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In this paper we describe a graph-theoretical approach for pattern discovery that is

especially useful in epidemiological research when applied to case-control studies

involving categorical features such as genotypes and exposures. Whereas existing

approaches are limited to exploring relationships among two or three factors, or deal

with thousands of genes but are unable to isolate interactions among individual

genes, we focus on interactions among tens of genes. We present a pattern discovery

algorithm that finds associations among multiple factors, such as genetic and

environmental factors, and groups of individuals (cases and controls) in a clinical

survey. To validate our approach and to demonstrate its effectiveness, we applied it to

a selection of synthetic data sets that were devised to emulate the situations

encountered in epidemiological studies involving common diseases with suspected

associations involving multiple factors that could include inherited genotypes, somatic

genotypes, demographic characteristics, or exposures. The results of this experiment

show that it is possible to identify the effects of multiple factors in moderate-size

surveys (involving hundreds of individuals) even when the number of factors is greater

than three.

INTRODUCTION
One of the key promises of genomic medicine is the

ability to predict susceptibility to complex diseases

based on knowledge of inherited genotypes, somatic

genetic changes, and environmental exposures. A

great deal of effort has been invested in identifying

the role of genes, exposures, lifestyles, and other

factors in causing certain individuals to develop

diseases or to exhibit poor prognoses when diag-

nosed. The problem is complicated by the fact that

different combinations of genotypes and exposures

can lead to the same disease, but may result in

different levels of response to treatment or toxicity

to drugs. Predicting disease risk and drug response

has traditionally been the work of epidemiologists

and pharmacologists. As genes have been found to

play a major role in disease etiology and drug

response, the fields of molecular epidemiology and
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pharmacogenomics have assumed much of the

burden of studying these effects in detail.

When multiple factors combine to determine a

person’s risk of disease or response to treatment, it

is often difficult to sort out the contributions of these

various factors, and to identify the combinations of

these factors that are relevant to disease etiology,

outcome, or drug response. Tools are needed that

can efficiently search the high-dimensional feature

space and discover patterns associated with a

disease etiology. Standard statistical approaches

have traditionally dealt only with interactions

among two or three factors; new approaches are

needed to deal with higher-order interactions.

In this paper we describe a pattern discovery and

analysis method based on modeling the risk factors,

the individuals, and the discovered patterns as

graph constructs, without reference to any under-

lying functional (biological) model. The method

itself consists of four phases:

1. Construct a graph that represents the risk factors

associated with each individual.

2. Find patterns in the graph that correspond to

groups of individuals with identical risk factors,

and quantify the risk and significance for each

pattern.

3. Construct a lattice that represents the relation-

ships among the patterns.

4. Enumerate the interesting and significant risk

factors and subpopulations.

Once the risk factor combinations and their affected

populations have been identified, domain experts

can compare these associations to the predictions

derived from functional and etiological models,

thereby strengthening or weakening the evidence for

a particular model.

The complex interactions of multiple factors in

disease etiology, outcome, or drug response are

difficult to detect. Often the order of the interaction

is high, and the main effects of each of these factors

individually may be weak. A number of methods

have been proposed to evaluate higher-order inter-

actions among genes and other risk factors, includ-

ing recursive partitioning,
1,2

random forests,
3

combinatorial partitioning,
4

permutation-based

procedures,
5

multivariate feature selection,
6

multi-

variate adaptive regression splines,
7

boosting,
8

support vector machines,
9

neural networks,
10,11

Detection of Informative Combined Effects (DICE),
12

logistic regression,
13

penalized logistic regression,
14

Bayesian pathway modeling approaches,
15,16

Fo-

cused Interaction Testing Framework (FITF),
17

consensus algorithms,
18

and Classification and

Regression Trees (CART). Another approach, mul-

tifactor-dimensionality reduction,
19

has been re-

cently shown to be a special case of CART.
20

In

particular, CART models have been widely applied

and have the ability to detect complex interactions

among multiple etiological factors. However, this

method may assume an underlying model of

association, may require assumptions about the

identification of ‘‘purity’’ in the groupings identified,

or may miss interactions that are not consistent with

early splitting patterns. Our approach allows the

detection of complex interactions among multiple

etiological factors without making such assump-

tions.

The use of Bayesian graphical models to identify

candidate genes in genome-wide association studies

has recently been described.
21

Efficient algorithms

for discovering association rules among features in

very large databases have long been used commer-

cially for market basket analysis,
22

but practical

considerations limit the complexity of the discov-

ered rules to a modest number of features. Our

method, conversely, is aimed at a reduced set of

already identified candidate gene polymorphisms.

These polymorphisms may act in complex combi-

nations to affect disease risk. Our method can

handle this complexity and can shed light on the

chemical pathway changes induced by combina-

tions of polymorphisms.

The rest of the paper is organized as follows. We

begin by describing our overall approach. We then

give a detailed description of the implementation of

our algorithm. Next we present computational

evidence validating our approach. Finally, we

summarize our contributions and suggest areas for

future research.

OUR APPROACH

This section defines the basic concepts upon which

our procedure is based. These include graph-

theoretic concepts, epidemiological concepts, and

set-theoretic concepts. We also describe the set-

theoretic operations which form the basis for our

algorithm.
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Concepts and definitions
We use graphs to capture the relationship between a

set of individuals and the allowed values of a

specified set of features. The individuals and the

feature values together make up the nodes of the

graph. We distinguish between these two types of

nodes by treating the feature values as source nodes

(s-nodes), and the individuals as terminal nodes

(t-nodes). We connect an s-node to a t-node with an

edge if that feature value is exhibited by that

individual. This results in a bipartite graph, a graph

in which every node is one of two types (in our case,

either an s-node or a t-node). Moreover, edges exist

only between nodes of different types, never

between nodes of the same type (Figure 1). Such a

bipartite graph can be built to represent all or part of

the data in the study. Hereafter, we refer to a

bipartite graph as a graph, for simplicity.

A subgraph that consists of a set of nodes with edges

between all pairs of nodes in the set is called a

clique. Bipartite graphs cannot have (nontrivial)

cliques because there can be no edges between any

pair of nodes of the same type. There is, however,

an analogous concept, called a biclique. A biclique is

a subgraph defined by two sets of nodes where there

is an edge between every node in the first set and

every node in the second set. A maximal biclique is

a biclique that is not contained in any larger biclique

in the parent graph.

Figure 1 depicts a bipartite graph with t-nodes fp
i
g

representing people and with s-nodes ff
i
g repre-

senting features. The node sets fp
4
, p

6
, p

7
g, ff

3
, f

6
,

f
8
g and all the edges between them define a maximal

biclique within the larger graph. We are interested

in maximal bicliques because in our application they

represent the largest set of people who share a

common set of features. When applied to genotype

association studies, each feature f
i
is one genotype

(e.g., ‘‘AA’’) for one polymorphic locus (e.g.,

‘‘GENE1’’). Thus, a maximal biclique containing a

set of specific genotypes for multiple loci would also

contain all the individuals who share that exact

combination of genotypes for those loci. For

simplicity, in the remainder of this paper, we use

‘‘clique’’ to mean ‘‘biclique’’.

As the number of features increases, the number of

people who share those features decreases. Each set

of features generates a maximal clique. Maximal

cliques and the relationships between them can be

viewed as a lattice. A lattice consists of a set and a

partial ordering (the ‘‘less-than’’ relationship, ‘‘,’’)

such that for each pair of elements in the set, x and

y, there are four possibilities: (1) x , y, (2) y , x, (3)

x and y are equal, and (4) x and y are unrelated.

The ‘‘,’’ relation is transitive; that is, if x is , y and

y is , z, then x is , z. It is also anti-symmetric; that

is, if x is strictly , y, then y cannot be strictly , x. In

our case, we define a lattice on the cliques. In

particular, the cliques are associated with sets of

people and sets of features, and we define a notion

of ‘‘,’’ in terms of subset relations on these sets.

This will be described in detail in a later section.

In describing our method we make repeated use of

constructs from both epidemiology and graph

theory. Cases and controls are the two values of a

binary classification variable used in an association

study that define the dependent variable in the

analysis. For example, cases can be those affected

with a disease, those that have an adverse outcome

in a longitudinal follow-up study, or those that have

an adverse reaction to a drug in a pharmacogenetics

study. Typically, a study is trying to determine if

some exposure confers a risk of being a case. The

exposure is the independent variable and can

include inherited genotypes, somatic genotypes,

chemical exposures, demographic characteristics, or

any other risk factor of interest. In our application,

we extend the notion of exposure to mean having a

particular set of values for a specific group of

features under study. Thus we shift from consider-

ing the individual features as independent risk

factors to viewing a pattern of features as a single

Figure 1
A bipartite graph and a maximal biclique for node
types “people” (p) and “feature values” (f)

p1 p4 p6 p7 p9

f2 f3 f6 f8 f9

Maximal Biclique
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risk factor. This pattern may summarize information

from a large number of independent variables. Here,

we limit our discussion to binary independent and

dependent covariates, but our approach can be

extended to include polytomous variables (variables

that take values from a discrete set) without loss of

generality.

Risk measures

To quantify a pattern for the independent variables,

we use a 2 3 2 table with meanings assigned to the

rows and columns as shown in Table 1. The values

of a, b, c, and d are counts of individuals having the

indicated pattern of exposure and affection (case/

control) status. The value of a is referred to as the

support for the pattern. Using this table framework,

many metrics can be derived to make inferences

about the relationship of the dependent and

independent variables. For assessing risk in case-

control studies, the odds ratio (OR) is commonly

used:

OR ¼ ða � dÞ=ðb � cÞ:

The odds ratio can range from 0 to ‘. For OR . 1,

we infer that the pattern confers risk; for OR , 1, we

infer that the pattern confers protection against

affection. The null hypothesis yields OR ¼ 1, which

is interpreted as the pattern being unassociated with

the dependent variable. To linearize and balance the

risk measure around the null hypothesis, it is

common to convert to a logarithmic scale. Here, we

use log
10

(OR) as the risk measure (log
10

is conve-

nient, but the natural logarithm is also commonly

used), and other risk measures could be considered,

such as positive likelihood ratio.

The probability p of obtaining a particular table a, b,

c, d is given by:

p ¼ ðaþbÞ!ðcþdÞ!ðaþcÞ!ðbþdÞ!
a! b! c ! d! ðaþbþcþdÞ!

where a, b, c and d occupy the cells in the 23 2 table

indicated in Table 1. Note that, when the row and

column totals (margins) are fixed, the only degree of

freedom in this expression is one of the interior

values such as a. When the odds ratio for a

particular table having a ¼ a
0
, OR(a

0
), is . 1, the

probability of obtaining a table with OR � OR(a
0
) by

chance is the P-value for the table having a¼a
0
, and

is given by:

fixed margins based on a0

P�valueða0Þ ¼
X

a�a0

pðaÞ

where p(a) is the probability for the observed table

defined by a � a
0
, and the sum is over all values of

a � a
0

that keep the margins constant. A similar

expression exists for OR , 1, and the sum is over

a � a
0
.

Consider an epidemiological case-control study

represented as a case graph and a control graph. We

first determine how many cases share the same

values for a given set of features. This corresponds

to the largest subgraph of the case graph in which all

given s-nodes are fully connected to a set of t-nodes,

and where neither the source nor terminal set can be

enlarged without reducing the size of the other.

Such a subgraph is an instance of a maximal clique.

The source set of such a maximal clique is the

pattern of independent variables (feature values), its

terminal set is the support set, and the terminal set’s

cardinality is the value of a in the 2 3 2 table

(Table 1). The cardinality of the terminal set from

the maximal clique in the control graph having the

same source set would determine the value of b

(Table 1). Since N
cases

and N
controls

are known and

fixed, the 2 3 2 table for the pattern would be

determined by these two counts. If the pattern of

interest were known in advance, it would be a

simple matter to search the case and control graphs

for the desired clique. The challenge, however, is to

evaluate the risk associated with every pattern,

composed of every combination of features avail-

able in the study. This corresponds to exhaustively

searching the graphs for all maximal cliques, and

evaluating each one for risk and statistical signifi-

cance. An exhaustive search is possible but may

become intractable as the number of features and

values per feature increases. Thus, we have imple-

mented an algorithm that incorporates user-defined

constraints to limit the complexity of the search, but

is exhaustive within those bounds.

Table 1 Representation of the 232 contingency table

that forms the basis of our approach

Cases Controls Row totals

Have pattern a b N
with

Do not have pattern c d N
without

Column totals N
cases

N
controls

N
total
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Set operations for maximal cliques
We construct a bipartite graph, G¼ (S,T,E), where S

and T are disjoint sets of nodes and E is a set of

undirected edges, e ¼ (s,t), where s-node s is in S

and t-node t is in T. Figure 1 illustrates such a graph

for disjoint sets fpg and ffg. (The assignment of sets

to S and T is arbitrary. Our method consistently

assigns the feature values to S and the people to T.)

Our goal is to find all maximal cliques B ¼ (S
B
, T

B
,

E
B
) of G, where S

B
, T

B
, and E

B
are subsets of S, T,

and E, respectively, and there is an edge e¼ (s
B
, t

B
)

for all pairs of nodes in S
B

and T
B
. A clique B is said

to be maximal if there is no other clique B0 ¼ (S0
B
,

T0
B
, E0

B
), where S

B
is a (proper) subset of S0

B
, or T

B

is a subset of T0
B
. The inner boxed portion of Figure 1

shows a maximal clique within a bipartite graph.

Our method operates on two types of candidates,

which we refer to as s-cliques and t-cliques. For each

s in S, we form an s-clique, C(s)¼ [fsg, T(s)] where

T(s) is the set of all t such that there is an edge (s, t)

in E. Similarly, for each t in T we have a t-clique

C(t) ¼ [S(t), ftg]. All the candidate cliques we

identify can be described as generalizations of this

form. Specifically, given any set, S, of sources, we

have an s-clique C(S) ¼ [S, T(S)] where T(S) is the

set of t such that there exist edges (s, t) for all s in S.

Similarly, we have t-cliques C(T) ¼ [S(T), T]. The

basic operation which is used to expand cliques is

CðS1 [ S2Þ ¼ ½ðS1 [ S2Þ;TðS1Þ \ TðS2Þ� for s-cliques;

and similarly;

CðT1 [ T2Þ ¼ ½SðT1Þ \ SðT2Þ; ðT1 [ T2Þ� for t-cliques:

We use s-cliques in discussing the algorithm further,

but the same arguments can be applied to t-cliques.

The expansion operation used to identify maximal

cliques is depicted in Figure 2A. Clique C(S
1
) is

expanded using C(S
2
). The resulting clique contains

the union of the source sets and the intersection of

the terminal sets. In expanding s-cliques, S
2

usually

contains a single element, with one important

exception. Given any source set, S
1
, and its

associated T(S
1
), we can identify the set X(S

1
) of

sources which can extend S
1

without decreasing

T(S
1
). We call this the extension set of S

1
. X(S

1
) is

defined by X(S
1
) ¼ fsj T(S

1
)�T(X(S

1
))g. This is

equivalent to saying that (T(S
1
)\T(X(S

1
)) ¼ T(S

1
).

Thus, T(S
1
) is not decreased by adding s to S

1
. The

operation of adding the largest X(S
1
) to S

1
forms a

maximal clique. By definition, neither the extended

S
1

nor T(S
1
) can be increased without decreasing the

other. We thus define the operation of adding X(S)

to S as taking the closure of S. This situation is

illustrated in Figure 2B. Clique C(S
1
) is extended

using C(X(S
1
)). The resulting clique contains the

union of the disjoint source sets and the intersection

of the completely overlapping terminal sets, which

is identical to the original terminal set. This

condition defines the extension X(S
1
). For conve-

nience, we refer to single-element cliques together

with their extensions as singletons. As an example of

this, consider the node f
8

in Figure 1. It has the

people p
4
, p

6
, and p

7
associated with it. This is a

clique in the general sense, but it is not a maximal

clique, the type of clique we wish to consider in our

analysis. In particular, p
4
, p

6
, and p

7
are also

associated with f
3

and f
6
. Thus, once we choose to

include f
8

in a clique, we could include f
3

and f
6

as

well, without losing any people. We therefore do not

consider f
8
, p

4
, p

6
, and p

7
to define a singleton, but

instead immediately add f
3

and f
6

to the clique. We

have in effect acquired f
3

and f
6
‘‘for free.’’ The latter

S1 S2 S1    S2

T(S1)   T(S2)

U

Figure 2
Clique C(S1) is (A)expanded by using C(S2);
(B) extended by using C(X(S1))

C(S1) C(S2) C(S1    S2)

T(S1) T(S2)

U

U

T(X(S1))T(S1) 

U

C(S1) C(X(S1)) C(S1 U X(S1))

S1 X(S1)

T(S1) T(S1)T(X(S1))

US1    X(S1)

T(S1)   T(X(S1))=T(S1)

U

A

B
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clique is the desired maximal clique. The former

clique is not.

IMPLEMENTATION

In this section, we give a schematic diagram of the

algorithm and a description of each of its major

components. We trace the flow of information and

control from one component of the algorithm to

another, describing figures of merit, constraints,

how we deal with missing data and, finally, the

output the algorithm produces.

Components and flow

A schematic diagram of the program components

and flow is shown in Figure 3. The program starts

by building the bipartite graphs from the tables of

raw data (typically, flat files). The raw case and

control data, containing values for each of the

features f
i
for each individual p

i
, are converted into

bipartite graphs. An external mapping table is used

to convert the raw data values into discrete,

categorical feature values for use as s-nodes. Feature

values not present in the raw data are mapped to a

Figure 3
Program components and flow

output

case graph

p
1p
2.

.

.

f1, f2, . . .

p
1p
2.

.

.

f1, f2, . . .

cases

controls

singletons

check constraInts

neighbors

clique 
expansion

union s-sets
intersect t-sets

enqueue 
candidates

enqueue 
candidate

check constraints

remove top 
candidate
for expansion 

output
expanded
candidates

output
extended
singletons

failpass

high
FOM

control graph

extension

v1, v2, . . .  
feature
value
map

FO
M-pr

ior
itiz

ed
 qu

eu
e

low
FOM

• •
 •

• •
 •

• •
 •

• •
 •

f1
f2
.
.
.
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categorical value reserved for missing data. The

t-nodes are derived from the raw record identifiers.

The program then proceeds to search for maximal

cliques in the case graph. The control graph is

simply searched for s-nodes (feature value sets) that

match those discovered in the case graph to obtain

the counts for the 232 table. Clique discovery in the

controls is thus avoided. The search is primed by

finding all singleton cliques, including extensions,

(maximal by construction, see above) by inspection.

A copy of the singleton list is kept for use in clique

expansion (see below).

Each clique is assigned a value for its figure of merit

(FOM) and checked against user-specified con-

straints. Typical FOM choices include P-value and

OR, but can include other measures derived from

the 2 3 2 table. Typical filter constraints include

minimum or maximum number of s-nodes and

t-nodes, and minimum or maximum values of FOM.

Cliques that meet the constraints are sent to an

output file (they are acceptable), and placed in the

candidate queue for expansion. The candidate

queue is prioritized by FOM; that is, the clique with

the best FOM is the first to be selected for expansion.

A user-specified maximum queue size is imposed,

based on available system memory. When the limit

is exceeded, candidates at the bottom of the queue

(with the worst FOM) are discarded. To improve

efficiency, every candidate in the queue has an

associated data structure in which the list of those

singletons that have at least one t-node in common

with its own t-nodes is maintained. We refer to this

list as the neighbor set.

The program searches for new acceptable candi-

dates by removing the candidate from the top of the

queue for expansion. The selected clique is merged

with each of the cliques in its neighbor set and

extended if possible (see the section ‘‘Set operations

for maximal cliques’’). If the new candidate meets

the external constraints and is not a duplicate of an

existing clique, it is sent to the output file and

inserted into the prioritized candidate queue on

completion of the current expansion cycle. By first

extending each newly formed candidate and then

checking a hash table for duplicates, we avoid the

quadratic process of having to compare every new

clique to every existing one in order to determine

maximality. The performance of the algorithm is

linear in the product of the number of s-nodes, the

number of t-nodes, and the number of cliques. After

the queue has been augmented with all the accept-

able new candidates, the new top element is

removed for expansion, and the cycle is repeated

until the queue is empty. The output file contains the

maximal cliques that could be built from the cliques

in the queue which met the constraints, along with

the 2 3 2 table and statistics for each clique.

Figure of merit and constraints

With an infinite queue size and no constraints, the

algorithm finds all acceptable patterns. For small

problems this may be practical, but for problems

where the number of possible patterns exceeds the

queue size, some patterns will never be expanded,

and it is possible that a complex pattern of interest

may never be built because none of its precursors

are still on the queue and available for expansion. In

practice, this can be avoided by choosing a FOM that

is expected to be high for immediate precursors of

interesting patterns. This choice depends on the

model system under study, but the algorithm does

not presuppose any particular model.

The ability to externalize and tailor the queue-

ordering function to the presumed shape of the

landscape (shape of the FOM function in a multi-

dimensional space) is actually a strength of the

method that could be exploited in some situations.

For our simulation we used the P-value as the basis

for prioritizing the queue. Statistically, this is a

‘‘neutral’’ measure, in the sense that it measures the

confidence in the result, not the strength of the

result.

Although it is possible to leave a set of interacting

features ‘‘stranded’’ on the pattern landscape, that

would require that all paths from singletons to the

pattern in question be discarded. For short patterns,

we would have to discard only a few, even shorter,

patterns. We handle these shorter patterns at the

start of the process when the queue is relatively

empty; therefore, we are unlikely to discard them for

lack of space. For long patterns, the number of ways

the pattern could be built up grows factorially;

therefore, it is unlikely that we would discard all the

paths. (For 10 genes there are a maximum of about 1

million patterns, which would require about 1

gigabyte of memory. In a real study, the number of

actual patterns with any reasonable support is much
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less than the maximum; thus, much less storage is

required in practice.)

Unlike the FOM, which is used to prioritize cliques

for expansion, constraints are used to directly filter

the patterns that are put into the queue and reported

as output. This prevents wasting queue space and

interpretation effort on patterns that the user decides

in advance would not be of interest. These

constraints apply even when the queue is not full.

We typically apply constraints to s-node and t-node

counts, odds ratio, and P-value.

Final candidates and the lattice of cliques

When the algorithm halts, the output contains all

the maximal cliques that could be built from the

cliques in the queue that met the constraints. We

call these the final candidates. Each final candidate

is reported with its s-set (features), t-set (individu-

als), 2 3 2 table with any accompanying statistics,

and FOM. The goal is to decide which patterns have

the feature set that best predicts whether an

individual is a case.

A few caveats are in order. First, the features that

predict a disease or a drug response do not

necessarily cause the disease or the response.

Second, the results obtained from the sample of the

population making up the data set may not be valid

for the population as a whole, or for all segments of

the population.

When we speak of a pattern’s feature set, and the

number of individuals who do and do not exhibit the

pattern, we must be clear about what we are

counting. Consider a data set with binary features A,

B, and C. Every individual is either ‘‘1’’ or ‘‘0’’ for

each of the features, for a total of 2
3 ¼ 8 possible

unique records. But there are 3
3 ¼ 27 possible

patterns. That is because the feature set for a pattern

is the set of s-nodes that directly participates in the

maximal clique, and this set implies ‘‘any value’’ for

all features not explicitly mentioned in the set. For

example, the set fA1, B1g specifically excludes A0,

B0, but implicitly includes either C0 or C1. This

can be written as fA1, B1, C*g, and has a t-set

containing individuals with A¼1, B¼1, and C¼any.

Thus, each feature has three possible values: ‘‘1’’,

‘‘0’’, and ‘‘*’’; hence, 3
3 ¼ 27 possible patterns.

The preceding example leads to an inherent ordering

of patterns. Given two maximal cliques, C1(S1,T1)

and C2(S2,T2), S1 � S2 if-and-only-if T1 � T2, and

S1 � S2 if-and-only-if T1 � T2. This pair of

properties allows us to construct a lattice of patterns

from the algorithm output. Recall from the earlier

section ‘‘Concepts and definitions,’’ that a lattice is a

collection of objects (cliques, in this case) and a

partial ordering. The cliques themselves become

nodes in the lattice graph, and edges exist between

nodes corresponding to pairs of cliques for which

the partial ordering relation (in this case, the subset

relation) holds.

Sometimes not every node in the lattice is repre-

sented because the pattern list may be incomplete

due to queue limitations or applied constraints, or

both. In addition, the lattice may be filtered to

eliminate uninteresting or statistically nonsignificant

patterns. The resulting structure is a filtered lattice

which is a collection of subgraphs of the full lattice.

We refer to this structure simply as the lattice. A

simple example of a lattice whose elements corre-

spond to maximal cliques is shown in Figure 4.

Feature sets (labeled in uppercase) become more

generalized moving down and more specialized

moving up. Support (labeled in lowercase) becomes

broader moving down and narrower moving up.

Connected nodes satisfy the partial ordering re-

quirements for a lattice. For example, we could say

Figure 4
Example of a lattice composed of maximal bicliques

AC
abc

ABCD
a

ACE
bc

C
abcd

A...Z
null

NULL
a...z

BCDF
cd

BCD
acd
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that the clique [BCDF;cd] is ‘‘less than’’ [BCD;acd],

if we use the subset relation between feature sets as

the ‘‘less-than’’ relation (BCDF � BCD*)

The four highlighted nodes illustrate the effect of

progressively specifying features. With only feature

C fixed (yellow), four individuals are found with the

pattern. When feature A is incrementally added

(orange), one individual (d) is lost. Further speci-

fying feature E (red) loses one individual (a). If B

and D are specified (green), however, two are lost

(b,c).

Notice that some of the intermediate nodes have

been filtered out, in which case edges are simply

inserted to bypass the ‘‘ghost’’ nodes. The arrow in

Figure 4 points to the location where patterns with

features ABC and ACD would have been. Adding

either B or D singly to AC may lead to ghost nodes

for several reasons. They could have been inten-

tionally filtered as uninteresting or nonsignificant, in

which case their effect must have been for each of

them to have removed one individual (b or c) apiece

from the [AC;abc] pattern. Otherwise, either B or D

removed both b and c, while the other had no effect.

If adding B had removed both b and c, then the

resulting pattern [ABC;a] would not have been a

maximal pattern, since [ABCD;a] has the same

support. If adding D had had no effect, then AC

would not have been maximal, and [ACD;abc]

would have replaced [AC;abc] in the lattice.

If the lattice is augmented with the s-set, t-set, and

risk statistics, it can be a powerful aid in reasoning

about the relationships among patterns. The algo-

rithm expands cliques in order to search for

combinations of feature values that together confer

risk, but that individually, or in subsets, may not.

Application of parsimony concepts is deferred until

after all the cliques are discovered. At that point, one

can use the lattice to trade off features for support;

that is, a more general (smaller) description of the

feature set covers more people, but often at the

expense of conferred risk (odds ratio). The algo-

rithm described here does not attempt to optimize

such a trade-off.

Missing data, correlated features, and
quantitative traits

A final consideration for the practical application of

this method is how missing data are handled.

Options include imputing missing data by statistical

inference or omitting entire records containing any

missing data, but neither are optimal solutions;

whereas data imputation is effectively used in

family-based studies where Mendelian or similar

models can be used to predict unknown genotypes,

this approach may be prone to misclassification in

case-control or cohort studies of unrelated individ-

uals. Similarly, omission of entire subjects limits the

power for analysis of other variables. Statistical

inference requires that the features be either

uncorrelated or the correlations known, but it is

those very correlations that we are trying to detect.

Omitting records is wasteful of data that are often

hard to collect, and even if the data were plentiful,

the missing data may not be randomly distributed

among records, thus introducing bias.

We propose to make use of the available data

wherever possible. We exclude from all t-sets any

individual that does not have one of the allowed

values for every feature in the s-set. In other words,

a missing feature value is never a match to any

feature value. But a missing value for a feature not

in the s-set does not in and of itself exclude an

individual from t-set membership. This rule is most

noticeable when counting the number of individuals

that do not have a particular pattern of feature

values. To be counted, they must have some value

for every feature in the pattern, and at least one of

the values must be different from all members of the

pattern feature set. As a result of this treatment,

N
cases

and N
controls

are not constant across all

patterns. When the pattern-to-pattern margin fluc-

tuations are large, the P-values for patterns with

identical OR can vary noticeably.

Single nucleotide polymorphisms (SNPs) on the

same chromosome tend to be correlated to a degree

more or less proportional to their proximity, a

phenomenon called linkage disequilibrium (LD). LD

is especially strong for SNPs in the same gene. When

LD is present in the SNPs being studied, if either

SNP is found to be a member of a clique, the other

SNP will also tend to be a member of the same

clique. If the LD is known in advance, as could be

assumed for SNPs on the same gene, then one might

collapse them into a single variable without signifi-

cantly affecting the predictive power of the clique.

However, in drawing inferences from the clique

SNPs about their possible effects on pathway

kinetics and disease processes, one must keep in

mind that even if two SNPs are correlated, they
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both, individually or together, can still contribute to

the pathology.

Quantitative variables, as might be used to study

gene-environment interactions, could be included

alongside SNP and other categorical variables by

binning (placing in bins). Such analyses are not

presented here, but the binning operation is

conveniently performed during the feature-value

mapping operation as shown in Figure 3.

VALIDATION
To demonstrate the utility and validity of our

method, we applied it to a selection of synthetic data

sets. The data sets were devised to emulate the

situations encountered in epidemiology studies

involving common diseases having suspected asso-

ciations with multiple factors that could include

inherited genotypes, somatic genotypes, demo-

graphic characteristics, or exposures. For example,

the features may consist of data on SNPs, and the

dependent variable may be a particular type of

cancer.

Data-set construction
For this application, we undertook a simple example

that considered the potential effect of nine genes as

independent variables and a binary disease-de-

pendent variable, case-control status. At each gene,

we specify a SNP of interest with two alleles. We

designate the common, or major allele A and the

rare, or minor allele a. Because somatic cells (cells

other than egg and sperm) have paired (diploid)

chromosomes with one allele from each parent for

each SNP, three possible allele combinations, or

genotypes, arise: AA, Aa, and aa. If the frequency of

A is p, then the frequency of a is 1� p. Under

ordinary circumstances, these two alleles combine

in binomial proportions (i.e., Hardy-Weinberg

equilibrium, or HWE, for short) to form three

genotypes, such that

f reqðAAÞ ¼ p2

f reqðaaÞ ¼ q2

f reqðAaÞ ¼ 2pq

The minor allele frequencies were supplied as

parameters, and the three genotype frequencies

were calculated for each gene assuming HWE,

resulting in an assortment of genotype frequencies

across the nine genes, assuming biallelic polymor-

phisms. Each individual was randomly assigned a

genotype for each gene, with probability freq(geno-

type). A genotype pattern was then specified as

having an enhanced risk. Each individual was then

checked for a genotype match to the specified risk

pattern and labeled a case or control by using

penetrance parameters R
1
¼ prob(casejmatch) and

R
0
¼ prob(casejnot match) respectively, until a given

number of cases and controls were generated.

As an illustration, consider a set of genes in which

the minor allele frequencies are all 10 percent. HWE

then gives freq(AA) ¼ 0.9*0.9 ¼ 0.81, freq(Aa) ¼
2*0.9*0.1 ¼ 0.18, and freq(aa) ¼ 0.1*0.1 ¼ 0.01 for

each gene. Using these frequencies, we assign

genotypes for all genes to a population such that the

genotype frequencies in the population approximate

HWE. For example, each person is assigned G1¼AA

with probability 81 percent, G1 ¼ Aa with proba-

bility 18 percent, and G1 ¼ aa with probability 1

percent. In this example, a population of 1000

people would thus have about 810 people with

genotype AA, 180 people with genotype Aa, and 10

people with genotype aa, for each gene. We then

specify a (multi-)gene pattern as conferring an

increased risk of disease. For example, people with

G1¼ AA and G2¼ Aa could have a 20 percent risk,

that is, p(casejmatch)¼ 0.2, whereas everyone else,

including people that match only one of the two

genotypes in the pattern, has a 10 percent risk, that

is, p(casejnot match) ¼ 0.1. Note that there is no

increased risk for a partial match. We assign people

to the cases with 20 percent probability if they have

G1 ¼ AA and G2 ¼ Aa, and with only 10 percent

probability otherwise. In this example, 0.81*0.18 ¼
0.1458, or about 146 of the 1000 people would

match, and of those, about 20 percent, or 29 people,

would be cases, and 80 percent, or 117 people,

would be controls. Of the 854 people who did not

match, about 10 percent, or 85 people, would be

cases, and 90 percent, or 769 people, would be

controls. The 2 3 2 table for such a pattern is shown

in Table 2.

Table 2 The 2 3 2 contingency table for one of the

data sets used in the validation runs

G1 ¼ AA and G2 ¼ Aa Cases Controls Row totals

Match 29 117 146

Do not match 85 769 854

Column totals 114 886 1000

OR ¼ 2.24, P ¼ 0.000829, FOM ¼ 3.08
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Results and analysis

We used a variety of parameter values to construct a

series of situations for application of our pattern

discovery method. Populations were generated that

had pattern complexity, allele or genotype frequen-

cies, and risk (i.e., odds ratio) effects that are typical

of those seen in molecular epidemiology studies.

Among the properties explored were the effects of

the complexity of the doped pattern (intentionally

risk-enhanced pattern) and its overall frequency in

the population (N
with

/ N
total

in Table 1) on the

ability of the algorithm to reliably detect the pattern.

All populations were generated with N
cases
¼ 500

and N
controls

¼ 1000. The controls used were a

random sample of the much larger number of

controls generated. Pattern complexity was varied to

include from one to five genes, and estimated

pattern frequency, computed as the product of the

individual genotype frequencies, ranged from 0.1

percent to 81 percent. The risks R
0

and R
1

were kept

constant at 10 percent and 20 percent, respectively,

resulting in an average odds ratio of 2.3. We used

statistical significance, expressed as �Log
10

(P-val-

ue), as a FOM for prioritizing the queue and ranking

the results. The only constraint was that the

minimum fraction of cases with the pattern of

interest (support) was set to 5 percent for all the

runs. For some of the rarer patterns, additional runs

were made using 1 percent support.

Table 3 summarizes the results of some represen-

tative runs. The results of each run show the

observed overall frequency, odds ratio, FOM ¼
�Log

10
(P-value), and rank of the discovered pattern

out of the total patterns reported. A ‘‘�’’ indicates

‘‘pattern not discovered.’’ At 5 percent support, the

method reliably picks up patterns down to 5 percent

frequency, and detects even rarer patterns. At 1

percent support, there are roughly 10 times more

patterns reported, and reliable detection drops off at

around 3 percent frequency. A larger population

would be needed for reliable results at the 1 percent

level. The combined run mixes two populations and

resolves their components.

Figure 5 summarizes the coverage, detection, and

#1 ranking for the runs in Table 3. Runs marked

with a triangle detected the test pattern. Runs

marked with asterisks ranked the test pattern #1. Of

the 23 runs with 5 percent support, the test pattern

was detected in 18, ranked #1 in 14, and in the top

10 in 17. Of the five patterns not detected at

5 percent support, four were rerun with 1 percent

support, and three were detected, but not with high

ranks due to insufficient sample size for such rare

patterns. Nevertheless, for frequencies in the range

typically encountered in clinical studies of common

diseases, the pattern of interest is clearly visible.

The combination run demonstrates the utility of the

method for resolving multiple etiologies in hetero-

geneous populations. The populations of runs 9 and

10, with two and three genes respectively, were

mixed by combining the original two case files and

two control files into a single pair with 1000 cases

and 2000 controls. The algorithm was run with 5

percent minimum support. The two components

were found at ranks #6 and #8. Note that the odds

ratio and FOM are degraded from the separate

component values because in the mixed population,

the individuals from population #9 that happen to

have pattern 10 do not have the enhanced risk of the

individuals from population 10 with the same

pattern, and vice versa. As a result, the odds ratios of

both components are reduced to values consistent

with a risk of 15 percent for each pattern in the

combined population, compared to 20 percent in the

separate populations. (We can average R
0
¼ 10%

and R
1
¼ 20% because the proportions of both cases

and controls in the mixture are equal.) To test this

prediction we generated the two original popula-

tions 10 times each, with R
1
¼ 15% instead of 20%

(data not shown). The observed odds ratio for the

components in the mix was within 1 standard

deviation of the mean odds ratio for the separate

components with R
1
¼ 15%. Given this worst-case

mix scenario, the observed ranks (#6 and #8) are an

indication of the strength of the overall method.

The lattice structure described previously is used to

inspect the neighborhoods of the two components of

the mixed pattern. Figure 6 shows the relationships

between the designated patterns 9 and 10 having

ranks #8 and #6, respectively, and other patterns

that ranked better. Rank #7 is a 3-gene specialization

of the 2-gene component with rank #8. Ranks #4 and

#2 are 4-gene specializations of the 3-gene compo-

nent with rank #6, and ranks #3 and #1 overlap with

two of the 3-gene component’s features. Overall, all

but one (#5) of the top 8 patterns differ from the

designated patterns by either a single addition or a

single substitution. The protective pattern with rank

#5 has no features in common with any of the other

patterns. This is not surprising, because one might
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Table 3 Results of representative validation runs

Run N genes Component Genotype Freqs. (%) Estimated Freq. (%) Observed Freq. (%) Odds Ratio FOM Rank Total

A. Single-doped patterns run at minimum support of 5 percent

1 1 81 81.0 82.7 2.5 7.8 1 1839

2 2 81, 73 59.3 62.6 2.4 13.4 1 1953

3 1 49 49.0 51.5 2.7 18.1 1 1236

4 3 81, 73, 66 39.0 42.6 2.2 11.5 1 1837

5 4 81, 73, 66, 59 22.9 29.2 2.0 8.8 1 1945

6 1 25 25.0 25.3 2.7 15.0 1 1034

7 2 49, 46 22.5 24.3 2.7 14.5 1 1260

8 5 81, 73, 66, 59, 53 12.0 14.5 2.3 7.4 1 1833

9 2 37, 35 13.0 13.9 2.0 5.2 1 1188

10 3 49, 46, 43 9.7 11.3 2.5 7.5 1 1211

11 2 25, 25 6.3 8.5 2.1 4.1 1 983

12 1 5.4 5.4 7.2 2.0 3.2 1 1753

13 3 37, 35, 32 4.2 5.6 3.2 6.4 1 1131

14 1 3.6 3.6 4.1 2.7 4.0 1 1736

15 1 7.7 7.7 9.3 2.4 6.1 2 1776

16 1 49, 37, 27 5.0 6.5 1.9 2.7 4 1134

17 4 52, 46, 40, 35 3.3 4.0 2.2 2.7 9 1683

18 4 49, 46, 43, 40 3.9 4.3 2.2 2.9 15 1144

19 1 2.1 2.1 — — — — 1845

20 3 25, 25, 25 1.6 — — — — 1017

21 5 49, 46, 43, 40, 37 1.4 — — — — 1158

22 1 1 1.0 — — — — 1796

23 4 25, 25, 25, 25 0.4 — — — — 1003

B. Single-doped patterns run at minimum support of 1 percent

24 1 25 25.0 25.3 2.7 15.0 1 11734

25 1 3.6 3.6 4.1 2.7 4.0 1 10601

26 2 25, 25 6.3 8.5 2.1 4.1 2 11685

27 1 49, 37, 27 5.0 6.5 1.9 2.7 38 12138

28 1 2.1 2.1 1.9 2.5 1.9 216 10199

29 3 25, 25, 25 1.6 2.2 1.9 1.3 1059 11651

30 1 1 1.0 1.2 2.0 1.0 2322 10005

31 4 25, 25, 25, 25 0.4 — — — — 11633

32 5 25, 25, 25, 25, 25 0.1 — — — — 11614

C. Double-doped patterns run at minimum support of 5 percent

33a 2 37, 35 13.0 14.2 1.5 3.4 8 1145

33b 3 49, 46, 43 9.7 10.4 1.6 3.7 6 1145
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expect protective patterns and risky patterns to have

little in common.

The rankings shown in Table 3 are based on P-

value, and thus reflect an estimate of the type-1

error associated with statistics derived from the 2 3

2 table. For real data, the 2 3 2 table itself would

have estimated errors for all four cells based on the

genotyping error rate and the missing data rate.

Quantitative estimates of these errors are beyond the

scope of this paper. One could, however, explore the

distribution of FOM, and in particular, the distribu-

tion of best FOM, for an ensemble of data sets with

randomized affection status. This was not done for
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our synthetic examples because we could compare

the list of cliques directly with the known true

patterns.

SUMMARY AND FUTURE DIRECTIONS
We have described a graph-theoretical approach to

searching for patterns in categorical data and

demonstrated its ability to reliably detect and

identify patterns that confer risk in situations typical

of molecular epidemiological case-control studies. In

particular, our method performs well on multi-

variate patterns that often present a challenge for

traditional methods. The technique can be used to

sort out multiple patterns conferring independent

risks, indicating its potential for resolving multiple

etiologies. We also showed how the use of the lattice

concept can be helpful in understanding the

relationships among discovered patterns.

An effort to expand the scope of our approach and

enhance the features and performance of the

implementation is under way. Until now we have

focused on the effects one clique (or family of

cliques) at a time. The individual elements of a

clique are implicitly connected with the logical AND

operator. When considering more than one clique

from separate families, the combination is aptly

described using the logical OR operator between the

cliques. Hence, a full description of a combination of

cliques would involve a mixed Boolean expression.

We are currently working on an extension to our

method that automatically detects such combina-

tions and simplifies their Boolean descriptions.

Another area for future work involves more

extensive analysis of the overlaps in source sets and

terminal sets within the lattice. The strict definition

of clique can be relaxed, allowing sets with less than

complete connectivity to participate in patterns,

perhaps more closely approximating the situations

encountered in real studies. We are exploring

additional enhancements to the algorithm, including

more complex FOM and constraints. We are

currently engaged in analyzing data from a real

epidemiological study involving genetic and envi-

ronmental risk factors for breast and endometrial

cancer.
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