
Changing the corporate IT
development model: Tapping
the power of grassroots
computing

&

L. Cherbakov

A. Bravery

B. D. Goodman

A. Pandya

J. Baggett

The recent rise of grassroots computing among both professional programmers and

knowledge workers highlights an alternative approach to software development in the

enterprise: Situational applications are created rapidly by teams or individuals who best

understand the business need, but without the overhead and formality of traditional

information technology (IT) methods. Corporate IT will be increasingly challenged to

facilitate the development, integration, and management of both situational and

enterprise applications. In this paper, we describe the emerging prevalence of

situational application development and the changing role of IT. We also describe

the experience at IBM in building, deploying, and managing the IBM Situational

Applications Environment that enables employees to take responsibility for some of

their own solutions. Finally, we discuss ways in which the situational application

development paradigm may evolve in coming years to benefit enterprises, the demands

that it will put on IT departments, and possible ways to address these challenges.

INTRODUCTION

The corporate information technology (IT) approach

to solution development has been dominated by

concerns for performance, availability, and security.

Budget realities have limited corporate-sponsored

projects to those with the highest impact, leaving

many needs unfilled. Furthermore, many commer-

cial software applications and homegrown IT

solutions ‘‘. . . tend to be badly designed, badly

made, incomprehensible and obsolete . . .’’
1

Long

development cycles often result in applications that

are unable to support evolved business needs. End-

user efforts to address these gaps outside of the

realm of corporate IT have been viewed, at best,

with ambivalence.

The recent rise of Web-based ad hoc computing

among both professional programmers and business

professionals brings into the spotlight a software-

development approach that diverges from tradi-

�Copyright 2007 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/07/$5.00 � 2007 IBM

IBM SYSTEMS JOURNAL, VOL 46, NO 4, 2007 CHERBAKOV ET AL. 1

tional IT methods: Teams or individuals who best

understand their business problem rapidly create

informal solutions to solve it. Not burdened by the

overhead and formality of traditional IT methods,

these casual developers focus on fast, good-enough

results that can be refined later, if needed. Applica-

tions developed in this manner may not be ideal.

They may be slow or deliver only a subset of

possible functions; yet, they provide immediate

relief for a given situation. These situational

applications (applications written to address partic-

ular situations at hand) are often short-lived or

perpetually improved. This development ap-

proach—in combination with increased software-

oriented thinking, the growing popularity of server-

side scripting, and new Web technologies such as

AJAX (Asynchronous JavaScript** and XML)—is

forcing a reevaluation of corporate enterprise

software-development models.

This new breed of applications, often developed by

nonprofessional programmers in an iterative and

collaborative way, shortens the traditional develop-

ment process of edit, compile, test, and run.

Situational applications are seldom developed from

scratch; rather, they are assembled from existing

building blocks (or consumables, as they are

referred to here). They are often used by a relatively

small number of users (less than 50, according to a

2005 IBM-sponsored market research study on the

growth of situational applications and the new

market for ad hoc development). Developers expect

improved productivity and functionality from their

situational applications, and they expect to greatly

shorten the time from the identification of a need to

using a productive application that fills it. These

solutions can potentially solve immediate business

challenges in a cost-effective way, capture a part of

IT that directly impacts knowledge workers,
2

and

address areas that were previously unaffordable or

of low priority to the IT department. Application

builders also report higher satisfaction with their

jobs and a sense of being in control. The previously

mentioned IBM-sponsored market research shows

that users of situational applications feel that they

are of core importance. More than half of situa-

tional-application users view them as mission

critical and rate them as very important to the

success of their everyday activities, their depart-

ment, and their company. Moreover, this view is

shared by the corporate hierarchy all the way up to

company executives.

The way workers view their workplace is changing,

especially as the new generation, millennials,
3

are

starting to join the workforce. These new employees

have different expectations, skills, and values.
3–5

After all, they are the first generation to grow up

with IT as an inseparable part of their environment.

Because they are used to customizing and individ-

ualizing everything—from phone ring tones to their

Facebook**
5

spaces—when they move into a

workspace, they translate these experiences into

wanting to select their own tools, customize their

environment, and take responsibility for automating

many necessary activities.

By contrast, IT department managers—who have

justifiable concerns with reliability and availability

of corporate systems, data privacy, and security and

who are faced with decreasing budgets—often tend

to be conservative in their adoption of new

technologies and agile development methods. As a

result, corporate IT is often seen as unable to

support the business and can be perceived as a

hindrance to rather than an enabler of innovation.
6

During the last 30 years, while languages, platforms,

and tools have changed significantly, IT solution-

development processes have changed very little.

Understanding and taking advantage of the latest

changes in Web computing has the potential of

significantly improving the effectiveness of corpo-

rate computing. These changes include shifts in both

technology and usage patterns, collectively referred

to as Web 2.0, a term coined by Tim O’Reilly.
7

As we

will show, using Web development in enterprise

computing has the potential to fundamentally

transform the role of the IT department from

solution developer to solution enabler,
8

a change

that corporate IT must make to remain relevant.

The remainder of this paper is organized as follows.

In the section ‘‘Emergence of situational applica-

tions,’’ we provide the context to recent changes that

signify a renewed approach to application develop-

ment. In the section ‘‘IBM Situational Applications

Environment,’’ we describe our experience building

an environment to support a situational application-

based approach (sometimes referred to as commu-

nity-based computing), the challenges that we faced,

and the issues that we addressed during its

construction. In the section ‘‘Changing role of

corporate IT,’’ we examine changes already taking

place in the enterprise and others that are likely to

CHERBAKOV ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 4, 20072

happen. We conclude the paper with a brief

summary.

EMERGENCE OF SITUATIONAL APPLICATIONS

Evidence of end-user computing (including per-

forming software engineering and development)

goes back as early as the late 1970s,
9

with advances

in the last 10 years making it increasingly easier for

users to develop their own solutions. IBM-sponsored

ad hoc development market research, described

later in this section, and that of others
10

has revealed

that development of applications by amateur pro-

grammers (i.e., employees who are not paid to

program) is widespread. In 2006, approximately 12

million professionals identified themselves as pro-

gramming in the workplace. Contrast that with the

fact that there are only an estimated three million

professional programmers (i.e., employees who

program for a living).
10

Both professional and casual programmers are

engaged in some ad hoc application development

characterized by the lack of formal engagement

around a solution. They disregard formal require-

ments-gathering, architectural documents, and de-

sign specifications; instead, they focus on

addressing immediate needs in the fastest possible

way. IBM research shows that between 42 and 68

percent of IT employees and 12 percent of business

employees have automated a business function,

process, or activity in their department outside of a

formal IT development project.

IBM research reveals that ad hoc application

development activity tends to extend throughout the

company (Figure 1). Although spreadsheet-based

applications remain a prevailing choice for ad hoc

programming, our research shows that Web devel-

opment is rapidly gaining popularity. In the

remainder of this paper, we focus on the subset

of ad hoc applications developed using Web

technologies and refer to them as situational

applications.

Paradigm changes in Web development

Typical Web development requires a variety of skills

at several layers, from the browser at the front end,

to specialized middleware (e.g., IBM WebSphere*

Application Server or IBM WebSphere Portal), to

back-end database systems where the application-

programming skills required are beyond the ability

of a nonprogrammer. Languages such as Hop
11

and

environments like Marmite
12

and IBM Sash Webli-

cations
13

were introduced to simplify Web devel-

opment. Continued work on rich client technologies

demonstrates that the principles of lightweight

development based on simpler Web technologies

and skills have a value beyond simply easing

application building.
14

Interactions with the Web

platform are increasingly more compelling than

even rich desktop applications. Web workflows can

be collapsed into a single-screen experience, thereby

gaining the benefit of desktop applications but with

the simplicity and flexibility offered by Web

development.

AJAX provides easy access to Web-based data and

rich user-interface controls. The combination of

AJAX and the REST (Representational State Trans-

fer) architectural style of Web services offers an

accessible pallet to assemble highly interactive

browser-based applications. The Uniform Resource

Identifiers (URIs) used by REST to identify Web

resources allow equal accessibility to those re-

sources from browsers, mobile devices, and server

applications, and they link from e-mails and

bookmarks, making this programming style very

appealing to a wide range of Web developers.

The availability of a large number of simple

application programming interfaces (APIs) and the

enablement of AJAX-style Web components (e.g.,

Yahoo!** Developer Network
15

design patterns and

programmable Web APIs
16

) have contributed to the

upsurge in popularity of this development style with

both professional and amateur programmers. Even

older Web technologies such as JavaScript are

reinvigorated.

Many mashups (applications comprised of services

and functions remixed to create a new context)

embed a map into a Web page, where various

actions drive the map to plot objects of interest,

such as people, structures, or geographic locations.

As far back as the mid-1990s, exposing geographic

data to end-user developers was a popular activi-

ty.
17

The more recent variety illustrates the tipping

point, where AJAX widget components enable

rampant reuse. (A widget is a third-party item that

can be embedded in a Web page.) The mapping

mashup has become the prototypical situational

application, primarily because of its simplicity and

because it is a powerful paradigm for information

IBM SYSTEMS JOURNAL, VOL 46, NO 4, 2007 CHERBAKOV ET AL. 3

organization. Combining services through simple

interfaces and prebuilt components enables a

nonprofessional developer to become an assem-

bler—someone who understands the business

problem and is comfortable with Web technology,

but needs simpler concepts to assemble powerful

solutions.

The rise of situational applications cannot be

attributed to technological changes alone. Computer

literacy is growing and, while the range of skills

varies widely, the tooling is evolving to enable

more users to build applications. Recent work to

make Web development accessible to casual pro-

grammers includes assembly-level tooling that

enables users to create composite applications out

of components, even if they have little technical

knowledge of the underlying capabilities. Examples

of such platforms include QEDWiki (quick and

easily done wiki),
18,19

ADIEU (Ad Hoc Development

and Integration Tool for End Users),
20

and more

informally, wiki platforms such as SnipSnap,
21

which enable a high degree of extension and

customization. As tool design matures, even pro-

fessionals who are uncomfortable with current Web

technologies will be able to participate in their own

solution design.

Social software and worker expectations

The introduction of social software (for example,

blogs, wikis, activity management, tagging, and

bookmarking) is contributing to the proliferation of

situational applications. Social software offers data

and widget services that enable other applications to

offer capabilities that are hosted remotely in a new

context. For example, IBM Dogear,
22

an enterprise

social bookmarking solution, offers REST-style

interfaces to data and provides a user experience

that is notably like AJAX, where much of the user

experience occurs on the same page without

changing contexts. For example, when exploring

related content and people, the user is able to toggle

between these views without reloading the entire

Web page. Third-party applications make use of

Figure 1
Percentage of employees who conducted ad hoc development during a 12-month period
(IBM-sponsored ad hoc development market research)

Engineering (n = 400)

Research and Development (n = 455)

Accounting/Finance (n = 1795)

Marketing (n = 453)

Printing/Publishing (n = 232)

Operations (n = 1695)

Facilities/Location Management (n = 481)

Human Resources (n = 590)

Telecommunications (n = 141)

Sales (n = 2362)

Client Services (n = 1500)

Transportation/Logistics (n = 471)

Manufacturing (n = 814)

Customer Service (n = 2966)

Other (n = 5070)

 31%

 23%

 20%

 19%

 19%

 17%

 16%

 16%

 12%

 10%

 10%

 9%

 9%

 8%

7%

CHERBAKOV ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 4, 20074

data stored in Dogear through the REST-style

interfaces, and widget components further exter-

nalize reusable user interaction and visual design.

The evolution of tooling, skills, and usage patterns

contribute to why community-based computing is seen

as a high-potential opportunity. Enabling this develop-

ment paradigm offers the opportunity to simplify IT to

the point where the gatherer of requirements, the

solution owner, and the developer are one and the same

person, thereby ensuring that the solution delivered

meets the immediate business need.

IBM ad hoc development market research

To better understand the market composed of

nontraditional programmers performing ad hoc

software development, IBM conducted a multiphase

primary market research project. The objectives of

this research can be summarized as follows:

1. Quantitatively profile the current ad hoc devel-

opment activities and needs among different

audiences.

2. Identify which ad hoc development tools are

currently being used and assess the level of user

satisfaction with these tools.

3. Gauge the relative market opportunity within

those audiences.

4. Understand specific activities, preferences, and

related factors in ad hoc development.

5. Determine and compare interest levels in an ad

hoc development among the various audiences.

Participants were screened based on two criteria.

First, professional developers who spent more than

50 percent of their time on formal application

development projects using sophisticated develop-

ment programming languages and tools, such as

Cþþ, C#, Java**, and advanced integrated develop-

ment environments were screened out. Second, all

participants were required to have conducted an ad

hoc development activity within the previous 12

months. This activity was defined to participants as

occuring when a person automates or facilitates a

particular business function, process, or activity by

producing a software application that can be

described by these characteristics:

� Often incorporates other existing software—In

addition to any added capability, this new

application can modify, enhance, customize, or

extend an existing application, or include and

combine parts or components from multiple

existing applications.
� Occurs under the radar—Usually not recognized

outside of a department or business unit as a

formal project; seldom has a specific project

budget or tracked timeline (as do larger, more

recognized IT projects); tends to be performed and

managed in a relatively unstructured manner.
� Built for the situation at hand—Built to solve

an immediate, specific business problem, with

little concern over whether the application will

fit or work in different situations, organizations,

environments, or systems, and without features

that might allow it to adapt or adjust for more

long-lived usage across multiple situations.

Could even be thought of as disposible or

replaceable.
� Developed in the most efficient, quick-and-dirty

manner possible—Does not use rigorous and

structured steps of formal development methods

meant to reduce errors, maximize efficiency and

performance, extend the life, or expand usage

through future changes.
� Can be performed by people without extensive,

sophisticated computer skills—Business profes-

sionals, analysts, and other IT staff often are engaged

in ad hoc development. Requires business knowl-

edge of the task at hand, but not very specialized

programming knowledge or extensive IT skills.
� Developed using tools and components that do not

require significant IT knowledge—Unlike ad-

vanced programming tools used to build an

application from scratch, ad hoc development

employs more basic tools, such as macros,

wizards, forms, templates, visual construction,

and the like. It usually makes use of preexisting

software components, such as spreadsheets, da-

tabase programs, report generators, or vertical

business programs already in use.

A total of 790 Web-based interviews were completed

with three separate target audiences:

� IT (excluding professional programmers)—250

interviews with IT managers/directors/staff
� Business partners or solution providers—250 in-

terviews with solutions providers or partners who

have performed ad hoc development activities for

customers
� Line-of-business power users—290 interviews with

non-IT but computer-savvy line-of-business power

users

IBM SYSTEMS JOURNAL, VOL 46, NO 4, 2007 CHERBAKOV ET AL. 5

A complete mix of industries and line-of-business

functions and departments were surveyed, with

each group being large enough to evaluate as a

subsegment. Government agencies were excluded.

In addition to those completing the interviews, over

25,000 successful contacts were made across the

three audiences in this research. Regardless of

ultimate qualification, as long as a respondent had

an appropriate job function and reponsibilty, the

following incidence information was collected be-

fore interview termination:

a. Percent who understand the ad hoc development

definition as provided

b. Percent who say that ad hoc development is ever

conducted by anyone in their company

c. Percent who say they have conducted ad hoc

development personally in the last 12 months

The interview asked responders a series of over 60

questions, grouped into seven categories:

1. Frequency and scope of their ad hoc development

activities

2. Specific application and activity areas in which

they have conducted, or plan to conduct, ad hoc

development

3. Types of people, including themselves, who are

involved in the ad hoc application development

in their organization, and their various roles

4. Business value, top business benefits, and the

reasons that drive the decision to conduct ad hoc

development

5. Level of encouragement or discouragement they

receive from other parties (e.g., team leaders, IT,

and clients) in terms of conducting ad hoc

activities, and types of benefits or barriers

encountered

6. Perceived importance of ad hoc application

development by the developers and by others in

their organization, including various levels of

management

7. The tools and mechanisms used in ad hoc

development, and the level of satisfaction and

desired features

The survey results were used to make conclusions

about the future marketplace, trends and opportu-

nities, mechanisms for targeting and selling to this

market, and market size assessment.

Several findings from this market research are

referenced throughout this paper. In addition to

those mentioned specifically, the findings also

helped define the need for and scope of the IBM

Situational Applications Environment, described in

the next section.

THE IBM SITUATIONAL APPLICATIONS
ENVIRONMENT

In the future, situational applications may become

more challenging to IT development methods and

place new demands on the enterprise IT environ-

ment. This could put corporate IT in the position of

managing enterprise applications while trying to

determine how to best facilitate development,

deployment, and management of situational appli-

cations. Community-based development within the

enterprise may significantly increase heterogeneity

in the environment and introduce more complexity

into monitoring, event analysis, root-cause detec-

tion, patch management, and other systems man-

agement tasks. Conversely, development based on

situational applications can present opportunities to

encourage innovation at departmental and individ-

ual levels and, at the same time, improve the

productivity of knowledge workers.

Situational applications can enable workers to react

quickly to changing needs with just-in-time solu-

tions that are a better fit to some business problems.

In addition, by embracing this development para-

digm, IT enables the automation of business areas

that were not affordable or were considered too

narrow a niche before—a phenomenon sometimes

called the long tail, a term first coined and

popularized by Chris Anderson.
23

To accelerate the adoption of situational applica-

tions in IBM and to test the potential benefits of

community-based development in the enterprise,

the office of the chief information officer (CIO)

established an initiative called the Situational

Applications Environment (SAE). Envisioned as a

living-laboratory experiment to observe and harvest

best practices, SAE is enabling an increasing number

of employees to benefit from the use, creation, and

sharing of situational applications.

SAE scope

The IBM intranet contains an enormous wealth of

information, services, and community spaces cov-

ering all aspects of the business from research,

CHERBAKOV ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 4, 20076

product information, and marketing materials to

business operations, personnel data, and social

events. Some users are repurposing this information

to meet their particular business needs, increasingly

using Web technologies and the growing number of

available internal and external services. SAE was

conceived to recognize, encourage, and build a

community around the activity of constructing

situational applications so that solutions and best

practices could be shared throughout IBM. As part of

this initiative, corporate IT assumed the role of

solution enabler by providing the tools and data

services required by this community. SAE facilities

built around three focus areas—consumables, tools

and utilities, and community—are discussed in the

next sections.

Consumables

A consumable is a building block used in application

construction. It can be a service with a recognizable

API called to obtain data, a code snippet that can be

incorporated into a server-side script, or a JavaScript

fragment to enhance a Web page. Without a

substantial collection of consumables, the ability to

build new applications is severely restricted. On the

other hand, if there are a large number of

consumables but they are difficult to find and

understand, the adoption of situational application

development will be inhibited.

Tools and utilities

Situational applications are built by combining

consumables to create new capabilities, usually with

some mediating logic and user-interface compo-

nents. In this process, inevitably some integration

code is required, and the resulting entity then needs

a place in which it can be deployed. Included in

tools and utilities are a Web presence for raising

awareness of new situational applications and

consumables, catalogs for locating and describing

these assets, mashup makers for assembling appli-

cations, and lightweight hosting facilities for run-

ning applications and consumables once they are

built.

Community

Several community aspects are important to the

adoption of situational applications:

� Collaboration—The primary community of people

who need a solution work on the application

together, sharing it and improving it.

� Wide communication—As new applications and

consumables are created, they are more likely to

be exploited and reused if their existence is

advertised widely outside of the primary commu-

nity that created them.
� Feedback—Interested parties can comment on,

suggest improvements for, or even share their

original work adaptations.

SAE architecture
The requirements derived from consumables, tools

and utilities, and community, as described above,

shaped SAE and its architecture.

SAE Web site

The SAE Web site (Figure 2) is designed as a central

hub for situational applications in IBM. The home

page presents the latest and most popular applica-

tions and consumables, news items, latest forum

threads, and guidance for developers. Other pages

focus on available facilities; recommended process-

es for building, hosting and advertising applications

and consumables; and help in the form of frequently

asked questions.

SAE catalog

The SAE catalog (Figure 3) stores details of

applications and consumables entered by an inter-

ested party, usually the owner. The details include

minimal categorization augmented with tagging.

Further tags can be added by the community, and

both the entry and tags can be rated based on

popularity and relevance. This user-generated tax-

onomy, or folksonomy as it is becoming known, is

then used to filter entries along with more tradi-

tional keyword search techniques. Users can com-

ment on entries and share their own usage

examples.

The collaborative feedback loop implemented in the

catalog design traces its roots to the open source

movement. The feedback between the community

and the developer is direct, allowing issues to be

identified, acknowledged, and resolved, and reso-

lutions praised. Community members take pride in

their contributions, which can consist of writing the

software, proposing new features, and identifying or

fixing bugs. Everyone is solving the common

problem so even the smallest recognition (a

comment or a forum post) feeds the cycle of

participation. Users can subscribe to most of the

catalog information so that updates and other

IBM SYSTEMS JOURNAL, VOL 46, NO 4, 2007 CHERBAKOV ET AL. 7

activities can be streamed to interested users in a

push rather than a pull manner.

Figure 4 shows how the catalog asset details are

delivered to the SAE Web site by means of cached

data feed. Users can navigate either directly to the

application in which they are interested or to an

entry in the catalog, where they can learn how to

use APIs, provide their comments, or rate an asset.

The catalog can be used to record details of assets

hosted within or outside SAE and for any external

services and applications that the community might

find of particular interest.

Hosting

There are two SAE hosting offerings to meet

different user requirements. The first type is a

lightweight virtual hosting environment akin to a

simple internal Internet service-provider offering. It

includes a Web server, server-side scripting capa-

bility, and data storage. Users can upload code and

other artifacts and make small configuration

changes that affect only their virtual host. They are

not allowed to make changes to system-wide

configurations or to have root access. This option is

more than adequate for most application developers

who do not perform system administration tasks or

complex system configuration or manage special-

ized middleware and back-end software.

The second type of hosted offering provides the

higher-level tools that allow users to create content

and to function with little or no coding. These

Figure 2
SAE Web-site home page

Discussion
through
forum

Aggregated
community
rating

Direct links
to situational
applications Search

through
tag clouds

Full
search

Latest news
items

Subscribe
to data
feeds

Real-time
activity
monitoring

CHERBAKOV ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 4, 20078

environments, or mashup makers as they are

becoming known, are built on the idea of wikis.

They are community-edited Web sites in which a

high-level markup language, or preferably a set of

sophisticated graphical tools, are used to create

pages of content with application function. Users

build pages from a palette of components, test, and

then share the resulting application without infra-

structure considerations. The host platform manag-

es the complete cycle of assemble, run, and share,

exploiting rich client-side components to give the

user an integrated development experience. Several

mashup makers are emerging. Two of the more

mature examples, ADIEU
20

and QEDWiki,
19

are

briefly described later in the section ‘‘Mashup

makers’’.

Seeding the environment

The mashup culture has taken off largely due to the

availability of easy-to-use and compelling APIs from

sources such as Google, Yahoo! Inc., and Amazon.

com, Inc. Seeding SAE with a compelling set of

Figure 3
SAE-catalog asset details

Tags rated
for relevance
and
popularity

Aggregated
community
rating

Contact
details of
owner

Ability to
bookmark
entries
of interest

Ability
to subscribe
to changes

Comments
from users

Trackback
to the SAE
Website

Detailed
description
of the asset

IBM SYSTEMS JOURNAL, VOL 46, NO 4, 2007 CHERBAKOV ET AL. 9

example applications and consumables was seen as

critical to stimulating a similar culture within IBM.

Three applications and 27 consumables were

included in the initial release; within the first two

months, the community had helped swell these

numbers to 28 applications and some 60 consum-

ables, with the numbers rising to 137 applications

and more than 100 consumables by the end of the

seventh month. In the next sections, we describe

several assets that have been proven popular based

on user feedback and usage statistics.

IBM Travel Maps

The IBM Travel Maps application combines the IBM-

recommended hotel list with information about IBM

locations, rental car locations, airports, restaurants,

and other points of interest on a navigable map,

creating a convenient trip-planning aid for business

travelers. Although an IBM business partner pro-

vides the IBM Online Travel Reservations (OTR)

self-service system for planning and booking cor-

porate travel, the OTR currently does not include

convenient location-mapping features or informa-

tion about local points of interest, as is often found

on popular travel sites. Travel Maps offers these

missing features.

The original Travel Maps demonstration was de-

veloped by two researchers for an internal mashup

competition. Built in several weeks (approximately

80 hours of development time) with JavaScript and

the PHP scripting language, the application was

largely populated with Web-page scraped data (data

extracted from the display output of another

program), held in a static database, and limited to

the United States only. Although both researchers

had strong technical backgrounds with expert-level

skills in IBM DB2* and Extensible Markup Language

(XML), they had intermediate-level PHP skills, and

they both were beginners in Hypertext Markup

Language (HTML) and JavaScript.

Having won the competition, this original demon-

stration quickly became popular and was used

widely within the IBM Web developer community.

Users began to provide feedback to the authors,

Figure 4
SAE architecture

Direct links to situational applications

Asset Details

Asset Details

Asset Details

Links to catalog
entries

Atom
feeds

External

Feed
Cache

Web Site

Asset
Repository

Consumables

User Hosted

Situational
Applications

SAE Hosted

Situational
Applications

Catalog

Consumables

Consumables

Situational
Applications

CHERBAKOV ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 4, 200710

including ideas to improve the application. Given

that IBM owns much of the data behind Travel

Maps, an obvious first improvement step was to

provide more direct data access by using more

robust methods. The office of the CIO negotiated

with the IBM Real Estate Operations and the IBM

Travel departments for the required access to

enterprise data stored in DB2. With access given,

during the next several weeks the enterprise

business information (EBI) framework was built to

make the data accessible through REST-style

services.

External Web-page scraping algorithms were im-

proved and error tracking was added to mitigate

against problems caused by changes to the under-

lying Web pages. Data scraped from external

sources included car rental locations and points of

interest, such as restaurants and shopping centers,

from travel Web sites. The Atom
24

data-feed format

was used to make gathered data more easily

consumable. A database cache was built to hold

data from these feeds for runtime use. As the

underlying data was nonvolatile and resource-

intensive to retrieve, a refresh agent was added to

update the database periodically, aiding perfor-

mance without impacting results. The final change

of note was a worldwide geocoding service that

expanded the coverage beyond North America.

(Geocoding is the process of assigning geographic

identifiers [e.g., codes or geographic coordinates

expressed as latitude-longitude] to map features and

other data records, such as street addresses.) The

application was incrementally enhanced by three

developers over 10 weeks. Although the

team had expertise in HTML and JavaScript, they

had only intermediate XML skills and no skills in

PHP.

These improvements have been augmented as a

result of user feedback that helped identify bad data.

The enhanced version became so popular that the

IBM Real Estate Operations management group

added it to the official intranet travel site only three

weeks after the SAE launch.

Virtual Team Locator

The Virtual Team Locator application was created to

assist sales-team communication by visually locat-

ing an account team for a specific client and

instantly determining who was available. On a

navigable map the application combines current

employee location and instant messaging status with

internal directory information and the sales organi-

zation list of client executives and representatives.

The user can choose to send an instant message to

logged-in colleagues or an e-mail to those who are

disconnected.

The original application was built by one developer

in QEDWiki in less than 40 hours over two weeks,

demonstrating the design concept with a static data

extract. The next version was built by another

developer in less than 40 hours over four weeks. An

XML, JavaScript Object Notation (JSON), and HTML

expert, this developer had no QEDWiki experience

but some experience with the SnipSnap HTML-

enabled wiki, which he chose as an assembly tool.

A REST service was created to extract sales account-

team information stored in a relational database. The

IBM Lotus* Sametime* 7.5 SOAP-based location

awareness service provided employee current-loca-

tion and instant-messaging status (e.g., available,

away, and do not disturb) for an employee. The

developer quickly discovered that if an employee

was not logged in or had decided to make the location

private, the service returned incomplete data. To

mitigate the situation, he developed a proxy REST

composite service returning an employee default

work location extracted through the API of the IBM

BluePages (the corporate internal directory) if the

Sametime location could not be determined (Figure 5

shows the Virtual Team Locator architecture).

This application made information created by the

sales organization available for use throughout IBM.

It has also demonstrated how SOAP and REST

services can be combined in a single mashup.

Bluecard widget

In the ever-changing social landscape of increasingly

mobile business, the need to recognize fellow

employees is important. The IBM corporate direc-

tory, BluePages, enables employees to easily man-

age, find, and connect with colleagues. All of the

rich metadata associated with an employee, from

basic contact information to skills, current projects,

and patent activity, can be accessed through a series

of REST-style services, facilitating reuse and remix-

ability. It is the most highly trafficked application in

IBM, serving millions of requests per day by

employees looking for contact information and

expertise. Bluecard, one of the first SAE widgets,

IBM SYSTEMS JOURNAL, VOL 46, NO 4, 2007 CHERBAKOV ET AL. 11

takes advantage of this popularity by automatically

providing contextual employee information.

In fewer than five lines of JavaScript, Web site owners

can cut and paste this functionality into their solution.

It automatically scans the HTML document and binds

to e-mail addresses it recognizes or specially tagged

page areas. When a user hovers over one of these

bindings (e.g., an e-mail address) a nonintrusive

overlay prompt indicates that a Bluecard is available.

Clicking on that overlay produces a business card like

that shown on the right in Figure 6.

Bluecard is a prototypical example of the corporate

IT role as a producer of high-quality reusable

components that require both greater skill levels and

greater access to corporate data and systems. In

addition, corporate IT has the opportunity to create

components that establish a common look, feel, and

interaction pattern.

Tooling

There are three tool categories that can be found in

SAE: frameworks, ad hoc tools, and mashup makers.

Frameworks

Frameworks are used to facilitate the construction of

services, typically those that provide access to

corporate data. The IBM CIO office built Nova

Services and the EBI framework. Nova uses a simple

Java Platform, Enterprise Edition (J2EE**) pattern

to allow developers to define and host new REST-

style Web services. The EBI framework takes data in

relational databases and uses Structured Query

Language (SQL) to construct REST services that can

return data in XML, Atom, or JSON format. External

mashup frameworks, such as Yahoo! Pipes**
25

and

Kapow Technologies openkapow,
26

help users

create new data services and functions with

interactive construction tools that can be learned in

a few hours.

Ad hoc tools

Ad hoc tools developed by the community perform

functions such as mediations and data translations

or interpretation of different postal address formats.

They can be used at runtime or in the process of

building an application or a consumable. One such

tool, registered in SAE, allows a user to discover the

Figure 5
Virtual Team Locator architecture

External Mapping
Service

Browser

Client Machine

Virtual Team Locator

Proxy REST Composite Service Employee Location Service

Locator Service

SnipSnap Wiki

Client Account
Data

HTTP REST

HTTP

AJAX

SOAPJava DataBase Connectivity

Lotus
Sametime Server

Enterprise
Directory

**

CHERBAKOV ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 4, 200712

latitude and longitude of any place on the globe.

This can then be used to help improve geocoded

information that may have been obtained automat-

ically from an address lookup service. We expect the

use and number of these tools to grow as the

community matures and the culture of sharing

components becomes more ingrained.

Mashup makers

Mashup makers aim to engage nondevelopers in the

construction of applications. They provide visual

page editors for assembling components to build

useful function, at the same time minimizing, and in

some cases eliminating, the need to write code. IBM

has developed such environments and continues its

work in this area. Two of the more mature examples

are QEDWiki and ADIEU.

QEDWiki is a mashup builder that can be used to

create a Web application by assembling a collection

of widgets on a page, wiring them together to define

the application behavior, and then possibly sharing

the mashup with others. Mashup enablers (pro-

grammers) populate QEDWiki with a palette of

widgets that provide application domain functions

or information-specific functions. To create a widget

requires knowledge about QEDWiki widget specifi-

cations. A new widget can be loaded into the

environment to extend native capabilities. Utility

widgets can be configured to receive and make use

of Really Simple Syndication (RSS) or Atom feeds,

access databases, or produce visual controls, such

as tables, notebooks, and maps.

ADIEU users can develop Web services and Web

applications without knowing any specific pro-

gramming language. They develop applications

using collections of cards. A card acts like a single-

function application in a form-based, desktop-like

environment. The data fields in cards can be used

like cells in a spreadsheet and can contain either

data or an expression that determines the data at

runtime. Cards can also run other cards, a capability

that provides the basic flow control necessary for

programming concepts such as decision branching,

sequences, and loops. Specific card types produce

the Web pages needed for the application and drive

the calls to external services.

Early observations

At the time of this writing, SAE was in its eighth

month of use. Some important usage patterns,

benefits, and challenges have already been detected.

The insights gained through these informal obser-

vations help us plan future SAE improvements and

determine the next areas of interest to be explored.

Access to data and data ownership

A fundamental requirement for a successful situa-

tional-application ecosystem is access to data,

preferably through a simple, standardized interface

provided and sanctioned by data owners. In the case

of external services, this may be provided on a fee

basis, in which case it is important to negotiate

contracts with providers who recognize the nature

of situational applications.

For example, a consumable that accesses an

external geocoding service might be included in

many applications and perhaps called hundreds or

thousands of times in the development process by a

nonprogrammer as a means of testing through

use. This could result in exponential increases in

transaction rates. For external services with

Figure 6
Bluecard: (A) hover in a Web page, and (B) view

Joshua Woods

IBM SYSTEMS JOURNAL, VOL 46, NO 4, 2007 CHERBAKOV ET AL. 13

per-transaction fees, this could result in huge,

uncontrolled costs. Usage contracts based on set

limits or unlimited access for a fixed or capped fee

can avoid this cost.

A quick way to acquire data is by scraping existing

Web pages (Dapper
27

and offerings by Kapow

Technologies are examples of scraping tools). Data

scraping can be done without the knowledge of the

data owner, who otherwise might object to the way

the data is used or the impact on site performance.

This, in turn, can lead to the data owner adopting

spoiling tactics to make the scraping process more

error-prone or impossible. The data owner may also

take legal action for copyright breach or brand

image damage if the information reuse is in conflict

with the owner’s business interests or if it creates

objectionable associations with information or

parties. Scraping Web pages might be a quick way to

obtain internal data when there is no time to

negotiate access. External page scraping should be

used sparingly and with consideration to potential

consequences for both the data owner and the

application builder.

Data quality

When data access is opened for use in situational

applications, sometimes fields that have tradition-

ally been unimportant or even hidden are made

available. Users can often assume levels of com-

pleteness and consistency that in reality do not exist.

A classic example is address information that has

been collected by many applications and made use

of in freeform style. A developer who may want to

use that data for assigning an address programmat-

ically will find that the inconsistent address infor-

mation styles now need to be handled with complex

code.

This problem can be mitigated by providing

information to users on the quality of the data they

are seeing and by informing data owners about the

new ways that their data is being used and the data

quality issues that have arisen. Often data owners

are willing to tidy up data when problems are

identified. This realization has prompted the addi-

tion of features into the EBI framework to facilitate

the reporting of data issues discovered by users.

This addition completed the user-developer feed-

back loop by also including the data owner in the

process. We observed improvements in data quality

in enterprise data sources because of this active user

participation.

Data interpretation and provenance

When applications are tightly coupled to data

sources or are using Web services with agreed-upon

data schemas, the data meaning is usually well-

specified and its provenance is easily traced. With

situational applications this is not the case.

Data from an unfamiliar domain can easily be

misinterpreted by the developer who is eager to get

a service up and running as fast as possible. The

layering of consumables and their output can result

in the logic and assumptions masking the true

meaning of the data. For this reason, it is important

to advise users at the outset that they should assume

a lower level of accuracy than what they usually

expect from formally developed applications. Com-

munity rating and feedback can help others under-

stand what to expect from a service and possibly

initiate an improvement process. As situational

applications move into the realm of business

applications, it will become even more important for

data provenance and quality to be clearly indicated

if costly errors and breaches of legal responsibilities

are to be avoided.

User expectations

Expressions such as ‘‘quick and dirty,’’ ‘‘just good

enough,’’ and ‘‘the perpetual beta’’ are the mantras

of situational application developers. Does this

encourage sloppy programming practices? It de-

pends on your point of view.

A developer who was able to get a particular narrow

scenario that met a specific business need up and

running in record time views this effort as a success

and perhaps as a demonstration of technical skill.

The very first user outside of the targeted team will,

in all likelihood, stray away from the narrow

scenario and, unsurprisingly, encounter problems.

The SAE usage patterns show that developers who

are interested in having their applications adopted

by a larger community can accelerate the process by

clearly communicating which scenarios are ad-

dressed by their application.

The willingness of users to offer feedback to the

developer, who may be unaware of problems or

alternative uses, directly contributes to the adoption

of the application and can further its improvement.

CHERBAKOV ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 4, 200714

The SAE catalog supports this kind of dialog, along

with rating systems that encourage a general evolu-

tion toward more successful and higher quality work.

Over time, problems caused by poor coding practices

should be sifted and eliminated by the community.

Our observations show that Web developers and

those who are accustomed to the social aspects of

Web 2.0 are more tolerant of bugs and poor

performance than business users. This might con-

tinue to be a barrier to the early adoption of

situational applications by business users until this

new culture becomes ingrained and all parties

understand the limitations as well as the strengths.

Performance

Users who are often tolerant of functional errors in

prototypical applications, accepting, for example,

that it is ‘‘just good enough,’’ may be less readily

accepting of poor performance (e.g., a trivial task

taking a relatively long time to complete). In

traditional application development, extensive re-

sources are used to ensure good performance by

building well-designed end-to-end architectures.

With situational applications, an application is built

quickly, often with components that are not under

the developer’s control. For example, the only way

to acquire data might be through an inefficient or

complex query that spans several data sources,

including Web services, multiple databases, and,

through scraping techniques, Web pages. There are

few opportunities to optimize data gathering in this

scenario. Because data used by situational applica-

tions is often not volatile, caching and occasionally

refreshing it might be a good strategy. This cache

can then be made accessible through an API to

improve performance.

To reduce the load on often lightweight server

platforms, some builders exploit client-side scripting

capabilities with AJAX. In addition to improved

performance, this also provides a rich user experi-

ence that previously was reserved for applications

installed and run on the client. A skilled AJAX

developer is able to exploit the multithreaded nature

of the technology to prevent modal behavior (i.e.,

behavior where a user must complete one interac-

tion before any further interactions are allowed). It

is characterized by dialog boxes that require the user

to click a button to make a choice before he or she is

allowed to perform any other actions. However, it

remains to be seen whether nonprogrammers can

realistically achieve such user interface sophistica-

tion, as it is a nontrivial challenge to assemble visual

components that represent the flow of events.

Hosting issues

Providing cost-effective lightweight hosting for

situational applications raises some complex issues.

Hosting platforms must be standardized and elim-

inate as much manual intervention as possible

through automation. They need to offer resilient

partitioning and containment because situational

applications by their very nature are more prone to

errors and to the effects of poor coding than

traditional applications.

Some developers take advantage of the latest

functions in the new releases of languages and tools,

whereas the hosting platforms need to remain with

earlier stable versions. By reducing the number and

frequency of platform migrations, the chances of

adversely affecting the hosted applications is also

reduced.

Many professional programmers are accustomed to

having root access to a machine, but such access

cannot be offered in a hosted environment where

services are shared and changes to the configuration

would affect other users. Developers must consider

the benefits of the hosted environment and deter-

mine when using that environment serves better

than managing their own infrastructure.

Adoption among different user types

Since launching SAE, we have observed enthusiasm

for situational applications from both business and

technical users. Response to some applications has

resulted in their use shaping the next generation of

existing corporate systems. For example, the Travel

Maps application discussed earlier is now being

used to help shape the future requirements for the

corporate OTR system.

Lines of business are showing increasing interest in

SAE as an opportunity to meet business challenges

faster, especially by automating mostly manual

processes or serving areas with only a few users for

whom there are no planned IT projects. We have

already seen encouraging results when, for example,

a situational application used by less than 30

intellectual property analysts resulted in productivity

IBM SYSTEMS JOURNAL, VOL 46, NO 4, 2007 CHERBAKOV ET AL. 15

gains in excess of 50 percent. Another application

used by the same small team reduced one of their

processes from 2.5 hours to 4 minutes. Much of the

focus of the next phase of SAE will be on areas of

high business value like this; thereby showing the

direct business impact of situational applications on

the enterprise.

CHANGING ROLE OF CORPORATE IT

The CEO study
6

done by IBM Global Business

Services showed that companies with better busi-

ness-IT integration deliver significantly better fi-

nancial results. CEOs articulated the necessity to go

beyond simple alignment and completely close the

business-IT gap. Based on observations from our

SAE initiative, we reason that capitalizing on

technological potential and unleashing worker

creativity offers a high likelihood of closing that

gap.

Four major changes occurring in enterprises are

creating the need for the CIO and the IT department

to redefine their roles fundamentally, cultivating an

entrepreneurial atmosphere by enabling workers to

share in the responsibility for their workplaces and

the variety of applications they use. These changes,

together with the recommended IT adoption actions,

are described below and summarized in Table 1.

1. Changing enterprise boundaries—When asked

which sources their companies relied on most for

innovative ideas, CEOs ranked employees (41

percent), business partners (38 percent), and

customers (36 percent) at the top of the list.
6

This

means that two of the three most significant

sources of innovative ideas lie outside enterprise

boundaries. Companies that outperform the

averages financially are much bolder in their

reliance on external sources for new ideas.

Companies with higher revenue growth reported

using outside sources significantly more than

those with slower growth.

Globalization is challenging the traditional defi-

nition of enterprise boundaries. Work is per-

formed independent of time and place, or even of

who does it. Collaborating teams are no longer

defined by physical proximity. The need for new

skills and ideas drives businesses to tap into

communities outside of their companies. The

Web-based community formed by InnoCentive,

Inc., for example, matches top scientists from

more than 170 countries with difficult research

challenges faced by leading companies.
28

The

line between a corporation and global commu-

nities is blurring.

Much looser organizational structures require

technologies that support virtual teams of spe-

cialists scattered around the globe who can

collaborate independent of location, time zone,

technology, or language. These technologies

must also support the instant reconfiguration of

such teams. Teams that are formed quickly must

be able to define their work environment and

address many of their own needs as they arise.

2. Increasing pace of change—The use of technology

and the pace of technological development are

accelerating. The evidence of this is abundant:

from the number of Internet users worldwide

passing the one billion mark
29

to the number of

Web sites growing by 30.9 million in 2006 and

shattering the record gain of 17.5 million sites in

2005.
30

Technologies that were unheard of

several years ago are fast becoming part of the

invisible fabric of everyday life, and the pace of

change continues to accelerate. As Ray Kurzweil

has put it: ‘‘Because we’re doubling the rate of

progress every decade, we’ll see a century of

progress—at today’s rate—in only 25 calendar

years.’’
31

Our expectations of technologies and

how they should support us have also changed.

We have come to expect new technological

inventions to work autonomously and to be

integrated seamlessly with devices that are

already part of our personal and business

environments.

3. The rise of the knowledge worker—Knowledge

has become one of the most valuable enterprise

resources. In North America, knowledge workers

are estimated to outnumber all other workers by

at least a four-to-one margin.
32

The knowledge

worker’s environment is dynamic and unpre-

dictable. Their actions and decisions are often

driven by unexpected events and exceptions to

documented business processes. They have to

deal with the growing amount of information and

the growing complexity of relationships and

regulations in the global economy. To succeed,

knowledge workers have to respond instantly to

continuous changes, often relying on their know-

CHERBAKOV ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 4, 200716

how, personal relationships, and unique under-

standing of their environment. This tacit knowl-

edge is not easy articulated or codified.

On the other hand, the corporate approach to

building automated systems, is based on docu-

menting and freezing a relatively static set of end-

user requirements. Unsurprisingly, these require-

ments capture the knowledge worker’s environ-

ment at a particular instant, not what will be

required when the system is deployed. Conse-

quently, solutions are often obsolete by the time

they are developed. Because a knowledge work-

er’s environment is unique and ever-changing and

cannot be captured in a finite enumerated list, the

development and maintenance of specialized

applications by the IT department is expensive.

Traditional software development approaches

produce far better results when applied to

generally understood, anticipated, nonspecialized

processes, such as recording financial transac-

tions or generating payrolls. The environment of

the knowledge worker requires the ability to

create just-in-time solutions to address unique

situations without waiting for the IT department.

4. Millennials in the workplace—Millennials who

grew up surrounded by a digital world both at

home and at school are starting to enter the

workforce. This generation, largely shaped by the

Internet, is poised to change our work environ-

ments dramatically.
3,4,8,33

Millennials have skills

and expectations different from today’s main-

stream workforce. Unafraid of technology, ac-

customed to figuring things out on their own, and

skilled at acquiring knowledge they may need but

do not have, they are likely to create their own

solutions instead of engaging or waiting for the IT

department.

Instead of investing valuable resources trying to

document and freeze requirements, the IT depart-

ment is starting to improve worker effectiveness by

providing better tools and services to enable

workers to create their own specialized ad hoc

applications. Business users increasingly pressure

the IT department to expose functional interfaces of

enterprise applications and to make corporate data

sources—both structured (e.g., databases) and

unstructured (e.g., e-mail)—more broadly available.

These interfaces are being refactored into special-

ized consumables that can be quickly assembled

into a situational application. The IT department can

further assist the grassroots development by build-

ing and enabling more general-purpose services,

such as authentication, geocoding, and mapping.

Table 1 IT adaptation to changes occurring in the enterprise

Changes occurring in the enterprise How corporate IT must adopt

Enterprise boundaries � Increasing reliance on external sources for in-
novation
� Globalization
� Work done by SMEs not employed by the en-

terprise

� Provide tools for easy collaboration outside
enterprise boundaries
� Enable quickly formed teams to define their

own work environment and automation
needs

Pace of change � Deepened competition, escalating customer
expectations, and unexpected market shifts
� Accelerating pace of technological develop-

ments

� Muster tools and approaches to quickly iden-
tify, develop, and move forward innovative
ideas
� Immediately and seamlessly integrate ideas

and new technologies into the enterprise

Workforce � Rise in grassroots computing among both pro-
grammers and business employees
� High overall computer literacy
� Increased individualization of work environ-

ment
� Knowledge of and easy access to externally

available tools and APIs

� Actively cultivate an entrepreneurial atmo-
sphere
� Provide tools and services to enable workers

to automate their own work environments
� Open enterprise data sources and provide

building blocks that can be quickly assembled
into solutions
� Negotiate licenses to provide access to exter-

nal services
� Implement lightweight goverance for situa-

tional applications

IBM SYSTEMS JOURNAL, VOL 46, NO 4, 2007 CHERBAKOV ET AL. 17

At the same time, the role of the IT department

should include fostering an environment in which

workers can share their solutions with others. This

will encourage improvement of solutions through

social collaboration and support their adoption to

meet new and evolving business needs. The IT

department will be accountable for simplifying and

enabling collaboration across geographic areas, time

zones, and corporate boundaries.

Although each situational application is relatively

simple, the enterprise IT environment will grow in

heterogeneity and complexity. To shield users from

these intricacies, the IT department can employ

lightweight governance to prevent them from

inadvertently damaging their own solutions or the

solutions of others and to prevent the accidental

disclosing of protected assets or the violating of

agreements with third-party asset providers.

SUMMARY AND CONCLUSIONS

In this paper we have discussed the growth of

grassroots computing and presented our vision of

the changing role of corporate IT as it deals with the

challenges and capitalizes on the opportunities

arising from these trends. Corporate IT will gradu-

ally move from being the exclusive provider of

enterprise systems to an enabler and facilitator of

solutions built by self-reliant employees. We argue

that this change is a necessity. The health, compet-

itive power, and even survival of an enterprise will

largely depend on its ability to understand and

harness the power of knowledge workers who are

enabled to take responsibility for providing auto-

matic solutions to meet many of their business

needs.

CIOs have an important but challenging role to

change the enterprise culture to one that encourages

and embraces innovative thinking and individual

self-sufficiency. IBM is actively removing existing

technological and cultural barriers to support an

entrepreneurial atmosphere. SAE was designed as

an evolving experiment in enterprise-wide enable-

ment and adoption of situational applications.

Although the initial SAE release addressed some

challenges described in this paper, there is much left

to explore and discover, such as access to enterprise

data sources through automated role-based entitle-

ment systems, data provenance, strengthening

overall governance, especially in the area of

externally produced consumables, and the evolution

and introduction of mashup makers targeting

business users. The increasing acceptance of SAE by

IBM organizations, teams, and individuals and

growing interest on the part of our clients inspire us

with confidence that enterprises will benefit from

these ideas and the SAE experiment described here.

ACKNOWLEDGMENTS
For their valuable contributions, we thank David

Simmen and Mehmet Altinel for development of the

original IBM Travel Maps, Josh Woods for

development of the SAE catalog and several popular

widgets, and Robi Brunner for development of the

Nova Services framework. For their work on the EBI

framework, we are indebted to Jamshid Vayghan,

Steve Garfinkle, and their team. We also thank many

IBM colleagues (too numerous to individually name)

who either contributed to the development of SAE or

shared their experiences and ‘‘lessons learned’’ with

the situational-applications development team.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United
States, other countries, or both.

**Trademark, service mark, or registered trademark of Sun
Microsystems Inc., Facebook Inc., or Yahoo! Inc. in the United
States, other countries, or both.

CITED REFERENCES AND NOTES
1. D. Gelernter, ‘‘The Second Coming–A Manifesto,’’ Edge

Foundation, Inc., http://www.edge.org/3rd_culture/
gelernter/gelernter_p1.html.

2. ‘‘Knowledge worker,’’ a term coined by Peter Drucker in
his 1959 book, Landmarks of Tomorrow: A Report on the
New ‘‘Post-Modern’’ World (Transaction Publishers, New
Brunswick, N.J.), is one who works primarily with
information or one who develops and uses knowledge in
the workplace.

3. The term ‘‘millennials,’’ as used by Neil Howe and
William Strauss, coauthors of Millennials Rising: The
Next Great Generation (Vintage Books/Random House,
New York, 2000), describes the generation of people born
between the early 1980s and 2000. Other authors have
coined different terms to describe approximately the
same generation: Y generation, echo boomers, and
NetGeneration.

4. C. Raines, Connecting Generations, Crisp Publications,
Inc., Berkley, CA (2003).

5. Facebook (http://www.facebook.com/) is a social net-
working Web site, popular among college students.

6. CEOs are Expanding the Innovation Horizon: Important
Implications for CIOs, IBM Global Business Services,
http://www-03.ibm.com/industries/retail/doc/content/
bin/IBM_CEO_Study.pdf.

7. T. O’Reilly, What Is Web 2.0: Design Patterns and
Business Models for the Next Generation of Software,

CHERBAKOV ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 4, 200718

O’Reilly Media, Inc., http://www.oreillynet.com/pub/a/
oreilly/tim/news/2005/09/30/what-is-web-20.
html?page¼1.

8. J. Sapir, Igniting the Phoenix: A New Vision for IT, Xlibris
Corporation, Philadelphia, PA (2004).

9. E. R. McLean, ‘‘End Users as Applications Developers,’’
Proceedings of the Application Development Symposium,
Monterey, CA (1979), pp. 49–55.

10. B. A. Myers, A. J. Ko, and M. M. Burnett, ‘‘Invited
Research Overview: End-User Programming,’’ Proceed-
ings of the ACM Conference on Human Factors in
Computing Systems, Montréal, Québec, Canada (2006),
pp. 75–80.

11. M. Serrano, E. Gallesio, and F. Loitsch, ‘‘Hop, a Language
for Programming the Web 2.0,’’ Proceedings of the 21st
ACM SIGPLAN Conference on Object-Oriented Program-
ming Languages, Systems, and Applications, Portland,
Oregon (2006), pp. 975–985.

12. J. Wong and J. Hong, ‘‘Marmite: End-user Programming
for the Web,’’ Proceedings of the ACM Conference on
Human Factors in Computing Systems, Montréal, Québec,
Canada (2006), pp. 1541–1546.

13. E. J. Lerner, ‘‘Sash Simplifies the Web,’’ Think Research,
IBM Corporation, http://domino.watson.ibm.com/
comm/wwwr_thinkresearch.nsf/pages/200011_sash.
html.

14. J. Ponzo, L. D. Hasson, J. George, G. Thomas, D. Gruber,
R. Konuru, A. Purakayastha, R. D. Johnson, J. Colson,
and R. A. Pollak, ‘‘On Demand Web-Client Technolo-
gies,’’ IBM Systems Journal 43, No. 2, pp. 297–315
(2004).

15. Yahoo! Developer Network: Design Pattern Library,
Yahoo! Inc., http://developer.yahoo.com/ypatterns/.

16. programmableweb: Web 2.0 APIs and Mashups, Pro-
grammableWeb.com, http://www.programmableweb.
com/.

17. C. Traynor and M. G. Williams, ‘‘A Study of End-User
Programming for Geographic Information Systems,’’
Proceedings of the 7th Workshop on Empirical Studies of
Programmers, Alexandria, VA (1997), pp. 140–156.

18. M. LaMonica, IBM Eyes Programming for the Masses,
CNET News.com, http://news.com.com/
2100-1007_3-6065324.html.

19. QEDWiki, IBM alphaWorks Services, http://services.
alphaworks.ibm.com/qedwiki/.

20. Ad Hoc Development and Integration Tool for End Users,
IBM alphaWorks, http://www.alphaworks.ibm.com/
tech/adieu.

21. SnipSnap, Fraunhofer Institute for Computer Architecture
and Software Technology, http://www.first.fraunhofer.
de/en/snipsnap.

22. D. R. Millen, J. Feinberg, and B. Kerr, ‘‘Dogear: Social
Bookmarking in the Enterprise,’’ Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, Montréal, Québec, Canada (2006), pp. 111–120.

23. C. Anderson, The Long Tail, Wired, CondéNet Inc.,
http://www.wired.com/wired/archive/12.10/tail.html.

24. Atom Syndication Format specification, AtomEnabled
Alliance, http://www.atomenabled.org/developers/
syndication/atom-format-spec.php.

25. Pipes, Yahoo! Inc., http://pipes.yahoo.com/pipes/.

26. openkapow, Kapow Technologies, http://www.
openkapow.com.

27. Dapper, http://www.dapper.net.

28. Dr. Alpheus Bingham, InnoCentive‘s President and CEO,
Receives Business Processes Award at the Economist’s
Fourth Annual Innovation Summit, Press release, Inno-
Centive, Inc. (November 30, 2005), http://www.
innocentive.com/about/press/20051130_DrWinAward.
html.

29. Internet World Stats, Miniwatts Marketing Group, http://
www.internetworldstats.com/stats.htm.

30. April 2007 Web Server Survey, Netcraft, Ltd., http://
news.netcraft.com/archives/web_server_survey.html.

31. R. Kurzweil, The Law of Accelerating Returns,
KurzweilAI.net (2001), http://www.kurzweilai.net/
articles/art0134.html?printable¼1.

32. S. Haag, M. Cummings, D. J. McCubbrey, A. Pinson-
neault, and R. Donovan, Management Information
Systems For the Information Age, Third Edition, McGraw-
Hill Ryerson, Whitby, Ontario, Canada (2006).

33. D. Morello and B. Burton, ‘‘Future Worker 2015: Extreme
Individualization,’’ Proceedings of the Gartner Symposium
ITxpo, Orlando, FL (2005).

Accepted for publication March 22, 2007.

Luba Cherbakov
IBM Corporation, IBM CIO Office, 7850 Langley Ridge Road,
McLean, VA 22102 (lubacher@us.ibm.com). Ms. Cherbakov is
an IBM Distinguished Engineer and a member of the IBM
Academy of Technology. She leads the SAE initiative to bring
together Web 2.0 technologies, available services, and
enterprise data. In her previous assignments with IBM Global
Services, Ms. Cherbakov designed architectures and delivered
complex and first-of-a-kind solutions to a wide variety of
customer industries. She is an author or contributor to the IBM
Service-Oriented Modeling and Architecture (SOMA) method,
reference architectures, the Architectural Description
Standard, and grid computing assets. Ms. Cherbakov is a two-
time recipient of the IBM Outstanding Technical Achievement
award and a recipient of the IBM Corporate Award, the
highest technical award for unique technical contributions of
superior business value. A member of the IEEE Computer
Society, the Society of Women Engineers, and the Association
for Computing Machinery, she has an M.S. degree in computer
science from George Washington University, with a major in
software and systems and a minor in artificial intelligence and
simulation.

Andrew Bravery
IBM Hursley Laboratories, Hursley Park, Winchester,
Hampshire, SO21 2JN, United Kingdom
(andrewjf_bravery@uk.ibm.com). Mr. Bravery is a senior IT
architect on the IBM Software Group Architecture Board
Incubator Projects team. He is on a rotational assignment with
the IBM CIO Office as the chief architect of the Situational
Applications Environment, for which he recently received an
IBM Outstanding Technical Achievement award. Mr. Bravery
has worked in emerging technology fields such as object-
oriented programming, content management and portals, and
multichannel architectures. His recent focus is on simplified
programming models and Web 2.0 technologies and how they
can be applied to development in the enterprise. Mr. Bravery
is a member of the British Computer Society and has a B.S.
degree with honors in physics from the University of
Birmingham, United Kingdom.

IBM SYSTEMS JOURNAL, VOL 46, NO 4, 2007 CHERBAKOV ET AL. 19

Published online September 25, 2007.

Brian D. Goodman
IBM Corporation, IBM CIO Office, 150 Kettletown Road,
Southbury, CT 06488 (bgoodman@us.ibm.com). Mr.
Goodman is a senior software engineer and Certified IT
Architect leading an innovation team responsible for
developing emerging technology that enriches collaboration
and productivity. Recent work involves creating social
software and grassroots collaboration environments for the
enterprise. He cofounded and was the principal architect
directing technical enablement for the IBM Technology
Adoption Program (TAP), which accelerates the process of
identifying, developing, and moving innovation from the
laboratory to internal applications and then, to customer
implementation. Mr. Goodman’s expertise is in the area of
collaboration, innovation management, and high-performance
Web applications. He has authored over 33 publications and
holds 37 patent filings worldwide. He is a two-time recipient
of the IBM Outstanding Technical Achievement award. He is a
member of the IEEE Computer Society, the Association for
Computing Machinery, and the Association of Open Group
Enterprise Architects. Mr. Goodman earned a
multidisciplinary B.A. degree in computer science,
psychology, and graphic design from Hampshire College.

Aroop Pandya
IBM Corporation, IBM CIO Office, 2455 South Road,
Poughkeepsie, NY 12601 (apandya@us.ibm.com). Mr. Pandya
is a Certified IT Architect with chief architect responsibilities
in the IBM CIO Office innovation team. Currently, he is
spearheading the adoption of situational applications
development by business teams. In the past, Mr. Pandya has
led or created architectures for such projects as WorldJam,
ThinkPlacet, and Lasso/Effective Meetings, which have
become offerings through various business units. Mr. Pandya
has received the Outstanding Technical Achievement Award
and the Execute Now and Innovator Award. He has a Masters
degree in computer science from Rensselaer Polytechnic
Institute and a B.S. degree in computer science from Marist
College.

John Baggett
IBM Corporation, Research Division, 11501 Burnet Road,
Austin, TX 78758 (jbaggett@us.ibm.com). Mr. Baggett is an
advanced strategy and planning marketing manager in the
Market Insights organization. His broad experience in many
technical roles supports his current coverage of the IBM
Research portfolio across eight worldwide laboratories and all
strategy areas. His focus for the past two years has been on
programming models and tools as well as on distributed
computing. Mr. Baggett holds B.S. and M.S. degrees in
electrical and systems engineering from Oklahoma State
University, completed executive business programs at the
Graduate School of Government and Business Administration
at George Washington University and at the Colgate Darden
Graduate School of Business Administration at the University
of Virginia, and holds an advanced certificate in marketing
from the Chartered Institute of Marketing. &

CHERBAKOV ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 4, 200720

