
The 801 Minicomputer - An Overview 

I. Introduction 

This paper attempts to describe the 
goals, characteristics, and present status of the 
801 Experimental Minicomputer project in the 
Research Division at Yorktown Heights. It is 
intended as a companion to the documentation 
which describes the architecture of the system 
because this latter will not enable a reader to 
understand what we hope to accomplish, and 
what is new in our approach. As we develop 
performance and cost data we will publish 
them as separate papers. 

Let us start with some history. The 
S/360 (and later the S/370) architecture has 
provided a compatible interface to software 
across a product line which varies greatly in 
cost and performance. (See the excellent 
analysis of these parameters in the GT A report 
entitled "Comparative Hardware and 
Performance Overview" by Manfred 
Schwengler of the Boeblingen Laboratory.) 

While keeping the architecture constant 
the cost/performance curve is traversed by 
varying the technologies used and amount of 
hardware (e.g. number of circuits, size of 
cache). For a given technology there are 
practical extrema of performance achievable. 

The hardware is made usable for 
applications by systems programs which offer a 
higher level of interface by means of control 
program facilities and compilers from high level 
languages. This resulting family of systems 
thus provides a cost/performance curve of 
"useful" work measured in parameters like 
thruput, number of transactions per second, 
response time (as well as less easily measurable 
parameters like reliability, · ease of 
programming, modifiability). 

Compatibility across a product line 
and, today, compatibility with S/370 (and with 
MVS, DOS/VS, COBOL, PL/1, IMS, CICS, 
etc.) is in itself an extremely valuable system 
characteristic. (Given IBM and users' 
investment in programs, data, education, etc., it 
is clearly true today that for most of the 
product line compatability is, in fact, an 
essential characteristic.) The question we ask in 
the 801 project is: What is the price, in cost 

and in performance which this S/370 
compatibility implies? If the price turns out to 
be very great, (say between one and two orders 
of magnitude) we ask if there are potential 
market areas for a product which offers greatly 
improved cost/performance instead of, or in 
addition to, a compatible S/370-0S. These are 
clearly important questions for IBM to 
investigate even if we decide not to act on the 
results. 

It should be apparent to anyone who 
has thought about the problem that the answer 
to the first question is very difficult to 
determine. Technologies change continuously; 
CPU performance is useful only if it is coupled 
with a suitable storage subsystem and I/ 0 
configuration and these often overwhelm CPU 
cost savings; products have differing 
requirements for checking logic, recoverability 
in software, maintenance aids, etc.; cost is 
often dependent on volume, which in tum 
depends on the potential market areas of the 
product. 

The 801 project was motivated by a 
number of ideas (to be described in the next 
section) which potentially can result in this 
very large cost/performance improvement. We 
sought a vehicle for implementing these ideas 
in a way that would make their value apparent 
while requiring only a modest (about 20 
people) project effort. Several constraints are 
clear: 

• We do not have the resources to build 
more than one prototype. Thus all 
product line evaluations will have to be 
paper studies based upon a single 
implementation. 

• We do not have the resources (or the 
training) to do chip design through 
EDS. Moreover, since the architecture 
is new, we need to remain able to make 
changes quickly and late in the project 
life. Thus cost and performance of our 
prototype will not be identical to that 
of a product even in the same 
technology. Nevertheless the actual 
performance of our prototype needs to 
be impressive in itself - otherwise we 
might as well write a simulator. 

IBM CONFIDENTIAL 76.9.24 



Page 2 The 801 Minicomputer - An Overview 

• We do not have the resources to 
provide all of the OS software 
facilities. or even to implement a 
complete language like PL/ 1 or 
COBOL. Thus some hand translation 
of programs will be necessary to make 
comparisons with S/370 applications. 
These simplifications. however. will be 
useful in understanding whether. in 
fact, all the PL/1/MVS facilities are 
really needed for those applications for 
which the 801 is suitable. 

Therefore we decided to direct the 801 
project initially toward development of the 
following system: 

• A hardware prototype is being built out 
of vendor logic using only 
out-of-catalogue dual-in-line packaged 
chips on a wire-wrapped vendor board. 
Some checking is incorporated into 
the prototype. but all cost estimates 
will allow for additional circuits 
required for an IBM product. The 
performance of this technology 
(Emitter Coupled Logic) is such that 
an 801 machine cycle (under 10 logic 
stages) can be completed easily in 60 
nanoseconds. (Other technology 
implementations will be extrapolated 
from this.) The number of circuits 
required to build the 801 puts it 
roughly in the large mini area of 
machine complexity. 

• The storage subsystem for our 
prototype matches the performance of 
the CPU and thus is relatively high in 
cost. Storage subsystem costs for other 
801 performance levels must be 
developed individually. 

• The 801 supports standard IBM I/ 0 
devices. However. S/370 channels and 
control units are replaced by 801 
adapters and minimal control units. 
The costs for the 801 units are far less 
than for S/370 counterparts, but this is 
offset by a greater t:;urden on the CPU 
to do this work. How much CPU time 

• 

• 

will be required to do this function 
remains to be measured. but must then 
be subtracted from the computing 
power available for application 
programs. 

801 control program facilities will be 
provided at a simpler. more. basic level 
than that offered in any S/370 
programming system. They will thus 
be far smaller, cheaper and faster. The 
object is that they will be adequate for 
the applications considered as possible 
801 markets. Demonstrating this 
requires actually building and running 
these applications. 

The 801 will support a large subset of 
PL/1 initially and, shortly thereafter, 
FORTRAN and COBOL. The 
language facilities will be rich enough 
so that large whole programs can be 
recompiled from S/370 with only 
modest hand-translation (of 1/0, for 
instance). The compiler will 
incorporate many state-of-the-art 
optimization techniques; early 
indications are that it will produce 
better code than any existing language 
processor. 

This 801 system prototype will attach 
to a S/370 host. Applications will be 
developed in the following areas: 

• S/370 subsystems (e.g. VTAM/NCP, 
IMS/3830, Channel/3272). 

This will determine the resulting system 
price performance to be obtained by offloading 
host functions and replacing channels and 
control units with an 801. It is attractive only 
if the 801 can do this job at large factors 
better MIPS/$ than the host/channel/CU, and 
if the software facilities support this function 
well . 

• Conventional mini-computer 
applications (e.g. general purpose 
interactive computing, real-time 
applications. on-line data base 
systems). 

76.9.24 IBM CONFIDENTIAL 



The 801 Minicomputer - An Overview Page 3 

Cost and performance for these 
applications will be extrapolated for various 
paper design 801 models. (A machine design 
simulator will enable us to estimate storage and 
1/0 as well as CPU performance for these 
models.) When the prototype and the simulator 
are running the applications, we will be able to 
measure these characteristics quite closely, and 
a determination can then be made about the 
801 product potentials. 

II. Technical Innovations 

It might be argued that the basic 801 
question has already been answered. 
Minicomputers have long demonstrated the 
ability to offer large factors of 
cost/performance improvement over S/370's at 
the penalty of incompatibility. Moreover, 
general-purpose software for some of these 
systems has proven quite reasonable for 
building many non-trivial applications. 

But there are technical innovations in 
the 801 which lead us to believe that we can 
significantly exceed the cost/performance 
improvements of any existing or planned minis. 
This section describes some of the more 
important of these innovations. 

A) Performance of Register-Register 
Instructions 

Except for microprocessors (with very 
primitive instruction sets) and super-computers 
like the l 9S or CRAY-I (with no cost 
constraints), general purpose CPU's are 
designed with an underlying micro-code 
processor interpreting micro-programs which 
reside in control store. 

The history of this kind of machine 
organization can be traced to the early 
introduction of complex instructions into 
hardware. This was very advantageous in 
machines like the 701, 704, and 7090 because 
of an internal speed to memory access ratio of 
better than 10: 1. Fetching one complex 
instruction was clearly faster than fetching a 
sequence of instructions from a subroutine or 
macro which performed the same function. 

Early implementations of these complex 
instructions were in hardware, but it was soon 
discovered that the I-fetch savings could accrue 
as well by a subroutine, provided this 
subroutine was stored in a high speed memory 
(i.e. control store). Thus, the fundamental 
machine organization changed to one of a 
microprocessor interpreting programs stored in 
ROS or writeable control store. Unfortunately, 
this generally implied that even the simple 
instructions were interpreted and so took 
several machine cycles to execute. The 
11 micro 11 instruction set used to code these 
subroutines reflected the limited nature of 
programs which would execute them, and the 
relatively small amount of code to be 
generated. These instruction sets are generally 
bard to program, and come with little 
development support (like compilers). 

In the last generation of CPU's this 
I-fetch advantage for complex instructions has 
in fact disappeared with the advent of high 
speed memory for caches and instruction 
buffers. But microcode machine designs 
persist, largely due to a pernicious circular 
effect, as follows: 

If a subroutine can be fetched as fast 
as a micro-routine, one might simply use a 
primitive subset of the CPU instruction set as 
the underlying architecture on which to 
program the complex instructions (as has often 
been done in low end systems). In fact, if one 
looks at a micro-instruction set it is generally 
quite easy to find equivalent functions in a 
subset of the CPU architecture. 

But this subset is taken from an 
architecture which was defined with a 
microcode implementation in mind and is 
therefore not easily implemented to execute in 
one machine cycle, like micro-instructions, 
especially on lower priced systems. Therefore 
the complex instruction subroutines are 
implemented on a lower level architecture and 
the machine design becomes one of a 
conventional micro-code variety. This in tum 
makes the primitive functions slower since they 
must suffer the burden of interpretation. In 
fact, on most machines running or planned, 
even primitive functions like boolean ops, 

IBM CONFIDENTIAL 76.9.24 



Page 4 The 801 Minicomputer - An Overview 

binary arithmetic, shifts, compares, etc., take 
several machine cycles to execute. 

With the relaxation of compatibility 
constraints the 801 takes a fundamentally 
different approach. We define an instruction 
set which is primitive enough so that, with a 
number of circuits no larger than many 
conventional microprocessors, all 
register-register instructions can execute in at 
most one machine cycle, and this cycle is at 
most 10 logic stages. But we define this 
instruction set by a joint group of programmers 
and engineers so that it is regular, easy to use, 
and a superior target for compilers. 

For the past ten years or so many 
instruction traces have been taken for widely 
different applications. They consistently show 
a large skew toward frequent execution of a 
primitive set of instructions. In the mixes used 
to describe the performance of the next 
generation of IBM CPU's in both Endicott (E) 
and POK (H) forty instructions generally 
exceed the 90 percentile of execution 
frequency. Reducing the I-time overhead from 
these instructions by hard-wiring improves the 
CPU performance considerably. 

Surprisingly, even the execution of 
complex functions is improved. This is because 
high level interpretation of S/370-like complex 
instructions introduces overhead through 
generality. The 801 compiler can recognize 
special cases and compile faster code 
sequences. The difference is the same as that 
of an interpreter versus a compiler. In the case 
of conventional CPU's the interpreter is 
written in micro-code and so is somewhat 
faster, but is generally still significantly slower 
than compiled code. Consider some examples: 

• "Move Character" in S/370 must be 
prepared to cope with overlap of 
operands, operands which exceed 
authorized bounds, operands of 
different sizes and different alignments, 
operands ranging in size from one to 
256 bytes, etc. Yet frequency traces of 
use of this instruction show a mean 
size of 8-10 bytes, little overlap, etc. 
The micro-interpreter of this 
instruction mwt check at every 

execution for these cases even if it is 
sophisticated enough to do something 
special about them. An 801 compiler 
can often easily recognize, for example, 
that two strings are being 
concatenated, or that they are small 
enough so that the move loop should 
be expanded. 

• While effective addresses in S/370 are 
defined to require two additions 
(X+B+D), most uses of RX 
instructions set either X or D equal to 
zero. Since the compiler normally is 
the program that generates addressing 
sequences it simply calls for one 
addition most of the time. (In fact, if 
the operand requested is still in a 
register as the result of a previous 
instruction, no address computation 
code or fetch is executed at all.) 

• Multiplication (and division) is often 
• by a constant. A CPU has no choice 

but to execute general arithmetic 
sequences for all instructions (fixed, 
floating, or decimal). A compiler can 
choose a representation of the constant 
which minimizes the required adds and 
shifts. This then tends to make these 
code sequences approach the 
performance of hardware multiply and 
divide. 

Continuing this advantage, complex 
functions which are even higher in level than, 
say, S/370 instructions, see an even more 
remarkable performance improvement. It is as 
though each such function were 
custom-microprogrammed instead of being 
program.med using the general high-level 
primitives of a conventional instruction set. 
For example, a square root subroutine can be 
program.med on the 801 to run about as fast as 
two floating point add's. 

And finally, when what the user wants 
is a very high level interpretive interface (such 
as APL), the 801 offers the performance of a 
microcoded implementation with the 
programming ease of a conventional software 
interface. 

76.9.24 IBM CONFIDENTIAL 



The 801 Minicomputer - An Overview Page 5 

The major technical exposures with the 
801 approach are the probability that a 
sequence of code will be found in high speed 
storage when needed. and the efficiency of the 
object code compared to microprograms. Note 
that an 801 requires no control store (the 
normal cache is used. and cache-replacement 
strategies apply) and no local store (normal 
CPU registers are used and compiler register 
allocation strategies apply). Thus cost savings 
are clear - the potential problems are whether 
these resources. thus shared. can be scheduled 
without significant performance degradation. 
This is one of the major areas of investigation 
for the project. 

8) Performance of Register-Storage 
Instnactiom 

We have seen so far that there is a 
large potential performance advantage in the 
801 approach to operations when the operands 
are in registers. In fact these instructions 
execute in at most one machine cycle. 
However, available instruction mixes 
consistently indicate that, for the majority of 
instructions, it is necessary to fetch an operand 
from storage, or to store a result into storage, 
or to get a new instruction out of sequence (i.e. 
branch). 

Even when the operands, or new 
instructions, are found in the cache, and even 
when the cache access time is commensurate 
with a machine cycle, it still must take more 
than one machine cycle to compute a storage 
address, (or test on a branch condition) and 
then access the cache. In the 801 prototype 
the cache access time equals one machine 
cycle, so when the required word is in the 
cache these instructions take at most two 
machine cycles. 

Sophisticated (and, thus, expensive) 
machines use "pipelining" techniques to search 
~.head in the instruction stream for things that 
they can safely do while the cache is being 
accessed. Once again this must be done 
interpretively each time a sequence of code is 
being executed. But in fact an optimal 
sequence of executions, once found, is the 
same optimal sequence whenever the code 

executes, and is thus a good candidate for a 
compile-time activity. The 801 CPU then does 
not reorder code sequences, or look ahead to 
schedule dynamically. But it provides a set of 
primitives so that, when a code sequence has 
been ordered properly, cache activity is 
overlapped with CPU execution. These 

• primitives are quite straightforward: 

• On Store, the CPU transfers a word to 
the cache, with its destination address, 
in one machine cycle. Then, while the 
cache is storing this word, it proceeds 
to the next instruction. Thus all Stores 
are effectively overlapped and take one 
machine cycle. 

• On Load, the CPU computes the 
effective address and instructs the 
cache in one machine cycle. It then 
locks the register which is the target of 
the Load and attempts to execute the 
next instruction. If this instruction 
does not need the locked register it is 
executed, and again the cache access is 
overlapped. 

(Note that these two facilities enable 
the CPU to execute ahead, not just one 
instruction, but as many as it can before 
interlocking. Thus, in some cases, even cache 
misses can be effectively overlapped.) 

• On Branch, there is, for every type of 
branch instruction, an alternate form 
called Branch and Execute. When 
executing this form the CPU computes 
the branch target and instructs the 
cache. Then, while the cache is 
fetching the new instruction stream 
into the prefetch buffer, the CPU 
executes the instruction immediately 
following the branch instruction. Thus, 
where the compiler can find an 
instruction before the branch which 
does not affect the branch instruction, 
it generates a Branch and Execute 
instruction followed by this safe 
instruction, and the cache access is 
again overlapped. Our experience has 
been that these safe instructions are 
generally easily found (e.g. the 
increment instruction of a DO loop). 

IBM CONFIDENTIAL 76.9.24 



Page 6 The 801 Minicomputer - An Overview 

An example may be helpful here. Suppose the 
compiler is given: 

A•B+C+D; 

GO TO L; 

to compile. 

A straightforward compilation would produce: 

L RI, B Load B into Register I 

L R2,C Load C into Register 2 

A RI, R2 Add Rt+R2 and store into RI 

L R3, D Load D into Register 3 

A RI, R3 Add Rt+R3 and store into RI 

ST RI, A Store the result into A 

B L Branch to L 

But note that, with this sequence: 

A RI, R2 

cannot proceed until R2 has been loaded, 

A RI, R3 

cannot proceed until R3 has been loaded, 

BL 

takes two machine cycles. 

Thus the 7 instructions take I 0 machine cycles 
to execute. But if the compiler changes the 
order of some instructions (and changes the 
Branch into a Branch and Execute) it can 
produce this code: 

L RI, B 

L R2 C 

L R3 D 

A RI, R2 

A Rl, R3 

BX L 

ST RI, A 

which now takes only 7 machine cycles. 

Our early experience with code 
sequences indicates that, on average, an 
instruction takes about 1.2 machine cycles 
which, for our prototype, yields about 14 MIPS 
out of cache. 

C) Storage Subsystem Performance 

The performance of systems whose 
CPU's are as fast as the 80 I out of cache is 
heavily dependent on the storage subsystem 
performance. In our prototype the cache is 
Snipe (60 n-sec access) and our backing store 
is Riesling (about IO times as slow on 
average). Thus innovations in the storage 
subsystem approach have good payoff in total 
system performance. 

• 

• 

We seek improvements in two areas: 

improving the Cache Hit Ratio (i.e. the 
percentage of storage references which 
are found in the cache), 

improving the time to access a line 
from the backing store when the cache 
is missed. 

Consider the first. We observe that 
quite often accesses to the backing store are 
unnecessary for correct execution; they occur 
because the hardware cannot guess the intent 
of the software. Generally this unnecessary 
overhead falls into two classes: 

• The program wants a block of new 
storage. This can occur when a 
procedure is called and needs 
temporary (i.e. AUTO MA TIC) storage, 
when the First Level Interrupt Handler 
needs a Register Save Area, when an 
Access Method needs a buffer, when a 

76.9.24 IBM CONFIDENTIAL 



The 801 Minicomputer - An Overview Page 7 

program issues a GETMAIN request, 
etc. What is similar about all of these 
cases is that the program does not care 
about the old contents of the storage; 
it just wants some space. And yet all 
current (or planned) storage 
subsystems will, on first reference to 
such storage, fetch the old line from 
the backing store to the cache. It will 
do this because this first reference will 
be at most to one word in the line 
(since that is the unit of access 
between CPU and cache) and the 
subsystem cannot tell that subsequent 
requests will not ask for other words in 
the line before they are newly updated. 

• The program no longer needs a block 
of storage, even though its contents 
have been modified. This can occur on 
Return from a procedure when the 
temporary storage is freed, when a 
buffer is freed, generally when a 
program issues FREEMAIN, etc. No 
current (or planned) storage subsystem 
can determine that such store-backs of 
modified lines are not necessary. 

The 801 approach to this is consistent 
with its other strategies. Namely, the hardware 
provides primitives (in the form of instructions) 
by which software can give such information to 
the hardware. In particular, two instructions 
are defined: 

Set Data Cache Line 

and 

Invalidate Data Cache Line 

which are issued by the control program, and 
generated by the compiler for application 
programs. These instructions then ensure that 
such unnecessary backing store accesses are 
not made. In fact, since the temporary storage 
needed by a procedure is managed in a stack, 
and since even supervisor calls in our system 
are CALL'ed, the backing store will not be 
accessed for a dispatched process' data unless 
this data is persistent (i.e. ST A TIC) or the 
stack depth gets large compared to the cache 
size. (Frequent process switching will, of 

course, reduce this advantage.) Thus the 
backing store begins to play a role which is 
similar to that played by secondary storage (i.e. 
a file space and a paging area). This kind of 
use of a backing store may be more amenable 
to incorporating intermediate technologies like 
bubbles and CCD's than are current systems. 
(Note that with this strategy, the 801 activity 
on interrupt is no more than that performed by 
"priority level interrupt" systems at their high 
end. They too must store their internal 
registers in high speed memory (i.e. Register 
Space). The difference is that the 801 does 
not dedicate high speed memory for this 
purpose and thus saves cost. The 801 may find 
a cache miss on redispatch, but that is not in 
the response-critical part of the path.) 

• The CPU, as in most systems, is 
fetching instructions from the cache in 
anticipation of their execution. It has a 
"prefetch buffer" (in our case, of three 
words) which it attempts to keep filled. 
Sometimes filling this buffer results in 
a cache miss and thus initiates a fetch 
from the backing store. But it may be 
that the instructions being thus fetched 
follow a Branch instruction which is 
already in the buffer but not yet 
executed. The 801 prefetch mechanism 
scans op codes and inhibits such 
unnecessary backing store fetches. (In 
fact, while scanning op codes for this 
purpose it also recognizes and 
eliminates NO OP's, which thus take 
zero execution time in the 801.) 

Now consider the second way of 
improving storage subsystem performance, 
namely making the backing store access faster. 
The 801 incorporates two features in this area, 
the first not unique to our system, the second 
quite new and significant. 

• When a word is required from the 
storage subsystem (either data or 
instruction) which results in a cache 
miss, the backing store is accessed for 
the required line beginning with the 
needed word. This word is then sent 
directly to the CPU, bypassing the 
cache, and the CPU continues 
execution while the line is being stored 

IBM CONFIDENTIAL 76.9.24 



Page 8 The 801 Minicomputer - An Overview 

• 

into the cache. Thus, for instance, to 
complete a Load instruction which 
results in a cache miss may take as 
little as 340 nanoseconds (minus 
whatever instructions can be 
overlapped with the Load). 

Because the instruction prefetch 
mechanism is essentially asynchronous 
with the data fetch mechanism we have 
found it advantageous to split the 
cache into two disjoint parts, one for 
holding instructions, the other data. 
This results in an ability to access the 
backing store by each cache 
independently and in an overlapped 
manner. It has several other benefits: 

Fetching an instruction line will 
never require store back, since 
instruction cache lines are 
never modified. 

Each cache part is separately 
2-way set associative. Thus 
some of the benefits of 4-way 
set associativity can be 
obtained without the cost. 

Separate cache characteristics 
(e.g. size, depth, line size) and 
separate replacement 
algorithms can be employed, 
taking advantage of the 
different access patterns of 
code versus data. (The 801 
prototype begins with similar 
strategies for both caches. 
Subsequent versions will 
incorporate changes as 
improvements are indicated by 
our simulator.) 

A 11 split cache 11 implementation in 
conventional architectures has serious 
problems. Since instructions can legally be 
modified in the data cache and then be 
branched to, all modifications must be 
broadcast to the instruction cache, and it must 
ensure that it invalidates any modified line. 
But in fact instructions are almost never 
modified in today's systems. This, then, is 
another candidate for a function which can be 

performed much more efficiently in software 
than repeatedly, on every data modification, in 
hardware. 

In the 801 the data cache does not 
broadcast changed lines to the instruction 
cache. Thus these changes will not necessarily 
be reflected in the next branch to the modified 
instruction. The 801 provides an instruction, 
called 

Invalidate Instruction Cache Line 

which the software must issue to flush the old 
instruction, and another instruction, called 

Store Data Cache Line 

to ensure that the modified instruction is 
reflected into the backing store. (When 
program modification occurs because of a load 
from disk, by far the most common case, only 
the first instruction must be issued.) 

Finally, the 801 architecture defines a 
relocate facility, which we do not plan to 
implement in the first version of the prototype, 
which has several important cost/performance 
innovations: 

• 

• 

• 

Because of our split cache we can 
naturally support separate virtual 
memories for instructions and data, 
thus allowing software strategies in 
which a single reentrant copy of, say 
an APL interpreter, executes for many 
different user areas. 

We do not allow shared pages (which 
are now less useful because of the 
previous facility) between virtual 
memories. (We do, however, provide a 
convenient facility for switching 
between data virtual memories.) This 
restriction provides significant 
simplifications. Primarily it allows us 
to run our caches virtual (i.e. the cache 
is accessed with a virtual address). 
This results in no degradation due to 
relocate when the line is found in the 
cache (over 90 percent of the time). 

Conventional relocate systems dedicate 

76.9.24 IBM CONFIDENTIAL 



The 801 Minicomputer - An Overview Page 9 

high speed storage for look-aside tables 
(DLAT's) on Page Tables - storage 
which is generally the same technology 
as cache. We access page tables 
normally through the cache and expect 
that their high frequency of use will 
result in an appropriate probability of 
cache hit. Thus with Q.O additional cost 
we can approximate the performance of 
DLAT's. (Our machine design 
simulator will give us data about the 
feasibility of this approach. If it proves 
to be too slow we will consider 
dedicating part of the cache to this 
DLA T function.) 

D) Alignment 

S/370 architecture (and many 
mini-architectures) do not require that full or 
half-word operands be aligned on full or 
half-word boundaries. This introduces 
complexities (and sometimes performance 
degradation) in many places in the machine. 
Every operand may cause two page faults, may 
need to be checked against two storage protect 
keys, may cause two cache misses. 

The irony of the situation is that good 
programming style encourages alignment and, 
in fact, all trace tapes indicate that 
non-alignment almost never happens. (This is 
so clear to many that, for instance, the 
instruction mixes that are used to measure 
performance of the E machine line assumes 
100 percent alignment.) 

The 801 has powerful instructions to 
handle arbitrary bit and character strings even 
when they are embedded in larger strings with 
arbitrary alignment. (Bits in the Condition 
register (called Parity Stack bits) are set to 
indicate the alignment of these character string 
operands. Instructions are defined to move 
bytes depending on the setting of these bits.) 
But it insists that half, and full-word operands 
be aligned, and that three byte addresses be 
stored in the low-order bytes of a full word. 
Similarly the structure mapping of PL/ 1 has 
been modified to provide alignment of elements 
other than short packed bit strings and single 
character strings. This approach simplifies the 

machine at no real loss in function to 
programmers. 

A word should be said here in 
explanation of the 801 register size (24 bits). 
We determined early that registers, ALU and 
Shifter must be wide enough to compute 
addresses, since this is in fact what binary 
arithmetic is mostly used for. 
Mini-architectures that allow 24 or 32 bit 
addresses but provide only a small subset of 
operations applicable to such addresses (e.g. no 
shifts, no compares) will see a severe 
degradation in performance and usability when 
they are in fact asked to support data areas 
greater than 64K. The 801 is a true 16 
megabyte address machine. All arithmetic, 
logic, compare, shift, etc. operations work on 
24 bit addresses. 

The remaining question is why we did 
not go to 32 bit registers. Primarily the reason 
is that a technical case is hard to make for the 
additional cost. Address arithmetic is already 
handled. 24 bits are adequate for programming 
single precision floating point (and 32 bits are 
inadequate for double precision). What 
remains is: 

• 

• 

the set of application variables whose 
range is greater than ± 8 million but 
less than ± 1 billion. 

the efficiencies of fewer loads and 
stores for full word or character >2 
moves. 

In spite of this questionable case it may 
be advantageous to extend the register size to 
32 bits in an 801 product. This will impact 
very little of the software because the full word 
alignment constraints already preclude 3 byte 
packed fields in control blocks. The CPU cost 
will grow from 7,600 gates to about 10,000 
gates. This cost will be assumed in all 
cost/ performance estimates of the 801. 

E) Protecdon 

In all systems it is necessary to prevent 
some programs from accessing some memory 
areas, or executing some instructions. This 

IBM CONFIDENTIAL 76.9.24 



Page 10 The 801 Minicomputer - An Overview 

prevention is generally achieved by the 
following techniques: 

• a PSW reflects the Problem 
State/Supervisor state, and 
"privileged" instructions are executed 
only if the machine is in Supervisor 
state. 

• Keys are associated with storage 
blocks, reflected in cache lines, and 
matched with keys in the PSW when 
access or store is attempted. 

• Virtual memories provide a gross level 
of addressing protection. 

These facilities are both expensive and 
inadequate. Their inadequacies are indicated 
by the large amount of code which is forced to 
run in key 0 on S/370 (a problem which is 
being attacked by planned extensions to S/370 
architecture). At best they protect a user from 
other users and prevent him from bringing 
down the system. Protection facilities which 
guard against bugs in his own program are 
often very expensive (e.g. the range check 
option in PL/1). 

The 801 system takes the following 
position: 

Most application programs, and many 
system programs, are written in high level 
languages. It is a characteristic of these 
languages (even PL/S) that programs are 
inherently almost completely safe, and can be 
made completely safe with a little effort by the 
compiler. 

• 

• 

For instance, 

Privileged instructions, such as Start 
1/0, can be generated only for 
programs whose authority is asserted in 
installation commands. Thus no run 
time state checking is ever necessary. 

Branches are accomplished by high 
level control flow statements where the 
branch target is always correctly 
generated by the compiler (e.g. GO 
TO, DO, IF THEN ELSE, CALL) 

• Data references to constants, scalars, 
and array elements with constant 
indices are always safe. 

References to array elements with 
expression indices (e.g. A(I+J)) must be 
checked at run time. To accomplish this 
efficiently the 801 hardware provides 

Compare and Trap 

instructions which compare two values and 
interrupt on unequal, or on high. 

PL/ 1 Pointers remain a protection 
problem. To resolve it we restrict pointers to 
offsets in Areas. This, in fact, makes programs 
more well structured and constrains the 
function very little. It allows us, however, to 
use the same Compare and Trap strategy as for 
arrays. 

The result is a set of language 
processors which, with a very modest run time 
overhead, and no hardware cost, produce 
programs which are guaranteed to be safe not 
only for others, but will check many internal 
bugs as well. (The extent of this cost will be 
determined as the compiler implementation 
proceeds, but it does not appear to be at all 
significant.) The checking will ensure that all 
indices of arrays are within the ranges specified 
for each dimension, that all "based" variables 
are within the areas in which they are asserted 
to be found, and that all references to 
Controlled variables refer to existing allocated 
versions. 

Since the applications program is 
written in a high level language, the compiler 
can control invocations of control program 
services. Thus SVC-type of interrupts are 
unnecessary. These services are invoked 
simply by Branch and Link; they use the 
caller's stack and participate in optimization of 
the program. 

The remaining requirement is that the 
compilers be efficient enough so that all 
application programs and most systems 

76.9.24 IBM CONFIDENTIAL 



The 801 Minicomputer - An Overview Page 11 

programs can be written in a high level 
language. We ensure this by: 

• employing many novel compiler 
optimization techniques to yield 
excellent code (see below), 

• subsetting the version of PL/ 1 used for 
our systems programmers to that set 
which is most useful, but which 
eliminates many of the causes of 
inefficiencies, 

• providing, as Built-In-Functions in this 
language, the 801 register-register 
instructions so that, where necessary, 
the language can be used as a "safe 
assembly language". 

F) Compiler Optimizadon 

Much of the preceding discussion 
describes a consistent strategy of system 
design. Namely, it observes that many 
functions which are normally performed by 
hardware (at the expense of cost or 
performance, or both) are in fact suitable for 
compile-time analysis. This results in great 
potential efficiencies, comparable to the 
efficiencies of compiled programs versus 
interpreted programs. Examples are: 

• Special cases of complex functions can 
be detected at compile time and 
specific code sequences generated, such 
as for MVC, XOC, multiply by a 
constant. 

• Code sequences can be scheduled at 
compile time for maximum overlapped 
execution thereby eliminating the need 
for sophisticated pipeline machine 
organizations. 

• Protection can almost always be 
analyzed at compile time and 
Compare-and-Trap instructions 
inserted where this analysis fails. 

To make this approach feasible, 
however, compilers must produce programs 
which are efficient enough for almost all 

applications. In addition to providing the "safe 
assembly language" escape valve described 
previously, the 801 compiler (and its successors 
for other languages) incorporates many new or 
improved optimization techniques which have 
been invented in this Laboratory, chiefly by 
John Cocke and Frances Allen. (While results 
of their application are still sparse, early test 
programs show remarkable performance and 
space improvements.) Finally, the 801 compiler 
takes great care in generating good code for 
"systems-like" kernels such as bit string 
handling and logical expressions, areas which 
are often poorly handled in existing compilers. 

The innovative optimization techniques 
mentioned above act as transformations on an 
intermediate level of language (IL) between 
source and machine. At this level the 
instructions are generally 801 instructions, but 
the number of registers is as large as necessary. 
Front-end processors translate source 
language programs into equivalent programs in 
IL. (Thus, to produce compilers for other 
source languages, only new front-end 
processors are required.) 

The optimizations are implemented as 
functions which transform IL programs into IL 
programs. Thus any of them can be 
eliminated, modified, or added, as we get 
experience about their value. They rely upon a 
compiler phase which provides control flow and 
data flow graphs of the program. 

The optimizations include: 

common subexpression elimination 

code movement from more to less 
frequently executed areas of a program 

conversion of multiplies in loops to 
adds (strength reduction) 

reuse of registers (subsumption) 

the elimination of code that produces 
results that are not used elsewhere 
(dead code elimination) 

evaluation at compile time of 

IBM CONFIDENTIAL 76.9.24 



Page 12 The 801 Minicomputer - An Overview 

expressions whose terms are constant 
(constant propagation). 

All of these techniques have been used in 
previous compilers, e.g. Fortran H and PL/I 
optimizer. The 801 compiler produces better 
results because these optimizations are applied 
pervasively to a machine language level text. 
While previous compilers have optimized 
source language constructs such as (A •s) and 
the multiplies and adds involved in subscript 
computations, the 801 compiler also optimizes: 

Loads of source variables 

Loads of constants 

Loads of addresses used to reference 
parameters, external and controlled 
variables 

Adds of constants to bases, where the 
displacement to the variable is greater 
than that provided in the instruction 
(64K) 

Adds of base and index where the 
instruction has a base, but not an index 
register. 

Loads of descriptors 

Code associated with building 
argument lists. 

Traps for range and existence 

Intermediate results of code generation, 
including conversions and string 
calculations. 

For some time there bas been speculation that 
exposing such low level operations would result 
in greatly optimized code. It also simplifies 
code generation, by permitting the generation 
of sloppy or repetitive code, which is 
systematically improved by optimization. This 
improves reliability, since code generation bas 
long been recognized as one of the most error 
prone areas of compilation whereas formal 
optimization has been very reliable. 

There have been two main arguments 
against exposing low level operations to 
optimization. First the time to optimize a 
program bas tended to increase exponentially 
as the program increases in size. Low level 
text was assumed to imply very long compile 
times. However the Allen-Cocke interval 
analysis can be implemented very efficiently. 
It is likely that optimization will result in no 
net increase in compile time, as the final 
compilation phases will have less data to 
process. The other barrier to low level 
optimization bas been the concern that it could 
actually be unprofitable to optimize. For 
example, the load of a variable might be moved 
out of a loop but if a register could not be 
reserved for the entire time the variable was 
"alive" there would be additional stores and 
loads beyond what would have occurred if the 
load bad not been moved. A good register 
allocator is required if low level optimization is 
to be effective. 

The register allocator of the 801 
compiler allocates registers by coloring. The 
technique is called "coloring" because it is 
identical to the "map coloring" problem of 
graph theory. As long as the symbolic registers 
can be reduced to the 16 that exist on the 801, 
coloring yields optimum results for register 
allocation. Preliminary results indicate that 
many small procedures, some large ones and 
the vast majority of inner loops do color in 
under 16 registers. For procedures that do not 
color in under 16 registers, a very effective 
partitioning mechanism has been developed. 
Registers will have to be saved and restored at 
partition boundaries but the preliminary 
evidence is that this will not be frequenL 

The use of low level text for 
optimization combined with register allocation 
via coloring provides a simple, formal and 
uniform approach for many aspects of 
compilation, that have traditionally been 
handled in a complex, ad hoc way. The result 
is a simpler compiler that produces better 
object code. 

76.9.24 IBM CONFIDENTIAL 



The 801 Minicomputer - An Overview Page 13 

G) 1/0 Subsystem 

The 801 1/0 subsystem is as 
incompatible with S/370 as is the central CPU 
architecture. It will, however, support 
conventional devices and TP protocols. The 
object is to achieve significant improvements in 
cost/performance and in flexibility as a 
consequence of relaxing compatibility 
requirements with existing channels and control 
units. The following is a list of some of the 
major areas of innovation. 

• Many systems save cost by executing 
channel or control unit functions on 
the CPU engine (e.g. integrated 
channels, cycle-steal adapters). The 
801, since its CPU has such good 
cost/ performance characteristics, 
pursues this strategy very aggressively. 
Hardware requirements (in 801 
adapters and control units needed to 
support 1/0 devices) are less costly 
than in existing systems. Much of this 
function can be executed directly on 
the 801. (The adapter and control unit 
architecture is flexible enough to allow 
specific systems to decide not to adopt 
this strategy but instead to build 
intelligence outboard.) 

• Unlike existing systems, however, the 
801 processor is its own 
"microprocessor". Thus the channel 
and control unit 11 emulation11 programs 
are written to run on the same 
instruction set as all other software. 
This has two advantages: 

1) All software development tools 
(e.g. compilers, debugging aids) 
and control program facilities 
(e.g. interrupt handler, storage 
manager) are now available for 
programming these functions. 
Changes and new device 
support are more quickly and 
cheaply implemented. 

2) Even when they run on the 
same engine, because they run 
at different architecture levels, 
the linkage between software 

• 

• 

IBM CONFIDENTIAL 

and these emulator programs 
are awkward and inefficient. 
For instance, invoking a S/370 
integrated channel program 
requires Start 1/0 (with 
CCW's, CSW's and CA W's) 
and interrupts on return. 
(When cost/performance of 
the CPU requires executing the 
controller function outboard, as 
NCP on the 3705, this linkage 
is even more inefficient.) In the 
801 I/ 0 programs are invoked 
synchronously by CALL 
(Branch and Link at run time) 
and terminated by RETURN 
(Branch back). They use the 
caller's stack for temporaries 
and are subject to the same 
optimization as other 
procedures. Thus we see a 
progression from stand-alone 
channel and outboard control 
units to a CPU whose 
cost/ performance allows these 
functions to be performed on 
the CPU engine, and finally to 
the 801 where these functions 
are performed on the same 
instruction set as users' 
procedures with very efficient 
linkage between them. 

Conventional control units, channels 
and some access methods support 
multiple length blocks on DASO even 
though the thrust of such devices at all 
levels of cost/performance is towards 
fixed blocks of a single standard size. 
They also provide outboard search 
logic even though more efficient 
indexing is possible in software. The 
801 at the outset supports the Picollo 
device with control unit, adapter and 
software restricted to directly 
addressed fixed length blocks. This 
greatly simplifies the resulting system 
while providing, to the user, the same 
level of functions. 

The 801 bas two busses on which 
adapters are attached: a high speed 
parallel bus for programmed 1/0, and a 

76.9.24 



Page 14 The 801 Minicomputer - An Overview 

very high speed memory bus for Direct 
Memory Attachment (OMA) adapters. 
The former is used for control and 
status for all devices, and for data as 
well for low data rate devices. The 
801 instructions I/ 0 READ and I/ 0 
WRITE synchronously transmit 2 bytes 
between the CPU's registers and an 
adapter in less than two machine 
cycles. (OMA adapters also attach to 
this parallel bus, for transmitting 
control and status information.) 

To attach control units at great 
distances and for little cost, connections 
between adapters and control units are via 
serial links. (The 801 project is pursuing (in 
addition to conventional coaxial cable 
implementation) a laser-driven optical link for 
this purpose because it has excellent potential 
cost characteristics at long distances, better 
noise immunity, better error rates, etc.) 

A Switch adapter allows direct serial 
links between adapters and different control 
units at different times, thus allowing a great 
many control units to share few adapt.ers. This 
strategy of direct one-to-one attachment (via 
the switch) simplifies the transfer of control 
sequences. Unlike S/370 chaining, critical 
transfer time does not depend on the 
reselection sequence of the channel. 

The Direct Memory Attachment 
adapter is used to send data between the 801 
backing store and high-data rate devices such 
as disks, displays, and S/370's. The memory 
bus accommodates a data rate of up to 90 
megabytes, of which up to 45 megabytes is 
available to the 1/0 subsystem. Each DMA 
can support a data rate up to 5 megabytes. 

A special adapter, called the Interrupt 
adapter, attaches to the parallel bus for 
transmitting control and status, but also 
attaches to the CPU via interrupt-raising lines. 
It is the only adapter that can raise an external 
interrupt in the CPU. All others attach to the 
Interrupt adapter and, when they wish to 
interrupt the CPU, set a bit in an 
interrupt-pending vector (one bit position per 
adapter plus others which are associated 
directly with devices). This vector is AND'ed 

with an Enable mask vector sent to the adapter 
by software in the CPU. If there is a resulting 
logical one, and the CPU is enabled, the CPU 
is interrupted. (There are two other bit 
positions in this vector, one for an interval 
timer, and one for a CPU software-generated 
interrupt (PCI).) The First-level interrupt 
handler reads the vector (by IOR instructions) 
and; since the vector has been ordered by 
priority of adapter, executes a COUNT 
LEADING ZEROS instruction which gives it 
the branch address to the adapter handling 
code. This ordering is, of course, a software 
option. The hardware allows any association 
between bit positions and adapters/ devices. 
(Our First Level Interrupt handler, which 
stores all registers, sets the interrupted process 
inactive, turns off its timer and branches to the 
required adapter handler takes about 50 
instructions (i.e. about 3 microseconds), and 
can be greatly improved where the intent is 
cycle-stealing (i.e. the interrupted process will 
continue when the handler completes). Thus 
the software can perform all the functions of a 
hardware priority interrupt scheme (and several 
additional ones) for as many levels as there are 
adapters with no hardware expense, no 
dedicated Register Space, and with speed 
comparable to hardware.) 

This adapter and attachment 
architecture permits great flexibility of 1/0 
coi:ifigurations. (Even the Interrupt adapter can 
be customized.) We define the interface 
between CPU and adapter in the 801 
Architecture document so that other adapters 
can be built, and we permit in our control 
program the substitution of adapter handling 
programs. 

• Notice that the DMA transmits to and 
from the backing store, not the cache. 
This simplifies the transmission and 
eliminates the degradation due to cache 
broadcasting. In effect, the CPU is not 
measurably degraded due to 1/0 
activity of the DMA. However, just as 
in the case of our two independent 
caches, software must ensure that 
buffers are properly synchronized with 
their use as data (or instruction) lines 
by the caches. The issuing of these 
cache managing instructions is confined 

76.9.24 IBM CONFIDENTIAL 



The 801 Minicomputer - An Overview Page 15 

to our access method programs and 
does not currently appear to degrade 
performance unduly, but this is another 
area which we intend to measure 
carefully. 

H) Operating System Facilities 

The innovations in the 801 operating 
system do not come from any startling new 
function. In fact, the attempt is to provide a 
basic set of facilities, any of which can be 
replaced, and which concentrate on minimizing 
path lengths and providing acceptable response 
for large numbers of interactive display 
terminals. The major new approach in the 
supervisor is to work closely with the compiler 
in providing protection between users and for 
the supervisor itself. 

Our prototype system will drive 3277 
displays and attach to a 168 VM host. It will 
support Picollo disks and provide a compatible 
UC-interface adapter to support 3 790 
peripherals. With this configuration and an 
efficient, reliable multi-tasking, memory 
management control program, we will, in the 
second phase of the 801 project (1978) 
develop distributed applications and investigate 
the enhancements to the operating system 
needed for these applications. 

Ill. Conclusions 

In some sense the 801 appears to be 
rushing in the opposite direction to the 
conventional wisdom of this field. Namely, 
everyone else is busily moving software into 
hardware and we are clearly moving hardware 
into software. Rather than consuming the 
projected cheaper, faster hardware, we are 
engaged in an effort to save circuits, cut path 
lengths and reduce function~ at every level of 
the normal system hierarchy. There are three 
comments which must be made about this 
anachronistic set of objectives. 

1) It all depends on the absolute numbers, 
not on generalities. If the radically 
different direction we are pursuing 
leads to system cost/performance 
improvements of 10 - 30 percent we 
might as well go back to the 
technologists and seek that kind of • 
improvement from chip density, new 
cooling methods, or cheaper memories. 
If we can demonstrate one to two 
orders of magnitude of 
cost/performance improvement (while 
keeping source language programs 
relatively unchanged) then there may 
well be some product potential in the 
801 approach. 

2) Less function does not necessarily 
mean harder to use. For instance, the 
801 principles of operation are far 
easier to read and learn than S/370 (or 
many mini architectures). There is not 
as much there but it's all regular and 
straightforward (mostly anyway). The 
functions that we have subset from 
PL/ 1 have not impeded the 
development of our own programs at 
all. (Where we found that some 
missing function was useful we put it 
back in.) In fact, after a dozen years of 
experience, being able to eliminate a 
lot of marginally useful, complicated 
language constructs makes the language 
easier to understand and use. Our 
Control Program Facilities interface, 
because of its limited function, will 
similarly make it more accessible. 

3) "Moving functions from software to 
hardware" today generally really means 
"moving functions from software to 
microcode". It should be clear by now 
that we have, in fact, moved all 
software into microcode. We are 
simply making this feasible by making 
the development of efficient, safe 
microprograms as easy (or easier) than 
software today. 

IBM CONFIDENTIAL 76.9.24 




