
Ariadne: An Eclipse-based
system for tracking the
originality of source code

&

L. Luo

D. M. Hao

Z. Tian

Y. B. Dang

B. Hou

P. Malkin

S. X. Yang

In this paper we introduce Ariadne, an Eclipse-based system for tracking the originality

of source code in collaborative software development environments in which software

reuse is a common practice. We describe its architecture within the Eclipse framework,

the originality metadata of which it keeps track, and the history clue—the data structure

used to implement the tracking mechanism. We also discuss the implementation of

the Ariadne client, the main component of the system, and show how digital

signatures are used to validate the integrity of the metadata-handling process. We

demonstrate the functions of Ariadne in two typical scenarios: tracking of software

bugs and generating originality claims for Certificate of Originality reports. Although

our Eclipse-based prototype is designed to handle Java source code, our approach can

be extended to other kinds of artifacts.

INTRODUCTION

The reuse of software artifacts plays an important

part in improving the quality of software and

reducing development costs. To save duplicate

efforts during software development, software de-

velopment organizations harvest their existing

artifacts, such as source code, requirement docu-

ments, and design model files, as component assets

and provide support for their reuse. In order to

minimize the business risks resulting from the

illegal use of software artifacts, the originality

information associated with these software artifacts

has to be carefully and reliably tracked. We consider

originality information all information that pertains

to questions such as: ‘‘Who authored this snippet of

source code?’’ ‘‘Who has ownership rights for this

software artifact?’’ ‘‘What contractual restrictions

apply to this software artifact? ‘‘Does this snippet of

source code involve another party’s patent?’’ and ‘‘Is

this snippet of source code open-source software?’’

A typical example of the problems that could arise

when originality information is not monitored is

code contamination by open-source software.
1

When members of a software development team

share their code, they may inadvertently embed

open-source code into a commercial software

product. To control the code contamination risk,

�Copyright 2007 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/07/$5.00 � 2007 IBM

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 LUO ET AL. 289

some companies choose the ‘‘closed source’’ strat-

egy, which rules out the use of any open-source or

third-party code during software development.

Other companies, including IBM, require that every

development project for software delivered to

customers has to undergo a Certificate of Originality

(CoO) process whose purpose is to determine the

originality information associated with all software

artifacts in the product. The experience shows,

however, that due to originality information that is

often incomplete or uncertain, this process is often

costly (in terms of manpower) and unreliable. Open-

source communities also need to manage code

originality information. In this environment, devel-

opers who contribute source code to the community

also face the potential risk of lawsuits if the code

infringes on certain patents.
2

Aside from its role in intellectual property (IP)

issues, originality information is also important for

managing aspects of the software-development life

cycle, such as detecting code cloning, tracing the

source of software bugs, and evaluating asset reuse.

If we consider other software artifacts, such as

documents, design models, images, and audio and

video clips, we find the same imperative to maintain

originality-related information about each artifact.

Only based on such information can we determine

whether the artifact contains content whose access

is either prohibited (e.g., illegally copied music) or

restricted (e.g., using the artifact after one’s access

rights have expired).

There are two basic approaches to managing the IP

issues related to originality information associated

with source code. In the first approach, we search all

repositories of source code available for items that

are similar to the segment of source code under

study. We refer to this approach as after-the-fact

retrieval. In the second approach, we enhance the

tools used for developing source code and record all

events that are significant from the IP perspective.

Moreover, the historical record of all IP-significant

events becomes the metadata associated with the

source code. We refer to this approach as in-process

recording, or tracking.

After-the-fact retrieval approach

Techniques that have been developed for detecting

code cloning and plagiarism can be used for

retrieving originality information associated with a

given segment of source code.
3–8

Krugle** from

Krugle, Inc. and Google** Code Search from Google,

Inc. are commercial tools that detect code cloning.
5,6

By adapting traditional search algorithms to the

source-code domain, they seek to locate keywords

or source-code segments in known open-source

repositories, such as SourceForge**. Their focus,

however, is limited to reusing existing open-source

software, not managing IP concerns in software

development.

The techniques for code clone detection and

plagiarism detection are based on the concept of

calculating fingerprints (checksum) for both the

source file and the target file and then comparing

them.
3,4

The checksum calculation algorithms are

designed to be robust enough to resist potential code

obfuscation or other changes. Products ProtexIP**/

development from Black Duck Software, Inc. and IP

Amplifier from Palamida, Inc. combine techniques

for code cloning and plagiarism detection with a

source-code fingerprint registry, functions for

source-code license management and IP policy

configuration and compliance reporting, and thus

provide a complete solution for managing IP

concerns.
7,8

The advantage of the after-the-fact approach is that

it does not depend on the software development

process. The code fingerprint embodies the intrinsic

properties of a code segment and is the vehicle used

to locate the code segment in the code fingerprint

registry. The after-the-fact approach is especially

useful for source code copied or inherited from

legacy code. Access to the code fingerprint reposi-

tory is required; otherwise, the originality informa-

tion is not available. There are, however, limitations

to this approach. The performance and coverage of

the fingerprint comparison are highly dependent on

the project size. In addition, certain levels of code

modification or transformation may diminish or

even destroy the retrieval accuracy, as in the case

when source code is compiled into binary code.

Finally, the after-the-fact approach is not applicable

to certain kinds of originality information, such as

source code extracted from a textbook, an algorithm

whose use might infringe on a patent, or source code

under contractual constraints.

In-process recording approach

Currently there are no effective tools for fully

tracking originality information throughout the

LUO ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007290

software life cycle. Although comments embedded

in source code can be used to record originality

information, their creation and maintenance rely on

the diligence of developers, and the arbitrary nature

of their content and format makes them unsuitable

for automated processing.

Software configuration management (SCM) tools

(also known as version control or source control

tools), such as ClearCase* and ClearQuest* from

IBM Rational and the open source CVS (Concurrent

Versioning System), can automatically record au-

thor and revision information during check-in/

check-out events. Their design, however, is geared

toward project-centric software development, and

when a software component is reused by a new

project, the historical record of the previous project

may be dropped. Furthermore, SCM tools only

record originality information at check-in and check-

out, and some originality information, such as

whether the checked-in component incorporates

code copied from another module, is not available.

Some word-processing applications, such as Micro-

soft Word, have a tracking function that records the

document editing history. However, just like the

SCM mechanism, it is mainly used for version

control. When users copy-and-paste a segment of

text from another document, the originality infor-

mation of the source document is lost.

In order to find out how source code evolves during

the software-development life cycle, Kim et al.

investigated the situations in which developers

perform copy-and-paste.
9

To carry out their re-

search, they constructed an Eclipse**-based IDE

(integrated development environment) client that

logs all copy-and-paste events.
10

Although their

purpose was not tracking originality information, the

tool can be regarded as an in-process recording tool.

The in-process approach requires the handling of

additional information, namely originality informa-

tion, which we refer to as metadata. To ensure

metadata integrity and non-repudiation during

software development, digital signature technology

can be used, such as calculating the checksum

(digest) of the content and encrypting it with the

developer’s private key. Even if only one bit of the

content is changed, the signature verification pro-

cess will detect that the metadata or the corre-

sponding source codes have been tampered with.
11

Ariadne

In this paper we describe Ariadne, an Eclipse-based

system for tracking the originality information of

source code in collaborative software development.

We named our system Ariadne, after the character

in Greek mythology. Ariadne, the daughter of king

Minos of Crete, who gave Theseus the ball of yarn

(the clue) with which he was able to escape the

labyrinth after killing the Minotaur (Ariadne’s clue

is thus a metaphor for traceability). Ariadne is based

on Eclipse and provides an enhanced IDE that

manages originality information during software

development. The originality information is auto-

matically generated whenever possible; in other

cases, such as when legacy code is imported, the

developer is prompted to enter the originality data.

The integrity of the originality information is

ensured through the use of digital signature tech-

nology.
11

Although our prototype is designed to

handle source code, our approach can be extended

to other software artifacts.

The rest of the paper is organized as follows. In the

next section we describe Ariadne’s architecture

within the Eclipse framework, the originality meta-

data of which it keeps track, and the history clue—

the data structure used to implement the tracking

mechanism. We also discuss the implementation of

the Ariadne client, the main component of the

system, and show how digital signatures are used to

validate the integrity of the metadata-handling

process. In the following section we show experi-

mental results. We demonstrate the functions of

Ariadne in two typical scenarios: tracking of

software bugs and generating CoO reports. We also

discuss preliminary performance results of the

Ariadne prototype. In the last section we summarize

our results and discuss future work.

DESIGN AND IMPLEMENTATION
In this section we describe the overall architecture of

Ariadne, discuss the history-clue data structure, and

describe the structure and some details of the

implementation of the Ariadne client.

Overall architecture

As illustrated in Figure 1, Ariadne consists of the

Ariadne client, the Ariadne compliance server, and

some peripheral components. The peripheral com-

ponents include a support services component,

which consists of an identity server and a certificate

authority, and an artifact repository. The Ariadne

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 LUO ET AL. 291

client implements an IDE, whereas the compliance

server covers license management, corporate-level

originality data management, and compliance

checking according to company policies.

In the current implementation of the Ariadne client,

its originality-tracking capability is demonstrated on

Java** source code (for other kinds of artifacts,

similar modifications to the corresponding artifact

editors are required). The Ariadne client dynami-

cally tracks the developer’s editing events (such as

insert, delete, and copy-and-paste) in the Ariadne

Java editor, identifies the currently edited artifact

and the associated originality-information metadata,

and updates the originality-information metadata. It

also supports the creation of the CoO report.

As discussed in the Introduction, originality infor-

mation is of two types: editing history and IP-related

information. The editing history can be automati-

cally generated by client monitoring. The types of

editing events we track include insert a line, delete a

line, modify a line, and copy-and-paste an object. IP-

related information includes open-source claims,

applicable patents, licensing terms, and contractual

requirements. When it is first encountered, this

information is entered by the developer through

manual input, possibly after searching through

source-code repositories. Upon reuse, the informa-

tion is automatically combined with editing history

information.

The originality metadata could be managed in

several ways. It could be embedded into the source

code as comments, stored in a separate metadata

file, or centrally managed by the Ariadne compli-

ance server. In our implementation the metadata is

handled as a separate metadata file whose name is

the same as that of the source Java file (file of type

*.java) but with the special postfix *.orimeta

(short for ‘‘originality metadata’’).

The key logical functional components of the

Ariadne client are shown in Figure 1. The Login and

Signature module enables the Ariadne user to log in

and then verifies the user’s identity (through

password authentication). Following authentication,

the source code created by the developer, together

with the associated metadata, are digitally signed by

using the developer’s private key whenever the file

is saved. For verification at the project level, the

metadata are transferred to the Ariadne compliance

server and submitted to the project leader to be

signed again by using the team key. The Login and

Signature module also performs an integrity check

on the metadata when necessary, for example, when

the source-code file is first opened.

The Editing Event Monitor inherits the monitoring

capability of the Eclipse development environment.

It monitors in real time two kinds of editing events:

basic operations, such as insert, delete, modify, and

replace, and cross-file operations, such as copy-and-

paste. These editing events are mapped to the

corresponding line-oriented Ariadne basic opera-

tions. When copy-and-paste operations are moni-

tored, the Originality Metadata Analyzer is triggered

to extract the originality metadata associated with

the copied code segment from the second originality

metadata file.

The Originality Metadata Analyzer records the

originality information within an XML-based struc-

ture (.orimeta file). When a code snippet is copied

and pasted from a source file to a target file, the

analyzer extracts the associated metadata to the

clipboard and then appends it to the target metadata

Figure 1
Ariadne architecture

Ariadne client

Login and
Signature

Originality
Metadata
Analyzer

Editing Event
Monitor

Originality
Metadata
Display

Certificate
of Originality
Generator

External
Originality
Collector

Support services

Identity
management

Certificate
authority

Code
repository

Ariadne
compliance server

License
management

Corporate-level
originality
management

Compliance
checking

LUO ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007292

file. When the developer has to handle IP-related

metadata, the analyzer invokes the External Origi-

nality Collector.

The function of the External Originality Collector

complements the function of the Originality Meta-

data Analyzer. It collects additional IP information

when the origin of the source code is unknown or

the information available is inadequate. It enables

developers to manually enter their own description

of the metadata for code snippets without originality

metadata that originated in legacy code. To facilitate

the manual input, the collector can link to an open-

source code registry in order to retrieve after-the-fact

originality information.

The Originality Metadata Display is a user interface

(UI) module that displays the originality metadata to

the developer. The developer selects a code snippet,

and the associated originality information is dis-

played for viewing. The CoO Generator compiles

originality metadata of all the artifacts in a project

into the CoO report for the project.

Figure 2 illustrates a typical scenario for processing

originality metadata during an editing session in the

Ariadne Java editor. The editing session includes a

copy-and-paste operation in which a snippet from

file Source.java is copied into file Target.java. The

steps in the editing session are on the left; the steps

on the right are the corresponding metadata pro-

cessing steps. When file Target.java is loaded, the

Originality Metadata Analyzer checks the presence of

the file Target.orimeta. If the file does not exist, it is

created and initialized. Editing events are monitored,

and newly created originality information is ap-

pended to the existing metadata. For copy-and-paste

operations, the corresponding metadata snippets are

automatically inserted into the target file. For most

editing operations the metadata processing is trans-

parent to the developer and does not affect the

normal editing experience. Only when the developer

has to handle IP-related information is it necessary to

select proper IP claims for the source code created.

At the end of an editing session, when the project is

saved, the originality metadata is recorded. De-

pending on the company policy, the developer may

be required to sign his work in order to ensure the

integrity and the non-repudiation property of the

product. For example, if the code is associated with

open-source claims, then the developer’s signature

is viewed as a declaration of compliance with the

company policies.

All clients send originality-related information to the

compliance server for analysis. When a particular

artifact is reused from other projects (possibly

following several additional rounds of reuse), the

corresponding originality metadata is collected by

the Ariadne compliance server. Companies can use

the collected information to audit compliance with

the official asset-reuse policies.

It is often the case that software development

organizations have implicit or explicit regulations

such as ‘‘submitted assets should have originality

information associated with them, and the user

should not delete such information during asset

reuse.’’ When lack of originality metadata is

detected by Ariadne, the corresponding asset is

marked ‘‘suspect’’. The creation of fraudulent

metadata can be detected through audit procedures

that involve search-and-compare algorithms similar

to the after-the-fact approach. In general, company

employees do not intentionally remove or forge

metadata because of the risks involved in adopting

suspect code. In this case, the main function of

Ariadne is to facilitate and automate the handling of

the originality information.

History clue

History clue is the Ariadne data structure for

managing originality metadata consistently and

reliably. Because any number of developers may be

involved in editing a source-code file, tracking

authorship and ownership throughout the software

life cycle presents a technical challenge.

Figure 3 provides a conceptual view of the history-

clue data structure as a strip of paper of unbounded

length with width-wise folds, whose content can be

displayed or hidden by opening or closing the folds.

With the folds closed, the visible content of the paper

is simply the current version of the source code. Each

fold contains an item of the editing history of this

code, such as a deleted line as shown in Figure 3.

The contents of the history clue can only increase

over time, because nothing is ever erased from it.

The screen capture was taken when developer Luolin

was about to save the file and end the session. At that

point Ariadne automatically digitally signed all the

lines that were affected during the session (these

lines are highlighted in the figure).

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 LUO ET AL. 293

Digital signatures validate the integrity of the

metadata-handling process.
11

For each editing ses-

sion, the digest of the source code and the

corresponding metadata are calculated and signed

by using the developer’s private key and then stored

in the metadata file. The signature can be verified at

any time by calculating the digest and comparing it

with the stored digest.

In order to record the editing history in the history

clue, possibly including actions by multiple devel-

opers, all the editing events are mapped into a

number of line-based basic operations. The simplest

ones are add a line (a line of code is inserted) and

delete a line (a line of code is deleted); in both of

these cases a line is added to the history clue. The

operation modify a line takes place when some

words on a line are modified, and it can be mapped

to two simpler operations: delete the old line and

add the new line; in this case, two lines are added to

the history clue. The operation paste an object is

applied on an object, which may consist of a line

Figure 2
Java and metadata workflows: A typical scenario

Open Source.java and copy
code snippet

Create Target.orimeta
with initial originality info

Monitor and record
changes Target.orimeta

Copy corresponding metadata
from Source.orimeta

Paste metadata info
into Target.orimeta

Enter new lines of code
into Target.java

Log - in

Paste snippet into
Target.java and save

Start

End

Java workflow

Annotation
required?

Target.orimeta
exists?

Metadata workflow

N

Enter orginality information
(newly created or located in
source registry)

Y

Y Signature

N

Y

N

End of session?

Open Target.java

LUO ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007294

fragment, a complete line, or a set of consecutive

lines, so that the first and last lines may be line

fragments. This operation can also be mapped to

several add a line operations. We should point out

that for efficiency we have also developed heuristic

algorithms that expand the concept of a line to

include semantically connected snippets of code. For

example, a loop can be viewed as a single ‘‘line’’.

If all editing events can be viewed as one or more

add a line operations, then the metadata file can

only increase. Each line is associated with a unique

developer whose private key is used to digitally sign

the contents at the end of the session. In Figure 3 the

developer’s name appears on the left side of the

frame labeled Coding History Clue. Note that a line

may involve two developers—the author who

creates the line and the editor who imports it (e.g.,

by pasting it) into the current file. Both of these

names are recorded in the metadata. In the case of

open-source claims, the original author is responsi-

ble for IP-related issues; for software-life-cycle

problems, such as tracking software bugs, both the

author and the editor are held responsible.

Figure 4 shows the structure of the originality

metadata and the associated source code. The

metadata includes delta lines, the line number

lookup table, the editing history, and the IP data. The

metadata file is formatted as an XML document. XML

security tools
12

are used to map the file to a canonical

form and to perform the digital-signing function.

Figure 3
Recording code changes in the history clue: A conceptual view

Sign these lines as
LuoLin

protected FrameDecoder retrieveDecoder(Header header, lo_tool stream)
 throws DecoderException
{
 int decoderindex = (header.layer() <<4) + (header.mode() <<2) + (header.mode_extension());
 FrameDecoder decoder = decoders[decoderIndex];

//REVIEW: allow channel output selection type

// (LEFT, RIGHT, BOTH, DOWNMIX)

switch (header.layer()){

case 3:

// Layer III support temorarily removed (saves space in jar)

throw newDecoderException(UNSUPPORTED_LAYER, null):

case 2:
if (decoder = = null) {

decoder = new LayerIIDecoder();
((LayerIIDecoder)decoder).create(stream,
 header, filter1, filter2,
 output, OutputChannels.BOTH_CHANNELS);
}
break;
case 1:
if (decoder = = null) {
decoder = new LayerIDecoder();
((LayerIDecoder)decoder).create(stream,
 header, filter1, filter2,
 output, OutputChannels.BOTH_CHANNELS);
}
break;
}

13decoder = new LayerIIIDecoder(stream, header, filter1, filter2, OutputChannels.BOTH_CHANNELS)}

History Clue

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 LUO ET AL. 295

IP data contains IP claims, such as open-source or

ownership-rights claims, for specific lines. The first

column contains the author’s name, the person

responsible for assigning the initial value of the IP-

related data. Figure 4 shows Steven, Lynn and Peter

as authors—their names appear either in the editing

history or in IP data. Sometimes the author creates the

content, such as Peter in Figure 4, where the line for

Peter in IP data contains ‘‘original’’ in the column IP

claims. IP claims are context-independent properties

of the code snippets. An author is required to digitally

sign the IP data claim and the associated code snippet,

and the signature is stored in the IP data.

Editing history contains information on the changes

made to the source code. The first column contains

the name of the editor, the person responsible for

the change. In the example shown in Figure 4, only

Steven and Peter are editors. Although the file

includes source code authored by Lynn, Lynn is not

considered an editor because her code is imported

by Peter. Unlike IP data, the editing-history infor-

mation may be context-dependent. For example, a

bug may be caused not by the code snippet itself but

by its position in the source-code file. An editor is

required to sign the editing history for accountability

in the artifact-development life-cycle governance

scenarios. The digital signature should cover both

his or her input and the semantically relevant

context codes in the history clue. In some cases, the

context is the entire history clue, as shown in

Figure 4.

If developer B imports developer A’s code snippet

into a work file and if developer C further imports B’s

source code, which includes A’s snippet, then the

history clue for this snippet is labeled with author A

and editor C. The delta lines in Figure 4 represent the

difference between the history clue and the Java file,

and correspond to the folded sections of the paper

strip in Figure 3. The line-number lookup table holds

the mapping of source-code line numbers to history-

clue line numbers and is dynamically updated

during editing. For example, if a delta line is to be

inserted between history-clue line 2 and line 3, the

history-clue numbers in the line-number look-up

table are automatically updated.

Steven 1,2,11,12,13,14

Steven 1,2,11,12,13,14

Lynn 3,4,5,7,10 GPL liense Sig (Lynn)

Peter 6,8,9 Original Sig (Peter)

Figure 4
The originality metadata and their relation to the corresponding source code

1

2

3

4

5

6

7

8

9

10

1

2

3

4

9

10

11

12

13

14

5
6

7
8

Source code

Metadata

LINE NUMBER
LOOKUP TABLE

DELTA LINES

Line # History
Clue #

Modified Code Lines

IP Claims

Dynamically updated content

*.java

*. orimeta

package test;

public class Test {

public static main(String[] args){

//TODO: add your codes here

//TODO:add your codes here

System.out.println(“Hello!”);

}

Public test(){

}

}

History
Clue #

History Clue #Developer

System.out.print(”123”);

System.out.println(”Aloha”);
-System.out.println(”Aloha”);

-System.out.print(”123”);

Sig (Steven)

Sig (Peter) Descriptions

Sig (Steven)
Signature

Patent USXXX

Descriptions

Static content

Peter 3,4,5,6,7,8,9,10

EDITING HISTORY

IP DATA

LUO ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007296

We consider now the ways in which importing a

code snippet from a source-code file into the work

file affects the author-editor information in the

metadata.

1. Peter copies a code snippet from file

Source.java, which he authored, and pastes it

into work file Target.java. The copied snippet in

Target.java is labeled with author Peter and

editor Peter.

2. Peter copies a code snippet from file

Source.java, which was authored by Lynn, and

pastes it into work file Target.java. The copied

snippet is labeled with author Lynn and editor

Peter.

3. Steven copies a code snippet that has no

originality metadata (such as legacy code or code

external to Ariadne) and pastes it into the work

file. The copied snippet is labeled ‘‘Steven’’ as

author and editor, and the IP data contains the IP-

related claims entered by Steven.

For signature purposes, the unit of code used should

be considered. When a code snippet is to be copied,

the smallest signed block that includes the code

snippet has to be copied as a whole in order to

enable the signature verification that follows. The

granularity also depends on the extent of the source

code associated with a claim. The entire source-code

file can be signed as a single unit, although storage

efficiency may deteriorate if the file involves too

many codes snippets from other sources. Another

possible approach is to partition the source code,

either uniformly in smaller blocks or based on

semantics (e.g., lines associated with an entire

function).

Ariadne client

The Ariadne client is based on Eclipse Version 3.1.x.

Eclipse is an open-source platform-independent

software framework in which various software tools

for application development can be integrated as

plug-ins.
10

The implementation of functional mod-

ules such as the Login and Signature module, the

CoO Generator, and the External Originality Collec-

tor module is straightforward and further details are

left out. Instead, we focus on the modules that

manipulate metadata; Editing Event Monitor, Orig-

inality Metadata Analyzer, and Originality Metadata

Display; and describe the way we extend the Eclipse

Java IDE in order to support the interplay between

Java files and originality metadata files.

Figure 5 illustrates the Ariadne client architecture.

The Ariadne Developer Environment (ADE) is built

on the Basic Eclipse Platform and parallels the

following Eclipse components: Java Development

Tools (JDT) and Plug-in Developer Environment

(PDE). These components streamline the develop-

ment of plug-ins and extensions. As shown in

Figure 5, ADE has three main components—Ariadne

Core, Ariadne JDT, and Ariadne UI.

Ariadne Core interprets the data model of the

originality metadata, ensures the integrity and

validity of the data, ensures that the user actions are

reflected in the originality metadata, and provides

APIs for the ADE and Ariadne UI components. The

class and the associated methods that implement the

metadata model are generated by the Eclipse Model-

ing Framework, which is a Java-framework and code-

generation facility for building tools and other

applications based on a structured model.
13

Metadata

objects are held in the Metadata Pool component.

Metadocument Analyzer wraps the originality meta-

data and provides methods for handling metadata to

be used by ADE and by the Ariadne UI components.

The Metafile Generator component initializes the

metadata file for each source-code file.

Ariadne JDT is an extension of the JDT that includes

support for the Ariadne Core functions. Because it is

based on the JDT, Ariadne JDT has the same plug-in

interfaces and capabilities to manipulate Java code.

Besides monitoring editing events in the Java editor,

Ariadne JDT also processes the metadata object

retrieved from the metadata file and establishes the

links between the object and the source file. Because

Ariadne JDT is created by modifying only two

classes in JDT (which deal with the interplay

between Java files and metadata files), it is relatively

easy to keep Ariadne JDT updated whenever a new

version of JDT is released. In Figure 5, the Ariadne

JDT components that are based on JDT are blue.

Ariadne UI implements several functional views,

including author view, IP data view, and history

view. The architecture is extensible and can

accommodate additional views, possibly from third-

party vendors.

Figure 6 illustrates the Ariadne JDT monitoring of

editing events. As the figure shows, Ariadne JDT

event monitoring is an extension of JDT event

monitoring. The item labeled JDT Document is

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 LUO ET AL. 297

being monitored by any number of JDT observers

and one Ariadne JDT observer (the observers are

event driven). Every editing operation performed by

the user triggers a JDT-document change event,

which is broadcasted to all the registered JDT

observers, including the Ariadne observer. The

metadocument is then changed accordingly, and the

metadocument change events (corresponding to

changes to metadata) are broadcasted to any

number of meta-observers.

To enable interoperability with other tools, when a

developer copies source code in Ariadne JDT, the

event-driven Ariadne JDT observer copies the

related metadata to a clipboard section separate

from the content section. Thus, if the developer

pastes code within Ariadne JDT, the corresponding

metadata is recognized, and a metadocument

change is generated, whereas in standard editors

only the source code is displayed.

Because the history clue is a monotonically in-

creasing data structure, the implementation is

optimized for storage efficiency. For example, if

several consecutive modifications of the source code

are made by the same developer, these modifica-

tions are aggregated into a single equivalent

modification. In addition, the IP data claims that

occur frequently are stored in a central repository on

the Ariadne compliance server and only their

Uniform Resource Identifiers (URIs) are recorded in

the metadata file.

In our implementation we also took into consider-

ation the efficiency of metadata loading (from

peripheral storage to main memory). Because each

source-code file is associated with a metadata file,

large amounts of metadata are frequently accessed.

A cache-like storage pool mechanism is used to

manage the metadata loaded in main memory. The

mechanism identifies the metadata objects that are

not referenced for a certain period of time and

removes them from memory to peripheral storage.

EXPERIMENTAL RESULTS

In this section we first demonstrate Ariadne’s

functionality in two typical scenarios: tracking of

software bugs and generating CoO reports. Then we

Figure 5
Ariadne client architecture

Ariadne Development Enviroment (ADE)

Eclipse Platform with Ariadne Extension Eclipse SDK

Ariadne JDT Ariadne UI

Events
manipulator

MetaDocument Analyzer

EMF - generated MetaData manipulator

Metadata Pool

Common
JDT

IpData
View

Author
View

History
View

Ariadne
JDT
Support
Eclipse
Plug-ins

Ariadne
UI
Support
Eclipse
Plug-ins

Ariadne Core

MetaFile Generator

Java
Development
Tools (JDT)

Plug-in
Developer
Enviroment(PDE)

Basic Eclipse Platform

LUO ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007298

discuss preliminary performance results of the

Ariadne prototype.

Figure 7 shows a screen capture of an Ariadne

editing session. The frame labeled Author View on

the right side of the window contains information

about the developers associated with the source-code

module: David, the current user, Alice, and Tom. The

‘‘tool-tip’’ mechanism (the window that appears by

‘‘mousing’’ over an area of the screen) in the middle

of the screen (the editor view) shows the editing

history for the highlighted lines. The IP Data view at

the bottom of the window contains open-source-

related IP claims and applicable third-party legal

constraints (under the DRM label; DRM stands for

Digital Rights Management) for the code snippets.

Tracking of software bugs

We consider here a scenario involving the tracking

of software bugs. A software module authored by

David includes code that David copied during an

Ariadne editing session from code authored by

Alice. In turn, Alice’s source code contains code that

Alice copied in a previous Ariadne session from

code authored by Tom. Thus, the software module

contains code authored by Alice, Tom, and David.

Some time after the application containing the

software module is deployed, David discovers a

software bug in lines 15 through 17. During an

Ariadne session he opens the source-code file,

selects these lines, and retrieves the editing history

by ‘‘mousing’’ over these lines. The resulting tool-tip

mechanism (see Figure 7) shows who may be

responsible for the bug. Although tracing the

responsibility for that bug to a single developer is

not trivial, Ariadne’s editing history facilitates that

process. Furthermore, because the local originality

information can be sent to the Ariadne compliance

server, the server can identify all software compo-

nents that contain the bug by virtue of the problem

code having been propagated to other software

modules. Aside from tracking of software bugs,

Ariadne can also be used in the related application

of measuring the effectiveness of software reuse.

Experimental data from early users of Ariadne

helped us improve the UI design. For example, we

discovered that developers prefer a simple display

that does not include editing history. As a result, we

have adopted a design of the UI that exhibits the

editing history information only when needed by

using the tool-tip mechanism illustrated in Figure 7.

Generating CoO reports

In the first stage of a customer-facing project, a

demo prototype is to be built as soon as possible.

Developer Alice embeds open-source code in one of

the components of this prototype. She annotates the

open-source information as shown in the IP Data

view in Figure 7. During another Ariadne session,

David makes further use of the source code, copies

code authored by Alice together with the associated

metadata, and views the relevant IP data in his IP

Data view. Although the development of the

prototype may involve more developers and many

such instances of code reuse, the CoO generation

tool will alert the team to inappropriate uses of

open-source code.

The CoO report includes multiple sections, two of

which are targeted by Ariadne: names of developers

and the origin of the source code (we refer to the

latter as ‘‘origin-of-source-code report’’). Figure 8

shows a sample origin-of-source-code report. In this

report, three types of information are shown under

‘‘Category’’: open source, external patents, and under

exclusive contract (the last label indicates whether

JDT
Observer

JDT
Observer

Figure 6
Ariadne event-monitoring process

Editor

U
se

r I
nt

er
fa

ce

JDT edit
monitoring
process

Ariadne edit monitoring process

Ariadne
JDT Observer

• • •

Meta-
observer

Meta-
observer• • •

Source
File

JDT
document

Metadocument
Metafile

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 LUO ET AL. 299

the use of the code is limited to a single customer).

Under the label ‘‘open source’’ are shown three types

of open-source license; the hyperlinks lead to details

of these licenses and the associated source-code files.

External patent information indicates that the algo-

rithms implemented by some source code may be

subject to existing patents, which is intended as a

warning for the IP staff. Ariadne thus helps detect

cases of noncompliance with open-source restric-

tions or other IP-related constraints.

Early use of the Ariadne prototype shows that

making sure developers initialize originality infor-

mation in their source code is an important

requirement for the success of an originality tracking

program. A procedure and guidelines for initializing

metadata should be instituted by the development

organization. The digital signature technology

should be used in order to keep everyone account-

able. In addition, technology for detecting code

cloning could be used in order to minimize the

manual effort required for this task.

Performance analysis

In order to test the storage and processing perfor-

mance of the Ariadne client we used as an

experimental vehicle, the source code of the Apache

search engine Lucene Version 2.0.0, which consists

of 541 Java files.
14

The average size of the Java file

is 6224.95 bytes, the average number of code lines

per file is 192.78, and the average number of

characters per code line is 30.11 bytes.

The storage needed to store the metadata is the sum

of the storage for the four components of the

metadata: delta lines, line-number lookup table, IP

data, and editing history (see Figure 4). The storage

required includes both content and XML tags.

Figure 7
A screen capture of an Ariadne editing session

Alice

David
(current user)

Tom

LUO ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007300

Because the XML tags can be customized or

encoded, we include in this discussion only the

storage needed for the raw contents. The total

storage S
meta

is given by

Smeta ¼ Sdelta þ Slookup þ Sipdata þ Shistory

S
history

is roughly proportional to the number of

times that the source code is modified (number of

editing sessions). In general we can assume an

empirical constant for it.

S
ipdata

depends on the number of IP claims. License

descriptions often require significant storage space.

If the license descriptions are held in a central

location, a short URI can be used instead of the full

license description. When most of the source code is

internally created, the storage needed for IP data is

minimal.

S
lookup

is proportional to the number of history-clue

lines, Num
ClueLines

. A row in the lookup table has

two columns whose entries are integers; thus, the

size of S
lookup

is 8 times Num
ClueLines

.

S
delta

depends on the number of deletions and

modifications that have been performed and the

number of source-code lines affected. Let us assume

S
delta

is 0.5 times S
source

, which corresponds to a case

with many deletions and modifications, in which

Num
ClueLines

is about 1.5 times Num
JavaLines

. Hence,

the size of the metadata can be written as:

Smeta ¼ 0:5 � Ssource þ 8 � 1:5NumJavaLines þ Sipdata

þ Shistory:

Figure 8
Origin-of-source-code report for a Certificate of Originality

• Category
 -Open Source
 -IBM Public License Version 1.0
 -The GNU General Public License (GPL) Version 2, June 1991
 -Apache License, Version 2.0
 -External patent
 -DRM
 +Under exclusive contract

• Licenses

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 LUO ET AL. 301

Using the previously stated statistics for Apache

Lucene,

NumJavaLines ¼ Ssource=30:11;

and thus,

Smeta ¼ 0:90 � Ssource þ Sipdata þ Sediting history:

This value does not include the space taken by XML

tags, which may be substantial and may even

double the storage size. We can abbreviate or

encode the XML tags in order to decrease the size of

the metadata file.

We measured the metadata loading time at

213.21 msec per source-code file on the average.

Although we have not measured the user response

time for the Ariadne client, early experiments show

it is quite adequate.

CONCLUSION AND FUTURE WORK

In this paper we introduce Ariadne, a system for

tracking originality information in collaborative

software development environments. Although our

Eclipse-based implementation prototype is designed

to handle Java source code, our approach is

extensible to other kinds of software artifacts. We

describe the history-clue data structure, which is

used for managing originality metadata consistently

and reliably. Digital signatures are used to validate

the integrity of the metadata-handling process. We

demonstrate the benefits of Ariadne in two typical

scenarios: tracking of software bugs and generating

CoO reports.

We are collaborating with software development

teams and service teams within IBM in the

deployment of Ariadne in a number of internal

projects. From these projects we expect to collect

data on user experience with the tool, on generating

CoO reports, and on managing the software life

cycle. In addition, we will gather related information

such as the impact that company regulations have

on software development, how often source code is

collaboratively edited, and how often source code is

imported from open-source or legacy sources.

Project managers care not only about source-code

level originality, but also about coarser-grain soft-

ware artifacts such as binary libraries, software

components, and even copyrighted images. We plan

to extend Ariadne to cover component-level origi-

nality information and IP requirements. We also

plan to enhance the server-side functions, especially

functions for managing the software life cycle, such

as checking the compliance of submitted source

code with company regulations. In order to integrate

Ariadne with existing source-control tools, such as

CVS, the Ariadne Client has to support version

management for both source files and metafiles.

Developers of open-source software can use Ariadne

to ensure the trustworthiness of their code so that

other will be more willing to reuse originality-cleared

open source in their projects. Unlike the commercial

environment, the originality information in the

open-source community is less reliable, and there is

a strong need to protect the asset owner’s originality

information from being intentionally deleted. Tech-

nologies such as code watermarking could be used to

hide the originality-related information in the soft-

ware artifacts. Code-cloning and plagiarism-detec-

tion techniques can be used as auditing mechanisms

within the Ariadne framework.

ACKNOWLEDGMENTS
We thank Brent Hailpern, Harold Ossher, Sridhar

Iyengar, Mark Wegman, Scott Rich, John Wiegand,

Dave Thomson, Hang Jun Ye, and Ling Shao for

many fruitful discussions, and Ping Cheng, Chao He,

Bo Shu, and Harry Pendergrass for their help in the

initial tool development and for many useful

discussions.

*Trademark, service mark or registered trademark of Inter-
national Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Krugle, Inc., Google, Inc., VA Software Corporation, Black
Duck Software, Inc., Open Source Technology Group, or Sun
Microsystems, Inc.

CITED REFERENCES
1. L. Rosen, Open Source Licensing: Software Freedom and

Intellectual Property Law, Prentice Hall PTR, Upper
Saddle River, NJ (2004).

2. B. Perens, ‘‘The Monster Arrives: Software Patent
Lawsuits Against Open Source Developers,’’ http://
technocrat.net/d/2006/6/30/5032.

3. T. Kamiya, S. Kusumoto, and K. Inoue, ‘‘CCFinder: A
Multilinguistic Token-Based Code Clone Detection Sys-
tem for Large-Scale Source Code.’’ IEEE Transactions on
Software Engineering 28, No. 7, 654–670 (2002).

4. S. Schleimer, D. S. Wilkerson, and A. Aiken, ‘‘Winnow-
ing: Local Algorithms for Document fingerprinting,’’

LUO ET AL. IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007302

Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data (2003), pp. 76–85.

5. ‘‘Code Search for Developers,’’ Krugle Inc., http://www.
krugle.com.

6. ‘‘Google Code Search,’’ Google, Inc., http://www.google.
com/codesearch.

7. ‘‘ProtexIPe/development Software Compliance Manage-
ment System,’’ Black Duck Software Inc., http://www.
blackducksoftware.com/products/_protexip.html.

8. ‘‘IP Amplifier Overview,’’ Palamida, Inc., http://www.
palamida.com/products/ipamp/overview.

9. M. Kim, L. Bergman, T. Lau, and D. Notkin, ‘‘An
Ethnographic Study of Copy and Paste Programming
Practices in OOPL,’’ Proceedings of the 2004 ACM-IEEE
International Symposium on Empirical Software Engi-
neering (ISESE 2004) (2004), pp. 83–92.

10. Eclipse SDK, The Eclipse Foundation, http://www.
eclipse.org/downloads/.

11. B. Hammond and M. Atreya, Digital Signatures, RSA
Press, Osborne/McGraw-Hill, New York (2002).

12. XML Security, The Apache Software Foundation, http://
xml.apache.org/security/.

13. Eclipse Modeling Framework, The Eclipse Foundation,
http://www.eclipse.org/emf/.

14. Apache Lucene, Apache Software Foundation, http://
lucene.apache.org/java/docs/index.html.

Accepted for publication November 20, 2006.

Lin Luo
IBM Research Division, China Research Lab, Building 19,
Zhongguancun Software Park, 8 Dongbeiwang West Road,
Haidian District, Beijing 100094, China (luolin@cn.ibm.com).
Dr. Luo is a research staff member in the Service Asset
Technology department at the China Research Laboratory. She
received a Ph.D. degree in electrical engineering from the
University of Science and Technology of China in 2003. She
subsequently joined IBM at the China Research Laboratory,
where she has worked on digital media communication and
content protection. Her current research interest is in service
asset protection and governance.

Da Ming Hao
IBM Research Division, China Research Lab, Building 19,
Zhongguancun Software Park, 8 Dongbeiwang West Road,
Haidian District, Beijing 100094, China
(haodm@cn.ibm.com). Mr. Hao is an R & D engineer in the
Service Asset Technology department at the China Research
Laboratory. He received a Master’s degree in electrical
engineering from the Xi’an Jiaotong University in 2005 and
subsequently joined IBM at the China Research Laboratory,
where he has worked on content protection and security
enhancement technologies. His current research interest is in
service asset protection and governance.

Zhong Tian
IBM Software Group, China Development Laboratories,
Building 19, Zhongguancun Software Park, 8 Dongbeiwang
West Road, Haidian District, Beijing 100094, China
(tianz@cn.ibm.com). Dr. Tian is a Senior Architect at the
Laboratory-Based Services department of the China
Development Laboratories. He received a Ph.D. degree in
computer science from Fudan University, Shanghai, China in
1995. He subsequently joined IBM at the China Research
Laboratory, where he worked on SOA service discovery and

patterns, business-process modeling and integration, B2B
eCommerce, and the digital library. His currently interests are
in SOA solution architecture through process-modeling and
patterns.

Ya Bin Dang
IBM Research Division, China Research Laboratory, Building
19, Zhongguancun Software Park, 8 Dongbeiwang West Road,
Haidian District, Beijing 100094, China
(dangyb@cn.ibm.com). Mr. Dang is an R & D engineer in the
Service Asset Technology department at the China Research
Laboratory. He received a Master’s degree in electrical
engineering from the Xi’an Jiaotong University in 2004. Since
joining IBM two years ago, he has worked on digital rights
management and content protection. His current research
interest is in service asset protection and governance.

Bo Hou
State Key Laboratory of Networking and Switching, Beijing
University of Posts and Telecommunications (BUPT), 187#, 10
Xitucheng Road, Haidian District, Beijing 100876, China
(polluxplus@gmail.com). Bo Hou is a postgraduate student in
BUPT, majoring in computer science. He received his
Bachelor’s degree in computer science and technology from
BUPT in 2005. His current research interest is in next
generation network and next generation Internet (NGN & NGI).

Peter Malkin
IBM Research Division, Thomas J. Watson Research Center, 19
Skyline Drive, Hawthorne, NY 10532 USA
(malkin@us.ibm.com). After a one year ITT fellowship at the
Australian National University in Canberra Australia, where
he worked on the Automated Reasoning Project, Peter Malkin
earned a Master’s degree in computer science from Brown
University in 1987. In 1988, Peter joined the IBM Thomas J.
Watson Research Center, and in 2002, he became a Master
Inventor by developing and helping others develop
intellectual property for IBM. He is now a member of the
Enhanced Web Experience Project, working with the
SPARCLE Privacy Policy Project, developing a privacy-policy-
authoring and a compliance-auditing workbench.

Shun Xiang Yang
IBM Research Division, China Research Laboratory, Building
19, Zhongguancun Software Park, 8 Dongbeiwang West Road,
Haidian District, Beijing 100094, China
(yangsx@cn.ibm.com). Mr. Yang is a research staff member
and the manager of the Service Asset Technology department
at the China Research Lab. He received his Master’s degree in
computer science from Beihang University in 2001. He
subsequently joined IBM at the China Research Laboratory,
where he has worked on business-process modeling and
integration and enterprise-architecture and business-
transformation technologies. His current research interests lie
mainly in service-asset harvesting, reuse, and governance. &

IBM SYSTEMS JOURNAL, VOL 46, NO 2, 2007 LUO ET AL. 303

Published online April 11, 2007.

