L. Luo

D. M. Hao
Z. Tian

Y. B. Dang
B. Hou

P. Malkin

S. X. Yang

Ariadne: An Eclipse-based
system for tracking the
originality of source code

In this paper we introduce Ariadne, an Eclipse-based system for tracking the originality
of source code in collaborative software development environments in which software
reuse is a common practice. We describe its architecture within the Eclipse framework,
the originality metadata of which it keeps track, and the history clue—the data structure
used to implement the tracking mechanism. We also discuss the implementation of
the Ariadne client, the main component of the system, and show how digital
signatures are used to validate the integrity of the metadata-handling process. We
demonstrate the functions of Ariadne in two typical scenarios: tracking of software
bugs and generating originality claims for Certificate of Originality reports. Although
our Eclipse-based prototype is designed to handle Java source code, our approach can

be extended to other kinds of artifacts.

INTRODUCTION

The reuse of software artifacts plays an important
part in improving the quality of software and
reducing development costs. To save duplicate
efforts during software development, software de-
velopment organizations harvest their existing
artifacts, such as source code, requirement docu-
ments, and design model files, as component assets
and provide support for their reuse. In order to
minimize the business risks resulting from the
illegal use of software artifacts, the originality
information associated with these software artifacts
has to be carefully and reliably tracked. We consider
originality information all information that pertains
to questions such as: “Who authored this snippet of
source code?” “Who has ownership rights for this
software artifact?” “What contractual restrictions

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

apply to this software artifact? “Does this snippet of
source code involve another party’s patent?” and “Is
this snippet of source code open-source software?”

A typical example of the problems that could arise
when originality information is not monitored is
code contamination by open-source software.’
When members of a software development team
share their code, they may inadvertently embed
open-source code into a commercial software
product. To control the code contamination risk,

©Copyright 2007 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/07/$5.00 © 2007 IBM

LUO ET AL

289

290

some companies choose the “closed source” strat-
egy, which rules out the use of any open-source or
third-party code during software development.
Other companies, including IBM, require that every
development project for software delivered to
customers has to undergo a Certificate of Originality
(Co0) process whose purpose is to determine the
originality information associated with all software
artifacts in the product. The experience shows,
however, that due to originality information that is
often incomplete or uncertain, this process is often
costly (in terms of manpower) and unreliable. Open-
source communities also need to manage code
originality information. In this environment, devel-
opers who contribute source code to the community
also face the potential risk of lawsuits if the code
infringes on certain patents.2

Aside from its role in intellectual property (IP)
issues, originality information is also important for
managing aspects of the software-development life
cycle, such as detecting code cloning, tracing the
source of software bugs, and evaluating asset reuse.

If we consider other software artifacts, such as
documents, design models, images, and audio and
video clips, we find the same imperative to maintain
originality-related information about each artifact.
Only based on such information can we determine
whether the artifact contains content whose access
is either prohibited (e.g., illegally copied music) or
restricted (e.g., using the artifact after one’s access
rights have expired).

There are two basic approaches to managing the IP
issues related to originality information associated
with source code. In the first approach, we search all
repositories of source code available for items that
are similar to the segment of source code under
study. We refer to this approach as after-the-fact
retrieval. In the second approach, we enhance the
tools used for developing source code and record all
events that are significant from the IP perspective.
Moreover, the historical record of all IP-significant
events becomes the metadata associated with the
source code. We refer to this approach as in-process
recording, or tracking.

After-the-fact retrieval approach

Techniques that have been developed for detecting
code cloning and plagiarism can be used for
retrieving originality information associated with a

LUO ET AL

given segment of source code.”™® Krugle** from
Krugle, Inc. and Google** Code Search from Google,
Inc. are commercial tools that detect code cloning.s’6
By adapting traditional search algorithms to the
source-code domain, they seek to locate keywords
or source-code segments in known open-source
repositories, such as SourceForge**. Their focus,
however, is limited to reusing existing open-source
software, not managing IP concerns in software
development.

The techniques for code clone detection and
plagiarism detection are based on the concept of
calculating fingerprints (checksum) for both the
source file and the target file and then comparing
them.”* The checksum calculation algorithms are
designed to be robust enough to resist potential code
obfuscation or other changes. Products ProtexIP**/
development from Black Duck Software, Inc. and IP
Amplifier from Palamida, Inc. combine techniques
for code cloning and plagiarism detection with a
source-code fingerprint registry, functions for
source-code license management and IP policy
configuration and compliance reporting, and thus
provide a complete solution for managing IP
concerns.””®

The advantage of the after-the-fact approach is that
it does not depend on the software development
process. The code fingerprint embodies the intrinsic
properties of a code segment and is the vehicle used
to locate the code segment in the code fingerprint
registry. The after-the-fact approach is especially
useful for source code copied or inherited from
legacy code. Access to the code fingerprint reposi-
tory is required; otherwise, the originality informa-
tion is not available. There are, however, limitations
to this approach. The performance and coverage of
the fingerprint comparison are highly dependent on
the project size. In addition, certain levels of code
modification or transformation may diminish or
even destroy the retrieval accuracy, as in the case
when source code is compiled into binary code.
Finally, the after-the-fact approach is not applicable
to certain kinds of originality information, such as
source code extracted from a textbook, an algorithm
whose use might infringe on a patent, or source code
under contractual constraints.

In-process recording approach

Currently there are no effective tools for fully
tracking originality information throughout the

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

software life cycle. Although comments embedded
in source code can be used to record originality
information, their creation and maintenance rely on
the diligence of developers, and the arbitrary nature
of their content and format makes them unsuitable
for automated processing.

Software configuration management (SCM) tools
(also known as version control or source control
tools), such as ClearCase* and ClearQuest* from
IBM Rational and the open source CVS (Concurrent
Versioning System), can automatically record au-
thor and revision information during check-in/
check-out events. Their design, however, is geared
toward project-centric software development, and
when a software component is reused by a new
project, the historical record of the previous project
may be dropped. Furthermore, SCM tools only
record originality information at check-in and check-
out, and some originality information, such as
whether the checked-in component incorporates
code copied from another module, is not available.

Some word-processing applications, such as Micro-
soft Word, have a tracking function that records the
document editing history. However, just like the
SCM mechanism, it is mainly used for version
control. When users copy-and-paste a segment of
text from another document, the originality infor-
mation of the source document is lost.

In order to find out how source code evolves during
the software-development life cycle, Kim et al.
investigated the situations in which developers
perform copy—and—paste.9 To carry out their re-
search, they constructed an Eclipse**-based IDE
(integrated development environment) client that
logs all copy-and-paste events.'’ Although their
purpose was not tracking originality information, the
tool can be regarded as an in-process recording tool.

The in-process approach requires the handling of
additional information, namely originality informa-
tion, which we refer to as metadata. To ensure
metadata integrity and non-repudiation during
software development, digital signature technology
can be used, such as calculating the checksum
(digest) of the content and encrypting it with the
developer’s private key. Even if only one bit of the
content is changed, the signature verification pro-
cess will detect that the metadata or the corre-
sponding source codes have been tampered with."!

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

Ariadne

In this paper we describe Ariadne, an Eclipse-based
system for tracking the originality information of
source code in collaborative software development.
We named our system Ariadne, after the character
in Greek mythology. Ariadne, the daughter of king
Minos of Crete, who gave Theseus the ball of yarn
(the clue) with which he was able to escape the
labyrinth after killing the Minotaur (Ariadne’s clue
is thus a metaphor for traceability). Ariadne is based
on Eclipse and provides an enhanced IDE that
manages originality information during software
development. The originality information is auto-
matically generated whenever possible; in other
cases, such as when legacy code is imported, the
developer is prompted to enter the originality data.
The integrity of the originality information is
ensured through the use of digital signature tech-
nology.11 Although our prototype is designed to
handle source code, our approach can be extended
to other software artifacts.

The rest of the paper is organized as follows. In the
next section we describe Ariadne’s architecture
within the Eclipse framework, the originality meta-
data of which it keeps track, and the history clue—
the data structure used to implement the tracking
mechanism. We also discuss the implementation of
the Ariadne client, the main component of the
system, and show how digital signatures are used to
validate the integrity of the metadata-handling
process. In the following section we show experi-
mental results. We demonstrate the functions of
Ariadne in two typical scenarios: tracking of
software bugs and generating CoO reports. We also
discuss preliminary performance results of the
Ariadne prototype. In the last section we summarize
our results and discuss future work.

DESIGN AND IMPLEMENTATION

In this section we describe the overall architecture of
Ariadne, discuss the history-clue data structure, and
describe the structure and some details of the
implementation of the Ariadne client.

Overall architecture

As illustrated in Figure 1, Ariadne consists of the
Ariadne client, the Ariadne compliance server, and
some peripheral components. The peripheral com-
ponents include a support services component,
which consists of an identity server and a certificate
authority, and an artifact repository. The Ariadne

LUO ET AL

291

. &

Support services —
Identity Certificate Code
management | authority repository

o
Ariadne client Ariadne
compliance server
Login and Originality .
Signature Metadata License
Analyzer management
Editing Event| Originality Corporate-level
Monitor Metadata originality
Display management
Certificate External Compliance
of Originality | Originality checking
Generator Collector
Figure 1

Ariadne architecture

292

client implements an IDE, whereas the compliance
server covers license management, corporate-level
originality data management, and compliance
checking according to company policies.

In the current implementation of the Ariadne client,
its originality-tracking capability is demonstrated on
Java** source code (for other kinds of artifacts,
similar modifications to the corresponding artifact
editors are required). The Ariadne client dynami-
cally tracks the developer’s editing events (such as
insert, delete, and copy-and-paste) in the Ariadne
Java editor, identifies the currently edited artifact
and the associated originality-information metadata,
and updates the originality-information metadata. It
also supports the creation of the CoO report.

As discussed in the Introduction, originality infor-
mation is of two types: editing history and IP-related
information. The editing history can be automati-
cally generated by client monitoring. The types of
editing events we track include insert a line, delete a
line, modify a line, and copy-and-paste an object. IP-
related information includes open-source claims,
applicable patents, licensing terms, and contractual

LUO ET AL

requirements. When it is first encountered, this
information is entered by the developer through
manual input, possibly after searching through
source-code repositories. Upon reuse, the informa-
tion is automatically combined with editing history
information.

The originality metadata could be managed in
several ways. It could be embedded into the source
code as comments, stored in a separate metadata
file, or centrally managed by the Ariadne compli-
ance server. In our implementation the metadata is
handled as a separate metadata file whose name is
the same as that of the source Java file (file of type
* . java) but with the special postfix *.orimeta
(short for “originality metadata™).

The key logical functional components of the
Ariadne client are shown in Figure 1. The Login and
Signature module enables the Ariadne user to log in
and then verifies the user’s identity (through
password authentication). Following authentication,
the source code created by the developer, together
with the associated metadata, are digitally signed by
using the developer’s private key whenever the file
is saved. For verification at the project level, the
metadata are transferred to the Ariadne compliance
server and submitted to the project leader to be
signed again by using the team key. The Login and
Signature module also performs an integrity check
on the metadata when necessary, for example, when
the source-code file is first opened.

The Editing Event Monitor inherits the monitoring
capability of the Eclipse development environment.
It monitors in real time two kinds of editing events:
basic operations, such as insert, delete, modify, and
replace, and cross-file operations, such as copy-and-
paste. These editing events are mapped to the
corresponding line-oriented Ariadne basic opera-
tions. When copy-and-paste operations are moni-
tored, the Originality Metadata Analyzer is triggered
to extract the originality metadata associated with
the copied code segment from the second originality
metadata file.

The Originality Metadata Analyzer records the
originality information within an XML-based struc-
ture (.orimeta file). When a code snippet is copied
and pasted from a source file to a target file, the
analyzer extracts the associated metadata to the
clipboard and then appends it to the target metadata

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

file. When the developer has to handle IP-related
metadata, the analyzer invokes the External Origi-
nality Collector.

The function of the External Originality Collector
complements the function of the Originality Meta-
data Analyzer. It collects additional IP information
when the origin of the source code is unknown or
the information available is inadequate. It enables
developers to manually enter their own description
of the metadata for code snippets without originality
metadata that originated in legacy code. To facilitate
the manual input, the collector can link to an open-
source code registry in order to retrieve after-the-fact
originality information.

The Originality Metadata Display is a user interface
(UD module that displays the originality metadata to
the developer. The developer selects a code snippet,
and the associated originality information is dis-
played for viewing. The CoO Generator compiles
originality metadata of all the artifacts in a project
into the CoO report for the project.

Figure 2 illustrates a typical scenario for processing
originality metadata during an editing session in the
Ariadne Java editor. The editing session includes a
copy-and-paste operation in which a snippet from
file Source. java is copied into file Target. java. The
steps in the editing session are on the left; the steps
on the right are the corresponding metadata pro-
cessing steps. When file Target. java is loaded, the
Originality Metadata Analyzer checks the presence of
the file Target.orimeta. If the file does not exist, it is
created and initialized. Editing events are monitored,
and newly created originality information is ap-
pended to the existing metadata. For copy-and-paste
operations, the corresponding metadata snippets are
automatically inserted into the target file. For most
editing operations the metadata processing is trans-
parent to the developer and does not affect the
normal editing experience. Only when the developer
has to handle IP-related information is it necessary to
select proper IP claims for the source code created.

At the end of an editing session, when the project is
saved, the originality metadata is recorded. De-
pending on the company policy, the developer may
be required to sign his work in order to ensure the
integrity and the non-repudiation property of the
product. For example, if the code is associated with
open-source claims, then the developer’s signature

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

is viewed as a declaration of compliance with the
company policies.

All clients send originality-related information to the
compliance server for analysis. When a particular
artifact is reused from other projects (possibly
following several additional rounds of reuse), the
corresponding originality metadata is collected by
the Ariadne compliance server. Companies can use
the collected information to audit compliance with
the official asset-reuse policies.

It is often the case that software development
organizations have implicit or explicit regulations
such as “submitted assets should have originality
information associated with them, and the user
should not delete such information during asset
reuse.” When lack of originality metadata is
detected by Ariadne, the corresponding asset is
marked “suspect”. The creation of fraudulent
metadata can be detected through audit procedures
that involve search-and-compare algorithms similar
to the after-the-fact approach. In general, company
employees do not intentionally remove or forge
metadata because of the risks involved in adopting
suspect code. In this case, the main function of
Ariadne is to facilitate and automate the handling of
the originality information.

History clue

History clue is the Ariadne data structure for
managing originality metadata consistently and
reliably. Because any number of developers may be
involved in editing a source-code file, tracking
authorship and ownership throughout the software
life cycle presents a technical challenge.

Figure 3 provides a conceptual view of the history-
clue data structure as a strip of paper of unbounded
length with width-wise folds, whose content can be
displayed or hidden by opening or closing the folds.
With the folds closed, the visible content of the paper
is simply the current version of the source code. Each
fold contains an item of the editing history of this
code, such as a deleted line as shown in Figure 3.
The contents of the history clue can only increase
over time, because nothing is ever erased from it.
The screen capture was taken when developer Luolin
was about to save the file and end the session. At that
point Ariadne automatically digitally signed all the
lines that were affected during the session (these
lines are highlighted in the figure).

LUO ET AL

293

294

Java workflow

Start

Log-in

Metadata workflow

Y

Open Target.java

l

Enter new lines of code

into Target.java

> changes Target.orimeta

code snippet

l

Open Source.java and copy

Paste snippet i

Target.orimeta N Create Target.orimeta
. exists? with initial originality info
Y

Monitor and record

Copy corresponding metadata
from Source.orimeta

nto

Paste metadata info

N Targetjava and save into Target.orimeta
g Enter orginality information
Annotat|o7n (newly created or located in
required? :
source registry)
N
.
—— _ End of session? > Signature
T
End
Figure 2

Java and metadata workflows: A typical scenario

Digital signatures validate the integrity of the

opers, all the editing events are mapped into a

metadata-handling process.11 For each editing ses- number of line-based basic operations. The simplest

sion, the digest of the source code and the

ones are add a line (a line of code is inserted) and

corresponding metadata are calculated and signed delete a line (a line of code is deleted); in both of
by using the developer’s private key and then stored these cases a line is added to the history clue. The
in the metadata file. The signature can be verified at operation modify a line takes place when some
any time by calculating the digest and comparing it words on a line are modified, and it can be mapped

with the stored dige

St.

to two simpler operations: delete the old line and
add the new line; in this case, two lines are added to

In order to record the editing history in the history the history clue. The operation paste an object is
clue, possibly including actions by multiple devel- applied on an object, which may consist of a line

LUO ET AL

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

O History Clue

| & coding history of YetrieveDecoder(Headsro_tool)

2§} Al Editors

m.com)
& YeMangJdun (Yehangi@en.ibm.com)
A HeCao (Hecao@cn.ibm.com)
A ShuBo (ShuBo@cn.ibm.com)

| 1 Luokin (Luskoficn, b com) Codng Hstory Che

ChengP 4 protected FrameDecoder retrieveDecoder (Header hesl
ChengP throws DecoderException
CangP o (
ChengP s int decoderIndex = (header.layer() << 4) + (he
HeCao e FrameDecoder decoder = decoders[decoderIndex]:
HeCao £ Doseded—desed 1is
Chengl o / REVIEW: it selection type
ChengP o / LEFT, RIGHT, BOTH,
ChengP switch (header.layer()) {
ChengP o case 3:
Luolin ¢ Il support temorarily removed
Luolin 5 throw newDecoderException(UNSUPPORTED_L.Y”
Luolin M Ve -
luelin M ¥ pomsderioere
Luolin M [N
Lelin M Sty
Luolin M
Luolin x lecodes = b el
Luolin M break,
ChengP o case 2:
Py ie 1a T
=
I Sign these lines as
LuoLin
Figure 3

CJmrrremminns imna woviamsihiry

protected FrameDecoder retrieveDecoder(Header header, lo_tool stream)
throws DecoderException
{
int decoderindex = (header.ayer() <<4) + (headermode() <<2) + (headermode_extension());
FrameDecoder decoder = decoders[decoderindex];
RO DT 77

//REVIEW: allow channel output selection type

// (LEFT, RIGHT, BOTH, DOWNMIX)

switch (header.layer()){

case 3:

// Layer lll support temorarily removed (saves space in jar)
throw newDecoderException(UNSUPPORTED_LAYER, null):

ME(lEdocodermrnnl)

13decoder =.

y-headermdilterdfilter2, O1 B

s BTH-CHANNELS)}

decodase. I3 decedes o

_brealgmme

A A A A A

case 2:
if (decoder==null) {

decoder = new LayerliDecoder();
((LayerlIDecoder)decoder).create(stream,

header, filter1, filter2,

output, OutputChannels.BOTH_CHANNELS);

break;
case 1:
if (decoder == null) {
decoder = new LayerlDecoder();
((LayeriDecoder)decoder).create(stream,
header, filter1, filter2,
output, OutputChannels.BOTH_CHANNELS);

)
break;
)

Recording code changes in the history clue: A conceptual view

fragment, a complete line, or a set of consecutive
lines, so that the first and last lines may be line
fragments. This operation can also be mapped to
several add a line operations. We should point out
that for efficiency we have also developed heuristic
algorithms that expand the concept of a line to
include semantically connected snippets of code. For
example, a loop can be viewed as a single “line”.

If all editing events can be viewed as one or more
add a line operations, then the metadata file can
only increase. Each line is associated with a unique
developer whose private key is used to digitally sign
the contents at the end of the session. In Figure 3 the
developer’s name appears on the left side of the
frame labeled Coding History Clue. Note that a line

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

may involve two developers—the author who
creates the line and the editor who imports it (e.g.,
by pasting it) into the current file. Both of these
names are recorded in the metadata. In the case of
open-source claims, the original author is responsi-
ble for IP-related issues; for software-life-cycle
problems, such as tracking software bugs, both the
author and the editor are held responsible.

Figure 4 shows the structure of the originality
metadata and the associated source code. The
metadata includes delta lines, the line number
lookup table, the editing history, and the IP data. The
metadata file is formatted as an XML document. XML
security tools'” are used to map the file to a canonical
form and to perform the digital-signing function.

LUO ET AL

295

296

Metadata

-

! LINE NUMBER

soucecode _ | LOOKUP TABLE
1 \ | Line # History
! | Clue #
| | package test; ! 1 1
i public class Test { } 2 2
} public static main(String[] args){] 3 3
} //TODO: add your codes here i 4 4
| | System.out.printin("Hello!"); } 5 9
i TG 10
| Public test(){ } 7 11
' //TODO:add your codes here } 8 12
1 E 13
il 10 14

T

‘\ I
. P

L |

*java

|:| Dynamically updated content

Static content

Figure 4

DELTA LINES

History

Clue # Modified Code Lines
5 | System.out.print(“123");

6 | -System.out.print("123");

7 | System.out.printin("Aloha”);
8 |-System.out.printin("Aloha”);

EDITING HISTORY

Steven [1,2,11,12,13,14 | Sig (Steven) | Descriptions

Peter 3,4,5,6,7,8,9,10 | Sig (Peter) | Descriptions
IP DATA
Developer History Clue # IP Claims Signature
Steven | 1,2,11,12,13,14 | Patent USXXX | Sig (Steven)
Lynn 3,4,5,7,10 GPL liense Sig (Lynn)
Peter Original Sig (Peter)
7777777777777777777777777777777777777 //
*, orimet;

The originality metadata and their relation to the corresponding source code

IP data contains IP claims, such as open-source or
ownership-rights claims, for specific lines. The first
column contains the author’s name, the person
responsible for assigning the initial value of the IP-
related data. Figure 4 shows Steven, Lynn and Peter
as authors—their names appear either in the editing
history or in IP data. Sometimes the author creates the
content, such as Peter in Figure 4, where the line for
Peter in IP data contains “original” in the column IP
claims. IP claims are context-independent properties
of the code snippets. An author is required to digitally
sign the IP data claim and the associated code snippet,
and the signature is stored in the IP data.

Editing history contains information on the changes
made to the source code. The first column contains
the name of the editor, the person responsible for
the change. In the example shown in Figure 4, only
Steven and Peter are editors. Although the file
includes source code authored by Lynn, Lynn is not
considered an editor because her code is imported
by Peter. Unlike IP data, the editing-history infor-
mation may be context-dependent. For example, a
bug may be caused not by the code snippet itself but

LUO ET AL

by its position in the source-code file. An editor is
required to sign the editing history for accountability
in the artifact-development life-cycle governance
scenarios. The digital signature should cover both
his or her input and the semantically relevant
context codes in the history clue. In some cases, the
context is the entire history clue, as shown in
Figure 4.

If developer B imports developer A’s code snippet
into a work file and if developer C further imports B’s
source code, which includes A’s snippet, then the
history clue for this snippet is labeled with author A
and editor C. The delta lines in Figure 4 represent the
difference between the history clue and the Java file,
and correspond to the folded sections of the paper
strip in Figure 3. The line-number lookup table holds
the mapping of source-code line numbers to history-
clue line numbers and is dynamically updated
during editing. For example, if a delta line is to be
inserted between history-clue line 2 and line 3, the
history-clue numbers in the line-number look-up
table are automatically updated.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

We consider now the ways in which importing a
code snippet from a source-code file into the work
file affects the author-editor information in the
metadata.

1. Peter copies a code snippet from file
Source.java, which he authored, and pastes it
into work file Target. java. The copied snippet in
Target.java is labeled with author Peter and
editor Peter.

2. Peter copies a code snippet from file
Source.java, which was authored by Lynn, and
pastes it into work file Target. java. The copied
snippet is labeled with author Lynn and editor
Peter.

3. Steven copies a code snippet that has no
originality metadata (such as legacy code or code
external to Ariadne) and pastes it into the work
file. The copied snippet is labeled “Steven” as
author and editor, and the IP data contains the IP-
related claims entered by Steven.

For signature purposes, the unit of code used should
be considered. When a code snippet is to be copied,
the smallest signed block that includes the code
snippet has to be copied as a whole in order to
enable the signature verification that follows. The
granularity also depends on the extent of the source
code associated with a claim. The entire source-code
file can be signed as a single unit, although storage
efficiency may deteriorate if the file involves too
many codes snippets from other sources. Another
possible approach is to partition the source code,
either uniformly in smaller blocks or based on
semantics (e.g., lines associated with an entire
function).

Ariadne client

The Ariadne client is based on Eclipse Version 3.1.x.
Eclipse is an open-source platform-independent
software framework in which various software tools
for application development can be integrated as
plug—ins.10 The implementation of functional mod-
ules such as the Login and Signature module, the
CoO Generator, and the External Originality Collec-
tor module is straightforward and further details are
left out. Instead, we focus on the modules that
manipulate metadata; Editing Event Monitor, Orig-
inality Metadata Analyzer, and Originality Metadata
Display; and describe the way we extend the Eclipse
Java IDE in order to support the interplay between
Java files and originality metadata files.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

Figure 5 illustrates the Ariadne client architecture.
The Ariadne Developer Environment (ADE) is built
on the Basic Eclipse Platform and parallels the
following Eclipse components: Java Development
Tools (JDT) and Plug-in Developer Environment
(PDE). These components streamline the develop-
ment of plug-ins and extensions. As shown in
Figure 5, ADE has three main components—Ariadne
Core, Ariadne JDT, and Ariadne UI.

Ariadne Core interprets the data model of the
originality metadata, ensures the integrity and
validity of the data, ensures that the user actions are
reflected in the originality metadata, and provides
APIs for the ADE and Ariadne UI components. The
class and the associated methods that implement the
metadata model are generated by the Eclipse Model-
ing Framework, which is a Java-framework and code-
generation facility for building tools and other
applications based on a structured model."” Metadata
objects are held in the Metadata Pool component.
Metadocument Analyzer wraps the originality meta-
data and provides methods for handling metadata to
be used by ADE and by the Ariadne Ul components.
The Metafile Generator component initializes the
metadata file for each source-code file.

Ariadne JDT is an extension of the JDT that includes
support for the Ariadne Core functions. Because it is
based on the JDT, Ariadne JDT has the same plug-in
interfaces and capabilities to manipulate Java code.
Besides monitoring editing events in the Java editor,
Ariadne JDT also processes the metadata object
retrieved from the metadata file and establishes the
links between the object and the source file. Because
Ariadne JDT is created by modifying only two
classes in JDT (which deal with the interplay
between Java files and metadata files), it is relatively
easy to keep Ariadne JDT updated whenever a new
version of JDT is released. In Figure 5, the Ariadne
JDT components that are based on JDT are blue.

Ariadne UI implements several functional views,
including author view, IP data view, and history
view. The architecture is extensible and can
accommodate additional views, possibly from third-
party vendors.

Figure 6 illustrates the Ariadne JDT monitoring of
editing events. As the figure shows, Ariadne JDT
event monitoring is an extension of JDT event
monitoring. The item labeled JDT Document is

LUO ET AL

297

298

Eclipse Platform with Ariadne Extension Eclipse SDK
Ariadne Development Enviroment (ADE) s Plug-in
Development | Developer
Ariadne JDT Ariadne Ul Tools (JDT) Enviroment(PDE)
Common Events Author IpData History
JDT manipulator View View View
Ariadne Ariadne Core Ariadne
JOT ul
Support MetaDocument Analyzer Support
Eclipse Eclipse
Plug-ins Metadata Pool Plug-ins

MetaFile Generator |

EMF - generated MetaData manipulator

J

Basic Eclipse Platform

J y

Figure 5
Ariadne client architecture

being monitored by any number of JDT observers
and one Ariadne JDT observer (the observers are
event driven). Every editing operation performed by
the user triggers a JDT-document change event,
which is broadcasted to all the registered JDT
observers, including the Ariadne observer. The
metadocument is then changed accordingly, and the
metadocument change events (corresponding to
changes to metadata) are broadcasted to any
number of meta-observers.

To enable interoperability with other tools, when a
developer copies source code in Ariadne JDT, the
event-driven Ariadne JDT observer copies the
related metadata to a clipboard section separate
from the content section. Thus, if the developer
pastes code within Ariadne JDT, the corresponding
metadata is recognized, and a metadocument
change is generated, whereas in standard editors
only the source code is displayed.

Because the history clue is a monotonically in-

creasing data structure, the implementation is
optimized for storage efficiency. For example, if

LUO ET AL

several consecutive modifications of the source code
are made by the same developer, these modifica-
tions are aggregated into a single equivalent
modification. In addition, the IP data claims that
occur frequently are stored in a central repository on
the Ariadne compliance server and only their
Uniform Resource Identifiers (URIs) are recorded in
the metadata file.

In our implementation we also took into consider-
ation the efficiency of metadata loading (from
peripheral storage to main memory). Because each
source-code file is associated with a metadata file,
large amounts of metadata are frequently accessed.
A cache-like storage pool mechanism is used to
manage the metadata loaded in main memory. The
mechanism identifies the metadata objects that are
not referenced for a certain period of time and
removes them from memory to peripheral storage.

EXPERIMENTAL RESULTS

In this section we first demonstrate Ariadne’s
functionality in two typical scenarios: tracking of
software bugs and generating CoO reports. Then we

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

discuss preliminary performance results of the
Ariadne prototype.

Figure 7 shows a screen capture of an Ariadne
editing session. The frame labeled Author View on
the right side of the window contains information
about the developers associated with the source-code
module: David, the current user, Alice, and Tom. The
“tool-tip” mechanism (the window that appears by
“mousing” over an area of the screen) in the middle
of the screen (the editor view) shows the editing
history for the highlighted lines. The IP Data view at
the bottom of the window contains open-source-
related IP claims and applicable third-party legal
constraints (under the DRM label; DRM stands for
Digital Rights Management) for the code snippets.

Tracking of software bugs

We consider here a scenario involving the tracking
of software bugs. A software module authored by
David includes code that David copied during an
Ariadne editing session from code authored by
Alice. In turn, Alice’s source code contains code that
Alice copied in a previous Ariadne session from
code authored by Tom. Thus, the software module
contains code authored by Alice, Tom, and David.
Some time after the application containing the
software module is deployed, David discovers a
software bug in lines 15 through 17. During an
Ariadne session he opens the source-code file,
selects these lines, and retrieves the editing history
by “mousing” over these lines. The resulting tool-tip
mechanism (see Figure 7) shows who may be
responsible for the bug. Although tracing the
responsibility for that bug to a single developer is
not trivial, Ariadne’s editing history facilitates that
process. Furthermore, because the local originality
information can be sent to the Ariadne compliance
server, the server can identify all software compo-
nents that contain the bug by virtue of the problem
code having been propagated to other software
modules. Aside from tracking of software bugs,
Ariadne can also be used in the related application
of measuring the effectiveness of software reuse.

Experimental data from early users of Ariadne
helped us improve the Ul design. For example, we
discovered that developers prefer a simple display
that does not include editing history. As a result, we
have adopted a design of the UI that exhibits the
editing history information only when needed by

using the tool-tip mechanism illustrated in Figure 7.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

Ariadne edit monitoring process
Ariadne \
JDT Observer
. DT \ DT ‘
| "
monitoring *

process T T

T

Source . \
File‘[77777777777777 W Editor |

i y,

\
Metafile .
R~ Metadocument

Meta-
observer

Meta-

Figure 6
Ariadne event-monitoring process

User Interface

Generating CoO reports

In the first stage of a customer-facing project, a
demo prototype is to be built as soon as possible.
Developer Alice embeds open-source code in one of
the components of this prototype. She annotates the
open-source information as shown in the IP Data
view in Figure 7. During another Ariadne session,
David makes further use of the source code, copies
code authored by Alice together with the associated
metadata, and views the relevant IP data in his IP
Data view. Although the development of the
prototype may involve more developers and many
such instances of code reuse, the CoO generation
tool will alert the team to inappropriate uses of
open-source code.

The CoO report includes multiple sections, two of
which are targeted by Ariadne: names of developers
and the origin of the source code (we refer to the
latter as “origin-of-source-code report”). Figure 8
shows a sample origin-of-source-code report. In this
report, three types of information are shown under
“Category”: open source, external patents, and under
exclusive contract (the last label indicates whether

LUO ET AL

299

300

I sovo Raliona Edpsesx sl
Ele Edt Source Refactor Navigate Search Project Run Window Help
F9 a2 oo [3-0-Q~ | BHG- @4]| 40| DR |F -Gl G~ T & aava
(18 pac... 321 SO gi TmePontjwa | |J) Edtorjava | = B [outine | @ author view 52 = B
K e o N 1 "
s ‘ 0% ¥ 1 return "de"; :l | ey
11 AlTestPr 104 ¥IE (| num == 11){ | .
E{&CaptiuidanorMadm 105 return "abc"; ‘ Allce
1= TestPerformance 106 }if (num == 12){
Bl TestPril 107 return "abd": |
1 TestPriz HME (num == 13){
109 return "bcd"; | I
110 AL (num == 14)¢ |
" " | a
.\lw , return "abcd”; | DaVId
113 return rec: i (current user)
114 }
115 public int getMin(){ |
116 return this.win; [
117
118 public int o Tom
119 return thi
120
121
12 d 3 < mam[i]): 3++) (
124 int tmp = 0;
125 for (int k = 0; k < num[i]: k++) {
126 tmp += (1] [k]:
127 ¥
128 Syatem.out.println("Question " + i + ":" +
L]
(Problems | Javadoc | Decleration | @ IpData View 53 = .
s ©
= 1
Ineno | category | origin | snapshot | uri | icense [keywerd | description | comme
1,2,3,4,5,6,7,12,13,14,15...
8,9,10,11, Open Source tu-chemnitz.de public class... http:ffravs.i... GPL MPEG-1,java applet Thisis a demon... tu-che
115,116,117, DRM Test Test http:ffwew.i... For test get method null Tom
118,119,120, DRM USA 6,410,987 http:/fpatft.... 1. Amethod for aud... Interactive Video,... The presentinv... Tom
4] | sl | |
I | | Witable SmartInsert | 12016
Figure 7

A screen capture of an Ariadne editing session

the use of the code is limited to a single customer).
Under the label “open source” are shown three types
of open-source license; the hyperlinks lead to details
of these licenses and the associated source-code files.
External patent information indicates that the algo-
rithms implemented by some source code may be
subject to existing patents, which is intended as a
warning for the IP staff. Ariadne thus helps detect
cases of noncompliance with open-source restric-
tions or other IP-related constraints.

Early use of the Ariadne prototype shows that
making sure developers initialize originality infor-
mation in their source code is an important
requirement for the success of an originality tracking
program. A procedure and guidelines for initializing
metadata should be instituted by the development
organization. The digital signature technology
should be used in order to keep everyone account-

LUO ET AL

able. In addition, technology for detecting code
cloning could be used in order to minimize the
manual effort required for this task.

Performance analysis

In order to test the storage and processing perfor-
mance of the Ariadne client we used as an
experimental vehicle, the source code of the Apache
search engine Lucene Version 2.0.0, which consists
of 541 Java files.'* The average size of the Java file
is 6224.95 bytes, the average number of code lines
per file is 192.78, and the average number of
characters per code line is 30.11 bytes.

The storage needed to store the metadata is the sum
of the storage for the four components of the
metadata: delta lines, line-number lookup table, IP
data, and editing history (see Figure 4). The storage
required includes both content and XML tags.

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

« Category
-Open Source
-IBM Public License Version 1.0

-The GNU General Public License (GPL) Version 2, June 1991

-Apache License, Version 2.0
-External patent

-DRM
+Under exclusive contract

« Licenses

(C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed. M

|Opon Source

B

[com.ibm .crl.sat.test.ariadne.DocHelper.java

com.ibm.crl.sat.test.ariadne. Document\Writer java

com.ibm.crl.sat.test.ariadne.DocumentReader java

com.ibm.crl.sat.test.ariadne.Filter.java

[com.ibm.cﬂ.ut.hst.ariadne.AbshctDowmentExtension.jm

Catogory Exarmal pter

Origin UsA Commentby Ly

Figure 8

Origin-of-source-code report for a Certificate of Originality

Because the XML tags can be customized or
encoded, we include in this discussion only the
storage needed for the raw contents. The total

storage S, .. is given by

Smem = Sdelta + Slookup + Sipdaza + Shistory

Shistory is roughly proportional to the number of
times that the source code is modified (number of
editing sessions). In general we can assume an

empirical constant for it.

Sl.p 4are d€PeNds on the number of IP claims. License
descriptions often require significant storage space.
If the license descriptions are held in a central

location, a short URI can be used instead of the full

license description. When most of the source code is

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

internally created, the storage needed for IP data is
minimal.

Slookup is proportional to the number of history-clue
lines, Num ., . in0 A TOW in the lookup table has
two columns whose entries are integers; thus, the

size of S is 8 times Num

lookup ClueLines*

S je1o depends on the number of deletions and
modifications that have been performed and the
number of source-code lines affected. Let us assume
S joirq 18 0.5 times S_ ., which corresponds to a case
with many deletions and modifications, in which
Num,, ., ... is about 1.5 times Num,_ .. . Hence,
the size of the metadata can be written as:

Smeta = 0.5 * Ssource + 8 * L.SNUMjqpaLines + Sipdata
+ Shistory~

LUO ET AL

301

302

Using the previously stated statistics for Apache
Lucene,

Numjavarines = Ssource/30.1 1,
and thus,

Smem =0.90 * Ssource + Sipdaza + Sediling history-

This value does not include the space taken by XML
tags, which may be substantial and may even
double the storage size. We can abbreviate or
encode the XML tags in order to decrease the size of
the metadata file.

We measured the metadata loading time at

213.21 msec per source-code file on the average.
Although we have not measured the user response
time for the Ariadne client, early experiments show
it is quite adequate.

CONCLUSION AND FUTURE WORK

In this paper we introduce Ariadne, a system for
tracking originality information in collaborative
software development environments. Although our
Eclipse-based implementation prototype is designed
to handle Java source code, our approach is
extensible to other kinds of software artifacts. We
describe the history-clue data structure, which is
used for managing originality metadata consistently
and reliably. Digital signatures are used to validate
the integrity of the metadata-handling process. We
demonstrate the benefits of Ariadne in two typical
scenarios: tracking of software bugs and generating
CoO reports.

We are collaborating with software development
teams and service teams within IBM in the
deployment of Ariadne in a number of internal
projects. From these projects we expect to collect
data on user experience with the tool, on generating
CoO reports, and on managing the software life
cycle. In addition, we will gather related information
such as the impact that company regulations have
on software development, how often source code is
collaboratively edited, and how often source code is
imported from open-source or legacy sources.

Project managers care not only about source-code
level originality, but also about coarser-grain soft-
ware artifacts such as binary libraries, software
components, and even copyrighted images. We plan
to extend Ariadne to cover component-level origi-

LUO ET AL

nality information and IP requirements. We also
plan to enhance the server-side functions, especially
functions for managing the software life cycle, such
as checking the compliance of submitted source
code with company regulations. In order to integrate
Ariadne with existing source-control tools, such as
CVS, the Ariadne Client has to support version
management for both source files and metafiles.

Developers of open-source software can use Ariadne
to ensure the trustworthiness of their code so that
other will be more willing to reuse originality-cleared
open source in their projects. Unlike the commercial
environment, the originality information in the
open-source community is less reliable, and there is
a strong need to protect the asset owner’s originality
information from being intentionally deleted. Tech-
nologies such as code watermarking could be used to
hide the originality-related information in the soft-
ware artifacts. Code-cloning and plagiarism-detec-
tion techniques can be used as auditing mechanisms
within the Ariadne framework.

ACKNOWLEDGMENTS

We thank Brent Hailpern, Harold Ossher, Sridhar
Iyengar, Mark Wegman, Scott Rich, John Wiegand,
Dave Thomson, Hang Jun Ye, and Ling Shao for
many fruitful discussions, and Ping Cheng, Chao He,
Bo Shu, and Harry Pendergrass for their help in the
initial tool development and for many useful
discussions.

*Trademark, service mark or registered trademark of Inter-
national Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Krugle, Inc., Google, Inc., VA Software Corporation, Black
Duck Software, Inc., Open Source Technology Group, or Sun
Microsystems, Inc.

CITED REFERENCES
1. L. Rosen, Open Source Licensing: Software Freedom and
Intellectual Property Law, Prentice Hall PTR, Upper
Saddle River, NJ (2004).

2. B. Perens, “The Monster Arrives: Software Patent
Lawsuits Against Open Source Developers,” http://
technocrat.net/d/2006/6/30/5032.

3. T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A
Multilinguistic Token-Based Code Clone Detection Sys-
tem for Large-Scale Source Code.” IEEE Transactions on
Software Engineering 28, No. 7, 654-670 (2002).

4. S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnow-
ing: Local Algorithms for Document fingerprinting,”

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data (2003), pp. 76-85.

5. “Code Search for Developers,” Krugle Inc., http://www.
krugle.com.

6. “Google Code Search,” Google, Inc., http://www.google.
com/codesearch.

7. “ProtexIP™ /development Software Compliance Manage-
ment System,” Black Duck Software Inc., http://www.
blackducksoftware.com/products/_protexip.html.

8. “IP Amplifier Overview,” Palamida, Inc., http://www.
palamida.com/products/ipamp/overview.

9. M. Kim, L. Bergman, T. Lau, and D. Notkin, “An
Ethnographic Study of Copy and Paste Programming
Practices in OOPL,” Proceedings of the 2004 ACM-IEEE
International Symposium on Empirical Software Engi-
neering (ISESE 2004) (2004), pp. 83-92.

10. Eclipse SDK, The Eclipse Foundation, http://www.
eclipse.org/downloads/.

11. B. Hammond and M. Atreya, Digital Signatures, RSA
Press, Osborne/McGraw-Hill, New York (2002).

12. XML Security, The Apache Software Foundation, http://
xml.apache.org/security/.

13. Eclipse Modeling Framework, The Eclipse Foundation,
http://www.eclipse.org/emf/.

14. Apache Lucene, Apache Software Foundation, http://
lucene.apache.org/java/docs/index.html.

Accepted for publication November 20, 2006.
Published online April 11, 2007.

Lin Luo

IBM Research Division, China Research Lab, Building 19,
Zhongguancun Software Park, 8 Dongbeiwang West Road,
Haidian District, Beijing 100094, China (luolin@cn.ibm.com).
Dr. Luo is a research staff member in the Service Asset
Technology department at the China Research Laboratory. She
received a Ph.D. degree in electrical engineering from the
University of Science and Technology of China in 2003. She
subsequently joined IBM at the China Research Laboratory,
where she has worked on digital media communication and
content protection. Her current research interest is in service
asset protection and governance.

Da Ming Hao

IBM Research Division, China Research Lab, Building 19,
Zhongguancun Software Park, 8 Dongbeiwang West Road,
Haidian District, Beijing 100094, China
(haodm@cn.ibm.com). Mr. Hao is an R & D engineer in the
Service Asset Technology department at the China Research
Laboratory. He received a Master’s degree in electrical
engineering from the Xi’an Jiaotong University in 2005 and
subsequently joined IBM at the China Research Laboratory,
where he has worked on content protection and security
enhancement technologies. His current research interest is in
service asset protection and governance.

Zhong Tian

IBM Software Group, China Development Laboratories,
Building 19, Zhongguancun Software Park, 8 Dongbeiwang
West Road, Haidian District, Beijing 100094, China
(tianz@cn.ibm.com). Dr. Tian is a Senior Architect at the
Laboratory-Based Services department of the China
Development Laboratories. He received a Ph.D. degree in
computer science from Fudan University, Shanghai, China in
1995. He subsequently joined IBM at the China Research
Laboratory, where he worked on SOA service discovery and

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007

patterns, business-process modeling and integration, B2B
eCommerce, and the digital library. His currently interests are
in SOA solution architecture through process-modeling and
patterns.

Ya Bin Dang

IBM Research Division, China Research Laboratory, Building
19, Zhongguancun Software Park, 8 Dongbeiwang West Road,
Haidian District, Beijing 100094, China
(dangyb@cn.ibm.com). Mr. Dang is an R & D engineer in the
Service Asset Technology department at the China Research
Laboratory. He received a Master’s degree in electrical
engineering from the Xi’an Jiaotong University in 2004. Since
joining IBM two years ago, he has worked on digital rights
management and content protection. His current research
interest is in service asset protection and governance.

Bo Hou

State Key Laboratory of Networking and Switching, Beijing
University of Posts and Telecommunications (BUPT), 187#, 10
Xitucheng Road, Haidian District, Beijing 100876, China
(polluxplus@gmail.com). Bo Hou is a postgraduate student in
BUPT, majoring in computer science. He received his
Bachelor’s degree in computer science and technology from
BUPT in 2005. His current research interest is in next
generation network and next generation Internet (NGN & NGI).

Peter Malkin

IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 USA
(malkin@us.ibm.com). After a one year ITT fellowship at the
Australian National University in Canberra Australia, where
he worked on the Automated Reasoning Project, Peter Malkin
earned a Master’s degree in computer science from Brown
University in 1987. In 1988, Peter joined the IBM Thomas J.
Watson Research Center, and in 2002, he became a Master
Inventor by developing and helping others develop
intellectual property for IBM. He is now a member of the
Enhanced Web Experience Project, working with the
SPARCLE Privacy Policy Project, developing a privacy-policy-
authoring and a compliance-auditing workbench.

Shun Xiang Yang

IBM Research Division, China Research Laboratory, Building
19, Zhongguancun Software Park, 8 Dongbeiwang West Road,
Haidian District, Beijing 100094, China
(yangsx@cn.ibm.com). Mr. Yang is a research staff member
and the manager of the Service Asset Technology department
at the China Research Lab. He received his Master’s degree in
computer science from Beihang University in 2001. He
subsequently joined IBM at the China Research Laboratory,
where he has worked on business-process modeling and
integration and enterprise-architecture and business-
transformation technologies. His current research interests lie
mainly in service-asset harvesting, reuse, and governance. Ml

LUO ET AL

