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Business event processing requires efficiently processing live events, computing

business performance metrics, detecting business situations, and providing real-time

visibility of key performance indicators. Given the high volume of events and significant

complexity of computation, system performance event throughput is critical. In this

paper, we advocate model-analysis techniques to improve event throughput. In the

build time, a series of model analyses of the application logic are conducted to

understand such factors as runtime data-access path, data flow, and control flow. Such

analyses can be used to improve throughput three ways: at build time it can be used to

facilitate the generation of customized code to optimize I/O and CPU usage; information

about the control flow and data flow can be used to ensure that CPU resources are used

effectively by distributing event-processing computation logic evenly over time; and at

runtime, knowledge gained from the model can be used to plan multithreaded parallel

event-processing execution to reduce wait states by maximizing parallelization and

reducing the planning overhead. This paper presents a series of model-analysis

techniques and the results of experiments that demonstrate their effectiveness.

INTRODUCTION
For an organization to function effectively in today’s

environment and to stay competitive and profitable,

business activities and operation performance must

be continuously visible. Business event processing
1–5

enables processing continuous live events, comput-

ing metric values, and detecting situations in real

time, thereby supporting applications such as

program trading, fraud management, and location-

based services. It represents a new generation of

enterprise data management and is gaining consid-

erable momentum in both academia and industry.

A user-friendly language is needed to support

business event processing. In our design, we use the

popular ECA (event condition action) rule-based

programming mode with substantial extensions to

support the computation of the active metric

network. The rule-based programming model allows

application developers to realize business rules in

event-processing applications, thus freeing them

from transforming declarative logic into details of

procedural logic.
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Improving event-processing throughput becomes

imperative, as there are emerging business needs

that require huge amounts of event data to be

processed on a just-in-time basis. One way to

improve throughput is to reduce the I/O and CPU

cost of individual event processing at runtime in

order to reduce processing time for each event. In

this paper, we propose a model-analysis approach to

generate executable code that processes events with

I/O and CPU efficiency. For example, by analyzing

the model, knowledge about the runtime object

access paths can be gained and used to generate a

customized cache component to minimize the I/O in

the runtime.

Another approach to improve throughput is to

enable concurrent event processing. Actually, con-

ventional event-processing systems adopt a multi-

thread approach to process events simultaneously

(one thread per event), where concurrent control is

based on an object-locking mechanism. Such an

approach is intuitive. However, it has some short-

comings. For example, during the lifespan of an

event-processing thread, a collection of objects (e.g.,

metrics) may be updated. Accordingly, a collection

of locks are placed on these objects, and lock

contentions can occur among those concurrent

threads if they update the same objects. These lock

contentions may force some threads to be idle. For

example, when two concurrent threads update the

same set of metrics, the execution of these two

threads needs to be serialized. The threads in idle

status need to release system resources and then

reacquire system resources whenever they are

activated. Such a situation could happen several

times during the lifespan of a thread. Such thread

context switching introduces extra system overhead,

slowing the event processing.

Multithread parallel processing is necessary to

improve system throughput. The key is how to

minimize the overhead introduced by concurrent

control. We advocate model-analysis techniques to

plan concurrent wait-free threads, which can elim-

inate overhead on concurrent control and thread

context switching. By analyzing the model, the

knowledge about constraints among the data flow

and control flow in the model can be obtained. With

this knowledge, wait-free, concurrent event-pro-

cessing threads can be planned by selecting the

appropriate work items to be processed. To sum-

marize, the model-analysis techniques that improve

event-processing performance are the following:

Customized code generation—We implemented a

model compiler that generates executable code for

the event processing logic (ECA rules), wherein a

Java** Virtual Machine (JVM**) is adopted as the

execution platform. This side-stepped the need to

develop a home-grown evaluation engine. Also, it

exploits the performance improvement features in

the modern JVM, in particular, the just-in-time

compiler that optimizes code at runtime based on

execution patterns. Further, all the executable code

is generated specifically for the given application

logic; code for dealing with the general case is

excluded. Therefore, the executable code not only

has a small footprint, but also runs more efficiently

than the code for the general case. Finally, the cache

module can be generated based on the runtime

object access paths, which can greatly reduce the

I/O access in the runtime. Therefore, in runtime, the

system benefits from the generated code in reducing

both I/O-access and CPU-cycle consumption.

Model-driven multimediators—A state chart can be

constructed from the collection of event-processing

rules used to process a business-event type. Instead

of compiling each state chart into an independent

Java class, we compile each rule into an indepen-

dent Java class. We design multimediators to

orchestrate the generated Java classes. Each medi-

ator processes both a queue that buffers the

available work items and a collection of threads to

process the work items. These mediators construct a

queuing network wherein the topology construction

is driven by the model. The number of threads in

each mediator can be adjusted to tune the perfor-

mance. By doing this, CPU resources can be

allocated and reallocated to avoid the occurrence of

bottlenecks in the queuing network, thereby dy-

namically improving throughput.

Scheduling of model-driven event processing—For

each mediator, a thread pool is used to enable the

parallel processing of events. However, when there

is a data-flow dependence among the concurrent

threads in different mediators, parallelization is not

necessarily able to improve the throughput. For

example, for a mediator that executes metric

computation and situation detection, a deadlock

may occur among concurrent threads if there are

read and write conflicts on a collection of metrics
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and situations. In such a case, the parallel threads

cannot make any progress on event processing.

When a high volume of events need to be processed

(e.g., a few hundred events per second), the number

of waiting work items is always much larger than

that of threads supported by the system. Motivated

by selecting work items that enable wait-free

concurrent threads, a model-driven scheduler is

proposed for the mediators. In the build time, it

analyzes the possible runtime data flow among the

event-processing threads to determine whether any

two types of work items may cause lock conten-

tions. Thus, by using this precomputed knowledge,

the scheduler can select work items for wait-free

concurrent threads with little runtime overhead.

Such an approach greatly improves event through-

put.

SYSTEM DESIGN RATIONALE
In this section, we first briefly describe the

programming model for business event processing

and then present the overall system design ratio-

nales. We adopt a rule-based programming model,

Event(eventPattern)[condition]jexpression,

wherein ECA rules are used to describe the event-

processing logic.

In an event-processing ECA rule, the event pattern

can be an occurrence of business events, a change in

a metric value, or the occurrence of a situation. The

condition is a Boolean expression specifying the

circumstances to trigger the action. It examines the

properties of events and states (i.e., metrics and

situations). The action is an expression that com-

putes or updates the states. In order to support the

sliding windows (for example, the last 100 tuples),

the timer and counter are considered as metrics. For

each type of business event, application developers

can create a collection of rules to represent the

event-processing logic. The metric and situation

values are contained by context instances, which

can form parent-child relations. Event-processing

results (i.e., context instances) need to be persisted.

The programming model is described in more detail

in Reference 3.

Given a suitable programming model, it is critical

that application logic can be efficiently executed.

The first design choice concerned the runtime data

store used to persist event processing states. In our

initial design,
3

we generated Structured Query

Language (SQL) statements to execute the compu-

tation logic in rules. By using the SQL query engine

to perform the metric computation, situation detec-

tion, and state persistence, the event-processing

engine became a lightweight component. However,

most modern SQL query engines are designed for

optimizing queries on the data in persistent storage,

where rules are executed after the event data is

saved to disk. Therefore, such an approach is I/O

intensive, as every SQL statement requires I/O

access to the data in the persistent data store. Such a

design requires a high-performance I/O hardware

platform. By observing this limitation, we chose to

execute the computation logic in main memory first

and then save the computation results to the data

store. Further, to reduce the I/O demand in runtime,

some cache components were generated based on

object access paths.

The second design choice was selecting the appro-

priate rule-execution framework. There are two

approaches to executing event-processing rules:

interpreting and compiling. Both approaches have

advantages and drawbacks. We considered the

interpreting approach first. The advantage of inter-

preting is that it has more controls on execution

progress because the interpreter maintains all the

model information. This facilitates more fine-grained

multithreaded scheduling that uses model informa-

tion to achieve better system resource utilization.

However, when executing ECA rules, the interpreter

consumes more CPU cycles than directly compiled

code, given that there are many types of operators,

such as relational, set, vector, and scalar, used to

construct expressions.
6

Further, the metrics refer-

enced in expressions are not limited to the same

context instance. To locate the associated instances

of a metric, the interpreter needs to navigate through

the hierarchy of context instances at runtime, which

may incur performance penalties.

An executable code is generated by adopting a

compiling approach for the set of rules that are

associated with one type of business event. The

collection of rules associated with one type of event

compose a state chart; thus, the executable code

essentially implements a state chart. As customized

code can be generated for the execution of the state

chart, it can reduce CPU cycle demand. However,

the event-processing logic is embedded into gener-

ated code at compilation time. This implicates a

potential performance issue. When adopting a

multithread approach to process events without
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model information, the thread scheduling needs to

rely on the locking-based scheduling features

provided by either the operating system or the

programming language (e.g., JVM). The locking-

based scheduling usually results in high system

overhead,
7

especially in multiple-CPU systems.

To take advantage of both approaches, we propose a

hybrid approach. At build time, the triggering

relation among the rules that are associated with

one type of business event is transformed into a

state chart. By limiting the search space, the state

chart expedites locating the rules to be triggered at

runtime. Each rule is compiled into an independent

executable code. When a business event occurs in

runtime, the state chart is interpreted in order to

orchestrate the executable code that implements the

associated rules. The advantages of such a compi-

lation-interpreting approach are twofold. On the one

hand, by interpreting, the model information can be

used to optimize the resource allocation when

executing the rules. For example, information about

the data flow among the rules can be used to plan

the wait-free execution of the rules. On the other

hand, execution of an individual rule is done by

executing precompiled code, which offers the

efficiency of the compilation approach.

MODEL TRANSFORMATION

To facilitate interpretation and compilation, two

types of model transformation are conducted:

control-flow and data-flow analysis, and expression

preprocessing.

Control-flow and data-flow analysis
The rule-based programming model allows applica-

tion developers to focus on the business logic of

event processing, which frees them from under-

standing extraneous details of control flow and data

flow. However, when model checking is performed,

for example loop detection, explicit control-flow and

data-flow information is required. In this subsection,

we present how to extract explicit control-flow and

data-flow information from rules.

We discuss the control-flow extraction first. As each

type of incoming business event triggers a conse-

quence of rules to be executed, each event can,

therefore, initiate a control flow (represented as a

state chart) constructed by the rules. In the state

chart, states are events, metrics, or situations, while

each transition is associated with a rule that is

triggered by the state. The transition starts from and

updates the value of a metric or situation that the

transition points to. If there is a loop in any control-

flow state chart, the system notifies the model

designer to modify the rules. The three state charts

shown in Figure 1 can be generated, given the

following set of rules:

R1 : Eventðc1Þ½c1:a1 . 5�jf1 :¼ v1ðc1Þ
R2 : Eventðc1Þ½c1:a1 . 5�jf3 :¼ v2ðc1Þ
R3 : EventðValueChangeðf1ÞÞ½f1 . 5�jf3 :¼ v3ðf1; f2Þ
R4 : EventðValueChangeðf3ÞÞ½f3 , 15�jf5 :¼ v4ðf3Þ
R5 : EventðValueChangeðf3ÞÞ½f3 , 15�jf6 :¼ v5ðf3Þ
R6 : Eventðc2Þ½c2:a4 , 90�jf6 :¼ v6ðf6; f2Þ
R7 : Eventðc2Þ½c2:a8 . 25 ^ f1 . 5�jf1 :¼ v7ðc2; f3Þ
R8 : EventðValueChangeðf4ÞÞ½f4:a5 . 100�jf3 :¼ v8ðf4; f5Þ
R9 : EventðValueChangeðf6ÞÞ½f6 . 5�jf3 :¼ v9ðf6; f7Þ
R10 : EventðValueChangeðf7ÞÞ½f7 . 15�jf5 :¼ v10ðf6Þ
R11 : EventðValueChangeðf2ÞÞ½f2 , 25�jf3 :¼ v11ðf2; f5Þ
R12 : Eventðc3Þ½c3:a5 . 25�jf1 :¼ v12ðc3; f1Þ

Based on the generated control-flow state charts (see

example in Figure 1), we can generate data-flow

transitions. In the control flow, if the context

element (i.e., event, metric, or situation) represent-

ed in state a is an operand to compute the metric or

situation indicated in state b, then there is a data-

flow transition from state a to b. If there are multiple

operands, then a join state is added. In control-flow

state charts, there are two types of data-flow

transitions: a data-flow transition that is inside a

control-flow state chart and a data-flow transition

that is between the control-flow state charts. If data-

flow transitions construct any loops, then the

system must notify the model designer to modify the

rules, because the presence of loops indicates that

when some rules are executed, they may always be

terminated, as some operands are not available.

Expression preprocessing

Uniformly, the expressions in rules can be denoted

as

f ¼ vðc1:f1; c2:f2; . . . ; cn:fn; c1:11; c2:12; . . . ;

cm:1m; c1:c1; c2:c2; . . . ; cl:clÞ; ð1Þ

where v is the operator, and there are three kinds of

operands: metrics (f
i
), situations (1

i
), and events

(c
i
). If the output of an expression is a metric, f

represents c.f and c is the context that f belongs to.

In order to facilitate the evaluation of expressions,

preprocessing is performed by the model trans-

former at build time. At runtime, the created context

instances form a tree structure based on the parent-

child relationship. In an expression, the output and
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operands (e.g., metrics) may belong to different

context instances, wherein a path exists between the

output and each operand. Based on the original

context instance c that the expression belongs to and

destination context instance c
i
that the operand or

output belongs to, the navigation path can be

computed as

, =l1=l2= . . . . . . =lk .;

where l
i
in the path represents a step. Referring to

the tree structure of context instances, there are two

possible directions for a step: from a child-to-parent

context instance, where l
i
is denoted as ‘‘..’’, or from

a parent-to-child context instance, where l
i
is

denoted as C
i
(p). The context type is denoted as C

i
,

and p is an association predicate on any metric f
k

in

context C
i
that is used to identify which context

instances are in the path. An example of p can be

f
2
¼ 5 ^ f

4
¼ 4. When p is null, all context instances

of context type C
i
are matched. To accelerate the

searching of context instances, some cache compo-

nents are generated based on the association

predicate p. Details about cache component gener-

ation are given in the next section.

CUSTOMIZED CODE GENERATION

Generating Java code for expression evaluation

consists of two steps:

1. Generating code to retrieve the value of each

operand

2. Generating code to execute the operator

In the first step, the model compiler generates code

to retrieve the operand value in the cache. Here, we

use the metric attribute as an example of operands

to illustrate our code-generation solution. By spec-

ifying attributes of the metric and the context

navigation path, the metric operand in expression

(1) can be further refined as

fi , =l1=l2= . . . . . . =lk . :ai½d1; d2; . . . ; dl�:

In this step, the code generation for accessing the

operand consists of two phases: generating code to

retrieve the context instance object and generating

code to retrieve the content of the metric attribute.

We first discuss how to generate code to retrieve the

context instance that the metric f
i
belongs to.

In our design, a cache component is adopted to

accelerate the retrieval of context instance objects.

The cache manager provides an interface
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(ContextInstance

getContextByInstanceID(Double iID))

that enables retrieval of context instance objects by

context instance id (iID). The cache manager

possesses a table of context types that is generated

from the observation model. Each context type entry

is associated with a hash table that caches the

context instances of the particular context type. To

implement the interface, the hash table uses the iID

as the key and the context instance object as the

value. Further, to expedite the evaluation of the

association predicate and avoid a full table scan, the

context manager maintains a collection of indexes

based on equality queries and range queries in the

association predicate. In our implementation, the

index manager creates two types of indexes, namely

hash table indexes created for equality queries and

Bþ tree indexes created for range queries.

The generated code for retrieving the context

instance is shown in Table 1, where we assume that

the expression execution is triggered in the context

instance and that the context type is C and the

instance ID is iID. In the code generation, there are

three cases, self step, parent step, and child step. In

the child step, the predicate p cannot be null and

should not contain any range queries, as the target is

one context instance.

In the above method, getContextInstanceByKey()

is implemented based on the hash-based index

that was created by the index manager. By applying

the above two cases on steps in the context path,

we can obtain the target context instance

contextInstanceCn. As we generate the getter and

setter methods for each metric, we can use the getter

contextInstanceCn.getMetricMi() to retrieve the

metric value.

In the case where v is a group operator, the target

context instances can be multiple. For the parent

step, the code generation is the same as for

nongroup operators. However, in the case of the

child step, instead of a single context instance, an

array of context instances are retrieved. Here, we

differentiate two cases: either p is null or not null.

Further, once there is a child step, the next retrieval

step needs to be done in the loop. At the last step, all

the operand metrics are added into a collection as

the operand for group operators.

MULTIMEDIATOR ORCHESTRATION
A queuing network that consists of a multimediator

is proposed to allocate CPU resources by dynami-

cally sizing the thread pool to optimize event

throughput. Each mediator in the network processes

a work item queue, an interpreter, and a thread

pool. The queue buffers the available work items.

Table 1 Code generated to retrieve the context instance

Code Generation for Nongroup Operators

Step Type Generated Code

Child step, p is null ContextInstanceC contextInstanceC =
CacheManager.getContextCache(c).getContextInstanceByID(iID);

Parent step getParentContext()

Child step ContextInstanceCi contextInstanceCi =
contextInstanceC.getChildContexInstanceByKey(ci,k1, k2, ..., kn0);

Code Generation for Group Operators

Step Type Generated Code

Child step, p is null ContextInstanceCi contextInstanceCis =
contextInstanceC.getChildContextInstanceByType(ci);

Child step, p is not null ContextInstanceCi contextInstanceCis =
contextInstanceC.getChildContextInstanceByKey(ci,k1, k2, ..., kn);

Step after child step for (ContextInstanceCi contextInstanceCi: contextInstanceCis) {...}
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The interpreter identifies related executable code

according to the stage of event-processing logic. The

thread pool enables multithread concurrent pro-

cessing on work items. The threads in different

thread pools have some level of priority. The CPU

resource allocation of a mediator is determined by

the size of its thread pool. By dynamically config-

uring the size of the thread pool, CPU resources can

be dynamically allocated.

An approach to constructing the topology of a

queuing network is to have each mediator execute

only one type of rule in control-flow state charts.

However, in such an approach, the number of

mediators can be much larger than the number of

threads that the system can run concurrently.

Therefore, some mediators are idle and waiting for a

CPU cycle to be allocated. Also, some system

overhead is introduced when a large number of

queues is managed. For these reasons, such a design

may degrade the event throughput.

In order to maximize the thread parallelization of

computation and, at the same time, avoid thread

suspension, we propose a solution that distributes

the rules into a collection of mediators, wherein the

number of mediators is determined by the topology

of state charts. Our strategy is twofold. First, the

order of rule execution is preserved by network

topologies constructed by the mediators. This can be

done in two steps: sorting the rules based on the

execution sequence of each control-flow state chart

and distributing rules to a collection of ordered

mediators based on their place in the execution

order. The second part of the strategy minimizes the

communication cost among the mediators and

eliminates the data-flow conflicts among the threads

in different mediators. This can be done by taking

rules that are associated with an interstate-chart

data-flow transition and distributing them into the

same mediator. Therefore, by planning the execu-

tion order of the rules inside a mediator, wait-free

threads can be enabled (details about the execution

planning are given in the next section). The detailed

procedure of topology construction is as follows:

Step 1—First, in generated control-flow state charts,

the states are marked by using the control-flow

distance from the event states. If there are multiple

paths from an event state, then the maximum

distance is used. For example, in state chart G1

(Figure 1A) the state c
1

is marked as 0, and the state

f
1

is marked as 1.

Step 2—The states in state charts are aggregated

based on their distance from the event state. For

state chart Gi, the states with same distance mark

are put into a sequence of ordered baskets B
i,j

,

ordered by j. The order of baskets is used to reserve

the execution order of the rules that were triggered

by the elements in the baskets. For example, for

state chart G1 (Figure 1A), the ordered baskets are

generated as

B1½B1;0 c1f g;B1;1 f1; f3f g;B1;2 f2; f5; f6f g;B1;3 11; 12f g�:

This indicates, for example, that the rule triggered

by c
1

is always executed before the rules triggered

by f
1

and f
3
. For another example, state chart G2

(Figure 1B) generates the order of baskets as

B2½B2;0 c2f g;B2;1 f4; f6f g;B2;2 f7; 11f g;B2;3 f8f g�:

Step 3—In the above steps, each control-flow state

chart generates an order of baskets. In this step, the

baskets that belong to different state charts are

merged and binary sorted.

We assume that B1 has the biggest number of

baskets among all the Bi. The Bi (i � 2) are merged

to B
1

one by one. For each B
i,y

in Bi, starting from

y¼ 0, where e is an element in B
i,y

, e can be merged

to a basket in B1 according to the following cases:

Case 1: There exists either one or more than one

basket in B1 that has a data-flow relationship with

the elements in B
i,y

. If there exists one basket B
1,x

in

B1 that contains elements which trigger the rule and

if the output of the rule provides operands for the

rules triggered by element e, then e is merged into

B
1,x

. For example, in B1, there is a basket B
1,1

. The

elements f
3

in B
1,1

trigger rule R
5
, and the output of

R
5

is f
6
, which is an operand for rule R

6
that is

triggered by c
2
. Therefore, f

3
is merged into B

1,1
,

and B
1,1

becomes ff
1
,f

3
,c

2
g. After this merge, B1

becomes

B1½B1;0 c1f g;B1;1 f1; f3; c2f g;B1;2 f2; f5; f6f g;B1;3 11; 12f g�:

If there is more than one basket in B1 that has a

data-flow transition with elements in B
i,y

, then the

baskets in B1, the baskets in between, and the

element e are merged into a single basket. Such a

merge method guarantees that all the rules associ-
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ated with an interstate-chart data flow are distrib-

uted into the same basket. Thus, there is no

interstate-chart data-flow transition among the

mediators. In this way, the communication cost

among the mediators is reduced.

Case 2: There is one basket B
1,x

in B1 that contains

element e. Element e is merged into B
1,x

in this case.

For example, f
6

(f
6
2 B

1,2
) is merged into B

1,2
, and

B
1,2

becomes ff
2
,f

4
,f

5
,f

6
g. By performing this

merge, the rules that update the same metrics or

situations are distributed into the same basket.

Case 3: There is no basket B
1,x

in B1 that has a data-

flow transition with e or contains e. If j ¼ 0, then

basket Bfeg is inserted into B1 as B
1,0

; if j 6¼ 0, then e

is merged into B
1,x

, where B
1,x

is the next basket to

which elements in B
i,y�1

are merged or the basket to

which other elements in B
i,y

are merged. If the

elements in B
i,y�1

or other elements in basket B
i,y

are

merged to the last basket of B1, then Bfeg is inserted

into B1 as the last basket. For example, the f
8

in

basket B
2,3

is inserted into B1 as B
1,4

, because B
1,3

is

the last basket to which 1
1

(an element in the same

basket as f
8
) is merged. Such a merge operation

preserves the invocation order of rules in all the

control-flow state charts. After B1 and Bi are

merged, if the number of baskets in B1 becomes

smaller, it swaps with the basket Bi that currently

has the largest number of baskets.

Step 4—After the above steps, all baskets are merged

into a sequence of baskets. Using the above

example, the baskets of three state charts are

merged into

B½B1;0 c1; c3f g;B1;1 f1; f3; c2f g;B1;2 f2; f4; f5; f6f g;

B1;3 11; 12; f7f g;B1;4 f8f g�:

Figure 2 shows an example of a queuing network.

Such a network is constructed based on these

merged baskets, one mediator per basket, except for

the last basket. Each mediator possesses an invo-

cation table. The table maps the trigger elements to

the rules being triggered. For example, an entry in

the invocation table for M
0

is ,c
1
, fR

1
, R

2
g., which

indicates that when M
0

receives business event c
1
,

rule R
1

and rule R
2

will be executed. The mediator

also possesses a route table if it has more than one

outgoing arrow or it will have to forward work items

to other mediators. The route table defines two types

of mapping: mapping between the rules and the next

mediator to which a work item will be dispatched

when the execution of the rule is completed and

mapping between a work item and the mediator to

which that work item should be forwarded. For

example, an entry in the route table of M
0

is

,c
2
, M

1
., which indicates that business event c

2

is bypassed by M
0

and forwarded to M
1
.

DATA-FLOW-DRIVEN EVENT-PROCESSING
SCHEDULING

In this section, we present a novel data-flow-driven

scheduler for mediators. The scheduler enables

wait-free concurrent threads by planning the exe-

cution order of work items. There are two issues in

realizing such an approach. The first issue is to

determine whether there are enough available work

items to be planned for execution. In most applica-

M3M2M1
M0

Work Item Flow Table Lookup

Figure 2
An example of a queuing network
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tions, the number of work items buffered is much

larger than the number of concurrent threads that

the system can support. Such a design principle

complies with the ratio between the size of main

memory and the number of CPUs (or CPU cores) in

the model computer architecture. The second issue

is the runtime overhead introduced by the schedul-

er. This issue is resolved by performing a data-flow

analysis in build time. In our approach, the possible

runtime data flow among the rules is analyzed in

build time to determine whether any two types of

work items may cause lock contentions. Based on

the data flow and lock contentions, an execution

policy is created for each rule. Using this precom-

puted knowledge, the scheduler can decide when

work items are ready for execution in wait-free

concurrent threads with little runtime overhead.

Such an approach greatly improves the throughput

of event processing. In the remainder of this section,

we present the build time data-flow-analysis tech-

niques and then the scheduling algorithm.

Build-time model analysis

In this section, we present the model analysis

techniques that derive from the execution policy for

each rule. We start with an analysis of how the

metric or situation is computed. For each metric or

situation, a dependence tree is generated based on

the expressions in the rules that compute its value.

There are three kinds of nodes in a dependence tree:

the element node (represents the output of an

expression), the operator node (child nodes of the

element node that represent operators of the

expression), and the dependent element node (child

nodes of an operator node that represent operands of

the expression). A dependent element node can also

be considered as an element node if it is not an event

node. For example, the metric f
8

associates an

expression f
8
¼ v

9
(f

6
, f

7
) in rule R

8
. Therefore, the

node f
8

has a child operator node v
9
, and the

operator has two child operator nodes, f
6

and f
7
.

The tree can continue to grow until the dependent

element is an event element (e.g., c
1
) or the node has

already appeared in the tree (e.g., the node f
6

and f
3

in Figure 3A). In the case where multiple expressions

are associated with an element node, the operator

nodes form an OR relationship. In the example

shown in Figure 3A, the node f
6

has two expressions

associated with it: f
6
¼ v

2
(f

3
) and f

6
¼ v

3
(f

6
, c

2
).

Therefore, the nodes v
2

and v
3

form an OR

relationship. When the construction is completed,

the tree with OR nodes can be split into multiple trees

with no OR nodes, as shown in Figures 3B and 3C.

After generating the dependence tree for each metric

or situation, we can use them to study the correct

sequence in which to execute rules. Assume that

rule R
i
and R

j
are executed by the same mediator.

When they are triggered in same context instance,

identifying the correct sequence in which to execute

them is the key to enable wait-free concurrent

threads. We consider the following cases:

Case 1: R
i
and R

j
have the same output. In this case,

these two rules cannot be executed concurrently in

the same context instance. Further, if the expression

in a rule realizes a self-data-flow transition (i.e., an

output is one of the operands), then the rule needs

to be executed later. For example, both R
1

and R
12

are processed by mediator M
0
, and the output is f

1
.

However, the R
12

expression has a self-data-flow

Figure 3
Dependence trees: (A) with OR, (B) without OR, and (C) without OR
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transition for f
1
. Therefore, R

12
needs to be executed

after R
1
, when f

1
is not available.

Case 2: R
i
and R

j
have different outputs. This case

can be further classified into the following two

situations. First, R
i
appears in any of the R

j

expression trees, which indicates that R
i
may

provide operands for R
j
. Therefore, R

i
needs to be

executed before R
j
if the R

j
operands are not

available. Second, both R
i
and R

j
do not appear in

the expression tree of the other, which indicates that

R
i
and R

j
have no data-flow associations. Therefore,

R
i
and R

j
can be executed concurrently.

By accumulating the execution order for each pair of

rules, an execution policy is derived for each rule.

There are two types of execution policies:

1. The rule is initiated to be executed as long as no

other rule of the same type is being executed in

the same context instance. Such a policy is

applied to a rule that has no other prerequisite

rule in the execution order.

2. The rule is initiated to be executed only when the

execution of prerequisite rules in the execution

order is completed in the same context instance

and there is no other instance of the same type of

rule executed in the same context instance. Such

a policy is applied to a rule that has some

prerequisite rules in the execution order.

For example, the mediator M
0

possesses three rules:

R
1
, R

2
, and R

12
. Both R

1
and R

12
can be executed

concurrently with R
2
, while R

12
has to be executed

after R
1
. Therefore, R

1
and R

2
belong to first case.

R
12

belongs to second case, as it has a prerequisite

rule R
2
.

Scheduling algorithm

In runtime, based on the execution policies, the

mediator adopts scheduling algorithms to determi-

nate whether a triggered rule can be executed

immediately or if it must be initialized and queued

as a work item. For a rule that can be executed

immediately, the following algorithm is used, where

r
i
is the rule instance that is triggered, c is the context

instance that r
i
belongs to, and c.exQueues[i] is the

queue of rule instances for rule type R
i
of r

i
:

begin

if a rule instance of ri is being executed in c by

thread t then

add ri instance into the t execution queue;

else if there is a free thread t in the thread

pool then

add ri instance into c.exQueues[i];

move all the items from c.exQueues[i] to the t

queue;

start thread t execution;

else

add ri instance into c.exQueues[i];

end

In the algorithm, for each context instance c,

exQueues is an array of queues with one queue for

each rule type in the context type. The queue array

buffers the work items that are ready for execution.

Each thread in the thread pool also maintains a

queue that buffers the work items that need to be

executed in the lifespan of the thread.

For example, when the mediator M
0

receives an

event c
1

in the context instance c, the execution of r
2

(instance of R
2
) is initiated. Therefore, if there is a

thread t executing another instance of R
2

in the same

context instance c, the scheduler adds the r
2

into the

queue of thread t. Therefore, the execution of r
2

is

started when it comes to the front of the queue for t.

If, in the context instance c, there is no other R
12

instance being executed, the scheduler allocates a

free thread to execute r
2

or buffers r
2

in the context c

queue if there is no free thread available in the

thread pool.

On the other hand, for a rule that must be initialized

and queued as a work item, the following algorithm

is applied:

begin

if another rule instance of Ri is being executed

in c by thread t

then

add ri into the t execution queue;

else

add ri instance into c.exQueues[i];

if c.executable[i] and there is a free thread

t in the thread pool

then

add ri into the t queue;

move all the items from c.exQueues[i] to the

t queue;

start thread t execution;

end
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In particular, in each context instance c, a Boolean

array c.executable is used (one entry for a rule) to

indicate whether that rule type is ready to be

executed. For those rules that have a previous rule

in the execution order, the initial value for the entry

is false. If there is already a thread that is currently

executing the same rule in the same context

instance, the new instance is added to the thread

execution queue. Otherwise, a check is made to

determine whether the rule is ready to be executed,

and then the thread is allocated to start the

execution of the rule instances.

When a thread has completed the execution of one

rule instance, it checks whether the completion of

the rule enables other types of rules to be ready for

execution in the same context instance, and it sets

the value of c.executable[i]. For example, when

an execution of rule instance R
2

is completed in

context instance c, the rule R
12

becomes ready to be

executed. Further, when a thread has completed all

the work items in its queue, it starts to execute work

items in other rule queues in the context instance, if

there are any types of rules ready to be executed.

Queuing-network performance tuning

The queuing network constructed by mediators is

self-tuning; the number of threads in each mediator

is automatically adjusted. The runtime engine

monitors the incoming event rate, queuing lengths,

and processing rates in each mediator. This data is

used to adjust the number of threads in each

mediator. By doing this, the CPU resource can be

allocated and reallocated to avoid bottlenecks

occurring in the queuing network, thus improving

the dynamic throughput. We employed both queu-

ing theory and feedback control theory to tune the

performance. We also studied the relationship

between the types of observation models and the

most effective tuning approach.

EXPERIMENT AND PERFORMANCE EVALUATION

This section describes a series of experiments to

demonstrate the effectiveness of model analysis

techniques.

Experimental setup
To conduct the experiments, we adopted an

observation model that monitors customers’ use of

credit. The types of business events to be processed

included customer event, credit transaction event,

credit transaction close event, dispute identified

event, and dispute resolved event. About 300 rules

were used to process these business events, and

approximately 300 metrics—such as, the number of

open transactions, total open-transaction amount,

total due amount, overdue amount at 31, 61, 91, and

181 days, total amount of dispute, and average

number of days to resolve a dispute—were com-

puted. About ten situations—such as the total

amount due exceeding a threshold, ongoing dis-

putes, and average number of days to resolve a

dispute exceeding a threshold—were detected.

To test the system, we designed an event emitter

that sends business events with a given sending rate

(i.e., number of events per second) and deployed it

on JVM 1.4.2. The observation manager is deployed

on IBM WebSphere* Enterprise Service Bus 6.0.2 as

a message-driven bean (a reusable software com-

ponent). It consists of an event-processing engine

and a model-driven cache. The persistent data store

is deployed on an IBM DB2* Enterprise Server 8.2,

and Java Data Base Connectivity** is used to

connect it with the observation manager. In each

experiment, we change the event sending rate to test

the maximum event throughput supported by the

observation manager. The event throughput is

computed as the average of 10 runs.

Experiment results

First, we compared the solutions with and without

the cache component. Without the cache, the rule

execution was encoded as an SQL statement.
3

By

deploying the event-processing engine on the same

hardware-configured host and varying the hardware

configurations on the database server, we ran two

sets of tests. The performance comparison results

are shown in Figure 4A. In both sets of tests, the

observation manager with the cache greatly out-

performed the one without the cache. The low-end

solution consisted of one Intel Xeon** CPU with

2 GB of random access memory (RAM); the high-

end solution consisted of two Intel Xeon CPUs with

4 GB of RAM. With the high-end configuration, the

event throughput was more than double that of the

low-end configuration, verifying our design ratio-

nale; that is, if a cache is not adopted, event

throughput greatly depends on the hardware con-

figuration of the database server. With a cache,

events were processed at the rate of 82.1 events/sec

in the low-end database server, and 105.3 events/

sec in the high-end database server. This result

verifies the effectiveness of the cache and confirms
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that the event throughput of the system with the

cache does not rely on the performance of the

persistent data store.

Next, we evaluated the multimediator framework by

comparing the conventional approach that generates

an independent Java class for all the rules that

process a particular type of business event. In our

multimediator framework, about 300 independent

Java classes were generated: one class for each rule.

Based on the algorithm in the section ‘‘Multi-

mediator orchestration,’’ seven mediators are de-

ployed to invoke these Java classes. In the

conventional approach, five independent Java clas-
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ses are generated, as there are five types of business

events. We designed a thread pool to invoke these

five Java classes so that multiple business events

could be processed concurrently. In both approach-

es, we tuned the number of threads in the pool to

optimize event throughput. The results (Figure 4B)

indicate that the multimediator queuing framework

significantly outperforms the conventional ap-

proach.

We then evaluated the effectiveness of the data-

flow-driven scheduler. First, we turned on the

scheduler and, as it was not necessary, turned off

the lock-based concurrency control in the cache, and

ran the performance test. We then turned off the

scheduler and turned on the lock-based concurrency

control in the cache and ran the performance test.

Comparing the results (Figure 4C) shows that the

event-processing engine equipped with the sched-

uler outperformed the one without the scheduler.

For example, in a four-CPU system, the scheduling

approach resulted in event throughput being about

three times greater than the concurrency control

approach (105.3 event/sec compared with 30.5

event/sec).

Lastly, we deployed the observation manager on

systems with different numbers of CPUs (one, two,

four, and eight) to study the scalability. The results

(Figure 4D) show that event throughput scaled

nearly linearly to the number of CPUs in the system.

RELATED WORK

The concept of composite event processing was first

introduced in active databases.
8–11

The semantics of

event operators and time windows were introduced

to define the composite event. However, database

systems were not optimized for complex event

processing because of their ‘‘persist and then

process’’ schema. Middleware solutions like that of

Adi and Etzion
12

extend the concept of composite

events and aim for situation detection. By main-

taining the state information and performing com-

posite event operators in main memory, the system

can achieve high event throughput. However, state

persistence is not supported. Further, metric com-

putation is not supported, which is the key feature of

business event processing.

The continual query system
13

is able to monitor

updates in areas of interest and return results

whenever the updates reach specified thresholds. It

provides push-enabled, event-driven, content-sensi-

tive information delivery capabilities, which can be

considered as the enabling technology for imple-

menting situation detection. However, there is no

discussion of how to efficiently perform the state

computation and persist the state information.

Publish-and-subscribe systems
14–17

focus on event

filtering. The main design challenge in these systems

is to process the large number of event filters on a

high volume of events. However, these systems do

not support either state computation (e.g., metric

value computation) or state persistence. The com-

plexity of business event processing differs from the

publish/subscribe system in the amount of data

produced. When processing business events, a large

number of metric computation expressions on a

high volume of events need to be computed in real

time.

Data-stream management systems
15,18–22

consider

the collections of events in certain time windows as

streams. These systems enable some relational

operators to process streams and create output

streams. They process live event data in real time.

However, the technique is not sufficient to support

efficient metric computation. First, the focus is on an

approximate query, whereas business event pro-

cessing requires precise data processing and com-

putation of exact metric values. Second, most data-

stream management systems do not consider the

persistence of process results.

The stage-based architecture was first proposed in

Staged Event-Driven Architecture
23

(SEDA) for

deploying highly concurrent Internet services. SEDA

decomposes an event-driven application into a

collection of stages connected by queues in order to

prevent over-committing resources when demand

exceeds service capacity. SEDA does not consider

the data-flow constraints among the threads, which

is the primary bottleneck for an event-processing

system. The stage-based architecture is also pro-

posed for constructing a relational query engine,
24

which aims at optimizing the performance of the

memory hierarchy, which is the primary bottleneck

for data-intensive applications. The stage topology

in this paper is different from these approaches; it is

generated based on application logic in order to

optimize communication costs among the stages.

Further, by scheduling work items inside each stage,
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wait-free concurrent threads are enabled, which is

the key to achieving high event throughput.

CONCLUSION

In this paper, we proposed a series of model-

analysis techniques to improve the event throughput

of business event processing. A novel hybrid

compilation and interpretation framework was

proposed to execute event-processing rules. At build

time, after transformations, the model information is

rearranged, and a collection of executable code and

cache modules are generated. At runtime, the

model-driven multimediators interpret transformed

model information to orchestrate these generated

codes. Also, a model-driven plan was adopted to

enable wait-free concurrent threads for event

processing. Our experiments illustrated that the

model-driven cache modules in the data store play a

key role in event throughput improvement. Further,

the experiments showed that integration with a

model-driven scheduler enabled our model-driven

multimediator to outperform the conventional con-

current thread approach. The experiments demon-

strated that the multimediator architecture scaled up

according to the number of CPUs in the system.

Currently, there are several ongoing customer

engagement efforts to further verify our solution.

Our plans for future work include supporting metric

networks (i.e., probabilistic system dynamics and

extensible user-defined dependency) and perform-

ing reliability studies.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United
States, other countries, or both.

**Trademark, service mark, or registered trademark of Sun
Microsystems Inc. or Intel Corporation in the United States,
other countries, or both.
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