A configuration management
database architecture in
support of IBM Service

Management

H. Madduri
S. S. B. Shi
R. Baker

N. Ayachitula
L. Shwartz
M. Surendra
C. Corley

M. Benantar
S. Patel

processes.

INTRODUCTION

The Information Technology Infrastructure Library* *
(ITIL* *)1’2 is a well-known set of best-practice
guidelines for the delivery of quality information
technology (IT) services. Configuration manage-
ment, problem management, incident management,
change management, service help desk, and release
management make up the basic disciplines of the
service support group of best practices.

Configuration management involves placing all
configuration-related data on a single logical repos-
itory known as the configuration management
database, or CMDB. The CMDB can be either a
unified database or a federated database, a collection
of databases that presents a single user interface. It
stores configuration items (CIs) and their attributes
and details about the relationships between Cls.

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

In this paper, we present the architecture of the IBM Tivoli® Change and Configuration
Management Database. Its main features include a rich data model, automatic
discovery of data for configuration items, visualization of application dependencies on
configuration items, and multicustomer support. We discuss implementation topics,
such as relationship management, composite configuration items, data federation,
reconciliation of data from different sources, a security model for multicustomer
support, and integration of change-management and configuration-management

A successful CMDB implementation should satisfy
the following requirements:

1. A rich data model—The data model should
support all IT entities and their relationships.
These IT entities can be physical, such as
computers and devices, or logical, such as
software applications and business processes.

2. Automatic discovering of CI information and
tracking of changes as they happen—For the sake
of productivity, it is critical to avoid the need for
manual data entry. Large enterprises typically

©Copyright 2007 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/07/$5.00 © 2007 IBM

MADDURI' ET AL.

441

rely on many tools and applications whose
configuration data resides in a variety of repos-
itories. As a result, a CMDB also must be able to
handle reconciliation of data originating in
different sources.

3. Visualization of application dependencies on
CIs—In order to deal with the complexity of the
modern IT environment, it is required that the
customer be aware of the ways in which the
applications that support the business depend on
various CIs. The challenge can be overcome if the
CMDB is able to visualize and display those
dependencies. We refer to this property as
“application visibility.”

4. Support for multicustomer environments—In
many deployments IT organizations have to
support multiple customers, such as customers of
a service provider or internal customers, when,
for example, lines of business are supported by
the IT organization. In such environments there
are implications for security and process control
because of the need to segregate data by customer
account.

In this paper, we present the architecture and the
main features of the IBM Tivoli* Change and
Configuration Management Database (CCMDB), a
CMDB that satisfies the preceding requirements and
supports the IBM Service Management initiative.>*
IBM Service Management (ISM) is an approach
designed to automate and simplify the management
of business services.” We discuss implementation
topics, such as relationship management, composite
CIs, data federation, data reconciliation, a security
model for multicustomer support, and integration of
change-management and configuration-manage-
ment processes. A number of products that cover
some of these functions are offered by other
vendors.””

The rest of this paper is organized as follows. In the
next section, we present the CCMDB data model and
describe how relations are managed. Next we
present the CCMDB mechanisms for populating the
database with data from different data sources and
for reconciling inconsistencies in the obtained data.
In the following section we present the CCMDB
approach to visualizing application dependencies on
CIs. Next, we describe the multicustomer support
feature of CCMDB. In the next-to-last section, we
present the CCMDB approach to integrating the
change-management process and configuration-

442 MADDURI ET AL

management process. The last section contains the
conclusion.

CCMDB DATA MODEL

The data model of a database can be viewed as a
conceptual representation of the structure of the
data stored in the database. In addition to a variety
of resource types, the model should be able to
handle: (1) formal definitions of resources; these
enable the import of resource data into the CMDB;
(2) virtualized resources, both hardware and soft-
ware; (3) complex resources and their structures
made up from component parts; and (4) aggregation
of entities into composite units.

Making use of our years of experience in systems
management in various industries, we developed
the CCMDB data model, whose primary role was to
integrate data imported from Tivoli management
products. It is defined using Unified Modeling
Language** (UML**) diagrams, which enable us to
partition large models into submodels. All objects,
classes, and relationships are implemented with
Java** persistent objects. Java programmers are
thus able to manipulate objects and relationships,
which are then stored in a database designed to
support that model. The following types of con-
structs are defined in the CCMDB data model:

1. Models—Attributes, classes, and relationships
belong to models. Models define name spaces for
these entities and serve as the units of versioning.
An example of a model is Computer System.

2. Classes—Classes represent IT entities. A class
may have attributes and may participate in
relationships. Examples of classes are
ComputerSystem and OperatingSystem.

3. Attributes—Attributes are defined separately
from classes and may be reused in any number of
class definitions. An example of an attribute is
0SName (operating system name).

4. Relationships—Relationships are defined sepa-
rately from classes, and are strongly typed. Only
relationships may have references. Furthermore,
all relationships are binary. An example of a
relationship is InstalledOn (relationship be-
tween classes OperatingSystem and
ComputerSystem).

5. Data types—These are similar to data types in
programming languages. A data type defines the
set of values that can be associated with an

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

Table 1 Relationship InstalledOn in Javadoc format

OperatingSystem |]

OSInstalled
contained : true no-compare : true relationship-type :
name="com.collation.platform.model.topology.relation.InstalledOn”

reverse="‘true”

entity. An example of a data type is String
(attribute 0SName is of type String).

The data model built by IBM Tivoli contains
representations for most IT entities found in a
modern IT installation and is referred to as the
Common Data Model (CDM). Currently, there are
about 1000 classes, subclasses, and relationships in
CDM, one of the richest data models for systems
management in the industry. The model Computer
System, which is the primary model for systems
management products, is a combination of hard-
ware (e.g., a machine) and software (e.g., an
operating system). In the model Computer System
both ComputerSystem and OperatingSystem objects
are considered collections of interesting entities, so
both are derived from class System. Included in this
model is the representation of the Operating System
as a hosting environment (a place where software
can run). This concept is also applied later to other
hosting environments, such as a Web application
server (hosting environment for applications).

Relationship management

Relationships specify not only a connection between
two entities—they also provide meaning (seman-
tics) for the connection. Without relationships
between data objects in a CMDB, the data store
would simply be a repository for discovered
configuration information and would not provide a
complete view of the IT environment.

Examples of relationships are: AccessedVia
(AppServerCluster AccessedVia IpAddress),
Contains (ComputerSystem Contains FileSystem),
and RunsOn (OperatingSystem RunsOn
ComputerSystem). A more comprehensive list can
be found in References 4 and 10.

Relationships can be represented either implicitly or
explicitly. Implicit relationships are built into
aggregate or composite object groups; they connect
objects of the same type, and queries involving such
relationships are more efficient. Explicit relation-

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

ships are separate objects, defined between the roots
of those aggregates; they can connect objects of
different types. CCMDB provides APIs (application
programming interfaces) to assist users in traversing
these relationships; most of the configuration
queries can be expressed by a single filter expres-
sion. Explicit relationships can be handled dynam-
ically during runtime and can support use cases in
which the type of the target object is unknown or is
different from the source.

Queries with implicit relationships

A computer system may have a number of operating
systems installed on it. Table 1 shows the relation-
ships defined for the ComputerSystem class in
Javadoc** format.

The InstalledOn relationship is defined as a
dynamic array of unknown size, named
0SInstalled. Each member of the dynamic array is
an OperatingSystem object. With this definition, the
CCMDB persistent objects layer creates an interme-
diary table with the key attributes from both
ComputerSystem and OperatingSystem objects.

The API consists of a single method (named find)
used to traverse and search data; it can be viewed as
a filter expressed in an SQL-like language, the Model
Query Language (MQL).4 Most of the configuration
queries can be performed by using this single filter
expression. Under the covers, CCMDB translates the
filter into SQL (Structured Query Language) state-
ments, which take full advantage of the query
optimization capabilities provided by the database
management system.

The following are three MQL queries of varying
complexity.

1. Low complexity—What are the operating systems
installed on machine X?

SELECT OperatingSystem.*
FROM OperatingSystem, ComputerSystem

MADDURI ET AL.

443

WHERE OperatingSystem.parent.guid ==
ComputerSystem.guid
AND ComputerSystem.fgdn== ‘X’

2. Moderate complexity—What computer systems
support a test environment with operating system
Microsoft Windows** XP and database product
IBM DB2 Universal Database* 8.22

SELECT *

FROM ComputerSystem

WHERE OSRunning.0SName == ‘Windows XP’
AND exists(OSRunning.installedSoftware.
productName == ‘DB2 8.2")

3. High complexity—What computer systems use
IBM-manufactured hardware, are running Win-
dows XP, and have Norton Antivirus 1.6
installed?

SELECT *

FROM ComputerSystem

WHERE ComputerSystem.physicalPackage.
manufacturer == ‘1BM’
AND OSRunning.0SName == ‘Windows XP’
AND exists(0OSRunning.installedSoftware.
productName == ‘Norton Antivirus 1.6")

Queries with explicit relationships

Every explicit relationship contains two unique IDs:
one for the source CI and one for the target CI. To
traverse explicit relationships, CCMDB provides
method FindRelationship(). This method re-
trieves the relationship graph of a given relationship
type, starting from a specified object. The result is
an array of Relationship objects each of which
consists of a source object, a target object, and a
relationship type. The relationship graph can be
traversed forward or backward, starting from any
source, by relationship type, and terminate at any
specified level without loops.

Explicit relationships are especially useful when
either the type of the target object is not known or
more than one type is involved. For example, if we
have to determine what CIs are affected by an RFC
(request for change), it is difficult to retrieve that
information using implicit relationships. Because
the type of the CI is not known, we have to use a
query that searches each type of CI and determines if
the source of an Affects relationship is an RFC
object. The query searches iteratively until all links

444 MADDURI ET AL

are found, a resource-intensive task. The task is
much simpler if instead we use method
findRelationship().

Relationship [] affectsRelns =
api.findRelationships(rfcGuid,
api.CDB_DIRECTION_FORWARD,
“com.collation.platform.model.topology.

relation.Affects”,
2,null);

Here, rfcGuid is the globally unique identifier of the
RFC object, the relationship traversal follows the
defined direction (forward), the relationship type is
Affects, and the search will stop at the second level
of indirection.

Composite configuration items

In real-world enterprise systems, there are likely to
be thousands of resources with complex relation-
ships between them, and managing that complexity
becomes difficult without grouping them effectively.
Fortunately, there exist several natural grouping
patterns, such as physical machine clusters, con-
nected software systems, and collections of services.
To address this complexity issue, CCMDB provides a
means to manage a graph of closely related CIs as a
composite CI (or simply (:omposite).“’12

The composite is defined by a template-based filter
that acts on the entire relationship graph to produce
a specific subgraph. The template mechanism
allows customers to change the definition of a
composite based on their particular business needs.
Composites are treated the same as any other
configuration item, and they exist as distinct
elements in the CMDB database. The composite
graph is constructed by navigating relationships
based on the template definition. For example,
Server has a root ComputerSystem object, which
then includes related hardware, operating system,
software, and networking elements.

The identity of a composite is determined by the
identity of its root element, which means it must
contain all the attributes necessary, even if some of
those attributes are derived from subcomponents.
The subcomponents can be added, updated, or
removed over time. For example, a Server can be
created just with a ComputerSystem object, and an
object OperatingSystem can be added later.

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

The rules for handling composites can get quite
complex, depending on the relationship semantics;
for example, “A composite can contain other
composites”; or “A composite can be partially
defined (does not contain all the subcomponent
parts yet).”

Figure 1 shows the composite graph of a Web-
Sphere* Application Server. The figure shows that
the WebSphere Application Server composite con-
tains the Server composite. The advantage of the
composite concept becomes apparent when one
observes that dealing with three composites is much
simpler than handling dozens of subcomponents.

A composite instance can be created automatically
after a discovery scan or explicitly from a user
interface. A composite is created with a name, set of
attributes, and associated naming rules to uniquely
identify the composite instance. The user interface
provides the list of valid atomic CI types and
relationships that can be instantiated through
navigation of the composite containment tree.

The search methodology is a depth first traversal of
the containment tree of the root element. This
algorithm visits the node of an atomic CI v after it
has visited all other CI nodes in the subtree rooted at
v. The traversal of a tree with n nodes takes O(n)
time (the algorithm has an order of n time
complexity).

When a composite is deleted, it must be determined
which of the supporting elements are also deleted
and which are preserved but “disconnected” from
the now defunct composite. This is determined case
by case and depends on the semantics of the
relationships involved.

LOADING AND MAINTENANCE

In this section we discuss the processes related to
loading and maintaining the CCMDB: automated
sensor-based discovery, discovery through applica-
tion descriptors and component templates, data
federation, data import, and reconciliation.

Automatic data and relationship discovery
Continuous and automatic discovery of configura-
tion items is extremely important not only to avoid
data entry costs but also to validate the current state
of the database. CCMDB uses sensor-based discov-
ery, be it credential-less “sniffing” of the network

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

environment (i.e., collecting high-level configura-
tion information) or credential-based discovery. The
sensor is a new variation on the agent-less meth-
odology that achieves nearly the depth of a local
agent’s discovery without incurring the deployment
cost. A sensor basically emulates a user running
locally on the monitored host, just like an agent—
but only for a brief time. The sensor functions by
using secure network connections, encrypted access
credentials, and host native utilities.

The CCMDB discovery engine provides a framework
in which to schedule, distribute, coordinate, and
manage the various discovery sensors. Upon dis-
covery initiation, the sensor performs a multistep
process:

e It uses a standard protocol (SNMP, or Simple
Network Management Protocol) to determine the
IP (Internet Protocol) addresses of devices.

¢ If no credential is provided, it performs a shallow
discovery, which extracts the operating-system-
related information and provides a basic idea of
the active assets in the environment.

e If the operating-system credential is provided, a
secure connection is made to the host by using a
secure protocol such as SSH (Secure Shell).

* When the session is attached, it captures open
ports and the listening processes.

* Using native utilities, it discovers software and
patches installed, applications hosted, and run-
ning processes.

* Based on the collected information, it invokes
(using application credentials) other sensors to
discover application configurations, such as DB2*
or WebSphere.

¢ [t sends the data collected to the discovery server,
terminates the SSH session, and closes the
connection.

Several instances of this process may be activated in
parallel in order to handle a large workload. After
collected data are stored in the database, a
heuristics-based background process determines the
implied relationships between CIs. For example, a
WebSphere Application Server application commu-
nicating through a specific host/port might match a
DB2 server listening to that port. By using these
implied relationships, a complete dependencies
graph is built, a vast improvement over the current
state of customer tools.

MADDURI ET AL.

445

Infrastructure
Application Composite
(e.g WebSphere
WebSphereNbde Application Server) WebSphereProcessDefinition
WebsSpheiggel WebSphereProperty
AppConfig
- WebSphereVariable
WebSphereSharedLibrary NamedE%
WebSphereCluster AppConfig
EN
WebSphereEFixInfo AppDescriptor
SoftwareModule Sobtw NeRaE e
Softwarelnstallation ExecutableFile
ConfigFile
>~
SoftwareContainers ProcessPool
IpAddress
Server
Composite
Segment
terface——pNetwork
L2Interfac \
L2Interfaces
diaAccessDevice
Controller
RealizesExtent
otocolController
FCPort)
LogicalContent FileSysterm
(boot)
DNS..
SoftwareComponent
StorageExtent
Hardware
Composite
Sensor Fan
PhysicalComponent \ Physicallink
PhysicalConnector
PhysicalFrame
PowerSupply
Figure 1
Composite Cls: template based tree pruning/filtering

446 MADDURI ET AL IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

Application descriptors are simple XML (Extensible
Markup Language) files that are added to applica-
tion modules at the time of packaging. These
application descriptors allow the discovery engine to
automatically create and maintain business service
groupings (a grouping used to form a higher-level
aggregated object).

The discovery engine can also discover a business
service by identifying component signatures and
designating matching customer components as
“belonging to” a given business service. The
component templates specify the unique signature of
the components by using combinations of items
such as program names, ports, and environment
variables for classification.

The following are the main features of sensor-based
discovery:

® Sensors can retrieve as much data about applica-
tions as is necessary.

* Sensors can work in conjunction with existing
legacy agents, using the agents as just another
data source.

* Sensors leverage remote management protocols to
gather application- and platform-specific data.

* Sensors are easy to deploy and manage, with or
without credentials.

¢ Sensors have limited impact on the target ma-
chine, consuming typically less than 1 percent of
CPU processing when active.

e Sensors provide a flexible end-to-end view of
applications and configurations and their depen-
dencies.

Data federation

Consolidating data into a single physical data store
has been the most commonly used way to achieve
fast, highly available, and integrated access to
related information.'>'* Consolidation is often
justified by performance or by the consistency
achievable with a single master copy. Federation, on
the other hand, makes distributed data appear as if it
were a single source, regardless of the location,
format, and access language. Different from the data
consolidation approach, federation does not physi-
cally bring data into the central repository. CCMDB
combines the strengths of both data consolidation
and data federation. The underlying federation
technology is the IBM Information Integrator tech-
nology using DB2 as the federation engine. =

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

After the external data sources are configured, they
can be queried and processed through DB2 SQL.
These external sources can be relational data sources,
such as DB2, Microsoft** SQL Server, Oracle Data-
base 10g, and Sybase Open Server, and nonrelational
data sources, such as XML documents, Excel** files,
Web Services, IBM WebSphere MQ, VSAM* (virtual
storage access method) data sets, and IBM IMS*
(information management system) databases.

Figure 2 illustrates the CCMDB data integration
architecture. The CI and relationship information
are retrieved from their location in storage, either
the physical data store or the logical data store. For
data federation, we leverage the IBM Information
Integrator technology to integrate data from hetero-
geneous data sources without requiring all the data
to be copied centrally. CCMDB also provides data
consolidation services to move data physically into
the database. The data consolidation services
include IDML import and discovery sensors.

Data import with IDML

To enable data import into CCMDB from virtually
any source, IBM developed the Identity Markup
Language, or IDML.* An adapter program extracts
data from a source application such as Tivoli
Provisioning Manager (TPM) or Tivoli Configura-
tion Manager (TCM) and produces IDML files. These
files are bulk loaded into CCMDB. In many cases, a
source might already have an export format that can
be used with a simple XML translation.

Reconciliation

Because CI information may originate in more than
one source and because CI records from different
sources are usually not identical, a process of
reconciliation is necessary. The CCMDB reconcilia-
tion for a CI first requires the one-time task of
developing naming rules in which a set of attributes
that could identify the CI is specified, along with a
priority for each attribute set. The major parts of a
naming rule are:

e Class—the class used to name instances; for
example, ComputerSystem.

® Superior class—a class larger than the given class
(if it exists); for example, an OperatingSystem
class named as a subordinate to the
ComputerSystem class; its name includes that
superior name.

* Naming attribute—a character string that denotes
an attribute which could identify the CI.

MADDURI ET AL.

447

Portal Frameworkl Predefined Reports | Custom Queries |

I ! I

CMDB APIs

|

F

Phyical Data Store

CCMDB

Data Consolidation Service

Logical Data Store

g f f

Data Federation Service |

CCMDB data integration architecture

l l l API Nonstructured | Structured
| | Data Source | Data Source Data Source
— 1
u | Management
‘ ‘ i‘ Interfaces
(SNMP,
L . I . WM,
4 B iR E *i‘ APIs,
‘ L etc.)
A 4
B3 e \ oo E B
[i‘ { - K;;;M
Storage Hardware Network Software: B = | &
Devices devices: devices: operating systems, B)
disks, routers, applications,
processors, bridges, middleware,
etc. hubs subcomponents
Figure 2

* Priority—a non-negative integer that signifies the
priority in which naming attributes will be used to
identify a CI.

The following are the naming rules for the
ComputerSystem class:

0="'signature’
1="manufacturer,model,serialNumber’
2="systemBoardUUID’
3="primaryMACAddress’
4="hostSystem,VMID’
S5='managedSystemName’

The second rule, for example, is associated with
priority 1 and naming attribute ‘manufacturer,mod-
el,serialNumber’.

448 MADDURI ET AL

When creating an instance of a ComputerSystem
class, the following steps are performed:

e Check that the request includes at least one
naming attribute. The request is rejected if an
insufficient number of attributes is provided or if
the parent object of that instance does not exist.

* Generate the Type 3 GUID (globally unique
identifier, based on IETF [Internet Engineering
Task Force] RFC 4122),17 according to the priority
and the name string generated from the rules. If
the parent is specified in the naming rule, obtain
the naming attributes from the parent.

* Match any existing CI instance with the same
GUID or alias.

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

B3 18w Tivoli appication Dependency Discovery Manager - Version: Current

File Edt Display Discovery Topology Analytics Status Management Windows Help

Ve DB | HS e | 0%
Application Infrastructure
& [momp v & o &[@o8| &%= | B8 Do s

wﬂ'_ﬂ—

<

H,I l >\i
Ussername: smartoperator = Current View: 04/11/2007 04:25 CDT

T L

P BHYE w0

Figure 3
Visualization of application dependencies

e [t is still possible that multiple copies of a CI are
not matched until more information is provided.
At that point, duplicates are merged and aliases
are updated.

VISUALIZATION OF APPLICATION DEPENDENCIES
Many of today’s IT services and applications are
built on an infrastructure that consists of thousands
of components. Most customers in the process of
implementing an IT service management initiative
are looking for a solution that addresses this
complexity. It is imperative that the customer be
able to react quickly in case of problems, for which
it is required that the customer be aware of the ways
in which the applications that support the business
depend on various CIs. Consequently, it is necessary
that the CCMDB provide visualizations of such
application dependencies. In addition, these visual-
izations should be integrated with other business-

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

related transformations, such as implementations of
service-oriented architectures or business system
dashboards.

The CCMDB visualization of application dependen-
cies is illustrated in Figure 3. The display contains a
wide variety of software components running on
various application server platforms such as IBM
WebSphere, Apache** HTTP Server, and BEA
WebLogic Server**. All the discovered CIs and the
relationships between them can be viewed as a
graph. Each node in this graph represents an
infrastructure software component (middleware) in
the enterprise server environment. The infrastruc-
ture software includes application servers, Web
servers, databases, and various system services such
as the Domain Name Service (DNS) and the
Lightweight Directory Access Protocol (LDAP). The
edges (connecting lines) of the graph represent the

MADDURI ET AL

449

IEMMAppncmnepammmmw-vm:w (=) %]
File Edt Display Discovery Topology Analytics Status Management Windows Help
4 [F] = 8 ‘ Q’: ==
Business Applications
[N] €Y | zoom: 43 vl @ @ @ | @ e8| @ | 7= i | B & | Osgend | search:
A
orACLE |
B «dd
B2 |
. §svease
= whastb cdlak 302
Bilin &)
. :
E : | -
Ui Wngemene = =1 W 3
R ORACLE
I Crdker Winage ment - Staging .
Aob L1 ————an
98 A
ik lab.c diticn.netadb Znst.
—
’.SQL
adediclabsolblicanet i B
Beiee
AR
2
< B
Username: smartoperator Current View: 04/11/2007 04:25 CDT
m"".m JQwe. o] @ev.. | @en.. | ElMoo.. | gconb.. @ snag... mﬂml&& ol
Figure 4
Visualization of dependencies of business services on business applications

relationships between the components. In this
example, there are three Sun ONE Web Servers**
that depend on a WebSphere Application Server.
The WebSphere Application Server depends in turn
on an Oracle database for its database services.

CCMDB also provides visualizations of business
services and their dependencies on business appli-
cations (Figure 4). For example, Order Entry is a
business service that can be delivered by integrating
application components from the Order Manage-
ment, Inventory Management, and Billing business
applications. Users can create business services to
simplify the infrastructure by combining large
collections of individual components into groups.

MULTICUSTOMER SUPPORT
IT service providers rely on the CMDB as a major
component in support of IT service management

450 MADDURI ET AL

processes. These providers often face the challenge
of integrating multiple worldwide operations onto
the same physical infrastructure. To accomplish this
they have to implement data segregation and access
control, so that an application can be deployed once
and shared among many customers. When the same
application is configured to serve more than one
customer, we distinguish between multicustomer
support and multitenant support.

Multicustomer—A service management application
with multicustomer functionality is one that allows
a service provider to manage data and services on
behalf of multiple customers with the appropriate
data segregation between customers. In an applica-
tion implementing this functionality, only the
service provider has access and control over
managed data and services, and only the people
employed by the service provider have access to it.

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

Multitenant—Multiple customers access a single
instance of the service management solution with
full access to the data and services that they manage
and the appropriate data segregation in place to
keep them from accessing data and services that
they do not manage. In an application implementing
this functionality, there is still a service provider,
but its role is primarily to mediate the service
requests between customers and maintain the core
application functionality.

Indications are that customers would prefer a
multitenant solution if configurability and security
could be ensured at the same level as in the single-
tenant solution. To provide multicustomer support a
CMDB must have built-in configurability in order to
allow the tailoring of the solution to meet the
business needs of each customer. With well-
designed multicustomer support, the service pro-
vider can

* leverage a common pool of human resources,

e leverage common libraries (software portfolios,
etc.),

* segregate customer data for improved security,

* generate reports that aggregate data for groups or
all customers, and

* provide management personnel real-time key
performance indicators when these are obtained
by aggregating data for a group of customers.

The CCMDB multicustomer approach reduces the
cost and management burden on the supplier, and
the savings can be passed on to the customer.
Figure 5 illustrates the CCMDB multicustomer
security model."® The solution is built upon the base
ITIL CMDB security architecture with an option to
create additional access roles and permissions. The
roles and permissions could be added and assigned
to a user at runtime.

Roles and permissions

To support a service provider in multicustomer
environments, we must adapt to the service
provider organization and its unique processes. This
translates into a different collection of roles and
permissions defined for each Customer or Account.
In addition, other processes can have roles and
permissions beyond those in configuration man-
agement. Configuration manager is one of the roles
identified by ITIL. In a multicustomer CMDB the role
of customer configuration manager has a scope of

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

Customer with responsibility for the customer’s
configuration-management process and the ability
to manage other roles, permissions, and Cls for the
customer. The customer configuration librarian is an
owner of the Account CIs and manager of all master
copies of the Account Cls.

Data segregation in configuration management uses
the notion of AccessCollections, which

are secured containers of groups or individual

CIs. Any administrative unit (customer, organi-
zation, division) could be associated with an
AccessCollection, which contains the Cls related
to the unit. Allocating a CI to any administrative unit
is done by adding the reference of the CI to the
AccessCollection for this unit. To represent the
notion of account ownership of resources, for
example, the relationship type Owns has been
created. The relationship type Uses represents a
potentially shared usage of a CI.

In Figure 5, Customer, Account, ServiceProvider,
Organization, workGroup, Person, Role, and
AccessCollection are all administrative units.
They are interrelated, with a predefined set of
relationships to provide this support. Although in
general a person may have many roles and each role
may have access to certain AccessCollections (of
CIs), sometimes the access to a collection by a
person has to be restricted to only when he or she
acts in a specific role. This is accomplished by a
Person-In-Role object. The assignment of
Person-in-Role to support a set of CIs is done
through the association of Person-in-Role to the
AccessCollection that has those CIs as members.
The AccessCollections are protected by the Secu-
rity Manager, which is a pluggable component in the
CCMDB. The assignment of AccessCollections to
user-role pairs, as well as roles to permissions, is
stored in the security policy. At any time the CMDB
database and the security policy can be updated to
include new roles, permissions, users, and access
collections. The approach is designed to balance
centralized security management with performance
of the query results.

To configure a limited multitenant solution, the role
of super configuration manager should be created
with the permissions to create Customer/Account
and set up CCMDB security. The person assigned to
this role has the responsibility to create Customer/
Account, allocate CIs for these units, and assign

MADDURI ET AL.

451

2
Account . I
%ﬁtomer IBM NA Customer Serv!fje Customer [Tsm LDAP
AAA Provider Default XYZ (customer
V5 Access specific)
Collection -
Account | | Account Managed Account | | Account it
5 AAA AAA-NA | | | SPSemvice 16 XYZ-Asia | | XYZ- i
EMEA EMEA / /
Managed 4 Managed 4 /
Service 1 ‘; Service 2 /5v 7) S
/workGroup™. ;o
2 // /y
/ !
Organization/ 5 / /
Service Organization/ 3/°3 il £ !
Agreement |7 Service Organization/ / /
XYZ Agreement Service / !
(provided by CCC Agreement 7 1 / /’
other (internal to / !
Customer) Account) / /
/] - . p ; /// ,’l
4 ol *"""/vvorkGrOUP : //
\ \CC K /
/' workGroup \T 3 !
A / /
\ / / yl
3 // r/
/ /
// l/’
/]
/ 1
// /!
Person-in- Person-in- Person-in- Person-in-
Role Laura Role Dave Role Liz Role James
(Cust IBM (Cust IBM
person) person)
KEY: 1: AssignedTo 5: provides
2: federates 6: supports
3: memberOf 7: uses
4. owns

Figure 5
CCMDB multicustomer security model

People to Customers, Accounts, and

Organizations.

INTEGRATED CHANGE AND CONFIGURATION

PROCESSES
Deriving full benefits from a CMDB requires that the
change-management process and the configuration-
management process be tightly integrated. In
today’s IT environment, having a standard process
for managing changes to the IT infrastructure and IT
services is essential. It is hard to imagine how one
could manage the adverse effects of change without
maintaining an accurate representation of what the

configuration should be (we refer to it as the

452 MADDURI ET AL

authorized environment). Conversely, it is hard to
imagine how one could maintain an accurate
representation of the authorized environment with-
out a process to manage the changes in the
environment. This is why ITIL states, “Ideally,
Change Management should be regarded as an
integral part of a Configuration Management sys-
tem.”" In fact, configuration management and
change management are treated separately in ITIL
only because historically some organizations have
implemented change management without a full
configuration-management process to support it.
However, ITIL recommends that these two pro-
cesses be planned and implemented together.1

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

|
AccessCollection ——

|
4 | AccessCollection -

|
AccessCollection

L SAP
. AccessCollection <_>Siebe||

—
‘ : Database
AccessCollection |
6, S, Dracls
| DB2 |

AccessCollection DB2™ Oracle |
.

\
AccessCollection —

:

Security Manager |

Process

Core Order entry |
S - <
Devices
g Physical
& ‘ComputerS stem > CiscoRouter I
> AlXserver r T =y G
IiEEfien\s ﬂXse.rver Networking
~__ Win2KServer Virtual IP

4 Win2KServer

= Win2KServer
= Win2KServer
IS —
IPlanet Win2KServer

Operating System

J2EE

s T R
I SQLServer WebSphere |

Metadata
7, \WebSphere |L09/C
" WebSphere

— " JBoss

Admin

These processes must handle the complexities of a
large multicustomer environment, which include a
large infrastructure and multicustomer support.
Change management and configuration manage-
ment represent the main control processes for the IT
environment. Change management relies on con-
figuration management for accurate information on
the authorized view of the environment. Configu-
ration management relies on change management
for information on planned and completed changes
to the environment so that an accurate representa-
tion of the environment is maintained. According to
ITIL, all changes to the environment, other than
standard service requests, should be under the

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

control of change management. CCMDB is one of
the first products in the industry that fully integrates
change and configuration management.

The main features of the CCMDB integration of
configuration management and change management
are listed next, and we discuss them in the rest of
this section.

* Manage relationships between an RFC and each of
the affected Cls

e Represent CIs and their protected life-cycle states
and transitions by using templates for custom-
ization

MADDURI ET AL.

453

e Create and maintain different versions of CI
(authorized, actual, gold standard, baseline, etc.)

¢ Enforce change control on CI by the Control CI
subprocess (explained later)

e Remediate variances between actual and autho-
rized CI records

* View authorized changes to CIs on the attributes
under change control

The goal of change management is to minimize the
adverse effects of changes to the environment. A
change is defined as any installation or alteration of
hardware, system and application software, proce-
dures, and environmental facilities that adds to,
removes from, or modifies the service delivery
environment. Change requests can be initiated by an
administrator or by an automated service support
process.

The change-management process maintains infor-
mation in the CMDB on each RFC throughout its life
cycle. The information includes relationships be-
tween the change and the affected CIs. It is essential
that this information be updated by using the
configuration-management process.

Configuration management is the process for iden-
tifying, defining, and maintaining information on
the IT components and services of an IT system.
Configuration management also maintains informa-
tion on how those components relate to one another
and to service-support (part of ITIL) process
artifacts, such as change records. This logical
representation of the environment is used by the
other ITIL processes in service support and service
delivery. Thus, configuration management includes
as subprocesses: identify CI, control CI, verify and
audit CI, and report status of CI.

According to ITIL, configuration management
should ensure that no item is changed, added, or
deleted “without appropriate controlling documen-
tation.”" Prior to updating the life-cycle state of an
RFC to “Closed,” the change process should ensure
that the environment and the CMDB have been
updated appropriately. For some low-level changes,
it may be difficult or impossible to know in advance
how a change will manifest itself in the environment.

As part of the control-CI subprocess, every
configuration item has a life-cycle state associated
with it. The life-cycle state is used for tracking

454 MADDURI ET AL

purposes and should be kept current and made
available for planning, decision making and man-
aging changes. Example life-cycle states are:
ordered, received, in acceptance test, 1ive,
under change, withdrawn, and disposed. Transition
between life-cycle states must be managed so that
an item is moved only to another legal state. The
history of these transitions is also kept and available
for inspection.

Given a state transition diagram, a subset of the CI
life-cycle states may be designated as protected,
affording a greater degree of control over the way
CIs can be modified. The designation implies that
changes in this state must be associated with a
change record.

The CI information in CCMDB can have several
versions, each version representing a different
aspect of the CI. This feature is often overlooked in
the industry. The CI versions in a CMDB are the
authorized version, the baseline version, the actual
(discovered or audited) version, and the planned
version.

The controlled attributes of a CI (i.e., the ones
amenable to change) and its life-cycle states and
transitions should be implemented using templates,
which are mapped to data model entities in the
CMDB. Data from discovery and other data entry
processes provide the actual data, while the
change-management process provides the autho-
rized data.

A configuration baseline is a snapshot, at a specific
instant, of a set of authorized configuration items.

The concept is useful for documentation, recovery,
and especially comparison. Baselines have a name

and time stamp associated with them, and custom-
€rs can create new ones as necessary.

A similar concept used in many service provider
environments is the gold standard. A gold standard
is a set of CI records that serve as a model or
template for the way in which other sets of Cls
should be configured. Relationships between a gold
standard and any number of sets of CIs can be
created to establish applicability of a gold standard
to those sets. The gold standards are used by the
configuration-management verify-and-audit-CI pro-
cess for assessing compliance with established
policy. For example, an organization might create a

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

gold standard to represent a typical UNIX** server
configuration, then create relationships between the
individual UNIX servers in the network and this gold
standard. When the verify-and-audit-CIs process is
executed on those UNIX servers, a report of any
compliance discrepancies between the gold standard
and the associated servers is generated.

Transition between life-cycle states must be man-
aged so as to ensure that, from a particular state, a CI
is moved to only another legal state. As part of the
configuration-management process, this life-cycle
transition should include attribute-level semantic
validation. This validation capability recognizes that
there are life-cycle states in which a greater degree of
control is required than in other states. Because a CI
record is a reflection of all changes that have taken
place on a CI, it maintains a list of changes to that
life-cycle state. For more details on CI life-cycle state
management refer to Reference 19.

CONCLUSION

In this paper, we present the architecture and main
features of the IBM Tivoli Change and Configuration
Management Database (CCMDB). We describe the
main features, which include a rich data model,
automatic discovery and maintenance, visualization
of application dependencies in CIs, multicustomer
support, and integrated change-management and
configuration-management processes. We also de-
scribe implementation aspects, such as relationship
management, composite objects, sensor-based dis-
covery, data federation support, inline reconcilia-
tion, and multicustomer security issues. This design
was implemented in the CCMDB product release 1.1
(released June 2006).

A CMDB is clearly of great value to an IT
organization. It is also the foundation upon which
other IT processes, and many business processes,
are built. Businesses now have the information
required to analyze the business environment,
which leads to improvements in efficiency and
effectiveness. CCMDB provides the technology
required to enable business compliance, business
process intelligence, reporting for security markets,
and financial controls.

ACKNOWLEDGMENTS
For lucidly articulating their requirements and for
guiding us to better design solutions, we thank the

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

many customers who contributed to this work. We
also thank Yan Or, Krishna Garimella, Johan Casier,
Shashank Joshi, Anand Sankaran, Girard Chandler,
Robert Nielsen, Ling Tai, Ben Jeffcoat, Jogeswar
Challapalli, and Jinfang Chen for their contribution to
the design and implementation of CCMDB. We thank
management for their extraordinary support: William
Kopkind, Vinu Sundaresan, Mike Mallo, Jim Stubley
and Craig Love. For helping us make use of the
database federation technology, we thank Eileen Lin,
Mei-Mei Fu, and the IBM Information Integrator
development and management teams.

*Trademark, service mark, or registered trademark of
International Business Machine Corporation in the United
States, other countries, or both.

**Trademark, service mark, or registered trademark of the
United Kingdom Office of Government Commerce, Object
Management Group, Inc., Sun Microsystems, Inc., Microsoft
Corporation, Apache Software Foundation, BEA Systems, Inc.,
or the Open Group in the United States, other countries, or
both.

CITED REFERENCES
1. Introduction to ITIL, The Stationery Office, Office of
Government Commerce, United Kingdom (2005), http://
www.itil.org.uk.

2. Foundations of IT Service Management Based on ITIL, J.
Van Bon, M. Pieper, and A. van der Verrn, Editors, ITSM
Library, Van Haren Publishing (November 2006).

3. IBM Tivoli Change and Configuration Management
Database (CCMDB), IBM Corporation, http://
www-306.ibm.com/software/tivoli/products/ccmdb/.

4. IBM Tivoli CCMDB Developer Reference Guide (September
2006—available from the author).

5. D. Lindquist, H. Madduri, C. J. Paul, and B. Rajaraman,
“IBM Service Management Architecture,” IBM Systems
Journal 46, No. 3, 423-440 (2007, this issue).

6. BMC Software, Inc., http://www.bmc.com/.

7. Relicore Clarity, Symantec Corporation, http://www.
symantec.com/enterprise/support/overview.
jsp?pid=53294.

8. Mercury Application Mapping, Hewlett-Packard Devel-
opment Company, L.P. http://www.mercury.com/us/
products/business-availability-center/
application-mapping/works.html.

9. nLayers, EMC Corporation, http://www.nlayers.com/.

10. S. Patel and S. S. B. Shi, Managing Relationships with
Tivoli Configuration Management Database (CMDB),
IBM CMDB White Paper (October 2006, available from
the author).

11. N. Ayachitula, L. Shwartz, K. Garimella, and Y. Or,
Methods and Apparatus for Composite Configuration Item
Management in Configuration Management Database,
U.S. Patent No. 920,060,467 (pending).

12. N. Ayachitula, L. Shwartz, M. Surendra, K. Garimella,
and Y. Or, Methods and Apparatus for Automatically
Creating Composite Configuration Items in a

MADDURI ET AL.

455

Configuration Management Database, U.S. Patent No.
920,060,469 (pending).

13. A. Betawadkar-Norwood, E. Lin, and I. Ursu, “Using Data
Federation Technology in IBM WebSphere Information
Integrator: Data Federation Usage Examples and Perfor-
mance Tuning,” developerWorks, IBM Corporation,
http://www-128.ibm.com/developerworks/db2/library/
techarticle/dm-0507lin/.

14. L. M. Haas, E. T. Lin, and M. A. Roth, “Data Integration
through Database Federation,” IBM Systems Journal 41,
No. 4, 578-596 (2002).

15. A. Betawadkar-Norwood, E. Lin, and I. Ursu, “Using Data
Federation Technology in IBM WebSphere Information
Integrator: Data Federation Design and Configuration,”
developerWorks, IBM Corporation, http://www-128.ibm.
com/developerworks/db2/library/techarticle/dm-0506lin/.

16. Data Federation with IBM DB2 Information Integrator,
IBM Redbook SG24-7052, IBM Corporation, http://
publib-b.boulder.ibm.com/abstracts/sg247052.
htmI?0pen.

17. A Universally Unique IDentifier (UUID) URN Namespace,
IETF Network Working Group RFC 4122, http://www.
ietf.org/rfc/rfc4122. txt.

18. L. Shwartz, G. Aikens, N. Ayachitula, M. Benantar, K.
Garimella, H. Madduri, M. Surendra, S. Weinberger, and Y.
Or, Method and System for Segmenting Data and Role Based
Access Control for Multi-Account Infrastructure Manage-
ment, United States Patent No. 920,060,468 (pending).

19. C. Ward, V. Aggarwal, M. Buco, E. Olsson, and S.
Weinberger, “Integrated Change and Configuration
Management,” IBM Systems Journal 46, No. 3, 459-478
(2007, this issue).

Accepted for publication March 15, 2007.
Published online July 12, 2007.

Hari Madduri

IBM Tivoli Software, 11501 Burnet Road, Austin, TX 78758
(madduri@us.ibm.com). Dr. Madduri started his career as a
System/370® assembler programmer/analyst, obtained a Ph.D.
degree in computer science in 1985 from the University of
Wisconsin-Madison. Since joining IBM in 1990, he played
various lead technical and management roles in object-oriented
systems (DSOM), data mining (chief architect of data-mining
products), e-commerce hubs, electronic data interchange, and
IBM Global Services service development (e.g., UMI). In IBM
Tivoli, he contributed to early ITIL process prototypes, which
led to the current IT service management strategy. He is
currently lead architect for the CCMDB product. Dr. Madduri
taught undergraduate and graduate classes in programming
languages, compilers, and operating systems at University of
Wisconsin-Madison, St. Thomas University (Minneapolis), and
University of Hyderabad (India). He published over 20 papers
and authored 20 United States patents.

Shepherd S. B. Shi

IBM Tivoli Software, 11501 Burnet Road, Austin, TX 78758
(sshi@us.ibm.com). Dr. Shi is a Senior Technical Staff
Member. He has a B.S. degree in computer science from
National Taiwan University, an M.S. degree in computer
science from Stanford University, and a Ph.D. degree in
computer science from the University of Illinois at Urbana-
Champaign. Since joining IBM in 1990, Dr. Shi has led the
architecture and design work of a number of major projects,
such as DB2 Connection Services, IBM LDAP directory, DCE,
DFS™ WebSecure, and the Tivoli Security Management

456 MADDURI ET AL

product suite. Dr. Shi has more than 30 patents and was
recognized as a Tivoli Master Inventor in 2006.

Ron Baker

IBM Tivoli Software, 1516 Westfall Circle, Sanford, NC 27330
(rbbaker@us.ibm.com.) Mr. Baker started his career in the
aerospace industry, designing and writing numerical
programs for engineering graphics and robotics applications.
As relational databases began to appear, Mr. Baker was one of
their early users in large-scale financial and configuration
management applications at Boeing. After several years, he
moved into research on database parallelism and integrity
constraints at Amoco’s Computing Research Center, followed
by work at Northrop Grumman as an engineering
configuration database specialist, where he addressed
transitive closure problems like bill-of-material processing and
reconciliation between configurations. It is also where he
gained experience with statistical process control in
engineering and manufacturing systems. Mr. Baker joined
IBM in 1989 to work on object-oriented language integration
with relational databases, an area in which he holds several
patents. Since then, he has worked on management products
dealing with unstructured documents, search engines, and
Internet services. He was the lead CMDB Architect for Tivoli
Software, and is now a Senior Technical Staff Member
responsible for overall data integration initiatives and
advanced analysis reporting.

Naga Ayachitula (Arun)

IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (nagaaka us.ibm.com). A senior
software engineer currently involved in computing services
and IT service management, Naga Ayachitula has developed
innovative approaches to automating compliance, network
admission control and remediation in the IBM Integrated
Security Solution for Cisco Networks. He has over 15
publications and 15 patents pending.

Laura Shwartz

IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (Ilshwart@us.ibm.com). An advisory
software engineer with research experience in mathematics,
computer science, and software design and development, the
research interests of Ms. Shwartz include service management,
autonomic computing, workload management and
provisioning, data modeling, and non-commutative
probability. She is working toward a Ph.D. degree in
mathematics.

Maheswaran Surendra

IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (suren@us.ibm.com). Dr. Surendra
received a Ph.D. degree in 1991 from the University of
California at Berkeley and has been at IBM Research since that
year. He has worked in technical areas ranging from
semiconductor manufacturing to software systems
management, and most recently in IT service delivery. He is
currently a senior manager in the Services organization in IBM
Research, and his focus is the application of IT service
management technologies in service delivery operations.

Carole Corley

IBM Software Group, Tivoli Division, 11501 Burnet Road,
Austin, Texas 78758 (ccorley@us.ibm.com). Carole Corley is
an advisory software engineer specializing in management
application security. She has a B.S. degree in engineering
science and an M.S. degree in aerospace control systems, both
from the University of Florida.

Messaoud Benantar

IBM Software Group, 11501 Burnet Road, Austin, TX 78758
(mbenanta@us.ibm.com). A senior software engineer,

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

Messaoud Benantar works on the security services of the
WebSphere Application Server platform. His interests are in
applications, systems, and network security. Dr. Benantar has
a diplome d’ingenieur from the University of Science and
Technology in Algiers, Algeria, and M.Sc and Ph.D. degrees
from Rensselaer Polytechnic Institute in Troy, New York.

Sushma Patel

IBM Tivoli Software, 11501 Burnet Road, Austin, TX 78758
(patelsb@us.ibm.com). A software engineer, Ms. Patel works
on the CCMDB portion of the ITSM portfolio; her development
work is concentrated on the APIs, providing the command-
line, RMI, and SOAP interfaces, as well as developing
discovery sensors and working on relationships. She has a
B.S. degree in computer science and an M.S. degree in science
and technology commercialization from the University of
Texas at Austin; she has submitted several patents and given
presentations at conferences on various topics involving
innovative teaming and collaboration. W

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

MADDURI ET AL.

457

