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Model analysis for business
event processing

Business event processing requires efficiently processing live events, computing
business performance metrics, detecting business situations, and providing real-time
visibility of key performance indicators. Given the high volume of events and significant
complexity of computation, system performance—event throughput—is critical. In this
paper, we advocate model-analysis techniques to improve event throughput. In the
build time, a series of model analyses of the application logic are conducted to
understand such factors as runtime data-access path, data flow, and control flow. Such
analyses can be used to improve throughput three ways: at build time it can be used to
facilitate the generation of customized code to optimize 1/0 and CPU usage; information
about the control flow and data flow can be used to ensure that CPU resources are used
effectively by distributing event-processing computation logic evenly over time; and at
runtime, knowledge gained from the model can be used to plan multithreaded parallel

event-processing execution to reduce wait states by maximizing parallelization and
reducing the planning overhead. This paper presents a series of model-analysis
techniques and the results of experiments that demonstrate their effectiveness.

INTRODUCTION

For an organization to function effectively in today’s
environment and to stay competitive and profitable,
business activities and operation performance must
be continuously visible. Business event plrocessingl_5
enables processing continuous live events, comput-
ing metric values, and detecting situations in real
time, thereby supporting applications such as
program trading, fraud management, and location-
based services. It represents a new generation of
enterprise data management and is gaining consid-
erable momentum in both academia and industry.

A user-friendly language is needed to support
business event processing. In our design, we use the
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popular ECA (event condition action) rule-based
programming mode with substantial extensions to
support the computation of the active metric
network. The rule-based programming model allows
application developers to realize business rules in
event-processing applications, thus freeing them
from transforming declarative logic into details of
procedural logic.
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Improving event-processing throughput becomes
imperative, as there are emerging business needs
that require huge amounts of event data to be
processed on a just-in-time basis. One way to
improve throughput is to reduce the I/O and CPU
cost of individual event processing at runtime in
order to reduce processing time for each event. In
this paper, we propose a model-analysis approach to
generate executable code that processes events with
I/0 and CPU efficiency. For example, by analyzing
the model, knowledge about the runtime object
access paths can be gained and used to generate a
customized cache component to minimize the I/0 in
the runtime.

Another approach to improve throughput is to
enable concurrent event processing. Actually, con-
ventional event-processing systems adopt a multi-
thread approach to process events simultaneously
(one thread per event), where concurrent control is
based on an object-locking mechanism. Such an
approach is intuitive. However, it has some short-
comings. For example, during the lifespan of an
event-processing thread, a collection of objects (e.g.,
metrics) may be updated. Accordingly, a collection
of locks are placed on these objects, and lock
contentions can occur among those concurrent
threads if they update the same objects. These lock
contentions may force some threads to be idle. For
example, when two concurrent threads update the
same set of metrics, the execution of these two
threads needs to be serialized. The threads in idle
status need to release system resources and then
reacquire system resources whenever they are
activated. Such a situation could happen several
times during the lifespan of a thread. Such thread
context switching introduces extra system overhead,
slowing the event processing.

Multithread parallel processing is necessary to
improve system throughput. The key is how to
minimize the overhead introduced by concurrent
control. We advocate model-analysis techniques to
plan concurrent wait-free threads, which can elim-
inate overhead on concurrent control and thread
context switching. By analyzing the model, the
knowledge about constraints among the data flow
and control flow in the model can be obtained. With
this knowledge, wait-free, concurrent event-pro-
cessing threads can be planned by selecting the
appropriate work items to be processed. To sum-
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marize, the model-analysis techniques that improve
event-processing performance are the following:

Customized code generation—We implemented a
model compiler that generates executable code for
the event processing logic (ECA rules), wherein a
Java** Virtual Machine (JVM**) is adopted as the
execution platform. This side-stepped the need to
develop a home-grown evaluation engine. Also, it
exploits the performance improvement features in
the modern JVM, in particular, the just-in-time
compiler that optimizes code at runtime based on
execution patterns. Further, all the executable code
is generated specifically for the given application
logic; code for dealing with the general case is
excluded. Therefore, the executable code not only
has a small footprint, but also runs more efficiently
than the code for the general case. Finally, the cache
module can be generated based on the runtime
object access paths, which can greatly reduce the
I/0 access in the runtime. Therefore, in runtime, the
system benefits from the generated code in reducing
both I/0-access and CPU-cycle consumption.

Model-driven multimediators—A state chart can be
constructed from the collection of event-processing
rules used to process a business-event type. Instead
of compiling each state chart into an independent
Java class, we compile each rule into an indepen-
dent Java class. We design multimediators to
orchestrate the generated Java classes. Each medi-
ator processes both a queue that buffers the
available work items and a collection of threads to
process the work items. These mediators construct a
queuing network wherein the topology construction
is driven by the model. The number of threads in
each mediator can be adjusted to tune the perfor-
mance. By doing this, CPU resources can be
allocated and reallocated to avoid the occurrence of
bottlenecks in the queuing network, thereby dy-
namically improving throughput.

Scheduling of model-driven event processing—For
each mediator, a thread pool is used to enable the
parallel processing of events. However, when there
is a data-flow dependence among the concurrent
threads in different mediators, parallelization is not
necessarily able to improve the throughput. For
example, for a mediator that executes metric
computation and situation detection, a deadlock
may occur among concurrent threads if there are
read and write conflicts on a collection of metrics
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and situations. In such a case, the parallel threads
cannot make any progress on event processing.
When a high volume of events need to be processed
(e.g., a few hundred events per second), the number
of waiting work items is always much larger than
that of threads supported by the system. Motivated
by selecting work items that enable wait-free
concurrent threads, a model-driven scheduler is
proposed for the mediators. In the build time, it
analyzes the possible runtime data flow among the
event-processing threads to determine whether any
two types of work items may cause lock conten-
tions. Thus, by using this precomputed knowledge,
the scheduler can select work items for wait-free
concurrent threads with little runtime overhead.
Such an approach greatly improves event through-
put.

SYSTEM DESIGN RATIONALE

In this section, we first briefly describe the
programming model for business event processing
and then present the overall system design ratio-
nales. We adopt a rule-based programming model,
Event(eventPattern)[condition]jexpression,
wherein ECA rules are used to describe the event-
processing logic.

In an event-processing ECA rule, the event pattern
can be an occurrence of business events, a change in
a metric value, or the occurrence of a situation. The
condition is a Boolean expression specifying the
circumstances to trigger the action. It examines the
properties of events and states (i.e., metrics and
situations). The action is an expression that com-
putes or updates the states. In order to support the
sliding windows (for example, the last 100 tuples),
the timer and counter are considered as metrics. For
each type of business event, application developers
can create a collection of rules to represent the
event-processing logic. The metric and situation
values are contained by context instances, which
can form parent-child relations. Event-processing
results (i.e., context instances) need to be persisted.
The programming model is described in more detail
in Reference 3.

Given a suitable programming model, it is critical
that application logic can be efficiently executed.
The first design choice concerned the runtime data
store used to persist event processing states. In our
initial design,3 we generated Structured Query
Language (SQL) statements to execute the compu-
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tation logic in rules. By using the SQL query engine
to perform the metric computation, situation detec-
tion, and state persistence, the event-processing
engine became a lightweight component. However,
most modern SQL query engines are designed for
optimizing queries on the data in persistent storage,
where rules are executed after the event data is
saved to disk. Therefore, such an approach is I/0
intensive, as every SQL statement requires I/0
access to the data in the persistent data store. Such a
design requires a high-performance I/0 hardware
platform. By observing this limitation, we chose to
execute the computation logic in main memory first
and then save the computation results to the data
store. Further, to reduce the I/O demand in runtime,
some cache components were generated based on
object access paths.

The second design choice was selecting the appro-
priate rule-execution framework. There are two
approaches to executing event-processing rules:
interpreting and compiling. Both approaches have
advantages and drawbacks. We considered the
interpreting approach first. The advantage of inter-
preting is that it has more controls on execution
progress because the interpreter maintains all the
model information. This facilitates more fine-grained
multithreaded scheduling that uses model informa-
tion to achieve better system resource utilization.
However, when executing ECA rules, the interpreter
consumes more CPU cycles than directly compiled
code, given that there are many types of operators,
such as relational, set, vector, and scalar, used to
construct expressions.6 Further, the metrics refer-
enced in expressions are not limited to the same
context instance. To locate the associated instances
of a metric, the interpreter needs to navigate through
the hierarchy of context instances at runtime, which
may incur performance penalties.

An executable code is generated by adopting a
compiling approach for the set of rules that are
associated with one type of business event. The
collection of rules associated with one type of event
compose a state chart; thus, the executable code
essentially implements a state chart. As customized
code can be generated for the execution of the state
chart, it can reduce CPU cycle demand. However,
the event-processing logic is embedded into gener-
ated code at compilation time. This implicates a
potential performance issue. When adopting a
multithread approach to process events without
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model information, the thread scheduling needs to
rely on the locking-based scheduling features
provided by either the operating system or the
programming language (e.g., JVM). The locking-
based scheduling usually results in high system
overhead,7 especially in multiple-CPU systems.

To take advantage of both approaches, we propose a
hybrid approach. At build time, the triggering
relation among the rules that are associated with
one type of business event is transformed into a
state chart. By limiting the search space, the state
chart expedites locating the rules to be triggered at
runtime. Each rule is compiled into an independent
executable code. When a business event occurs in
runtime, the state chart is interpreted in order to
orchestrate the executable code that implements the
associated rules. The advantages of such a compi-
lation-interpreting approach are twofold. On the one
hand, by interpreting, the model information can be
used to optimize the resource allocation when
executing the rules. For example, information about
the data flow among the rules can be used to plan
the wait-free execution of the rules. On the other
hand, execution of an individual rule is done by
executing precompiled code, which offers the
efficiency of the compilation approach.

MODEL TRANSFORMATION

To facilitate interpretation and compilation, two
types of model transformation are conducted:
control-flow and data-flow analysis, and expression
preprocessing.

Control-flow and data-flow analysis

The rule-based programming model allows applica-
tion developers to focus on the business logic of
event processing, which frees them from under-
standing extraneous details of control flow and data
flow. However, when model checking is performed,
for example loop detection, explicit control-flow and
data-flow information is required. In this subsection,
we present how to extract explicit control-flow and
data-flow information from rules.

We discuss the control-flow extraction first. As each
type of incoming business event triggers a conse-
quence of rules to be executed, each event can,
therefore, initiate a control flow (represented as a
state chart) constructed by the rules. In the state
chart, states are events, metrics, or situations, while
each transition is associated with a rule that is
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triggered by the state. The transition starts from and
updates the value of a metric or situation that the
transition points to. If there is a loop in any control-
flow state chart, the system notifies the model
designer to modify the rules. The three state charts
shown in Figure 1 can be generated, given the
following set of rules:

Ry : Event(y;)[y1-@1 > 5)|C; :== %1 (71)
Ry : Event(vy)[y;-a1 > 5]|G3 = %2(v1)
R3 : Event(ValueChange(t,))[5;, > 5|5 == %5(51,Ca)
R4 : Event(ValueChange(C3))[C; <15]|Cs := %4 (C3)
Rs : EventEValueChangdCs))[Ca <15]|86 := xs(C3)
(
(

Rg : Event(y,)[y;.as <90]|Cs := %6(Cs, C2)

R; : Event(y,)[y,.as > 25 A& > 5]|C; == %7(72,G3)
Rs : Event(ValueChange(G,))[Cq-as > 100]|C; := %5(Ca, Cs)
Ry : Event(ValueChange(s))[Cs > 51|83 := %9(Ce: &)
Ryo : Event(ValueChange((;))[C; > 15]|Cs := %10(C6)
Ry : Event(ValueChange((,))[C, < 25]|G5 := %11(82,Cs)

Rz : Event(y;)[vs.as > 25]|C; := %12(v3,&1)

Based on the generated control-flow state charts (see
example in Figure 1), we can generate data-flow
transitions. In the control flow, if the context
element (i.e., event, metric, or situation) represent-
ed in state o is an operand to compute the metric or
situation indicated in state f, then there is a data-
flow transition from state o to /5. If there are multiple
operands, then a join state is added. In control-flow
state charts, there are two types of data-flow
transitions: a data-flow transition that is inside a
control-flow state chart and a data-flow transition
that is between the control-flow state charts. If data-
flow transitions construct any loops, then the
system must notify the model designer to modify the
rules, because the presence of loops indicates that
when some rules are executed, they may always be
terminated, as some operands are not available.

Expression preprocessing
Uniformly, the expressions in rules can be denoted
as

€.y C1.61,C2.Goy vty
S5 CLY),s (1)

where y is the operator, and there are three kinds of
operands: metrics (£), situations (g), and events
(v,). If the output of an expression is a metric, f
represents c.{ and c is the context that { belongs to.
In order to facilitate the evaluation of expressions,
preprocessing is performed by the model trans-
former at build time. At runtime, the created context
instances form a tree structure based on the parent-
child relationship. In an expression, the output and

f=x(c18y,6.8,, ..

Cm-SmyC1-Y1,C2.Y2, - -
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———> Control-flow Transition { = metrics,
----> Dataflow Transition ¢ = situations, and
@ nitial State y = events

. C) State

g
ﬂl > Join State

Figure 1
State charts of control flow (A and B)
and of data flow (C)
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operands (e.g., metrics) may belong to different
context instances, wherein a path exists between the
output and each operand. Based on the original
context instance c that the expression belongs to and
destination context instance c, that the operand or
output belongs to, the navigation path can be
computed as

</m/uf----.. /1>,

where u, in the path represents a step. Referring to
the tree structure of context instances, there are two
possible directions for a step: from a child-to-parent
context instance, where g, is denoted as “..”, or from
a parent-to-child context instance, where y, is
denoted as C,(p). The context type is denoted as C,
and p is an association predicate on any metric {, in
context C, that is used to identify which context
instances are in the path. An example of p can be
§,=5 AL, =4. When p is null, all context instances
of context type C, are matched. To accelerate the
searching of context instances, some cache compo-
nents are generated based on the association
predicate p. Details about cache component gener-
ation are given in the next section.

CUSTOMIZED CODE GENERATION
Generating Java code for expression evaluation
consists of two steps:

1. Generating code to retrieve the value of each
operand
2. Generating code to execute the operator

In the first step, the model compiler generates code
to retrieve the operand value in the cache. Here, we
use the metric attribute as an example of operands
to illustrate our code-generation solution. By spec-
ifying attributes of the metric and the context
navigation path, the metric operand in expression
(1) can be further refined as

§i</,u1/,u2/ ...... /,uk> .ai[dl, d27 ey dl]

In this step, the code generation for accessing the
operand consists of two phases: generating code to
retrieve the context instance object and generating
code to retrieve the content of the metric attribute.
We first discuss how to generate code to retrieve the
context instance that the metric ¢, belongs to.

In our design, a cache component is adopted to

accelerate the retrieval of context instance objects.
The cache manager provides an interface
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Table 1 Code generated to retrieve the context instance

Code Generation for Nongroup Operators

Step Type

Generated Code

Child step, p is null

Parent step getParentContext()

ContextInstanceC contextInstanceC =
CacheManager.getContextCache(c).getContextInstanceByID(iID);

Step after child step

Child step ContextInstanceCi contextInstanceCi =

contextInstanceC.getChildContexInstanceByKey(ci,kl, k2, ..., kn0);
Code Generation for Group Operators
Step Type Generated Code

Child step, p is null ContextInstanceCi contextInstanceCis =
contextInstanceC.getChildContextInstanceByType(ci);

Child step, p is not null ContextInstanceCi contextInstanceCis =
contextInstanceC.getChildContextInstanceByKey(ci, k1, k2, ..., kn);

for (ContextInstanceCi contextInstanceCi: contextInstanceCis) {...}

(ContextInstance
getContextByInstanceID(Double iID))

that enables retrieval of context instance objects by
context instance id (iID). The cache manager
possesses a table of context types that is generated
from the observation model. Each context type entry
is associated with a hash table that caches the
context instances of the particular context type. To
implement the interface, the hash table uses the iID
as the key and the context instance object as the
value. Further, to expedite the evaluation of the
association predicate and avoid a full table scan, the
context manager maintains a collection of indexes
based on equality queries and range queries in the
association predicate. In our implementation, the
index manager creates two types of indexes, namely
hash table indexes created for equality queries and
B+ tree indexes created for range queries.

The generated code for retrieving the context
instance is shown in Table 1, where we assume that
the expression execution is triggered in the context
instance and that the context type is C and the
instance ID is iID. In the code generation, there are
three cases, self step, parent step, and child step. In
the child step, the predicate p cannot be null and
should not contain any range queries, as the target is
one context instance.
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In the above method, getContextInstanceByKey()
is implemented based on the hash-based index
that was created by the index manager. By applying
the above two cases on steps in the context path,
we can obtain the target context instance
contextInstanceCn. As we generate the getter and
setter methods for each metric, we can use the getter
contextInstanceCn.getMetricMi() to retrieve the
metric value.

In the case where y is a group operator, the target
context instances can be multiple. For the parent
step, the code generation is the same as for
nongroup operators. However, in the case of the
child step, instead of a single context instance, an
array of context instances are retrieved. Here, we
differentiate two cases: either p is null or not null.
Further, once there is a child step, the next retrieval
step needs to be done in the loop. At the last step, all
the operand metrics are added into a collection as
the operand for group operators.

MULTIMEDIATOR ORCHESTRATION

A queuing network that consists of a multimediator
is proposed to allocate CPU resources by dynami-
cally sizing the thread pool to optimize event
throughput. Each mediator in the network processes
a work item queue, an interpreter, and a thread
pool. The queue buffers the available work items.
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The interpreter identifies related executable code
according to the stage of event-processing logic. The
thread pool enables multithread concurrent pro-
cessing on work items. The threads in different
thread pools have some level of priority. The CPU
resource allocation of a mediator is determined by
the size of its thread pool. By dynamically config-
uring the size of the thread pool, CPU resources can
be dynamically allocated.

An approach to constructing the topology of a
queuing network is to have each mediator execute
only one type of rule in control-flow state charts.
However, in such an approach, the number of
mediators can be much larger than the number of
threads that the system can run concurrently.
Therefore, some mediators are idle and waiting for a
CPU cycle to be allocated. Also, some system
overhead is introduced when a large number of
queues is managed. For these reasons, such a design
may degrade the event throughput.

In order to maximize the thread parallelization of
computation and, at the same time, avoid thread
suspension, we propose a solution that distributes
the rules into a collection of mediators, wherein the
number of mediators is determined by the topology
of state charts. Our strategy is twofold. First, the
order of rule execution is preserved by network
topologies constructed by the mediators. This can be
done in two steps: sorting the rules based on the
execution sequence of each control-flow state chart
and distributing rules to a collection of ordered
mediators based on their place in the execution
order. The second part of the strategy minimizes the
communication cost among the mediators and
eliminates the data-flow conflicts among the threads
in different mediators. This can be done by taking
rules that are associated with an interstate-chart
data-flow transition and distributing them into the
same mediator. Therefore, by planning the execu-
tion order of the rules inside a mediator, wait-free
threads can be enabled (details about the execution
planning are given in the next section). The detailed
procedure of topology construction is as follows:

Step 1—First, in generated control-flow state charts,
the states are marked by using the control-flow
distance from the event states. If there are multiple
paths from an event state, then the maximum
distance is used. For example, in state chart G1
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(Figure 1A) the state vy, is marked as 0, and the state
€, is marked as 1.

Step 2—The states in state charts are aggregated
based on their distance from the event state. For
state chart Gi, the states with same distance mark
are put into a sequence of ordered baskets B; ].,
ordered by j. The order of baskets is used to reserve
the execution order of the rules that were triggered
by the elements in the baskets. For example, for
state chart G1 (Figure 1A), the ordered baskets are
generated as

B1[B1o{v1},B11{G, 85}, B12{82, G5, e} Bia{ci, 6o -

This indicates, for example, that the rule triggered
by v, is always executed before the rules triggered
by ¢, and ;. For another example, state chart G2

(Figure 1B) generates the order of baskets as

B2[B,0{v,2},B21{Cs,C6}> B22{C75 61}, B2z {Gs -

Step 3—In the above steps, each control-flow state
chart generates an order of baskets. In this step, the
baskets that belong to different state charts are
merged and binary sorted.

We assume that B1 has the biggest number of
baskets among all the Bi. The Bi (i > 2) are merged
to B, one by one. For each B,  in Bi, starting from
y =0, where e is an element in Bl.,y, e can be merged
to a basket in B1 according to the following cases:

Case 1: There exists either one or more than one
basket in B1 that has a data-flow relationship with
the elements in B, - If there exists one basket B,  in
B1 that contains elements which trigger the rule and
if the output of the rule provides operands for the
rules triggered by element e, then e is merged into
B, ,. For example, in B1, there is a basket B, ;. The
elements C; in B, | trigger rule R, and the output of
R, is {,, which is an operand for rule R, that is
triggered by v,. Therefore, {, is merged into B, ,
and B, | becomes {C,.,(,,v,}. After this merge, Bl
becomes

B1[B1o{v1},B1.1{C1, G, v2 ) B12{8, G5, G6 s Bis{si, 62 -

If there is more than one basket in B1 that has a
data-flow transition with elements in B, then the
baskets in B1, the baskets in between, and the
element e are merged into a single basket. Such a
merge method guarantees that all the rules associ-
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Figure 2
An example of a queuing network

TTTT Queue

Mediator

Y, M, Lookup Table

ated with an interstate-chart data flow are distrib-
uted into the same basket. Thus, there is no
interstate-chart data-flow transition among the
mediators. In this way, the communication cost
among the mediators is reduced.

Case 2: There is one basket B,  in Bl that contains
element e. Element e is merged into B, | in this case.
For example, {, ((, € B, ,) is merged 1nt0 B, ,, and
B, , becomes {C2,§4,C5,C6}. By performing this
merge, the rules that update the same metrics or
situations are distributed into the same basket.

Case 3: There is no basket B, | in B1 that has a data-
flow transition with e or contams e. If j=0, then
basket B{e} is inserted into Bl as B, ;if j # 0, then e
is merged into B, , where B,  is the next basket to
which elements in B, are merged or the basket to
which other elements in B, are merged. If the
elements in B, , , or other elements in basket B,  are
merged to the last basket of B, then B{e} is inserted
into B1 as the last basket. For example, the (g in
basket B, , is inserted into B1 as B, ,, because B, , is
the last basket to which ¢, (an element in the same
basket as () is merged. Such a merge operation
preserves the invocation order of rules in all the
control-flow state charts. After B1 and Bi are
merged, if the number of baskets in B1 becomes
smaller, it swaps with the basket Bi that currently
has the largest number of baskets.

Step 4—After the above steps, all baskets are merged
into a sequence of baskets. Using the above
example, the baskets of three state charts are
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merged into

B[Bl,O{YI ) YS}) Bl,l{Ch C3> Y2}7 Bl,Z{CZ? C4a C57 C6}7
Bis{c1. 62,87} Bia{ls}l-

Figure 2 shows an example of a queuing network.
Such a network is constructed based on these
merged baskets, one mediator per basket, except for
the last basket. Each mediator possesses an invo-
cation table. The table maps the trigger elements to
the rules being triggered. For example, an entry in
the invocation table for M, is <y, {Rl, R2}>, which
indicates that when M, receives business event y,,
rule R, and rule R, will be executed. The mediator
also possesses a route table if it has more than one
outgoing arrow or it will have to forward work items
to other mediators. The route table defines two types
of mapping: mapping between the rules and the next
mediator to which a work item will be dispatched
when the execution of the rule is completed and
mapping between a work item and the mediator to
which that work item should be forwarded. For
example, an entry in the route table of M, is

<v,, M;>, which indicates that business event Y,
is bypassed by M, and forwarded to M.

DATA-FLOW-DRIVEN EVENT-PROCESSING
SCHEDULING

In this section, we present a novel data-flow-driven
scheduler for mediators. The scheduler enables
wait-free concurrent threads by planning the exe-
cution order of work items. There are two issues in
realizing such an approach. The first issue is to
determine whether there are enough available work
items to be planned for execution. In most applica-
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tions, the number of work items buffered is much
larger than the number of concurrent threads that
the system can support. Such a design principle
complies with the ratio between the size of main
memory and the number of CPUs (or CPU cores) in
the model computer architecture. The second issue
is the runtime overhead introduced by the schedul-
er. This issue is resolved by performing a data-flow
analysis in build time. In our approach, the possible
runtime data flow among the rules is analyzed in
build time to determine whether any two types of
work items may cause lock contentions. Based on
the data flow and lock contentions, an execution
policy is created for each rule. Using this precom-
puted knowledge, the scheduler can decide when
work items are ready for execution in wait-free
concurrent threads with little runtime overhead.
Such an approach greatly improves the throughput
of event processing. In the remainder of this section,
we present the build time data-flow-analysis tech-
niques and then the scheduling algorithm.

Build-time model analysis

In this section, we present the model analysis
techniques that derive from the execution policy for
each rule. We start with an analysis of how the
metric or situation is computed. For each metric or
situation, a dependence tree is generated based on
the expressions in the rules that compute its value.
There are three kinds of nodes in a dependence tree:
the element node (represents the output of an
expression), the operator node (child nodes of the
element node that represent operators of the
expression), and the dependent element node (child
nodes of an operator node that represent operands of
the expression). A dependent element node can also
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be considered as an element node if it is not an event
node. For example, the metric (; associates an
expression (g = %, (G, C,) in rule R;. Therefore, the
node g has a child operator node y,, and the
operator has two child operator nodes, {, and &,.
The tree can continue to grow until the dependent
element is an event element (e.g., v,) or the node has
already appeared in the tree (e.g., the node {, and ¢,
in Figure 3A). In the case where multiple expressions
are associated with an element node, the operator
nodes form an OR relationship. In the example
shown in Figure 3A, the node { has two expressions
associated with it: {, =y, (C;) and §, =%, (G, v,)-
Therefore, the nodes y, and y, form an OR
relationship. When the construction is completed,
the tree with OR nodes can be split into multiple trees
with no OR nodes, as shown in Figures 3B and 3C.

After generating the dependence tree for each metric
or situation, we can use them to study the correct
sequence in which to execute rules. Assume that
rule R; and R; are executed by the same mediator.
When they are triggered in same context instance,
identifying the correct sequence in which to execute
them is the key to enable wait-free concurrent
threads. We consider the following cases:

Case 1: R, and R, have the same output. In this case,
these two rules cannot be executed concurrently in
the same context instance. Further, if the expression
in a rule realizes a self-data-flow transition (i.e., an
output is one of the operands), then the rule needs
to be executed later. For example, both R, and R ,
are processed by mediator M, and the output is {;.
However, the R, expression has a self-data-flow
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transition for {,. Therefore, R, needs to be executed
after R , when (, is not available.

Case 2: R, and R; have different outputs. This case
can be further classified into the following two
situations. First, R, appears in any of the R}.
expression trees, which indicates that R, may
provide operands for R, Therefore, R, needs to be
executed before R, if the R, operands are not
available. Second, both R; and R, do not appear in
the expression tree of the other, which indicates that
R, and R, have no data-flow associations. Therefore,
R, and R; can be executed concurrently.

By accumulating the execution order for each pair of
rules, an execution policy is derived for each rule.
There are two types of execution policies:

1. The rule is initiated to be executed as long as no
other rule of the same type is being executed in
the same context instance. Such a policy is
applied to a rule that has no other prerequisite
rule in the execution order.

2. The rule is initiated to be executed only when the
execution of prerequisite rules in the execution
order is completed in the same context instance
and there is no other instance of the same type of
rule executed in the same context instance. Such
a policy is applied to a rule that has some
prerequisite rules in the execution order.

For example, the mediator M, possesses three rules:
R, R,, and R, Both R, and R,, can be executed
concurrently with R,, while R, has to be executed
after R,. Therefore, R, and R, belong to first case.
R,, belongs to second case, as it has a prerequisite
rule R,.

Scheduling algorithm

In runtime, based on the execution policies, the
mediator adopts scheduling algorithms to determi-
nate whether a triggered rule can be executed
immediately or if it must be initialized and queued
as a work item. For a rule that can be executed
immediately, the following algorithm is used, where
1,1is the rule instance that is triggered, c is the context
instance that r, belongs to, and c.exQueues[i] is the
queue of rule instances for rule type R, of r;:

begin
ifaruleinstanceof r.isbeingexecutedincby
thread t then
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add r; instance into the t execution queue;
else if there is a free thread t in the thread
pool then
add r, instance into c.exQueues[i];
move all the items fromc.exQueues[i] tothet
queue;
start thread t execution;
else
add r. instance into c.exQueues[i];
end

In the algorithm, for each context instance c,
exQueues is an array of queues with one queue for
each rule type in the context type. The queue array
buffers the work items that are ready for execution.
Each thread in the thread pool also maintains a
queue that buffers the work items that need to be
executed in the lifespan of the thread.

For example, when the mediator M, receives an
event v, in the context instance ¢, the execution of r,
(instance of R,) is initiated. Therefore, if there is a
thread ¢ executing another instance of R, in the same
context instance c, the scheduler adds the r, into the
queue of thread t. Therefore, the execution of r, is
started when it comes to the front of the queue for ¢.
If, in the context instance c, there is no other R,
instance being executed, the scheduler allocates a
free thread to execute r, or buffers r, in the context ¢
queue if there is no free thread available in the
thread pool.

On the other hand, for a rule that must be initialized
and queued as a work item, the following algorithm
is applied:

begin
ifanother ruleinstanceof R;isbeingexecuted
in c by thread t
then
add r, into the t execution queue;
else
add r, instance into c.exQueues[i];
if c.executable[i] and there is a free thread
t in the thread pool
then
add r. into the t queue;
move all the items fromc.exQueues[i] to the
t queue;
start thread t execution;
end
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In particular, in each context instance ¢, a Boolean
array c.executable is used (one entry for a rule) to
indicate whether that rule type is ready to be
executed. For those rules that have a previous rule
in the execution order, the initial value for the entry
is false. If there is already a thread that is currently
executing the same rule in the same context
instance, the new instance is added to the thread
execution queue. Otherwise, a check is made to
determine whether the rule is ready to be executed,
and then the thread is allocated to start the
execution of the rule instances.

When a thread has completed the execution of one
rule instance, it checks whether the completion of
the rule enables other types of rules to be ready for
execution in the same context instance, and it sets
the value of c.executable[i]. For example, when
an execution of rule instance R, is completed in
context instance c, the rule R , becomes ready to be
executed. Further, when a thread has completed all
the work items in its queue, it starts to execute work
items in other rule queues in the context instance, if
there are any types of rules ready to be executed.

Queuing-network performance tuning

The queuing network constructed by mediators is
self-tuning; the number of threads in each mediator
is automatically adjusted. The runtime engine
monitors the incoming event rate, queuing lengths,
and processing rates in each mediator. This data is
used to adjust the number of threads in each
mediator. By doing this, the CPU resource can be
allocated and reallocated to avoid bottlenecks
occurring in the queuing network, thus improving
the dynamic throughput. We employed both queu-
ing theory and feedback control theory to tune the
performance. We also studied the relationship
between the types of observation models and the
most effective tuning approach.

EXPERIMENT AND PERFORMANCE EVALUATION
This section describes a series of experiments to
demonstrate the effectiveness of model analysis
techniques.

Experimental setup

To conduct the experiments, we adopted an
observation model that monitors customers’ use of
credit. The types of business events to be processed
included customer event, credit transaction event,
credit transaction close event, dispute identified
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event, and dispute resolved event. About 300 rules
were used to process these business events, and
approximately 300 metrics—such as, the number of
open transactions, total open-transaction amount,
total due amount, overdue amount at 31, 61, 91, and
181 days, total amount of dispute, and average
number of days to resolve a dispute—were com-
puted. About ten situations—such as the total
amount due exceeding a threshold, ongoing dis-
putes, and average number of days to resolve a
dispute exceeding a threshold—were detected.

To test the system, we designed an event emitter
that sends business events with a given sending rate
(i.e., number of events per second) and deployed it
on JVM 1.4.2. The observation manager is deployed
on IBM WebSphere* Enterprise Service Bus 6.0.2 as
a message-driven bean (a reusable software com-
ponent). It consists of an event-processing engine
and a model-driven cache. The persistent data store
is deployed on an IBM DB2* Enterprise Server 8.2,
and Java Data Base Connectivity** is used to
connect it with the observation manager. In each
experiment, we change the event sending rate to test
the maximum event throughput supported by the
observation manager. The event throughput is
computed as the average of 10 runs.

Experiment results

First, we compared the solutions with and without
the cache component. Without the cache, the rule
execution was encoded as an SQL statement.’ By
deploying the event-processing engine on the same
hardware-configured host and varying the hardware
configurations on the database server, we ran two
sets of tests. The performance comparison results
are shown in Figure 4A. In both sets of tests, the
observation manager with the cache greatly out-
performed the one without the cache. The low-end
solution consisted of one Intel Xeon** CPU with

2 GB of random access memory (RAM); the high-
end solution consisted of two Intel Xeon CPUs with
4 GB of RAM. With the high-end configuration, the
event throughput was more than double that of the
low-end configuration, verifying our design ratio-
nale; that is, if a cache is not adopted, event
throughput greatly depends on the hardware con-
figuration of the database server. With a cache,
events were processed at the rate of 82.1 events/sec
in the low-end database server, and 105.3 events/
sec in the high-end database server. This result
verifies the effectiveness of the cache and confirms

ZENG ET AL

827



and (D) scalability

110 - — 105.3 110 — 105.3
100k Without ~ With 100k Conventional Queuing
| Cache Cache | Approach Network
%or 82.1 %or
80+ 8ol
70+ 70k
o 60+ o 60 56.8
wv [ %] [
= 5ol 2 50
g 7L s 20¢ 45.1
D 40 D 40
r r 30.2
30+ 201
20+ 20r
10+ 49 10
L 2.2 : L
0 . 0
Low-End High-End 1 2
Database System Database System CPUs per System
o]
110 —— 105.3 250
lOO: Without  With
| Scheduler Scheduler 5293
80+
or 150 - 165.4
8 60 56.8 Q
[%2] [ w
S~ S~
g %0
g ol o 100 105.3
r 30.5
30+
r 21.2 -
20+ >0 56.8
10+
[ 1 1 1
0 " 2 °— 2 4 8
CPUs per System CPUs
Figure 4

Experimental results: (A) model-driven cache, (B) queuing network, (C) effectiveness of scheduler,

that the event throughput of the system with the
cache does not rely on the performance of the
persistent data store.

Next, we evaluated the multimediator framework by
comparing the conventional approach that generates
an independent Java class for all the rules that
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process a particular type of business event. In our
multimediator framework, about 300 independent
Java classes were generated: one class for each rule.
Based on the algorithm in the section “Multi-
mediator orchestration,” seven mediators are de-
ployed to invoke these Java classes. In the
conventional approach, five independent Java clas-
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ses are generated, as there are five types of business
events. We designed a thread pool to invoke these
five Java classes so that multiple business events
could be processed concurrently. In both approach-
es, we tuned the number of threads in the pool to
optimize event throughput. The results (Figure 4B)
indicate that the multimediator queuing framework
significantly outperforms the conventional ap-
proach.

We then evaluated the effectiveness of the data-
flow-driven scheduler. First, we turned on the
scheduler and, as it was not necessary, turned off
the lock-based concurrency control in the cache, and
ran the performance test. We then turned off the
scheduler and turned on the lock-based concurrency
control in the cache and ran the performance test.
Comparing the results (Figure 4C) shows that the
event-processing engine equipped with the sched-
uler outperformed the one without the scheduler.
For example, in a four-CPU system, the scheduling
approach resulted in event throughput being about
three times greater than the concurrency control
approach (105.3 event/sec compared with 30.5
event/sec).

Lastly, we deployed the observation manager on
systems with different numbers of CPUs (one, two,
four, and eight) to study the scalability. The results
(Figure 4D) show that event throughput scaled
nearly linearly to the number of CPUs in the system.

RELATED WORK

The concept of composite event processing was first
introduced in active databases.” "' The semantics of
event operators and time windows were introduced
to define the composite event. However, database
systems were not optimized for complex event
processing because of their “persist and then
process” schema. Middleware solutions like that of
Adi and Etzion'* extend the concept of composite
events and aim for situation detection. By main-
taining the state information and performing com-
posite event operators in main memory, the system
can achieve high event throughput. However, state
persistence is not supported. Further, metric com-
putation is not supported, which is the key feature of
business event processing.

The continual query system13 is able to monitor

updates in areas of interest and return results
whenever the updates reach specified thresholds. It
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provides push-enabled, event-driven, content-sensi-
tive information delivery capabilities, which can be
considered as the enabling technology for imple-
menting situation detection. However, there is no
discussion of how to efficiently perform the state
computation and persist the state information.

Publish-and-subscribe systemsm_17 focus on event
filtering. The main design challenge in these systems
is to process the large number of event filters on a
high volume of events. However, these systems do
not support either state computation (e.g., metric
value computation) or state persistence. The com-
plexity of business event processing differs from the
publish/subscribe system in the amount of data
produced. When processing business events, a large
number of metric computation expressions on a
high volume of events need to be computed in real
time.

Data-stream management systernsls’l&22 consider
the collections of events in certain time windows as
streams. These systems enable some relational
operators to process streams and create output
streams. They process live event data in real time.
However, the technique is not sufficient to support
efficient metric computation. First, the focus is on an
approximate query, whereas business event pro-
cessing requires precise data processing and com-
putation of exact metric values. Second, most data-
stream management systems do not consider the
persistence of process results.

The stage-based architecture was first proposed in
Staged Event-Driven Architecture™ (SEDA) for
deploying highly concurrent Internet services. SEDA
decomposes an event-driven application into a
collection of stages connected by queues in order to
prevent over-committing resources when demand
exceeds service capacity. SEDA does not consider
the data-flow constraints among the threads, which
is the primary bottleneck for an event-processing
system. The stage-based architecture is also pro-
posed for constructing a relational query engine,24
which aims at optimizing the performance of the
memory hierarchy, which is the primary bottleneck
for data-intensive applications. The stage topology
in this paper is different from these approaches; it is
generated based on application logic in order to
optimize communication costs among the stages.
Further, by scheduling work items inside each stage,
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wait-free concurrent threads are enabled, which is
the key to achieving high event throughput.

CONCLUSION

In this paper, we proposed a series of model-
analysis techniques to improve the event throughput
of business event processing. A novel hybrid
compilation and interpretation framework was
proposed to execute event-processing rules. At build
time, after transformations, the model information is
rearranged, and a collection of executable code and
cache modules are generated. At runtime, the
model-driven multimediators interpret transformed
model information to orchestrate these generated
codes. Also, a model-driven plan was adopted to
enable wait-free concurrent threads for event
processing. Our experiments illustrated that the
model-driven cache modules in the data store play a
key role in event throughput improvement. Further,
the experiments showed that integration with a
model-driven scheduler enabled our model-driven
multimediator to outperform the conventional con-
current thread approach. The experiments demon-
strated that the multimediator architecture scaled up
according to the number of CPUs in the system.
Currently, there are several ongoing customer
engagement efforts to further verify our solution.
Our plans for future work include supporting metric
networks (i.e., probabilistic system dynamics and
extensible user-defined dependency) and perform-
ing reliability studies.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United
States, other countries, or both.

**Trademark, service mark, or registered trademark of Sun
Microsystems Inc. or Intel Corporation in the United States,
other countries, or both.
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