D. M. Chess
J. E. Hanson

J. A. Pershing, Jr.

S. R. White

INTRODUCTION

Prospects for simplifying
ITSM-based management
through self-managing
resources

Information technology service management (ITSM) codifies and supports the current
best practices in the management and governance of existing IT infrastructures,
including the computing infrastructure that underlies service delivery. Once ITSM tools
have identified and structured current best practices, there is a significant opportunity
to simplify those practices, and thereby ITSM in general, by introducing self-managing
resources (SMRs). SMRs and related technologies allow increased delegation of
existing ITSM tasks from humans to autonomic managers and the restructuring of
ITSM activities through process modification and task replacement or elimination. In
particular, the use of SMRs and virtualization can convert many activities that currently
require multiple planning, validation, and approval tasks into routine activities that
have a simpler task flow, in much the same way that modern file systems have
transformed file-layout tasks that formerly required a skilled administrator into tasks
that are handled entirely and transparently by the operating system. This paper briefly
describes the general principles of SMRs, explores a number of potential impacts that
this technology will have on ITSM processes, and illustrates these ideas with an
analysis of how selected ITSM flows may be transformed.

of any kind. Formal processes such as ITIL** (IT

Managers of information technology (IT) systems
face a daunting challenge in trying to administer
them, as their size and complexity are continuously
growing. In order to bring this complexity under
control, many large IT organizations are adopting
various “best practice” methodologies, herein called
formal processes, to distinguish them from the all-
inclusive term IT process, which can mean anything
from a running application program to a workflow

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

Infrastructure** Library),1 ETOM** (Enhanced Tel-
ecom Operations Malp)**,2 and IBM Service Man-
agement,3 bring order and discipline to the

©Copyright 2007 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/07/$5.00 © 2007 IBM

CHESS ET AL

599

management of IT systems, thereby reducing the
likelihood and mitigating the severity of system
failures due to systems management activities.

The need for formal processes is in large part driven
by the fact that today’s IT systems, and enterprise
software systems in particular, are generally brittle,

m An ideal computing system
would take over a great deal
of Iits own management m

difficult to understand, and dangerous to change.
The risks involved in most management tasks are
such that they require a formal process to ensure
that they are done properly. With the value of
formal processes comes a cost, of course—namely,
that formal processes tend to be complex them-
selves, thereby placing significant and sometimes
prohibitive burdens on the system administrators
charged with carrying them out.

One approach to reducing the burden that formal
processes impose on system administrators is to
implement an automated management support
infrastructure to help in process execution. A longer-
term approach is to find and to remove, where
possible, the underlying factors that made the
adoption of a process necessary in the first place.
Both of these approaches should be pursued.
Without a management support infrastructure,
those management tasks that require governance by
a formal process will be prohibitively slow, expen-
sive, and prone to human error. Yet, unless
underlying factors such as brittleness are engineered
out of the systems being managed, the savings in
time and effort afforded by a management support
system will be dwarfed by the irreducible costs of
human decision making, agreements, and approvals
that are built into the formal processes that the
infrastructure is supporting.

This paper takes the second of these two approach-
es, focusing on the question of how certain changes
in the architecture of an IT system can permit radical
simplification in the formal processes to be applied
to it. The following two sections present a sketch of
an ideal system from the point of view of its
administrators, and, in contrast, some of the
significant trouble spots encountered in current

600 CHESS ET AL

practice. Next, the fundamental concept of a self-
managing resource is introduced, followed by a
discussion of how self-managing resources can
simplify and transform formal processes for man-
aging IT systems.

Portrait of an ideal system

From the viewpoint of the ease and flexibility of its
management, what would the ideal computing
system look like? If nothing else, it would have to
take over a great deal of its own management so that
its administrators would have little to do, and it
would have to be scalable in order to handle its own
growth and evolution. In the following, we ask the
reader to suspend disbelief and consider what a true
self-managing, scalable IT system would be like.

From the customer’s view, a self-managing, scalable
IT system consists of a number of more or less
identical boxes. Customers who want the “boxes”
(machines) to be able to communicate quickly with
each other can run cables between them, plug them
into a switch, or get the rack-mounted versions;
other customers can simply place the machines in
the same room, and they can communicate
wirelessly.

The system is administered through a Web interface
(one that has been rigorously tested for usability).
Most customers attach one or more network cables
from their intranet to one or more of the machines; if
a customer decides not to do that, he or she can still
communicate with the system wirelessly. The Web
interface is mainly used to set a few high-level
policies for how the system should manage itself
(unless the default policies are satisfactory).

One of the most important functions of the system is
to provide information to the customer on its own
utilization and performance and indicate when it
needs to be expanded. The customer can then either
contact the manufacturer and order whatever is
needed or whatever his budget currently allows, or
if the right policy is enabled, the system itself can
place the order automatically, as required.

When the new machines arrive, they need to be
placed in the room with the other machines (or
perhaps be inserted into a free rack slot if the rack-
mounted version is used). The system itself then
configures and provisions the machines appropri-
ately.

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

To deploy a new application into the system, the
customer creates a description of the desired
characteristics of the application, including func-
tionality, user interface, and performance, and the
system then goes to the Web site of any supplier of
compatible applications, browses for appropriate
applications, and returns data about the applications
to the customer. The system informs the customer
whether the new application is compatible with its
existing capacity, how many more machines it will
require if not, and any other consequences of adding
the application to the system. If the customer is
satisfied with the results, he or she gives the site

a credit card or customer number and presses
“deploy”. After some appropriate amount of time,
the application is installed into the local system. If
the application requires any new policy decisions
that are not yet set, it will ask the customer for those
decisions (or accept the defaults).

Over time, changes need to be made to the system:
patches need to be applied, and software compo-
nents need to be upgraded. In our idealized
scenario, such changes are handled automatically by
the system itself, in much the same way that new
applications are deployed, as just described. Peri-
odically, the Web sites of the suppliers are checked
for patches and upgrades; these are annotated with
indications of their importance (e.g., “critical
security patch”) and their expected impact on the
operation of the system (e.g., “consumes 20 percent
more memory and is 15 percent faster”). In some
cases (e.g., changes of critical importance with
minimal expected impact), the system will down-
load and apply the upgrade automatically. In other
cases, the customer will be notified of the pending
upgrade, its impact, and its cost (e.g., more boxes or
more memory), and will decide whether to apply the
upgrade or not. In all cases, there is an “undo”
facility available, so that the upgrade can be
reversed if the customer changes his or her mind.

Sometimes something goes wrong with one of the
boxes. This does not cause any significant externally
visible failure (beyond, perhaps, a dropped HTTP
connection). The system usually fixes these failures
itself, by restarting an aborted application or
rebooting a nonresponsive box. Sometimes a com-
ponent is actually broken, in which case the system
stops using it and causes a failure light to become
active. Once a month, the customer gathers any

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

boxes with active failure lights and ships them back
to the manufacturer for a prorated rebate.

The preceding scenario describes all that is required
of the customer for systems management and
expansion. In this ideal system, the management
tasks are extremely simple, inexpensive, reliable,
and nondisruptive. Unfortunately, this system will
not be available in the near future. Science fiction
though it is, this “thought experiment” highlights
some desirable directions for the future of ITSM that
might be achievable long before we reach the goal of
fully self-managing systems.

There are two key features of the ideal system that
we have described.

1. Changes are safe—There is no need to construct
expensive review, approval, and rehearsal pro-
cesses before making a change because changes
are safe and easily undone. Before a change is
made, it is possible to ask the system itself what
the likely consequences of the change will be.

2. Actions are policy-driven—Rather than requiring
human planning and intervention for every
action that the system takes, a system made from
self-managing components is driven by higher-
level policies that can be specified in advance and
which guide the automatic actions that the
system takes in response to change.

We now return our focus to the real world and
examine some of the trouble spots of actual IT
systems in use today before going on to examine the
movement from present systems toward self-man-
aging policy-driven systems in which change is safe
and systems management is simple.

Systems management trouble spots

Perhaps the largest problem in IT systems manage-
ment today is the lack of comprehensive informa-
tion about the IT resources themselves: what is
installed, where it is installed, how it is configured,
and so on. Information about IT resources is
generally kept separately from the resources them-
selves, if it is kept at all. Centralized databases of
information about system components are an
advance over poorly organized or disorganized
information, but they still suffer from various
problems. One prominent problem is that the
databases inevitably become inconsistent with the
actual states of the resources as they change.

CHESS ET AL

601

Significant and expensive processes are necessary to
minimize the frequency with which this happens, to
detect it when it does happen, and to fix it when it is
detected.

The lack of information about specific resources is a
problem, but the lack of information about how and
why the various resources are related to one another

m Perhaps the largest problem
in IT systems management
today is the lack of
comprehensive information
about the IT resources
themselves m

is a still more serious and difficult problem. Problem
determination and failure analysis become more
difficult, and predicting the impact of a proposed
change to a resource is nearly impossible. Informa-
tion about relationships may not be visible to the
resources at all but typically is implicit in the
construction of the system or known only to a third

party.

Capacity planning is difficult due to this lack of
relationship information; specifically, information
on the relationship parameters that are related to, or
necessary for, the fulfillment of a particular service
level agreement (SLA). Not only are the quality of
service (QoS) expectations for a real system often
unwritten and inchoate, but the particular structure
and configuration of the system that are critical to
meeting those expectations are often recorded only
in the memories of the experts. For this reason,
various changes to the system require hours, days,
or weeks of reviews and rehearsals.

Because of these factors, it is both difficult to
determine the underlying cause when the behavior
of the system changes undesirably and to determine
the safety or impact of desired changes. We
therefore need to establish formal processes, which
are often complex and expensive themselves, both
for problem determination and for change manage-
ment.

Self-managing resources
To a large extent, the trouble spots described earlier
can be addressed through the use of self-managing

602 CHESS ET AL

resources (SMRs) operating in a service-oriented
architecture.” SMRs have been described in detail
elsewhere, in particular in Reference 5, where they
are called autonomic elements. An SMR is an IT
resource—that is, a component of an IT system—in
which the greater part of what is traditionally
regarded as management of the resource is per-
formed by the resource itself. SMRs are active
entities exhibiting many of the properties of soft-
ware agents, in particular the capabilities to operate
relatively autonomously and to send and receive
messages to and from other SMRs. They interact in
prescribed ways (as described in the following) to
collectively manage the behavior of the IT system as
a whole. All this implies that there is a certain
minimum level of functionality for a resource to be
an SMR, which, in turn, implies a certain minimum
size and complexity for a single SMR. Thus, for
example, it is not practical for each individual file in
a file system, or row in a database table, to be an
SMR; rather, the file system or database itself would
be an SMR.

Self-management at the resource level is not an all-
or-nothing proposition, requiring complete or near-
complete adoption before its benefits can be
realized. On the contrary, every incremental ad-
vance toward full self-management significantly
reduces the brittleness and complexity of the task of
managing the IT system.

A detailed discussion of SMRs can be found in
Reference 5; here, we only provide a brief review of
their most important features:

¢ Self description—SMRs provide, in response to
queries, detailed information about themselves,
including their current operating parameters and
status, the services they can supply and need to
consume, and their current relationships with
other SMRs.

e Self registration—SMRs register their existence
and a summary of their self-description informa-
tion with at least one registry service.

e Policies—SMRs shape their behavior in accor-
dance with declarative policies, which may be
given to them from another party in the appro-
priate circumstances. SMRs only accept policy
updates from authorized sources and check all
policy updates for consistency before using them.
Consistency checking is done to determine the

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

effect of incorporating the update on the overall
set of the SMR’s policies and agreements.

e Explicit management of relationships through
agreements—SMRs form and follow agreements
with other SMRs in order to coordinate their
collective behavior. Agreements are like policies
in that the SMR shapes its behavior in conformity
with them; but, unlike policies, agreements are
under the explicit control of the SMRs that formed
the agreement.

e Interaction integrity—SMRs do not permit access
to their internal state through low-level interfaces.
That is, all interactions with SMRs are done in
such a way that the SMR’s own policies and
agreements are brought into play—for example, in
formulating the response to a query or command.
This is necessary to support the requirement that
SMRs obey their own policies at all times and obey
the constraints imposed by the agreements they
have entered into.

e Impact analysis—SMRs can provide information
about what would happen if certain changes were
made or certain preconditions were met. This
information need not be elaborate and may consist
simply of an indication that the proposed change
would or would not cause the SMR to violate its
policies or agreements. If the change in question is
a policy update, the logic required is the same as
that which is used in checking the consistency of
an update.

Although each of these features is significant for
implementing SMRs, incremental adoption of a
subset of these features can be beneficial for system
management. Simply making all resources self-
describing and self-registering would be a major
advance over today’s typical situation.

To help knit the collection of SMRs together into a
functioning IT system, a number of infrastructural
services are necessary. These are services (provided,
of course, by SMRs) that facilitate the interactions
among SMRs; they are closely analogous to the
services provided by “middle agents” common in
multi-agent systems.6 Some of these services have
analogs in present IT systems; others are necessary
only in systems composed of SMRs. A full list of
services can be found in Reference 6; here, we
mention only four:

* Registry—The registry service acts as a network-
accessible repository of information about the

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

SMRs in the system. As described previously,
SMRs register themselves with the registry service.
They also use it to find other SMRs that can
provide the services they need to consume.

e Policy repository—The policy repository is a
network-accessible service that provides policies
to SMRs. SMRs are notified by the repository when
an update is available and take action to fetch the
updates as and when appropriate. This “pull”
model of updating policy is a natural consequence
of the SMR’s requirement to manage itself.

® Resource factories—Many kinds of SMR can be
instantiated dynamically in response to the needs
of the overall system (e.g., to cope with changing
workloads). In such cases, the work of creating an
SMR is done by a “factory”. Once the SMR has
been started and given initial default configuration
information (such as its base policy), the SMR
takes over the responsibility of managing itself.

® Sentinels—A sentinel monitors the “health” or
life-cycle states of any number of SMRs and can
report (to subscribing SMRs) on changes in those
states. This enables systems-management soft-
ware to automatically discover the failure of an
SMR in order to restart it, replace it, or take other
remedial action. Not all situations require senti-
nels; often, a problem with one SMR will be
detected by other SMRs to which it is (or was)
providing service. But when it is necessary or
desirable to actively monitor the health of a
particular SMR independent of failures in the
services it is providing, sentinels can perform a
useful function.

SIMPLIFYING IT SYSTEMS MANAGEMENT

SMRs, or even resources that are somewhat more
self-managing than those we have today, have the
potential to radically simplify IT service manage-
ment. The incorporation of SMRs into computing
systems will allow for new, greatly simplified, flows
that can be automated more easily for many of the
high-level tasks of IT systems management. Just as
computer chess programs using very different
algorithms achieve the same goals as human
players, SMRs will naturally enable IT management
flows that take advantage of the ability of computers
to track large amounts of data and perform
repetitive tasks, while deferring to humans when
situations arise that are beyond their automatic
abilities. In those cases where human intervention is
required, the incorporation of SMRs will make the
jobs of the system administrators easier because

CHESS ET AL

603

they will be able to take advantage of the informa-
tional and self-management abilities of the comput-
ing resources.

An inspection of the formal processes for IT systems
management shows that they tend to be very labor
intensive. This is largely because, in today’s
systems, only the administrators have access to
information about what is occurring in the system
(e.g., how database A is related to application B,
what the capacity of server C is, and so on). This
information is largely unavailable to the system
components themselves, even if they were capable
of exploiting it. Thus, only the administrators are in
a position to determine the consequences of some
contemplated management task. Even if the execu-
tion of the task were automated (e.g., by a systems
management framework), the context in which the
task is to be carried out, and hence the conditions
governing its desirability, are still largely inaccessi-
ble to systems-management software.

In a world populated with SMRs, each resource
would “understand” a great deal of this information.
The understanding of its own properties, parame-
ters, and runtime state would have been coded into
it, as required by its ability to describe and manage
itself. The understanding of its relationship to the
overall system (i.e., the context within which it
operates) would be captured by the set of agree-
ments to which it would be a party.

The built-in ability of SMRs to protect themselves
against damaging management commands (i.e.,
where executing the command would lead to a
violation of the SMR’s agreements) greatly reduces
the risk involved in sending such commands. The
SMR in question would respond to the instruction
with a message saying, in effect, “I cannot comply
because doing so would violate agreement X.” The
need for multiple checks and approvals among
multiple administrators or stakeholders, as pre-
scribed by the formal process flow, is largely
obviated. A formal process would be needed only to
override this behavior, in order to force the SMR to
comply with the command despite its agreements.

For example, an inexperienced administrator might
attempt to shut down a database server for routine
maintenance, not knowing that the database was in
use by a business-critical application at the time.
(We may suppose that an unexpected failure in

604 CHESS ET AL

another database server had necessitated an un-
planned switchover to the one in question.) If that
database is an SMR, it would reply to the shutdown
command with the message, “I cannot shut down
now because it would violate my agreement with
the business-critical application,” thereby prevent-
ing a possibly costly error.

This in itself permits a radical simplification in the
operation of systems-management software. In
many of the ITSM flows there are “fast path”
branches in which (for example) a particular change
request is classified as pre-approved; if a particular
type of change is pre-approved, then much of the
complexity of the overall flow is immediately
bypassed. The introduction of SMRs in the IT system
means that a greater percentage of tasks are error-
proof, which has the effect of permitting the fast
path to be taken more often, resulting in significant
savings in cost and time.

This is not the only type of simplification that SMRs
can achieve. Just as SMRs can protect themselves
(and therefore the system of which they are a part)
from administrator errors, they can also protect
themselves from damaging actions by ordinary
users, and, even more important, by other SMRs.
This permits a fundamental realignment of the
relationship between the IT system and the pro-
cesses charged with managing it. Instead of inter-
acting with a systems-management support
framework (e.g., submitting a change request),
users as well as administrators will be able to
interact directly with the system’s components for
most of what they need done, just as they do at
present for such routine tasks as creating files,
changing passwords, and so forth. If the SMR
receiving the command determines that the request
is safe to execute (as determined by its policies and
agreements), it will simply do so; otherwise, it will
refuse. Instead of submitting a change request, for
example, a user simply tries to make the change he
wants, with the understanding that if it cannot be
done safely, it will not be done at all. The policies of
the SMR that receives the request determine how or
whether the request and any subsequent actions are
logged, so that changes can be selectively tracked.

A third type of simplification enabled by SMRs takes
advantage of their ability to form and modify
agreements. This permits sophisticated adaptive
algorithms to be built into the SMRs themselves, so

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

that they can modify their own behavior (including
the services they consume) in response to changes
in demand for the services they provide. Thus, for
example, SMRs permit a simplified process of
deploying a new J2EE** (Java** 2 Enterprise
Edition) application in which a user places the
application code in the data center’s deployment
repository and then tells the application to deploy
itself. In order to do so, the application (itself an
SMR) must have been started at least to the extent
that it can receive messages and execute its self-
deployment task; this can be done automatically by
the deployment repository. The application then
searches the data center for appropriate hosting
containers (e.g., WebSphere* Application Servers)
and negotiates with these potential hosts for the
necessary conditions (e.g., performance), eventually
striking a formal agreement with the best one. This
hosting container, in turn, may have to renegotiate
the agreements that it already has (e.g., to ask for
more storage capacity in a database).

Ultimately, we envision a data center where most of
the service management processes are fully auto-
mated: guided, of course, by policies which have
been set by the administrators. When a circum-
stance arises that cannot be handled by the
automated SMRs or where there is no guiding
policy, the task is escalated to the administrators for
action. Even then, in many cases, the administrators
can interact with the system components in a
relatively straightforward way. Only in a small
fraction of cases will it be necessary for the
administrators to enact a formal process to ensure
that the task is performed safely. For example,
formal processes are likely to be needed in order to
change or override system-level policies that affect
the behavior of multiple SMRs. In such cases the
possibility of seriously compromising the system’s
behavior by applying an incorrect policy remains
very real.

To illustrate the value that SMRs can provide in
simplifying ITSM processes, we consider a specific,
admittedly narrow, scenario in which the system to
be managed is a homogeneous collection of virtual
servers, and show how SMRs can simplify the
process of adding or removing a server and,
potentially, deploying software. In this scenario,
each virtual server is an SMR, as is the “hypervisor”
that provides the virtualization layer between the
physical hardware and the virtual servers. (In terms

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

of the infrastructural services listed previously, the
hypervisor is a resource factory.) The hypervisor
running on each physical machine also doubles as a
sentinel for the virtual servers running on that

m Self-managing resources
have the potential to radically
simplify IT service
management m

machine. Each virtual server is operating under an
explicit agreement with the hypervisor, which spells
out the levels of base resources (CPU, disk, memory,
etc.) allocated to that server by the hypervisor, as
well as the lifetime of the agreement itself.

In our example, a user of the system wishes to have
a new virtual server allocated to him in order to
test new software that he has developed. The user
sends a request for a new server to the hypervisor,
including the base resource levels needed and the
lifetime of the agreement. The hypervisor examines
the set of agreements currently in place with the
extant virtual servers and determines whether it can
create a new virtual server with the desired
properties without violating the terms of any of
those agreements; for example, whether there are
sufficient resources (CPU, memory, storage, etc.)
that are not already committed to the existing
agreements and that can be committed to this new
request. If so, it allocates the new virtual server,
gives it an initial policy granting administrator
access to the requesting user, and sends the user the
necessary information about the new machine. Also,
an agreement is put in place between the requestor
(the user) and the newly created virtual server,
indicating that the server has agreed to provide the
user with the base resource levels that were
requested.

The relevant ITSM process here is change manage-
ment, which is depicted in Figure 1. The activities
that can be eliminated are indicated with red cut
circles. The essential feature of SMRs that makes
these activities unnecessary is the existence of the
agreements between the hypervisor and the servers
and the built-in goal of each SMR to obey the
agreements it currently has.

CHESS ET AL

605

Change Approver Change Assignee Change Implementor Change Manager

Establish Change
Management Framework

From User ’
ConiEe Service Request
Management
From any Request for Change
process
A,
From Solution .
Acceptance Accepted Solution >
Accept ahd
Categbrize
Request for Change /Q‘(ange
Standard
Change
=<
c
To Portfolio , Request sl s
MerErEr Project 3 =
8 Proposal £ =
5|5
To Release [«——— / | £ £
Management | Schedule ol | g
of Change ‘ © o
© ©
= =
Request|for Change 3 9)
22
2 |2
O| |O
Coordinate
Chayige
Implémenta-
C tion Request for Change
Request|for Change
To .)
Configuration Configuration Item Data Update Package
Management
From Change Request for Change Status and Information w
Management . Report £nange
Change Information M)(gement
Evaluate Change
Management
Performance
Figure 1

Overview of change management

606 CHESS ET AL IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

We can modify the scenario somewhat by assuming
that the physical machine did not have sufficient
free local disk space to accommodate the new
virtual machine or, due to some policy, external
storage-area-network (SAN) storage is to be used
instead of local disk space. In this case, when the
request for the new server arrives, the hypervisor
needs to allocate storage from the SAN, which is
also an SMR. The hypervisor attempts to renegotiate
the existing agreement that it has in place with the
SAN, asking for an increase in its storage allocation.
If the SAN agrees to the new terms of the agreement,
then the storage is allocated to the hypervisor’s
physical machine, permitting the hypervisor to
satisfy the user’s request. If the SAN will not or
cannot agree to the new terms, the hypervisor may
choose to search the registry for another SAN
controller available that might be willing to agree to
provide the storage. If this attempt fails, the hyper-
visor must reject the user’s request.

Finally, we explore the scenario where the software
that the user is testing has been developed as an
SMR, for instance, an application of some sort. In
this case, the application understands its own
requirements (namely, a virtual server with a
certain amount of memory, CPU, and storage), and
is capable of deploying itself. The application, which
is running in the user’s test environment, sends a
request for a new server to the hypervisor. From the
point of view of the hypervisor, this scenario is
indistinguishable from the previous case, where the
request came from the user. After the virtual server
is constructed, an agreement is put in place between
the requestor (the application in this case) and the
newly created virtual server, indicating that the
server has agreed to provide the application with the
base resource levels that were requested. If the
application requires middleware SMRs to be in-
stalled in the new server, it uses the registry to find
appropriate resource factories and negotiates with
them to have this done. At this point, the application
can install itself on the new virtual server and begin
running there.

CONCLUSION

We have described a general approach for moving
from today’s administrator-intensive IT systems
management toward a self-managing IT infrastruc-
ture. To make this transition, the individual
resources of the IT infrastructure must become
SMRs. They must “understand” their own capabil-

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

ities and be able to enter into formal agreements
with other parties to provide these capabilities at
specified service levels. They must also understand
the lower-level resources that they require in order
to provide these capabilities at the agreed-upon
service levels. If asked to form an agreement to
provide service to an additional client, the SMR
must determine whether this can be done without
adversely affecting its existing agreements, and
what (if any) additional lower-level resources must
be acquired.

SMRs and related technologies will allow both
increased delegation of existing ITSM tasks from
humans to the SMRs themselves and restructuring
of ITSM activities through process restructuring and
task replacement and elimination. In particular, the
use of SMRs will convert many activities that
currently require multiple planning, validation, and
approval tasks into safe activities that can be done
routinely, with a simpler task flow.

Of course, this is a very difficult goal to achieve, if it
can be achieved at all. There are enormous
challenges in encoding sufficient domain knowledge
to produce a viable SMR. For relatively low-level
resources, such as (virtual) servers, recasting them
as SMRs is comparatively straightforward because
their service agreements will be expressed in
concrete terms that are easily understood: CPU
share, memory occupancy, storage allocation, etc.
However, for sophisticated middleware, such as
relational database management systems (DBMSs),
it is not yet at all clear how to express service
requirements in a meaningful manner, or how the
DBMS, acting as an SMR, can translate these
requirements into its own need for CPU, memory,
and I/0 bandwidth. A request to agree to provide a
client with a service level of, say, 150 SQL
(Structured Query Language) requests per minute
does not begin to tell the DBMS enough information:
whether or not the DBMS can accept this agreement
depends on the size of the database, its schema, and
the characteristics of the SQL requests (e.g., selects
on primary keys versus four-way joins). In such
cases, it may be necessary to run benchmarks in
order to characterize the workload that this request
represents, to employ types of adaptive system
models that have not yet been developed, and to
advance in other ways our methods for automati-
cally predicting and understanding the runtime
behavior of complex systems. Much research is

CHESS ET AL

607

needed to determine the sorts of benchmarking,
modeling, and other techniques that will be useful
and necessary for SMRs to be able to operate
effectively. These will be far from the only research
challenges facing the creation of truly self-managing
systems; Reference 7 suggests a number of others.

Will SMRs operating in the ways that we suggest
here truly revolutionize the way that IT systems are
managed and give us a version of ITSM that
approaches the ideal system described earlier?
Today’s prototypes and research efforts suggest both
that great progress and improvement are possible,
and that they will involve solving extremely difficult
(and extremely interesting) problems.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United
States, other countries, or both.

**Trademark, service mark, or registered trademark of the
United Kingdom Office of Government Commerce, Tele-
management Forum Corporation, or Sun Microsystems, Inc. in
the United States, other countries, or both.

CITED REFERENCES
1. IT Infrastructure Library (ITIL), Office of Government
Commerce, http://www.itil.co.uk.

2. eTOM Overview, The TeleManagement Forum, http://
www.tmforum.org/browse.aspx?catID=1648.

3. IBM Service Management, IBM Corporation, http://www.
ibm.com/software/tivoli/governance/
servicemanagement/index.html.

4. H. He, What is Service-Oriented Architecture? O’Reilly
Media, Inc. (2003), http://webservices.xml.com/pub/a/
ws/2003/09/30/soa.html.

5. S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, and
J. O. Kephart, “An Architectural Approach to Autonomic
Computing,” Proceedings of the First International Confer-
ence on Autonomic Computing (ICAC *04), IEEE Computer
Society Press, Washington, DC (2004), pp. 2-9.

6. K. Decker, K. Sycara, and M. Williamson, “Middle-Agents
for the Internet,” Proceedings of the 15th International
Joint Conference on Artificial Intelligence (IJCAI-97),
Morgan Kaufmann, San Francisco, CA (1997), pp.
578-583.

7. J. O. Kephart, “Research Challenges of Autonomic
Computing,” Proceedings of the 27th international Confer-
ence on Software Engineering (ICSE *05), ACM Press, New
York (2005), pp. 15-22.

Accepted for publication February 14, 2007.
Published online June 28, 2007.

David M. Chess

IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (chess@us.ibm.com). Mr. Chess is a
research staff member in the Internet Infrastructure and

608 CHESS ET AL

Computing Utilities department at the Watson Research
Center. He received an A.B. degree in philosophy from
Princeton University in 1981 and an M.S. degree in computer
science from Pace University. He joined IBM Research in 1981
and has worked on computer-mediated collaborative work,
computer security and virus prevention, autonomic
computing, and scalable systems management.

James E. Hanson

IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (jehanson@us.ibm.com). Dr. Hanson is
a research staff member in the Internet Infrastructure and
Computing Utilities department at the Watson Research
Center. He received a Ph.D. degree in physics from the
University of California at Berkeley. Since joining IBM
Research in 1995, he has worked on emergent phenomena in
networked systems, software agents and multi-agent systems,
and autonomic computing.

John A. Pershing, Jr.

IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (pershng@us.ibm.com). Mr. Pershing is
a research staff member in the Distributed Infrastructures
department at the Watson Research Center. He received B.S.
and M.S. degrees in computer science from the Massachusetts
Institute of Technology. He has been involved in computer
systems work for over 30 years, primarily in the areas of
computer networking, large-scale clustering, availability, and
systems management.

Steve R. White

IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (srwhite@us.ibm.com). Dr. White is a
research staff member in the Internet Infrastructure and
Computing Utilities department at the Watson Research
Center. He is currently working on autonomic computing,
exploring how to build computing systems that have billions
of components, yet are still self-managing. Dr. White has
published in the fields of condensed matter physics,
optimization by simulated annealing, software protection,
computer security, computer viruses, information economies,
and autonomic computing and holds over two dozen patents
in related fields. He is a member of the IBM Academy and has
received IBM’s highest technical awards for his work. Dr.
White received a Ph.D. from the University of California at San
Diego in theoretical physics in 1982. He held a post-doctoral
fellowship at IBM Research before becoming a research staff
member. H

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007

