
A configuration management
database architecture in
support of IBM Service
Management

&

H. Madduri

S. S. B. Shi

R. Baker

N. Ayachitula

L. Shwartz

M. Surendra

C. Corley

M. Benantar

S. Patel

In this paper, we present the architecture of the IBM Tivolit Change and Configuration

Management Database. Its main features include a rich data model, automatic

discovery of data for configuration items, visualization of application dependencies on

configuration items, and multicustomer support. We discuss implementation topics,

such as relationship management, composite configuration items, data federation,

reconciliation of data from different sources, a security model for multicustomer

support, and integration of change-management and configuration-management

processes.

INTRODUCTION

The Information Technology Infrastructure Library**

(ITIL**)
1,2

is a well-known set of best-practice

guidelines for the delivery of quality information

technology (IT) services. Configuration manage-

ment, problem management, incident management,

change management, service help desk, and release

management make up the basic disciplines of the

service support group of best practices.

Configuration management involves placing all

configuration-related data on a single logical repos-

itory known as the configuration management

database, or CMDB. The CMDB can be either a

unified database or a federated database, a collection

of databases that presents a single user interface. It

stores configuration items (CIs) and their attributes

and details about the relationships between CIs.

A successful CMDB implementation should satisfy

the following requirements:

1. A rich data model—The data model should

support all IT entities and their relationships.

These IT entities can be physical, such as

computers and devices, or logical, such as

software applications and business processes.

2. Automatic discovering of CI information and

tracking of changes as they happen—For the sake

of productivity, it is critical to avoid the need for

manual data entry. Large enterprises typically

�Copyright 2007 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/07/$5.00 � 2007 IBM

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 MADDURI ET AL. 441

rely on many tools and applications whose

configuration data resides in a variety of repos-

itories. As a result, a CMDB also must be able to

handle reconciliation of data originating in

different sources.

3. Visualization of application dependencies on

CIs—In order to deal with the complexity of the

modern IT environment, it is required that the

customer be aware of the ways in which the

applications that support the business depend on

various CIs. The challenge can be overcome if the

CMDB is able to visualize and display those

dependencies. We refer to this property as

‘‘application visibility.’’

4. Support for multicustomer environments—In

many deployments IT organizations have to

support multiple customers, such as customers of

a service provider or internal customers, when,

for example, lines of business are supported by

the IT organization. In such environments there

are implications for security and process control

because of the need to segregate data by customer

account.

In this paper, we present the architecture and the

main features of the IBM Tivoli* Change and

Configuration Management Database (CCMDB), a

CMDB that satisfies the preceding requirements and

supports the IBM Service Management initiative.
3,4

IBM Service Management (ISM) is an approach

designed to automate and simplify the management

of business services.
5

We discuss implementation

topics, such as relationship management, composite

CIs, data federation, data reconciliation, a security

model for multicustomer support, and integration of

change-management and configuration-manage-

ment processes. A number of products that cover

some of these functions are offered by other

vendors.
6–9

The rest of this paper is organized as follows. In the

next section, we present the CCMDB data model and

describe how relations are managed. Next we

present the CCMDB mechanisms for populating the

database with data from different data sources and

for reconciling inconsistencies in the obtained data.

In the following section we present the CCMDB

approach to visualizing application dependencies on

CIs. Next, we describe the multicustomer support

feature of CCMDB. In the next-to-last section, we

present the CCMDB approach to integrating the

change-management process and configuration-

management process. The last section contains the

conclusion.

CCMDB DATA MODEL

The data model of a database can be viewed as a

conceptual representation of the structure of the

data stored in the database. In addition to a variety

of resource types, the model should be able to

handle: (1) formal definitions of resources; these

enable the import of resource data into the CMDB;

(2) virtualized resources, both hardware and soft-

ware; (3) complex resources and their structures

made up from component parts; and (4) aggregation

of entities into composite units.

Making use of our years of experience in systems

management in various industries, we developed

the CCMDB data model, whose primary role was to

integrate data imported from Tivoli management

products. It is defined using Unified Modeling

Language** (UML**) diagrams, which enable us to

partition large models into submodels. All objects,

classes, and relationships are implemented with

Java** persistent objects. Java programmers are

thus able to manipulate objects and relationships,

which are then stored in a database designed to

support that model. The following types of con-

structs are defined in the CCMDB data model:

1. Models—Attributes, classes, and relationships

belong to models. Models define name spaces for

these entities and serve as the units of versioning.

An example of a model is Computer System.

2. Classes—Classes represent IT entities. A class

may have attributes and may participate in

relationships. Examples of classes are

ComputerSystem and OperatingSystem.

3. Attributes—Attributes are defined separately

from classes and may be reused in any number of

class definitions. An example of an attribute is

OSName (operating system name).

4. Relationships—Relationships are defined sepa-

rately from classes, and are strongly typed. Only

relationships may have references. Furthermore,

all relationships are binary. An example of a

relationship is InstalledOn (relationship be-

tween classes OperatingSystem and

ComputerSystem).

5. Data types—These are similar to data types in

programming languages. A data type defines the

set of values that can be associated with an

MADDURI ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007442

entity. An example of a data type is String

(attribute OSName is of type String).

The data model built by IBM Tivoli contains

representations for most IT entities found in a

modern IT installation and is referred to as the

Common Data Model (CDM). Currently, there are

about 1000 classes, subclasses, and relationships in

CDM, one of the richest data models for systems

management in the industry. The model Computer

System, which is the primary model for systems

management products, is a combination of hard-

ware (e.g., a machine) and software (e.g., an

operating system). In the model Computer System

both ComputerSystem and OperatingSystem objects

are considered collections of interesting entities, so

both are derived from class System. Included in this

model is the representation of the Operating System

as a hosting environment (a place where software

can run). This concept is also applied later to other

hosting environments, such as a Web application

server (hosting environment for applications).

Relationship management

Relationships specify not only a connection between

two entities—they also provide meaning (seman-

tics) for the connection. Without relationships

between data objects in a CMDB, the data store

would simply be a repository for discovered

configuration information and would not provide a

complete view of the IT environment.

Examples of relationships are: AccessedVia

(AppServerCluster AccessedVia IpAddress),

Contains (ComputerSystem Contains FileSystem),

and RunsOn (OperatingSystem RunsOn

ComputerSystem). A more comprehensive list can

be found in References 4 and 10.

Relationships can be represented either implicitly or

explicitly. Implicit relationships are built into

aggregate or composite object groups; they connect

objects of the same type, and queries involving such

relationships are more efficient. Explicit relation-

ships are separate objects, defined between the roots

of those aggregates; they can connect objects of

different types. CCMDB provides APIs (application

programming interfaces) to assist users in traversing

these relationships; most of the configuration

queries can be expressed by a single filter expres-

sion. Explicit relationships can be handled dynam-

ically during runtime and can support use cases in

which the type of the target object is unknown or is

different from the source.

Queries with implicit relationships

A computer system may have a number of operating

systems installed on it. Table 1 shows the relation-

ships defined for the ComputerSystem class in

Javadoc** format.

The InstalledOn relationship is defined as a

dynamic array of unknown size, named

OSInstalled. Each member of the dynamic array is

an OperatingSystem object. With this definition, the

CCMDB persistent objects layer creates an interme-

diary table with the key attributes from both

ComputerSystem and OperatingSystem objects.

The API consists of a single method (named find)

used to traverse and search data; it can be viewed as

a filter expressed in an SQL-like language, the Model

Query Language (MQL).
4

Most of the configuration

queries can be performed by using this single filter

expression. Under the covers, CCMDB translates the

filter into SQL (Structured Query Language) state-

ments, which take full advantage of the query

optimization capabilities provided by the database

management system.

The following are three MQL queries of varying

complexity.

1. Low complexity—What are the operating systems

installed on machine X?

SELECT OperatingSystem.*

FROM OperatingSystem, ComputerSystem

Table 1 Relationship InstalledOn in Javadoc format

OperatingSystem [] OSInstalled

contained : true no-compare : true relationship-type :
name¼‘‘com.collation.platform.model.topology.relation.InstalledOn’’
reverse¼‘‘true’’

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 MADDURI ET AL. 443

WHERE OperatingSystem.parent.guid ¼¼
ComputerSystem.guid

AND ComputerSystem.fqdn ¼¼ ‘X’

2. Moderate complexity—What computer systems

support a test environment with operating system

Microsoft Windows** XP and database product

IBM DB2 Universal Database* 8.2?

SELECT *

FROM ComputerSystem

WHERE OSRunning.OSName¼¼ ‘Windows XP’

AND exists(OSRunning.installedSoftware.

productName ¼¼ ‘DB2 8.2’)

3. High complexity—What computer systems use

IBM-manufactured hardware, are running Win-

dows XP, and have Norton Antivirus 1.6

installed?

SELECT *

FROM ComputerSystem

WHERE ComputerSystem.physicalPackage.

manufacturer ¼¼ ‘IBM’

AND OSRunning.OSName¼¼ ‘Windows XP’

AND exists(OSRunning.installedSoftware.

productName ¼¼ ‘Norton Antivirus 1.6’)

Queries with explicit relationships

Every explicit relationship contains two unique IDs:

one for the source CI and one for the target CI. To

traverse explicit relationships, CCMDB provides

method FindRelationship(). This method re-

trieves the relationship graph of a given relationship

type, starting from a specified object. The result is

an array of Relationship objects each of which

consists of a source object, a target object, and a

relationship type. The relationship graph can be

traversed forward or backward, starting from any

source, by relationship type, and terminate at any

specified level without loops.

Explicit relationships are especially useful when

either the type of the target object is not known or

more than one type is involved. For example, if we

have to determine what CIs are affected by an RFC

(request for change), it is difficult to retrieve that

information using implicit relationships. Because

the type of the CI is not known, we have to use a

query that searches each type of CI and determines if

the source of an Affects relationship is an RFC

object. The query searches iteratively until all links

are found, a resource-intensive task. The task is

much simpler if instead we use method

findRelationship().

Relationship [] affectsRelns ¼
api.findRelationships(rfcGuid,

api.CDB_DIRECTION_FORWARD,

‘‘com.collation.platform.model.topology.

relation.Affects’’,

2, null);

Here, rfcGuid is the globally unique identifier of the

RFC object, the relationship traversal follows the

defined direction (forward), the relationship type is

Affects, and the search will stop at the second level

of indirection.

Composite configuration items

In real-world enterprise systems, there are likely to

be thousands of resources with complex relation-

ships between them, and managing that complexity

becomes difficult without grouping them effectively.

Fortunately, there exist several natural grouping

patterns, such as physical machine clusters, con-

nected software systems, and collections of services.

To address this complexity issue, CCMDB provides a

means to manage a graph of closely related CIs as a

composite CI (or simply composite).
11,12

The composite is defined by a template-based filter

that acts on the entire relationship graph to produce

a specific subgraph. The template mechanism

allows customers to change the definition of a

composite based on their particular business needs.

Composites are treated the same as any other

configuration item, and they exist as distinct

elements in the CMDB database. The composite

graph is constructed by navigating relationships

based on the template definition. For example,

Server has a root ComputerSystem object, which

then includes related hardware, operating system,

software, and networking elements.

The identity of a composite is determined by the

identity of its root element, which means it must

contain all the attributes necessary, even if some of

those attributes are derived from subcomponents.

The subcomponents can be added, updated, or

removed over time. For example, a Server can be

created just with a ComputerSystem object, and an

object OperatingSystem can be added later.

MADDURI ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007444

The rules for handling composites can get quite

complex, depending on the relationship semantics;

for example, ‘‘A composite can contain other

composites’’; or ‘‘A composite can be partially

defined (does not contain all the subcomponent

parts yet).’’

Figure 1 shows the composite graph of a Web-

Sphere* Application Server. The figure shows that

the WebSphere Application Server composite con-

tains the Server composite. The advantage of the

composite concept becomes apparent when one

observes that dealing with three composites is much

simpler than handling dozens of subcomponents.

A composite instance can be created automatically

after a discovery scan or explicitly from a user

interface. A composite is created with a name, set of

attributes, and associated naming rules to uniquely

identify the composite instance. The user interface

provides the list of valid atomic CI types and

relationships that can be instantiated through

navigation of the composite containment tree.

The search methodology is a depth first traversal of

the containment tree of the root element. This

algorithm visits the node of an atomic CI v after it

has visited all other CI nodes in the subtree rooted at

v. The traversal of a tree with n nodes takes O(n)

time (the algorithm has an order of n time

complexity).

When a composite is deleted, it must be determined

which of the supporting elements are also deleted

and which are preserved but ‘‘disconnected’’ from

the now defunct composite. This is determined case

by case and depends on the semantics of the

relationships involved.

LOADING AND MAINTENANCE
In this section we discuss the processes related to

loading and maintaining the CCMDB: automated

sensor-based discovery, discovery through applica-

tion descriptors and component templates, data

federation, data import, and reconciliation.

Automatic data and relationship discovery

Continuous and automatic discovery of configura-

tion items is extremely important not only to avoid

data entry costs but also to validate the current state

of the database. CCMDB uses sensor-based discov-

ery, be it credential-less ‘‘sniffing’’ of the network

environment (i.e., collecting high-level configura-

tion information) or credential-based discovery. The

sensor is a new variation on the agent-less meth-

odology that achieves nearly the depth of a local

agent’s discovery without incurring the deployment

cost. A sensor basically emulates a user running

locally on the monitored host, just like an agent—

but only for a brief time. The sensor functions by

using secure network connections, encrypted access

credentials, and host native utilities.

The CCMDB discovery engine provides a framework

in which to schedule, distribute, coordinate, and

manage the various discovery sensors. Upon dis-

covery initiation, the sensor performs a multistep

process:

� It uses a standard protocol (SNMP, or Simple

Network Management Protocol) to determine the

IP (Internet Protocol) addresses of devices.
� If no credential is provided, it performs a shallow

discovery, which extracts the operating-system-

related information and provides a basic idea of

the active assets in the environment.
� If the operating-system credential is provided, a

secure connection is made to the host by using a

secure protocol such as SSH (Secure Shell).
� When the session is attached, it captures open

ports and the listening processes.
� Using native utilities, it discovers software and

patches installed, applications hosted, and run-

ning processes.
� Based on the collected information, it invokes

(using application credentials) other sensors to

discover application configurations, such as DB2*

or WebSphere.
� It sends the data collected to the discovery server,

terminates the SSH session, and closes the

connection.

Several instances of this process may be activated in

parallel in order to handle a large workload. After

collected data are stored in the database, a

heuristics-based background process determines the

implied relationships between CIs. For example, a

WebSphere Application Server application commu-

nicating through a specific host/port might match a

DB2 server listening to that port. By using these

implied relationships, a complete dependencies

graph is built, a vast improvement over the current

state of customer tools.

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 MADDURI ET AL. 445

WebSphereCluster

AppConfig

WebSphereSharedLibrary

WebSphereEFixInfo

WebSphereCell

WebSphereNode

SoftwareContainers

ExecutableFile

ProcessPool

AppDescriptor

SoftwareResource

ConfigFile

AppConfig

WebSphereProperty

WebSphereNamedEndPoint

WebSphereProcessDefinition

WebSphereVariable

WebSphereJ2EEApplication

AppServer
(WebSphereServer)

WebSphereWebModule

FCPort

L2Interfaces

Controller

Segment

SoftwareComponent

Figure 1
Composite CIs: template based tree pruning/filtering

PhysicalPackage

PhysicalComponent

ComputerSystem

PhysicalConnector

Fan

FileSystem MediaAccessDevice

IpAddress

L2Interfaces

RealizesExtent

StorageExtent

FileSystem
(boot)

DNS..

Server
Composite

Infrastructure
Application Composite
(e.g WebSphere
Application Server)

Hardware
Composite

SoftwareInstallation

SoftwareModule

IpNetworkIpInterface

ProtocolController

LogicalContent

Sensor

PhysicalLink

PhysicalFrame
PowerSupply

OperatingSystem

SoftwareInstallation

MADDURI ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007446

Application descriptors are simple XML (Extensible

Markup Language) files that are added to applica-

tion modules at the time of packaging. These

application descriptors allow the discovery engine to

automatically create and maintain business service

groupings (a grouping used to form a higher-level

aggregated object).

The discovery engine can also discover a business

service by identifying component signatures and

designating matching customer components as

‘‘belonging to’’ a given business service. The

component templates specify the unique signature of

the components by using combinations of items

such as program names, ports, and environment

variables for classification.

The following are the main features of sensor-based

discovery:

� Sensors can retrieve as much data about applica-

tions as is necessary.
� Sensors can work in conjunction with existing

legacy agents, using the agents as just another

data source.
� Sensors leverage remote management protocols to

gather application- and platform-specific data.
� Sensors are easy to deploy and manage, with or

without credentials.
� Sensors have limited impact on the target ma-

chine, consuming typically less than 1 percent of

CPU processing when active.
� Sensors provide a flexible end-to-end view of

applications and configurations and their depen-

dencies.

Data federation
Consolidating data into a single physical data store

has been the most commonly used way to achieve

fast, highly available, and integrated access to

related information.
13,14

Consolidation is often

justified by performance or by the consistency

achievable with a single master copy. Federation, on

the other hand, makes distributed data appear as if it

were a single source, regardless of the location,

format, and access language. Different from the data

consolidation approach, federation does not physi-

cally bring data into the central repository. CCMDB

combines the strengths of both data consolidation

and data federation. The underlying federation

technology is the IBM Information Integrator tech-

nology using DB2 as the federation engine.
13–16

After the external data sources are configured, they

can be queried and processed through DB2 SQL.

These external sources can be relational data sources,

such as DB2, Microsoft** SQL Server, Oracle Data-

base 10g, and Sybase Open Server, and nonrelational

data sources, such as XML documents, Excel** files,

Web Services, IBM WebSphere MQ, VSAM* (virtual

storage access method) data sets, and IBM IMS*

(information management system) databases.

Figure 2 illustrates the CCMDB data integration

architecture. The CI and relationship information

are retrieved from their location in storage, either

the physical data store or the logical data store. For

data federation, we leverage the IBM Information

Integrator technology to integrate data from hetero-

geneous data sources without requiring all the data

to be copied centrally. CCMDB also provides data

consolidation services to move data physically into

the database. The data consolidation services

include IDML import and discovery sensors.

Data import with IDML

To enable data import into CCMDB from virtually

any source, IBM developed the Identity Markup

Language, or IDML.
4

An adapter program extracts

data from a source application such as Tivoli

Provisioning Manager (TPM) or Tivoli Configura-

tion Manager (TCM) and produces IDML files. These

files are bulk loaded into CCMDB. In many cases, a

source might already have an export format that can

be used with a simple XML translation.

Reconciliation

Because CI information may originate in more than

one source and because CI records from different

sources are usually not identical, a process of

reconciliation is necessary. The CCMDB reconcilia-

tion for a CI first requires the one-time task of

developing naming rules in which a set of attributes

that could identify the CI is specified, along with a

priority for each attribute set. The major parts of a

naming rule are:

� Class—the class used to name instances; for

example, ComputerSystem.
� Superior class—a class larger than the given class

(if it exists); for example, an OperatingSystem

class named as a subordinate to the

ComputerSystem class; its name includes that

superior name.
� Naming attribute—a character string that denotes

an attribute which could identify the CI.

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 MADDURI ET AL. 447

� Priority—a non-negative integer that signifies the

priority in which naming attributes will be used to

identify a CI.

The following are the naming rules for the

ComputerSystem class:

0¼‘signature’

1¼‘manufacturer,model,serialNumber’

2¼‘systemBoardUUID’

3¼‘primaryMACAddress’

4¼‘hostSystem,VMID’

5¼‘managedSystemName’

The second rule, for example, is associated with

priority 1 and naming attribute ‘manufacturer,mod-

el,serialNumber’.

When creating an instance of a ComputerSystem

class, the following steps are performed:

� Check that the request includes at least one

naming attribute. The request is rejected if an

insufficient number of attributes is provided or if

the parent object of that instance does not exist.

� Generate the Type 3 GUID (globally unique

identifier, based on IETF [Internet Engineering

Task Force] RFC 4122),
17

according to the priority

and the name string generated from the rules. If

the parent is specified in the naming rule, obtain

the naming attributes from the parent.

� Match any existing CI instance with the same

GUID or alias.

CCMDB

Figure 2
CCMDB data integration architecture

Portal Framework Custom QueriesPredefined Reports

Data level Security

CMDB APIs

Data Federation ServiceData Consolidation Service

Phyical Data Store

Storage
Devices

Logical Data Store

Structured
Data Source

Nonstructured
Data Source

API
Data Source

Hardware
devices:
disks,
processors,
etc.

Network
devices:
routers,
bridges,
hubs

Software:
operating systems,
applications,
middleware,
subcomponents

 Management
 Interfaces
(SNMP,
 WMI,
 APIs,
 etc.)

MADDURI ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007448

� It is still possible that multiple copies of a CI are

not matched until more information is provided.

At that point, duplicates are merged and aliases

are updated.

VISUALIZATION OF APPLICATION DEPENDENCIES

Many of today’s IT services and applications are

built on an infrastructure that consists of thousands

of components. Most customers in the process of

implementing an IT service management initiative

are looking for a solution that addresses this

complexity. It is imperative that the customer be

able to react quickly in case of problems, for which

it is required that the customer be aware of the ways

in which the applications that support the business

depend on various CIs. Consequently, it is necessary

that the CCMDB provide visualizations of such

application dependencies. In addition, these visual-

izations should be integrated with other business-

related transformations, such as implementations of

service-oriented architectures or business system

dashboards.

The CCMDB visualization of application dependen-

cies is illustrated in Figure 3. The display contains a

wide variety of software components running on

various application server platforms such as IBM

WebSphere, Apache** HTTP Server, and BEA

WebLogic Server**. All the discovered CIs and the

relationships between them can be viewed as a

graph. Each node in this graph represents an

infrastructure software component (middleware) in

the enterprise server environment. The infrastruc-

ture software includes application servers, Web

servers, databases, and various system services such

as the Domain Name Service (DNS) and the

Lightweight Directory Access Protocol (LDAP). The

edges (connecting lines) of the graph represent the

Figure 3
Visualization of application dependencies

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 MADDURI ET AL. 449

relationships between the components. In this

example, there are three Sun ONE Web Servers**

that depend on a WebSphere Application Server.

The WebSphere Application Server depends in turn

on an Oracle database for its database services.

CCMDB also provides visualizations of business

services and their dependencies on business appli-

cations (Figure 4). For example, Order Entry is a

business service that can be delivered by integrating

application components from the Order Manage-

ment, Inventory Management, and Billing business

applications. Users can create business services to

simplify the infrastructure by combining large

collections of individual components into groups.

MULTICUSTOMER SUPPORT

IT service providers rely on the CMDB as a major

component in support of IT service management

processes. These providers often face the challenge

of integrating multiple worldwide operations onto

the same physical infrastructure. To accomplish this

they have to implement data segregation and access

control, so that an application can be deployed once

and shared among many customers. When the same

application is configured to serve more than one

customer, we distinguish between multicustomer

support and multitenant support.

Multicustomer—A service management application

with multicustomer functionality is one that allows

a service provider to manage data and services on

behalf of multiple customers with the appropriate

data segregation between customers. In an applica-

tion implementing this functionality, only the

service provider has access and control over

managed data and services, and only the people

employed by the service provider have access to it.

Figure 4
Visualization of dependencies of business services on business applications

MADDURI ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007450

Multitenant—Multiple customers access a single

instance of the service management solution with

full access to the data and services that they manage

and the appropriate data segregation in place to

keep them from accessing data and services that

they do not manage. In an application implementing

this functionality, there is still a service provider,

but its role is primarily to mediate the service

requests between customers and maintain the core

application functionality.

Indications are that customers would prefer a

multitenant solution if configurability and security

could be ensured at the same level as in the single-

tenant solution. To provide multicustomer support a

CMDB must have built-in configurability in order to

allow the tailoring of the solution to meet the

business needs of each customer. With well-

designed multicustomer support, the service pro-

vider can

� leverage a common pool of human resources,
� leverage common libraries (software portfolios,

etc.),
� segregate customer data for improved security,
� generate reports that aggregate data for groups or

all customers, and
� provide management personnel real-time key

performance indicators when these are obtained

by aggregating data for a group of customers.

The CCMDB multicustomer approach reduces the

cost and management burden on the supplier, and

the savings can be passed on to the customer.

Figure 5 illustrates the CCMDB multicustomer

security model.
18

The solution is built upon the base

ITIL CMDB security architecture with an option to

create additional access roles and permissions. The

roles and permissions could be added and assigned

to a user at runtime.

Roles and permissions

To support a service provider in multicustomer

environments, we must adapt to the service

provider organization and its unique processes. This

translates into a different collection of roles and

permissions defined for each Customer or Account.

In addition, other processes can have roles and

permissions beyond those in configuration man-

agement. Configuration manager is one of the roles

identified by ITIL. In a multicustomer CMDB the role

of customer configuration manager has a scope of

Customer with responsibility for the customer’s

configuration-management process and the ability

to manage other roles, permissions, and CIs for the

customer. The customer configuration librarian is an

owner of the Account CIs and manager of all master

copies of the Account CIs.

Data segregation in configuration management uses

the notion of AccessCollections, which

are secured containers of groups or individual

CIs. Any administrative unit (customer, organi-

zation, division) could be associated with an

AccessCollection, which contains the CIs related

to the unit. Allocating a CI to any administrative unit

is done by adding the reference of the CI to the

AccessCollection for this unit. To represent the

notion of account ownership of resources, for

example, the relationship type Owns has been

created. The relationship type Uses represents a

potentially shared usage of a CI.

In Figure 5, Customer, Account, ServiceProvider,

Organization, workGroup, Person, Role, and

AccessCollection are all administrative units.

They are interrelated, with a predefined set of

relationships to provide this support. Although in

general a person may have many roles and each role

may have access to certain AccessCollections (of

CIs), sometimes the access to a collection by a

person has to be restricted to only when he or she

acts in a specific role. This is accomplished by a

Person-In-Role object. The assignment of

Person-in-Role to support a set of CIs is done

through the association of Person-in-Role to the

AccessCollection that has those CIs as members.

The AccessCollections are protected by the Secu-

rity Manager, which is a pluggable component in the

CCMDB. The assignment of AccessCollections to

user-role pairs, as well as roles to permissions, is

stored in the security policy. At any time the CMDB

database and the security policy can be updated to

include new roles, permissions, users, and access

collections. The approach is designed to balance

centralized security management with performance

of the query results.

To configure a limited multitenant solution, the role

of super configuration manager should be created

with the permissions to create Customer/Account

and set up CCMDB security. The person assigned to

this role has the responsibility to create Customer/

Account, allocate CIs for these units, and assign

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 MADDURI ET AL. 451

People to Customers, Accounts, and

Organizations.

INTEGRATED CHANGE AND CONFIGURATION

PROCESSES

Deriving full benefits from a CMDB requires that the

change-management process and the configuration-

management process be tightly integrated. In

today’s IT environment, having a standard process

for managing changes to the IT infrastructure and IT

services is essential. It is hard to imagine how one

could manage the adverse effects of change without

maintaining an accurate representation of what the

configuration should be (we refer to it as the

authorized environment). Conversely, it is hard to

imagine how one could maintain an accurate

representation of the authorized environment with-

out a process to manage the changes in the

environment. This is why ITIL states, ‘‘Ideally,

Change Management should be regarded as an

integral part of a Configuration Management sys-

tem.’’
1

In fact, configuration management and

change management are treated separately in ITIL

only because historically some organizations have

implemented change management without a full

configuration-management process to support it.

However, ITIL recommends that these two pro-

cesses be planned and implemented together.
1

Managed
Service 1

Managed
Service 2

Person-in-
Role Laura
(Cust IBM
person)

Person-in-
Role Dave
(Cust IBM
person)

Person-in-
Role Liz

Person-in-
Role James

Organization/
Service
Agreement
CCC
(internal to
Account)

Organization/
Service
Agreement
123
(internal to
Customer)

Managed
SP Service

workGroup
CC

Figure 5
CCMDB multicustomer security model

Customer
IBM

Account
IBM NA Customer

XYZ

Account
AAA
EMEA

Account
AAA -NA

Account
XYZ-Asia

Account
XYZ-
EMEA

ITSM LDAP
(customer
specific)

Default
Access
Collection

Organization/
Service
Agreement
XYZ
(provided by
other
Customer)

Customer
AAA

Service
Provider

workGroup
IA

workGroup
CC

1:
2:
3:
4:

AssignedTo
federates
memberOf
owns

5:
6:
7:

provides
supports
uses

1
1

2

2

2

33

3

3
3

4

4

5

5

5

6

6

7

7
2

4

7 1

KEY:

MADDURI ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007452

These processes must handle the complexities of a

large multicustomer environment, which include a

large infrastructure and multicustomer support.

Change management and configuration manage-

ment represent the main control processes for the IT

environment. Change management relies on con-

figuration management for accurate information on

the authorized view of the environment. Configu-

ration management relies on change management

for information on planned and completed changes

to the environment so that an accurate representa-

tion of the environment is maintained. According to

ITIL, all changes to the environment, other than

standard service requests, should be under the

control of change management. CCMDB is one of

the first products in the industry that fully integrates

change and configuration management.

The main features of the CCMDB integration of

configuration management and change management

are listed next, and we discuss them in the rest of

this section.

� Manage relationships between an RFC and each of

the affected CIs
� Represent CIs and their protected life-cycle states

and transitions by using templates for custom-

ization

Security Manager

AccessCollection

AccessCollection

AccessCollection

AccessCollection

AccessCollection

AccessCollection

AccessCollection

Database

Oracle

Logic

DB2

SQLServer

Applications

Metadata

Operating System

Networking

Physical

Devices

Process

Security

Computer System

J2EE

Virtual IP

Apache
IIS
IPlanet

Core

Admin

Lotus

CiscoRouter

CiscoSwitch

Order entry

Procurement

WebSphere

WebSphere

WebSphere

JBoss

DB2

Oracle

SAP

Siebel

AIXserver

AIXserver

Win2KServer

Win2KServer
Win2KServer

Win2KServer

Win2KServer

4

4

4

6

6

6

6

6

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 MADDURI ET AL. 453

� Create and maintain different versions of CI

(authorized, actual, gold standard, baseline, etc.)
� Enforce change control on CI by the Control CI

subprocess (explained later)
� Remediate variances between actual and autho-

rized CI records
� View authorized changes to CIs on the attributes

under change control

The goal of change management is to minimize the

adverse effects of changes to the environment. A

change is defined as any installation or alteration of

hardware, system and application software, proce-

dures, and environmental facilities that adds to,

removes from, or modifies the service delivery

environment. Change requests can be initiated by an

administrator or by an automated service support

process.

The change-management process maintains infor-

mation in the CMDB on each RFC throughout its life

cycle. The information includes relationships be-

tween the change and the affected CIs. It is essential

that this information be updated by using the

configuration-management process.

Configuration management is the process for iden-

tifying, defining, and maintaining information on

the IT components and services of an IT system.

Configuration management also maintains informa-

tion on how those components relate to one another

and to service-support (part of ITIL) process

artifacts, such as change records. This logical

representation of the environment is used by the

other ITIL processes in service support and service

delivery. Thus, configuration management includes

as subprocesses: identify CI, control CI, verify and

audit CI, and report status of CI.

According to ITIL, configuration management

should ensure that no item is changed, added, or

deleted ‘‘without appropriate controlling documen-

tation.’’
1

Prior to updating the life-cycle state of an

RFC to ‘‘Closed,’’ the change process should ensure

that the environment and the CMDB have been

updated appropriately. For some low-level changes,

it may be difficult or impossible to know in advance

how a change will manifest itself in the environment.

As part of the control-CI subprocess, every

configuration item has a life-cycle state associated

with it. The life-cycle state is used for tracking

purposes and should be kept current and made

available for planning, decision making and man-

aging changes. Example life-cycle states are:

ordered, received, in acceptance test, live,

under change, withdrawn, and disposed. Transition

between life-cycle states must be managed so that

an item is moved only to another legal state. The

history of these transitions is also kept and available

for inspection.

Given a state transition diagram, a subset of the CI

life-cycle states may be designated as protected,

affording a greater degree of control over the way

CIs can be modified. The designation implies that

changes in this state must be associated with a

change record.

The CI information in CCMDB can have several

versions, each version representing a different

aspect of the CI. This feature is often overlooked in

the industry. The CI versions in a CMDB are the

authorized version, the baseline version, the actual

(discovered or audited) version, and the planned

version.

The controlled attributes of a CI (i.e., the ones

amenable to change) and its life-cycle states and

transitions should be implemented using templates,

which are mapped to data model entities in the

CMDB. Data from discovery and other data entry

processes provide the actual data, while the

change-management process provides the autho-

rized data.

A configuration baseline is a snapshot, at a specific

instant, of a set of authorized configuration items.

The concept is useful for documentation, recovery,

and especially comparison. Baselines have a name

and time stamp associated with them, and custom-

ers can create new ones as necessary.

A similar concept used in many service provider

environments is the gold standard. A gold standard

is a set of CI records that serve as a model or

template for the way in which other sets of CIs

should be configured. Relationships between a gold

standard and any number of sets of CIs can be

created to establish applicability of a gold standard

to those sets. The gold standards are used by the

configuration-management verify-and-audit-CI pro-

cess for assessing compliance with established

policy. For example, an organization might create a

MADDURI ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007454

gold standard to represent a typical UNIX** server

configuration, then create relationships between the

individual UNIX servers in the network and this gold

standard. When the verify-and-audit-CIs process is

executed on those UNIX servers, a report of any

compliance discrepancies between the gold standard

and the associated servers is generated.

Transition between life-cycle states must be man-

aged so as to ensure that, from a particular state, a CI

is moved to only another legal state. As part of the

configuration-management process, this life-cycle

transition should include attribute-level semantic

validation. This validation capability recognizes that

there are life-cycle states in which a greater degree of

control is required than in other states. Because a CI

record is a reflection of all changes that have taken

place on a CI, it maintains a list of changes to that

life-cycle state. For more details on CI life-cycle state

management refer to Reference 19.

CONCLUSION

In this paper, we present the architecture and main

features of the IBM Tivoli Change and Configuration

Management Database (CCMDB). We describe the

main features, which include a rich data model,

automatic discovery and maintenance, visualization

of application dependencies in CIs, multicustomer

support, and integrated change-management and

configuration-management processes. We also de-

scribe implementation aspects, such as relationship

management, composite objects, sensor-based dis-

covery, data federation support, inline reconcilia-

tion, and multicustomer security issues. This design

was implemented in the CCMDB product release 1.1

(released June 2006).

A CMDB is clearly of great value to an IT

organization. It is also the foundation upon which

other IT processes, and many business processes,

are built. Businesses now have the information

required to analyze the business environment,

which leads to improvements in efficiency and

effectiveness. CCMDB provides the technology

required to enable business compliance, business

process intelligence, reporting for security markets,

and financial controls.

ACKNOWLEDGMENTS
For lucidly articulating their requirements and for

guiding us to better design solutions, we thank the

many customers who contributed to this work. We

also thank Yan Or, Krishna Garimella, Johan Casier,

Shashank Joshi, Anand Sankaran, Girard Chandler,

Robert Nielsen, Ling Tai, Ben Jeffcoat, Jogeswar

Challapalli, and Jinfang Chen for their contribution to

the design and implementation of CCMDB. We thank

management for their extraordinary support: William

Kopkind, Vinu Sundaresan, Mike Mallo, Jim Stubley

and Craig Love. For helping us make use of the

database federation technology, we thank Eileen Lin,

Mei-Mei Fu, and the IBM Information Integrator

development and management teams.

*Trademark, service mark, or registered trademark of
International Business Machine Corporation in the United
States, other countries, or both.

**Trademark, service mark, or registered trademark of the
United Kingdom Office of Government Commerce, Object
Management Group, Inc., Sun Microsystems, Inc., Microsoft
Corporation, Apache Software Foundation, BEA Systems, Inc.,
or the Open Group in the United States, other countries, or
both.

CITED REFERENCES
1. Introduction to ITIL, The Stationery Office, Office of

Government Commerce, United Kingdom (2005), http://
www.itil.org.uk.

2. Foundations of IT Service Management Based on ITIL, J.
Van Bon, M. Pieper, and A. van der Verrn, Editors, ITSM
Library, Van Haren Publishing (November 2006).

3. IBM Tivoli Change and Configuration Management
Database (CCMDB), IBM Corporation, http://
www-306.ibm.com/software/tivoli/products/ccmdb/.

4. IBM Tivoli CCMDB Developer Reference Guide (September
2006—available from the author).

5. D. Lindquist, H. Madduri, C. J. Paul, and B. Rajaraman,
‘‘IBM Service Management Architecture,’’ IBM Systems
Journal 46, No. 3, 423–440 (2007, this issue).

6. BMC Software, Inc., http://www.bmc.com/.

7. Relicore Clarity, Symantec Corporation, http://www.
symantec.com/enterprise/support/overview.
jsp?pid¼53294.

8. Mercury Application Mapping, Hewlett-Packard Devel-
opment Company, L.P. http://www.mercury.com/us/
products/business-availability-center/
application-mapping/works.html.

9. nLayers, EMC Corporation, http://www.nlayers.com/.

10. S. Patel and S. S. B. Shi, Managing Relationships with
Tivoli Configuration Management Database (CMDB),
IBM CMDB White Paper (October 2006, available from
the author).

11. N. Ayachitula, L. Shwartz, K. Garimella, and Y. Or,
Methods and Apparatus for Composite Configuration Item
Management in Configuration Management Database,
U.S. Patent No. 920,060,467 (pending).

12. N. Ayachitula, L. Shwartz, M. Surendra, K. Garimella,
and Y. Or, Methods and Apparatus for Automatically
Creating Composite Configuration Items in a

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 MADDURI ET AL. 455

Configuration Management Database, U.S. Patent No.
920,060,469 (pending).

13. A. Betawadkar-Norwood, E. Lin, and I. Ursu, ‘‘Using Data
Federation Technology in IBM WebSphere Information
Integrator: Data Federation Usage Examples and Perfor-
mance Tuning,’’ developerWorks, IBM Corporation,
http://www-128.ibm.com/developerworks/db2/library/
techarticle/dm-0507lin/.

14. L. M. Haas, E. T. Lin, and M. A. Roth, ‘‘Data Integration
through Database Federation,’’ IBM Systems Journal 41,
No. 4, 578–596 (2002).

15. A. Betawadkar-Norwood, E. Lin, and I. Ursu, ‘‘Using Data
Federation Technology in IBM WebSphere Information
Integrator: Data Federation Design and Configuration,’’
developerWorks, IBM Corporation, http://www-128.ibm.
com/developerworks/db2/library/techarticle/dm-0506lin/.

16. Data Federation with IBM DB2 Information Integrator,
IBM Redbook SG24-7052, IBM Corporation, http://
publib-b.boulder.ibm.com/abstracts/sg247052.
html?Open.

17. A Universally Unique IDentifier (UUID) URN Namespace,
IETF Network Working Group RFC 4122, http://www.
ietf.org/rfc/rfc4122.txt.

18. L. Shwartz, G. Aikens, N. Ayachitula, M. Benantar, K.
Garimella, H. Madduri, M. Surendra, S. Weinberger, and Y.
Or, Method and System for Segmenting Data and Role Based
Access Control for Multi-Account Infrastructure Manage-
ment, United States Patent No. 920,060,468 (pending).

19. C. Ward, V. Aggarwal, M. Buco, E. Olsson, and S.
Weinberger, ‘‘Integrated Change and Configuration
Management,’’ IBM Systems Journal 46, No. 3, 459–478
(2007, this issue).

Accepted for publication March 15, 2007.

Hari Madduri
IBM Tivoli Software, 11501 Burnet Road, Austin, TX 78758
(madduri@us.ibm.com). Dr. Madduri started his career as a
System/370t assembler programmer/analyst, obtained a Ph.D.
degree in computer science in 1985 from the University of
Wisconsin-Madison. Since joining IBM in 1990, he played
various lead technical and management roles in object-oriented
systems (DSOM), data mining (chief architect of data-mining
products), e-commerce hubs, electronic data interchange, and
IBM Global Services service development (e.g., UMI). In IBM
Tivoli, he contributed to early ITIL process prototypes, which
led to the current IT service management strategy. He is
currently lead architect for the CCMDB product. Dr. Madduri
taught undergraduate and graduate classes in programming
languages, compilers, and operating systems at University of
Wisconsin-Madison, St. Thomas University (Minneapolis), and
University of Hyderabad (India). He published over 20 papers
and authored 20 United States patents.

Shepherd S. B. Shi
IBM Tivoli Software, 11501 Burnet Road, Austin, TX 78758
(sshi@us.ibm.com). Dr. Shi is a Senior Technical Staff
Member. He has a B.S. degree in computer science from
National Taiwan University, an M.S. degree in computer
science from Stanford University, and a Ph.D. degree in
computer science from the University of Illinois at Urbana-
Champaign. Since joining IBM in 1990, Dr. Shi has led the
architecture and design work of a number of major projects,
such as DB2 Connection Services, IBM LDAP directory, DCE,
DFSe WebSecure, and the Tivoli Security Management

product suite. Dr. Shi has more than 30 patents and was
recognized as a Tivoli Master Inventor in 2006.

Ron Baker
IBM Tivoli Software, 1516 Westfall Circle, Sanford, NC 27330
(rbbaker@us.ibm.com.) Mr. Baker started his career in the
aerospace industry, designing and writing numerical
programs for engineering graphics and robotics applications.
As relational databases began to appear, Mr. Baker was one of
their early users in large-scale financial and configuration
management applications at Boeing. After several years, he
moved into research on database parallelism and integrity
constraints at Amoco’s Computing Research Center, followed
by work at Northrop Grumman as an engineering
configuration database specialist, where he addressed
transitive closure problems like bill-of-material processing and
reconciliation between configurations. It is also where he
gained experience with statistical process control in
engineering and manufacturing systems. Mr. Baker joined
IBM in 1989 to work on object-oriented language integration
with relational databases, an area in which he holds several
patents. Since then, he has worked on management products
dealing with unstructured documents, search engines, and
Internet services. He was the lead CMDB Architect for Tivoli
Software, and is now a Senior Technical Staff Member
responsible for overall data integration initiatives and
advanced analysis reporting.

Naga Ayachitula (Arun)
IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (nagaaka us.ibm.com). A senior
software engineer currently involved in computing services
and IT service management, Naga Ayachitula has developed
innovative approaches to automating compliance, network
admission control and remediation in the IBM Integrated
Security Solution for Cisco Networks. He has over 15
publications and 15 patents pending.

Laura Shwartz
IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (lshwart@us.ibm.com). An advisory
software engineer with research experience in mathematics,
computer science, and software design and development, the
research interests of Ms. Shwartz include service management,
autonomic computing, workload management and
provisioning, data modeling, and non-commutative
probability. She is working toward a Ph.D. degree in
mathematics.

Maheswaran Surendra
IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (suren@us.ibm.com). Dr. Surendra
received a Ph.D. degree in 1991 from the University of
California at Berkeley and has been at IBM Research since that
year. He has worked in technical areas ranging from
semiconductor manufacturing to software systems
management, and most recently in IT service delivery. He is
currently a senior manager in the Services organization in IBM
Research, and his focus is the application of IT service
management technologies in service delivery operations.

Carole Corley
IBM Software Group, Tivoli Division, 11501 Burnet Road,
Austin, Texas 78758 (ccorley@us.ibm.com). Carole Corley is
an advisory software engineer specializing in management
application security. She has a B.S. degree in engineering
science and an M.S. degree in aerospace control systems, both
from the University of Florida.

Messaoud Benantar
IBM Software Group, 11501 Burnet Road, Austin, TX 78758
(mbenanta@us.ibm.com). A senior software engineer,

MADDURI ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007456

Published online July 12, 2007.

Messaoud Benantar works on the security services of the
WebSphere Application Server platform. His interests are in
applications, systems, and network security. Dr. Benantar has
a diplome d’ingenieur from the University of Science and
Technology in Algiers, Algeria, and M.Sc and Ph.D. degrees
from Rensselaer Polytechnic Institute in Troy, New York.

Sushma Patel
IBM Tivoli Software, 11501 Burnet Road, Austin, TX 78758
(patelsb@us.ibm.com). A software engineer, Ms. Patel works
on the CCMDB portion of the ITSM portfolio; her development
work is concentrated on the APIs, providing the command-
line, RMI, and SOAP interfaces, as well as developing
discovery sensors and working on relationships. She has a
B.S. degree in computer science and an M.S. degree in science
and technology commercialization from the University of
Texas at Austin; she has submitted several patents and given
presentations at conferences on various topics involving
innovative teaming and collaboration. &

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 MADDURI ET AL. 457

