A health-care data model
based on the HL7 Reference
Information Model

The integration of medical information from various sources is gaining in importance
as hospitals and medical research centers attempt to gain new insights into existing
data. The Health Level Seven® (HL7®) organization has developed an abstract

information model for health-care data, the HL7 Reference Information Model (RIM).
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on RIM. Our approach, which combines elements of entity-relationship data modeling
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and entity-attribute-value data modeling, involves the modeling of base RIM classes,
RIM inheritance, and RIM data types. We incorporated the resulting data model into
IBM Clinical Genomics, a product that integrates clinical and genomic data in a way
that enables medical researchers to carry out clinical research.

INTRODUCTION data stores (ODS), atomic data stores, and data

Integration of enterprise-wide clinical information is
getting more attention as hospitals and academic
medical research centers attempt to gain new
insights into existing data. Health-care data has
many unique characteristics that differentiate it from
other industries and that make it suitable for an
abstract data model approach. These include data
sparseness, a very large number of dimensions, non-
additive facts, a constantly changing set of attri-
butes, and the need for near real-time data.'

Bill Inmon, the father of the data warehouse
concept, defines a data warehouse as a “subject-
oriented, integrated, nonvolatile, and time-variant
collection of data in support of management’s
decisions.”” Data warehouse architectures include
components such as staging databases, operational
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marts. Building and managing a data warehouse
encompasses topics such as security, metadata, end-
user access tools, team roles and responsibilities,
and project principles. These important topics are
covered elsewhere.’ In building an effective ware-
house, the design of the database models and
populating the database with data play an important
role.” Importing data into the warehouse, also
known as the Extract/Transform/Load (ETL) proc-
ess, is usually the most time-consuming and
expensive part of any data warehouse project.
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Whereas in other industries, generic data warehouse
models have proven successful,4 the characteristics
of health-care data complicate both the ETL process
and the design of the physical data model. Much

m Health-care data has many
unigue characteristics that
differentiate it from other
industries and which make it
suitable for an abstract data
model approach m

work has been done by the Health Level Seven**
(HL7**) organization to create object models for
health care to support the exchange, management,
and integration of health-care information.

The HL7 organization, which is accredited by the
American National Standards Institute (ANSI**),
has the mission to develop standards for the health-
care industry worldwide. HL7 participants include
the top health-care organizations in the world. The
HL7 standards specify the transmission and ex-
change of health-care data between applications,
systems, and organizations. The HL7 Version 2.x set
of standards (Version 2.5 is the latest) is considered
to be the workhorse in health-care data exchange
and is the most widely implemented standard for
health-care information in the world.

In 1997, HL7 began to work on HL7 Version 3 (HL7
V3), whose message development approach differs
significantly from previous versions. All message
specifications from HL7 V3 onward will be derived
from the HL7 Reference Information Model (RIM).
The HL7 RIM (RIM, for short) is a static model of
health-care information that broadly and abstractly
covers all aspects of a health-care organization’s
clinical and administrative information. In the HL7
V3 message development process, RIM is con-
strained to cover just the information needed for a
particular message. Although it was not intended for
the purpose of database design, RIM provides an
integrated model for health-care data, and we found
it to be a suitable basis for a data model used in a
data warehouse architecture.

A RIM-based data model could be used in a number
of ways in a data warehouse architecture. Although
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it could be used as the atomic data store or as an
ODS, we have found that it is better suited as a
staging database that feeds data to another layer in
the data warehouse. This placement simplifies the
process of getting data into the warehouse by
enabling storage of all data from HL7 V3 messages
without requiring query and reporting tools to deal
with the complexities of a RIM-based data model for
the ODS or atomic data store.

We describe in this paper our approach to imple-
menting a physical data model based on RIM. We
incorporated our solution into the IBM Clinical
Genomics (CG) product.5 CG integrates clinical and
genomic data in order to enable medical researchers
to carry out clinical research. CG is based on a
message-oriented architecture that supports several
messaging standards for health care, including HL?.

The rest of this paper is organized as follows. We
first examine the two main data modeling method-
ologies that we used in implementing a physical
data model for health-care data: the entity-relation-
ship (ER) methodology and the entity-attribute-
value (EAV) methodology. Then we describe our
approach, which combines elements of ER and EAV
models, and we discuss modeling of the base RIM
classes, RIM inheritance, and the RIM data types.
Next, we describe the special characteristics of
health-care data and the ways we deal with the
challenges that arise. We then describe the applica-
tion of our design to CG. The last section contains
concluding remarks.

DATA-MODELING METHODOLOGIES
Methodologies for modeling data include hierar-
chical models, network models, relational models,
ER models, EAV models, and object-oriented mod-
els. Our RIM-based data model combines elements
of relational, ER, and EAV models.

Entity-relationship model

The design of databases most often uses an ER data
model. In an ER model, an entity represents a
discrete object or concept, whereas a relationship
represents an association between two or more
entities. Both entities and relationships can have
attributes.

Because the ER model is conceptual, it is typically

implemented by using a relational model where an
entity is typically implemented as a table and
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attributes are implemented as columns within that
table. Relationships can be implemented either as
separate tables (this is necessary when the rela-
tionship is many-to-many) or as foreign key
columns in an entity table.

Attributes can be thought of as facts about an entity.
In the typical implementation of an ER model, all
attribute values for an entity are stored in the same
row in the entity table, in which the column names
specify the attributes of the entity. A patient’s street
address, date of birth, and hematocrit percentage
would each correspond to a different column.
Whether two columns are in the same table or in
different tables is a matter of database normalization.

Entity-attribute-value model

Because of the unique characteristics of health-care
data, a common model used in health-care data-
bases is the EAV data model.”” In the EAV data
model, each row of a table corresponds to an EAV
triple: an entity, an attribute, and the attribute value.
For example, the entity “patient” has the attribute
“street address,” a value of which could be the text
“123 Chestnut Street.” Similarly, the entity “patient”
can also have the attribute “hematocrit percentage,”
a laboratory test result with an integer value of 41.

The use of EAV models for clinical data is appealing
because adding new attributes to an entity does not
require changes to the database design. This is an
important consideration for clinical applications for
which new attributes in the form of laboratory
measurements and diagnosis variables are fre-
quently added. Whereas EAV-based physical data
models are easy to design and administer, the design
and administration of ER databases are more
complex and thus more costly than EAV databases.
This is because there are thousands of different
laboratory tests and EAV models are more efficient
at representing sparse data.

Constructing queries for EAV models, however, is
more complex.6 Consider, for example, a query to
retrieve the patient identifier (ID) and name for all
patients who reside on a given street. In a conven-
tional (ER) database, in which a column represents
an attribute, the query would take the form:
SELECT patientID as ‘Patient ID’, name as ‘Name’
FROM demographics

WHERE street LIKE ‘% Chestnut Street%’

IBM SYSTEMS JOURNAL, VOL 46, NO 1, 2007

In an EAV database, the query would instead look
like this:

SELECT tl.patientID as ‘Patient ID’, tZ2.name as
‘Name’

FROM patient tl, patient t2

WHERE tl.patientID=t2.patientID AND
tl.attribute= ‘street’ AND

tl.value= ‘Chestnut Street’” AND
t2.attribute = ‘name’

The EAV database query requires more predicates
because both the attribute and the column need to
be specified. In addition, in the conventional design,
because the name of the patient and the street
address columns can be in the same table, only one
table needs to be specified in the query. In the EAV
database query, the table needs to be self-joined in
order to return the name of the patient.

If we consider repeating elements such as laboratory
tests and take into account the effects of normal-
ization, the number of tables to be joined in the EAV
design is not always larger than in the ER design.
Consider for example the query that returns the
patient ID and name for all patients with a glucose
reading greater than 6.1 and a hematocrit percentage
greater than 41. In the conventional design, the
query would use three different tables:

SELECT patientID as ‘Patient ID’,
‘Name’, t2.value as ‘Glucose’
t3.value as ‘Hematocrit’

name as

FROM demographics tl, glucose t2, hematocrit t3
WHERE tl.patientID=t2.patientID AND
tZ2.patientID=t3.patientID AND

t2.value > 6.1 AND

t3.value > 41

In the EAV design, the query joins three instances of
one table and looks like this:

SELECT tl.patientID as ‘Patient ID’,
tl.name as ‘Name’, t2.value as ‘Glucose’,
t3.value as ‘Hematocrit’

FROM patient t1, patient t2, patient t3
WHERE tl.patientID=t2.patientID AND
tZ2.patientID=t3.patientID AND
t2.attribute= ‘glucose’ AND

tZ2.value > 6.1 AND

t3.attribute = *hematocrit’ AND
t3.value > 41 AND

tl.attribute = ‘name’
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Because of the generality of the RIM model, which
includes attributes without a predetermined data
type, its implementation required the use of some
aspects of EAV models, as discussed in the next
section.

IMPLEMENTING THE HL7 RIM-BASED

DATA MODEL

Implementing the RIM-based data model means
mapping it to a physical database model. It is
important to create a physical model that closely
matches the RIM logical model so that the mapping
between HL7 messages and the database is
straightforward. We use an approach that combines
elements of ER and EAV models.

Modeling the base HL7 RIM classes
The HL7 RIM is comprised of the following base
classes’:

* Act—represents actions that have happened, are
happening, or are scheduled to happen

* Entity—represents physical things or beings such
as persons, places, or devices

* Role—represents the role that Entities play as they
participate in a health-care act

® RoleLink—represents a connection between two
Roles

® Participation—represents the association between
a Role and an Act (for example, the context of an
Act, such as who performed it, for whom it was
performed, or where it was performed)

® ActRelationship—represents the association be-
tween two Acts (for example, the relationship
between an order for a blood test and the result of
a blood test)

Most of these classes have subclasses that further
refine the concept represented by the class. For each
base class in RIM, the subclasses form a hierarchy
rooted in the base class. For example, the class
LivingSubject is a subclass of Entity, and the class
Person is a subclass of LivingSubject.

To illustrate the use of these classes consider a
patient whose pulse rate is taken during a visit to the
doctor. The patient is represented as an instance of
class Person and an instance of class Patient, which
is a subclass of Role (a person with the role of
patient). The doctor visit is an instance of class
PatientEncounter (a subclass of Act), the pulse rate
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is an instance of class Observation (a subclass of
Act). The patient is linked to the visit by an instance
of Participation; the pulse rate measurement is
linked to the visit through an instance of ActRela-
tionship.

With the exception of the Observation class, which
we discuss later, all RIM classes are modeled using
the ER approach. Each RIM class is considered an ER
entity and mapped to a table in the physical model.”

To maintain the relationships between classes as
defined in RIM, foreign keys were added to the
appropriate class tables. When a relationship
involves a base class that has subclasses, the
relationship can involve any of the subclasses. In
this case, an additional column is added to store the
name of the table involved in the relationship. For
example, class Role can have two relationships with
any subclass of Entity, player and scoper. Therefore,
in addition to foreign keys player_id and
scoper_id in table ROLE, columns player_type and
scoper_type are added to specify the table with
which the foreign key has a relationship. As there
are no many-to-many relationships in RIM, no
additional mapping tables are needed to maintain
this type of relationship, as is the case in many
relational schemas.

Modeling HL7 RIM inheritance

Classes in RIM can inherit attributes from their
parent classes. When these classes are mapped to
physical tables, there are several ways to model the
class inheritance structure.

* Single table per class hierarchy—A single table
stores all the objects in each class hierarchy; the
table contains all the possible attributes for the
classes in the hierarchy.

* Tables that do not contain inherited attributes—A
separate table for each class in RIM contains only
the unique attributes for that class. When an
object is stored in the database in this case, a row
needs to be inserted in the base table and in each
of the parent tables in order to store all of this
object’s information. Foreign keys need to be
added to maintain the relationship between the
parent tables.

® Tables that contain inherited attributes—For each
class a separate table is created that contains all
the attributes for that class plus all the attributes
that it inherits from its parent classes. When an
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object is stored in the database, all the information
for the object can be stored in a single row of a
single table.”

The single-table-per-class hierarchy is the simplest
approach as it results in the smallest number of
tables and table relations. This approach, however,
is inefficient, as there are likely to be many unused
attributes for each object. There are some data
models in which this approach makes sense; for
example, when subclasses only contain a few
attributes. Because the number of attributes in many
of the RIM subclasses is large, this approach is less
attractive.

Using tables that do not contain inherited values is
the most complex approach. There are no duplicated
columns in this approach, which means the storage
of the data is efficient, but inserting, updating, and
querying data are complex. This is because the data
for a particular object are spread across multiple
tables in the database; consequently, storing an
object requires multiple inserts, and retrieving an
object requires joining multiple tables. Database
views (i.e. one view per logical class) could alleviate
the complexity of the queries, but would not avoid
the performance degradation. The advantage of this
approach is that referential integrity can be enforced
because there is a clear relationship between tables,
and all class hierarchies in RIM are linked together
at the base class (with a few exceptions).

The approach that offers the most for a RIM-based
model relies on tables that contain inherited
attributes. With this approach all the data for a
particular object are stored in a single table, which
makes inserting and querying the data simpler than
in the previous approach. Storage utilization is
efficient as each table contains only the needed
attributes for the class, and complexity is reduced
because there is no need for foreign keys to connect
parent and child tables. Although referential integ-
rity cannot be enforced between class hierarchies,
this is not a problem as long as the data are always
loaded in a controlled and trusted manner. In this
approach, the application inserting the data is
required to enforce the appropriate referential
integrity measures.

Figure 1 illustrates the inherited attributes in the

RIM-based implementation of class Person. It shows
owned and inherited attributes and their relations to
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data type tables. The Person table contains its own
attributes, such as marital_status_id, attributes
inherited from class Living Subject, such as
gender_code_id, and attributes inherited from class
Entity, such as status_code_id. To illustrate how
data is stored with this approach, consider the

m Data sparseness is a
characteristic of health-care data
that has to be considered when
designing a physical data model m

marital status attribute. Because marital status is a
coded value, its data such as code, code_system,
version, display_name, and so on would be stored
in the DT_CE table, and a foreign key to this table
would be stored in the marital_status_id column
of table Person.

MODELING THE OBSERVATION CLASS WITH A
HYBRID APPROACH

The Observation class in RIM captures many types
of data in HL7 messages, such as diagnoses,
laboratory results, allergies, and vital signs. An
Observation instance has, in its most basic form, an
ID, a code, and a value—a triple that is basically
equivalent to an EAV triple. The code identifies the
observation (e.g., glucose), and the value represents
what was observed (e.g., 35 mg). The value
attribute (class Observation) is defined as an ANY
data type, which means it can be any valid HL7 data
type. When messages are created using the HL7
refinement methodology, the value attribute, as
with other attributes, can be constrained to a
specific HL7 data type. However, a RIM data model
is intended to store data from any and all HL?
messages and therefore, needs to accommodate any
data type that may be associated with an Observa-
tion.

Although conceptually EAV models require only
three columns, the physical data model normally
uses one table for the entity (Observation in this
case) and a separate attribute table for each possible
data type. Each attribute of an entity is stored as an
additional row in one of the attribute tables,
depending on the attribute’s data type. EAV models
tend to be more difficult to query because self-joins
are required to access all the information for a given
object. The EAV modeling approach is intended to
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Figure 1
Inherited attributes in the Person class

allow for maximum flexibility in the number and
type of attributes that an entity can have, but
because RIM is fairly static in terms of attributes per
entity, this flexibility is not required. The other
valuable aspect of an EAV model is how it can
efficiently handle attributes where the data type is
not predetermined, such as the value attribute. A
hybrid between an EAV model and a conventional
ER model (hybrid approach, for short) combines the
advantages of these approaches and is advantageous
when modeling the Observation class due to the
flexibility of the value attribute (ANY data type). In
this hybrid approach, one table is created for each
possible data type of the value attribute. Each table
contains all the Observation’s predetermined attri-
butes (attributes where the data type is specified;
i.e., it is not the ANY data type) and the value
attribute constrained to a specific data type. This
allows for all the attributes for a given observation
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to be stored in a single table, which makes data

access easier. However, it also allows flexibility in
the data types that can be supported for the
observation’s value attribute.

Figure 2 shows the EAV modeling approach and our
proposed hybrid approach side by side. In RIM, an
Observation class is linked to a Patient or other Role
subclass by a Participation class. A standard EAV
implementation of the Observation class is shown in
blue on the left side of Figure 2. An Observation
table is linked directly to a Participation table
through a foreign key (a Patient table is connected to
the Participation table but not shown). The Obser-
vation table does not contain any attributes. All
attributes and their values are stored in one of the
attribute tables depending on the attribute data type.
Thus, the Observation.classCode attribute is
stored in the ATTR_STRING table because it is a
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STANDARD EAV APPROACH PARTICIPATION
transaction_id
id
version
OBSERVATION e s
transaction_id BIGINT
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version BIGINT act_type
ATTR_STRING
. obs_id BIGINT
attribute BIGINT
value VARCHAR
ATTR_REAL
- obs_id BIGINT
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ATTR_INT
L obs id BIGINT
attribute BIGINT
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Figure 2

HYBRID EAV-EV APPROACH

BIGINT OBSERVATION_INT
E:gm$ transaction_id BIGINT
— id BIGINT
PRRIRAR(EA) version BIGINT
BIGINT class_code VARCHAR(64)
mood_code VARCHAR(64)
VARCHAR(64) code_id BIGINT
value BIGINT

OBSERVATION_REAL

transaction_id BIGINT

— id BIGINT
version BIGINT
class_code VARCHAR(64)
mood_code VARCHAR(64)
code_id BIGINT
value DOUBLE

OBSERVATION_PQ

transaction_id BIGINT

— id BIGINT
version BIGINT
class_code VARCHAR(64)
mood_code VARCHAR(64)
code _id BIGINT
value DOUBLE
unit_code VARCHAR(64)

Modeling RIM inheritance: standard EAV-EV approach versus hybrid EAV-EV approach

string data type (the name of the attribute,
classCode, is stored in the attribute column of
table ATTR_STRING). A hybrid implementation of
the Observation class is shown in green on the right
side of Figure 2. Several observation-type tables are
created, such as OBSERVATION_PQ, one for each
possible data type of the attribute value. These
tables are also linked to the Participation table
through a foreign key. The entry in the act_type
column in the Participation table identifies the
observation-type table for that row. There is no need
for separate attribute tables because all attributes
that are not of data type ANY are added to each
observation-type table.

Modeling HL7 RIM data types
A few of the HL7-defined data types can be mapped
directly to a database management system (DBMS)
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data type, such as the string (ST) data type which
can be mapped directly to a variable length
character (VARCHAR) database column. Most of the
HL7 data types are more complex and need to be
modeled differently. When there are multiple parts
to a data type, there are three approaches that could
be used to represent the data type in a physical
model, and all three were used for modeling some of
the HL7 data types:

1. Multiple columns in the class table—Store each
part of the data type as a separate column in the
RIM class table. This is an appropriate approach
for simple multipart data types where the data
does not need to be referred to by other objects
and there can be only one instance of the data
type per instance of the RIM class. A data type
that is suited for this approach is the physical
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quantity (PQ) data type which contains two parts:
a value and a unit code.

2. A separate table for the data type and a foreign
key in the class table—Create a separate table to
store the data type’s data and add a foreign key in

m Operating a data warehouse
with near real-time data is a key
requirement for health-care
applications m

the class table that points to the new data type
table. This approach is appropriate for more
complex data types and data types that can be
referred to by multiple objects. An example is the
coded element (CE) data type, which has multiple
parts (code, codeSystem, displayName, etc.) and
which can be referred to by multiple objects.
Consider a CE that represents Gender-Male:
because it can be referred to by multiple person
objects, it is more efficient to store the CE data
once in a CE table rather than in each object and
to store a foreign key in the person table.

3. A separate table that includes a foreign key in the
data type table—Create a separate table that
contains the data type’s data and a foreign key to
the owner class table. This approach is needed
when the data type is defined as a set in RIM (i.e.,
SET<II>, which is a set of instance identifiers).
In the case where a class can have multiple
instances of a data type, the foreign key that
maintains the relationship between the class and
data type table needs to be in the data type table.

HEALTH-CARE DATA CONSIDERATIONS
Health-care data have certain properties that make
them different from data in other industries, such as
retail or insurance. The following characteristics of
health-care data need to be considered when a data
model is designed for health care:

® Data sparseness—Only a small subset of the
possible attributes associated with a patient are
used on any one patient. For example, the Logical
Observation Identifiers Names and Codes
(LOINC**) coding system has over 31,000 codes
to represent unique laboratory tests,10 yet most
patients will have only a very small number of
different laboratory tests performed on them over
their lifetime.
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* Very large number of dimensionsl—Diagnostic,
procedure, and laboratory coding systems contain
tens of thousands of different codes for the various
medical information items on a patient.

¢ Nonadditive variables—Many laboratory mea-
sures, such as glucose or body temperature,
cannot be meaningfully added. In some cases,
other aggregations, such as averages of non-
additive variables, can be performed. However,
such averages are also nonadditive. Therefore, for
nonadditive variables, the data must be catego-
rized in order to perform dimensional analysis,
such as roll-ups or drill-downs.

® Rapidly expanding set of attributes—New labora-
tory tests, diseases, drugs, genes, and so forth, are
being invented or discovered every day. A data
model for health care needs to be able to evolve as
new types of information are created.

e Deidentified data—Although patient-identifying
information is needed for some purposes (e.g.,
billing information but not patient health record
sent to external organizations), privacy concerns
require that health-care data be deidentified for
most purposes.

¢ Need to distinguish between source data and
derived data—Some data, such as laboratory
measurements, are created at the source and other
data are derived, such as annotations to a clinical
note generated through a text analysis process or
data that has been normalized (mapping of
different codes to a unified code). Often it is
important to be able to distinguish between source
data and derived data, which means that the
database system has to keep track of this
information.

* Need to associate some data with explanatory
metadata—In addition to traditional versioning of
data, which is required to meet the definition of a
data warehouse, a health-care data warehouse
needs to be able to accommodate how data is
captured over time. Procedures for a particular
laboratory test can change over time, and different
devices can measure the same data differently. An
example is the difference between a body’s
temperature recorded from an oral thermometer in
contrast to a rectal thermometer.

* Requirement for near real-time data—Operating a
data warehouse with near real-time data is a key
requirement for health-care applications. A data
warehouse could be used to eliminate errors in the
physician’s order entry system.11 Similarly, up-to-
the-minute test results could be used to identify
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patients present in the clinic in order to approach
them for participation in a research study.

As an abstract model of health-care data, RIM offers
significant benefits in that it can model any
conceivable kind of data. This advantage represents,
at the same time, its greatest challenge, which is
managing and maintaining data consistency. As
health-care data tends to have attributes that are
nonadditive and its dimensionality tends to be high,
a physical data model should be as general as
possible.

Mapping information to RIM can be done in more
than one way. A pregnancy complication, for
example, could be stored as two objects: an
Observation object for the pregnancy, another
Observation object for the complication, and an
ActRelationship object for the relationship between
the two. Another way to record the same informa-
tion would be to store the pregnancy as an
Observation object and the complication as a
qualifier code to attribute value. This mapping
challenge is helped somewhat by use of the defined
HL7 V3 messages, as these are constrained instances
of RIM with a predefined structure. However, some
of the HL7 V3 message standards such as CDA
(Clinical Document Architecture) are still intention-
ally abstract so that they are flexible enough to
support the exchange of unstructured health-care
data, such as various types of clinical observations
and services. Loading data into an HL7-based data
model needs to be carefully managed to ensure
consistent mapping of information to RIM
structures.

In addition to message structure and semantics, it is
important to maintain a consistent vocabulary for
the terms used in the warehouse. Health-care
organizations use many different coding systems for
their vocabularies, including LOINC, SNOMED
CT**,12 and ICD-9-CM,13 as well as their own local
coding systems. RIM and HL7 messages support any
and all of these coding systems, and they can coexist
in a data model based on RIM. If the source systems
that are sending data to the warehouse are using
different coding systems, normalization of the
vocabularies needs to be addressed. There are
several ways to do this. One option is that each
query and decision support application which
accesses the warehouse would handle the vocabu-
lary mapping, which would make these applications
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more complex. Another option is to normalize the
vocabularies in the HL7 messages before the data is
entered into the warehouse.

The clinical and genomic data for each patient tends
to be sparse. Of the thousands of diseases, medical
conditions, and laboratory tests in existence, any

m IBM Clinical Genomics
integrates clinical and genomic
data for medical research
purposes m

given patient is not likely to have information for a
majority of the data elements. It would be inefficient
to create tables and columns for each of these
potential data elements. A more efficient choice is to
use a hybrid approach based on the RIM Observa-
tion class as was previously described. This ap-
proach allows great flexibility in the data types
supported for health-care data, but also does not
require that each data element be defined as an
explicit column.

A hybrid approach also works well in a health-care
environment where new laboratory tests, diseases,
medications, and so forth, are constantly added and
changed. The data model does not require changes
for the addition of a laboratory test as long as the
data type for the laboratory test’s value is already
supported. The instruments and devices used for
laboratory tests can change over time, and different
instruments can record the same test differently. A
simple example is a body temperature measure-
ment, which is recorded slightly differently de-
pending on whether a rectal or oral thermometer is
used. This approach requires that metadata be
stored along with a laboratory test observation in
the warehouse, so that the device which made the
observation is clearly defined. RIM supports this
metadata by including a participation object to the
appropriate device for each observation, which is
possible in many HL7 messages and in CDA docu-
ments.

In some cases a clinical data warehouse needs to

store deidentified data as well as patient-identifying
data. Regulatory mandates regarding patient privacy
require that patient data be deidentified before being
used in patient population studies. Patients may give
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permission to use their identifiable data for research
purposes. HL7 messages, in general, cannot ad-
equately represent deidentified data—there is no
standard way to distinguish between deidentified
and identifiable data. RIM does not currently
address the concept of deidentified data. However,
another possible approach to this challenge is to
store the identifiable information in the warehouse
and control access to this information by using
privacy policies. IBM offers a solution for controlling
access to private health-care data known as the
Hippocratic Database.™*

Data warehouses often contain data that is derived
from other data. It is not always necessary to store a
derived data item, but in many cases it is more
efficient to do so rather than compute it each time it
is needed. Data from multiple systems that use
different coding systems, for example, need to be
mapped to a common coding system in the data
warehouse. The result of text analysis against
clinical notes or pathology reports is yet another
example of derived data.

In some cases, it is important to distinguish between
source (nonderived) data and derived data. For
example, a discrete diagnosis code as a source data
item may be more accurate and treated differently
than the same code as a derived data item, say,
obtained by analysis of the free-text of a clinical
document. Therefore, the system should allow the
level of uncertainty associated with a derived data
item to be specified and stored in the database. One
way to approach this is to treat the certainty as a
binary value and assume that data which originate
from HL7 messages are certain, whereas other
derived data are uncertain. Another method is to
specify the uncertainty within the message itself by
setting the uncertainty code, which is included in all
subclasses of Act, including Observation.

One of the major advantages of the RIM data model
is the straightforward mapping of HL7 V3 messages
to the data model, but this advantage has been
limited by the slow adoption of HL7 V3 in the United
States. The vast majority of United States health-care
organizations are still using HL7 V2 messages
(which are not based on RIM), and it will likely take
some time for them to move to the new standard
because of the high cost associated with such a
move. However, there are some major efforts
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underway that will promote and help expedite the
move to HL7 V3.

The National Health System in the United Kingdom
is sponsoring the Spine project, which attempts to
develop a national, centralized repository for patient
information. The Spine architecture is based on HL7
V3 messaging.15 Other projects that are developing
RIM-based data models include the Canadian Health
Data Model from the Canadian Institute for Health
Information'® and Oracle Corporation’s Healthcare
Transaction Base product.17 Even though currently
there are few sources that generate HL7 V3
messages, the work on RIM-based data models will
pay off as medical informatics system vendors
eventually migrate to HL7 V3. In the meantime,
traditional ETL functions are used to move data
between health-care data sources and health-care
databases. Mapping HL7 V2 messages into HL7 V3
messages is possible, but this transformation can be
difficult as there is not always a direct one-to-one
mapping between the two formats. The IBM
Healthcare Collaborative Network solution can be
used to map HL7 V2 messages to RIM-based CDA
documents."®

In many industries, data warehouses are not
updated on a continuous basis. Many are updated
daily, weekly, or monthly, which is sufficient in
most cases. In health care, decisions need to be
based on the most current information, and decision
support systems would greatly benefit from inte-
grated real-time data. Integrating data into a data
warehouse in real time is a huge challenge, but it
will likely be an important requirement of future
data warehouse projects. An event-driven architec-
ture based on messaging standards such as HL7 is
crucial to implementing a real-time data warehouse.
Then data can be sent, as HL7 messages, to the
warehouse as soon as they are generated rather than
on the timetable of a traditional ETL process.

IBM CLINICAL GENOMICS PRODUCT

In the previous section we described our approach
to designing a physical data model based on RIM
and discussed its advantages for storing health-care
data. In this section we describe the application of
our approach to the IBM Clinical Genomics product.

We have implemented a RIM-based data model in

CG by using the methodology described earlier. CG
is based on a message-oriented architecture that
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Architecture of IBM Clinical Genomics

supports several messaging standards for health
care, such as HL7.

The diagram in Figure 3 shows the CG architecture.
The main components are the Healthcare Collabo-
rative Network (HCN) product, the HL7 CDA
Builder, the Universal Deidentification Platform
(UDiP), the Clinical Genomics server, the Clinical
Genomics Assimilation Model (CGAM), and the
Data Discovery and Query Builder (DDQB) product.

The HCN product collects health-care information in
standard messages such as HL7 V2.x, MAGE-ML
(MicroArray Gene Expression Markup Language),
BSML (BioSequence Markup Language), HapMap,
and ODM (Operational Data Model). It performs
deidentification of the data and assigns deidentified
global patient identifiers that allow information
from multiple institutions to be correlated. Another
important feature of this component is the ability to
aggregate a set of HL7 V2.x messages into a single
RIM-based CDA message, which allows the data to
be parsed and loaded into the RIM data model.

The HL7 CDA Builder enables creation of CDA and
other HL7 messages in a standard and consistent
format. It is a set of Java** APIs that can be used to
load clinical data from source systems into a
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standard message structure for sending to the CG
server. The UDiP component is an extendable
platform for deidentifying data. It can be used with
the HL7 CDA Builder to deidentify the patient
information contained in a CDA message.

The data processing engine (DPE) of the CG server
routes incoming messages to the appropriate
shredder, which parses the message and loads the
data into the appropriate data model. A data model
is included for each messaging standard supported
in CG, including HL7, MAGE, BSML, HapMap, and
ODM. The HL7 shredder parses and loads HL7 V3
messages into the RIM data model. The most
common HL7 V3 message standard used for transfer
of clinical data is CDA, but other HL7 messages can
be shredded and loaded into the RIM schema as
well. The advantage of this message-based archi-
tecture is that additional data sources can be added
without the additional cost of traditional ETL
between the source system and the warehouse. The
message standard (such as CDA) is the interface
between the source systems and the warehouse
system.

The CGAM data model is used to store current-
valued health-care information from various data
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sources, including the CG standards-based data
models, for analysis and reporting. As previously
discussed, the standards-based data models, such as
the RIM model, are highly normalized and not
optimized for query access. The CGAM data model
has been denormalized to some extent to facilitate
efficient querying and mining of data.

DDQB enables end users to query complex data,
such as that found in the health-care industlry.19
DDQB employs a novel data abstraction technology
that allows complex queries to be dynamically
created in end-user terms. Because DDQB translates
end-user queries into SQL (Structured Query Lan-
guage), users do not need to specify table names or
join predicates. DDQB also supports data access
control that meets security, privacy, and auditing
requirements. The DDQB data abstraction layer is
especially helpful in dealing with databases such as
the RIM-based data warehouse. It does this through
a data abstraction specification called the Data
Abstraction Model (DAM). Within the DAM, fields
are defined and associated with access methods,
which describe the mapping to the relational table or
tables that hold the data for the field. Access method
types include simple types (a field maps to a
column), composed types (a field maps to an
expression), or filtered types (a field relates to a
subset of a column based on some condition). The
filtered access method can be used with attribute-
value pairs to define a field, such as glucose, based
on the value column (when the attribute column is a
code relating to the laboratory type of glucose).
Although DDQB enables direct query of the RIM
model (which may be necessary for research),
reporting against the CGAM database for current-
valued data or against a data mart once analytic
dimensions are understood may provide better data
access performance. Even though data marts and, to
some extent CGAM, provide simpler database
designs, DDQB is still helpful for queries against
repositories using these models. DDQB features,
such as support for generating complex queries
without specifying joins and, for enforcing security,
privacy, and auditing requirements, apply broadly.

CG and DDQB are key components in a solution that
IBM is developing jointly with the Lupus Biomarkers
Working Group—an interinstitutional and interdis-
ciplinary group of researchers and clinicians work-
ing with patients suffering from lupus (systemic
lupus erythematosus). Using HL7 CDA documents

EGGEBRAATEN, TENNER, AND DUBBELS

produced at each participating research center, CG
accepts those documents and stores them in the RIM
model by means of the CG HL7 shredder. A
repository with a data model derived from CGAM is
populated with data from the CG RIM-based

m IBM Clinical Genomics is
based on a message-oriented
architecture that supports
several messaging standards
for health-care data, including
HL7 m

repository. DDQB is then configured to access the
CGAM-based repository, thereby enabling broad,
consistent, collaborative research and analysis
against a larger, more statistically significant,
community-wide patient cohort. This solution is a
path to increased understanding of lupus, and it
helps to advance the research and treatment of
lupus in ways that were, until now, not possible.

CG, which was initially released in July 2004, was
updated in September of 2006 with new technology
that includes the HL7 RIM data model. CG is being
used on an experimental basis by one health-care
provider and will be deployed later in 2006 in
several joint research projects involving a number of
health-care research organizations and IBM.

CONCLUSION

Health-care organizations have a wealth of data that
can help discover new treatments and improve
patient care. Our goal is to enable the health-care
industry to tap into this data by providing a solution
for integrating data from various sources for the
purpose of analytical studies. Our approach focuses
on taking advantage of an industry standard in the
development of a solution that is flexible, robust,
and meets industry requirements.

RIM is an information model for health care that
broadly covers all aspects of an organization’s
clinical and administrative information. Health-care
industry experts created RIM to support the defi-
nition of messages used for exchanging health-care
information. By deriving our physical data model
from RIM, we are able to take advantage of the
expertise of the HL7 organization and enable the
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handling of HL7 V3 messages in our RIM-based
database. Our design combines aspects of ER
modeling with a hybrid-EAV modeling approach.
The HL7 data types and the inheritance structure of
the RIM classes required additional modeling con-
siderations beyond standard ER modeling. After
health-care data populates our database, the data
can be restructured into specific data marts to serve
the specific analytical needs of the user community.

The RIM-based data model is a core component of
CG, a solution for integrating clinical and genomic
data. IBM, working with the Lupus Biomarkers
Working Group, has applied CG to the integration of
lupus data from various sources. We expect CG to
deliver value to other multicenter research projects
as well as intra-institutional integration projects.

**Trademark, service mark, or registered trademark of Health
Level Seven, Inc., American National Standards Institute,
Regenstrief Institute, Inc., SNOMED International, or Sun
Microsystems, Inc. in the United States, other countries, or
both.
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