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management (ITSM). This framework helps organizations manage their IT services
using standard design patterns and the requisite customization. In this paper, we
discuss critical contributions that autonomic computing offers to the definition and
implementation of an ITSM architecture and infrastructure. We first introduce key
architectural patterns and specifications of autonomic computing as they relate to an
ITSM logical architecture. We then show how autonomic computing delivers value

through a set of ITSM-based case studies that address problem determination, impact
assessment, and solution deployment.

INTRODUCTION

Autonomic computing traces its beginnings to eight
key elements, or theses, described in Dr. Paul
Horn’s, “Autonomic Computing Manifesto,” first
delivered as a keynote address to a National
Academy of Engineers meeting in 2001." In his
presentation, autonomic computing was described
as a grand challenge—not just within IBM, but for
the information technology (IT) industry as a whole.

In 2003, an IBM Systems Journal issue focused on a
broad set of technologies that represented the state
of the art then for autonomic computing. In their
introductory paper, “The Dawning of the Autonomic
Computing Era,” Ganek and Corbi® examined both
marketplace and industry drivers for autonomic
computing.
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Since its inception, the autonomic computing
initiative has witnessed considerable success
within the commercial realm,”® it has been
widely embraced within the research commu-
nity,%11 and it has been leveraged in conjunction
with other key architectural initiatives, including
grid and Web services, pervasive and ubiquitous
computing, and service-oriented architecture
(SOA).IZ*14 Considerable activity also has occurred
within the standards communities related to auto-
nomic computing.ls’16
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Figure 1
Autonomic computing reference architecture (ACRA)

In a broad sense, autonomic computing is a
progressive evolution of architecture, technology,
and standards that addresses IT complexity. This
complexity is driven in large measure by increasing
system-design and IT-management complexity, the
increasing need for businesses to adapt quickly to
compete, and the behavioral complexity spawned by
an increasingly interconnected world.

This paper focuses on how autonomic computing
addresses IT process efficiency that is largely
predicated on the entities, processes, and disciplines
described within the Information Technology Infra-
structure Library** (ITIL**) M (For our purposes, IT
process efficiency addresses efficiency in terms of
cost and time as well as effectiveness, in that the
processes address appropriate business objec-
tives.ls) More specifically, we examine key auto-
nomic computing contributions to IT service
management. Our intent is to highlight the current
and future contributions of autonomic computing to
IT service management from an architectural con-
text, making use of case studies that automate ITIL-
based processes. In addition, we provide IT archi-
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tects with additional perspectives and insights for
their service delivery needs, using these case studies.
We offer additional context by briefly examining the
relationship of the Autonomic Computing Reference
Architecture, including derivative architectural pat-
terns and the associated specifications, to the IT
service management (ITSM) logical architecture.

AUTONOMIC COMPUTING REFERENCE
ARCHITECTURE

The autonomic-computing-reference-architecture
(ACRA)19 conceptual view consists of three parts: a
set of architectural elements for constructing auto-
nomic systems, patterns for using these elements in
a system context, and interface and data interchange
specifications that facilitate integration.

As shown in Figure 1, ACRA provides a basic
systems-management topology that includes a hier-
archical set of managers which manage a set of
resources. The orchestrating managers control the
management operations of the resource managers,
and the resource managers provide the management
support for a set of resources. Both types of
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Autonomic manager

managers may implement autonomic manager
capabilities and typically support user interaction
through one or more manual manager elements.
The managers might also access management data
from one or more knowledge sources, as shown on
the right side of Figure 1.

The managed resources shown in the bottom row of
Figure 1 might or might not contain self-manage-
ment capabilities (a resource that has self-manage-
ment capabilities is a self-managing resource).
Interactions between managers and resources may
be direct or indirect (using agents) and are
simplified by adopting a manageability standard,
such as Web Services Distributed Management
(WSDM)20 or Common Information Model (CIM).21

The central component in the ACRA is the auto-
nomic manager (Figure 2). It automates certain
management functions and externalizes these func-
tions according to the behavior defined by man-
agement standards.

An autonomic manager contains an intelligent
control loop that implements four functions: mon-
itor, analyze, plan, and execute. The monitor
function collects details about the resources being
managed. The analyze function takes the collected
information and determines where changes are
required. The plan function is responsible for
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generating any required plans, and the execute
function takes necessary actions to implement
planned changes.

The external interfaces for an autonomic manager
provide a standard method to access the functions it
supports. There are two logical external interfaces;
both contain sensors and effectors. The interface
that is logically at the bottom of the autonomic
manager is used to interact with the resources that it
manages, such as obtaining data from the resource
through the sensor interface or performing opera-
tions on the resource through the effector interface.
The interface that is logically on top of an autonomic
manager is used by other managers to obtain
information from the autonomic manager by means
of a sensor and configure its autonomic capabilities
by means of an effector, in much the same way that
the autonomic manager interacts with its managed
resources. For example, the effector interface can be
used to set the policies the autonomic manager
should adhere to or to set the symptom definitions
that it should detect (a symptom definition is used to
identify a possible problem or situation in the
managed environment and is described in more
detail later).

Autonomic managers are self-managing and manage
their own behavior by using policies.22 In addition,
the autonomic manager makes use of knowledge
sources to access management data, such as policies
and symptom definitions, that are used to carry out
its management functions.

In addition to autonomic managers, the ACRA also
includes other elements, as shown in Figure 1:

e Manual manager—An implementation of the user
interface that enables an IT professional to
perform some management functions manually.

* Managed resource—System components that
make up the IT infrastructure. These components
make the state and management operations for a
resource accessible.

¢ Self-managing resources—A type of managed
resource that includes an integrated intelligent
control loop.

* Knowledge source—Implementation of a registry,
dictionary, database, or other repository that
provides access to knowledge according to the
interfaces prescribed by the architecture.
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The relationship between ACRA and ITSM is
presented in Figure 3. At the top is the layer
composed of ITIL-based processes, such as those
associated with change management, configuration
management, problem management, and availabil-
ity management. These processes consist of work-
flows that are composed of activities, which in turn
are composed of tasks. Particular tasks may interact
with domain-specific operational management tools
that ultimately interact with both the managed
resources and self-managing resources within the
infrastructure layer.

Both managed resources and self-managing re-
sources, shown at the bottom of Figure 3, exist
within the IT infrastructure layer. In the context of
these processes, the configuration management
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database (CMDB) assumes the role of a knowledge
source as defined in the ACRA.

On the left side of Figure 3 is a set of user interfaces
for various user roles that interact with the ITSM
environment, operational management tools, and IT
infrastructure layers. Here one would expect to find
administrative tools that realize the ACRA manual-
manager architectural element. On the right side is
the integrated tooling layer, including development
tooling, that interacts with all three levels of the
logical architecture and with the CMDB.

Next, we examine the architectural patterns that
derive from the architectural elements and support
the requisite specifications and standards.

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007



Autonomic computing architectural patterns
This section describes common patterns for using
autonomic computing principles. Not all architec-
tural patterns associated with autonomic computing
are described here; we address only those patterns
that are used in the ITSM case studies presented
later.

Partial autonomic manager

The internal and external interfaces for an auto-
nomic manager allow it to support partial imple-
mentations of the autonomic control loop. This is
important because existing operational management
tools can be used in the control loop by imple-
menting the appropriate logical interfaces for the
functions they provide (monitor, analyze, plan, and
execute) as well as the standard external interfaces
that allow access to those functions. This means that
a single product or component need not implement
the entire control loop. It can be composed together
with other products or components to form a
complete loop.

In addition, the logical interfaces between the
functions in the control loop pass specific types of
knowledge. For example, the monitor function
collects the details from resources and organizes
them into symptoms (described later) that need to be
analyzed. If changes are required, the analyze
function passes a change request to the plan
function. The change request describes the modifi-
cations that the analyze component deems neces-
sary or desirable in terms of the result. The plan
function passes the appropriate change plan to the
execute function. (The change plan represents a
required set of changes for the manageable re-
source.)

Support for partial control loops enables autonomic
managers to reflect customers’ organizational
structures, perhaps through alignment by manage-
ment discipline, such as change management or
problem management. Partial autonomic managers
can be reused in multiple contexts. For example, a
planning-and-execution engine for change manage-
ment might be driven by multiple monitoring-
analysis engines. Partial autonomic managers sup-
port the incremental delivery of self-managing
autonomic capabilities; for example, adding new
symptom definitions that enable new autonomic
capabilities for problem determination.
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Delegation

Delegation defines a set of patterns for progressing
from manual management to autonomic manage-
ment, with the goal of reducing the complexity
associated with managing IT systems. Delegation
refers to the process of describing what IT profes-
sionals do when they assign the tasks for which they
are responsible in terms understood by operational
management products that have self-managing
autonomic capabilities. For example, delegation can
be used by an IT professional to set a policy that
allows a specific type of change to be pre-approved,
thus allowing a task to be completed without human
intervention. When IT professionals delegate tasks,
they decide to exploit a self-managing autonomic
capability present in a management tool. This
implies that they trust the autonomic technology to
perform the task correctly without intervention;
however, they can take back control of the delegated
task whenever they decide it is necessary. An IT
professional must be responsible for the task before
he or she can delegate it.

As shown in Table 1, there is a continuum
associated with delegating tasks from manual
processing (a task managed by an IT professional) to
autonomic processing (a task executed automati-
cally without direct interaction with an IT profes-
sional). Multiple levels of automation exist between
these two extremes.

The ability to reverse the delegation of a task is an
important factor in building trust in autonomic
systems. This ability allows the control of a
delegated task to be taken back at the discretion of
an IT professional, because it is conceivable that a
delegated task might not have the desired effect on
key system metrics. In addition, the delegated task
should be able to present options and recommen-
dations to the administrator and to record the
decisions it has made and the actions it has taken.
This allows an administrator to verify the results of
the delegated tasks so that trust in the delegation
patterns can be built over time.

Self-managing resources

A self-managing resource integrates certain auto-
nomic management capabilities into the resource. A
self-managing resource contains a control loop
responsible for managing those entities within its
domain of control. This is distinct from a manage-
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Table 1 Task delegation options

Delegation Option

Description

Manual processing

Automated assistance

Supervised delegation

Conditional delegation

Processing with no automation.

Automated tools help the IT professional perform the task, for example, by
querying or processing data. The tool does not perform a complete auto-
nomic function; the professional does not delegate responsibility.

An autonomic manager provides a recommendation to the IT professional,
who must approve it before the task can proceed. Visual notifications that
allow for partial delegation are provided by the manual manager.

The IT professional trusts an autonomic manager to perform some but not
all requests. Whether or when to delegate a task may be based on meeting

Task delegation
task.

Full-loop delegation

specific conditions that are defined in policies or rules.

The IT professional trusts an autonomic manager to perform a complete

The delegated function consists of a full control loop that proceeds without
manual intervention in normal operation.

ment tool that provides external autonomic man-
agement for a set of resources.

An application server, database server, and storage
server could all be self-managing resources. For
example, self-managing autonomic capabilities could
be embedded in a database server to allow it to detect
situations within its domain and to take actions to
correct errant situations in that domain without
requiring intervention from a management tool.

A benefit of self-managing resources is the ability for
theresource to manage events and resource state data
that affect its operational abilities, including perfor-
mance and availability needs. Self-managing re-
sources also reduce the overall system complexity by
handling some of the details within the resource and
by determining how to recover from certain problems
without flooding the system-wide resource monitors
and IT professionals with a plethora of information.

Self-managing resources may implement the partial
autonomic manager pattern. This allows a self-
managing resource to participate in delegation
patterns. For example, a self-managing resource
might provide a recommended action to an admin-
istrator, who could then approve that action or
perform an alternate action. In addition, a self-
managing resource could have management re-
sponsibility delegated to it by a higher-level man-
agement tool.

570 BRITTENHAM ET AL,

Hierarchical autonomic managers

Autonomic managers can be arranged in a hierarchy
to reflect the way that IT professionals are orga-
nized. Although a hierarchy is not the only possible
topology for management tools, this organization
allows autonomic managers to focus on specific
disciplines such as performance, availability, secu-
rity, and others within a single domain of interest.
Hierarchical autonomic managers provide a level of
efficiency by allowing each autonomic manager to
focus on its area of concern, but still provide the
capability to build a complete autonomic system by
composing the autonomic managers together in a
hierarchy.

Hierarchical relationships between autonomic man-
agers can also be used to orchestrate the services
provided by a set of autonomic managers. For
example, an autonomic manager that is responsible
for the overall service-level objectives for a system
might direct other autonomic managers to achieve
objectives that are specific to their disciplines. If all
of the discipline-specific autonomic managers meet
their objectives, then the autonomic manager
responsible for the overall system objectives will
meet its objectives.

This hierarchical autonomic manager pattern is
accomplished by using the external interfaces
described earlier; an autonomic manager can
manage or be managed by other autonomic man-
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Table 2 Specifications for interfaces and data exchange formats

Specification

Description

wsDM*°

WSDM Event Format (WEF)

Symptoms Reference Speciﬁcation26

Defines a standard manageability interface that can be used by autonomic
managers and managed resources in a Web Services environment. WSDM
is divided into two main parts: management of Web Services and manage-
ment using Web Services.”>"**

Defines a common format for representing information typically carried in
events, including the source and time of the event, the situation that caused
the event to be generated, and other associated data. The Common Base
Event™ is the IBM initial implementation of WEF.

Describes how to define symptoms and how to represent them once they
are recognized at runtime by a management tool. Symptom definitions are
used by autonomic managers to recognize symptoms associated with moni-
tored resources and determine what actions they should take or what rec-
ommendations they should propose.27 An instance of a symptom is detected

data.

Solution Deployment Descriptor (SDD)28

by correlating monitored data such as events, metrics, and resource state

Defines the deployment characteristics of a software package. The SDD is
used by the plan function and the execute function of an autonomic manag-
er. It describes how to deploy software components at all levels of the IT
stack by using a simple architectural pattern of deploying artifacts into tar-

get hosting environments to create, update, or configure resources.

agers in a manner similar to the way in which
autonomic managers manage resources: using the
sensor and effector of the external interfaces of the
autonomic manager.

Autonomic computing specifications

Table 2 introduces the specifications for interfaces
and data exchange formats that are relevant to the
ITSM-based case studies that follow. It is intended
only as a basic introduction; consult the cited
references for a more detailed discussion of these
and other specifications associated with autonomic
computing.

ITIL PROBLEM-DETERMINATION CASE STUDY
This case study shows how capabilities embodied in
the ACRA offer new advantages and additional
value for several IT operational-services processes.
The services are studied in the context of the IBM
Tivoli* Unified Process (ITUP)29 and consist of
incident management, event management, and
problem management. Incident management de-
tects, records, classifies, investigates, diagnoses, and
resolves incidents, including recovery actions. Event
management identifies and prioritizes events and
helps identify the responses to those events, which
could cause incidents to be created. Problem
management controls problems and known errors,
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manages problems proactively, monitors and re-
ports problems, establishes a problem-management
framework, evaluates problem-management perfor-
mance, and determines root causes of incidents and
problems.

This case study demonstrates the advantages of
applying the delegation pattern and the partial
autonomic manager pattern to the task of monitor-
ing resources, automatically detecting and respond-
ing to disruptions, and assisting with problem
diagnosis, all in an incremental and flexible way.
The second scenario in this case study illustrates the
benefits of using the hierarchical-autonomic-man-
ager pattern for problem-determination knowledge
sharing.

Problem-determination scenario 1—Operations
automatically respond to a server outage

This scenario illustrates a server executing a critical
customer-facing Web-based application that runs
out of system resources, resulting in the application
being unavailable. This problem has been occurring
intermittently over the past few weeks, and the
underlying cause has yet to be determined, although
a workaround—reboot the server—has been deter-
mined. The operations staff has been asked to
automate this detection and workaround to mini-
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Scenario 1: Incident management

mize down time. A server providing a service begins
to run out of system resources. Event-monitoring
software detects, logs, examines, and filters server-
disruption events. These events are correlated with
events from other sources and escalated to an
operational console.

Figure 4 illustrates how problem-determination
scenario 1 utilizes the architectural elements of the
ACRA. The set of partial autonomic managers
(monitoring tools) that are monitoring the managed
resources detects symptoms based on symptom
definitions stored in a knowledge source. These
autonomic managers have a hierarchical relation-
ship with an autonomic manager (analysis tool) that
is responsible for performing the detailed analysis of
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the symptoms that they detect. The analysis
performed by this higher-level manager may result
in a request for change (RFC) that will initiate the
change management process, or it may result in an
incident that will initiate the incident-management
process. When an incident is created, the root-cause
analysis data is stored in a knowledge source so that
it can be referenced during the incident-manage-
ment process.

The following sections contrast the activities in the
current process with the autonomic process, which
makes use of the capabilities defined in the ACRA.
(The term autonomic process in this context refers to
a process that has been enhanced to contain
autonomic capabilities.) The capabilities of our

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007



approach enable the incident-management activities
to be more efficient and effective through increased
automation.

Establish incident-management framework

In the current process, a human administrator
determines the rules and procedures for incident
management, based on the IT infrastructure and
capabilities of management tools and human ad-
ministrators. For the server, this includes the
workaround (reboot the server) when the out-of-
system-resources incident occurs. These policies are
documented so that human administrators can
apply them.

In the autonomic process, manual administration
can be automated by determining the symptom
definitions to be deployed in the management tool,
which contain the automated workaround (reboot
the server) when the out-of-system-resources inci-
dent occurs, along with the correlation patterns used
to detect that incident.

Detect and record incident

In the current process, an incident record is opened,
based on operator observations using event-moni-
toring tools.

In the autonomic process, an incident record is
opened, based on monitoring event patterns as
recorded in the production-level symptom defini-
tions. Typically, simple single-domain symptom
definitions (such as the example for rebooting the
server) perform straightforward filtering of events.
Common problem-pattern recording, as described in
the ACRA and expressed in symptom definitions,
enables rapid identification of intermittently occur-
ring problems

Classify incident

In the current process, incident records raised in the
previous activity are now analyzed by a human
adminstrator to discover the reason for the incident.
The incident should be classified by looking at
known errors and problems and examining input
parameters or assigning new parameters, such as
impact, urgency, and priority. This process deter-
mines how further resolution actions are deter-
mined.

The autonomic process can automate incident
classification for certain incidents (those for which
appropriate symptom definitions exist). Once the
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symptom pattern is matched, additional information
in the symptom definition provides incident classi-
fication information, including impact, urgency,
priority, information about the resource associated
with the incident, and additional information that is
used to correlate this incident with others. Common
incident classification recording, as described in the
ACRA and expressed in symptom definitions,
enables automated incident classification. This
capability, in turn, takes advantage of a common
event format, such as WEF, that facilitates auto-
mated event correlation and pattern matching to
recognize the symptom.

This automation (and the automated functions
described in subsequent sections) illustrates a
pattern of delegation in which the human adminis-
trator is delegating the task—in this case, incident
classification—to an autonomic manager.

Investigate and diagnose incident

Incident diagnosis in the current process must
supply a human administrator with the means to
continue business, perhaps with a degraded service.
Temporary workarounds (reboot the server) are
provided to minimize the impact of the incident on
the business and to provide more time to investigate
and devise a structural resolution.

In the autonomic process, single-domain symptom
definitions can be correlated with other single-
domain or cross-domain symptom definitions that
associate problem resolution information with an
incident record. The symptom associated with the
incident can contain recommended remedial actions.
In this scenario, a particular workaround (reboot the
server) is identified in the corresponding symptom
definition. Common-problem remedial-action re-
cording, as described in the ACRA and expressed in
symptom definitions, enables automated work-
arounds for intermittently occurring problems.

The use of monitoring for incident classification and
analysis for incident diagnosis illustrates the use of
the partial autonomic manager pattern. As shown in
Figure 4, these functions of the intelligent control
loop can be split between two distinct management
tools.

Resolve incident and recover service

Workaround and recovery actions (reboot server) in
the current process are carried out, often by
specialized staff (second- or third-level support).

BRITTENHAM ET AL.

573



Symptc;n
Definition

/

State Information [ | Metrics

a @

’//'7‘\\ /'7‘\\
=] pava
Problem ‘ Reports | Incident
\ Ana/lyit y — Incident \ Database
e \ ’ ~
;. REC \ | fle=P
@ = — — Event Event
\ Incident/ “\\ / //'/ \_ History
Problem \ /
Change Ve p -
Management) S / o -
—_ L @; =
PD | Symptom | Symptom
Too | History
MM —~—

AN

\

| Events Symptoms
—
[:—:'] = ;
ﬂ

Scenario 2: Problem management

Key:
/| ‘/ '\\ /7\ ‘/7'\\
I\/Ianual Autonomic | [l | Self- ‘ — ) | Managed ‘B‘ Knowledge
‘\\ Manager ‘@ Manager \ Managing | | Resource | Source
- N Resource 4 ~/
Figure 5

In the autonomic process, the automated response
identified from the preceding diagnosis (reboot the
server) is performed using programmatic control of
the server. After the workaround is performed,
event monitoring indicates that the server is
correctly functioning again. Based on this, the
incidents are closed. The ACRA describes a standard
manageability interface, such as WSDM, that en-
ables automated operations to be performed on the
resource to accomplish the workaround.

Problem-determination scenario 2—Problem
diagnosis

Scenario 2 of this case study is similar to scenario 1,
but in this case, the identified automated response
does not resolve the incident, so additional analysis
is required to prevent the incident from happening
again in the future. In this scenario, we expand
scenario 1 by determining that the server software
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contains a memory leak, and that a software patch
must be applied to correct the problem.

Figure 5 shows how the architectural elements of
the ACRA are used in problem-determination
scenario 2. In this scenario, a partial autonomic
manager problem-determination (PD) tool performs
PD by using state information, metrics, and events it
receives from managed resources and self-managing
resources. Because a self-managing resource could
perform analysis based on symptom definitions, it
also could generate symptoms to be analyzed by the
PD tool. The analyses performed by the PD tool also
use data from various knowledge sources. This
includes symptom definitions and historical data,
such as previously detected symptoms, events, and
incidents. The symptom-based analysis performed
by the PD tool may result in an RFC that is used to
initiate the change management process.

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007



The following sections contrast the current process
and the autonomic process activities in the same
manner as presented in scenario 1. The capabilities
of our approach enable the problem-management
activities to be more efficient and effective through
increased automation.

Establish problem-management framework

In the current process, a human administrator
determines the policies and procedures for problem
management based on the IT infrastructure and
capabilities of management tools and human ad-
ministrators. For the server, this includes the list of
known errors when the out-of-system-resources
incident occurs, as well as additional analysis
procedures to be followed for the investigation of
new problems.

In the autonomic process, manual activities can be
automated by determining the symptom definitions
to be deployed in the management tool. These
symptom definitions contain the RFCs to be applied
when the out-of-system-resources problem occurs
(in this case, apply a software patch) and the
correlation patterns used to detect the problem.

Such correlation patterns are inherently more
complex than similar incident detection patterns
(described in problem-determination scenario 1)
and often refer to configuration item (CI) configu-
ration data and dependencies to effectively identify a
problem. This activity is known as root-cause
analysis.

Detect and record problem

In the current process, incidents are compared to
known errors. If there are no known errors
associated with the incident, a problem record is
opened, based on operator observations using
management tools.

In the autonomic process, a problem record is
opened, based on correlating patterns from incident
and event management, as recorded in symptom
definitions for those processes. (Problem-determi-
nation scenario 1 describes the use of symptoms in
incident management.)

Classify problem or assess error

In the current process, known errors are assessed,
based on recorded information. Problem records
raised in the previous activity are analyzed to
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discover the reason for the problem. The problem
should be classified in a process similar to classify-
ing incidents, described in scenario 1.

The autonomic process can automate problem
classification. Once the symptom pattern is identi-
fied, additional information in the symptom defini-
tion provides problem-classification information,
including impact, urgency, priority, information
about the resource associated with the problem, and
additional information that may be used to correlate
this problem with others.

Investigate and diagnose problem

In the current process, the problem investigation
activity is similar to that of incident investigation,
but its primary objective is significantly different.
The aim of incident investigation is to rapidly restore
service, whereas the aim of problem investigation is
to diagnose the underlying cause. Problem investi-
gation often thoroughly analyzes CI configuration
data and dependencies. In our example, problem
investigation staff examine software resources de-
ployed in the server, and upon diagnosis, determine
that the underlying problem is a memory leak.

In the autonomic process, the problem-investigation
activity is similar to that of incident investigation
(described in problem-determination scenario 1),
but more complex symptom definitions are used to
determine the root cause of a problem. Typically,
problem-related symptom definitions are processed
by associating contextual information (such as CI
configuration and dependencies), state data, events,
and log records with complex symptom definitions.
In some cases, these complex symptom definitions
are not yet deployed in the production environment.
Problem-management tools can be launched in
context to consult offline symptom catalogs that
contain newly created symptom definitions that
have been validated in a test or preproduction
environment. Access to this expanded knowledge
base might identify symptoms that were not
previously identified in the manual incident-man-
agement process. A small set of matching probable-
cause symptoms can be rapidly and accurately
identified. Based on historical data, one of these
symptoms is selected as the most likely root cause of
the problem. A problem record is created with the
information contained in the root-cause symptom.
In our example, the root-cause symptom indicates
that a memory leak situation has been identified.
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Root causes of unknown errors can be identified
more rapidly by using development tools that use
the common event format and symptom knowledge
described in the ACRA. Advantages when an
automated symptom analysis and processing strat-
egy is used include access to a larger knowledge
base, thus providing a more accurate diagnosis, and
the possibility of executing automated corrective
actions as a result of the symptom-analysis process.

Resolve problem and record resolution

In the current process, the problem recovery RFC
(apply software patch) is carried out after approval
by the change manager, and the newly detected and
diagnosed problem is recorded as a known error,
often by problem-resolution specialist staff. Problem
and associated incident records are closed.

For the autonomic process, the corrective RFC
(apply software patch) is extracted from the root-
cause symptom definition and submitted for execu-
tion. The application of the patch involves the
change management process (described in the next
case study), and that process might also involve
some form of automation. After the RFC is pro-
cessed, event-management monitoring indicates
that the server is correctly functioning again. Events,
incidents, and problems are closed. In addition, the
new symptom definition that identified the problem
is migrated to the production-level knowledge base
as a new known error so that future occurrences of
related incidents can be handled by incident
management (this constitutes proactive problem
management). Common-problem remedial-action
recording, as described in the ACRA and embodied
in symptom definitions, enables automated resolu-
tion of problems. Moreover, this same capability
enables unknown problems that are detected during
operation, along with their associated resolution, to
be migrated to known errors that can be handled
automatically in the future.

ITIL SOLUTION DEPLOYMENT

The ITIL solution deployment case study shows how
autonomic concepts and technologies may be used
in the context of the ITUP solution-deployment
processes. The configuration-management process
is used to identify, record, and report IT components
(hardware, software, and documentation), including
their versions, constituent components, and rela-
tionships. The controlled assessment and approval
of infrastructure changes is provided by the change-
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management process. The controlled introduction of
collections of related authorized changes is accom-
plished by the release-management process.

This case study shows that when ITSM solutions
are designed and integrated, the delegation and
partial-autonomic-manager architectural patterns
enable autonomic capabilities to be composed in an
incremental and flexible way. It also demonstrates
the hierarchical-autonomic-manager architectural
pattern and accommodation of organizational
boundaries.

In addition to demonstrating the advantages of these
patterns, this case study shows the importance of
using the SDD (Solution Deployment Descriptor) as
the canonical representation of both solution de-
ployment and dependency knowledge. That knowl-
edge is then used in the analysis, planning, and
execution of key tasks within the solution-deploy-
ment processes. These tasks include dependency
and impact analysis, configuration drift analysis,
and release planning.

This case study is described with two scenarios. As
shown in Figure 6, the overall flow for scenario 1
starts when a release builder constructs a software
package and its corresponding SDD. This is stored in
the definitive software library (DSL) by the config-
uration librarian and is registered in the CMDB,
making it available for deployment. A change analyst
who processes an RFC for a new software release
employs an assessment tool to analyze the impact of
the change, using information in the CMDB. A
release planner then processes the RFC, using a
planning tool to plan the rollout of the release.

Scenario 2 handles the rollout of the release. The
rollout plan passes to a release implementor, who
uses an orchestration tool that coordinates the
deployment by using one or more local installation
tools to install the software on the target resources.

The details of these scenarios are described in the
following sections. As in the other case study, each
activity in a scenario is described by contrasting the
current process with the process that has been
enhanced with autonomic capabilities (the auto-
nomic process).

Solution-deployment scenario 1—Software-
release management

In solution-deployment scenario 1, we investigate
the use of autonomic technology to support the
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Autonomic building blocks for release management scenarios

development and planning for a new software
release, which consists of a human resource (HR)
application and an upgrade to the Web application
platform on which it is deployed.

The main application code for the HR application
will be deployed in a J2EE** server. The first release
of the HR application is to be deployed in three
locations. Two of those are completely new de-
ployments. The third location has a previous version
of the standard Web platform, which is running two
existing applications. The two new locations will
share one J2EE server, and the third will continue to
have its own dedicated J2EE server and Web server.
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RFCs are raised and tentatively assigned to a
release

Using the current process, three RFCs are raised for
the three locations where the application is to be
deployed. Each RFC requires different approvals,
but all RFCs are an intended part of a single release.

In the autonomic process, the development team
associates an SDD for the HR application with the
RFCs to describe the required changes. This
provides a “contract” between development and
operations that describes the dependencies that the
HR application has on its environment. The RFC
identifies the intended target environments in each
location to satisfy those dependencies.
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RFCs are assessed for impact

In this activity for the current process, a change
analyst works with subject-matter experts to assess
the RFCs for their likely impact. The ability to do
this effectively is limited by the lack of accurate
information about the dependencies of the software
being installed and the dependencies of existing
software that could be impacted by the release. In
this scenario, the new installations are assessed as a
minor impact because they are to be installed on
new, dedicated servers with firewall software. The
third installation is assessed as a significant impact
because it requires upgrading servers that host
existing applications. Significant manual investiga-
tion is needed to determine that the updated version
of the J2EE server is compatible with one of the
existing applications, but that the other will require
an upgrade. An additional RFC is raised to address
this, and this new RFC is linked to the RFCs that
depend on it.

In the autonomic process, the change analyst uses
an automated impact assessment tool in automated-
assistance mode to verify that the intended target
environments meet the dependencies described in
the SDD and to ensure that the potentially impacted
applications have been correctly identified in the
RFC. As shown in Figure 6, the assessment tool is a
partial autonomic manager that uses standard
WSDM interfaces to access information in the CMDB
and DSL. The automation of this analysis relies on a
consistent definition of resource types used by both
the SDD authors to specify requirements and the
CMDB to describe resource instances.

By analyzing the SDDs for the new and existing
applications, and comparing them to information in
the CMDB, the tool is able to determine automati-
cally that the updated version of the J2EE server is
compatible with one of the existing applications but
that the other will require an upgrade. An additional
RFC is automatically generated based on the
dependency information in the SDD. The tool also
identifies and generates RFCs for the required
operating-system and database-driver updates.

The HR application SDD also identifies the need for
specific security settings on the Web server. Because
this level of detail is not stored in the CMDB, the tool
reports the need to investigate the settings. The
change analyst forwards details to the application-
server support team, who confirm that a configura-
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tion change and recycle will be needed and who
provide configuration scripts to perform this change.

Changes are approved and scheduled

In the current process, the RFCs in the release are
assessed by the change advisory board, approved,
and scheduled for the first maintenance window
following planned completion of the release cycle.
During scheduling, it is determined that there is a
minor operating-system update scheduled for a
week before the application release. The change
analyst has to consult with the appropriate special-
ists to ascertain that the J2EE server supports the
new operating-system level, and the change analyst
sends a note to the release team that testing should
be performed on the new operating-system level.
The approved RFCs are passed to release manage-
ment for implementation.

In the autonomic process, the scheduling takes into
account the need to recycle the Web server and the
additional prerequisite RFCs by using the additional
information obtained during the change assessment
activity in the previous autonomic process. Because
of the detailed dependency information, it is also
possible to take into account information about
pending changes. The change analyst is notified
about an operating-system update that will occur
before the release. Automated dependency analysis
shows that the new operating-system level is
supported by the J2EE server.

Release is built and tested

In the current process, the release specialists
assemble and test all of the required content and
create scripts for the build, installation, and rollback
of the release. At this point, missing or inaccurate
dependencies may be discovered, requiring modifi-
cation of the RFCs and reapproval. The release
specialists must communicate closely with the
development team and with operational teams, such
as security specialists, to ensure that the application
is refined appropriately for operational deployment,
configured to run on the standard Web platform,
and meets current security policies.

In the HR application scenario, release testing
uncovers that some operating-system and database-
driver updates are required. These changes are
raised and tagged as prerequisites that must be
applied in the same maintenance window. It is also
discovered that the security settings of the Web
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server need to be updated to support the application,
and that for these settings to take effect, the Web
server must be recycled. This requires an additional
RFC to be approved and postponement of some
lower-priority changes scheduled for the same
maintenance window to allow time for the recy-
cling. The authorized and tested application package
is stored in the DSL and registered in the CMDB.

When using the autonomic process, the release
builder constructs a solution package composed of
the HR application SDD, configuration scripts, and
other software that is part of the release, including
prerequisite updates and fixes. This SDD is used to
deploy the acceptance version of the release. Once
acceptance testing is complete, the new software
package and SDD are stored in the DSL and
registered in the CMDB. The manual effort to deal
with dependencies is eliminated or greatly reduced.

Detailed rollout plan is created

Using the current process, the release planner
creates a plan to install the release, taking into
account the dependencies among elements of the
release and their installation procedures (for exam-
ple, the need to recycle servers for changes to take
effect). The execution of this rollout plan is
described in scenario 2.

With the autonomic process, the release builder
provides the necessary instance parameters for each
location to instantiate the solution SDD on the
specific targets with appropriate configuration val-
ues. The combination of the instance parameters
and the solution SDD constitutes the rollout plan for
the software aspects of the release. The manual
effort to create a plan is greatly reduced because the
SDD contains sufficient information to automate the
deployment of the software and its dependencies.

Solution-deployment scenario 2—Automated
orchestration

In solution-deployment scenario 2, we examine the
role of autonomic technology in deploying the
release that was planned and built in scenario 1.

Once approved and scheduled, a release implemen-
tor is assigned to coordinate the release deployment.
The release implementor may be empowered to
make all of the necessary changes or may need to
work with specialists in different areas of the
organization.
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The release implementor works with specialists to
implement the rollout plan defined in scenario 1.
This is likely to be error-prone, particularly when
the rollout plan is merely documented rather than
being captured in automated scripts. In cases in
which automated scripts are defined, they might be
environment-specific and might not accommodate
the variability in the actual deployment locations.

In the autonomic process, we assume that the
release implementor is empowered to perform all of
the work and uses automated deployment tools to
implement the release. As shown in Figure 6, this
consists of an orchestration tool (a “planning”
autonomic manager) that is capable of generating
orchestration flows from SDDs. This recent en-
hancement is still under evaluation, but based on
testing to date, the capability is trusted sufficiently
to be used in production, although the release
implementor is required to verify the plan that the
tool creates. The autonomic manager is therefore
used in “supervised delegation” mode.

This sequence of activities is followed during
deployment:

1. For each location, the release implementor
retrieves the rollout plan that identifies the
solution package and the instance parameters for
the deployment.

2. The deployment orchestration tool is used to map
the release plan to the actual physical nodes used
for the deployment, based on the data model of
the tool.

3. The deployment orchestration tool retrieves the
relevant SDDs from the DSL and checks the SDD
requirements against the known configuration of
existing resources from the CMDB or from a local
data model (queried using WSDM interfaces). It
informs the release implementor of any issues.

4. The deployment orchestration tool uses the SDDs
to generate an orchestration plan based on the
physical targeting information and parameteri-
zation information in the release plan.

5. The release implementor reviews the plan and
approves it.

6. The orchestration tool orchestrates the distribu-
tion of software (retrieved from the DSL) and its
subsequent deployment. Once the software has
been distributed to an endpoint, the orchestration
tool invokes a local installation tool at that
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endpoint (an implementation of the hierarchical-
autonomic-manager pattern).

7. Each local installation tool performs dependency
checking, planning, and execution for the locally
targeted software, using WSDM interfaces.

8. When deployment is complete, the CMDB is
updated to include the newly deployed or
updated resources as part of the authorized
baseline.

The use of the SDD and autonomic-manager
capabilities for release implementation allows the
release implementor to deploy a release that is more
reliable and repeatable and has less likelihood of
human error or miscommunication. It also reduces
the need to involve subject-matter experts in the
deployment. Automated planning and execution can
reduce the time to execute and provide both a clear
audit of actions taken and the ability to perform
automated rollback. Updating the CMDB-approved
baseline with SDD knowledge reduces misidentifi-
cation of configuration audit issues and improves
the accuracy of CMDB data.

CONCLUSION

Since the inception of the autonomic-computing
initiative, the growth and maturation of autonomic
capability has been predicated on a phased, pro-
gressive model designed to deliver demonstrable
business value. As shown here, delivery of the
requisite autonomic capabilities is predicated on key
technologies, specifications, and architectural pat-
terns within the broader context of the ACRA.

As we have demonstrated throughout the ITIL-based
scenarios presented here, the value of autonomic
computing is manifest in its ability to effect incre-
mental IT process transformation. More important,
autonomic computing, as described by its reference
architecture and associated elements, delivers a
framework for progressive, business-driven evolu-
tion of IT infrastructures and associated processes.
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