A graph-theoretical approach for
pattern discovery in
epidemiological research

In this paper we describe a graph-theoretical approach for pattern discovery that is
especially useful in epidemiological research when applied to case-control studies
involving categorical features such as genotypes and exposures. Whereas existing
approaches are limited to exploring relationships among two or three factors, or deal
with thousands of genes but are unable to isolate interactions among individual
genes, we focus on interactions among tens of genes. We present a pattern discovery
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algorithm that finds associations among multiple factors, such as genetic and
environmental factors, and groups of individuals (cases and controls) in a clinical
survey. To validate our approach and to demonstrate its effectiveness, we applied it to
a selection of synthetic data sets that were devised to emulate the situations

encountered in epidemiological studies involving common diseases with suspected
associations involving multiple factors that could include inherited genotypes, somatic
genotypes, demographic characteristics, or exposures. The results of this experiment
show that it is possible to identify the effects of multiple factors in moderate-size
surveys (involving hundreds of individuals) even when the number of factors is greater

than three.

INTRODUCTION

One of the key promises of genomic medicine is the
ability to predict susceptibility to complex diseases
based on knowledge of inherited genotypes, somatic
genetic changes, and environmental exposures. A
great deal of effort has been invested in identifying
the role of genes, exposures, lifestyles, and other
factors in causing certain individuals to develop
diseases or to exhibit poor prognoses when diag-
nosed. The problem is complicated by the fact that
different combinations of genotypes and exposures
can lead to the same disease, but may result in
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different levels of response to treatment or toxicity
to drugs. Predicting disease risk and drug response
has traditionally been the work of epidemiologists
and pharmacologists. As genes have been found to
play a major role in disease etiology and drug

response, the fields of molecular epidemiology and
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pharmacogenomics have assumed much of the
burden of studying these effects in detail.

When multiple factors combine to determine a
person’s risk of disease or response to treatment, it
is often difficult to sort out the contributions of these
various factors, and to identify the combinations of
these factors that are relevant to disease etiology,
outcome, or drug response. Tools are needed that
can efficiently search the high-dimensional feature
space and discover patterns associated with a
disease etiology. Standard statistical approaches
have traditionally dealt only with interactions
among two or three factors; new approaches are
needed to deal with higher-order interactions.

In this paper we describe a pattern discovery and
analysis method based on modeling the risk factors,
the individuals, and the discovered patterns as
graph constructs, without reference to any under-
lying functional (biological) model. The method
itself consists of four phases:

1. Construct a graph that represents the risk factors
associated with each individual.

2. Find patterns in the graph that correspond to
groups of individuals with identical risk factors,
and quantify the risk and significance for each
pattern.

3. Construct a lattice that represents the relation-
ships among the patterns.

4. Enumerate the interesting and significant risk
factors and subpopulations.

Once the risk factor combinations and their affected
populations have been identified, domain experts
can compare these associations to the predictions
derived from functional and etiological models,
thereby strengthening or weakening the evidence for
a particular model.

The complex interactions of multiple factors in
disease etiology, outcome, or drug response are
difficult to detect. Often the order of the interaction
is high, and the main effects of each of these factors
individually may be weak. A number of methods
have been proposed to evaluate higher-order inter-
actions among genes and other risk factors, includ-
ing recursive partitioning,l’2 random forests,’
combinatorial partitioning,4 permutation-based
procedures,5 multivariate feature selection,6 multi-
variate adaptive regression splines,7 boosting,8
support vector rnachines,9 neural networks,w’11
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Detection of Informative Combined Effects (DICE),12
logistic regression,13 penalized logistic regression,14
Bayesian pathway modeling approaches,ls’16 Fo-
cused Interaction Testing Framework (FITF),17
consensus algorithms,18 and Classification and
Regression Trees (CART). Another approach, mul-
tifactor-dimensionality reduction,19 has been re-
cently shown to be a special case of CART.” In
particular, CART models have been widely applied
and have the ability to detect complex interactions
among multiple etiological factors. However, this
method may assume an underlying model of
association, may require assumptions about the
identification of “purity” in the groupings identified,
or may miss interactions that are not consistent with
early splitting patterns. Our approach allows the
detection of complex interactions among multiple
etiological factors without making such assump-
tions.

The use of Bayesian graphical models to identify
candidate genes in genome-wide association studies
has recently been described.”' Efficient algorithms
for discovering association rules among features in
very large databases have long been used commer-
cially for market basket analysis,22 but practical
considerations limit the complexity of the discov-
ered rules to a modest number of features. Our
method, conversely, is aimed at a reduced set of
already identified candidate gene polymorphisms.
These polymorphisms may act in complex combi-
nations to affect disease risk. Our method can
handle this complexity and can shed light on the
chemical pathway changes induced by combina-
tions of polymorphisms.

The rest of the paper is organized as follows. We
begin by describing our overall approach. We then
give a detailed description of the implementation of
our algorithm. Next we present computational
evidence validating our approach. Finally, we
summarize our contributions and suggest areas for
future research.

OUR APPROACH

This section defines the basic concepts upon which
our procedure is based. These include graph-
theoretic concepts, epidemiological concepts, and
set-theoretic concepts. We also describe the set-
theoretic operations which form the basis for our
algorithm.
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Concepts and definitions

We use graphs to capture the relationship between a
set of individuals and the allowed values of a
specified set of features. The individuals and the
feature values together make up the nodes of the
graph. We distinguish between these two types of
nodes by treating the feature values as source nodes
(s-nodes), and the individuals as terminal nodes
(t-nodes). We connect an s-node to a t-node with an
edge if that feature value is exhibited by that
individual. This results in a bipartite graph, a graph
in which every node is one of two types (in our case,
either an s-node or a t-node). Moreover, edges exist
only between nodes of different types, never
between nodes of the same type (Figure 7). Such a
bipartite graph can be built to represent all or part of
the data in the study. Hereafter, we refer to a
bipartite graph as a graph, for simplicity.

A subgraph that consists of a set of nodes with edges
between all pairs of nodes in the set is called a
clique. Bipartite graphs cannot have (nontrivial)
cliques because there can be no edges between any
pair of nodes of the same type. There is, however,
an analogous concept, called a biclique. A biclique is
a subgraph defined by two sets of nodes where there
is an edge between every node in the first set and
every node in the second set. A maximal biclique is
a biclique that is not contained in any larger biclique
in the parent graph.

Figure 1 depicts a bipartite graph with t-nodes {p;}
representing people and with s-nodes {f;} repre-
senting features. The node sets {p,, p,, p,}, {f; f,
f¢} and all the edges between them define a maximal
biclique within the larger graph. We are interested
in maximal bicliques because in our application they
represent the largest set of people who share a
common set of features. When applied to genotype
association studies, each feature f, is one genotype
(e.g., “AA”) for one polymorphic locus (e.g.,
“GENE1”). Thus, a maximal biclique containing a
set of specific genotypes for multiple loci would also
contain all the individuals who share that exact
combination of genotypes for those loci. For
simplicity, in the remainder of this paper, we use
“clique” to mean “biclique”.

As the number of features increases, the number of
people who share those features decreases. Each set
of features generates a maximal clique. Maximal

cliques and the relationships between them can be
viewed as a lattice. A lattice consists of a set and a
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Maximal Biclique

Figure 1
A bipartite graph and a maximal biclique for node
types “people” (p) and “feature values” (f)

partial ordering (the “less-than” relationship, “<”)
such that for each pair of elements in the set, x and
y, there are four possibilities: (1) x <y, 2) y <x, (3)
x and y are equal, and (4) x and y are unrelated.

The “<” relation is transitive; that is, if x is < y and
yis < z, then x is < z. It is also anti-symmetric; that
is, if x is strictly < y, then y cannot be strictly < x. In
our case, we define a lattice on the cliques. In
particular, the cliques are associated with sets of
people and sets of features, and we define a notion
of “<” in terms of subset relations on these sets.
This will be described in detail in a later section.

In describing our method we make repeated use of
constructs from both epidemiology and graph
theory. Cases and controls are the two values of a
binary classification variable used in an association
study that define the dependent variable in the
analysis. For example, cases can be those affected
with a disease, those that have an adverse outcome
in a longitudinal follow-up study, or those that have
an adverse reaction to a drug in a pharmacogenetics
study. Typically, a study is trying to determine if
some exposure confers a risk of being a case. The
exposure is the independent variable and can
include inherited genotypes, somatic genotypes,
chemical exposures, demographic characteristics, or
any other risk factor of interest. In our application,
we extend the notion of exposure to mean having a
particular set of values for a specific group of
features under study. Thus we shift from consider-
ing the individual features as independent risk
factors to viewing a pattern of features as a single
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Table 1 Representation of the 2 X 2 contingency table
that forms the basis of our approach

Cases Controls Row totals
Have pattern a b Niitn
Do not have pattern c d N ithout
Column totals Ncases Ncontrols Nlotal

risk factor. This pattern may summarize information
from a large number of independent variables. Here,
we limit our discussion to binary independent and
dependent covariates, but our approach can be
extended to include polytomous variables (variables
that take values from a discrete set) without loss of
generality.

Risk measures

To quantify a pattern for the independent variables,
we use a 2 X 2 table with meanings assigned to the
rows and columns as shown in Table 1. The values
of a, b, ¢, and d are counts of individuals having the
indicated pattern of exposure and affection (case/
control) status. The value of a is referred to as the
support for the pattern. Using this table framework,
many metrics can be derived to make inferences
about the relationship of the dependent and
independent variables. For assessing risk in case-
control studies, the odds ratio (OR) is commonly
used:

OR = (a-d)/(b-c).

The odds ratio can range from 0 to «. For OR > 1,
we infer that the pattern confers risk; for OR < 1, we
infer that the pattern confers protection against
affection. The null hypothesis yields OR = 1, which
is interpreted as the pattern being unassociated with
the dependent variable. To linearize and balance the
risk measure around the null hypothesis, it is
common to convert to a logarithmic scale. Here, we
use log,,(OR) as the risk measure (log,, is conve-
nient, but the natural logarithm is also commonly
used), and other risk measures could be considered,
such as positive likelihood ratio.

The probability p of obtaining a particular table a, b,
¢, d is given by:
(a+b)!(c+ad)!(a+c)!(b+ad)!
alblc!d! (a+b+c+d)!
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where a, b, c and d occupy the cells in the 2 X 2 table
indicated in Table 1. Note that, when the row and
column totals (margins) are fixed, the only degree of
freedom in this expression is one of the interior
values such as a. When the odds ratio for a
particular table having a = a,, OR(aO), is > 1, the
probability of obtaining a table with OR > OR(a,) by
chance is the P-value for the table having a=a,, and
is given by:

fixed margins based on ay

P-value(ag) = Z p(a)

a>ap
where p(a) is the probability for the observed table
defined by a > a,, and the sum is over all values of
az>a, that keep the margins constant. A similar
expression exists for OR < 1, and the sum is over
a < a,

Consider an epidemiological case-control study
represented as a case graph and a control graph. We
first determine how many cases share the same
values for a given set of features. This corresponds
to the largest subgraph of the case graph in which all
given s-nodes are fully connected to a set of t-nodes,
and where neither the source nor terminal set can be
enlarged without reducing the size of the other.
Such a subgraph is an instance of a maximal clique.
The source set of such a maximal clique is the
pattern of independent variables (feature values), its
terminal set is the support set, and the terminal set’s
cardinality is the value of a in the 2 X 2 table
(Table 1). The cardinality of the terminal set from
the maximal clique in the control graph having the
same source set would determine the value of b
(Table 1). Since N_,_.. and N____ are known and
fixed, the 2 X 2 table for the pattern would be
determined by these two counts. If the pattern of
interest were known in advance, it would be a
simple matter to search the case and control graphs
for the desired clique. The challenge, however, is to
evaluate the risk associated with every pattern,
composed of every combination of features avail-
able in the study. This corresponds to exhaustively
searching the graphs for all maximal cliques, and
evaluating each one for risk and statistical signifi-
cance. An exhaustive search is possible but may
become intractable as the number of features and
values per feature increases. Thus, we have imple-
mented an algorithm that incorporates user-defined
constraints to limit the complexity of the search, but
is exhaustive within those bounds.
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Set operations for maximal cliques

We construct a bipartite graph, G = (S,T,E), where S
and T are disjoint sets of nodes and E is a set of
undirected edges, e = (s,t), where s-node s is in S
and t-node t is in T. Figure 1 illustrates such a graph
for disjoint sets {p} and {f}. (The assignment of sets
to S and T is arbitrary. Our method consistently
assigns the feature values to S and the people to T.)
Our goal is to find all maximal cliques B = (SB, Tg,
EB) of G, where Spr T and E, are subsets of S, T,
and E, respectively, and there is an edge e = (s, t;)
for all pairs of nodes in S; and T,. A clique B is said
to be maximal if there is no other clique B’ = (§',
T';, E'p), where S is a (proper) subset of S';, or T,
is a subset of T',. The inner boxed portion of Figure 1
shows a maximal clique within a bipartite graph.

Our method operates on two types of candidates,
which we refer to as s-cliques and t-cliques. For each
s in S, we form an s-clique, C(s) = [{s}, T(s)] where
T(s) is the set of all t such that there is an edge (s, t)
in E. Similarly, for each t in T we have a t-clique
C(t) =[S(), {t}]. All the candidate cliques we
identify can be described as generalizations of this
form. Specifically, given any set, S, of sources, we
have an s-clique C(S) =[S, T(S)] where T(S) is the
set of t such that there exist edges (s, t) for all s in S.
Similarly, we have t-cliques C(T) = [S(T), T]. The
basic operation which is used to expand cliques is

C(S] U Sz) = [(51 U Sz),T(S]) n T(Sz)] for s-cliques,
and similarly,

C(T] U TQ_) = [S(Tl) N S(Tz), (T] @] TZ)] for t—CthES.

We use s-cliques in discussing the algorithm further,
but the same arguments can be applied to t-cliques.

The expansion operation used to identify maximal
cliques is depicted in Figure 2A. Clique C(S,) is
expanded using C(S,). The resulting clique contains
the union of the source sets and the intersection of
the terminal sets. In expanding s-cliques, S, usually
contains a single element, with one important
exception. Given any source set, S, and its
associated T(S,), we can identify the set X(S,) of
sources which can extend S, without decreasing
T(S,). We call this the extension set of S,. X(§,) is
defined by X(S,) = {s| T(S,)CT(X(S,))}. This is
equivalent to saying that (T(S,)NT(X(S,)) =T(S,).
Thus, T(S,) is not decreased by adding s to S,. The
operation of adding the largest X(S,) to S, forms a
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ﬁ C(S) C(S2) C(S1US)
T(SY) T(S2) T(S)NT(S2)
éaso D) C(S1UXE))
T(S1) TX(S) T(S1)c TX(S1)) = T(S1)
TS NTX(S))=T(S1)
Figure 2

Clique C(S,) is (A)expanded by using C(S,);
(B) extended by using C(X(S,))

maximal clique. By definition, neither the extended
S, nor T(S,) can be increased without decreasing the
other. We thus define the operation of adding X(S)
to S as taking the closure of S. This situation is
illustrated in Figure 2B. Clique C(S,) is extended
using C(X(S,)). The resulting clique contains the
union of the disjoint source sets and the intersection
of the completely overlapping terminal sets, which
is identical to the original terminal set. This
condition defines the extension X(S,). For conve-
nience, we refer to single-element cliques together
with their extensions as singletons. As an example of
this, consider the node f; in Figure 1. It has the
people p,, p,, and p, associated with it. This is a
clique in the general sense, but it is not a maximal
clique, the type of clique we wish to consider in our
analysis. In particular, p,, p,, and p, are also
associated with f, and f.. Thus, once we choose to
include fg in a clique, we could include f, and f, as
well, without losing any people. We therefore do not
consider f,, p,, p,, and p, to define a singleton, but
instead immediately add f, and f, to the clique. We
have in effect acquired f, and f, “for free.” The latter
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Program components and flow

clique is the desired maximal clique. The former
clique is not.

IMPLEMENTATION

In this section, we give a schematic diagram of the
algorithm and a description of each of its major
components. We trace the flow of information and
control from one component of the algorithm to
another, describing figures of merit, constraints,
how we deal with missing data and, finally, the
output the algorithm produces.
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Components and flow

A schematic diagram of the program components
and flow is shown in Figure 3. The program starts
by building the bipartite graphs from the tables of
raw data (typically, flat files). The raw case and
control data, containing values for each of the
features f; for each individual p,, are converted into
bipartite graphs. An external mapping table is used
to convert the raw data values into discrete,
categorical feature values for use as s-nodes. Feature
values not present in the raw data are mapped to a
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categorical value reserved for missing data. The
t-nodes are derived from the raw record identifiers.

The program then proceeds to search for maximal
cliques in the case graph. The control graph is
simply searched for s-nodes (feature value sets) that
match those discovered in the case graph to obtain
the counts for the 2 X 2 table. Clique discovery in the
controls is thus avoided. The search is primed by
finding all singleton cliques, including extensions,
(maximal by construction, see above) by inspection.
A copy of the singleton list is kept for use in clique
expansion (see below).

Each clique is assigned a value for its figure of merit
(FOM) and checked against user-specified con-
straints. Typical FOM choices include P-value and
OR, but can include other measures derived from
the 2 X 2 table. Typical filter constraints include
minimum or maximum number of s-nodes and
t-nodes, and minimum or maximum values of FOM.
Cliques that meet the constraints are sent to an
output file (they are acceptable), and placed in the
candidate queue for expansion. The candidate
queue is prioritized by FOM; that is, the clique with
the best FOM is the first to be selected for expansion.
A user-specified maximum queue size is imposed,
based on available system memory. When the limit
is exceeded, candidates at the bottom of the queue
(with the worst FOM) are discarded. To improve
efficiency, every candidate in the queue has an
associated data structure in which the list of those
singletons that have at least one t-node in common
with its own t-nodes is maintained. We refer to this
list as the neighbor set.

The program searches for new acceptable candi-
dates by removing the candidate from the top of the
queue for expansion. The selected clique is merged
with each of the cliques in its neighbor set and
extended if possible (see the section “Set operations
for maximal cliques™). If the new candidate meets
the external constraints and is not a duplicate of an
existing clique, it is sent to the output file and
inserted into the prioritized candidate queue on
completion of the current expansion cycle. By first
extending each newly formed candidate and then
checking a hash table for duplicates, we avoid the
quadratic process of having to compare every new
clique to every existing one in order to determine
maximality. The performance of the algorithm is
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linear in the product of the number of s-nodes, the
number of t-nodes, and the number of cliques. After
the queue has been augmented with all the accept-
able new candidates, the new top element is
removed for expansion, and the cycle is repeated
until the queue is empty. The output file contains the
maximal cliques that could be built from the cliques
in the queue which met the constraints, along with
the 2 X 2 table and statistics for each clique.

Figure of merit and constraints

With an infinite queue size and no constraints, the
algorithm finds all acceptable patterns. For small
problems this may be practical, but for problems
where the number of possible patterns exceeds the
queue size, some patterns will never be expanded,
and it is possible that a complex pattern of interest
may never be built because none of its precursors
are still on the queue and available for expansion. In
practice, this can be avoided by choosing a FOM that
is expected to be high for immediate precursors of
interesting patterns. This choice depends on the
model system under study, but the algorithm does
not presuppose any particular model.

The ability to externalize and tailor the queue-
ordering function to the presumed shape of the
landscape (shape of the FOM function in a multi-
dimensional space) is actually a strength of the
method that could be exploited in some situations.
For our simulation we used the P-value as the basis
for prioritizing the queue. Statistically, this is a
“neutral” measure, in the sense that it measures the
confidence in the result, not the strength of the
result.

Although it is possible to leave a set of interacting
features “stranded” on the pattern landscape, that
would require that all paths from singletons to the
pattern in question be discarded. For short patterns,
we would have to discard only a few, even shorter,
patterns. We handle these shorter patterns at the
start of the process when the queue is relatively
empty; therefore, we are unlikely to discard them for
lack of space. For long patterns, the number of ways
the pattern could be built up grows factorially;
therefore, it is unlikely that we would discard all the
paths. (For 10 genes there are a maximum of about 1
million patterns, which would require about 1
gigabyte of memory. In a real study, the number of
actual patterns with any reasonable support is much
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Figure 4
Example of a lattice composed of maximal bicliques

less than the maximum; thus, much less storage is
required in practice.)

Unlike the FOM, which is used to prioritize cliques
for expansion, constraints are used to directly filter
the patterns that are put into the queue and reported
as output. This prevents wasting queue space and
interpretation effort on patterns that the user decides
in advance would not be of interest. These
constraints apply even when the queue is not full.
We typically apply constraints to s-node and t-node
counts, odds ratio, and P-value.

Final candidates and the lattice of cliques
When the algorithm halts, the output contains all
the maximal cliques that could be built from the
cliques in the queue that met the constraints. We
call these the final candidates. Each final candidate
is reported with its s-set (features), t-set (individu-
als), 2 X 2 table with any accompanying statistics,
and FOM. The goal is to decide which patterns have
the feature set that best predicts whether an
individual is a case.

A few caveats are in order. First, the features that
predict a disease or a drug response do not
necessarily cause the disease or the response.
Second, the results obtained from the sample of the
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population making up the data set may not be valid
for the population as a whole, or for all segments of
the population.

When we speak of a pattern’s feature set, and the
number of individuals who do and do not exhibit the
pattern, we must be clear about what we are
counting. Consider a data set with binary features A,
B, and C. Every individual is either “1” or “0” for
each of the features, for a total of 2?’=8 possible
unique records. But there are 3’ =27 possible
patterns. That is because the feature set for a pattern
is the set of s-nodes that directly participates in the
maximal clique, and this set implies “any value” for
all features not explicitly mentioned in the set. For
example, the set {Al, B1} specifically excludes AO,
B0, but implicitly includes either CO or C1. This
can be written as {Al, B1, C*}, and has a t-set
containing individuals with A=1, B=1, and C=any.
Thus, each feature has three possible values: “17,
“0”, and “*”; hence, 3’ =27 possible patterns.

The preceding example leads to an inherent ordering
of patterns. Given two maximal cliques, C1(S1,T1)
and C2(S2,T2), S1 ¢ S2 if-and-only-if T1 D T2, and
S1 D S2 if-and-only-if T1 C T2. This pair of
properties allows us to construct a lattice of patterns
from the algorithm output. Recall from the earlier
section “Concepts and definitions,” that a lattice is a
collection of objects (cliques, in this case) and a
partial ordering. The cliques themselves become
nodes in the lattice graph, and edges exist between
nodes corresponding to pairs of cliques for which
the partial ordering relation (in this case, the subset
relation) holds.

Sometimes not every node in the lattice is repre-
sented because the pattern list may be incomplete
due to queue limitations or applied constraints, or
both. In addition, the lattice may be filtered to
eliminate uninteresting or statistically nonsignificant
patterns. The resulting structure is a filtered lattice
which is a collection of subgraphs of the full lattice.
We refer to this structure simply as the lattice. A
simple example of a lattice whose elements corre-
spond to maximal cliques is shown in Figure 4.
Feature sets (labeled in uppercase) become more
generalized moving down and more specialized
moving up. Support (labeled in lowercase) becomes
broader moving down and narrower moving up.
Connected nodes satisfy the partial ordering re-
quirements for a lattice. For example, we could say
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that the clique [BCDF;cd] is “less than” [BCD;acd],
if we use the subset relation between feature sets as
the “less-than” relation (BCDF C BCD*)

The four highlighted nodes illustrate the effect of
progressively specifying features. With only feature
C fixed (yellow), four individuals are found with the
pattern. When feature A is incrementally added
(orange), one individual (d) is lost. Further speci-
fying feature E (red) loses one individual (a). If B
and D are specified (green), however, two are lost
(b,c).

Notice that some of the intermediate nodes have
been filtered out, in which case edges are simply
inserted to bypass the “ghost” nodes. The arrow in
Figure 4 points to the location where patterns with
features ABC and ACD would have been. Adding
either B or D singly to AC may lead to ghost nodes
for several reasons. They could have been inten-
tionally filtered as uninteresting or nonsignificant, in
which case their effect must have been for each of
them to have removed one individual (b or c) apiece
from the [AC;abc] pattern. Otherwise, either B or D
removed both b and ¢, while the other had no effect.
If adding B had removed both b and c, then the
resulting pattern [ABC;a] would not have been a
maximal pattern, since [ABCD;a] has the same
support. If adding D had had no effect, then AC
would not have been maximal, and [ACD;abc]
would have replaced [AC;abc] in the lattice.

If the lattice is augmented with the s-set, t-set, and
risk statistics, it can be a powerful aid in reasoning
about the relationships among patterns. The algo-
rithm expands cliques in order to search for
combinations of feature values that together confer
risk, but that individually, or in subsets, may not.
Application of parsimony concepts is deferred until
after all the cliques are discovered. At that point, one
can use the lattice to trade off features for support;
that is, a more general (smaller) description of the
feature set covers more people, but often at the
expense of conferred risk (odds ratio). The algo-
rithm described here does not attempt to optimize
such a trade-off.

Missing data, correlated features, and
quantitative traits

A final consideration for the practical application of
this method is how missing data are handled.
Options include imputing missing data by statistical
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inference or omitting entire records containing any
missing data, but neither are optimal solutions;
whereas data imputation is effectively used in
family-based studies where Mendelian or similar
models can be used to predict unknown genotypes,
this approach may be prone to misclassification in
case-control or cohort studies of unrelated individ-
uals. Similarly, omission of entire subjects limits the
power for analysis of other variables. Statistical
inference requires that the features be either
uncorrelated or the correlations known, but it is
those very correlations that we are trying to detect.
Omitting records is wasteful of data that are often
hard to collect, and even if the data were plentiful,
the missing data may not be randomly distributed
among records, thus introducing bias.

We propose to make use of the available data
wherever possible. We exclude from all t-sets any
individual that does not have one of the allowed
values for every feature in the s-set. In other words,
a missing feature value is never a match to any
feature value. But a missing value for a feature not
in the s-set does not in and of itself exclude an
individual from t-set membership. This rule is most
noticeable when counting the number of individuals
that do not have a particular pattern of feature
values. To be counted, they must have some value
for every feature in the pattern, and at least one of
the values must be different from all members of the
pattern feature set. As a result of this treatment,

N, es and N are not constant across all
patterns. When the pattern-to-pattern margin fluc-
tuations are large, the P-values for patterns with
identical OR can vary noticeably.

Single nucleotide polymorphisms (SNPs) on the
same chromosome tend to be correlated to a degree
more or less proportional to their proximity, a
phenomenon called linkage disequilibrium (LD). LD
is especially strong for SNPs in the same gene. When
LD is present in the SNPs being studied, if either
SNP is found to be a member of a clique, the other
SNP will also tend to be a member of the same
clique. If the LD is known in advance, as could be
assumed for SNPs on the same gene, then one might
collapse them into a single variable without signifi-
cantly affecting the predictive power of the clique.
However, in drawing inferences from the clique
SNPs about their possible effects on pathway
kinetics and disease processes, one must keep in
mind that even if two SNPs are correlated, they
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Table 2 The 2 X 2 contingency table for one of the
data sets used in the validation runs

Gl =AAand G2 = Aa Cases Controls Row totals
Match 29 117 146
Do not match 85 769 854
Column totals 114 886 1000

OR = 2.24, P = 0.000829, FOM = 3.08

both, individually or together, can still contribute to
the pathology.

Quantitative variables, as might be used to study
gene-environment interactions, could be included
alongside SNP and other categorical variables by
binning (placing in bins). Such analyses are not
presented here, but the binning operation is
conveniently performed during the feature-value
mapping operation as shown in Figure 3.

VALIDATION

To demonstrate the utility and validity of our
method, we applied it to a selection of synthetic data
sets. The data sets were devised to emulate the
situations encountered in epidemiology studies
involving common diseases having suspected asso-
ciations with multiple factors that could include
inherited genotypes, somatic genotypes, demo-
graphic characteristics, or exposures. For example,
the features may consist of data on SNPs, and the
dependent variable may be a particular type of
cancer.

Data-set construction

For this application, we undertook a simple example
that considered the potential effect of nine genes as
independent variables and a binary disease-de-
pendent variable, case-control status. At each gene,
we specify a SNP of interest with two alleles. We
designate the common, or major allele A and the
rare, or minor allele a. Because somatic cells (cells
other than egg and sperm) have paired (diploid)
chromosomes with one allele from each parent for
each SNP, three possible allele combinations, or
genotypes, arise: AA, Aa, and aa. If the frequency of
A is p, then the frequency of a is 1— p. Under
ordinary circumstances, these two alleles combine
in binomial proportions (i.e., Hardy-Weinberg
equilibrium, or HWE, for short) to form three
genotypes, such that
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freq(AA) = p?
freq(aa) = g*
freq(Aa) = 2pq

The minor allele frequencies were supplied as
parameters, and the three genotype frequencies
were calculated for each gene assuming HWE,
resulting in an assortment of genotype frequencies
across the nine genes, assuming biallelic polymor-
phisms. Each individual was randomly assigned a
genotype for each gene, with probability freq(geno-
type). A genotype pattern was then specified as
having an enhanced risk. Each individual was then
checked for a genotype match to the specified risk
pattern and labeled a case or control by using
penetrance parameters R, = prob(caselmatch) and
R, = prob(case|not match) respectively, until a given
number of cases and controls were generated.

As an illustration, consider a set of genes in which
the minor allele frequencies are all 10 percent. HWE
then gives freq(AA) =0.9*0.9 = 0.81, freq(Aa) =
2*0.9*0.1 = 0.18, and freq(aa) =0.1*0.1 = 0.01 for
each gene. Using these frequencies, we assign
genotypes for all genes to a population such that the
genotype frequencies in the population approximate
HWE. For example, each person is assigned G1 =AA
with probability 81 percent, G1 = Aa with proba-
bility 18 percent, and G1 = aa with probability 1
percent. In this example, a population of 1000
people would thus have about 810 people with
genotype AA, 180 people with genotype Aa, and 10
people with genotype aa, for each gene. We then
specify a (multi-)gene pattern as conferring an
increased risk of disease. For example, people with
G1 = AA and G2 = Aa could have a 20 percent risk,
that is, p(case|match) = 0.2, whereas everyone else,
including people that match only one of the two
genotypes in the pattern, has a 10 percent risk, that
is, p(case|not match) = 0.1. Note that there is no
increased risk for a partial match. We assign people
to the cases with 20 percent probability if they have
G1 = AA and G2 = Aa, and with only 10 percent
probability otherwise. In this example, 0.81%0.18 =
0.1458, or about 146 of the 1000 people would
match, and of those, about 20 percent, or 29 people,
would be cases, and 80 percent, or 117 people,
would be controls. Of the 854 people who did not
match, about 10 percent, or 85 people, would be
cases, and 90 percent, or 769 people, would be
controls. The 2 X 2 table for such a pattern is shown
in Table 2.
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Results and analysis

We used a variety of parameter values to construct a
series of situations for application of our pattern
discovery method. Populations were generated that
had pattern complexity, allele or genotype frequen-
cies, and risk (i.e., odds ratio) effects that are typical
of those seen in molecular epidemiology studies.
Among the properties explored were the effects of
the complexity of the doped pattern (intentionally
risk-enhanced pattern) and its overall frequency in
the population (N, / N, ., in Table 1) on the
ability of the algorithm to reliably detect the pattern.
All populations were generated with N___..= 500
and N =1000. The controls used were a
random sample of the much larger number of
controls generated. Pattern complexity was varied to
include from one to five genes, and estimated
pattern frequency, computed as the product of the
individual genotype frequencies, ranged from 0.1
percent to 81 percent. The risks R, and R, were kept
constant at 10 percent and 20 percent, respectively,
resulting in an average odds ratio of 2.3. We used
statistical significance, expressed as —Log, (P-val-
ue), as a FOM for prioritizing the queue and ranking
the results. The only constraint was that the
minimum fraction of cases with the pattern of
interest (support) was set to 5 percent for all the
runs. For some of the rarer patterns, additional runs
were made using 1 percent support.

Table 3 summarizes the results of some represen-
tative runs. The results of each run show the
observed overall frequency, odds ratio, FOM =
—Log, ,(P-value), and rank of the discovered pattern
out of the total patterns reported. A “—” indicates
“pattern not discovered.” At 5 percent support, the
method reliably picks up patterns down to 5 percent
frequency, and detects even rarer patterns. At 1
percent support, there are roughly 10 times more
patterns reported, and reliable detection drops off at
around 3 percent frequency. A larger population
would be needed for reliable results at the 1 percent
level. The combined run mixes two populations and
resolves their components.

Figure 5 summarizes the coverage, detection, and
#1 ranking for the runs in Table 3. Runs marked
with a triangle detected the test pattern. Runs
marked with asterisks ranked the test pattern #1. Of
the 23 runs with 5 percent support, the test pattern
was detected in 18, ranked #1 in 14, and in the top
10 in 17. Of the five patterns not detected at
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5 percent support, four were rerun with 1 percent
support, and three were detected, but not with high
ranks due to insufficient sample size for such rare
patterns. Nevertheless, for frequencies in the range
typically encountered in clinical studies of common
diseases, the pattern of interest is clearly visible.

The combination run demonstrates the utility of the
method for resolving multiple etiologies in hetero-
geneous populations. The populations of runs 9 and
10, with two and three genes respectively, were
mixed by combining the original two case files and
two control files into a single pair with 1000 cases
and 2000 controls. The algorithm was run with 5
percent minimum support. The two components
were found at ranks #6 and #8. Note that the odds
ratio and FOM are degraded from the separate
component values because in the mixed population,
the individuals from population #9 that happen to
have pattern 10 do not have the enhanced risk of the
individuals from population 10 with the same
pattern, and vice versa. As a result, the odds ratios of
both components are reduced to values consistent
with a risk of 15 percent for each pattern in the
combined population, compared to 20 percent in the
separate populations. (We can average R, = 10%
and R, = 20% because the proportions of both cases
and controls in the mixture are equal.) To test this
prediction we generated the two original popula-
tions 10 times each, with R, = 15% instead of 20%
(data not shown). The observed odds ratio for the
components in the mix was within 1 standard
deviation of the mean odds ratio for the separate
components with R, = 15%. Given this worst-case
mix scenario, the observed ranks (#6 and #8) are an
indication of the strength of the overall method.

The lattice structure described previously is used to
inspect the neighborhoods of the two components of
the mixed pattern. Figure 6 shows the relationships
between the designated patterns 9 and 10 having
ranks #8 and #6, respectively, and other patterns
that ranked better. Rank #7 is a 3-gene specialization
of the 2-gene component with rank #8. Ranks #4 and
#2 are 4-gene specializations of the 3-gene compo-
nent with rank #6, and ranks #3 and #1 overlap with
two of the 3-gene component’s features. Overall, all
but one (#5) of the top 8 patterns differ from the
designated patterns by either a single addition or a
single substitution. The protective pattern with rank
#5 has no features in common with any of the other
patterns. This is not surprising, because one might
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Table 3 Results of representative validation runs
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expect protective patterns and risky patterns to have
little in common.

The rankings shown in Table 3 are based on P-
value, and thus reflect an estimate of the type-1
error associated with statistics derived from the 2 X
2 table. For real data, the 2 X 2 table itself would
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have estimated errors for all four cells based on the
genotyping error rate and the missing data rate.

Quantitative estimates of these errors are beyond the
scope of this paper. One could, however, explore the
distribution of FOM, and in particular, the distribu-
tion of best FOM, for an ensemble of data sets with
randomized affection status. This was not done for
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our synthetic examples because we could compare
the list of cliques directly with the known true
patterns.

SUMMARY AND FUTURE DIRECTIONS

We have described a graph-theoretical approach to
searching for patterns in categorical data and
demonstrated its ability to reliably detect and
identify patterns that confer risk in situations typical
of molecular epidemiological case-control studies. In
particular, our method performs well on multi-
variate patterns that often present a challenge for
traditional methods. The technique can be used to
sort out multiple patterns conferring independent
risks, indicating its potential for resolving multiple
etiologies. We also showed how the use of the lattice
concept can be helpful in understanding the
relationships among discovered patterns.

An effort to expand the scope of our approach and
enhance the features and performance of the
implementation is under way. Until now we have
focused on the effects one clique (or family of
cliques) at a time. The individual elements of a
clique are implicitly connected with the logical AND
operator. When considering more than one clique
from separate families, the combination is aptly
described using the logical OR operator between the
cliques. Hence, a full description of a combination of
cliques would involve a mixed Boolean expression.
We are currently working on an extension to our
method that automatically detects such combina-
tions and simplifies their Boolean descriptions.

Another area for future work involves more
extensive analysis of the overlaps in source sets and
terminal sets within the lattice. The strict definition
of clique can be relaxed, allowing sets with less than
complete connectivity to participate in patterns,
perhaps more closely approximating the situations
encountered in real studies. We are exploring
additional enhancements to the algorithm, including
more complex FOM and constraints. We are
currently engaged in analyzing data from a real
epidemiological study involving genetic and envi-
ronmental risk factors for breast and endometrial
cancer.
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