
Prospects for simplifying
ITSM-based management
through self-managing
resources

&

D. M. Chess

J. E. Hanson

J. A. Pershing, Jr.

S. R. White

Information technology service management (ITSM) codifies and supports the current

best practices in the management and governance of existing IT infrastructures,

including the computing infrastructure that underlies service delivery. Once ITSM tools

have identified and structured current best practices, there is a significant opportunity

to simplify those practices, and thereby ITSM in general, by introducing self-managing

resources (SMRs). SMRs and related technologies allow increased delegation of

existing ITSM tasks from humans to autonomic managers and the restructuring of

ITSM activities through process modification and task replacement or elimination. In

particular, the use of SMRs and virtualization can convert many activities that currently

require multiple planning, validation, and approval tasks into routine activities that

have a simpler task flow, in much the same way that modern file systems have

transformed file-layout tasks that formerly required a skilled administrator into tasks

that are handled entirely and transparently by the operating system. This paper briefly

describes the general principles of SMRs, explores a number of potential impacts that

this technology will have on ITSM processes, and illustrates these ideas with an

analysis of how selected ITSM flows may be transformed.

INTRODUCTION

Managers of information technology (IT) systems

face a daunting challenge in trying to administer

them, as their size and complexity are continuously

growing. In order to bring this complexity under

control, many large IT organizations are adopting

various ‘‘best practice’’ methodologies, herein called

formal processes, to distinguish them from the all-

inclusive term IT process, which can mean anything

from a running application program to a workflow

of any kind. Formal processes such as ITIL** (IT

Infrastructure** Library),
1

ETOM** (Enhanced Tel-

ecom Operations Map)**,
2

and IBM Service Man-

agement,
3

bring order and discipline to the

�Copyright 2007 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/07/$5.00 � 2007 IBM

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 CHESS ET AL. 599

management of IT systems, thereby reducing the

likelihood and mitigating the severity of system

failures due to systems management activities.

The need for formal processes is in large part driven

by the fact that today’s IT systems, and enterprise

software systems in particular, are generally brittle,

& An ideal computing system
would take over a great deal
of its own management &

difficult to understand, and dangerous to change.

The risks involved in most management tasks are

such that they require a formal process to ensure

that they are done properly. With the value of

formal processes comes a cost, of course—namely,

that formal processes tend to be complex them-

selves, thereby placing significant and sometimes

prohibitive burdens on the system administrators

charged with carrying them out.

One approach to reducing the burden that formal

processes impose on system administrators is to

implement an automated management support

infrastructure to help in process execution. A longer-

term approach is to find and to remove, where

possible, the underlying factors that made the

adoption of a process necessary in the first place.

Both of these approaches should be pursued.

Without a management support infrastructure,

those management tasks that require governance by

a formal process will be prohibitively slow, expen-

sive, and prone to human error. Yet, unless

underlying factors such as brittleness are engineered

out of the systems being managed, the savings in

time and effort afforded by a management support

system will be dwarfed by the irreducible costs of

human decision making, agreements, and approvals

that are built into the formal processes that the

infrastructure is supporting.

This paper takes the second of these two approach-

es, focusing on the question of how certain changes

in the architecture of an IT system can permit radical

simplification in the formal processes to be applied

to it. The following two sections present a sketch of

an ideal system from the point of view of its

administrators, and, in contrast, some of the

significant trouble spots encountered in current

practice. Next, the fundamental concept of a self-

managing resource is introduced, followed by a

discussion of how self-managing resources can

simplify and transform formal processes for man-

aging IT systems.

Portrait of an ideal system

From the viewpoint of the ease and flexibility of its

management, what would the ideal computing

system look like? If nothing else, it would have to

take over a great deal of its own management so that

its administrators would have little to do, and it

would have to be scalable in order to handle its own

growth and evolution. In the following, we ask the

reader to suspend disbelief and consider what a true

self-managing, scalable IT system would be like.

From the customer’s view, a self-managing, scalable

IT system consists of a number of more or less

identical boxes. Customers who want the ‘‘boxes’’

(machines) to be able to communicate quickly with

each other can run cables between them, plug them

into a switch, or get the rack-mounted versions;

other customers can simply place the machines in

the same room, and they can communicate

wirelessly.

The system is administered through a Web interface

(one that has been rigorously tested for usability).

Most customers attach one or more network cables

from their intranet to one or more of the machines; if

a customer decides not to do that, he or she can still

communicate with the system wirelessly. The Web

interface is mainly used to set a few high-level

policies for how the system should manage itself

(unless the default policies are satisfactory).

One of the most important functions of the system is

to provide information to the customer on its own

utilization and performance and indicate when it

needs to be expanded. The customer can then either

contact the manufacturer and order whatever is

needed or whatever his budget currently allows, or

if the right policy is enabled, the system itself can

place the order automatically, as required.

When the new machines arrive, they need to be

placed in the room with the other machines (or

perhaps be inserted into a free rack slot if the rack-

mounted version is used). The system itself then

configures and provisions the machines appropri-

ately.

CHESS ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007600

To deploy a new application into the system, the

customer creates a description of the desired

characteristics of the application, including func-

tionality, user interface, and performance, and the

system then goes to the Web site of any supplier of

compatible applications, browses for appropriate

applications, and returns data about the applications

to the customer. The system informs the customer

whether the new application is compatible with its

existing capacity, how many more machines it will

require if not, and any other consequences of adding

the application to the system. If the customer is

satisfied with the results, he or she gives the site

a credit card or customer number and presses

‘‘deploy’’. After some appropriate amount of time,

the application is installed into the local system. If

the application requires any new policy decisions

that are not yet set, it will ask the customer for those

decisions (or accept the defaults).

Over time, changes need to be made to the system:

patches need to be applied, and software compo-

nents need to be upgraded. In our idealized

scenario, such changes are handled automatically by

the system itself, in much the same way that new

applications are deployed, as just described. Peri-

odically, the Web sites of the suppliers are checked

for patches and upgrades; these are annotated with

indications of their importance (e.g., ‘‘critical

security patch’’) and their expected impact on the

operation of the system (e.g., ‘‘consumes 20 percent

more memory and is 15 percent faster’’). In some

cases (e.g., changes of critical importance with

minimal expected impact), the system will down-

load and apply the upgrade automatically. In other

cases, the customer will be notified of the pending

upgrade, its impact, and its cost (e.g., more boxes or

more memory), and will decide whether to apply the

upgrade or not. In all cases, there is an ‘‘undo’’

facility available, so that the upgrade can be

reversed if the customer changes his or her mind.

Sometimes something goes wrong with one of the

boxes. This does not cause any significant externally

visible failure (beyond, perhaps, a dropped HTTP

connection). The system usually fixes these failures

itself, by restarting an aborted application or

rebooting a nonresponsive box. Sometimes a com-

ponent is actually broken, in which case the system

stops using it and causes a failure light to become

active. Once a month, the customer gathers any

boxes with active failure lights and ships them back

to the manufacturer for a prorated rebate.

The preceding scenario describes all that is required

of the customer for systems management and

expansion. In this ideal system, the management

tasks are extremely simple, inexpensive, reliable,

and nondisruptive. Unfortunately, this system will

not be available in the near future. Science fiction

though it is, this ‘‘thought experiment’’ highlights

some desirable directions for the future of ITSM that

might be achievable long before we reach the goal of

fully self-managing systems.

There are two key features of the ideal system that

we have described.

1. Changes are safe—There is no need to construct

expensive review, approval, and rehearsal pro-

cesses before making a change because changes

are safe and easily undone. Before a change is

made, it is possible to ask the system itself what

the likely consequences of the change will be.

2. Actions are policy-driven—Rather than requiring

human planning and intervention for every

action that the system takes, a system made from

self-managing components is driven by higher-

level policies that can be specified in advance and

which guide the automatic actions that the

system takes in response to change.

We now return our focus to the real world and

examine some of the trouble spots of actual IT

systems in use today before going on to examine the

movement from present systems toward self-man-

aging policy-driven systems in which change is safe

and systems management is simple.

Systems management trouble spots

Perhaps the largest problem in IT systems manage-

ment today is the lack of comprehensive informa-

tion about the IT resources themselves: what is

installed, where it is installed, how it is configured,

and so on. Information about IT resources is

generally kept separately from the resources them-

selves, if it is kept at all. Centralized databases of

information about system components are an

advance over poorly organized or disorganized

information, but they still suffer from various

problems. One prominent problem is that the

databases inevitably become inconsistent with the

actual states of the resources as they change.

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 CHESS ET AL. 601

Significant and expensive processes are necessary to

minimize the frequency with which this happens, to

detect it when it does happen, and to fix it when it is

detected.

The lack of information about specific resources is a

problem, but the lack of information about how and

why the various resources are related to one another

& Perhaps the largest problem
in IT systems management
today is the lack of
comprehensive information
about the IT resources
themselves &

is a still more serious and difficult problem. Problem

determination and failure analysis become more

difficult, and predicting the impact of a proposed

change to a resource is nearly impossible. Informa-

tion about relationships may not be visible to the

resources at all but typically is implicit in the

construction of the system or known only to a third

party.

Capacity planning is difficult due to this lack of

relationship information; specifically, information

on the relationship parameters that are related to, or

necessary for, the fulfillment of a particular service

level agreement (SLA). Not only are the quality of

service (QoS) expectations for a real system often

unwritten and inchoate, but the particular structure

and configuration of the system that are critical to

meeting those expectations are often recorded only

in the memories of the experts. For this reason,

various changes to the system require hours, days,

or weeks of reviews and rehearsals.

Because of these factors, it is both difficult to

determine the underlying cause when the behavior

of the system changes undesirably and to determine

the safety or impact of desired changes. We

therefore need to establish formal processes, which

are often complex and expensive themselves, both

for problem determination and for change manage-

ment.

Self-managing resources
To a large extent, the trouble spots described earlier

can be addressed through the use of self-managing

resources (SMRs) operating in a service-oriented

architecture.
4

SMRs have been described in detail

elsewhere, in particular in Reference 5, where they

are called autonomic elements. An SMR is an IT

resource—that is, a component of an IT system—in

which the greater part of what is traditionally

regarded as management of the resource is per-

formed by the resource itself. SMRs are active

entities exhibiting many of the properties of soft-

ware agents, in particular the capabilities to operate

relatively autonomously and to send and receive

messages to and from other SMRs. They interact in

prescribed ways (as described in the following) to

collectively manage the behavior of the IT system as

a whole. All this implies that there is a certain

minimum level of functionality for a resource to be

an SMR, which, in turn, implies a certain minimum

size and complexity for a single SMR. Thus, for

example, it is not practical for each individual file in

a file system, or row in a database table, to be an

SMR; rather, the file system or database itself would

be an SMR.

Self-management at the resource level is not an all-

or-nothing proposition, requiring complete or near-

complete adoption before its benefits can be

realized. On the contrary, every incremental ad-

vance toward full self-management significantly

reduces the brittleness and complexity of the task of

managing the IT system.

A detailed discussion of SMRs can be found in

Reference 5; here, we only provide a brief review of

their most important features:

� Self description—SMRs provide, in response to

queries, detailed information about themselves,

including their current operating parameters and

status, the services they can supply and need to

consume, and their current relationships with

other SMRs.
� Self registration—SMRs register their existence

and a summary of their self-description informa-

tion with at least one registry service.
� Policies—SMRs shape their behavior in accor-

dance with declarative policies, which may be

given to them from another party in the appro-

priate circumstances. SMRs only accept policy

updates from authorized sources and check all

policy updates for consistency before using them.

Consistency checking is done to determine the

CHESS ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007602

effect of incorporating the update on the overall

set of the SMR’s policies and agreements.
� Explicit management of relationships through

agreements—SMRs form and follow agreements

with other SMRs in order to coordinate their

collective behavior. Agreements are like policies

in that the SMR shapes its behavior in conformity

with them; but, unlike policies, agreements are

under the explicit control of the SMRs that formed

the agreement.
� Interaction integrity—SMRs do not permit access

to their internal state through low-level interfaces.

That is, all interactions with SMRs are done in

such a way that the SMR’s own policies and

agreements are brought into play—for example, in

formulating the response to a query or command.

This is necessary to support the requirement that

SMRs obey their own policies at all times and obey

the constraints imposed by the agreements they

have entered into.
� Impact analysis—SMRs can provide information

about what would happen if certain changes were

made or certain preconditions were met. This

information need not be elaborate and may consist

simply of an indication that the proposed change

would or would not cause the SMR to violate its

policies or agreements. If the change in question is

a policy update, the logic required is the same as

that which is used in checking the consistency of

an update.

Although each of these features is significant for

implementing SMRs, incremental adoption of a

subset of these features can be beneficial for system

management. Simply making all resources self-

describing and self-registering would be a major

advance over today’s typical situation.

To help knit the collection of SMRs together into a

functioning IT system, a number of infrastructural

services are necessary. These are services (provided,

of course, by SMRs) that facilitate the interactions

among SMRs; they are closely analogous to the

services provided by ‘‘middle agents’’ common in

multi-agent systems.
6

Some of these services have

analogs in present IT systems; others are necessary

only in systems composed of SMRs. A full list of

services can be found in Reference 6; here, we

mention only four:

� Registry—The registry service acts as a network-

accessible repository of information about the

SMRs in the system. As described previously,

SMRs register themselves with the registry service.

They also use it to find other SMRs that can

provide the services they need to consume.
� Policy repository—The policy repository is a

network-accessible service that provides policies

to SMRs. SMRs are notified by the repository when

an update is available and take action to fetch the

updates as and when appropriate. This ‘‘pull’’

model of updating policy is a natural consequence

of the SMR’s requirement to manage itself.
� Resource factories—Many kinds of SMR can be

instantiated dynamically in response to the needs

of the overall system (e.g., to cope with changing

workloads). In such cases, the work of creating an

SMR is done by a ‘‘factory’’. Once the SMR has

been started and given initial default configuration

information (such as its base policy), the SMR

takes over the responsibility of managing itself.
� Sentinels—A sentinel monitors the ‘‘health’’ or

life-cycle states of any number of SMRs and can

report (to subscribing SMRs) on changes in those

states. This enables systems-management soft-

ware to automatically discover the failure of an

SMR in order to restart it, replace it, or take other

remedial action. Not all situations require senti-

nels; often, a problem with one SMR will be

detected by other SMRs to which it is (or was)

providing service. But when it is necessary or

desirable to actively monitor the health of a

particular SMR independent of failures in the

services it is providing, sentinels can perform a

useful function.

SIMPLIFYING IT SYSTEMS MANAGEMENT

SMRs, or even resources that are somewhat more

self-managing than those we have today, have the

potential to radically simplify IT service manage-

ment. The incorporation of SMRs into computing

systems will allow for new, greatly simplified, flows

that can be automated more easily for many of the

high-level tasks of IT systems management. Just as

computer chess programs using very different

algorithms achieve the same goals as human

players, SMRs will naturally enable IT management

flows that take advantage of the ability of computers

to track large amounts of data and perform

repetitive tasks, while deferring to humans when

situations arise that are beyond their automatic

abilities. In those cases where human intervention is

required, the incorporation of SMRs will make the

jobs of the system administrators easier because

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 CHESS ET AL. 603

they will be able to take advantage of the informa-

tional and self-management abilities of the comput-

ing resources.

An inspection of the formal processes for IT systems

management shows that they tend to be very labor

intensive. This is largely because, in today’s

systems, only the administrators have access to

information about what is occurring in the system

(e.g., how database A is related to application B,

what the capacity of server C is, and so on). This

information is largely unavailable to the system

components themselves, even if they were capable

of exploiting it. Thus, only the administrators are in

a position to determine the consequences of some

contemplated management task. Even if the execu-

tion of the task were automated (e.g., by a systems

management framework), the context in which the

task is to be carried out, and hence the conditions

governing its desirability, are still largely inaccessi-

ble to systems-management software.

In a world populated with SMRs, each resource

would ‘‘understand’’ a great deal of this information.

The understanding of its own properties, parame-

ters, and runtime state would have been coded into

it, as required by its ability to describe and manage

itself. The understanding of its relationship to the

overall system (i.e., the context within which it

operates) would be captured by the set of agree-

ments to which it would be a party.

The built-in ability of SMRs to protect themselves

against damaging management commands (i.e.,

where executing the command would lead to a

violation of the SMR’s agreements) greatly reduces

the risk involved in sending such commands. The

SMR in question would respond to the instruction

with a message saying, in effect, ‘‘I cannot comply

because doing so would violate agreement X.’’ The

need for multiple checks and approvals among

multiple administrators or stakeholders, as pre-

scribed by the formal process flow, is largely

obviated. A formal process would be needed only to

override this behavior, in order to force the SMR to

comply with the command despite its agreements.

For example, an inexperienced administrator might

attempt to shut down a database server for routine

maintenance, not knowing that the database was in

use by a business-critical application at the time.

(We may suppose that an unexpected failure in

another database server had necessitated an un-

planned switchover to the one in question.) If that

database is an SMR, it would reply to the shutdown

command with the message, ‘‘I cannot shut down

now because it would violate my agreement with

the business-critical application,’’ thereby prevent-

ing a possibly costly error.

This in itself permits a radical simplification in the

operation of systems-management software. In

many of the ITSM flows there are ‘‘fast path’’

branches in which (for example) a particular change

request is classified as pre-approved; if a particular

type of change is pre-approved, then much of the

complexity of the overall flow is immediately

bypassed. The introduction of SMRs in the IT system

means that a greater percentage of tasks are error-

proof, which has the effect of permitting the fast

path to be taken more often, resulting in significant

savings in cost and time.

This is not the only type of simplification that SMRs

can achieve. Just as SMRs can protect themselves

(and therefore the system of which they are a part)

from administrator errors, they can also protect

themselves from damaging actions by ordinary

users, and, even more important, by other SMRs.

This permits a fundamental realignment of the

relationship between the IT system and the pro-

cesses charged with managing it. Instead of inter-

acting with a systems-management support

framework (e.g., submitting a change request),

users as well as administrators will be able to

interact directly with the system’s components for

most of what they need done, just as they do at

present for such routine tasks as creating files,

changing passwords, and so forth. If the SMR

receiving the command determines that the request

is safe to execute (as determined by its policies and

agreements), it will simply do so; otherwise, it will

refuse. Instead of submitting a change request, for

example, a user simply tries to make the change he

wants, with the understanding that if it cannot be

done safely, it will not be done at all. The policies of

the SMR that receives the request determine how or

whether the request and any subsequent actions are

logged, so that changes can be selectively tracked.

A third type of simplification enabled by SMRs takes

advantage of their ability to form and modify

agreements. This permits sophisticated adaptive

algorithms to be built into the SMRs themselves, so

CHESS ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007604

that they can modify their own behavior (including

the services they consume) in response to changes

in demand for the services they provide. Thus, for

example, SMRs permit a simplified process of

deploying a new J2EE** (Java** 2 Enterprise

Edition) application in which a user places the

application code in the data center’s deployment

repository and then tells the application to deploy

itself. In order to do so, the application (itself an

SMR) must have been started at least to the extent

that it can receive messages and execute its self-

deployment task; this can be done automatically by

the deployment repository. The application then

searches the data center for appropriate hosting

containers (e.g., WebSphere* Application Servers)

and negotiates with these potential hosts for the

necessary conditions (e.g., performance), eventually

striking a formal agreement with the best one. This

hosting container, in turn, may have to renegotiate

the agreements that it already has (e.g., to ask for

more storage capacity in a database).

Ultimately, we envision a data center where most of

the service management processes are fully auto-

mated: guided, of course, by policies which have

been set by the administrators. When a circum-

stance arises that cannot be handled by the

automated SMRs or where there is no guiding

policy, the task is escalated to the administrators for

action. Even then, in many cases, the administrators

can interact with the system components in a

relatively straightforward way. Only in a small

fraction of cases will it be necessary for the

administrators to enact a formal process to ensure

that the task is performed safely. For example,

formal processes are likely to be needed in order to

change or override system-level policies that affect

the behavior of multiple SMRs. In such cases the

possibility of seriously compromising the system’s

behavior by applying an incorrect policy remains

very real.

To illustrate the value that SMRs can provide in

simplifying ITSM processes, we consider a specific,

admittedly narrow, scenario in which the system to

be managed is a homogeneous collection of virtual

servers, and show how SMRs can simplify the

process of adding or removing a server and,

potentially, deploying software. In this scenario,

each virtual server is an SMR, as is the ‘‘hypervisor’’

that provides the virtualization layer between the

physical hardware and the virtual servers. (In terms

of the infrastructural services listed previously, the

hypervisor is a resource factory.) The hypervisor

running on each physical machine also doubles as a

sentinel for the virtual servers running on that

& Self-managing resources
have the potential to radically
simplify IT service
management &

machine. Each virtual server is operating under an

explicit agreement with the hypervisor, which spells

out the levels of base resources (CPU, disk, memory,

etc.) allocated to that server by the hypervisor, as

well as the lifetime of the agreement itself.

In our example, a user of the system wishes to have

a new virtual server allocated to him in order to

test new software that he has developed. The user

sends a request for a new server to the hypervisor,

including the base resource levels needed and the

lifetime of the agreement. The hypervisor examines

the set of agreements currently in place with the

extant virtual servers and determines whether it can

create a new virtual server with the desired

properties without violating the terms of any of

those agreements; for example, whether there are

sufficient resources (CPU, memory, storage, etc.)

that are not already committed to the existing

agreements and that can be committed to this new

request. If so, it allocates the new virtual server,

gives it an initial policy granting administrator

access to the requesting user, and sends the user the

necessary information about the new machine. Also,

an agreement is put in place between the requestor

(the user) and the newly created virtual server,

indicating that the server has agreed to provide the

user with the base resource levels that were

requested.

The relevant ITSM process here is change manage-

ment, which is depicted in Figure 1. The activities

that can be eliminated are indicated with red cut

circles. The essential feature of SMRs that makes

these activities unnecessary is the existence of the

agreements between the hypervisor and the servers

and the built-in goal of each SMR to obey the

agreements it currently has.

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 CHESS ET AL. 605

Figure 1
Overview of change management

To Portfolio
Manager

Establish Change
Management Framework

From User
Contact
Management

Change Approver Change Assignee Change Implementor Change Manager

Service Request

Request for Change

Request for Change

Project
Proposal

Accepted Solution

Standard
Change

Schedule
of Change

Request for Change Status and Information

Change Information

C
ha

ng
e

M
an

ag
em

en
t E

va
lu

at
io

n

C
ha

ng
e

M
an

ag
em

en
t

Fr
am

ew
or

k

Configuration Item Data Update Package

From any
process

From Solution
Acceptance

To Release
Management

From Change
Management

Accept and
Categorize

Change

t an
ego

ChaCha

and
gor

t an
ego

Ch

Assess
Change

Approve
and Schedule

Change

ove
che

ChaCha

ve
he
ove

ch
Ch

Evaluate Change
Management
Performance

Review and
Close Change

and
e Ch

and
e Ch

an
e C

Monitor and
Report Change
Management

an
t Change

anagnag

and
Change

an
Report C

ana

Prepare,
Distribute, and

Implement
Change

re,
Distribute,

mple
Ch

e,
te,

ple
Ch

D
re,

ute
mpl
C

Coordinate
Change

Implementa-
tion

ate
ang

plemlem

ate
ng
nat

ang
ple

Request for Change

Request for Change

Request for Change

Request for Change

To
Configuration
Management

ess
Chan

ss
han

ess
Cha

CHESS ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007606

We can modify the scenario somewhat by assuming

that the physical machine did not have sufficient

free local disk space to accommodate the new

virtual machine or, due to some policy, external

storage-area-network (SAN) storage is to be used

instead of local disk space. In this case, when the

request for the new server arrives, the hypervisor

needs to allocate storage from the SAN, which is

also an SMR. The hypervisor attempts to renegotiate

the existing agreement that it has in place with the

SAN, asking for an increase in its storage allocation.

If the SAN agrees to the new terms of the agreement,

then the storage is allocated to the hypervisor’s

physical machine, permitting the hypervisor to

satisfy the user’s request. If the SAN will not or

cannot agree to the new terms, the hypervisor may

choose to search the registry for another SAN

controller available that might be willing to agree to

provide the storage. If this attempt fails, the hyper-

visor must reject the user’s request.

Finally, we explore the scenario where the software

that the user is testing has been developed as an

SMR, for instance, an application of some sort. In

this case, the application understands its own

requirements (namely, a virtual server with a

certain amount of memory, CPU, and storage), and

is capable of deploying itself. The application, which

is running in the user’s test environment, sends a

request for a new server to the hypervisor. From the

point of view of the hypervisor, this scenario is

indistinguishable from the previous case, where the

request came from the user. After the virtual server

is constructed, an agreement is put in place between

the requestor (the application in this case) and the

newly created virtual server, indicating that the

server has agreed to provide the application with the

base resource levels that were requested. If the

application requires middleware SMRs to be in-

stalled in the new server, it uses the registry to find

appropriate resource factories and negotiates with

them to have this done. At this point, the application

can install itself on the new virtual server and begin

running there.

CONCLUSION
We have described a general approach for moving

from today’s administrator-intensive IT systems

management toward a self-managing IT infrastruc-

ture. To make this transition, the individual

resources of the IT infrastructure must become

SMRs. They must ‘‘understand’’ their own capabil-

ities and be able to enter into formal agreements

with other parties to provide these capabilities at

specified service levels. They must also understand

the lower-level resources that they require in order

to provide these capabilities at the agreed-upon

service levels. If asked to form an agreement to

provide service to an additional client, the SMR

must determine whether this can be done without

adversely affecting its existing agreements, and

what (if any) additional lower-level resources must

be acquired.

SMRs and related technologies will allow both

increased delegation of existing ITSM tasks from

humans to the SMRs themselves and restructuring

of ITSM activities through process restructuring and

task replacement and elimination. In particular, the

use of SMRs will convert many activities that

currently require multiple planning, validation, and

approval tasks into safe activities that can be done

routinely, with a simpler task flow.

Of course, this is a very difficult goal to achieve, if it

can be achieved at all. There are enormous

challenges in encoding sufficient domain knowledge

to produce a viable SMR. For relatively low-level

resources, such as (virtual) servers, recasting them

as SMRs is comparatively straightforward because

their service agreements will be expressed in

concrete terms that are easily understood: CPU

share, memory occupancy, storage allocation, etc.

However, for sophisticated middleware, such as

relational database management systems (DBMSs),

it is not yet at all clear how to express service

requirements in a meaningful manner, or how the

DBMS, acting as an SMR, can translate these

requirements into its own need for CPU, memory,

and I/O bandwidth. A request to agree to provide a

client with a service level of, say, 150 SQL

(Structured Query Language) requests per minute

does not begin to tell the DBMS enough information:

whether or not the DBMS can accept this agreement

depends on the size of the database, its schema, and

the characteristics of the SQL requests (e.g., selects

on primary keys versus four-way joins). In such

cases, it may be necessary to run benchmarks in

order to characterize the workload that this request

represents, to employ types of adaptive system

models that have not yet been developed, and to

advance in other ways our methods for automati-

cally predicting and understanding the runtime

behavior of complex systems. Much research is

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 CHESS ET AL. 607

needed to determine the sorts of benchmarking,

modeling, and other techniques that will be useful

and necessary for SMRs to be able to operate

effectively. These will be far from the only research

challenges facing the creation of truly self-managing

systems; Reference 7 suggests a number of others.

Will SMRs operating in the ways that we suggest

here truly revolutionize the way that IT systems are

managed and give us a version of ITSM that

approaches the ideal system described earlier?

Today’s prototypes and research efforts suggest both

that great progress and improvement are possible,

and that they will involve solving extremely difficult

(and extremely interesting) problems.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United
States, other countries, or both.

**Trademark, service mark, or registered trademark of the
United Kingdom Office of Government Commerce, Tele-
management Forum Corporation, or Sun Microsystems, Inc. in
the United States, other countries, or both.

CITED REFERENCES
1. IT Infrastructure Library (ITIL), Office of Government

Commerce, http://www.itil.co.uk.

2. eTOM Overview, The TeleManagement Forum, http://
www.tmforum.org/browse.aspx?catID¼1648.

3. IBM Service Management, IBM Corporation, http://www.
ibm.com/software/tivoli/governance/
servicemanagement/index.html.

4. H. He, What is Service-Oriented Architecture? O’Reilly
Media, Inc. (2003), http://webservices.xml.com/pub/a/
ws/2003/09/30/soa.html.

5. S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, and
J. O. Kephart, ‘‘An Architectural Approach to Autonomic
Computing,’’ Proceedings of the First International Confer-
ence on Autonomic Computing (ICAC ’04), IEEE Computer
Society Press, Washington, DC (2004), pp. 2–9.

6. K. Decker, K. Sycara, and M. Williamson, ‘‘Middle-Agents
for the Internet,’’ Proceedings of the 15th International
Joint Conference on Artificial Intelligence (IJCAI-97),
Morgan Kaufmann, San Francisco, CA (1997), pp.
578–583.

7. J. O. Kephart, ‘‘Research Challenges of Autonomic
Computing,’’ Proceedings of the 27th international Confer-
ence on Software Engineering (ICSE ’05), ACM Press, New
York (2005), pp. 15–22.

Accepted for publication February 14, 2007.

David M. Chess
IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (chess@us.ibm.com). Mr. Chess is a
research staff member in the Internet Infrastructure and

Computing Utilities department at the Watson Research
Center. He received an A.B. degree in philosophy from
Princeton University in 1981 and an M.S. degree in computer
science from Pace University. He joined IBM Research in 1981
and has worked on computer-mediated collaborative work,
computer security and virus prevention, autonomic
computing, and scalable systems management.

James E. Hanson
IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (jehanson@us.ibm.com). Dr. Hanson is
a research staff member in the Internet Infrastructure and
Computing Utilities department at the Watson Research
Center. He received a Ph.D. degree in physics from the
University of California at Berkeley. Since joining IBM
Research in 1995, he has worked on emergent phenomena in
networked systems, software agents and multi-agent systems,
and autonomic computing.

John A. Pershing, Jr.
IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (pershng@us.ibm.com). Mr. Pershing is
a research staff member in the Distributed Infrastructures
department at the Watson Research Center. He received B.S.
and M.S. degrees in computer science from the Massachusetts
Institute of Technology. He has been involved in computer
systems work for over 30 years, primarily in the areas of
computer networking, large-scale clustering, availability, and
systems management.

Steve R. White
IBM Thomas J. Watson Research Center, 19 Skyline Drive,
Hawthorne, NY 10532 (srwhite@us.ibm.com). Dr. White is a
research staff member in the Internet Infrastructure and
Computing Utilities department at the Watson Research
Center. He is currently working on autonomic computing,
exploring how to build computing systems that have billions
of components, yet are still self-managing. Dr. White has
published in the fields of condensed matter physics,
optimization by simulated annealing, software protection,
computer security, computer viruses, information economies,
and autonomic computing and holds over two dozen patents
in related fields. He is a member of the IBM Academy and has
received IBM’s highest technical awards for his work. Dr.
White received a Ph.D. from the University of California at San
Diego in theoretical physics in 1982. He held a post-doctoral
fellowship at IBM Research before becoming a research staff
member. &

CHESS ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007608

Published online June 2007.28,

