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The IT Infrastructure Libraryt defines a set of best practices to align information

technology (IT) services to business needs and constitutes the framework for IT service

management (ITSM). This framework helps organizations manage their IT services

using standard design patterns and the requisite customization. In this paper, we

discuss critical contributions that autonomic computing offers to the definition and

implementation of an ITSM architecture and infrastructure. We first introduce key

architectural patterns and specifications of autonomic computing as they relate to an

ITSM logical architecture. We then show how autonomic computing delivers value

through a set of ITSM-based case studies that address problem determination, impact

assessment, and solution deployment.

INTRODUCTION

Autonomic computing traces its beginnings to eight

key elements, or theses, described in Dr. Paul

Horn’s, ‘‘Autonomic Computing Manifesto,’’ first

delivered as a keynote address to a National

Academy of Engineers meeting in 2001.
1

In his

presentation, autonomic computing was described

as a grand challenge—not just within IBM, but for

the information technology (IT) industry as a whole.

In 2003, an IBM Systems Journal issue focused on a

broad set of technologies that represented the state

of the art then for autonomic computing. In their

introductory paper, ‘‘The Dawning of the Autonomic

Computing Era,’’ Ganek and Corbi
2

examined both

marketplace and industry drivers for autonomic

computing.

Since its inception, the autonomic computing

initiative has witnessed considerable success

within the commercial realm,
3–6

it has been

widely embraced within the research commu-

nity,
7–11

and it has been leveraged in conjunction

with other key architectural initiatives, including

grid and Web services, pervasive and ubiquitous

computing, and service-oriented architecture

(SOA).
12–14

Considerable activity also has occurred

within the standards communities related to auto-

nomic computing.
15,16
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In a broad sense, autonomic computing is a

progressive evolution of architecture, technology,

and standards that addresses IT complexity. This

complexity is driven in large measure by increasing

system-design and IT-management complexity, the

increasing need for businesses to adapt quickly to

compete, and the behavioral complexity spawned by

an increasingly interconnected world.

This paper focuses on how autonomic computing

addresses IT process efficiency that is largely

predicated on the entities, processes, and disciplines

described within the Information Technology Infra-

structure Library** (ITIL**).
17

(For our purposes, IT

process efficiency addresses efficiency in terms of

cost and time as well as effectiveness, in that the

processes address appropriate business objec-

tives.
18

) More specifically, we examine key auto-

nomic computing contributions to IT service

management. Our intent is to highlight the current

and future contributions of autonomic computing to

IT service management from an architectural con-

text, making use of case studies that automate ITIL-

based processes. In addition, we provide IT archi-

tects with additional perspectives and insights for

their service delivery needs, using these case studies.

We offer additional context by briefly examining the

relationship of the Autonomic Computing Reference

Architecture, including derivative architectural pat-

terns and the associated specifications, to the IT

service management (ITSM) logical architecture.

AUTONOMIC COMPUTING REFERENCE

ARCHITECTURE

The autonomic-computing-reference-architecture

(ACRA)
19

conceptual view consists of three parts: a

set of architectural elements for constructing auto-

nomic systems, patterns for using these elements in

a system context, and interface and data interchange

specifications that facilitate integration.

As shown in Figure 1, ACRA provides a basic

systems-management topology that includes a hier-

archical set of managers which manage a set of

resources. The orchestrating managers control the

management operations of the resource managers,

and the resource managers provide the management

support for a set of resources. Both types of
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Autonomic computing reference architecture (ACRA)
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managers may implement autonomic manager

capabilities and typically support user interaction

through one or more manual manager elements.

The managers might also access management data

from one or more knowledge sources, as shown on

the right side of Figure 1.

The managed resources shown in the bottom row of

Figure 1 might or might not contain self-manage-

ment capabilities (a resource that has self-manage-

ment capabilities is a self-managing resource).

Interactions between managers and resources may

be direct or indirect (using agents) and are

simplified by adopting a manageability standard,

such as Web Services Distributed Management

(WSDM)
20

or Common Information Model (CIM).
21

The central component in the ACRA is the auto-

nomic manager (Figure 2). It automates certain

management functions and externalizes these func-

tions according to the behavior defined by man-

agement standards.

An autonomic manager contains an intelligent

control loop that implements four functions: mon-

itor, analyze, plan, and execute. The monitor

function collects details about the resources being

managed. The analyze function takes the collected

information and determines where changes are

required. The plan function is responsible for

generating any required plans, and the execute

function takes necessary actions to implement

planned changes.

The external interfaces for an autonomic manager

provide a standard method to access the functions it

supports. There are two logical external interfaces;

both contain sensors and effectors. The interface

that is logically at the bottom of the autonomic

manager is used to interact with the resources that it

manages, such as obtaining data from the resource

through the sensor interface or performing opera-

tions on the resource through the effector interface.

The interface that is logically on top of an autonomic

manager is used by other managers to obtain

information from the autonomic manager by means

of a sensor and configure its autonomic capabilities

by means of an effector, in much the same way that

the autonomic manager interacts with its managed

resources. For example, the effector interface can be

used to set the policies the autonomic manager

should adhere to or to set the symptom definitions

that it should detect (a symptom definition is used to

identify a possible problem or situation in the

managed environment and is described in more

detail later).

Autonomic managers are self-managing and manage

their own behavior by using policies.
22

In addition,

the autonomic manager makes use of knowledge

sources to access management data, such as policies

and symptom definitions, that are used to carry out

its management functions.

In addition to autonomic managers, the ACRA also

includes other elements, as shown in Figure 1:

� Manual manager—An implementation of the user

interface that enables an IT professional to

perform some management functions manually.
� Managed resource—System components that

make up the IT infrastructure. These components

make the state and management operations for a

resource accessible.
� Self-managing resources—A type of managed

resource that includes an integrated intelligent

control loop.
� Knowledge source—Implementation of a registry,

dictionary, database, or other repository that

provides access to knowledge according to the

interfaces prescribed by the architecture.

Figure 2
Autonomic manager
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The relationship between ACRA and ITSM is

presented in Figure 3. At the top is the layer

composed of ITIL-based processes, such as those

associated with change management, configuration

management, problem management, and availabil-

ity management. These processes consist of work-

flows that are composed of activities, which in turn

are composed of tasks. Particular tasks may interact

with domain-specific operational management tools

that ultimately interact with both the managed

resources and self-managing resources within the

infrastructure layer.

Both managed resources and self-managing re-

sources, shown at the bottom of Figure 3, exist

within the IT infrastructure layer. In the context of

these processes, the configuration management

database (CMDB) assumes the role of a knowledge

source as defined in the ACRA.

On the left side of Figure 3 is a set of user interfaces

for various user roles that interact with the ITSM

environment, operational management tools, and IT

infrastructure layers. Here one would expect to find

administrative tools that realize the ACRA manual-

manager architectural element. On the right side is

the integrated tooling layer, including development

tooling, that interacts with all three levels of the

logical architecture and with the CMDB.

Next, we examine the architectural patterns that

derive from the architectural elements and support

the requisite specifications and standards.

Managed
Resource 

Managed
Resource 

Figure 3
Relationship of ACRA and ITSM
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Autonomic computing architectural patterns

This section describes common patterns for using

autonomic computing principles. Not all architec-

tural patterns associated with autonomic computing

are described here; we address only those patterns

that are used in the ITSM case studies presented

later.

Partial autonomic manager

The internal and external interfaces for an auto-

nomic manager allow it to support partial imple-

mentations of the autonomic control loop. This is

important because existing operational management

tools can be used in the control loop by imple-

menting the appropriate logical interfaces for the

functions they provide (monitor, analyze, plan, and

execute) as well as the standard external interfaces

that allow access to those functions. This means that

a single product or component need not implement

the entire control loop. It can be composed together

with other products or components to form a

complete loop.

In addition, the logical interfaces between the

functions in the control loop pass specific types of

knowledge. For example, the monitor function

collects the details from resources and organizes

them into symptoms (described later) that need to be

analyzed. If changes are required, the analyze

function passes a change request to the plan

function. The change request describes the modifi-

cations that the analyze component deems neces-

sary or desirable in terms of the result. The plan

function passes the appropriate change plan to the

execute function. (The change plan represents a

required set of changes for the manageable re-

source.)

Support for partial control loops enables autonomic

managers to reflect customers’ organizational

structures, perhaps through alignment by manage-

ment discipline, such as change management or

problem management. Partial autonomic managers

can be reused in multiple contexts. For example, a

planning-and-execution engine for change manage-

ment might be driven by multiple monitoring-

analysis engines. Partial autonomic managers sup-

port the incremental delivery of self-managing

autonomic capabilities; for example, adding new

symptom definitions that enable new autonomic

capabilities for problem determination.

Delegation

Delegation defines a set of patterns for progressing

from manual management to autonomic manage-

ment, with the goal of reducing the complexity

associated with managing IT systems. Delegation

refers to the process of describing what IT profes-

sionals do when they assign the tasks for which they

are responsible in terms understood by operational

management products that have self-managing

autonomic capabilities. For example, delegation can

be used by an IT professional to set a policy that

allows a specific type of change to be pre-approved,

thus allowing a task to be completed without human

intervention. When IT professionals delegate tasks,

they decide to exploit a self-managing autonomic

capability present in a management tool. This

implies that they trust the autonomic technology to

perform the task correctly without intervention;

however, they can take back control of the delegated

task whenever they decide it is necessary. An IT

professional must be responsible for the task before

he or she can delegate it.

As shown in Table 1, there is a continuum

associated with delegating tasks from manual

processing (a task managed by an IT professional) to

autonomic processing (a task executed automati-

cally without direct interaction with an IT profes-

sional). Multiple levels of automation exist between

these two extremes.

The ability to reverse the delegation of a task is an

important factor in building trust in autonomic

systems. This ability allows the control of a

delegated task to be taken back at the discretion of

an IT professional, because it is conceivable that a

delegated task might not have the desired effect on

key system metrics. In addition, the delegated task

should be able to present options and recommen-

dations to the administrator and to record the

decisions it has made and the actions it has taken.

This allows an administrator to verify the results of

the delegated tasks so that trust in the delegation

patterns can be built over time.

Self-managing resources

A self-managing resource integrates certain auto-

nomic management capabilities into the resource. A

self-managing resource contains a control loop

responsible for managing those entities within its

domain of control. This is distinct from a manage-
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ment tool that provides external autonomic man-

agement for a set of resources.

An application server, database server, and storage

server could all be self-managing resources. For

example, self-managing autonomic capabilities could

be embedded in a database server to allow it to detect

situations within its domain and to take actions to

correct errant situations in that domain without

requiring intervention from a management tool.

A benefit of self-managing resources is the ability for

the resource to manage events and resource state data

that affect its operational abilities, including perfor-

mance and availability needs. Self-managing re-

sources also reduce the overall system complexity by

handling some of the details within the resource and

by determining how to recover from certain problems

without flooding the system-wide resource monitors

and IT professionals with a plethora of information.

Self-managing resources may implement the partial

autonomic manager pattern. This allows a self-

managing resource to participate in delegation

patterns. For example, a self-managing resource

might provide a recommended action to an admin-

istrator, who could then approve that action or

perform an alternate action. In addition, a self-

managing resource could have management re-

sponsibility delegated to it by a higher-level man-

agement tool.

Hierarchical autonomic managers

Autonomic managers can be arranged in a hierarchy

to reflect the way that IT professionals are orga-

nized. Although a hierarchy is not the only possible

topology for management tools, this organization

allows autonomic managers to focus on specific

disciplines such as performance, availability, secu-

rity, and others within a single domain of interest.

Hierarchical autonomic managers provide a level of

efficiency by allowing each autonomic manager to

focus on its area of concern, but still provide the

capability to build a complete autonomic system by

composing the autonomic managers together in a

hierarchy.

Hierarchical relationships between autonomic man-

agers can also be used to orchestrate the services

provided by a set of autonomic managers. For

example, an autonomic manager that is responsible

for the overall service-level objectives for a system

might direct other autonomic managers to achieve

objectives that are specific to their disciplines. If all

of the discipline-specific autonomic managers meet

their objectives, then the autonomic manager

responsible for the overall system objectives will

meet its objectives.

This hierarchical autonomic manager pattern is

accomplished by using the external interfaces

described earlier; an autonomic manager can

manage or be managed by other autonomic man-

Table 1 Task delegation options

Delegation Option Description

Manual processing Processing with no automation.

Automated assistance Automated tools help the IT professional perform the task, for example, by
querying or processing data. The tool does not perform a complete auto-
nomic function; the professional does not delegate responsibility.

Supervised delegation An autonomic manager provides a recommendation to the IT professional,
who must approve it before the task can proceed. Visual notifications that
allow for partial delegation are provided by the manual manager.

Conditional delegation The IT professional trusts an autonomic manager to perform some but not
all requests. Whether or when to delegate a task may be based on meeting
specific conditions that are defined in policies or rules.

Task delegation The IT professional trusts an autonomic manager to perform a complete
task.

Full-loop delegation The delegated function consists of a full control loop that proceeds without
manual intervention in normal operation.
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agers in a manner similar to the way in which

autonomic managers manage resources: using the

sensor and effector of the external interfaces of the

autonomic manager.

Autonomic computing specifications

Table 2 introduces the specifications for interfaces

and data exchange formats that are relevant to the

ITSM-based case studies that follow. It is intended

only as a basic introduction; consult the cited

references for a more detailed discussion of these

and other specifications associated with autonomic

computing.

ITIL PROBLEM-DETERMINATION CASE STUDY

This case study shows how capabilities embodied in

the ACRA offer new advantages and additional

value for several IT operational-services processes.

The services are studied in the context of the IBM

Tivoli* Unified Process (ITUP)
29

and consist of

incident management, event management, and

problem management. Incident management de-

tects, records, classifies, investigates, diagnoses, and

resolves incidents, including recovery actions. Event

management identifies and prioritizes events and

helps identify the responses to those events, which

could cause incidents to be created. Problem

management controls problems and known errors,

manages problems proactively, monitors and re-

ports problems, establishes a problem-management

framework, evaluates problem-management perfor-

mance, and determines root causes of incidents and

problems.

This case study demonstrates the advantages of

applying the delegation pattern and the partial

autonomic manager pattern to the task of monitor-

ing resources, automatically detecting and respond-

ing to disruptions, and assisting with problem

diagnosis, all in an incremental and flexible way.

The second scenario in this case study illustrates the

benefits of using the hierarchical-autonomic-man-

ager pattern for problem-determination knowledge

sharing.

Problem-determination scenario 1—Operations
automatically respond to a server outage

This scenario illustrates a server executing a critical

customer-facing Web-based application that runs

out of system resources, resulting in the application

being unavailable. This problem has been occurring

intermittently over the past few weeks, and the

underlying cause has yet to be determined, although

a workaround—reboot the server—has been deter-

mined. The operations staff has been asked to

automate this detection and workaround to mini-

Table 2 Specifications for interfaces and data exchange formats

Specification Description

WSDM
20

Defines a standard manageability interface that can be used by autonomic
managers and managed resources in a Web Services environment. WSDM
is divided into two main parts: management of Web Services and manage-
ment using Web Services.

23,24

WSDM Event Format (WEF) Defines a common format for representing information typically carried in
events, including the source and time of the event, the situation that caused
the event to be generated, and other associated data. The Common Base
Event

25
is the IBM initial implementation of WEF.

Symptoms Reference Specification
26

Describes how to define symptoms and how to represent them once they
are recognized at runtime by a management tool. Symptom definitions are
used by autonomic managers to recognize symptoms associated with moni-
tored resources and determine what actions they should take or what rec-
ommendations they should propose.

27
An instance of a symptom is detected

by correlating monitored data such as events, metrics, and resource state
data.

Solution Deployment Descriptor (SDD)
28

Defines the deployment characteristics of a software package. The SDD is
used by the plan function and the execute function of an autonomic manag-
er. It describes how to deploy software components at all levels of the IT
stack by using a simple architectural pattern of deploying artifacts into tar-
get hosting environments to create, update, or configure resources.
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mize down time. A server providing a service begins

to run out of system resources. Event-monitoring

software detects, logs, examines, and filters server-

disruption events. These events are correlated with

events from other sources and escalated to an

operational console.

Figure 4 illustrates how problem-determination

scenario 1 utilizes the architectural elements of the

ACRA. The set of partial autonomic managers

(monitoring tools) that are monitoring the managed

resources detects symptoms based on symptom

definitions stored in a knowledge source. These

autonomic managers have a hierarchical relation-

ship with an autonomic manager (analysis tool) that

is responsible for performing the detailed analysis of

the symptoms that they detect. The analysis

performed by this higher-level manager may result

in a request for change (RFC) that will initiate the

change management process, or it may result in an

incident that will initiate the incident-management

process. When an incident is created, the root-cause

analysis data is stored in a knowledge source so that

it can be referenced during the incident-manage-

ment process.

The following sections contrast the activities in the

current process with the autonomic process, which

makes use of the capabilities defined in the ACRA.

(The term autonomic process in this context refers to

a process that has been enhanced to contain

autonomic capabilities.) The capabilities of our
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approach enable the incident-management activities

to be more efficient and effective through increased

automation.

Establish incident-management framework

In the current process, a human administrator

determines the rules and procedures for incident

management, based on the IT infrastructure and

capabilities of management tools and human ad-

ministrators. For the server, this includes the

workaround (reboot the server) when the out-of-

system-resources incident occurs. These policies are

documented so that human administrators can

apply them.

In the autonomic process, manual administration

can be automated by determining the symptom

definitions to be deployed in the management tool,

which contain the automated workaround (reboot

the server) when the out-of-system-resources inci-

dent occurs, along with the correlation patterns used

to detect that incident.

Detect and record incident

In the current process, an incident record is opened,

based on operator observations using event-moni-

toring tools.

In the autonomic process, an incident record is

opened, based on monitoring event patterns as

recorded in the production-level symptom defini-

tions. Typically, simple single-domain symptom

definitions (such as the example for rebooting the

server) perform straightforward filtering of events.

Common problem-pattern recording, as described in

the ACRA and expressed in symptom definitions,

enables rapid identification of intermittently occur-

ring problems

Classify incident

In the current process, incident records raised in the

previous activity are now analyzed by a human

adminstrator to discover the reason for the incident.

The incident should be classified by looking at

known errors and problems and examining input

parameters or assigning new parameters, such as

impact, urgency, and priority. This process deter-

mines how further resolution actions are deter-

mined.

The autonomic process can automate incident

classification for certain incidents (those for which

appropriate symptom definitions exist). Once the

symptom pattern is matched, additional information

in the symptom definition provides incident classi-

fication information, including impact, urgency,

priority, information about the resource associated

with the incident, and additional information that is

used to correlate this incident with others. Common

incident classification recording, as described in the

ACRA and expressed in symptom definitions,

enables automated incident classification. This

capability, in turn, takes advantage of a common

event format, such as WEF, that facilitates auto-

mated event correlation and pattern matching to

recognize the symptom.

This automation (and the automated functions

described in subsequent sections) illustrates a

pattern of delegation in which the human adminis-

trator is delegating the task—in this case, incident

classification—to an autonomic manager.

Investigate and diagnose incident

Incident diagnosis in the current process must

supply a human administrator with the means to

continue business, perhaps with a degraded service.

Temporary workarounds (reboot the server) are

provided to minimize the impact of the incident on

the business and to provide more time to investigate

and devise a structural resolution.

In the autonomic process, single-domain symptom

definitions can be correlated with other single-

domain or cross-domain symptom definitions that

associate problem resolution information with an

incident record. The symptom associated with the

incident can contain recommended remedial actions.

In this scenario, a particular workaround (reboot the

server) is identified in the corresponding symptom

definition. Common-problem remedial-action re-

cording, as described in the ACRA and expressed in

symptom definitions, enables automated work-

arounds for intermittently occurring problems.

The use of monitoring for incident classification and

analysis for incident diagnosis illustrates the use of

the partial autonomic manager pattern. As shown in

Figure 4, these functions of the intelligent control

loop can be split between two distinct management

tools.

Resolve incident and recover service

Workaround and recovery actions (reboot server) in

the current process are carried out, often by

specialized staff (second- or third-level support).

IBM SYSTEMS JOURNAL, VOL 46, NO 3, 2007 BRITTENHAM ET AL. 573



In the autonomic process, the automated response

identified from the preceding diagnosis (reboot the

server) is performed using programmatic control of

the server. After the workaround is performed,

event monitoring indicates that the server is

correctly functioning again. Based on this, the

incidents are closed. The ACRA describes a standard

manageability interface, such as WSDM, that en-

ables automated operations to be performed on the

resource to accomplish the workaround.

Problem-determination scenario 2—Problem

diagnosis

Scenario 2 of this case study is similar to scenario 1,

but in this case, the identified automated response

does not resolve the incident, so additional analysis

is required to prevent the incident from happening

again in the future. In this scenario, we expand

scenario 1 by determining that the server software

contains a memory leak, and that a software patch

must be applied to correct the problem.

Figure 5 shows how the architectural elements of

the ACRA are used in problem-determination

scenario 2. In this scenario, a partial autonomic

manager problem-determination (PD) tool performs

PD by using state information, metrics, and events it

receives from managed resources and self-managing

resources. Because a self-managing resource could

perform analysis based on symptom definitions, it

also could generate symptoms to be analyzed by the

PD tool. The analyses performed by the PD tool also

use data from various knowledge sources. This

includes symptom definitions and historical data,

such as previously detected symptoms, events, and

incidents. The symptom-based analysis performed

by the PD tool may result in an RFC that is used to

initiate the change management process.
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The following sections contrast the current process

and the autonomic process activities in the same

manner as presented in scenario 1. The capabilities

of our approach enable the problem-management

activities to be more efficient and effective through

increased automation.

Establish problem-management framework

In the current process, a human administrator

determines the policies and procedures for problem

management based on the IT infrastructure and

capabilities of management tools and human ad-

ministrators. For the server, this includes the list of

known errors when the out-of-system-resources

incident occurs, as well as additional analysis

procedures to be followed for the investigation of

new problems.

In the autonomic process, manual activities can be

automated by determining the symptom definitions

to be deployed in the management tool. These

symptom definitions contain the RFCs to be applied

when the out-of-system-resources problem occurs

(in this case, apply a software patch) and the

correlation patterns used to detect the problem.

Such correlation patterns are inherently more

complex than similar incident detection patterns

(described in problem-determination scenario 1)

and often refer to configuration item (CI) configu-

ration data and dependencies to effectively identify a

problem. This activity is known as root-cause

analysis.

Detect and record problem

In the current process, incidents are compared to

known errors. If there are no known errors

associated with the incident, a problem record is

opened, based on operator observations using

management tools.

In the autonomic process, a problem record is

opened, based on correlating patterns from incident

and event management, as recorded in symptom

definitions for those processes. (Problem-determi-

nation scenario 1 describes the use of symptoms in

incident management.)

Classify problem or assess error

In the current process, known errors are assessed,

based on recorded information. Problem records

raised in the previous activity are analyzed to

discover the reason for the problem. The problem

should be classified in a process similar to classify-

ing incidents, described in scenario 1.

The autonomic process can automate problem

classification. Once the symptom pattern is identi-

fied, additional information in the symptom defini-

tion provides problem-classification information,

including impact, urgency, priority, information

about the resource associated with the problem, and

additional information that may be used to correlate

this problem with others.

Investigate and diagnose problem

In the current process, the problem investigation

activity is similar to that of incident investigation,

but its primary objective is significantly different.

The aim of incident investigation is to rapidly restore

service, whereas the aim of problem investigation is

to diagnose the underlying cause. Problem investi-

gation often thoroughly analyzes CI configuration

data and dependencies. In our example, problem

investigation staff examine software resources de-

ployed in the server, and upon diagnosis, determine

that the underlying problem is a memory leak.

In the autonomic process, the problem-investigation

activity is similar to that of incident investigation

(described in problem-determination scenario 1),

but more complex symptom definitions are used to

determine the root cause of a problem. Typically,

problem-related symptom definitions are processed

by associating contextual information (such as CI

configuration and dependencies), state data, events,

and log records with complex symptom definitions.

In some cases, these complex symptom definitions

are not yet deployed in the production environment.

Problem-management tools can be launched in

context to consult offline symptom catalogs that

contain newly created symptom definitions that

have been validated in a test or preproduction

environment. Access to this expanded knowledge

base might identify symptoms that were not

previously identified in the manual incident-man-

agement process. A small set of matching probable-

cause symptoms can be rapidly and accurately

identified. Based on historical data, one of these

symptoms is selected as the most likely root cause of

the problem. A problem record is created with the

information contained in the root-cause symptom.

In our example, the root-cause symptom indicates

that a memory leak situation has been identified.
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Root causes of unknown errors can be identified

more rapidly by using development tools that use

the common event format and symptom knowledge

described in the ACRA. Advantages when an

automated symptom analysis and processing strat-

egy is used include access to a larger knowledge

base, thus providing a more accurate diagnosis, and

the possibility of executing automated corrective

actions as a result of the symptom-analysis process.

Resolve problem and record resolution

In the current process, the problem recovery RFC

(apply software patch) is carried out after approval

by the change manager, and the newly detected and

diagnosed problem is recorded as a known error,

often by problem-resolution specialist staff. Problem

and associated incident records are closed.

For the autonomic process, the corrective RFC

(apply software patch) is extracted from the root-

cause symptom definition and submitted for execu-

tion. The application of the patch involves the

change management process (described in the next

case study), and that process might also involve

some form of automation. After the RFC is pro-

cessed, event-management monitoring indicates

that the server is correctly functioning again. Events,

incidents, and problems are closed. In addition, the

new symptom definition that identified the problem

is migrated to the production-level knowledge base

as a new known error so that future occurrences of

related incidents can be handled by incident

management (this constitutes proactive problem

management). Common-problem remedial-action

recording, as described in the ACRA and embodied

in symptom definitions, enables automated resolu-

tion of problems. Moreover, this same capability

enables unknown problems that are detected during

operation, along with their associated resolution, to

be migrated to known errors that can be handled

automatically in the future.

ITIL SOLUTION DEPLOYMENT
The ITIL solution deployment case study shows how

autonomic concepts and technologies may be used

in the context of the ITUP solution-deployment

processes. The configuration-management process

is used to identify, record, and report IT components

(hardware, software, and documentation), including

their versions, constituent components, and rela-

tionships. The controlled assessment and approval

of infrastructure changes is provided by the change-

management process. The controlled introduction of

collections of related authorized changes is accom-

plished by the release-management process.

This case study shows that when ITSM solutions

are designed and integrated, the delegation and

partial-autonomic-manager architectural patterns

enable autonomic capabilities to be composed in an

incremental and flexible way. It also demonstrates

the hierarchical-autonomic-manager architectural

pattern and accommodation of organizational

boundaries.

In addition to demonstrating the advantages of these

patterns, this case study shows the importance of

using the SDD (Solution Deployment Descriptor) as

the canonical representation of both solution de-

ployment and dependency knowledge. That knowl-

edge is then used in the analysis, planning, and

execution of key tasks within the solution-deploy-

ment processes. These tasks include dependency

and impact analysis, configuration drift analysis,

and release planning.

This case study is described with two scenarios. As

shown in Figure 6, the overall flow for scenario 1

starts when a release builder constructs a software

package and its corresponding SDD. This is stored in

the definitive software library (DSL) by the config-

uration librarian and is registered in the CMDB,

making it available for deployment. A change analyst

who processes an RFC for a new software release

employs an assessment tool to analyze the impact of

the change, using information in the CMDB. A

release planner then processes the RFC, using a

planning tool to plan the rollout of the release.

Scenario 2 handles the rollout of the release. The

rollout plan passes to a release implementor, who

uses an orchestration tool that coordinates the

deployment by using one or more local installation

tools to install the software on the target resources.

The details of these scenarios are described in the

following sections. As in the other case study, each

activity in a scenario is described by contrasting the

current process with the process that has been

enhanced with autonomic capabilities (the auto-

nomic process).

Solution-deployment scenario 1—Software-
release management
In solution-deployment scenario 1, we investigate

the use of autonomic technology to support the
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development and planning for a new software

release, which consists of a human resource (HR)

application and an upgrade to the Web application

platform on which it is deployed.

The main application code for the HR application

will be deployed in a J2EE** server. The first release

of the HR application is to be deployed in three

locations. Two of those are completely new de-

ployments. The third location has a previous version

of the standard Web platform, which is running two

existing applications. The two new locations will

share one J2EE server, and the third will continue to

have its own dedicated J2EE server and Web server.

RFCs are raised and tentatively assigned to a

release

Using the current process, three RFCs are raised for

the three locations where the application is to be

deployed. Each RFC requires different approvals,

but all RFCs are an intended part of a single release.

In the autonomic process, the development team

associates an SDD for the HR application with the

RFCs to describe the required changes. This

provides a ‘‘contract’’ between development and

operations that describes the dependencies that the

HR application has on its environment. The RFC

identifies the intended target environments in each

location to satisfy those dependencies.
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RFCs are assessed for impact

In this activity for the current process, a change

analyst works with subject-matter experts to assess

the RFCs for their likely impact. The ability to do

this effectively is limited by the lack of accurate

information about the dependencies of the software

being installed and the dependencies of existing

software that could be impacted by the release. In

this scenario, the new installations are assessed as a

minor impact because they are to be installed on

new, dedicated servers with firewall software. The

third installation is assessed as a significant impact

because it requires upgrading servers that host

existing applications. Significant manual investiga-

tion is needed to determine that the updated version

of the J2EE server is compatible with one of the

existing applications, but that the other will require

an upgrade. An additional RFC is raised to address

this, and this new RFC is linked to the RFCs that

depend on it.

In the autonomic process, the change analyst uses

an automated impact assessment tool in automated-

assistance mode to verify that the intended target

environments meet the dependencies described in

the SDD and to ensure that the potentially impacted

applications have been correctly identified in the

RFC. As shown in Figure 6, the assessment tool is a

partial autonomic manager that uses standard

WSDM interfaces to access information in the CMDB

and DSL. The automation of this analysis relies on a

consistent definition of resource types used by both

the SDD authors to specify requirements and the

CMDB to describe resource instances.

By analyzing the SDDs for the new and existing

applications, and comparing them to information in

the CMDB, the tool is able to determine automati-

cally that the updated version of the J2EE server is

compatible with one of the existing applications but

that the other will require an upgrade. An additional

RFC is automatically generated based on the

dependency information in the SDD. The tool also

identifies and generates RFCs for the required

operating-system and database-driver updates.

The HR application SDD also identifies the need for

specific security settings on the Web server. Because

this level of detail is not stored in the CMDB, the tool

reports the need to investigate the settings. The

change analyst forwards details to the application-

server support team, who confirm that a configura-

tion change and recycle will be needed and who

provide configuration scripts to perform this change.

Changes are approved and scheduled

In the current process, the RFCs in the release are

assessed by the change advisory board, approved,

and scheduled for the first maintenance window

following planned completion of the release cycle.

During scheduling, it is determined that there is a

minor operating-system update scheduled for a

week before the application release. The change

analyst has to consult with the appropriate special-

ists to ascertain that the J2EE server supports the

new operating-system level, and the change analyst

sends a note to the release team that testing should

be performed on the new operating-system level.

The approved RFCs are passed to release manage-

ment for implementation.

In the autonomic process, the scheduling takes into

account the need to recycle the Web server and the

additional prerequisite RFCs by using the additional

information obtained during the change assessment

activity in the previous autonomic process. Because

of the detailed dependency information, it is also

possible to take into account information about

pending changes. The change analyst is notified

about an operating-system update that will occur

before the release. Automated dependency analysis

shows that the new operating-system level is

supported by the J2EE server.

Release is built and tested

In the current process, the release specialists

assemble and test all of the required content and

create scripts for the build, installation, and rollback

of the release. At this point, missing or inaccurate

dependencies may be discovered, requiring modifi-

cation of the RFCs and reapproval. The release

specialists must communicate closely with the

development team and with operational teams, such

as security specialists, to ensure that the application

is refined appropriately for operational deployment,

configured to run on the standard Web platform,

and meets current security policies.

In the HR application scenario, release testing

uncovers that some operating-system and database-

driver updates are required. These changes are

raised and tagged as prerequisites that must be

applied in the same maintenance window. It is also

discovered that the security settings of the Web
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server need to be updated to support the application,

and that for these settings to take effect, the Web

server must be recycled. This requires an additional

RFC to be approved and postponement of some

lower-priority changes scheduled for the same

maintenance window to allow time for the recy-

cling. The authorized and tested application package

is stored in the DSL and registered in the CMDB.

When using the autonomic process, the release

builder constructs a solution package composed of

the HR application SDD, configuration scripts, and

other software that is part of the release, including

prerequisite updates and fixes. This SDD is used to

deploy the acceptance version of the release. Once

acceptance testing is complete, the new software

package and SDD are stored in the DSL and

registered in the CMDB. The manual effort to deal

with dependencies is eliminated or greatly reduced.

Detailed rollout plan is created

Using the current process, the release planner

creates a plan to install the release, taking into

account the dependencies among elements of the

release and their installation procedures (for exam-

ple, the need to recycle servers for changes to take

effect). The execution of this rollout plan is

described in scenario 2.

With the autonomic process, the release builder

provides the necessary instance parameters for each

location to instantiate the solution SDD on the

specific targets with appropriate configuration val-

ues. The combination of the instance parameters

and the solution SDD constitutes the rollout plan for

the software aspects of the release. The manual

effort to create a plan is greatly reduced because the

SDD contains sufficient information to automate the

deployment of the software and its dependencies.

Solution-deployment scenario 2—Automated
orchestration

In solution-deployment scenario 2, we examine the

role of autonomic technology in deploying the

release that was planned and built in scenario 1.

Once approved and scheduled, a release implemen-

tor is assigned to coordinate the release deployment.

The release implementor may be empowered to

make all of the necessary changes or may need to

work with specialists in different areas of the

organization.

The release implementor works with specialists to

implement the rollout plan defined in scenario 1.

This is likely to be error-prone, particularly when

the rollout plan is merely documented rather than

being captured in automated scripts. In cases in

which automated scripts are defined, they might be

environment-specific and might not accommodate

the variability in the actual deployment locations.

In the autonomic process, we assume that the

release implementor is empowered to perform all of

the work and uses automated deployment tools to

implement the release. As shown in Figure 6, this

consists of an orchestration tool (a ‘‘planning’’

autonomic manager) that is capable of generating

orchestration flows from SDDs. This recent en-

hancement is still under evaluation, but based on

testing to date, the capability is trusted sufficiently

to be used in production, although the release

implementor is required to verify the plan that the

tool creates. The autonomic manager is therefore

used in ‘‘supervised delegation’’ mode.

This sequence of activities is followed during

deployment:

1. For each location, the release implementor

retrieves the rollout plan that identifies the

solution package and the instance parameters for

the deployment.

2. The deployment orchestration tool is used to map

the release plan to the actual physical nodes used

for the deployment, based on the data model of

the tool.

3. The deployment orchestration tool retrieves the

relevant SDDs from the DSL and checks the SDD

requirements against the known configuration of

existing resources from the CMDB or from a local

data model (queried using WSDM interfaces). It

informs the release implementor of any issues.

4. The deployment orchestration tool uses the SDDs

to generate an orchestration plan based on the

physical targeting information and parameteri-

zation information in the release plan.

5. The release implementor reviews the plan and

approves it.

6. The orchestration tool orchestrates the distribu-

tion of software (retrieved from the DSL) and its

subsequent deployment. Once the software has

been distributed to an endpoint, the orchestration

tool invokes a local installation tool at that
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endpoint (an implementation of the hierarchical-

autonomic-manager pattern).

7. Each local installation tool performs dependency

checking, planning, and execution for the locally

targeted software, using WSDM interfaces.

8. When deployment is complete, the CMDB is

updated to include the newly deployed or

updated resources as part of the authorized

baseline.

The use of the SDD and autonomic-manager

capabilities for release implementation allows the

release implementor to deploy a release that is more

reliable and repeatable and has less likelihood of

human error or miscommunication. It also reduces

the need to involve subject-matter experts in the

deployment. Automated planning and execution can

reduce the time to execute and provide both a clear

audit of actions taken and the ability to perform

automated rollback. Updating the CMDB-approved

baseline with SDD knowledge reduces misidentifi-

cation of configuration audit issues and improves

the accuracy of CMDB data.

CONCLUSION
Since the inception of the autonomic-computing

initiative, the growth and maturation of autonomic

capability has been predicated on a phased, pro-

gressive model designed to deliver demonstrable

business value. As shown here, delivery of the

requisite autonomic capabilities is predicated on key

technologies, specifications, and architectural pat-

terns within the broader context of the ACRA.

As we have demonstrated throughout the ITIL-based

scenarios presented here, the value of autonomic

computing is manifest in its ability to effect incre-

mental IT process transformation. More important,

autonomic computing, as described by its reference

architecture and associated elements, delivers a

framework for progressive, business-driven evolu-

tion of IT infrastructures and associated processes.
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