

Listing 6-12: (cont.)

oldlc label dword ;o0ld timer interrupt 1C

oldlc_ofs dw ? ; offset

oldlc_seg dw ? ; segment

refresh dw 0 ;screen update indicator

mode db 0 ;color = 0, mono = 1

SCn_pos dw 144 ;column 72 (includes attribute)

scn_port dw 03dah ;video status port for color
;03bah for mono

scn_seg dw 0b800h ;video memory address for color
;0b000h for mono

time dw 8 dup (003ah) ;time display

;**

i * THE STRATEGY PROCEDURE *

;********************-k***

dev_strategy: mov cs:rh_seg,es ;save the segment address
mov cs:rh_ofs,bx ;save the offset address
ret : ;return to DOS

’.**

il THE INTERRUPT PROCEDURE *

I.**

;device interrupt handler - 2nd call from DOS
dev_interrupt:

cld ;save machine state on entry

push ds

push es

push ax

push bx

push cx

push dx

push di

push si

mov ax,cs:rh_seg ;restore ES as saved by STRATEGY call
mov es,ax ;

mov bx,cs:rh_ofs ;restore BX as saved by STRATEGY call

;jump to appropriate routine to process command

mov al,es: [bx].rh_cmd ;get request header command

rol al,1l ;times 2 for index into word table
lea di,cmdtab ; function (command) table address
mov ah,0 ;clear hi order

add di,ax ;add the index to start of table
jmp word ptr[di] ;jump indirect

;CMDTAB is the command table that contains the word address
; for each command. The request header will contain the

218

A Clock Device Driver

Listing 6-12: (cont.)

;command desired. The INTERRUPT routine will jump through an
;address corresponding to the requested command to get to
;the appropriate command processing routine.

CMDTABR label byte ;* = char devices only
dw INITIALIZATION ; initialization
dw MEDIA_CHECK ; media check (block only)
dw GET_BPB ; build bpb
dw IOCTL_INPUT ; loctl in
dw INPUT ; input (read)
dw ND_INPUT ; *nondestructive input no wait
dw INPUT_STATUS ; *input status
dw INPUT_FLUSH ;*input flush
dw OUTPUT ; output (write)
dw OUTPUT_VERIFY ; output (write) with verify
dw OUTPUT_STATUS ; *output status
dw OUTPUT_FLUSH ; *output flush -
dw IOCTL_OUT ; ioctl output
dw OPEN ; device open
dw CLOSE ; device close
dw REMOVABLE ; removable media
dw OUTPUT_BUSY ; output til busy

I.**

;¥ YOUR LOCAL PROCEDURES *

;**

hex2bcd proc near ;convert AL from Hex to BCD
;uses ax,cx

push cx

mov cl,10 ;divide by 10

mov ah,0 ;setup for divide

div cl ;get 10’s digits

mov cl,4 ;shift count

shl al,cl ;place 10’'s in left half

or al,ah ;add back 1's

pop cx

ret ;return to caller

hex2bcd endp

bcd2hex proc near ;convert AL from BCD to hex
;uses ax,cx

push cx

mov ah,0 ;setup for divide

push ax ;save for 1's processing

mov cl,16 ;divide for left half of byte

div cl ; to get 10’'s digits

mov ah,0 ;have 10’'s digits

mov cl,10 ;convert to base 10

mul cl ; by multiplying by 10

219

Writing MS-DOS Device Drivers, Second Edition

Listing 6-12: (cont.)

pop
and
add
pop
ret
bcd2hex endp

cvt2asc proc
in
mov
mov
div
or
ret

cvt2asc endp

display proc
push
push
push
push
mov
add
call
lea
mov
mov
dec
call
mov
mov
dec
call
mov
mov
pop
pop
pop
pop
ret

display endp

;Clock Driver'’s

clkint proc
push
push
push
push
push

220

cx ;process 1’s digits
cl,0fh ;keep 1’s only
al,cl ;add 1's to 10's

cx
;return to caller

near ;gets chip data & converts to ASCII
al,dx ;get (BCD) chip data
ah,0 ;clear high
cl,10h ;separate 10’s digits
cl ;al=10's, ah=1's
ax,3030h ;convert to ascii

;return to caller
near ;calculates time for display
ax ;save registers used
bx
cx
dx
dx,cs:clock_port;get chip’s base address
dx, 4 ;base+4 = hours
cvt2asc ;get hours and convert

bx,cs:time
cs: [bx],al
cs: [bx+2],ah
dx

cvt2asc

cs: [bx+6],al
cs: [bx+8]1,ah
dx

cvt2asc

cs: [bx+12],al
cs: [bx+14],ah
dx

cx

bx

ax

;move to Time string
;tens of hrs

;hrs

;base+3 = minutes

;get minutes and convert
;tens of minutes

;ones

;base+2 = seconds

;get seconds and convert
;tens of seconds

;ones

;restore saved registers

;return to caller

replacement code for interrupt 1Ch

near ;new timer interrupt code

ax
cx
di
si
es

;save registers used

A Clock Device Driver

Listing 6-12: (cont.)

pushf ;must push flags
call cs:oldlc ;call old timer int
mov cx,cs:refresh ;get refresh counter
inc cx ;increment
cmp cx,18 ;18th time?
ib notime ;no need to recalc time
call display ;ves we do
mov cx,0 ;reset counter
notime: mov cs:refresh,cx ;store it
mov dx,cs:scn_port ;screen status port
mov di,cs:scn_pos ;screen display position
lea si,cs:time ;time string source
mov CxX,Cs:scn_seg ;Screen segment
mov es,Ccx ; in es
mov cx,10 ;move 10 bytes
cli ;clear interrupts
hlow: ;wait for horizontal scan
in al,dx ;get video port status
test al,1 ;wait for low = 1
jnz hlow ;back
mov ah,cs: [si] ;get byte to be displayed
hhigh:
in al,dx ;status must go hi after lo
test al,1 ; before a screen write
jz hhigh ;wait til high = 0
mov es:[di],ah ;1 byte at any one time
inc di ;increment screen position
inc si ;increment source position
loop hlow ;loop thru all bytes
sti ;restore interrupts
pop es ;restore all saved registers
pop si
pop di
pop cx
pop ax
iret ;interrupt return

clkint endp

RS RS E S SRS R R R RS SRR SRS E SRR RS R RER SRR SRR ERERRERREEEEREREEREESEE]
’

P * DOS COMMAND PROCESSING *

chhkhkhkhkhkkhkhhkhdhhhkhkdhhkhkhkhhhhdhhhhhkhkdhdkhkhhkhhdrhhkrhkhdkhkhkdkrhkhhdhhkhkhdhkkk ki
’

;command 0 Initialization
Initialization:
call initial ;display message
;determine whether we found a clock chip
cmp cs:clock_port, 0 ;is chip base = 0?
jne initl ;no - there is a chip
;no chip found - we must abort loading this driver
mov ax,0 ;set address to beginning

221

Writing MS-DOS Device Drivers, Second Edition

Listing 6-12: (cont.)

jmp
initl: lea
init2: mov
mov
jmp

;command 1
Media_Check:

jmp

;command 2
Get_BPB:

jmp

;command 3
TIOCTL_Input:

jmp

;command 4
Input:

init2
ax,initial

es: [bx].rh0_brk_ofs,ax
es: [bx].rh0_brk_seg,cs

done

Media_Check

done

Get_BPB

done

IOCTL_Input

unknown

Input Read clock chip

;store break offset

;set Break Addr. at initial
;store offset address
;store segment address

;set done status and exit

;set done bit and exit

;set done bit and exit

;set error bit/code and exit

and return to DOS

;Read and convert clock chip date and time to DOS date format

mov
nov
mov es,ax
mov bx,dx
;ES:BX points to the DOS date buffer
push es
push bx
;first read the
mov dx,cs:clock_port
inc dx
in al,dx
call bcd2hex
mov es: [bx].dos_hun,al
inc dx
in al,dx
call bcd2hex
mov es: [bx] .dos_sec,al
inc dx
in al,dx
call bcd2hex
mov es: [bx].dos_min,al
inc dx
in al,dx
call bcd2hex
mov

222

dx,es: [bx] .rh4_buf_ofs
ax,es: [bx].rh4_buf_seg

clock chip for time

es: [bx].dos_hr,al

;get dos date data area
;set up es
;set up bx

;save segment for later
;save offset for later

;get the clock base address
;base+1

;get hundredths
;convert data
;store hundredths
;base+2

;get seconds
;convert data
;store seconds
;base+3

;get minutes
;convert data
;store minutes
;base+4

;get hours
;convert data
;store hours

A Clock Device Driver

Listing 6-12: (cont.)

;now convert chip date (BCD format) to DOS date format (hex)

;first check to see if month (and therefore year) has changed
;by comparing the months COUNTER against the month RAM location
incheck:

mov dx,cs:clock_port ;get base clock address
add ax, 7 ;base+7

in al,dx ;get chip’s month counter
call bcd2hex ;convert to hex

mov bl,al ;save in bl

add dx, 2 ;base+9

in al,dx ;get RAM version of month
call bcd2hex ;convert to hex

cmp al,bl ;is RAM & counter same?
jg newyear ;last month > current (12>1)
1 updatemonth ;last month < current

jmp prev_days ;same month

;December rolled over to January - update the Year count in RAM
newyear:

inc dx ;base+10
in al,dx ;get year (stored in RAM)
inc al ;add 1 year
out dx,al ;store in RAM year
dec dx ;make it base+9
;now update month in RAM
updatemonth:
mov al,bl ;set current month
call hex2bcd ;convert for clock chip
out dx,al ;update month RAM

;determine days in previous years
prev_days:

inc dx ;base+10 (RAM)
in al,dx ;get years since 1980
mov ah,0 ;set up for multiply
push ax ;save for leap year processing
mov bx,365 ;days per year
mul bx ;times years - AX has days
xchg bx,ax ;save days in BX
mov cl,4 ;leap divisor
pop ax ;get year count again
div cl ;divide for leap years elapsed
mov cl,ah ;save leap year indicator
;BX has total days and cl has leap year indicator
mov ah,0 ;set up for add
add bx,ax ;add leap days to total

;we have days since 1/1/80 for all previous years including
; the extra days in leap years past
curr_days:

223

Writing MS-DOS Device Drivers, Second Edition

Listing 6-12: (cont.)

push
mov
add
in
call
mov
push
pop
lea
mov
xchg
push
mov
cvt2days:
mov
inc
add
loop
pop
pop
add
cmp
jl
inc
leapyr: pop
pop
mov
mov
mov
jmp

;command 5
ND_Input:

jmp

;command 6
Input_Status:

jmp

;command 7
Input_Flush:

jmp

;command 8
Output:

224

bx
dx,cs:clock_port
dx,7

al,dx
bcd2hex
ah,0

cs

es
di,cs:table
cx,0

ax,cx

CcX

bh, 0

bl,es: [di]
di

ax, bx
cvt2days

cx

bx

ax, bx

cl,3

leapyr

ax

bx

es

es: [bx] .dos_day, ax
ax, 0

bx, 6
load_status

ND_Input

busy

Input_Status

done

Input_Flush

done

;save total days past

;get base clock chip address
;base+7

;get month counter

;convert to hex

;set up for index

;days per month table

; addressed by ES

; and DI

;clear current year day count
;month loop count in cx
;save for leap year check
;clear hi-order

;days in this month
;increment for next month
;add to total days

;until month count exhausted
;restore months

;total days past

;add to days in current year
;past March?

;no

;yes - add 1 for 2/29
;jrestore DOS date offset
;restore DOS date segment
;return days since 1/1/80
;status ok

;count of 6

;restore es:bx exit

;set busy bit and exit

;set done bit and exit

;set done bit and exit

Output Set the Clock Chip Time and Date

A Clock Device Driver

Listing 6-12: (cont.)

;Convert the date in DOS date format to clock chip format
; for writing to the clock chip

;let ES:BX point to beginning of the DOS date

;update
outchip:

;get data offset

;get data segment

;to DS for (DS:SI use)
;save offset

;save segment

;ES points to here
;destination address
;move count = 2
;direction is forward
; from DOS to us
;restore DS

; by using CS

;restore DOS date segment
;restore DOS date offset
;get clock port

;base+1l

;get hundredths

;convert for clock use
;send to clock chip
;base+2

;get seconds

;convert for clock use
;send to clock chip
;base+3

;get minutes

;convert for clock use
;send to clock chip
;base+4

;get hours

;convert for clock use

mov si,es: [bx].rh8_buf_ofs
mov ax,es: [bx] .rh8_buf_seg
mov ds,ax

push si

push ds

push cs

pop es

lea di,cs:dosdays

mov Ccx,2

cld

rep movsb

push cs

pop ds

clock chip with time from DOS date data
pop es

pop bx

mov dx,cs:clock_port
inc dx

mov al,es: [bx] .dos_hun
call hex2bcd

out dx,al

inc dx

mov al,es: [bx] .dos_sec
call hex2bcd

out dx,al

inc dx

mov al,es: [bx].dos_min
call hex2bcd

out dx,al

inc dx

mov al,es: [bx] .dos_hr
call hex2bcd

out dax,al

;send to clock chip

;chip loaded with time - now calc chip date from DOS date
out_years:

outl:

mov
cmp
je

mov
cmp
jle
sub
inc
jmp

ax,cs:dosdays
ax, 0

out8

bx, 0

ax, 365

out2

ax, 365

bx

outl

;get days since 1/1/80
;date not set?

;skip everything

;BX = year count

;day count within a year?
iyes

;jno - subtract 365
;increment year count
;continue until w/i 1 yr

225

Writing MS-DOS Device Drivers, Second Edition

Listing 6-12: (cont.)

;BX has years since 1980 - now adjust for leap years

out2: push ax ;save leftover days
mov ax, bx ;AX now has years
mov cl,4 ;divisor for leap years
div cl ;al=leaps, ah=remainder
mov cl,ah ;remainder=0 is leap itself
mov ah,0 ;set up for subtract
inc ax ;add 1 to leap year count
mov dx,ax ;DX has 1 day/leap yr passed
pop ax ;restore days remaining
sub ax,dx ;subtract 1 day for each leap yr
cmp ax, 0 ;are we negative?
jg out3 ;no - we are ok
add ax, 365 ;add back 365 days
dec bx ;subtract 1 year
out3: push bx ;save year count
cmp cl,0 ;leap year if 0
jne outh ;not a leap year
cmp ax,59 ;Feb 292
je out4 ;ves - set and exit
jg out5 ;past Feb 29
inc ax ;before - reverse subtraction
jmp outh5 ;
outd: mov cx, 2 ;Feb
mov ax,29 ; 29
jmp out7 ;exit
;AX has days left in current year - now find month and day
out5: mov cx,1 ;month count
lea di,cs:table ;days per month
mov bh, 0 ;clear hi-order
out6: mov bl,es: [di] ;get days in each month
inc di ;increment to next month
cmp ax,bx ;less than last day?
jle out?7 ;yes (in current month)
sub ax, bx ;no subtract days in month
inc cx ;increment month count
jmp out6 ;continue until month found
;AX has days, CX has month - now get years since 1980
out7: pop bx . ;restore year count
jmp out9 ;go load chip
;no date set (special case)
out8: mov bx, 0 ;1980
mov cx, 1 ;Jan
mov ax,1 ; 1lst
;BX = years since 1980, CX = month, AX = days - now load clock chip
out9: mov dx,cs:clock_port ;get chip base address
add dx, 6 ;base+6
push cx ;Hex2bcd destroys cx
call hex2bcd ;convert for chip use

226

A Clock Device Driver

Listing 6-12: (cont.)

out
inc
pPop
call
out
add
out
inc
xchg
out
mov
mov

jmp

;command 9

Output_Verify:

jmp

;command 10

Output_Status:

jmp

;command 11
Output_Flush:

jmp

;command 12
TIOCTL_Out:

jmp

;command 13
Open:

jmp

;command 14
Close:

jmp

;command 15
Removable:

jmp

dx,al
dx

ax
hex2bcd
dx,al
dx, 2
dx,al
dx
al,bl
dx,al
ax, 0
cx,6
load_status

Output_Verify

output

Output_Status

done

Output_Flush

done

IOCTL_Out

unknown

Open

done

Close

done

Removable

unknown

;set days counter
;base+7

;restore month count
;convert for chip use
;set months counter
;base+9

;set months RAM
;base+10

;move years to al
;set years since 1980 RAM
;status ok

;jcount of 6

;set

status word & exit

;same as output

;set

;set

;set

;set

;set

;set

done bit and exit

done bit and exit

error bit/code and exit

done bit and exit

done bit and exit

error bit/code and exit

227

Writing MS-DOS Device Drivers, Second Edition

Listing 6-12: (cont.)

;command 16
Output_Busy:

jmp

Output

unknown

Til Busy

;set error bit/code and exit

R EE S SRS SRR SRS ERER RS EE SRR EREEEEEEEEREEEESERSEEEEEEEESEE SRS S
7

P * ERROR EXIT

AT R R EEEE R RS SRR RS ES SRR SRS RS SRR EREEEEREREEEEEEEEEEREEESERES
’

unknown :
or

jmp

es: [bx].
done

rh_status, 8003h

*

;set error bit and error code
;set done and exit

AR EEEE SRS RS S SRR E SRR RS R SRS SR SRR EEEREEEEEREEEEEEESEEEEESES
’

P * COMMON EXIT

IREE SRS SRR ESEE RS EEE R E SRS RS SRS EEREEREEEREEEESERSEESERS]
’

load_status:
mov
mov
mov
xchg
mov
mov
jmp

busy: or
done: or

pop
pop
pop
pop
pop
pop
pop
pop
ret

cx,cs:rh_seg

es,Ccx

cx,cs:rh_ofs

bx,cx
es: [bx].
es: [bx].
done

es: [bx].
es: [bx]

si
di
dx
cx
bx
ax
es
ds

rh_status, ax
rh8_count, cx

rh_status, 0200h

.rh_status, 0100h

*

;restore request header
; segment to es
;restore offset also
;switch them

;jreturn status

;return output count
;set done bit and exit

;set busy bit
;set done

;restore all registers

;return to DOS

AR SRR SR SRS EESEEEESEEEEREEEEEEREESEEEEEEREEEEEREEEEREEEEEREEERESE]
’

P * END OF PROGRAM

AR AR R SRS ER SRS RS R SRR SRR R RS EREEREREEREREEEEEREEEEEEESEEEEES]
7

*

;this procedure is called from the Initialization command and
;is executed only once. We tell DOS that the next available
Address) is here. This allows DOS to over

;memory location
;write this code;

initial proc
lea
mov
int

228

(Break

near

we save space.

dx,cs:msgl

ah,9
21h

;display message on console
;part 1 of message

;display on console

;DOS call

A Clock Device Driver

Listing 6-12: (cont.)

;First find clock chip base address

lea si,cs:clock_table ;get address of table
mov cx, 3 ;three addressess
findl: mov dx,cs: [si] ;get 1lst address
add ax, 2 ;base+2 = seconds
in al,dx ;get seconds
test al,80h ;high order bit set?
jz find2 ;no - not empty port
add si,2 ;next address
loop findl . ;search thru clock table
;no port found - don’t continue with setup
lea dx,cs:msg4d ;no port found
mov ah,9 ;display on console
int 21h ;DOS call
ret ;exit
;Clock Chip port found
find2: mov dx, 3 ;convert back to port #
sub dx,cx ;port position
shl dx, 1 ;double it
lea di,cs:clock_table ;address of chip table
add di,dx ;word index
mov dx,cs: [di] ;get port
mov cs:clock_port,dx ;save it
lea di,cs:msg2a ;convert to ASCII
call hex2asc ;for later display
;Determine type of Video Display adapter in system
mov ah,0fh ;get video mode
int 10h ;Video BIOS call
cmp al,7 ;mono?
jne calc ;no - assume color
mov cs:mode, 1 ;mono = 1
mov cs:scn_port, 3bah ;mono video port
mov cs:scn_seg, 0b000h ;mono screen address
;Calculate time string
calc: call display ;setup initial time
cli ;clear interrupts
assume es:timer ;new directive
mov ax, timer ;get segment addr
mov es,ax ;set ES
mov ax,es:timer_ofs ;get old timer offset
mov cs:0ldlc_ofs,ax ;save it
mov ax,es:timer_seg ;get old timer segment
mov cs:0ldlc_seg,ax ;save it
lea ax,clkint ;get new offset
mov es:timer_ofs,ax ;set new offset
mov es:timer_seg,cs ;also segment
assume es:cseg ;restore directive
sti ;restore interrupts
lea dx,cs:msg2 ;part 2 of message
mov ah,9 ;display on console

229

Writing MS-DOS Device Drivers, Second Edition

Listing 6-12: (cont.)

int 21h ;DOS call
cmp cs:mode, 1 ;mono?
jne exit?2 ;no
lea dx,cs:msg3a ;yes
jmp exit3 ;go print mono message
exit2: lea dx,cs:msg3b ;color
exit3: mov ah,9 ;display on console
int 21h ;DOS call
mov bx,cs:rh_ofs ;restore BX
mov ax,cs:rh_seg ;restore segment
mov es,ax ; to ES
ret ;return to caller
initial endp
msgl db ‘The Waite Group Clock Device Driver’,0dh, Oah, 'S’
msg2 db ‘ using device address '’
msg2a db "0000H’, 0dh, Oah, 's”
msg3a db ’ with monochrome adapter’,0dh,0ah, 'S’
msg3b db ’ with color adapter’, 0dh, Oah, 'S’
msg4 db ’ No Clock Found - Driver Aborted’,0dh,0Oah,’$’
clock_table label byte ;table of possible chip addresses
dw 0240h ;
dw 02cOh ;
dw 0340h ;

hex2asc proc

;requires:

; dx = binary number

; di = address of ASCII string

;uses:

; ax - for character conversion

; cx - loop control

;returns:

; nothing
push cx ;save cx
push ax ;save ax
mov cx,4 ;number of hex digits

hil: push cx ;save cx inside this loop
mov cl,4 ;shift count (bits/hex digit)
rol dx,cl ;rotate left 1 hex digit
mov al,dl ;move hex digit to al
and al,0fh ;mask off desired hex digit
cmp al,0ah ;is it above 9h?
jge h2 ;yes
add al,30h ;numeric hex digit
Jjmp h3 ;skip

h2: add al,37h ;alpha hex digit

h3: mov cs:[di],al ;store hex digit in string

230

A Clock Device Driver

Listing 6-12: (cont.)
inc di ;next string address
pop cx ;get saved loop count
loop hl ;loop start
pop ax ;restore ax
pop cx ;restore cx
ret ;return to caller

hex2asc endp

clock
cseg

endp ;end of clock procedure
ends ;end of cseg segment
end begin ;end of program

After you have entered the clock device driver into a file, you will need to
assemble, link, and convert it to .COM format. In addition, you will need a
CONFIG.SYS file that specifies the clock device driver as a user-installable
device driver.

The Clock Device Driver in Action

When you first boot DOS with the clock device driver, you will get a strange date.
This is because the driver has not set the time and date on the MM58167A clock
chip. Once you have used the TIME and DATE commands to set the proper time
and date, you will see the correct time and date on the next boot of DOS. Notice
that the time is shown in the upper right-hand corner. This is the resident
program displaying the time on the screen.

Summary

In this chapter, we have examined a clock device driver. The standard DOS clock
driver has been replaced with one that has many features. It will find the port
address of the MM58167A clock chip, determine the video monitor adapter type,
and periodically display the time on the screen. You have seen how to abort the
loading of a device driver if the driver cannot find the base port address of the
clock chip. Finally, you have seen how to take over an interrupt for your own use.

Device drivers are not just programs that control devices. You can use
drivers for creative programming efforts, adding almost any feature you desire.

In the next two chapters we will look at a different type of device driver—the
block-oriented device driver. In chapter 7 you will learn about disks—how they

231

Writing MS-DOS Device Drivers, Second Edition

work, what is contained on disks, and what disks do in terms of device drivers.
In chapter 8, you will build a RAM disk device driver with a special feature that
i will allow you to hear the device driver working.

|

Questions

1. What happens if I ran the clock device driver and the clock chip was
| missing from the PC?

Of what use are the RAM locations in the clock chip?
I notice a lot of code for determining leap years. Why is that?

I do not want to display the time on the screen. What do I do?

Answers may be found in appendix F.

232

~ Chapter 7

Ihtroducing Disk
Internals

e . wTechmcal Detaﬂs of DOS Disk
= Support :

The Boot/Reserved Area FAT,
~ and Clusters

The File Dlreetory
B DlSk Slzmg

5 Crltlcal Disk Parameters
5 TDOS Disk Dev1ce Dmvers
~ Disk Device Br,lver Commands

Introducing Disk Internals

In order to learn how to write a disk device driver, which we present in
the next chapter, you should review the topic of disk internals. DOS supports a
variety of disks, with storage capacities ranging from a hundred thousand bytes
to hundreds of megabytes. In this chapter, we will describe how DOS manages
different types of disk storage. You will need this information when you begin
writing the powerful block device driver in chapter 8 that simulates a disk but
that has much faster read and write times.

Starting with basic definitions, we will show how data is written to a disk
(disk here means both hard [fixed] disk and floppies), how DOS organizes the
data on the disks, and how DOS determines the disk type. We will distinguish
between floppy and hard disk drives and look at some of the special features of
hard disk drives. Lastly, we will describe the internal information that is
contained on each disk drive and how disk device drivers interact with DOS to
access disks.

The Physical Side of Disks

Disks are storage devices that are based on a rotating disk with magnetically
alterable surfaces. The surfaces store digital information. Read/Write heads are
built into the disk drive to retrieve and store data to the disk drive. Disk drives
are also known as random access devices, because you can independently position
the read/write head to any spot on the disk.

Disk drives come in two different forms. Floppy disks are those types of disks
that can be removed from the drive unit. Hard disk drives are fixed and cannot
be removed.

235

Writing MS-DOS Device Drivers, Second Edition

Disk Types

Floppy disks are built using flexible materials and are usually made in three
sizes: 312 inches, 574 inches, and 8 inches in diameter. Information is recorded
on one or both surfaces; most floppy disks use both surfaces.

Hard disks are built with one or more platters mounted on a spindle driven
by a small motor. Each of the platters is magnetically coated on both sides for
storing information. A read/write head is assigned to each surface of a platter.
These disk heads are mounted on arms that move together and are controlled by
another motor.

Connected to every disk drive through a cable is a disk controller; a PC
add-on circuit board that provides electrical signals to control the disk and
read/write head. The disk-controller board is inserted in a slot on the PC’s
motherboard, which connects it to the main bus and allows the board to receive
instructions from the CPU. The controller is responsible for transferring data to
and from the PC and for positioning the read/write head to a desired position on
the disk.

Organizing Data on Disk Drives

236

In this section, we will examine organizing data on disks, storage capacities,
sector sizing and numbering, and formatting.

Tracks on a Disk

Each surface of a disk is divided into tracks on which information is recorded.
The read/write head assigned to a disk surface is positioned to one of these tracks
before a read or write is performed.

Most 51/4-inch floppy disks have either 40 or 80 tracks. There is also another
standard format based on 31%-inch disks. Disks that contain 40 tracks are
commonly called double density disks. Historically, the original disks for the PC
could record at half this density and were called single density disks. With
improving technology, the density has increased to 80 tracks; such disks are
known as high density disks.

Because the surfaces are rigid and easier to control to tighter tolerances,
hard disks can have many times the number of tracks on a floppy disk. A 10-Mb
fixed disk for the IBM PC typically has 305 tracks. When there are two or more
platters in a disk drive (the spinning surface is called a platter), the term cylinder
is used to refer to all tracks that are identically numbered.

Tracks are numbered from 0 to the highest track number for the disk. Each
recording surface of the disk is also numbered in this manner.

Introducing Disk Internals

Raw Storage Calculations

Often you need to calculate just how much capacity there is on a disk. Several
specifications can be used to determine the amount of storage. First, you will need
the amount of data that can be recorded in one track, which is usually specified
in bytes per track. Next, you will need the number of tracks per disk surface,
which is determined by the track density (usually specified as tracks per inch, or
tpi) multiplied by the circumference of the recording surface that contains
tracks. Finally, you will need the number of recording surfaces. This is usually 1
for a single-sided disk and 2 for a double-sided one. For hard disks, this number
is usually twice the number of platters.

The total amount of “raw” storage on a disk is calculated with the following
formula:

Total storage = storage/track * tracks/surface * surfaces

Not all of this storage area is available for your use, because the overhead
needed to manage the data stored on the disk is not taken into consideration in
this calculation. Overhead is a term used to describe the additional information
recorded onto the individual tracks that is required for the disk controller to find
each track.

Disk tracks are further subdivided into sectors for ease of management; we
will describe why this is done shortly. Table 7-1 summarizes the various types of
disks and the amount of data that can be stored.

Size 3% 314 514 514 514 514
Type floppy floppy floppy floppy floppy hard
Density Type — — double double quad —
Density 135 135 48 48 96 720
(Tracks/Inch)
Tracks/Surface 80 80 40 40 80 305
Surfaces 2 2 1 2 2 4
Bytes/Track 5,120 10,240 5,120 5,120 5,120 10,416
Total Storage Size 800K 1.6Mb 200K 400K 800K 12Mb

Table 7-1: The amount of raw storage available for different types of
disks.

237

Writing MS-DOS Device Drivers, Second Edition

238

Organizing Data into Sectors

Sectors are subdivisions of a circular track; they form the basic unit of storage for
disk drives. Using sectors allows you to use a common method for storing data
for disk drives of varying sizes.

Whenever a disk is called upon to pass data back to the CPU, the read/write
head of the disk is first positioned to a particular track. Then, as the track rotates
under the head, the disk controller will scan the sectors that pass by, searching
for the desired sector. Once the desired sector is found, the disk controller reads
the contents of the sector and returns the data.

The number of sectors in a track sometimes varies. This number depends
on the amount of data that can be stored on a track. Version 1.0 of PC-DOS
supported only floppy disks, and these were formatted for 8 sectors per track.
PC-DOS version 3.0 allows 8, 9, and 15 sectors per track for floppy disks. Some
machines, such as the Victor 9000, have formats that put more sectors per outer
track than per inner tracks. This is because the larger outer tracks can contain
more data than the smaller inner tracks.

For hard disks, the standard number of sectors per track is 17. However, as
you will see in the section on the BIOS Parameter Block, DOS can handle just
about any number of sectors per track.

Sector Numbering and Sizing

In general, for both PC-DOS and MS-DOS, the physical-sector numbering starts
at 1. Therefore, for a disk with 9 sectors per track, the sectors are numbered from
1 through 9; for a hard disk with 17 sectors per track, the sectors are numbered
from 1 to 17.

Caution: Physical sectors are numbered starting at 1. This
scheme is used when the disk BIOS routines are used to format,
read, or write sectors. DOS uses a different scheme that num-
bers sectors beginning with 0. You will see this later, in the
section on the BIOS Parameter Block.

As you saw above, the amount of data stored in each sector depends on the
amount of storage per track and the number of sectors per track (assuming a fixed
density for all the tracks). Because the amount of storage per track is fixed, the
sector size can be varied by varying the number of sectors per track. Usually, the
sector size is fixed at so many bytes per sector, and the number of sectors per

Introducing Disk Internals

track is calculated by dividing the amount of storage per track by the desired
sector size (plus some overhead). When a track is divided into sectors, some
storage is lost in defining management and location overhead for each of the
sectors. Defining sectors on a track is performed by the formatting process. The
formatting information, or overhead, reduces the amount of storage available for
your use.

The DOS Standard for Sector Sizing

The DOS standard sector size is 512 bytes; however, DOS disk support allows
sector sizes of 128, 256, 512, and 1,024 bytes per sector. Sector sizes other than
512 bytes are rare. Because many parts of DOS have been written to assume a
sector size of 512 bytes, other sector sizes may not be used under all conditions
without modifying DOS. Table 7-2 shows the number of sectors for the typical
disk types that are supported by DOS.

Formatting Disks

A special program is used to create tracks and sectors within tracks on a disk.
This program is known as FORMAT.COM, and it performs a number of additional
tasks. The first task is to create a number of sectors on a track. This is repeated
for all the tracks of a disk. The second task is to test each sector to ensure that
data can be written to and read from the sector. The FORMAT.COM program
will create a table for DOS that identifies which sectors are good or bad, so that
bad sectors can be ignored. You will see more of this later in the section on File
Allocation Tables.

Size 3% 3% 514 54 514 514
Type floppy floppy floppy floppy floppy hard
Density Type — — double double quad —

Raw Storage 800K 1.6Mb 200K 400K 800K —
Bytes/Sector 512 512 512 512 512 512
Sectors/Track 9 9 9 9 8 17
Tracks/Surface 80 80 40 40 80 820
Surfaces 2 2 1 2 2 6

Total Sectors 1,440 2,880 360 720 1,440 83,640
Formatted Storage 720K 1.44Mb 180K 360K 720K 40.84Mb

Table 7-2: Some of the disk formats supported by DOS.

239

Writing MS-DOS Device Drivers, Second Edition

When the data is organized by sectors, the overhead of identifying each
sector results in a small loss of total storage. Typically, this is about 10 percent.

Technical Details of DOS Disk Support

240

In this section, we will discuss how DOS accesses the various parts of a disk, the
File Allocation Tables and File Directory, and the parameters in the Boot Record
that describe the disk to DOS.

Disks Supported by DOS

The earliest versions of DOS (1.0) supported only single-sided disks. The next
version (1.1) supported double-sided floppy disks. Hard-disk support began with
MS-DOS version 1.25 and PC-DOS version 2.00. Prior to these versions, hard-
disk support was largely a matter of the disk manufacturer providing custom
software routines to access the hard disk. Today, hard disks of all sizes may be
added to IBM and IBM-compatible PCs without requiring special software. The
use of drivers facilitates the task of adding support for a large number of disks.
Table 7-3 summarizes the types of disks supported by PC-DOS for the IBM PC.

Special mention should be made of disk types supported by other vendors
for non-IBM PCs. MS-DOS can be tailored to just about any machine that uses
an 8086/8088 microprocessor, so the number of disk types for non-IBM compatible

Single Double Hard Hard
DOS Side Side 1.2Mb Disk Disk:
Version 514 514 31n Floppy 10Mb Size
1.0 X
1.1 X X
2.0 X X X
2.1 X X X
3.0 X X X X 10Mb+
3.1 X X X X 10Mb+
3.2 X X X X X 10Mb+
3.3-5.0 X X X X X 10Mb+

Table 7-3: The types of disks supported by the various versions of
PC-DOS. With each new version of DOS, support of new disk types
was added.

Introducing Disk Internals

PC Disk Type Size Description

HP 150 3%2 floppy 270K Single-sided disks

Tandy 2000 5V4 floppy 720K Double-sided 96 tpi disks
DEC Rainbow 5V4 floppy 720K 2 single-sided 96 tpi disks
Victor 9000 5V4 floppy 1.2Mb Double-sided 96 tpi disks

Table 7-4: Disk sizes for other types of PCs using MS-DOS.

machines is large. Table 7-4 shows other types of PCs and the disk types
supported by MS-DOS.

How Disks Are Organized

DOS is capable of supporting more than one type of disk. This is made possible
by requiring that information regarding a disk’s specific storage and access
capabilities be stored right on the disk itself in a specific area defined by DOS.

Each disk must also have additional information stored on it indicating the
amount of storage currently used, names of existing files, and other information
required for managing the files and disk space. This information is invisible to
the user but is a necessary component of all disks.

DOS expects the information on the disk to be defined in a certain sequence;
therefore, all DOS disks are organized in a uniform fashion. This allows DOS to
obtain information about the use of the disk, how space is to be allocated on the
disk, and the files in use on the disk.

There are four components to a disk layout. The first is the reserved area
commonly referred to as the boot record. The second component is the File
Allocation Table (FAT), which is used to indicate the usage of space on the disk.
The third component is the File Directory, which is used to store the size, location,
date, and time information about files on the disk. Finally, the last component is
the user data area, in which the user files are actually stored. The relationships
among these four components are shown in figure 7-1.

The Boot/Reserved Area, FAT, and Clusters

The boot or reserved area is the first section on the disk. Because disks vary in
their number of sides, tracks, and sectors, DOS needs to determine these disk
characteristics the first time it accesses a disk.

241

Writing MS-DOS Device Drivers, Second Edition

242

User data area) File directory
. contains the data grouped in files contains entries
describing
files,
volume

First or sub-directories

of Disk

Second File Allocation Table
copy of the first FAT

3 8 19 482 First File Allocation Table
bytes bytes bytes bytes contains information on space used in
the user data area

Figure 7-1: The relative positions of the four components of a typical
formatted disk, with an exploded view of a typical boot area.

DOS assumes that this information describing the disk is always in a certain
physical location, usually track 0, surface 0, and sector 1—the first sector of the
disk. Although the boot area is usually only one sector in length, it can be larger.
For this reason, this area is now more generally referred to as the reserved
sectors area.

Figure 7-1 shows the boot area’s four parts: a jump code instruction, the
vendor identification code, the BIOS Parameter Block, and the boot code area.

The first part of the boot area contains a jump (jmp) instruction. If the disk
is a DOS system disk, booting it causes the PC to load the data in the boot area
into memory and to execute this jump instruction, which skips over the vendor
identification and BIOS Parameter Block areas directly to the boot code.

The second part of the boot area is an 8-byte field that contains the vendor
identification. This field is not used or required by DOS. Normally, a PC manu-

Introducing Disk Internals

facturer will fill this field with the name of the vendor plus the DOS version on
the disk. Examples of vendor identification fields are:

IBM 3.1 PC-DOS supplied by IBM

PSA 1.04 MS-DOS supplied by ATT (6300)

PC88 2.0 MS-DOS supplied by popular clone manufacturer
cce 2.1 MS-DOS supplied by Compag

MSDOS5.0 MS-DOS supplied by Microsoft

The third part of the boot area is the BIOS Parameter Block. This is a table
of special disk parameters that DOS requires to determine the size of the disk
and the relative locations of the FAT and the File Directory. The BIOS Parameter
Block is often called the BPB and is always present on every disk. We will describe
the contents of the BPB later in this chapter.

The fourth and last part of the reserved boot area is called the boot code area
because it contains the actual code for the bootstrap program that starts the PC.
This bootstrap program has the job of “pulling itself up by the bootstraps”; in the
case of DOS, this means getting DOS to bring itself into memory. Although this
bootstrap code is always present in the reserved boot area, regardless of whether
the disk contains the DOS system files, it is meaningful only when the disk has
been set up as a system disk.

Typically, a system disk is created by the FORMAT program supplied with
MS-DOS. If the FORMAT command is executed with a special command switch
(usually /S), two additional files will be copied to the disk. These files (typically
I0.SYS and MSDOS.SYS) contain the code for the MS-DOS operating system
and are hidden from you; they do not appear in a directory listing of the disk.
However, the bootstrap program knows they are there and will load them into
memory when the disk is accessed at system start-up time. When a disk has been
set up to make it possible to boot from that disk, the disk is referred to as a
system disk.

Whenever any disk is formatted for use by the DOS FORMAT program, the
four sections comprising the boot area are written to the reserved area of the disk,
which always begins at the first sector of the disk.

Clusters as the Unit of Storage for a File

Before we describe the File Allocation Table, you need to know how sectors are
used to hold data. When your program writes new data to a disk file, DOS needs
to find an unused sector on the disk in which to store the new data. Conversely,
when your program reads from a disk file, DOS needs to locate the sector on the
disk in which the data is stored. DOS requires each disk to have a File Allocation
Table in order to keep track of where sectors for a file are located.

243

Writing MS-DOS Device Drivers, Second Edition

244

Disk Type Sectors per Cluster

3% double-sided floppy
5V4 single-sided floppy
514 double-sided floppy
10Mb hard disk

20Mb hard disk (AT)

> 00 N~ DN

Table 7-5: The typical cluster sizes for different types of disks.

Keeping track of files on a sector-by-sector basis can be inefficient, however.
For example, a 10Mb hard disk has more than 20,000 sectors, and keeping the
location of each would make the File Allocation Table very large. Searching this
table would take a relatively long time. If the File Allocation Table were smaller,
the searches would be faster, and, as a result, the file accesses would be faster.
A better solution would be to group sectors together in a pool so that when a new
space on the disk is required, a group of sectors is allocated for the file. This
concept of grouping is called clustering sectors; it allows DOS to be more efficient
in terms of the memory required to manage the File Allocation Table. A cluster
is simply a fixed number of sectors; clusters add a second layer of organization
and make access easier.

Whenever a file requires disk space, DOS allocates a single cluster and
marks the File Allocation Table to indicate this. Clusters (also called allocation
units) are the basic units of storage for disk files. The number of sectors per cluster
is determined by the disk type and is established by the FORMAT program when
the disk is formatted. Table 7-5 shows the cluster sizes for different disk types.

The File Allocation Table

Let’s learn how the File Allocation Table works.

The File Allocation Table (FAT) is the section of the disk that stores
information on disk-file space usage. This table contains information on all the
clusters that are unassigned (free for allocating to files), assigned (those that are
in use by a particular disk file), or marked as bad (not usable because of media
defects).

Note that although the FAT records information on disk space used by your
files, the boot area, the two FATSs, and the File Directory areas are not themselves
represented by clusters in the FAT.

Within the FAT there is an entry for each available cluster on the disk. A
floppy might have over 700 clusters. These entries indicate whether the cluster
is in use, free, or bad. Bad clusters are found through the FORMAT program

Introducing Disk Internals

during the formatting process; sectors that cannot be used because of problems
in reading or writing cause the entire cluster to be marked bad. This means that
some good sectors are lost.

As we said earlier, there are two identical copies of the FAT. The second copy
provides some insurance against the possibility of the first copy being damaged.
This is an old trick that has been borrowed from other operating systems.
However, DOS does not use the second copy to fix the first if it is damaged.

Recording Clusters in the File Allocation Table

As you saw earlier in this chapter, when a disk file grows, DOS allocates space
on the disk in clusters rather than one sector at a time. This causes the FAT to
be updated to indicate that a previously free cluster is now in use. Conversely,
when a file is deleted, the clusters once occupied by data are marked in the FAT
as being free again.

As a file grows, DOS allocates clusters of disk space, and the use of these
clusters is marked in the FAT. The list of clusters that form the disk space used
by the file is called a chain, because of the way that DOS stores the cluster
information in the FAT. You will see more of this shortly.

FAT entries contain a value to indicate the status of each cluster. The cluster
may be reserved for use by DOS, free for allocation, bad, or in use. A cluster is
in use when it is part of a chain. The values for the FAT entries are listed in
table 7-6.

For disk sizes of 10Mb or smaller, the size of the FAT entry is 12 bits in
length, or 3 hex digits. For disks larger than 10Mb, the FAT entry is 16 bits long,
or 4 hex digits.

The first available space in the user-data area of the disk is the first cluster,
which is assigned a cluster number of 2. The reason it is not called 0 or 1 is that
the first two entries in the FAT, normally cluster 0 and 1, are reserved for a media

12-bit Entry 16-bit Entry Cluster Description

000h 0000h Free
001h-fefh 0001h-ffefh In-use
ffOh-ff6h fffOh-fff6h Reserved
ff7h fff7h Bad
ff8h-ffth fff8h-ffffh End of cluster chain

Table 7-6: The various FAT entries and what they mean.

245

Writing MS-DOS Device Drivers, Second Edition

246

> 3 4

 FATentry 0

Figure 7-2: The relationship between FAT entry and cluster. Each
cluster is assigned a position in the FAT and will indicate whether the
cluster is part of a chain (in use), free, bad, or reserved. Note that the
clusters are numbered starting at 2.

descriptor. A media descriptor is a value that uniquely identifies a particular type
of disk and allows DOS to distinguish a single-sided 5V4-inch disk from a
double-sided one. You will see more of this media descriptor in the section on the
BIOS Parameter Block. Figure 7-2 shows the entries in the FAT that point to or
represent the clusters in the user-data area.

Clusters, Chains, and the FAT

Suppose a file were large enough to require two clusters of disk space. DOS could
simply mark each of two entries in the FAT with a value to indicate which clusters
were in use, but this would not allow DOS to determine which cluster was first
and which was second in the table. It would also be difficult to distinguish this
particular file’s use of the disk from that of another file. It follows that just

Introducing Disk Internals

marking used clusters via the FAT is insufficient for keeping track of what files
exist where on the disk; we need a better method.

Consider the following: when the first cluster is allocated to the file, we could
store the cluster number outside the FAT, in the File Directory. (We will explain
later in this chapter what the exact format of the File Directory entry is for each
file, but let it suffice now to say that the disk directory will maintain, for each file
on the disk, information about the file, including its name and starting cluster
number.) Then, as the file grows and the second cluster is allocated, we could use
the FAT entry for the first cluster to note which cluster was assigned as the second
cluster. For example, if the file used clusters 5 and 10, we would note (outside
the FAT) that the file’s first cluster was cluster 5; then, in the fifth entry of the
FAT, we would store the number 10 to indicate that the next cluster in the file
was cluster 10. It follows that if the file grew larger, thus requiring another
cluster, we would find a free (unallocated) cluster in the FAT and store its number
in the 10th entry of the FAT. This could continue indefinitely, or at least until
there were no more available clusters to be found. In all cases, the last cluster
allocated to the file would always have a special value in it to indicate that there
were no more clusters following it. This value would represent the end of the file.

The concept of having each cluster essentially point to the next cluster in
use by a file is called a cluster chain. The idea is that the contents of each FAT
entry in use contains a value (also called a pointer) that points to the next cluster,
unless the FAT entry represents the last cluster for a file, in which case it would
contain an end-of-file indicator. The only thing we would then have to know for
a file to find all its sectors is the number of the first cluster assigned to it.

As mentioned earlier, the first cluster assigned to a file is stored in the most
sensible place: the File Directory.

Figure 7-3 shows how each FAT entry points to the next, thus forming a
chain. The start of the chain, or the first cluster, is kept in the File Directory with
the entry for the file myfile. It contains the value of 4, which means that the first
cluster of the file in the FAT is cluster number 4. The entry in the fourth FAT
position contains the value 5, which indicates that the next cluster is cluster
number 5. At the entry for cluster number 5 we find the value 6, which points to
cluster number 6 as the next cluster. Finally, at entry number 6, we find it
contains an fffh. This marks the end of the clusters allocated for myfile. Thus,
myfile is composed of clusters 4, 5, and 6 and is three clusters in length.

The Number of FATSs Is (Almost) Always Two

The number of FATSs is normally two, as shown in figure 7-3. When DOS updates
the FAT, the first copy is updated, and then the second copy. As we said earlier,
using a second identical copy of the FAT provides insurance against the first copy
being damaged. The theory is that if the first copy is bad, then the operating

247

248

Following the FAT Chain

Eile
irectory myfile
Entry y

FAT

Figure 7-3: The clusters used by myfile.

system will use the second copy. Without this mechanism, a damaged FAT would
render the disk inaccessible. In practice, however, with a PC, if the first copy of
the FAT is damaged, DOS does not use the second copy of the FAT to access file
information, and the entire disk is not usable. The authors of DOS simply forgot
to implement a means to fix the FATSs.

Because DOS really uses only one FAT, disks can be built with only one of
them. To build disks with only one FAT, you cannot use the standard DOS
FORMAT program, which builds two FATSs on each disk to be formatted. You will
need to write a special FORMAT program to build only one FAT on each disk.

The specification of the number of FATSs is defined in the BIOS Parameter
Block. The overhead of a second copy and the necessity of always updating this
second copy can be eliminated if you specify only one copy of the FAT.

The FATs are built for each disk during the formatting process using the
FORMAT program. Each entry in the FAT is set to 0 if the corresponding cluster
is available for data storage. A FAT entry is marked bad if the corresponding

Introducing Disk Internals

cluster has one or more sectors that are not usable. This occurs when read or
write errors are found during the formatting of the disk.

The File Directory

As shown in figure 7-3, the File Directory follows the boot area and the FATs and
contains the names for all disk files, names for subdirectories, and the volume
label.

The File Directory itself is a variable number of sectors that will depend on
the number of entries specified for the disk. Every File Directory entry requires
32 bytes; thus, a 512-byte sector will have 16 such directory entries. The exact
number of directory sectors is the number of files or entries divided by 16 and
rounded up by 1 if the number of sectors is 0. Thus, the number of files a File
Directory can have is dependent on the type of disk used. Table 7-7 lists the disk
types and the number of file entries possible. Popular double-sided disks allow
112 entries in the directory, and the hard disk allows 512.

The fields for each File Directory Entry are described in table 7-8.

Filename The filename field contains a file name that is up to 8 bytes (or
characters) in length and is left-justified in the field. DOS expects file names that
are less than 8 bytes to be filled out with blanks. If a file has been deleted, the
first byte of its filename field is changed to a hex E5. This signifies to DOS that
the entry is available for reuse. When a directory entry has never been used, the
first byte of the file name field will contain a hex 00.

The distinction between a deleted file name entry and an unused entry is
that during directory searches DOS will stop when it encounters the first hex 00
in the first byte of any filename field but continues when it encounters a hex E5,
which is merely a deleted entry. If a deleted entry contained a hex 00 in the first

Directory Directory
Entries Sectors Description

64 4 Single-sided disks
112 7 Double-sided disks
224 14 AT high-density disks
512 32 Hard disks

Table 7-7: The number of File Directory entries and the number of
directory sectors for each type of disk.

249

Writing MS-DOS Device Drivers, Second Edition

250

Start Length Description

0 8 File name

8 3 File name extension
11 1 File attribute
12 10 DOS reserved
22 2 Time of last update or creation
24 2 Date of last update or creation
26 2 Initial allocation unit/cluster
28 4 File size

Table 7-8: The File Directory entry consists of eight fields.

position, DOS would have to search all the directory sectors, because it could not
distinguish between a deleted file and an entry that had never been used.

Filename Extension The filename extension is an optional field; files may or
may not have extensions. Filename extensions are up to 3 bytes in length and,
like the filename field, must be left-justified in the field and right-filled with
spaces.

File Attributes File attributes tell what kind of file this is: read/write, read-
only, hidden, etc. Table 7-9 describes each of the attributes that are possible for
a File Directory entry.

Value Description

00h Normal read/write file
01h Read-only file

02h Hidden

04h System file -

08h Volume label

10h Subdirectory

20h Archive bit

Table 7-9: The various attribute bits that can exist for File Directory
entries.

Introducing Disk Internals

Hex Decimal
Field Offset Offset Bits within Offset
Hours 17h 23 7 through 3
Minutes 17h 23 2 through 0

16h 22 7 through 5
Seconds 16h 22 4 through 0

Byte <--23--><--22-->
Bits 1 11

5 10 54 0
Value hhhhhmmmmmmsssss

Table 7-10: How to decode the 2-byte time field.

Setting the attribute for read-only prevents a modification of the file through
DOS standard file write calls. The hidden attribute will prevent a display of the
entry when the DIR command is issued. The attribute for system file is set for
the special DOS files that reside on a system disk (I0.SYS and MSDOS.SYS).
These two files are brought into memory during a boot of the PC. The attribute
for volume label indicates to DOS that the File Directory entry is not a file name
but a volume name. The attribute for subdirectory indicates that the file name
and extension entry is the name of a subdirectory. The archive bit indicates to
DOS that when the BACKUP.COM utility is used to off-load files from the disk,
the contents of this particular entry are to be written out. Once the file is backed
up, the archive bit is turned off.

Time of Last Update or Creation Whenever a file is created, the time of
creation of the file is entered into the File Directory entry. This includes all
directory entries, such as file names, subdirectories, and the volume label. If a
file has been updated, this file directory will be updated to reflect the time of the
last update. This is not true for subdirectory entries; additions within the
subdirectory do not cause an update of the time for the entry. The 2-byte time
field is described in table 7-10.

Date of Last Update or Creation The date of last update or creation is set
with the file-creation date or the date of the last modification. This 2-byte field
is similar to the time field except for the date. Table 7-11 describes the 2-byte
date field.

251

Writing MS-DOS Device Drivers, Second Edition

Hex Decimal
Field Offset Offset Bits within Offset
Year 19H 25 7 through 1
Month 19H 25 0

18H 24 7 through 5
Day 18H 24 4 through 0
Byte <--25--><--24-->
Bits 1

5 98 65 0

Value yyyyyyymmmmddddd

*Year is years since 1980

Table 7-11: How to decode the 2-byte date field.

Initial Allocation Unit/Cluster The initial allocation unit or cluster field
contains the cluster number of the first cluster allocated to the file. For sub-
directories, this is the cluster that will contain the File Directory for the entries
in the subdirectory. Table 7-12 indicates the format for the start cluster number.

File Size The file-size field contains the size of the file in bytes. It is a
double-word entry with the words reversed and the bytes within each word
reversed. This double word allows file sizes of up to 32 bits, which is much larger
than the DOS limit of 32Mb. You will see why DOS has this limit in a later
section of this chapter. Table 7-13 describes the file-size field.

Hex Decimal

Offset Offset Description
1AH 26 Least significant
1BH 27 Most significant
Byte <--27--><--26-->

Hex value 0X XX

Table 7-12: How to interpret the start cluster number for the File
Directory entry. ‘

252

Introducing Disk Internals

Hex Decimal

Offset Offset Description

1CH 28 Low-order word
Least-significant byte

DH 29 Low-order word
Most-significant byte

EH 30 High-order word
Least-significant byte

1FH 31 High-order word

i Most-significant byte
Byte <-31-> <-30-> <-29-> <-28->
Hex value XX XX XX XX

Table 7-13: The 4-byte file-size field. Note that the bytes are reversed
in each field and the words are reversed.

Disk Sizing

In previous sections of this chapter, you have seen the different sections that
comprise a DOS disk. We will now cover the various aspects of DOS disk sizing,
including 12- or 16-bit FAT entries. Then we will describe how to calculate the
number of the clusters for a disk. Lastly, you will see how DOS limits the size of
disks.

FAT Entries: 12 or 16 bits?

As we saw earlier, FAT entries are either 12 or 16 bits in length. That length will
depend on two factors: the capacity of the disk and the cluster size. You will need
the size of the disk in sectors and the cluster size in number of sectors per
allocation unit.

Disks will use 12-bit FAT entries until it is no longer possible to store cluster
numbers in a 12-bit quantity. FAT entries of 12 bits can contain a number up to
4,096 (0 to fffh). Subtracting the 16 values that constitute reserved, bad, and
end-of-file indicators (see table 7-6) yields a maximum of 4,080 clusters. Because
clusters are numbered from 2, this results in a range of 2 to 4,080 or 4,079
clusters. If the number of clusters exceeds 4079, 16-bit FAT entries are used to
mark each cluster.

253

Writing MS-DOS Device Drivers, Second Edition

264

Disk size 514 514 514 514
Disk type Floppy Floppy Hard Hard
Surfaces 1 2 Varies Varies
Disk capacity 180K 360K 10Mb 20Mb
Total # sectors 360 720 20K 40K
Sectors/cluster 1 2 8 4
Maximum clusters 360 360 2560 10K
12/16-bit FATs 12 12 12 16
Boot area sectors 1 1 1 1
FAT sectors 2 2 8 40

FATs 2 2 2 2
Total FAT sectors 4 4 16 80
Directory entries 64 112 512 512
Directory sectors 4 7 32 32
Overhead sectors 9 12 49 113

Table 7-14: The various calculations for determining the size of the
FAT entries and the amount of overhead the disks can have.

For example, if a disk used 8 sectors of 512 bytes each per cluster, and the
maximum number of clusters is 4,079, the largest disk using 12-bit FATs would
be 16Mb (512 bytes * 8 sectors/cluster * 4079 clusters). Therefore, to make life
easier, disks larger than 10Mb use 16-bit FATs.

Note that, whether 12- or 16-bit FAT's are used, the FAT, File Directory, and
the Boot Record are not counted in the total number of clusters available. See
table 7-14 for a summary of the typical cluster and overhead values for various
types of disks.

DOS Disk Size Limits

PCs have grown in every way, and disk storage is no exception. The original hard
disks of 10Mb have given way to 20- and 30Mb drives as standard equipment.
DOS is extremely versatile in its handling of disks, but there are some limits built
into the software.

The critical number that limits the amount of disk storage per disk drive is
the total number of sectors per drive. This number is contained in a single word

Introducing Disk Internals

that allows for a maximum of 64K sectors. With a sector size of 512 bytes, this
yields a maximum disk size of 32Mb.

DOS can provide support for disks that are larger than 32Mb in two ways.
The first way is to use a larger sector size. For example, using a sector size of
1,024 bytes moves the disk size limit up to 64Mb. However, this requires special
software that changes the DOS system files to override the default 512 bytes per
sector. The second method is much easier. DOS offers the capability to divide the
hard disk into one or more partitions. Each partition of the disk is treated as if
it were a separate and distinct physical drive. Thus, you can have multiple 32Mb
partitions on one disk.

Beginning with DOS 4, the maximum size of a disk partition is no longer
limited to 32Mb. The location within the BIOS Parameter Block specifying the
number of sectors per disk was expanded from a single word to a double word,
thus allowing disk partitions in excess of 500Mb. You will see more of disk
partitions in the next sections.

Critical Disk Parameters

With a large variety of disks to support, DOS needs a mechanism to determine
the logical and physical characteristic of each disk in the PC. These disk param-
eters must be recorded on the disk and read by DOS before the first access. The
best location is within the Boot Record, because it is common to all disks and is
always at the beginning of the disk.

We will examine the disk parameters stored on each disk by taking a closer
look at the Boot Record.

The Boot Area Revisited

As you may recall, the boot area is the first part of a disk or, in the case of a
partitioned hard disk, the first area in the partition. As we discussed earlier, the
boot area contains a 3-byte jump instruction, the vendor identification, the BIOS
Parameter Block, and the boot code (see figure 7-1).

The BIOS Parameter Block

The 19 bytes that make up the BIOS Parameter Block (BPB) contain more
information that allows DOS to understand how the disk has been built. The BPB
contains physical information about the disk media, as well as the location and
sizes of the FATSs, the File Directory, and the user data area.

Table 7-15 shows the format of the BPB. Names or labels are assigned to
each field to make it easier to refer to these fields when we develop the RAM disk
device driver in the following chapter.

255

Writing MS-DOS Device Drivers, Second Edition

256

Name Start Length Description

SS 0 2 Sector Size in bytes

AU 2 1 Allocation Unit size (sectors per cluster)
RS 3 2 Number of Reserved Sectors
NF 5 1 Number of FATSs on this disk
DS 6 2 Directory Size (number of files)
TS 8 2 Number of Total Sectors

MD 10 1 Media Descriptor

FS 11 2 FAT Sectors (each FAT)

ST 13 2 Number of Sectors per Track
NH 15 2 Number of Heads

HS 17 2/4% Number of Hidden Sectors

LS 21 4% Large Sector Count

*=DO0S 4.0-5.0

Table 7-15: The fields that comprise the BIOS Parameter Block (BPB).

The BPB is read off each disk by DOS before the very first access. As you
will see, the values of the BPB allow DOS to translate physical to logical sectors
and vice versa. Additionally, the FATs, File Directory, and the user data area can
be found using the BPB.

Let’s examine each of these fields one at a time.

Sector Size (SS) The sector size field contains the number of bytes per sector
for this media. Although possible sector sizes are 128, 256, 512, and 1024 bytes
per sector, DOS does not make full use of this parameter. There are numerous
places in the BIOS and within DOS itself that assume sector sizes are 512 bytes
per sector.

Allocation Unit Size (AU) As we mentioned above, a cluster, or allocation
unit, is the basic unit of DOS disk storage and represents a certain number of
sectors.

Reserved Sectors (RS) This field contains the number of reserved sectors for
the disk. Recall that each floppy disk or hard-disk partition has a reserved or boot
area. This parameter specifies to DOS how many sectors are reserved as the boot
area. This field generally contains a value of 1 and is always at the beginning of
the disk or the partition.

Introducing Disk Internals

An important point to note here is that in DOS, sectors are numbered
starting at 0. You may recall that the BIOS routines use a sector-numbering
scheme that starts at 1. You will see how DOS uses sector numbering in the
section called “Hidden Sectors.”

Number of FATs (NF) The number of FATs for a disk, usually two, is con-
tained in this field.

Directory Size (DS) This field contains the maximum number of files in the
File Directory. The size of the File Directory in sectors will be dependent on the
number of files and the size of each sector. Because each file requires a 32-byte
entry in the File Directory, and because the number of bytes per sector is
contained in the sector size (SS) field, dividing the sector size by 32 gives the
number of directory entries per sector. Then dividing the directory size by the
number of directory entries per sector will give the number of directory sectors.
This number is rounded up if necessary.

Normally, 512-byte sectors are used, so 16 directory entries are available
per directory sector.

Total Sectors (T'S) The number of total sectors is the total size of the disk in
sectors. This number must include the sectors in the boot or reserved area, the
two FATSs, the File Directory, and the user data area. Because this word can
contain a number equal to 64K, the largest disk that DOS can support is 32Mb
using 512-byte sectors. For hard disks, this number is the same as the number
that appears in the partition table as the last entry.

For disks larger than 32Mb, using DOS version 4.0 or greater, this field is
set to 0 and the actual sector count is specified in the large sector (LS) field.

Media Descriptor (MD) The media descriptor field is a single byte that de-
scribes the disk for DOS. Table 7-16 explains the various media descriptor bytes.

FAT Sectors (FS) The FAT sectorsfield contains the number of sectors in each
FAT. DOS will use this number to calculate the total number of sectors occupied
by the reserved sectors (boot area) and the FATs to determine the start of the
File Directory.

Sectors per Track (ST) This field contains the number of sectors per track for
a disk. For floppy disks, this numberis 8,9, 15, or 16. For hard disks, this number
is usually 17.

Number of Heads (NH) This field contains the number of heads or usable
recording surfaces for the disk. This value is 1 for single-sided disks and 2 for

257

Writing MS-DOS Device Drivers, Second Edition

258

Hex Value Description

f8h Hard disk

f9h Double-sided 5V4-inch disk (15 sector HD)
Double-sided 3%%-inch disk

fah RAM disk (used by Columbia Data Products)

fch Single-sided 5¥4-inch disk (9 sector)
Double-sided 8-inch disk (single density)

fdh Double-sided 5V4-inch disk (9 sector)

feh Single-sided 5V4-inch disk (8 sector)

Single-sided 8-inch disk (single density)
Single-sided 8-inch disk (double density)
fth Double-sided 5%4-inch disk (8 sector)

Table 7-16: The various values for the media descriptor field.

double-sided disks. The value for hard disks will vary depending on the hard-disk
drive. Typical values range from 2 to 6.

Hidden Sectors (HS) The field that contains the number of hidden sectors for
the disk typically is used for partitioning hard disks. Hard disks have the ability
to be partitioned into several independent logical drives (for more information,
refer to appendix D). In order for DOS to locate the start of a partition, it needs
to know the number of sectors from the beginning of the disk to the start of the
partition that is being used. The sectors preceding the active partition are known
as the hidden sectors, because they are invisible to the active partition. The
number of hidden sectors is an offset that is added to the number thatis calculated
for file operations that are within the active partition to derive the precise
physical location on the disk. This is shown in figure 7-4.

Each of the partitions is treated by DOS as a contiguous block of sectors
starting with sector 0, even though it is not the absolute 0th sector. Do not confuse
this with the physical sector scheme, in which sectors are numbered starting at
1. The difference is that each track has physical sectors numbered starting at 1,
repeating the sector numbering for each track. DOS partitions start at sector 0
and do not repeat any of the sector numbers.

The number of hidden sectors is always 0 for floppy disks, because there is
no partition. For hard disks, the number of hidden sectors for each partition will
depend on the size of the preceding partitions (each partition has its own BPB).
The first partition will generally have 17 hidden sectors, because the first track
is occupied by the partition sector and the first partition must start on a track

Introducing Disk Internals

Hidden Sectors for the Partitions on a Hard Disk

l«—hidden sectors for partition 4 —»\

hidden sectors
for partition 3

hidden sectors
for partition 2 =

— hidden sectors for partition 1

Figure 7-4: The number of hidden sectors for the four partitions of a
hard disk.

boundary; therefore, the existence of the partition sector forces the first partition
to be on the second track, or 17 sectors from the beginning of the disk.

This field is 2 bytes long for DOS versions up to 4.0. To accommodate larger
disks, DOS 4.0 and 5.0 extend this field to 4 bytes.

Large Sectors (LS) This field is used by DOS version 4.0 or greater to specify
the total number of disk sectors if the disk is larger than 32Mb. In addition, if
this field is used, then the total sector (T'S) field must be set to 0. This field is set
to 0 when the disk size is less than 32Mb.

Using the BPB to Find Information

The BPB that must exist on each disk allows DOS to find the important and
necessary parameters about the physical characteristics of the disk. For example,
DOS can divide the total sector count (TS) by the number of sectors per track (ST)
to determine the total number of tracks for the disk or partition.

In addition, the BPB contains enough information for DOS to determine
where the FATSs, the File Directory, and the user data area are located. Because
the sizes of each of these sections of the disk can be found in the BPB or
calculated, it is a simple matter for DOS to add up the space occupied by
previous sections to arrive at the location of the FATs, the File Directory, or the
user data area. This is shown in figure 7-5.

Table 7-17 shows typical values that are found in the vendor identification
and the BPB for a 514-inch single-sided disk. '

259

Writing MS-DOS Device Drivers, Second Edition

N

Boot Area | FAT #1| FAT #2 | File Directory |User Data Area', \

|<-— RS —|«FS —>]<—FS —

«— NF——>

Start of: Formula for sector number

Boot Area: Sector O
FAT #1: Sector RS
FAT #2: Sector (RS + FS)

File

Directgry: Sector (RS + (NF*FS)

User Data

Area: Sector (RS + (NF*FS) + (DS/(SS/32)))
Where:

RS s the number of hidden sectors

FS s the Fat Size in sectors

NF is the number of FATs i

DS s the number of files in the File directory
SS is the number of bytes per sector

32 is the size of each File Directory entry

Figure 7-5: How DOS calculates the start sectors for the FATs, the File
Directory, and the User Data Area. Note that the size of the File
Directory is not stored in the BPB but is calculated using the number
of files in the File Directory (DS), the sector size (SS), and the size of
each File Directory entry (32).

DOS Disk Device Drivers

260

You are probably wondering why we have gone to such detail in describing the
FATs, BPBs, and so on. This detail is required to help you understand how DOS
interacts with a disk media, so that our RAM disk driver in the next chapter will
make sense. It is also necessary to look at the other side of the disk interface,
from DOS and the device driver. This is done in the next sections.

DOS and the Disk Device Driver

Whenever DOS needs to read or write to the disk, the standard disk device driver
(the one that is loaded into memory with DOS) is called. In addition to read or
write calls, DOS makes some calls to the disk device driver to get answers to
questions about the disk.

Introducing Disk Internals

Field Typical Value

Vendor Identification ‘ MSDOS 5.0

BIOS Parameter Block (BPB)

Sector Size in bytes (SS) 512
Allocation Unit size (AU) 4
Number of Reserved Sectors (RS) 1
Number of FATs (NF) 2
Directory Size in files (DS) 512
Total Sectors for disk (TS) 0
Media Descriptor (MD) F8
FAT Size in sectors (F'S) 81
Sectors per Track (ST) 17
Number of Heads (NH) 5
Number of Hidden Sectors (HS) 17
Large Sectors (LS) 82943

Table 7-17: The typical values found in the vendor identification field
and the BIOS Parameter Block for a 40Mb hard disk

Which Disk Is It?

DOS recognizes that disks fall into two categories: those that are removable and
those that are not. Removable disks are the familiar floppy disks that can be
removed and replaced easily. Nonremovable disks are, for the most part, hard or
fixed disks. Another type of nonremovable disk is a RAM disk, one of which we
will be writing in the next chapter. A RAM disk uses memory to store data.

During disk operations, DOS always checks to see whether the disk has been
changed. For nonremovable disks, there are fewer checks than for disk units that
contain removable disks. DOS performs this check through a call to the DOS
Media Check function. Recall from the previous sections of this chapter that all
disks have a media descriptor. DOS uses this to identify the disk and to check
whether the disk has changed. For example, if you have been using a single-sided
disk, the media descriptor would be FCh. Then, if you swapped a double-sided
disk for a single-sided disk, DOS would update the media descriptor and it would
contain FDh. However, this is not a foolproof method of determining if the disk
has changed—you could fool DOS by changing to another single-sided disk!
Therefore, you cannot rely on the media descriptor as the only method of
determining whether a disk has changed.

261

Writing MS-DOS Device Drivers, Second Edition

262

The only place to determine whether a disk has changed is within the disk
device driver. DOS will pass the media descriptor of the disk it has worked on to
the disk device driver. The disk device driver, in turn, will determine whether
the disk has changed by comparing the particular disk parameters; it then will
return this information to DOS.

If the disk has been changed, DOS cannot assume that the FATSs, the File
Directory, and the user data area are still in the same relative locations. Recall
that single- and double-sided disks have different numbers of sectors for the FATs
and the File Directory. Thus, another function of the disk device driver is to
return to DOS the BPB for any newly inserted disk. This allows DOS to calculate
the positions of the FATs and the File Directory for the new disk.

In short, each disk access by an application can cause DOS to perform a
media check on the disk. If the disk has changed, DOS will request the BPB for
the new disk from the disk device driver so that it can know where everything is
stored.

At this point, a real-life example might help illustrate what happens be-
tween DOS and the disk device driver. Let’s assume that you have inserted into
the B: drive a disk that has just been formatted. Then you issue the following
DOS command:

DIR
Here is the output that appears on the screen:

A>DIR b:

Volume in drive B has no label
Directory of B:\

File not found

A>

Even for this tiny amount of information, DOS has to perform many steps.
After the DIR command is issued, DOS has to check whether the disk in drive B:
has been changed since the last time B: was accessed. Then DOS has to read the
directory sectors for the volume label and the file information. Note that the File
Directory sectors may be read twice; pass 1 searches for the volume label, which
does not have to be in the first directory sector; pass 2 retrieves the file names.
Lastly, DOS reads the FAT for the amount of space used on the disk. This process
is shown in figure 7-6.

Steps DOS takes to complete the DIR command

DOS
DIR —

Has the

Introducing Disk Internals

et the new

S disk changed?

by

Read the Directory sectors
until a label is found

i

Display the Volume label
if present on the disk

T, e

Read the FAT and calculate |
the disk space used

Display the number of files
and free space

IOS Parameter Block

Figure 7-6: The steps DOS takes to display the contents of the disk
on a DIR command. Note that the File Directory sectors may be read
twice; the first pass searches for the volumelabel which does not
have to be in the first Directory sector; the second pass retrieves the

file names.

263

Writing MS-DOS Device Drivers, Second Edition

264

DOS Disk Device Driver
Media Check Has the disk changed?
.............. >

Yes Newly formatted disk in B: therefore the disk has changed.
< _____________
Get BPB DOS needs the new BIOS Parameter Block for the new disk to
-------------- > determine where the Directory starts.
Read DOS requests the first Directory sector in order to find the
-------------- > volume label.
Media Check DOS may make these requests several times depending on the
Get BPB amount of memory DOS has available to store information on
-------------- > the disk.
Read Read the Directory sector for file Name and size information.
.............. >
Media Check Retrieve the current BPB if needed for calculating where the
Get BPB File Directory is.
.............. >
Read Read the Directory sector for calculating number of files on the
-------------- > disk.
Media Check Retrieve the current BPB if needed for determining where the
Get BPB FAT resides.
______________ >
Read Read the FAT sector to calculate the amount of space available
-------------- > on the disk.

Table 7-18: The typical calls DOS makes to the disk device driver in
order to process the DIR command on a newly formatted disk. The
calls depicted are typical because the type and amount of calls will
depend on the DOS configuration used and whether it is the first time
the DIR is issued.

So far, the simple DIR command has DOS reading many sectors of the disk.
What other calls can the disk device driver expect? Recall that DOS always checks
to determine whether the disk has changed. This is reflected in the fact that each
disk read requested of the disk device driver is preceded by a Media Check call.

Let’s take the example above—the DIR of a freshly formatted disk—and
expand the steps DOS has to take to arrive at the message “file not found.” The
typical calls that DOS makes to the disk device driver to perform this task and
the responses it receives are shown in table 7-18.

Note that, in table 7-18, there are a lot of Media Check and Get BPB calls
to ensure that the disk has not been changed. There are generally fewer of these

Introducing Disk Internals

calls for hard disks. This is because the disk device driver knows that the hard
disk is nonremovable and can tell DOS the media has not changed. Therefore,
DOS will not request the BPB except when the hard disk is initially accessed.

Now that we have covered the amount of work that a disk device driver has
to do on request from DOS, we can review the commands that a device driver has
to perform. This will help us understand what is expected of our RAM Disk Device
Driver.

Disk Device Driver Commands

Asyouhavelearned, when DOS requires a service from a device driver, the packet
of data that is passed to the device driver with the call is referred to as the Request
Header. Contained within this packet of data is a command number that corre-
sponds to the service required by DOS. This command number instructs the
device driver to perform a certain action. You have seen several different com-
mands (Input, Output, and Initialization) in previous chapters.

There are 21 commands for device drivers in DOS version 5.0. We will now
describe each of these commands and what is required to write code especially
for disk device drivers. The list of applicable commands is shown in table 7-19.

The Initialization Command

The Initialization command is the first command issued to the disk device driver
after it has been loaded into memory. This call is issued because DOS needs
several pieces of information from the device driver. The first is how many disk
drive units this particular disk device driver will be supporting. For disks, this
number is usually read through switches set on the PC motherboard.

The next piece of information that the device driver must return to DOS is
the Break Address, which is the next available memory location after the driver.
Because the driver knows its location, it can easily return this information. DOS
then knows where to load the next device driver, if there is one; if not, DOS
continues loading other routines.

The next item returned to DOS is the address of a table of BPBs. For
5V4-inch floppy disk units there are five types of disks: single-sided disks of 8 or
9 sectors per track, double-sided disks of 8 or 9 sectors per track, and special
double-sided (high capacity) disks of 15 sectors per track. These five types of
disks will have five different types of BPBs, varying in media descriptors, number
of heads, FAT sectors, and File Directory entries. DOS needs to access this table
of BPBs to determine the various sector sizes of each type of disk supported. The
steps involved in finding the address of the BPB table are shown in figure 7-7.

265

Writing MS-DOS Device Drivers, Second Edition

266

Number Command Description

0 Initialization
1 Media Check
2 Get BPB
3 IOCTL Input
4 Input
5-7 Not Applicable
8 Output
9 Output With Verify
10-11 Not Applicable
12 IOCTL Output
13 Device Open
14 Device Close
15 Removable Media
16 Not Applicable
17-18 Undefined
19 Generic I/0 Control
20-22 Undefined
23 Get Logical Device
24 Set Logical Device
25 IOCTL Query

Table 7-19: All of the applicable commands for block device drivers.

The Media Check Command

The Media Check command in table 7-19 is always called before disk reads and
writes for other than file I/O operations. When directory or FAT information is
accessed, Media Check is called to determine whether the disk has changed. If
s0, DOS must read in new information on the disk.

DOS passes the media descriptor for the current disk in a particular disk
drive, and the device driver can use this to determine if the disk has changed.
Normally, as you saw earlier, this is not sufficient information because two
similar types of disks (both single-sided, for example) will have the same media
descriptor.

The device driver can return an indication of one of three possible condi-
tions. The first condition is the media has not changed. This will be the case for

Introducing Disk Internals

The BIOS Parameter Block Table

disk 1
REQUEST e
address of
HEADER BIOS Parameter BIOS
Block Table > Parameter
Block
disk type 2
BIOS
» Parameter
Block
address of BPB 1 disk type 3
address of BPB 2
Table of BIOS
BPB address of BPB3 Parameter
pointers Block
address of BPB 4
address of BPB 5
disk type 4
BIOS
Parameter
Block

disk type 5

BIOS
Parameter
Block

\

Figure 7-7: The Initialization command requirement to return the
address of the BIOS Parameter Block Table. This table consists of the
addresses for each of the BPBs for the five types of disks the disk
device driver supports.

267

Writing MS-DOS Device Drivers, Second Edition

268

nonremovable hard disks and RAM disks. The second condition is that the device
driver has determined that the media has changed. The driver could determine
this by checking to see if a disk door open signal has been received from the disk
controller or by simply calculating the time since the last access of the drive. If
the Media Check command is sent to the driver within a very short time interval
since the last access, it is not likely that a disk has been changed.

The last Media Check condition occurs when the device driver does not know
if the media has changed. For example, if the time since the last access of the
drive has exceeded a short predetermined time interval, the device driver as-
sumes that a disk change could have occurred and returns a “don’t know”
condition. '

The Get BPB Command

The Get BPB command is requested of the device driver whenever a media-is-
changed condition is returned to DOS from a Media Check call. Get BPB is called
for hard disks only once.

When the Media Check command returns a “don’t know” condition, the Get
BPB command is called only if DOS has no dirty buffers. Dirty buffers are those
buffers that contain modified data for the disk that needs to be written. DOS
assumes that if there are dirty buffers (modified data waiting to be written to
disk), the disk has not changed.

If the device driver receives a Get BPB command, it will have to read the
reserved or boot sector from the disk to access the BPB at offset 11 (decimal) of
the boot sector. The BPB will end up in DOS’s work area, and the device driver
will return a pointer to this BPB to DOS. DOS can then use the BPB to calculate
where the FATs and File Directory are on the disk.

The IOCTL Input Command

The IOCTL Input command in table 7-19 tells the device driver to return to DOS
an I/O control string. As you have seen, this is usually not data from the device
in the normal sense but some information regarding the status of the device. It
may be the baud rate for a serial device or the printer control word for a laser
printer. For block devices, this does not have much meaning.

The Input Command

The Input command is sent to the device driver whenever DOS needs to read data
from the disk. DOS will pass to the driver the number of sectors to read, the
starting sector number, and the address of the data-transfer area in which the

Introducing Disk Internals

data is to be placed. DOS will have previously read in the FAT and File Directory
and used these to calculate the needed sectors.

The starting sector number is numbered from 0 to the highest sector number
for the disk and is relative to the start of the partition if it is a hard disk. For
floppy disks, the start sector is always the reserved or the boot sector.

It is up to the device driver to translate this starting sector number into the
appropriate track, head, and sector for the actual physical disk unit.

The Output Command

The Output command tells the device driver to write one or more sectors onto the
disk. As it does for the Input command, DOS passes the starting sector number,
the number of sectors to write, and the data-transfer address from which to write.
The driver is responsible for translating this logical sector address to a physical
disk address.

The Output With Verify Command

The Output With Verify command is the same as the Output command except
that after the data is written out, the device driver is responsible for reading the
data back in. This insures that the data has been properly written to the disk.

The VERIFY command in COMMAND.COM is used to set VERIFY ON or
OFF. If it is set ON, all writes to the disk are passed as Output With Verify
commands to the device driver.

The device driver can set a variable to indicate that VERIFY is ON. After
writing to the disk, the driver can jump to the Input routine to read back in the
previously written data and ensure that it is valid.

The IOCTL Output Command

The IOCTL Output command is similar to the IOCTL Input command, but the
direction of data transferred is reversed. This command allows the program to
pass an I/O control string to the device driver.

Again, the disk device driver can use this feature to implement just about
anything. The I/O control string is not treated as normal data to be written out
to the disk but is information that device drivers do not normally get. Without
I/O control strings, it would be impossible to communicate with the device driver.
The device driver would only get data to be written to the disk or read from
the disk.

For instance, we could use I/O control strings to suspend disk operations
temporarily and perform some maintenance diagnostics. However, this would
involve a large amount of programming.

269

Writing MS-DOS Device Drivers, Second Edition

270

The Device Open Command

This disk driver command is new for DOS version 3.0 and is designed to signal
the device driver that a file open for the disk has occurred. The device driver could
keep a count of file opens to ensure that any reads and writes to the disk were
preceded by file open commands. If not, we could be writing to the disk when
there is no file opened. This would be the situation if a disk were removed before
the file that was opened was properly closed.

In order to be able to receive Device Open and Device Close commands, the
device driver must set the Open/Close/Removable bit in the Attribute word of the
Device Header. Recall that the Device Header is the table that occupies the first
memory locations in the device driver.

The Device Close Command

The Device Close command is sent to the device driver whenever a program has
closed the device. For disks, this happens when a file is closed on the disk.

The disk device driver, in conjunction with Device Open commands, could
keep a counter of open files. When a Device Open command is sent, the driver
would increment a counter. When a Device Close is sent, the device driver would
decrement this same counter. Then, whenever a read (Input command) or a write
(Output command) is sent to the driver, we could check to see whether a file has
been opened for the device. If not, we could disallow any I/O to the disk until files
are properly opened or closed.

Unfortunately, this approach to enforcing proper disk usage is not very
practical. Let’s assume that a user has removed a disk before properly closing the
file. The counter is set at 1, because the file was not closed. However, the device
driver still thinks that the file is opened, so it will not disallow reads and writes
to the disk. In other words, the problem has already occurred and there is no
practical way of catching or remedying the situation.

The Removable Media Command

Removable Media is another command that is available for DOS version 3.0 or
greater. This command is sent to the device driver only if the Open/Close/Remov-
able bit is set in the Attribute word in the Device Header.

With this command, a program could ask the device driver whether
the media is removable. This could save time within a program, because if the
media is not removable, the program could assume that there would not be any
disk changes. When the device driver is sent a Removable Media command, it
will return an indication that the media is either removable or nonremovable.

Introducing Disk Internals

Summary

In this chapter, we have covered just about every aspect of disks within DOS,
from what disks are, what information is contained on a disk, and how DOS uses
a disk, through the inner workings of DOS and disk device drivers. All disks are
treated in a similar manner, and DOS interacts with a disk device driver through
a standard set of driver commands. These driver commands allow the device
driver to read from, write to, and otherwise control the disk. The device driver
can also account for the different types of disks: removable and nonremovable.

You are now ready to tackle the task of writing a disk device driver. In the
next chapter, we will use all the information presented in this chapter to build a
RAM disk. The RAM disk will be written to handle most of the commands we
have just discussed and will work on DOS versions 2.0 through 5.0.

Questions

1. What is the proper order on the disk of the following:

User data area

File Allocation Table (FAT)
File Directory

Boot Record

How does the Boot Record get placed on a disk?

What is the maximum length of a cluster chain?
What is the maximum size of a disk?

What is the minimum size of a disk?

What is the purpose of the Get BPB driver command?

What constitutes an “illegal” file name?

S RN

Answers may be found in appendix F.

271

Chapter 8

A RAM Disk Device
Driver

RAM Disks and How They Work

What Commands the RAM Disk
Device Driver Will Use

Building the RAM Disk Device Driver

Modifying the RAM Disk Device
Driver

A RAM Disk Device Driver

In this chapter, we present a block-oriented device driver, the RAM disk
device driver. Rather than controlling actual hardware, the RAM disk device
driver will simulate a floppy disk, so it will use features that we have not
presented in the previous device drivers—commands that are applicable to block
devices and, more specifically, disk-type block devices. Much of the material about
disks from chapter 7 is used here.

The RAM disk device driver simulates a disk by using random access
memory (RAM) to store data normally destined for a hardware disk. Because
RAM is a much faster storage medium than magnetic media, a RAM disk has
almost instant response to a read or write. The size of the RAM disk will be 100K.
This 100K of storage will all be actual usable space; no overhead is included in
this figure. We will also add the ability to change the disk to any desired capacity,
limited by the amount of memory in the PC.

Just as hard-disk or floppy disk units give an audible or visual indication
when in use, the RAM disk device driver will have a similar ability. The RAM
disk device driver will turn on the PC’s internal speaker each time we read or
write to the RAM disk. This allows us to hear the RAM disk as we use it.

Using the RAM Disk Device Driver

When you boot DOS with the RAM disk device driver in this chapter, you will see
the following message on the screen.

The Waite Group 100k RAM Disk

First, you must determine the drive letter that should be associated with
the RAM disk. The RAM disk will appear as the first drive letter after the last

275

Writing MS-DOS Device Drivers, Second Edition

drive in the PC. For single and dual floppy disk systems, the RAM disk will be
drive C.. If the PC has a single hard disk, the RAM disk will be drive D:.

If you copy a file to the RAM disk, you will notice an audible tone during the
transfer. This means the RAM disk is working. If you use a DIR or CHKDSK
command, you will hear short clicks from the speaker. Again, you are hearing the
RAM disk at work, as DOS reads the RAM disk for information on the files stored
on the disk.

RAM Disks and How They Work

276

Normally, disks are hardware devices that store digital data on sectors, tracks,
and cylinders. The disk controller managing a disk unit is responsible for finding,
storing, and retrieving the data from the disk itself.

RAM disks simulate the behavior of disk hardware in RAM memory. On a
magnetic disk, data is stored in sectors. With a RAM disk, sectors are represented
by areas of read/write memory, and the RAM disk data is organized in these
“sectors” by defining the areas of memory one after the next. Like a hardware
disk, the RAM disk defines the storage areas starting with sector 0, followed by
sector 1, and so on, creating a one-to-one correspondence between the RAM disk’s
storage area in memory and the hardware disk storage area. Figure 8-1 shows
the similarity of the RAM disk to a floppy disk.

Theoretically, RAM disks can be any size. However, the size is actually
limited by the amount of available memory on your PC. On 8086/8088 PC systems
without EMS (Expanded Memory System), a maximum of 640K of memory is
allowed. To use a RAM disk there must be sufficient memory on your PC to run
DOS and your largest application program.

Determining the proper amount of memory space is not easy, because you
will have to experiment with the particular version of DOS and the size of the
application programs you use. The RAM disk driver developed in this chapter is
sized at 100K, which should not present any problems on most DOS systems.

It should be noted that this capacity problem can be alleviated on
80286/80386 systems. On these systems, it is possible to have “extended” memory
beyond 640K and to define the RAM disk storage area in the extended memory
area, leaving the 640K of “normal” memory for DOS and application programs.
An example of a RAM disk device driver that allows this is IBM’s standard
VDISK.COM driver, which is provided with PC-DOS versions 3.1 and higher.
This chapter will not address this concept of extended memory RAM disks.

The RAM Disk Device Driver

The RAM disk device driver will consist of two parts: a device driver written to
DOS requirements and the space reserved for the RAM disk data storage.

Within the second part, space is set aside for the Boot Record, the FAT, and
the File Directory, just like on magnetic disks. (See figure 8-1.)

640K

RAM
Disk

RAM Disk
DEVICE
DRIVER

DOS

OK

Top of

|) memory

Beginning
of memory

A RAM Disk Device Driver

Sector n D

100K

Sector 0

File
Directory

FAT

Boot Record

Figure 8-1: How RAM disks use memory to simulate the storage of a
floppy disk. Like the floppy disk, RAM disks store data in memory in
sectors. Exploded view shows the IBM PC’s memory space for the
RAM disk user area allocated just after the code for the RAM disk

device driver.

277

Writing MS-DOS Device Drivers, Second Edition

278

The overhead for the RAM disk includes the Boot Record, the FAT, and the
File Directory. Recall from chapter 7 that each has a specific purpose. We will
review each of these sections of the RAM disk.

The Boot Record consists of four parts: the jump instruction, the vendor
identification, the BIOS Parameter Block (BPB), and the optional boot instruc-
tion code. For the RAM disk, we will implement only the vendor identification
and the BPB. We have no need for the boot-related information, because we
cannot boot DOS from the RAM disk.

The BPB defines the disk to DOS. We specify the size of the RAM disk
(100K), the size of the File Allocation Table (FAT), and the size of the File
Directory to DOS through the BPB.

The File Allocation Table (FAT) is used to keep track of where each file
stores its data in the RAM disk. Recall that each unit of storage is called a cluster,
or allocation unit. We can define a cluster either as one sector or as a power of
two sectors (that is, 2, 4, 8, etc.); the cluster is identified in the FAT through a
114-byte cluster number. The FAT must be large enough to contain one cluster
number for each cluster in the storage space for the RAM disk.

The File Directory is a table of entries that records our use of the RAM disk,
including all file names as well as the names of any subdirectories we create in
the RAM disk. Because each entry requires 32 bytes, we can store 16 such entries
in a 512-byte sector. How large the File Directory will be depends on how many
entries we wish the RAM disk to store.

Lastly, we have the actual data-storage area for the RAM disk. If 100K is to
be allocated for data storage, the actual amount of memory required by the RAM
disk will be the amount of overhg:ad for the Boot Record, the FAT, and the File
Directory, plus 100K.

Specifying the Internal Format of the RAM Disk

To determine what the RAM disk format will be like, we must specify many of
the parameters in the BPB, the size of the File Allocation Table, and the number
of entries in the File Directory.

In figure 8-2, each field of the B<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>