H. Ludwig

J. Hogan

R. Jaluka

D. Loewenstern
S. Kumaran

A. Gilbert

A. Roy

T. Nellutla

M. Surendra

Catalog-based service request
management

To manage the delivery of services competitively on a large, global scale, an IT
(information technology) service provider must efficiently use service delivery
resources—in particular, skilled service delivery teams. Service requests form a large
and important component of the management of a client’s IT infrastructure. Currently,
the fulfillment of IT service requests is often managed on a per-account basis. Service-
delivery teams fulfill service requests according to account-specific processes by using
an account-specific service-request-management environment, making it difficult to
leverage the skills of the various delivery teams for multiple accounts. The service
delivery management platform (SDMP) uses reusable service components that can be
performed by multiple delivery teams and can be assembled into service compositions
to which multiple clients can subscribe. The SDMP catalog is the information
repository that manages service components, composition, providers, and subscrip-
tions and is used by the service-request runtime environment to implement specific
customer service requests. In this paper, we describe a catalog-based architecture for
service delivery management and demonstrate how its use can provide a global
service-delivery organization with a platform for achieving significant productivity
gains.

INTRODUCTION practices, and, in particular, skilled service delivery
The business of providing IT (information technol- teams in order to achieve economies of scale.

ogy) services is competitive and global and has a

wide range of market participants, from traditional Service requests, typically issued by the employees

IT service providers to telecommunication compa-
nies expanding their portfolios to recent entrants

of a client organization, constitute a large and
important aspect of the management of a client’s IT

from emerging economies, such as India and China.

©Copyright 2007 by International Business Machines Corporation. Copying in

To remain competitive in the delivery of IT services printed form for private use is permitted without payment of royalty provided

that (1) each reproduction is done without alteration and (2) the Journal

on a global scale and manage Inultiple accounts, an reference and IBM copyright notice are included on the first page. The title

and abstract, but no other portions, of this paper may be copied or distributed

IT service pI'OVidEI' must efﬁciently use service royalty free without further permission by computer-based and other
. . information-service systems. Permission to republish any other portion of the
delivery resources such as IT infrastructure, best paper must be obtained from the Editor. 0018-8670/07/$5.00 © 2007 IBM

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 LUDWIG ET AL

infrastructure, typically representing half or more of
the volume of management work. As a result, their
timely and efficient handling has a great deal of value
both to the service provider and the client. These
services, such as provisioning a new server or
installing a patch or new application, typically
require both automated and manual fulfillment.
This paper focuses on the efficient handling of this
work.

Currently, service requests are most often managed
in an isolated manner for each customer account.
Service-delivery teams fulfill service requests ac-
cording to account-specific processes using an
account-specific service-request-management envi-
ronment. This “silo” approach is necessitated by
differences in the delivery processes and procedures
imposed by various customers. Until now, no
technology platform has been able to organize and
optimize the IT delivery teams or their work for
multiple silos. This limitation has been difficult to
overcome, not only due to customer variability but
also because the work of delivering IT is structured
into large, monolithic processes, making it difficult
to change one part of the work without re-
engineering the entire process, as well as processes
preceding and following it.

This limitation makes it nearly impossible to
leverage the skills of delivery teams or implement
best practices beyond individual accounts. Con-
versely, any attempt at simple standardization of
processes for all accounts and service delivery teams
does not address customer-specific requirements
that are important for their business. Furthermore,
service delivery teams in large service organizations
such as the IBM Integrated Technology Delivery
(ITD) organization have different ways of organiz-
ing themselves efficiently to perform their work and
different technologies to manage the internal ele-
ments of their work. A service-delivery-management
platform for a large IT service provider must be able
to reap the benefits of standardization of delivery
processes without sacrificing either the specific
requirements of the customer or the specific
efficiencies of individual service delivery teams.

SDMP addresses this challenge by providing reus-
able elements of services, called atomic services, as
components. For example, one such service is the
installation of an operating system (OS) image. The
atomic services have standard inputs and outputs

LUDWIG ET AL

(e.g., the OS version) that allow them to be
assembled into service compositions that are mean-
ingful in the context of a client service request.
Service compositions can be shared among multiple
clients. For example, a composition for the provi-
sioning of a new database server may contain the OS-
installation atomic service as a component. Finally,
service compositions can be customized for each
account without compromising the overall reusabil-
ity of the atomic services. Atomic services may be
provided by internal or external service providers,
and multiple service providers can be capable of
rendering the same atomic service. Many service
providers utilize an IT service management (ITSM)
platform to deliver their services. SDMP can be
integrated as a core Process Manager component of
the Tivoli ITSM platform.

The SDMP catalog is the core information repository
that manages the types of atomic services (and
specifies which delivery teams or third-party vendors
can perform them), the service compositions, the
account subscriptions, and specific customizations.
The SDMP catalog also provides the basis for
generating the content of client-facing customer
service catalogs, which are used by employees of
client organizations to request a specific service. The
client-facing customer-service-catalog system can
submit service orders to the SDMP or to other service
delivery systems for simpler services, for example,
building maintenance or catering.

The content of the SDMP catalog can be managed by
using a set of visual tools in the context of standard
ITSM practices. Service-delivery catalog entries can
be imported from account service catalogs main-
tained by delivery teams. The service-request
runtime environment accesses the repository to
implement and manage specific customer service
requests.

The SDMP catalog-based architecture for service
delivery management provides a global service
delivery organization with a platform to achieve
significant productivity gains while still being able
to accommodate client-specific requirements. Cata-
log-driven service delivery management is a new
approach to managing the delivery of IT services in
today’s geographically dispersed, outsourced, and
highly matrixed environments. At the heart of the
approach is a catalog of service definitions tailored
to the client enterprise’s requirements but based on

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

Account
Management

Service
Management

Provider
Management

Catalog

Service Delivery

\ Servicy

Service
Provider

Account]
. . Service Request
Service Order . -
{as Service Orders Processing Service Order Tasks for
ystem : .
- Atomic Services
\ Exte(nal
Change Configuration Service
Management Management Provider
CCMDB
Accounts Service Delivery Management Providers

Figure 1
Service delivery management architecture

a standard set of delivery best practices. This allows
for client customization to meet local requirements
while ensuring alignment with proven efficient
delivery mechanisms.

This paper is organized as follows. The next section
outlines the main issues and requirements of service
request processing. The model of creating service
components and service composition is then intro-
duced. In the following three sections, we elaborate
on the organization of the service-catalog data
structures and the life cycles of the catalog
components. This is followed by a discussion of the
use of the catalog to align business goals, the
process and challenges of catalog implementation,
and related work. The paper concludes with a
discussion of the results we have achieved and
future work.

MANAGING SERVICE REQUESTS IN LARGE-SCALE
IT SERVICE DELIVERY ENVIRONMENTS

In this section, we introduce a service-request-
management architecture and present some of the
requirements of a large-scale service request infra-

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

structure, as well as some of the challenges involved
in constructing it.

Service-request-management architecture

IT service providers manage service requests in a
service-delivery-management environment that
comprises a number of components, as outlined in
Figure 1.

At the center of the delivery management environ-
ment is the service request processing component.
This component receives service orders from clients,
processes them administratively (e.g., checks the
entitlement of the request, prices the request,
connects to billing, etc.), and devises a service plan
that commissions service order tasks to service-
providing teams or external service providers who
provide the service. Details of the SDMP service-
request-processing component are discussed in
Reference 1. The service plan is a workflow
specification that defines the tasks required to
implement the service request and the control and
data flow related to these tasks. Based on the service
plan, service providers can be chosen for each task.

LUDWIG ET AL

ITSM components are used to operationally manage
services which have an effect on the IT infrastruc-
ture that is provided to the client. Service requests
typically pertain to change management, as parts of
the IT infrastructure are typically changed in the
context of fulfilling the service request. Configura-
tion management maintains the configuration of the
IT service infrastructure. Both components are
based on the IBM Tivoli Change and Configuration
Management Database (CCMDB), which records the
status and development of the IT infrastructure.

The service delivery catalog is the metadata repos-
itory that makes service plans, client subscriptions,
and service providers and their capabilities available
to the service request processing component.
Whereas the service request processing component
provides the operational management of a service
request (deciding on specific service providers,
scheduling the service plan, etc.), the service
delivery catalog is the tactical and, in parts, strategic
service-delivery-management instrument. The ser-
vice delivery catalog is managed by three compo-
nents, which address the different aspects of service
request management: service management, service
provider management, and account management.

Service management deals with defining atomic
service definitions and service compositions. This
function is instrumental in analyzing and defining
the scope of the services that are being produced by
the service organization and how they are combined
into services that provide value to customers.
Service provider management handles resource and
capacity management, addressing the following
issues: Which atomic services are being provided by
internal delivery teams and which are being
contracted out to external service providers? Which
teams are devoted to each type of service and how
much service capacity is needed for specific servic-
es? In addition, specific customer requirements
relating to location of service providers, time zone
availability, security clearances, and so forth have to
be taken into account. Account management defines
which services are available to each client. In
addition, it captures the specific requirements of an
account for the manner in which particular services
are to be delivered, for example, specific preferences
related to the location of service providers for
particular tasks. Also, the specific service level
requirements relating to key performance indicators

LUDWIG ET AL

(KPIs), for example, service turnaround times, are
captured for each account.

An IT service provider organization can use KPIs not
only for evaluating customer-service-level objectives
but in general to stay focused on the service delivery
goals that would differentiate them from their
competitors. The following are some examples of
service delivery KPIs: reduction of turnaround time,
enhancement of delivery team throughput, reduc-
tion of SLA (service-level agreement) breaches, and
improvement of QoS (Quality of Service). It is not
sufficient to produce historic reports to measure
actual performance against a benchmark. In order to
achieve or surpass the benchmarks, it is necessary
to manage the performance of delivery teams
actively at a more granular level (i.e., the level of
atomic services or even tasks) and to take corrective
actions at every step.

In order to manage service delivery teams at the
atomic service level, it is necessary to define internal
benchmarks at that level, apart from the bench-
marks that represent the fulfillment of the entire
service that are primarily from requester’s point of
view. For example, apart from the turnaround time
to fulfill a request to build a new database server,
the delivery teams need to define turnaround times
for building a server, allocating storage, installing
and configuring database software, connecting a
server to the network, and testing a server.
Measuring at this level helps delivery teams identify
bottleneck areas, marketing opportunities, automa-
tion opportunities, and so forth.

Challenges and requirements of a large-scale
service request infrastructure

IT service providers such as IBM ITD have to deal
with numerous challenges that are significantly
different from those faced by an in-house, enterprise
IT organization. Some of these challenges are
described in the following:

* Limitations of enterprise software—There are
hardly any software products in the marketplace
for managing the delivery of IT services that have
been designed to accommodate outsourcing. One
of the most commonly ignored design principles is
multitenancy: the systems are designed to manage
the services for a single company. There is no
notion of separating the service provider’s orga-
nizational structure from that of those who are

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

being served. This often requires IT service
providers to build separate instances of IT
systems, one for each customer, to manage the
delivery of IT services. This not only increases the
infrastructure cost, but also creates difficulties for
the people fulfilling the services. They have to log
into multiple instances of such systems to deter-
mine the work they have to perform. Furthermore,
over time, these systems end up using different
releases of the software. Another important design
shortfall involves the inability to handle multiple
customers’ business calendars to calculate SLA.

* Customer-specific processes—When IT services are
outsourced, most service providers inherit legacy
processes from their customers. There is very little
transition time or budget to streamline or stan-
dardize these processes. As a result, the IT service
provider ends up dealing with a plethora of
processes. One of the biggest challenges is to find
a tool that can promote reusability of the
processes and at the same time handle customer-
specific variations.

* Using customer-specific systems—Along with pro-

cesses, service providers also inherit legacy tools.

In many cases, the customer’s employees are

involved in submitting requests, approving

changes, and performing work. In order to
minimize disruption, customers mandate (in
outsourcing contracts) the use of existing tools.

This also limits the service provider’s ability to

standardize on ITSM tools. Further, the time

and cost involved in integrating the customer tools

are so high that the service providers ultimately

use the customer-mandated tools to serve the
contract.

Account-dedicated fulfillment teams—The issues

just mentioned not only increase the service

provider’s cost to train its employees in multiple
processes and tools but also limit its ability to
share resources among accounts, reducing the
flexibility of delivery teams. These characteristics
inhibit the sharing of resources and best practices
that could be used to achieve economies of scale.

Difficulties in benchmarking across accounts—

Given the differences in tooling and the specific

processes for each account, gathering statistical

information on delivery effectiveness across all
accounts is nearly impossible. Different systems
provide different instrumentation for gathering
base statistics, and processes that provide similar
business value for customers (such as patch
installation or server provisioning) may have

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

different sets of steps, which makes gathering
standardized performance data difficult. As a
result, the performance of different teams can be
difficult to compare.

In light of these challenges for service providers, we
have derived a set of requirements that a service-
request-management system must address in order
to overcome some of the problems mentioned. This
applies in particular to the service delivery catalog,
as it is the tactical management instrument for
service requests.

The direct dependency between service delivery
teams and accounts must be removed. For that
purpose, we need a model of service processes that
allows us to define the contributions that service
teams can make in an account-independent way as
atomic services, as discussed in the Introduction.
Service process definitions must be sharable be-
tween accounts.

The account-specific requirements of services must
be addressed with a minimal impact on service
teams. While ideally the same processes would be
used to service all clients, there are often legitimate
customer requirements for modifications of best
practices processes, for example, to connect to the
customer’s internal systems or to notify another
service provider about the progress of the service
process. The service delivery catalog must be able to
capture these specific requirements, and the runtime
system must be able to execute the changed process
with minimal impact to existing service team
processes. Different customers must be able to
receive service at different service levels.

Service providers, internal service delivery teams as
well as external service providers, must be able to
use their own internal processes to perform their
part of a service process, independent of what other
service providers in the process use. This requires
the precise definition of interfaces to service delivery
teams. Based on this isolation, service providers can
make improvements to their internal processes
without affecting the overall service. Furthermore,
all service provider teams may not be on the same
level of software and tooling, which requires a
complex rollout in a large, global delivery organi-
zation. Finally, as skill levels and labor costs may be
different in different data centers, various degrees of
automation and different tooling may be the best

LUDWIG ET AL

New Employee Flow for Account 1

I-4¢ Create Lotus ID LNBLRT1

— Create ID

Create people
Register

E-mail password to-manager

4 Create Windows ID \

New Employee Flow for Account 2

e Create Lotus ID LNBLRT2

— Create ID
Create people
Register
E-mail password to manager

Create DB2 ID

DB2SBYT1

New Employee Flow for Account 3

4+ Create AIX ID AXBLDT3

|~ Create folder
— Create AIXID

Copy template ID
Assign home folder

L4 Create Windows | WINSBYT2

_ Identical activity
— Create folder is repeated in

— Create user each flow
—E Copy template ID
Select profile
o DB2BLRTI Grg
-4 Create DB2 ID
“ 1 Create folder
— Create AIX ID

] Canv tamnlata IN

]

« Resource are hard-coded at design time

» There is no (or limited) use of resource pools

Create folder
Create AIX ID

4 Crept€ Appl ID
Create folder
Create user

- Multiple versions of same flow result with different resources names

Subactivity can be
reused, but it is
repeated in each flow
or subflow

Copy template ID
Select profile

AP1BLRT2 AP2BLRT5

Figure 2
Service workflows containing overlapping elements

support for the delivery staff. All contents of the
service delivery catalog must be subjected to proper
governance processes, as these are central to the
service product strategy of the delivery organization,
the capacity management of delivery teams, and the
contractual obligations toward clients.

In the context of this paper, we address these
requirements from the point of view of the service
delivery catalog.

SERVICE COMPOSITION MODEL FOR LARGE-
SCALE SERVICE DELIVERY

In the previous sections, we discussed the need to
create service delivery components to enable deliv-
ery teams to work beyond the process structure of
specific accounts. In this section, we exemplify this
issue with scenarios for creating user IDs for a new
employee, as shown in Figure 2. The types of IDs to
be created and the necessary access approvals can
greatly vary from one customer to another. When
the process and steps are captured in a workflow
system, the result is variability in the new employee
workflows. Instead of defining all the steps in a
single workflow, one could break down the flow

LUDWIG ET AL

into multiple flows (“microflows”), one for each
type of user ID, for example DB2*, AIX*, or NT. We
use the term atomic services to describe services in
which the breakdown is performed in such a
manner that the service delivered through a micro-
flow can be owned by a single logical team and can
also function as a “black box.” For a microflow to
qualify as an atomic service, it must have well-
defined inputs needed to perform the service, well-
defined deliverables, and well-defined responses. A
set of different atomic services for different types of
user IDs can serve as building blocks for service
delivery teams to compose additional new hire
workflows for new customers. Composition is
simply the specification of which atomic services
help fulfill a complete service and in what order. We
use the term composite services for such composi-
tions of atomic services. Similar to an atomic
service, a composite service must have a well-
defined input message needed to perform the
service, well-defined deliverables, and a well-de-
fined response message.

This methodology can be applied to all services
performed by delivery teams in order to make the

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

delivery processes reusable. For example, the
allocate-space service can be reused for creating a
file system, creating a database, or installing an
application. If one could build a catalog of such
reusable atomic services, creating new or custom-
izing existing IT services would become very easy. A
plan could be used to compose higher-level services,
specifying which atomic services were to be used in
completing an activity and their order. The plan
could be standardized, customer-specific, contract-
specific or even industry-specific. For example, a
standard build-DB2-subsystem composition could
make use of the following atomic services: create file
system, push DB2 image, create DB2 instance, and
create DB2 database. A customized build-DB2-
subsystem composition would make use of an
additional atomic service, allocate SAN (storage area
network) storage, if SAN-attached storage were a
requirement.

Service providers often have to deal with teams that
are dedicated for some customers and shared for
others, and some portions of the work may be
performed by customer teams while others are
outsourced to partners or third-party providers. The
workflow tools cannot address such variations, and
it is often necessary to create multiple versions of
the same workflow to accommodate these varia-
tions. While decomposition promotes reusability,
decomposition without decoupling resource assign-
ment from the actual workflow can severely limit
reuse of processes among customers.

A delivery catalog of atomic services and composite
services along with the ability to dynamically assign
atomic services to different performer teams or
service providers for each order or request is critical
for an efficient service delivery organization.

There are several other benefits of this approach.
The use of components allows KPIs to be defined at
multiple levels, for example, the composite-service
and the atomic-service levels. Using components
also enables measurement of the performance of
service delivery teams at a more granular level.
Decoupling providers from workflow increases the
resiliency of service delivery: if one team has a
higher workload or is unable to perform due to an
outage, any other team can pick up the work and
deliver the same results. A better use of teams can
also result: a scheduling engine can optimize
workload among multiple service providers as

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

opposed to limiting itself to the resources of a single
service provider.

The service delivery catalog facilitates the service
composition model by providing the repository for
storing the artifacts and the service management
components to create them and manage their life
cycle. In addition, it provides an account perspective
and a service provider perspective.

MANAGING SERVICES

At the core of the service delivery catalog is the
management of services, both atomic and compos-
ite.

Representing atomic and composite services

An atomic service definition (ASD) specifies a type of
atomic service in the service delivery catalog and
has the following set of attributes: a service
identifier, a service name, and a version number,
representing the current version of the service with
this service name. Different versions can be active in
parallel. Hence, each new version of the ASD has its
own service identifier. ASD attributes also include
one or more service categories, keywords (which
help in searching for a particular ASD), and a
deliverable attribute (containing a natural language
description of what that service does and what effect
its execution has).

The qualifying characteristics attribute describes
requirements for service providers who want to
implement the service. They are phrased in plain
natural language and are meant to be read by service
providers before signing up to provide the service
defined by a particular ASD and to be checked by
the delivery organization before certifying a service
provider for the ASD. Formal characteristics defini-
tions are machine-readable specifications of prop-
erties of an ASD, such as location and business
hours. These are akin to variable definitions. Each
service provider is expected to provide values for
these characteristics. Constraints can be defined for
these formal characteristics definitions. They are
expressions in a formal constraint language and are
evaluated automatically when service providers sign
up for ASDs. Formal characteristics definitions
together with constraints provide an automated
approach for managing qualifying characteristics.
The planned time attribute defines the typical time
in which an atomic service defined by this ASD will
be delivered. The real time or scheduled time

LUDWIG ET AL

depends on the specific service provider and the
specific instance of the service.

The abstract interface definition attribute defines the
way atomic services are to be invoked. Following
the service-oriented approach, the SDMP relies on
the Web Services Description Language (WSDL) for
the specification of an interface. However, an atomic
service in the context of service delivery is not
directly equivalent to the concept of a service in a
service-oriented architecture (SOA). Each atomic
service corresponds to one operation within a WSDL
port type (defined as a named set of abstract
operations). Hence, the abstract interface definition
comprises a WSDL file, the name of a port type, and
the name of an operation. Furthermore, the WSDL
file does not specify binding-level information, as
this type of information is relevant for the binding to
a particular service provider. This separation of
port-type-level WSDL and binding-level WSDL,
which often includes the port-type-level WSDL
through references, is a common approach when
designing service-oriented systems.

ASDs are composed into service compositions
making them independent of specific service pro-
viders. Service compositions, like ASDs, have a
service identifier, service name, service category,
service description, and keywords. The planned time
of a service composition is an expected turnaround
time based on the planned time estimates of the
ASDs on which the service composition is based.
Each service composition has a version number.
Different versions of a service composition with the
same name receive different service identifiers.
Service compositions refer to a specific version of an
ASD. Hence, if a new version of an ASD is being
included in a service composition, this also entails a
new version of the service composition itself.

The core of the service composition is the service
plan. This is the description of the workflow to be
executed to implement the service. The composition
is defined in a WS-BPEL’ (Web Services Business
Process Execution Language) specification, using
ASDs that are available in the service delivery
catalog. The service plan refers to the operations
defined in the abstract service specifications of the
ASDs. The service plan is retrieved by the SDMP
runtime system at the time of a service request and
can be modified by the service coordinator before
the service request instance is executed.

LUDWIG ET AL

The inception date of a service composition is the
time at which a particular version of the composi-
tion can be made available to accounts; the
termination date marks the time after which no
service requests may be issued for this service
composition version. The cancelable attribute de-
fines whether the execution of the service may be
canceled by the client while the service process is in
progress. For some types of services this is
necessary.

The entitlement policy of a service defines the
circumstances under which the service may be
requested. The abstract interface defines the pa-
rameters of the service request that must be supplied
by the client when the service is requested. It
corresponds to its ASD equivalent and is also based
on port-type-level WSDL specifications.

Service compositions can have a service-level
definition associated with them to define the QoS of
the composition. It comprises a set of QoS attribute
definitions, the KPIs of the service, and the
definition of service-level goals as constraints on the
QoS attributes. A service level is also associated with
a cost of delivery to a client, which may vary with
different service levels. A service composition may
be offered and executed at different service levels.

Life cycles of atomic and composite services
ASDs and service compositions are the core con-
cepts of the service delivery catalog. To a large
extent, their design shapes the way in which a
service delivery organization works. Due to this
importance, creation and change of ASDs and
service compositions are subjected to a governance
process to ensure that all relevant stakeholders in
the service delivery organizations (account execu-
tives, marketing and general management, as well
as delivery teams and liaisons to external service
providers) can provide input when changes occur.

Figure 3 outlines the governance process of an
individual ASD. The representation is in the visual
format of the WebSphere* Business Integration
Modeler. There are two roles involved: the service
designer is the team or individual in charge of
creating and modifying the content of the ASD as
outlined in the previous sections. All creation and
editing tasks are assigned to it. The service designer
also decides when modifications become active. The
certification board evaluates ASDs when they are

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

Servi . Certification Board Certification Board
ervice Designer
Create Evaluate | Certify | Fepcc)sitt%ryd
-y . , A 1 24 or Certifie
ASD ASD ASD atomic Services ASD
Service Designer
i |
Service Designer d Reiie 4 ASD
Activate | J
Service Designer
ASD ASD L Repository QuickEdit |
ASD for Active 2 : ASD
. . ASD:
Service Designer i — —)
_ Activate) ‘
New Version
—
Service Designer
Deactivate |
— 2 ’ Repository for
ASD Deactivated
Versions of
ASD ASDs

Figure 3
ASD governance process

created and changed. It represents all of the
stakeholders in this particular ASD.

In the first step, a new ASD is created by the service
designer. The certification board then evaluates the
impact of the proposed ASD. This may include
determining which service provider is able to
implement this ASD and in which service composi-
tions it may be used. If approval is given (or the ASD
is sent back to the service designer), it is available to
be activated by the service designer based on the
requirements of the service compositions and the

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

availability of service providers implementing the
ASD. Activation puts the ASD into potential use in a
service composition.

There are two modes of editing. Minor changes
(e.g., the change of a description) can be applied in a
“quick edit” step, requiring no further approval.
Changes with impact on service providers and
service compositions are performed as revisions. To
put a revision into service, a new evaluation and
certification must be performed by the certification
board. In particular, the impact of the atomic service

LUDWIG ET AL

10

on service providers must be assessed. When a
revision is activated, the currently active revision
becomes deactivated. This means that it still can be
used for performing existing service compositions
but cannot be included in new ones. Hence, multiple
versions of the same ASD may exist in parallel.

Each service composition has a maintenance flow
that corresponds exactly to the one of ASDs depicted
in Figure 3. Also, the repository of activated ASDs
provides input to the creation step. A certification
board evaluates and certifies service compositions.
The objective of the evaluation is to ensure that
revised service compositions meet customer needs
and that implementations are available for the
atomic services used in the composition. Deactiva-
tion of an ASD in a service composition while the
composition is active does not deactivate the
composition itself. Deactivation of the service
composition version prevents further submission of
service requests using that composition but does not
have an impact on service requests currently being
processed.

MANAGING SERVICE PROVIDERS: REPRESENTING
SERVICE PROVIDERS AND THEIR CAPABILITIES
As mentioned previously, we use the term “service
providers” in our model for teams internal to the
service delivery organization as well as teams of
external organizations providing service. Although
different information must be captured for external
service providers to facilitate accounting, billing,
and so forth, we do not take these financial aspects
into account for our service-request-management
system.

We use a simple content model for service provid-
ers. A service provider has a unique provider
identifier. Service providers internal to the IBM ITD
organization have a Global Services Delivery Center
(GSDC) 1D, which encodes the specific organization
and provides a key to further information about the
organization through LDAP (Lightweight Directory
Access Protocol)3 and other internal systems.
External service providers have a vendor ID, which
provides a key to purchasing systems and other ERP
(enterprise resource planning) and accounting sys-
tems. Each service provider has a name, description,
and location attributes. This is important for on-site
services to clients. A number of contacts can be
defined; namely, employees of this service provider
who are available for discussions.

LUDWIG ET AL

Each service provider can be associated with a set of
service provider capabilities (SPCs). SPCs are asso-
ciations between an ASD and a specific service
provider outlining in specifics how the service
provider will fulfill the service. An SPC instance
relates one service provider to one ASD. This
relationship is captured with data containing the
service identifier of an ASD and a service provider
identifier. It has an inception date and a termination
date, defining the beginning and end of the period in
which the service provider accepts requests related
to this atomic service. The cancelable attribute
defines whether the atomic service as provided by
this provider can be canceled after being started.

The interface attribute defines in specifics how to
invoke the atomic service implementation of the
provider. The interface contains a binding-level
WSDL specification that refers to the abstract WSDL
of the ASD to which this SPC relates. Because a
WSDL specification may contain multiple services
and bindings for different protocols, the names of
the services and bindings are also defined. In
conjunction with the WSDL specification of the ASD
and its port type and operation definition, the
interface definition of the SPC is sufficient to allow
the service delivery system to bind to the specific
atomic service implementation of the service pro-
vider.

In the qualifying characteristics attribute, a service
provider provides the information that is specified
by the ASD, either as a natural language entry, if the
requirement is phrased in natural language, or as
values provided for the formal characteristics
definitions of the ASD. Based on this information,
the service delivery organization can verify whether
the service provider meets the requirements of the
ASD. A service provider can have any number of
SPCs, and each ASD may be associated with
multiple service providers through multiple SPCs.

Signing on and integrating service providers
Frequently, it may be beneficial for a service
provider to retain internal service delivery teams for
typical capacity but to rely on external service
providers to satisfy peaks in service requests. In a
large distributed service organization such as ITD,
there are multiple delivery teams for common
atomic services in various delivery centers in
different geographic areas; whereas, other delivery

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

teams may be unique in their capabilities, special-
izing in a particular, narrow technology domain.

Given the large number of service providers,
internal and external, we assume that the core
information on service providers in the service
delivery catalog will be maintained by the providers
themselves, without any further approval process.
However, external service providers might need to
undergo additional scrutiny outside the scope of the
service delivery catalog to be approved as preferred
vendors. Whereas being listed as a service provider
is simple, becoming a service provider for a
particular ASD requires scrutiny by the catalog
administrator. SPCs are subject to a detailed
governance process, as outlined in Figure 4.

In the registration step, a service provider creates
an SPC object referring to the ASD in question and
the service provider’s own item in the service
delivery catalog. In this step, information on the
binding-level WSDL specification and on qualifying
characteristics must be specified by the service
provider. The catalog administrator then evaluates
the SPC, verifying that the binding-level WSDL is
valid and that the qualifying characteristics of the
provider match the requirements defined in the
ASD. If certification is granted, the SPC can be
activated by the certification board, not by the
service provider itself. If activated, a request for
atomic services can be routed to this service
provider by the service-request runtime component,
using the binding information defined in the WSDL
file of the SPC.

Changes to SPCs are managed in a manner similar
to ASD and service-composition changes. A simple
editing step can be used for minor changes. A
formal revision process with evaluation and recer-
tification must be used for larger changes that
impact the operation of the atomic service. Changes
in an ASD require a new SPC, defining how to deal
with this new version of the service. Atomic
services can be provided in multiple versions by the
same service provider in parallel, each requiring a
separate SPC and, potentially, a modified imple-
mentation at a different endpoint. At runtime, the
service delivery manager chooses one of the service
providers, having registered an SPC at his own
discretion for the execution of each of the atomic
services within the composition of the offered
service.

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

MANAGING ACCOUNTS: REPRESENTING
OFFERED SERVICES

The set of services to which an account has
subscribed is referred to as its offered services. Each
offered service associates a service composition with
an account. An offered service has a service
composition ID, an account ID, a client ID, an
inception and termination date, and an alerting
threshold.

An alerting threshold defines the percentage level of
SLA compliance at which the client wants to be
notified about potential of infraction. For example, if
the maximum turnaround time for provisioning a
server is 5 days, the client may want to be notified if
the average exceeds 4 days; in this case, the alerting
threshold is set to 80 percent.

Each account can define default service providers
for ASDs of the service compositions in its offered
services. Accounts might have location preferences
or restrictions defined by government regulations.
Providers might require security clearance for on-
premise services, which a particular external service
provider or members of an internal service delivery
team may already have.

Using these offered services, account managers can
tailor the use of service compositions to the needs of
their accounts. In addition, there is always the
opportunity to tailor a new service composition to
the requirements of a specific account, based on the
set of ASDs available in the service delivery catalog.
By reusing the ASDs, services can be customized
without causing additional complexity for service
delivery teams.

Managing offered services and integrating with
customer catalogs

From the perspective of the service delivery catalog,
accounts are managed by managing the life cycle of
offered services associated with the account. The
responsibility for offered services is fully within the
scope of the account manager, as Figure 5 shows.

In addition to its use in managing component life
cycles, the set of offered services of an account is
published to a customer catalog from which
customer employees can order services. Frequently,
customers choose to maintain their own service
catalog items either in whole or in part. In this case,
the SDMP requestor must be able to access the

LUDWIG ET AL

11

12

. —/ Certification Catalog
Providers % g
Admmlstrator Administrator
Service Provider
spc = » Register Evaluate Certify J—» (Sisglﬁed
— | s
ASD _ |1 ASD
Service Provider
i |
Certification Board 1 Reues | SPC
Activate | JJ
Service Provider
SPC SPC L Repository - Edit |
spc ™ for Active > & ’ SPC
P
Certification Board I — —)
_ Activate |) ‘
New Version
Service Provider
Deactivate |
SPC Repository
) for Deactivated
SPCs
SPC
Figure 4
Life cycle of SPCs

customer’s catalog during the ordering process.
There are three ways to provide access to the
customer’s catalog: the link-out, punch-out, or full-
integration functions.

Of the three methods of accessing the customer’s
catalog, the link-out function is the simplest.
Consisting of a URL (uniform resource locator) link
to the customer’s system, the user clicking on the
link is brought to the new site where the order is
placed. The order is fully independent of the SDMP,
with no connection between the systems at all. The

LUDWIG ET AL

punch-out function is more complex, allowing the
user to choose an item in the SDMP but have
fulfillment of the service in the customer’s system.
When the item to order is located and selected, the
user is brought seamlessly to the customer’s catalog
where the item is configured and ordered. The
ordering activity is transparent to the user. The full-
integration function is the most complex. This
technique allows the customer catalog to appear
within the SDMP. Full integration requires custom-
ers to maintain their catalogs with the same data

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

Account

Account

Service i Manager
Service __Composition anager Offered |
Compositions Create | Offe!—ed Service Remove .
) Jﬂ Repository
- for Offered —)
Services Account
Manager

Offered
Service

Edit |
— o

Figure 5
Life cycle of offered services

structures as the SDMP or to use a transformation
program to adapt the catalog to it.

IMPLEMENTATION

To create a usable catalog management system, it is
not sufficient to manage catalog elements according
to predetermined rules as described previously. To
be usable, the system must also help guide the user
through the process of creating and editing catalog
elements. To address this usability issue in manag-
ing the SDMP service delivery catalog, the catalog
management implementation is divided into a data
management component and a user interface
component. The data management component
manages communication with the underlying data-
bases, including authorization, role access, and life-
cycle management. The user interface component
implements an editing tool that guides the user in
the process of creating and maintaining catalog
content.

Data management

The data management component is required to
support multiple roles and multiple data types
(atomic services, composed services, offered ser-
vices, providers, etc.) with different life-cycle
requirements. This complexity was naturally han-
dled by treating content management for each data
type as a distinct business process. By doing so, we
were able to leverage existing tools for developing
formal models for business processes4 and trans-
forming these formal models into a software
implementation based on the model-driven business
transformation framework. The resulting software

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

implementation executes as a server application
under WebSphere Process Server® Version 6.0.1,
with a corresponding client communicating with it
through RMI (remote method invocation).’

Model-driven business transformation
Model-driven business transformation (MDBT) is
an innovative framework for flexible and efficient
realization of business components on an IT
platform.7 MDBT leverages concepts from SOA and
Model-Driven Architecture (MDA**). The frame-
work is made up of four layers: strategy, opera-
tions, execution, and implementation. Each layer
constitutes a different level of abstraction, performs
a well-defined function, and has a different
audience.

The strategy layer defines the goals and objectives of
the business component. The operation layer
describes the operations performed by the business
to achieve these goals. The execution layer is an
abstraction of the computational elements that are
needed to execute the business operations. The
implementation layer specifies how the computa-
tional elements are implemented on a specific IT
platform.

Operation models present the perspective of the line-
of-business managers. They constitute the abstrac-
tions needed to describe the business operations that
the business employs to achieve the business goals.
Business operations are modeled as a factorization
of the operational knowledge into two parts,

business tasks and artifact repositories. A business

LUDWIG ET AL

13

14

operation is represented as a connected graph with
the business tasks, artifact repositories, and other
business operations as nodes and the flow of
artifacts between these elements as edges. Business
operation models for the SDMP catalog components
are shown in Figures 3 and 4.

The key abstraction in the execution layer is the
concept of an adaptive business object (ABO).8 An
ABO is the execution-level abstraction of a business
artifact. It models the structure and behavior of the
artifact. The key elements of the ABO are as follows.
The life cycle of the business artifact is defined by
using a finite state machine.The states of the finite
state machine correspond to the life-cycle states of
the artifact. An ABO receives external events
through its public interface and reacts to these
events with action invocations triggered as part of
the state transitions. An ABO uses a data graph to
dynamically aggregate information on demand from
heterogeneous data sources. People and applications
may interact with the ABO at various points in its
life cycle. The modeler can specify read, write, or
search access for data and authorize access for
events for each business role and state combination.
The data actions are used to model CRUD (create,
retrieve, update, and delete) operations on parts of
or the whole data graph. These are invoked by the
ABO as a side effect of state transitions. An ABO
changes its environment through remote actions
which are triggered as part of the state transitions.
Views present the external interface or API (appli-
cation programming interface) of the ABO.

The catalog solution is composed of five ABOs:
atomic service, service composition, offered service,
service provider, and SPC. The user interface
component of the catalog, discussed in the next
section, interacts with these ABOs by using the view
interface.

User interface

The user interface component is implemented as a
dynamic Web server application using a standard
model-view-controller paraldigm.9 The user interface
will run on any application server capable of
supporting J2EE** Version 1.410; for simplicity, we
chose the WebSphere Process Server. The user
interface makes use of Jakarta Commons'" utilities
and XML parsers developed using XML Beans. '
Views are implemented as JavaServer Pages**
(JSPs**) that communicate with the business logic

LUDWIG ET AL

through Java** Beans, and the controller is imple-
mented using Java Servlets**, both of which are
part of the J2EE specification.

The model separates data manipulation from busi-
ness logic. Business logic is handled by action Java
Beans, one corresponding to each JSP page. Data
manipulation is handled by data wrappers, one
corresponding to each underlying data type (atomic
service, service composition, etc.). Data wrappers
hide the underlying data management client API
from the business logic. The business logic only
manipulates wrappers as Java interfaces; the bind-
ing between wrapper and wrapper implementation
is mediated by a class that is initialized at runtime.
Upgrades to the data management client API
provided by MDBT require only changes to the
wrapper implementation classes and not to the
business logic itself; this has proved useful in
permitting data management and business logic to
be developed in parallel.

ALIGNING BUSINESS GOALS USING THE SERVICE
DELIVERY CATALOG

Implementation of the service delivery catalog must
closely align with the desired business goals of both
the recipient of the services and the provider.
Because the catalog defines how services are
requested and delivered in a standard framework,
there is an opportunity for both parties to align
services closely with demand, evaluate service
delivery costs, prevent SLA violations, and create
accurate records for billing purposes. This section
outlines how services are mapped to the provider
portfolio and how the catalog assists in ensuring that
business goals are met during runtime and over a
variable accounting period.

In the case of most service providers, services as
they are sold to a customer come from a different
portfolio than services as they are actually delivered.
In the SDMP methodology, the portfolio of services
sold is mapped back to the portfolio of services
delivered. From that, best practices are leveraged to
create the delivery catalog based on the specific
requirements of the customer. As shown on the left
side of Figure 6, services are sold to the customer
based on delivery themes such as infrastructure
access services. This theme is very general and
maps to one through many service elements in the
delivery portfolio in the middle of the figure. In this
example, infrastructure access services map to

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

Selling / Marketing

« General service themes are
sold to customer
« Service themes are priced

Solution Delivery

» Service themes are broken
down to service elements
capable of being delivered

» Elements are mapped to

Translation to Delivery Catalog

Service elements are broken down to
atomic and composite services

and mapped to customer business
requirements

best practices

Service Theme Examples Delivery Portfolio

_, Customer Service Enablement
7 (KPIs, SLAs, costs, workflow)
/

Examples
1. Infrastructure /
access services 1. Server support /
2. Network 7
2. Infrastructure management //
management services - 3. Asset management /
4. Security / S .
ervice Deliver
3. Infrastructure 5. User IDs 4 Catalog of Serv\i/ces
support services 6. ..
/
4. Infrastructure solutions Best practices | . |
for delivery
5% on
Cross-organization back-end systems, processes, measurements, etc.
Figure 6

Mapping of services as sold to atomic and composite services

server support, network management, and so forth.
In turn, each of these service elements maps to best
practices, which, in turn, map to actual service-
delivery atomic and composite services based on
customer business requirements. Once the services
for delivery are created in the catalog, they can be
made available for the end user to request.

At runtime, service orders are tracked and managed
in the context of the business objectives. Probably
the most common business objective is ensuring
that SLAs for delivery times are met. The SDMP can
accomplish this at the task, atomic, or composite
levels. SLAs can be set for a type of service, such as
e-mail services, or for any logical organization, such
as a department. Once the SLAs are set, thresholds
for notifications can be set. The tracking of rate and
total consumption of services are also important. In
the runtime tool, entitlements that have been agreed
upon can be specified, and orders can be counted
and compared with the entitlements. Once a
specified entitlement is met, the tool can either
prevent a new order or warn the requestor that
another order will incur additional cost. Over a long
period of time, catalog data can be gathered for

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

billing purposes or mined to set baselines and re-
engineer services.

Baseline data for common KPIs such as average
turnaround time and average cost per order or
service type can be gathered from the data reposi-
tory. The KPI data can be used to compare similar
services, both within a customer’s delivery envi-
ronment and, if the provider handles multiple
customers, between customers. Comparisons with
industry standards are also possible, although these
tend to be less meaningful, given the lack of
standard service definitions.

Using this comparison data, substandard services
can be identified and targeted for re-engineering
efforts. Re-engineering efforts are facilitated by
utilization of composite-, atomic-service-, or even
task-level comparison data. Inefficiencies can thus
be pinpointed and root cause analysis performed.
Recurring problems due to a particular performer or
task complexity can be addressed by re-engineering.
The re-engineered service, once in place, can be
measured and further revised based on the results.
Thus, feedback loops are created and used. Finally,

LUDWIG ET AL

15

16

the improved results can be communicated to
marketing for revising the pricing offered to cus-
tomers.

RELATED WORK

The SDMP service delivery catalog touches upon
multiple fields of related work. There are multiple
approaches in representing meta-information on
services, in particular in the field of Web services.
UDDI (Universal Description, Discovery, and Inte-
gration) provides a directory service representing
metadata on services for search and binding.13 WS-
Policy and derived standards such as WS-Security
can enable representation of rich information on
services.'* Approaches related to the semantic Web
such as OWL-S" (Ontology Web Language for
Services) provide the means to represent properties
of services based on description logic, including
process-related information.'® WS-BPEL, which is
also used in the approach presented here, is a
standard means to describe process-type composi-
tions of Web services.”

Service catalogs are recognized as a central structure
of the IT Infrastructure Library** (ITIL**). Howev-
er, neither ITIL, nor any other standards bodies,
define how service catalogs are to be implemented
or managed. Individual IT organizations have been
left on their own to create their own versions.
Various ITIL service management consultants such
as Pink Elephant17 communicate and inform the IT
industry about service catalogs. However, the focus
is on information and not on a standard architecture
or management model.

Several software vendors have products that have
some aspect of SDM. There are vendors whose
primary capability is SDM (e.g., newScale, Inc. or
MRO Sofware, Inc., which was recently acquired by
IBM). There are also vendors whose products have
incorporated some aspect of SDM, either a catalog or
a workflow (e.g., BMC** Remedy**). Finally, some
vendors’ products enable IT governance or IT
project management, or both (e.g., Computer
Associates’ Clarity18 or the IBM Rational* Portfolio
Manager).19

Although all of these approaches cover aspects of
the issues handled by the service delivery catalog,
none of them provides a model for representing the
business-level information in conjunction with the
technical details of services as outlined here.

LUDWIG ET AL

Furthermore, the catalog items and associated
delivery processes lack the life-cycle management
and composition approach necessary to support the
requirements of a service provider.

SUMMARY, CONCLUSION, AND FUTURE WORK
The SDMP addresses the requirements of large-scale
service delivery, in particular the management and
fulfillment of service requests. This includes dealing
with a large number of customers and their specific
requirements as well as large service delivery
organizations whose teams are located around the
world at global service delivery centers and external
service providers. The complexity and variation of
service delivery processes are dealt with by use of a
component-centric approach that is based on atomic
services, specialized service subprocesses assigned
to a team, and service compositions that describe a
workflow in which a set of atomic services is
invoked to fulfill a service request from a customer.

The service delivery catalog is the tactical manage-
ment instrument for the SDMP. It provides infor-
mation on service compositions and atomic services
to the runtime system. It manages subscriptions of
services and their customization and SPCs that
deliver atomic services for accounts. The service
delivery catalog implements the governance pro-
cesses for all artifacts in the catalog to guarantee
smooth initiation of new accounts, enlisting of
service providers, and changes to the service designs
in new versions.

Based on the component-centric approach, using
ASDs and service compositions, the SDMP enables a
service delivery organization to scale and work
productively. As a primary result, processes are not
run in an account-specific manner by account-
specific teams. Instead, service delivery teams work
in the context of atomic services that can be reused
in different compositions. Compositions can be
shared between accounts but can be customized to
specific account requirements if necessary. Shared
service compositions also enable benchmarking of
services among accounts. Finally, service delivery
teams are, to some extent, insulated from changes in
service compositions by adhering to ASDs as
interfaces and, hence, can improve their productiv-

ity.

Despite these improvements, there are still many
remaining issues. The transition of new accounts
into a component-centric SDMP service delivery

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

environment is costly, and the initial investment
must be compensated for by lower costs when
services are delivered. We typically encounter
proprietary tooling and complex (“spaghetti”) inte-
gration of Web sites, Lotus Notes* databases, e-mail
conventions, and spreadsheets that enable service
processes for specific accounts, which must be
disentangled and transformed to fit the service
component structure of atomic services.

In the future, we plan to integrate the SDMP
approach with the IBM Tivoli Service Management
product line based on the MRO Maximo** platform.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United
States, other countries, or both.

**Trademark, service mark, or registered trademark of Object
Management Group, Sun Microsystems, Inc., United Kingdom
Office of Government Commerce, BMC Software, Inc., or MRO
Software, Inc. in the United States, other countries, or both.

CITED REFERENCES
1. S. Kumaran, P. Bishop, T. Chao, P. Dhoolia, P. Jain, R.
Jaluka, H. Ludwig, A. Moyer, and A. Nigam, “Using a
Model-driven Transformational Approach and Service-
oriented Architecture for Service Delivery Management,”
IBM Systems Journal 46, No. 3, ***-*** (2007, this
issue).

2. Web Services Business Process Execution Language
Version 2.0, Committee Specification, A. Alves, A. Arkin,
S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,
et al. (Editors) (January 31, 2007), http://docs.
oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.doc.

3. J. Sermersheim, Lightweight Directory Access Protocol
(LDAP): The Protocol (RFC 4511), The Internet Society
(June 2006), http://tools.ietf.org/html/rfc4511.

4. WebSphere Business Modeler—Family Overview, IBM
Corporation, http://www.ibm.com/software/
integration/wbimodeler/.

5. WebSphere Process Server—Product Overview, IBM
Corporation, http://www.ibm.com/software/
integration/wps/.

6. Java Remote Method Invocation (Java RMI), Sun Micro-
systems (2004), http://java.sun.com/j2se/1.5.0/docs/
guide/rmi/index.html.

7. S. Kumaran, “Model-Driven Enterprise,” Proceedings of
the Global Enterprise Application Integration Summit,
Banf, Canada (2004), pp. 166-180.

8. P. Nandi and S. Kumaran, “Adaptive Business Objects: A
New Component Model for Business Applications,”
Proceedings of the 7th International Conference on
Enterprise Information Systems, Miami, FL (2005), http://
www.research.ibm.com/people/p/prabir/ABO.pdf.

9. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland,
and M. Stal, Pattern-Oriented Software Architecture: A
System of Patterns, John Wiley & Sons, Hoboken, NJ
(1996).

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

10. Java 2 Platform, Enterprise Edition (J2EE) 1.4, Sun
Microsystems (2006), http://java.sun.com/j2ee/1.4/.

11. Jakarta Commons, Apache Jakarta Project, http://
jakarta.apache.org/commons,/.

12. The Apache XML Project—Welcome to XMLBeans,
http://xmlbeans.apache.org/.

13. UDDI Version 3 Specifications, OASIS (2005), http://
WWW.oasis-open.org/committees/uddi-spec/doc/
tespecs.htm#uddiv3.

14. Web Services Policy 1.2 - Framework (WS-Policy), S. Bajaj,
D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-
Baker, M. Hondo, et al. (Editors), W3C Member
Submission (April 2006), http://www.w3.org/
Submission/WS-Policy/.

15. OWL-S: Semantic Markup for Web Services, D. Martin,
Editor, W3C Member Submission (November 2004),
http://www.w3.org/Submission/OWL-S/.

16. OWL-S 1.1 Release, http://www.daml.org/services/
owl-s/1.1/.

17. Pink Elephant, http://www.pinkelephant.com.

18. Portfolio and Financial Management, http://ca.com/
clarity.

19. Rational Portfolio Manager—Product Overview, IBM
Corporation, http://www.ibm.com/software/awdtools/
portfolio/index.html.

Accepted for publication February 23, 2007.
Published online July 2, 2007.

Heiko Ludwig

IBM Research Division, Thomas. J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532

(hludwig@us.ibm.com). Dr. Ludwig is a research staff
member at the Watson Research Center. As a member of the
Service Delivery Management department, he is currently
working on service componentization, service-delivery-
management platforms (which include aspects of large-scale,
loosely coupled, distributed systems), federated workflow
management, and management of the variability of processes
and configurations. He is also involved in SLA and policy
management. Earlier, when he was at the IBM Zurich
Research Laboratory, he worked on cross-organizational
process management. He has a Master’s (Diplom) degree and
a Ph.D. degree in information systems (Wirtschaftsinformatik)
from Otto-Friedrich University in Bamberg, Germany. More
information on Dr. Ludwig can be found at
http://www.research.ibm.com/people/h/hludwig/.

John Hogan

IBM Integrated Technology Delivery Division, 2455 South Road,
Poughkeepsie, NY 12601 (jphogan@us.ibm.com). Mr. Hogan
is a senior software engineer and currently works in the
Integrated Technology Delivery division. He has a B.S. degree
in finance from Central Connecticut State University and an
M.S. degree in management information systems from the
University of Arizona. During his career at IBM, Mr. Hogan
has designed and deployed IT systems management solutions
for a variety of corporate customers. His current interests
include using service catalogs and workflow to improve the
efficiency of IT service delivery.

Rajesh Jaluka

IBM Integrated Technology Delivery Division, 2455 South Road,
Poughkeepsie, NY 12601 (rjaluka@us.ibm.com). Mr. Jaluka is
a senior IT Architect at the IBM Technology and Integration
Management competency. As the lead architect of the Service

LUDWIG ET AL

17

18

Delivery Management project, he is working on the
methodology for streamlining the delivery of IT services,
building content and workflows for service catalogs, and
deploying SDM tools. He has 18 years of experience in
developing and deploying IT solutions for the manufacturing,
finance, telecommunication, and service industries.

David Loewenstern

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 (davidloe@us.ibm.com).
Dr. Loewenstern is an advisory software engineer in the
Service Delivery and Networking Services Research
department of the Watson Research Center at Hawthorne.
Before joining IBM in 2006, he had been active as a researcher
in artificial intelligence, as a computer scientist at Bell
Laboratories, and as a software consultant. He received his
Ph.D. degree in computer science from Rutgers University in
1999.

Santhosh Kumaran

IBM Research Division, Thomas J. Watson Research Center,
1101 Kitchawan Road, Yorktown Heights, NY 10598
(sbk@us.ibm.com). Dr. Kumaran leads a team of researchers
in the area of model-driven business integration. His research
interest is in using formal models to explicitly define the
structure and behavior of an enterprise and employing these
models to integrate, monitor, analyze, and improve its
performance.

Allen Gilbert

IBM Software Group, Tivoli, 11501 Burnet Road, Austin TX
78758 (amgilber@us.ibm.com). Mr. Gilbert is a senior
technical staff member at the Tivoli development laboratory in
Austin, Texas. He is a lead architect on the Tivoli IBM Service
Management (ISM) development team, and is currently
leading the design of the ISM Service Catalog and Service Desk
products. Before this, he led the development of the Policy
Management component of the Tivoli Autonomic Computing
initiative. Mr. Gilbert joined IBM in 1990 as an 0S/2®
architect. Prior to that, he held a variety of technical and
management positions while developing operating systems for
Data General and Control Data Corporation and building
robotic and factory automation software systems for the
American Cimflex Corporation. He has a B.S. degree in
biology from SUNY at Stonybrook and an M.S. degree in
genetics from the University of California at Davis.

Arijit Roy

IBM Global Business Services, IBM India, Millennium City,
Block DN, Sector V, Saltlake, Kolkata WB 700091
(arijiroy@in.ibm.com). Mr. Roy is a senior system engineer in
IBM India. He has a bachelor’s degree in computer science and
engineering from the National Institute of Technology in
Durgapur, India. He joined IBM India in 2005. A member of
the core MDBT/BPM (Model Driven Business
Transformation/Business Performance Monitoring) technical
group, Mr. Roy is the leader of the MDBT Practice Team in
IBM India. He is also a certified WebSphere Application Server
professional and has given technical training on Web Services
in IBM India. In addition, he has contributed to the
development of SOMA (Service-Oriented Modeling and
Architecture) and cultivated the growth of SOA in IBM India.
Since joining IBM, he received the Bravo Award in 2005 and
the Key Talent Award in 2006.

Thirumal R Nellutla

IBM Integrated Technology Delivery Division, 10 N. Martingale
Rd, Schaumburg IL 60173 (thiru@us.ibm.com). Mr. Nellutla
has been a lead architect in the Integrated Technology
Delivery division since 1997. He has held a diverse number of

LUDWIG ET AL

technical leadership roles in the areas of systems architecture,
infrastructure architecture, and all disciplines of IT
management. Before joining IBM, Mr. Nellutla worked at
prestigious institutions in India and significantly contributed
to the development of distributed-architecture-based parallel
processing systems. His primary areas of focus include IT
operations, optimization, and IT systems and services
management in support of the IBM strategic outsourcing and
e-business hosting lines of business. He has been a recognized
leader in the creation of Web load-balancing architectures and
the creation of several service-offering capabilities in support
of the service delivery business. He contributed significantly
to the evolution of the e-business on demand architecture and
associated components of the IT utility model. His other
interests include the impact of technology adoption on human
society.

Maheswaran Surendra

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532
(maheshsurendran@in.ibm.com). Dr. Surendra received a
Ph.D. degree in chemical engineering in 1991 from the
University of California at Berkeley and has been at IBM
Research since then. He has worked in technical areas ranging
from semiconductor manufacturing to software systems
management, and most recently in IT service delivery. He is
currently a senior manager in the Services organization in IBM
Research, and his focus is the application of IT service
management technologies in service delivery operations. ll

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

