
A health-care data model
based on the HL7 Reference
Information Model

&

T. J. Eggebraaten

J. W. Tenner

J. C. Dubbels

The integration of medical information from various sources is gaining in importance

as hospitals and medical research centers attempt to gain new insights into existing

data. The Health Level Sevent (HL7t) organization has developed an abstract

information model for health-care data, the HL7 Reference Information Model (RIM).

We describe in this paper our approach to implementing a physical data model based

on RIM. Our approach, which combines elements of entity-relationship data modeling

and entity-attribute-value data modeling, involves the modeling of base RIM classes,

RIM inheritance, and RIM data types. We incorporated the resulting data model into

IBM Clinical Genomics, a product that integrates clinical and genomic data in a way

that enables medical researchers to carry out clinical research.

INTRODUCTION

Integration of enterprise-wide clinical information is

getting more attention as hospitals and academic

medical research centers attempt to gain new

insights into existing data. Health-care data has

many unique characteristics that differentiate it from

other industries and that make it suitable for an

abstract data model approach. These include data

sparseness, a very large number of dimensions, non-

additive facts, a constantly changing set of attri-

butes, and the need for near real-time data.
1

Bill Inmon, the father of the data warehouse

concept, defines a data warehouse as a ‘‘subject-

oriented, integrated, nonvolatile, and time-variant

collection of data in support of management’s

decisions.’’
2

Data warehouse architectures include

components such as staging databases, operational

data stores (ODS), atomic data stores, and data

marts. Building and managing a data warehouse

encompasses topics such as security, metadata, end-

user access tools, team roles and responsibilities,

and project principles. These important topics are

covered elsewhere.
3

In building an effective ware-

house, the design of the database models and

populating the database with data play an important

role.
2

Importing data into the warehouse, also

known as the Extract/Transform/Load (ETL) proc-

ess, is usually the most time-consuming and

expensive part of any data warehouse project.

�Copyright 2007 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/07/$5.00 � 2007 IBM

IBM SYSTEMS JOURNAL, VOL 46, NO 1, 2007 EGGEBRAATEN, TENNER, AND DUBBELS 5

Whereas in other industries, generic data warehouse

models have proven successful,
4

the characteristics

of health-care data complicate both the ETL process

and the design of the physical data model. Much

& Health-care data has many
unique characteristics that
differentiate it from other
industries and which make it
suitable for an abstract data
model approach &

work has been done by the Health Level Seven**

(HL7**) organization to create object models for

health care to support the exchange, management,

and integration of health-care information.

The HL7 organization, which is accredited by the

American National Standards Institute (ANSI**),

has the mission to develop standards for the health-

care industry worldwide. HL7 participants include

the top health-care organizations in the world. The

HL7 standards specify the transmission and ex-

change of health-care data between applications,

systems, and organizations. The HL7 Version 2.x set

of standards (Version 2.5 is the latest) is considered

to be the workhorse in health-care data exchange

and is the most widely implemented standard for

health-care information in the world.

In 1997, HL7 began to work on HL7 Version 3 (HL7

V3), whose message development approach differs

significantly from previous versions. All message

specifications from HL7 V3 onward will be derived

from the HL7 Reference Information Model (RIM).

The HL7 RIM (RIM, for short) is a static model of

health-care information that broadly and abstractly

covers all aspects of a health-care organization’s

clinical and administrative information. In the HL7

V3 message development process, RIM is con-

strained to cover just the information needed for a

particular message. Although it was not intended for

the purpose of database design, RIM provides an

integrated model for health-care data, and we found

it to be a suitable basis for a data model used in a

data warehouse architecture.

A RIM-based data model could be used in a number

of ways in a data warehouse architecture. Although

it could be used as the atomic data store or as an

ODS, we have found that it is better suited as a

staging database that feeds data to another layer in

the data warehouse. This placement simplifies the

process of getting data into the warehouse by

enabling storage of all data from HL7 V3 messages

without requiring query and reporting tools to deal

with the complexities of a RIM-based data model for

the ODS or atomic data store.

We describe in this paper our approach to imple-

menting a physical data model based on RIM. We

incorporated our solution into the IBM Clinical

Genomics (CG) product.
5

CG integrates clinical and

genomic data in order to enable medical researchers

to carry out clinical research. CG is based on a

message-oriented architecture that supports several

messaging standards for health care, including HL7.

The rest of this paper is organized as follows. We

first examine the two main data modeling method-

ologies that we used in implementing a physical

data model for health-care data: the entity-relation-

ship (ER) methodology and the entity-attribute-

value (EAV) methodology. Then we describe our

approach, which combines elements of ER and EAV

models, and we discuss modeling of the base RIM

classes, RIM inheritance, and the RIM data types.

Next, we describe the special characteristics of

health-care data and the ways we deal with the

challenges that arise. We then describe the applica-

tion of our design to CG. The last section contains

concluding remarks.

DATA-MODELING METHODOLOGIES

Methodologies for modeling data include hierar-

chical models, network models, relational models,

ER models, EAV models, and object-oriented mod-

els. Our RIM-based data model combines elements

of relational, ER, and EAV models.

Entity-relationship model

The design of databases most often uses an ER data

model. In an ER model, an entity represents a

discrete object or concept, whereas a relationship

represents an association between two or more

entities. Both entities and relationships can have

attributes.

Because the ER model is conceptual, it is typically

implemented by using a relational model where an

entity is typically implemented as a table and

EGGEBRAATEN, TENNER, AND DUBBELS IBM SYSTEMS JOURNAL, VOL 46, NO 1, 20076

attributes are implemented as columns within that

table. Relationships can be implemented either as

separate tables (this is necessary when the rela-

tionship is many-to-many) or as foreign key

columns in an entity table.

Attributes can be thought of as facts about an entity.

In the typical implementation of an ER model, all

attribute values for an entity are stored in the same

row in the entity table, in which the column names

specify the attributes of the entity. A patient’s street

address, date of birth, and hematocrit percentage

would each correspond to a different column.

Whether two columns are in the same table or in

different tables is a matter of database normalization.

Entity-attribute-value model
Because of the unique characteristics of health-care

data, a common model used in health-care data-

bases is the EAV data model.
6,7

In the EAV data

model, each row of a table corresponds to an EAV

triple: an entity, an attribute, and the attribute value.

For example, the entity ‘‘patient’’ has the attribute

‘‘street address,’’ a value of which could be the text

‘‘123 Chestnut Street.’’ Similarly, the entity ‘‘patient’’

can also have the attribute ‘‘hematocrit percentage,’’

a laboratory test result with an integer value of 41.

The use of EAV models for clinical data is appealing

because adding new attributes to an entity does not

require changes to the database design. This is an

important consideration for clinical applications for

which new attributes in the form of laboratory

measurements and diagnosis variables are fre-

quently added. Whereas EAV-based physical data

models are easy to design and administer, the design

and administration of ER databases are more

complex and thus more costly than EAV databases.

This is because there are thousands of different

laboratory tests and EAV models are more efficient

at representing sparse data.

Constructing queries for EAV models, however, is

more complex.
6

Consider, for example, a query to

retrieve the patient identifier (ID) and name for all

patients who reside on a given street. In a conven-

tional (ER) database, in which a column represents

an attribute, the query would take the form:

SELECT patientID as ‘Patient ID’, name as ‘Name’

FROM demographics

WHERE street LIKE ‘% Chestnut Street%’

In an EAV database, the query would instead look

like this:

SELECT t1.patientID as ‘Patient ID’, t2.name as

‘Name’

FROM patient t1, patient t2

WHERE t1.patientID ¼ t2.patientID AND

t1.attribute ¼ ‘street’ AND

t1.value ¼ ‘Chestnut Street’ AND

t2.attribute ¼ ‘name’

The EAV database query requires more predicates

because both the attribute and the column need to

be specified. In addition, in the conventional design,

because the name of the patient and the street

address columns can be in the same table, only one

table needs to be specified in the query. In the EAV

database query, the table needs to be self-joined in

order to return the name of the patient.

If we consider repeating elements such as laboratory

tests and take into account the effects of normal-

ization, the number of tables to be joined in the EAV

design is not always larger than in the ER design.

Consider for example the query that returns the

patient ID and name for all patients with a glucose

reading greater than 6.1 and a hematocrit percentage

greater than 41. In the conventional design, the

query would use three different tables:

SELECT patientID as ‘Patient ID’, name as

‘Name’, t2.value as ‘Glucose’

t3.value as ‘Hematocrit’

FROM demographics t1, glucose t2, hematocrit t3

WHERE t1.patientID ¼ t2.patientID AND

t2.patientID ¼ t3.patientID AND

t2.value . 6.1 AND

t3.value . 41

In the EAV design, the query joins three instances of

one table and looks like this:

SELECT t1.patientID as ‘Patient ID’,

t1.name as ‘Name’, t2.value as ‘Glucose’,

t3.value as ‘Hematocrit’

FROM patient t1, patient t2, patient t3

WHERE t1.patientID ¼ t2.patientID AND

t2.patientID ¼ t3.patientID AND

t2.attribute ¼ ‘glucose’ AND

t2.value . 6.1 AND

t3.attribute ¼ ‘hematocrit’ AND

t3.value . 41 AND

t1.attribute ¼ ‘name’

IBM SYSTEMS JOURNAL, VOL 46, NO 1, 2007 EGGEBRAATEN, TENNER, AND DUBBELS 7

Because of the generality of the RIM model, which

includes attributes without a predetermined data

type, its implementation required the use of some

aspects of EAV models, as discussed in the next

section.

IMPLEMENTING THE HL7 RIM-BASED

DATA MODEL

Implementing the RIM-based data model means

mapping it to a physical database model. It is

important to create a physical model that closely

matches the RIM logical model so that the mapping

between HL7 messages and the database is

straightforward. We use an approach that combines

elements of ER and EAV models.

Modeling the base HL7 RIM classes

The HL7 RIM is comprised of the following base

classes
8
:

� Act—represents actions that have happened, are

happening, or are scheduled to happen
� Entity—represents physical things or beings such

as persons, places, or devices
� Role—represents the role that Entities play as they

participate in a health-care act
� RoleLink—represents a connection between two

Roles
� Participation—represents the association between

a Role and an Act (for example, the context of an

Act, such as who performed it, for whom it was

performed, or where it was performed)
� ActRelationship—represents the association be-

tween two Acts (for example, the relationship

between an order for a blood test and the result of

a blood test)

Most of these classes have subclasses that further

refine the concept represented by the class. For each

base class in RIM, the subclasses form a hierarchy

rooted in the base class. For example, the class

LivingSubject is a subclass of Entity, and the class

Person is a subclass of LivingSubject.

To illustrate the use of these classes consider a

patient whose pulse rate is taken during a visit to the

doctor. The patient is represented as an instance of

class Person and an instance of class Patient, which

is a subclass of Role (a person with the role of

patient). The doctor visit is an instance of class

PatientEncounter (a subclass of Act), the pulse rate

is an instance of class Observation (a subclass of

Act). The patient is linked to the visit by an instance

of Participation; the pulse rate measurement is

linked to the visit through an instance of ActRela-

tionship.

With the exception of the Observation class, which

we discuss later, all RIM classes are modeled using

the ER approach. Each RIM class is considered an ER

entity and mapped to a table in the physical model.
9

To maintain the relationships between classes as

defined in RIM, foreign keys were added to the

appropriate class tables. When a relationship

involves a base class that has subclasses, the

relationship can involve any of the subclasses. In

this case, an additional column is added to store the

name of the table involved in the relationship. For

example, class Role can have two relationships with

any subclass of Entity, player and scoper. Therefore,

in addition to foreign keys player_id and

scoper_id in table ROLE, columns player_type and

scoper_type are added to specify the table with

which the foreign key has a relationship. As there

are no many-to-many relationships in RIM, no

additional mapping tables are needed to maintain

this type of relationship, as is the case in many

relational schemas.

Modeling HL7 RIM inheritance
Classes in RIM can inherit attributes from their

parent classes. When these classes are mapped to

physical tables, there are several ways to model the

class inheritance structure.

� Single table per class hierarchy—A single table

stores all the objects in each class hierarchy; the

table contains all the possible attributes for the

classes in the hierarchy.
� Tables that do not contain inherited attributes—A

separate table for each class in RIM contains only

the unique attributes for that class. When an

object is stored in the database in this case, a row

needs to be inserted in the base table and in each

of the parent tables in order to store all of this

object’s information. Foreign keys need to be

added to maintain the relationship between the

parent tables.
� Tables that contain inherited attributes—For each

class a separate table is created that contains all

the attributes for that class plus all the attributes

that it inherits from its parent classes. When an

EGGEBRAATEN, TENNER, AND DUBBELS IBM SYSTEMS JOURNAL, VOL 46, NO 1, 20078

object is stored in the database, all the information

for the object can be stored in a single row of a

single table.
9

The single-table-per-class hierarchy is the simplest

approach as it results in the smallest number of

tables and table relations. This approach, however,

is inefficient, as there are likely to be many unused

attributes for each object. There are some data

models in which this approach makes sense; for

example, when subclasses only contain a few

attributes. Because the number of attributes in many

of the RIM subclasses is large, this approach is less

attractive.

Using tables that do not contain inherited values is

the most complex approach. There are no duplicated

columns in this approach, which means the storage

of the data is efficient, but inserting, updating, and

querying data are complex. This is because the data

for a particular object are spread across multiple

tables in the database; consequently, storing an

object requires multiple inserts, and retrieving an

object requires joining multiple tables. Database

views (i.e. one view per logical class) could alleviate

the complexity of the queries, but would not avoid

the performance degradation. The advantage of this

approach is that referential integrity can be enforced

because there is a clear relationship between tables,

and all class hierarchies in RIM are linked together

at the base class (with a few exceptions).

The approach that offers the most for a RIM-based

model relies on tables that contain inherited

attributes. With this approach all the data for a

particular object are stored in a single table, which

makes inserting and querying the data simpler than

in the previous approach. Storage utilization is

efficient as each table contains only the needed

attributes for the class, and complexity is reduced

because there is no need for foreign keys to connect

parent and child tables. Although referential integ-

rity cannot be enforced between class hierarchies,

this is not a problem as long as the data are always

loaded in a controlled and trusted manner. In this

approach, the application inserting the data is

required to enforce the appropriate referential

integrity measures.

Figure 1 illustrates the inherited attributes in the

RIM-based implementation of class Person. It shows

owned and inherited attributes and their relations to

data type tables. The Person table contains its own

attributes, such as marital_status_id, attributes

inherited from class Living Subject, such as

gender_code_id, and attributes inherited from class

Entity, such as status_code_id. To illustrate how

data is stored with this approach, consider the

& Data sparseness is a
characteristic of health-care data
that has to be considered when
designing a physical data model &

marital status attribute. Because marital status is a

coded value, its data such as code, code_system,

version, display_name, and so on would be stored

in the DT_CE table, and a foreign key to this table

would be stored in the marital_status_id column

of table Person.

MODELING THE OBSERVATION CLASS WITH A
HYBRID APPROACH
The Observation class in RIM captures many types

of data in HL7 messages, such as diagnoses,

laboratory results, allergies, and vital signs. An

Observation instance has, in its most basic form, an

ID, a code, and a value—a triple that is basically

equivalent to an EAV triple. The code identifies the

observation (e.g., glucose), and the value represents

what was observed (e.g., 35 mg). The value

attribute (class Observation) is defined as an ANY

data type, which means it can be any valid HL7 data

type. When messages are created using the HL7

refinement methodology, the value attribute, as

with other attributes, can be constrained to a

specific HL7 data type. However, a RIM data model

is intended to store data from any and all HL7

messages and therefore, needs to accommodate any

data type that may be associated with an Observa-

tion.

Although conceptually EAV models require only

three columns, the physical data model normally

uses one table for the entity (Observation in this

case) and a separate attribute table for each possible

data type. Each attribute of an entity is stored as an

additional row in one of the attribute tables,

depending on the attribute’s data type. EAV models

tend to be more difficult to query because self-joins

are required to access all the information for a given

object. The EAV modeling approach is intended to

IBM SYSTEMS JOURNAL, VOL 46, NO 1, 2007 EGGEBRAATEN, TENNER, AND DUBBELS 9

allow for maximum flexibility in the number and

type of attributes that an entity can have, but

because RIM is fairly static in terms of attributes per

entity, this flexibility is not required. The other

valuable aspect of an EAV model is how it can

efficiently handle attributes where the data type is

not predetermined, such as the value attribute. A

hybrid between an EAV model and a conventional

ER model (hybrid approach, for short) combines the

advantages of these approaches and is advantageous

when modeling the Observation class due to the

flexibility of the value attribute (ANY data type). In

this hybrid approach, one table is created for each

possible data type of the value attribute. Each table

contains all the Observation’s predetermined attri-

butes (attributes where the data type is specified;

i.e., it is not the ANY data type) and the value

attribute constrained to a specific data type. This

allows for all the attributes for a given observation

to be stored in a single table, which makes data

access easier. However, it also allows flexibility in

the data types that can be supported for the

observation’s value attribute.

Figure 2 shows the EAV modeling approach and our

proposed hybrid approach side by side. In RIM, an

Observation class is linked to a Patient or other Role

subclass by a Participation class. A standard EAV

implementation of the Observation class is shown in

blue on the left side of Figure 2. An Observation

table is linked directly to a Participation table

through a foreign key (a Patient table is connected to

the Participation table but not shown). The Obser-

vation table does not contain any attributes. All

attributes and their values are stored in one of the

attribute tables depending on the attribute data type.

Thus, the Observation.classCode attribute is

stored in the ATTR_STRING table because it is a

Figure 1
Inherited attributes in the Person class

DT_EN

use_id
owner_id
owner_type
. . .

BIGINT
BIGINT
VARCHAR

DT_AD

use_id
owner_id
owner_type
. . .

BIGINT
BIGINT
VARCHAR

Person_Disability

transaction_id
id
disability_id
person_id

BIGINT
BIGINT
BIGINT
BIGINT

DT_PQ

value
unit_id
. . .

REAL
BIGINT

DT_ED

media_type
value
. . .

VARCHAR
CLOB

DT_CS

code
code_system
. . .

VARCHAR
VARCHAR

Person_Race

transaction_id
id
race_id
person_id

BIGINT
BIGINT
BIGINT
BIGINT

DT_CE

code
code_system
. . .

VARCHAR
VARCHAR

Person_Ethnic_Grp

transaction_id
id
eth_grp_id
person_id

BIGINT
BIGINT
BIGINT
BIGINT

Person

transaction_id
id
class_code_id
determiner_code_id
code_id
quantity_id
desc_id
status_code_id
existence_time_id
risk_code_id
handling_code_id
gender_code_id
birth_time
deceased_ind
deceased_time
multiple_birth_ind
multiple_birth_order
organ_donor_ind
marital_status_id
ed_level_id
living_arr_id
religious_affl_id

BIGINT
BIGINT
BIGINT
BIGINT
BIGINT
BIGINT
BIGINT
BIGINT
BIGINT
BIGINT
BIGINT
BIGINT
TIMESTAMP
SMALLINT
TIMESTAMP
SMALLINT
SMALLINT
SMALLINT
BIGINT
BIGINT
BIGINT
BIGINT

Person
Attributes

Living
Subject
Attributes

Entity
Attributes

EGGEBRAATEN, TENNER, AND DUBBELS IBM SYSTEMS JOURNAL, VOL 46, NO 1, 200710

string data type (the name of the attribute,

classCode, is stored in the attribute column of

table ATTR_STRING). A hybrid implementation of

the Observation class is shown in green on the right

side of Figure 2. Several observation-type tables are

created, such as OBSERVATION_PQ, one for each

possible data type of the attribute value. These

tables are also linked to the Participation table

through a foreign key. The entry in the act_type

column in the Participation table identifies the

observation-type table for that row. There is no need

for separate attribute tables because all attributes

that are not of data type ANY are added to each

observation-type table.

Modeling HL7 RIM data types

A few of the HL7-defined data types can be mapped

directly to a database management system (DBMS)

data type, such as the string (ST) data type which

can be mapped directly to a variable length

character (VARCHAR) database column. Most of the

HL7 data types are more complex and need to be

modeled differently. When there are multiple parts

to a data type, there are three approaches that could

be used to represent the data type in a physical

model, and all three were used for modeling some of

the HL7 data types:

1. Multiple columns in the class table—Store each

part of the data type as a separate column in the

RIM class table. This is an appropriate approach

for simple multipart data types where the data

does not need to be referred to by other objects

and there can be only one instance of the data

type per instance of the RIM class. A data type

that is suited for this approach is the physical

Figure 2
Modeling RIM inheritance: standard EAV-EV approach versus hybrid EAV-EV approach

STANDARD EAV APPROACH HYBRID EAV-EV APPROACH

OBSERVATION_PQ

transaction_id BIGINT
id BIGINT
version BIGINT
class_code VARCHAR(64)
mood_code VARCHAR(64)
code_id BIGINT
… …
value DOUBLE
unit_code VARCHAR(64)

OBSERVATION_REAL

transaction_id BIGINT
id BIGINT
version BIGINT
class_code VARCHAR(64)
mood_code VARCHAR(64)
code_id BIGINT
… …
value DOUBLE

OBSERVATION_INT

transaction_id BIGINT
id BIGINT
version BIGINT
class_code VARCHAR(64)
mood_code VARCHAR(64)
code_id BIGINT
… …
value BIGINT

ATTR_STRING

obs_id BIGINT
attribute BIGINT
value VARCHAR

ATTR_REAL

obs_id BIGINT
attribute BIGINT
value DOUBLE

ATTR_INT

obs_id BIGINT
attribute BIGINT
value BIGINT

PARTICIPATION

transaction_id BIGINT
id BIGINT
version BIGINT
type_code VARCHAR(64)
… …
act_id BIGINT
act_type VARCHAR(64)

OBSERVATION

transaction_id BIGINT
id BIGINT
version BIGINT

IBM SYSTEMS JOURNAL, VOL 46, NO 1, 2007 EGGEBRAATEN, TENNER, AND DUBBELS 11

quantity (PQ) data type which contains two parts:

a value and a unit code.

2. A separate table for the data type and a foreign

key in the class table—Create a separate table to

store the data type’s data and add a foreign key in

& Operating a data warehouse
with near real-time data is a key
requirement for health-care
applications &

the class table that points to the new data type

table. This approach is appropriate for more

complex data types and data types that can be

referred to by multiple objects. An example is the

coded element (CE) data type, which has multiple

parts (code, codeSystem, displayName, etc.) and

which can be referred to by multiple objects.

Consider a CE that represents Gender-Male:

because it can be referred to by multiple person

objects, it is more efficient to store the CE data

once in a CE table rather than in each object and

to store a foreign key in the person table.

3. A separate table that includes a foreign key in the

data type table—Create a separate table that

contains the data type’s data and a foreign key to

the owner class table. This approach is needed

when the data type is defined as a set in RIM (i.e.,

SET,II., which is a set of instance identifiers).

In the case where a class can have multiple

instances of a data type, the foreign key that

maintains the relationship between the class and

data type table needs to be in the data type table.

HEALTH-CARE DATA CONSIDERATIONS
Health-care data have certain properties that make

them different from data in other industries, such as

retail or insurance. The following characteristics of

health-care data need to be considered when a data

model is designed for health care:

� Data sparseness—Only a small subset of the

possible attributes associated with a patient are

used on any one patient. For example, the Logical

Observation Identifiers Names and Codes

(LOINC**) coding system has over 31,000 codes

to represent unique laboratory tests,
10

yet most

patients will have only a very small number of

different laboratory tests performed on them over

their lifetime.

� Very large number of dimensions
1
—Diagnostic,

procedure, and laboratory coding systems contain

tens of thousands of different codes for the various

medical information items on a patient.
� Nonadditive variables—Many laboratory mea-

sures, such as glucose or body temperature,

cannot be meaningfully added. In some cases,

other aggregations, such as averages of non-

additive variables, can be performed. However,

such averages are also nonadditive. Therefore, for

nonadditive variables, the data must be catego-

rized in order to perform dimensional analysis,

such as roll-ups or drill-downs.
� Rapidly expanding set of attributes—New labora-

tory tests, diseases, drugs, genes, and so forth, are

being invented or discovered every day. A data

model for health care needs to be able to evolve as

new types of information are created.
� Deidentified data—Although patient-identifying

information is needed for some purposes (e.g.,

billing information but not patient health record

sent to external organizations), privacy concerns

require that health-care data be deidentified for

most purposes.
� Need to distinguish between source data and

derived data—Some data, such as laboratory

measurements, are created at the source and other

data are derived, such as annotations to a clinical

note generated through a text analysis process or

data that has been normalized (mapping of

different codes to a unified code). Often it is

important to be able to distinguish between source

data and derived data, which means that the

database system has to keep track of this

information.
� Need to associate some data with explanatory

metadata—In addition to traditional versioning of

data, which is required to meet the definition of a

data warehouse, a health-care data warehouse

needs to be able to accommodate how data is

captured over time. Procedures for a particular

laboratory test can change over time, and different

devices can measure the same data differently. An

example is the difference between a body’s

temperature recorded from an oral thermometer in

contrast to a rectal thermometer.
� Requirement for near real-time data—Operating a

data warehouse with near real-time data is a key

requirement for health-care applications. A data

warehouse could be used to eliminate errors in the

physician’s order entry system.
11

Similarly, up-to-

the-minute test results could be used to identify

EGGEBRAATEN, TENNER, AND DUBBELS IBM SYSTEMS JOURNAL, VOL 46, NO 1, 200712

patients present in the clinic in order to approach

them for participation in a research study.

As an abstract model of health-care data, RIM offers

significant benefits in that it can model any

conceivable kind of data. This advantage represents,

at the same time, its greatest challenge, which is

managing and maintaining data consistency. As

health-care data tends to have attributes that are

nonadditive and its dimensionality tends to be high,

a physical data model should be as general as

possible.

Mapping information to RIM can be done in more

than one way. A pregnancy complication, for

example, could be stored as two objects: an

Observation object for the pregnancy, another

Observation object for the complication, and an

ActRelationship object for the relationship between

the two. Another way to record the same informa-

tion would be to store the pregnancy as an

Observation object and the complication as a

qualifier code to attribute value. This mapping

challenge is helped somewhat by use of the defined

HL7 V3 messages, as these are constrained instances

of RIM with a predefined structure. However, some

of the HL7 V3 message standards such as CDA

(Clinical Document Architecture) are still intention-

ally abstract so that they are flexible enough to

support the exchange of unstructured health-care

data, such as various types of clinical observations

and services. Loading data into an HL7-based data

model needs to be carefully managed to ensure

consistent mapping of information to RIM

structures.

In addition to message structure and semantics, it is

important to maintain a consistent vocabulary for

the terms used in the warehouse. Health-care

organizations use many different coding systems for

their vocabularies, including LOINC, SNOMED

CT**,
12

and ICD-9-CM,
13

as well as their own local

coding systems. RIM and HL7 messages support any

and all of these coding systems, and they can coexist

in a data model based on RIM. If the source systems

that are sending data to the warehouse are using

different coding systems, normalization of the

vocabularies needs to be addressed. There are

several ways to do this. One option is that each

query and decision support application which

accesses the warehouse would handle the vocabu-

lary mapping, which would make these applications

more complex. Another option is to normalize the

vocabularies in the HL7 messages before the data is

entered into the warehouse.

The clinical and genomic data for each patient tends

to be sparse. Of the thousands of diseases, medical

conditions, and laboratory tests in existence, any

& IBM Clinical Genomics
integrates clinical and genomic
data for medical research
purposes &

given patient is not likely to have information for a

majority of the data elements. It would be inefficient

to create tables and columns for each of these

potential data elements. A more efficient choice is to

use a hybrid approach based on the RIM Observa-

tion class as was previously described. This ap-

proach allows great flexibility in the data types

supported for health-care data, but also does not

require that each data element be defined as an

explicit column.

A hybrid approach also works well in a health-care

environment where new laboratory tests, diseases,

medications, and so forth, are constantly added and

changed. The data model does not require changes

for the addition of a laboratory test as long as the

data type for the laboratory test’s value is already

supported. The instruments and devices used for

laboratory tests can change over time, and different

instruments can record the same test differently. A

simple example is a body temperature measure-

ment, which is recorded slightly differently de-

pending on whether a rectal or oral thermometer is

used. This approach requires that metadata be

stored along with a laboratory test observation in

the warehouse, so that the device which made the

observation is clearly defined. RIM supports this

metadata by including a participation object to the

appropriate device for each observation, which is

possible in many HL7 messages and in CDA docu-

ments.

In some cases a clinical data warehouse needs to

store deidentified data as well as patient-identifying

data. Regulatory mandates regarding patient privacy

require that patient data be deidentified before being

used in patient population studies. Patients may give

IBM SYSTEMS JOURNAL, VOL 46, NO 1, 2007 EGGEBRAATEN, TENNER, AND DUBBELS 13

permission to use their identifiable data for research

purposes. HL7 messages, in general, cannot ad-

equately represent deidentified data—there is no

standard way to distinguish between deidentified

and identifiable data. RIM does not currently

address the concept of deidentified data. However,

another possible approach to this challenge is to

store the identifiable information in the warehouse

and control access to this information by using

privacy policies. IBM offers a solution for controlling

access to private health-care data known as the

Hippocratic Database.
14

Data warehouses often contain data that is derived

from other data. It is not always necessary to store a

derived data item, but in many cases it is more

efficient to do so rather than compute it each time it

is needed. Data from multiple systems that use

different coding systems, for example, need to be

mapped to a common coding system in the data

warehouse. The result of text analysis against

clinical notes or pathology reports is yet another

example of derived data.

In some cases, it is important to distinguish between

source (nonderived) data and derived data. For

example, a discrete diagnosis code as a source data

item may be more accurate and treated differently

than the same code as a derived data item, say,

obtained by analysis of the free-text of a clinical

document. Therefore, the system should allow the

level of uncertainty associated with a derived data

item to be specified and stored in the database. One

way to approach this is to treat the certainty as a

binary value and assume that data which originate

from HL7 messages are certain, whereas other

derived data are uncertain. Another method is to

specify the uncertainty within the message itself by

setting the uncertainty code, which is included in all

subclasses of Act, including Observation.

One of the major advantages of the RIM data model

is the straightforward mapping of HL7 V3 messages

to the data model, but this advantage has been

limited by the slow adoption of HL7 V3 in the United

States. The vast majority of United States health-care

organizations are still using HL7 V2 messages

(which are not based on RIM), and it will likely take

some time for them to move to the new standard

because of the high cost associated with such a

move. However, there are some major efforts

underway that will promote and help expedite the

move to HL7 V3.

The National Health System in the United Kingdom

is sponsoring the Spine project, which attempts to

develop a national, centralized repository for patient

information. The Spine architecture is based on HL7

V3 messaging.
15

Other projects that are developing

RIM-based data models include the Canadian Health

Data Model from the Canadian Institute for Health

Information
16

and Oracle Corporation’s Healthcare

Transaction Base product.
17

Even though currently

there are few sources that generate HL7 V3

messages, the work on RIM-based data models will

pay off as medical informatics system vendors

eventually migrate to HL7 V3. In the meantime,

traditional ETL functions are used to move data

between health-care data sources and health-care

databases. Mapping HL7 V2 messages into HL7 V3

messages is possible, but this transformation can be

difficult as there is not always a direct one-to-one

mapping between the two formats. The IBM

Healthcare Collaborative Network solution can be

used to map HL7 V2 messages to RIM-based CDA

documents.
18

In many industries, data warehouses are not

updated on a continuous basis. Many are updated

daily, weekly, or monthly, which is sufficient in

most cases. In health care, decisions need to be

based on the most current information, and decision

support systems would greatly benefit from inte-

grated real-time data. Integrating data into a data

warehouse in real time is a huge challenge, but it

will likely be an important requirement of future

data warehouse projects. An event-driven architec-

ture based on messaging standards such as HL7 is

crucial to implementing a real-time data warehouse.

Then data can be sent, as HL7 messages, to the

warehouse as soon as they are generated rather than

on the timetable of a traditional ETL process.

IBM CLINICAL GENOMICS PRODUCT

In the previous section we described our approach

to designing a physical data model based on RIM

and discussed its advantages for storing health-care

data. In this section we describe the application of

our approach to the IBM Clinical Genomics product.

We have implemented a RIM-based data model in

CG by using the methodology described earlier. CG

is based on a message-oriented architecture that

EGGEBRAATEN, TENNER, AND DUBBELS IBM SYSTEMS JOURNAL, VOL 46, NO 1, 200714

supports several messaging standards for health

care, such as HL7.

The diagram in Figure 3 shows the CG architecture.

The main components are the Healthcare Collabo-

rative Network (HCN) product, the HL7 CDA

Builder, the Universal Deidentification Platform

(UDiP), the Clinical Genomics server, the Clinical

Genomics Assimilation Model (CGAM), and the

Data Discovery and Query Builder (DDQB) product.

The HCN product collects health-care information in

standard messages such as HL7 V2.x, MAGE-ML

(MicroArray Gene Expression Markup Language),

BSML (BioSequence Markup Language), HapMap,

and ODM (Operational Data Model). It performs

deidentification of the data and assigns deidentified

global patient identifiers that allow information

from multiple institutions to be correlated. Another

important feature of this component is the ability to

aggregate a set of HL7 V2.x messages into a single

RIM-based CDA message, which allows the data to

be parsed and loaded into the RIM data model.

The HL7 CDA Builder enables creation of CDA and

other HL7 messages in a standard and consistent

format. It is a set of Java** APIs that can be used to

load clinical data from source systems into a

standard message structure for sending to the CG

server. The UDiP component is an extendable

platform for deidentifying data. It can be used with

the HL7 CDA Builder to deidentify the patient

information contained in a CDA message.

The data processing engine (DPE) of the CG server

routes incoming messages to the appropriate

shredder, which parses the message and loads the

data into the appropriate data model. A data model

is included for each messaging standard supported

in CG, including HL7, MAGE, BSML, HapMap, and

ODM. The HL7 shredder parses and loads HL7 V3

messages into the RIM data model. The most

common HL7 V3 message standard used for transfer

of clinical data is CDA, but other HL7 messages can

be shredded and loaded into the RIM schema as

well. The advantage of this message-based archi-

tecture is that additional data sources can be added

without the additional cost of traditional ETL

between the source system and the warehouse. The

message standard (such as CDA) is the interface

between the source systems and the warehouse

system.

The CGAM data model is used to store current-

valued health-care information from various data

Figure 3
Architecture of IBM Clinical Genomics

CG Server

DPE

IBM Clinical Genomics

Researchers

IBM Healthcare
Collaborative
Network

Medical
Data Source

Medical
Data Source

Medical
Data Source

HL7 CDA
Builder

UDiP BSML
Data Model

MAGE
Data Model

HL7 RIM
Data ModelHL7 Shredder

MAGE Shredder

BSML Shredder

. .
 .

CG Assimilation
Model

IBM Data Discovery
and Query Builder

IBM SYSTEMS JOURNAL, VOL 46, NO 1, 2007 EGGEBRAATEN, TENNER, AND DUBBELS 15

sources, including the CG standards-based data

models, for analysis and reporting. As previously

discussed, the standards-based data models, such as

the RIM model, are highly normalized and not

optimized for query access. The CGAM data model

has been denormalized to some extent to facilitate

efficient querying and mining of data.

DDQB enables end users to query complex data,

such as that found in the health-care industry.
19

DDQB employs a novel data abstraction technology

that allows complex queries to be dynamically

created in end-user terms. Because DDQB translates

end-user queries into SQL (Structured Query Lan-

guage), users do not need to specify table names or

join predicates. DDQB also supports data access

control that meets security, privacy, and auditing

requirements. The DDQB data abstraction layer is

especially helpful in dealing with databases such as

the RIM-based data warehouse. It does this through

a data abstraction specification called the Data

Abstraction Model (DAM). Within the DAM, fields

are defined and associated with access methods,

which describe the mapping to the relational table or

tables that hold the data for the field. Access method

types include simple types (a field maps to a

column), composed types (a field maps to an

expression), or filtered types (a field relates to a

subset of a column based on some condition). The

filtered access method can be used with attribute-

value pairs to define a field, such as glucose, based

on the value column (when the attribute column is a

code relating to the laboratory type of glucose).

Although DDQB enables direct query of the RIM

model (which may be necessary for research),

reporting against the CGAM database for current-

valued data or against a data mart once analytic

dimensions are understood may provide better data

access performance. Even though data marts and, to

some extent CGAM, provide simpler database

designs, DDQB is still helpful for queries against

repositories using these models. DDQB features,

such as support for generating complex queries

without specifying joins and, for enforcing security,

privacy, and auditing requirements, apply broadly.

CG and DDQB are key components in a solution that

IBM is developing jointly with the Lupus Biomarkers

Working Group—an interinstitutional and interdis-

ciplinary group of researchers and clinicians work-

ing with patients suffering from lupus (systemic

lupus erythematosus). Using HL7 CDA documents

produced at each participating research center, CG

accepts those documents and stores them in the RIM

model by means of the CG HL7 shredder. A

repository with a data model derived from CGAM is

populated with data from the CG RIM-based

& IBM Clinical Genomics is
based on a message-oriented
architecture that supports
several messaging standards
for health-care data, including
HL7 &

repository. DDQB is then configured to access the

CGAM-based repository, thereby enabling broad,

consistent, collaborative research and analysis

against a larger, more statistically significant,

community-wide patient cohort. This solution is a

path to increased understanding of lupus, and it

helps to advance the research and treatment of

lupus in ways that were, until now, not possible.

CG, which was initially released in July 2004, was

updated in September of 2006 with new technology

that includes the HL7 RIM data model. CG is being

used on an experimental basis by one health-care

provider and will be deployed later in 2006 in

several joint research projects involving a number of

health-care research organizations and IBM.

CONCLUSION

Health-care organizations have a wealth of data that

can help discover new treatments and improve

patient care. Our goal is to enable the health-care

industry to tap into this data by providing a solution

for integrating data from various sources for the

purpose of analytical studies. Our approach focuses

on taking advantage of an industry standard in the

development of a solution that is flexible, robust,

and meets industry requirements.

RIM is an information model for health care that

broadly covers all aspects of an organization’s

clinical and administrative information. Health-care

industry experts created RIM to support the defi-

nition of messages used for exchanging health-care

information. By deriving our physical data model

from RIM, we are able to take advantage of the

expertise of the HL7 organization and enable the

EGGEBRAATEN, TENNER, AND DUBBELS IBM SYSTEMS JOURNAL, VOL 46, NO 1, 200716

handling of HL7 V3 messages in our RIM-based

database. Our design combines aspects of ER

modeling with a hybrid-EAV modeling approach.

The HL7 data types and the inheritance structure of

the RIM classes required additional modeling con-

siderations beyond standard ER modeling. After

health-care data populates our database, the data

can be restructured into specific data marts to serve

the specific analytical needs of the user community.

The RIM-based data model is a core component of

CG, a solution for integrating clinical and genomic

data. IBM, working with the Lupus Biomarkers

Working Group, has applied CG to the integration of

lupus data from various sources. We expect CG to

deliver value to other multicenter research projects

as well as intra-institutional integration projects.

**Trademark, service mark, or registered trademark of Health
Level Seven, Inc., American National Standards Institute,
Regenstrief Institute, Inc., SNOMED International, or Sun
Microsystems, Inc. in the United States, other countries, or
both.

CITED REFERENCES
1. T. B. Pedersen and C. S. Jensen, ‘‘Research Issues in

Clinical Data Warehousing,’’ Proceedings of the Tenth
International Conference on Scientific and Statistical
Database Management, Capri, Italy, IEEE Computer
Society (July 1998), pp. 43–52.

2. W. H. Inmon, Building the Data Warehouse, Fourth
Edition, John Wiley and Sons, New York (2005).

3. W. H. Inmon, J. D. Welch, and K. L. Glassey, Managing
the Data Warehouse, John Wiley and Sons, New York
(1996).

4. L. Silverston, The Data Model Resource Book, Vol. 2: A
Library of Data Models for Specific Industries, John Wiley
and Sons, New York (March 2001).

5. IBM Clinical Genomics, IBM Corporation (August 2006),
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/
topic/ddqb/eicavcg.htm.

6. J. Anhøj, ‘‘Generic Design of Web-Based Clinical Data-
bases,’’ Journal of Medical Internet Research 5, No. 4
(2003). http://www.jmir.org/.

7. P. M. Nadkarni, C. Brandt, S. Frawley, F. G. Sayward,
R. Einbinder, D. Zelterman, L. Schacter, and P. L. Miller,
‘‘Managing Attribute-Value Clinical Trials Data Using the
ACT/DB Client-Server Database System,’’ Journal of the
American Medical Informatics Association 5, No. 2, 139–
151 (1998).

8. HL7 Reference Information Model, Health Level Seven,
Inc., http://www.hl7.org/v3ballot/html/infrastructure/
rim/rim.htm.

9. R. Elmasri and S. B. Navathe, Fundamentals of Database
Systems, Addison Wesley Publishing, Reading, MA
(2006).

10. Logical Observation Identifiers Names and Codes
(LOINC), Regenstrief Institute Inc., http://www.
regenstrief.org/loinc/.

11. E. Bellin, ‘‘EHIT Uses Data Synchronization to Improve
Healthcare,’’ What Works, Volume 17, The Data Ware-
housing Institute (May 2004). http://www.tdwi.org/.

12. SNOMED CT, SNOMED International, http://www.
snomed.org/snomedct/index.html.

13. ICD-9 Provider and Diagnostic Codes, U.S. Department of
Health and Human Services, http://www.cms.hhs.gov/
ICD9ProviderDiagnosticCodes/.

14. R. Agrawal and C. Johnson, ‘‘Securing Electronic Health
Records without Impeding the Flow of Information,’’
Proceedings of the International Medical Informatics
Association Working Conference on Security in Health
Information Systems, Dijon, France (April 2006). http://
www.almaden.ibm.com/software/projects/iis/hdb/
Publications/papers/imia06health.pdf.

15. R. Spronk, ‘‘The Spine, an English National Programme,’’
Ringholm GmbH (March 29, 2005), http://www.
ringholm.de/docs/00970_en.htm.

16. Canadian Conceptual Health Data Model (CHDM),
Canadian Institute for Health Information, http://www.
cihi.ca/cihiweb/dispPage.
jsp?cw_page¼infostand_chdm_e.

17. Oracle Healthcare Transaction Base: Sharing Information
for Better Healthcare, Oracle Corporation, http://www.
oracle.com/industries/healthcare/
oracle-healthcare-transaction-base-htb.pdf.

18. Healthcare Collaborative Network Solution, IBM Corpo-
ration, http://www.ibm.com/software/solutions/LE/
LHX01–02/solutions_overview.html.

19. Data Discovery and Query Builder, IBM Corporation,
http://www-03.ibm.com/servers/eserver/iseries/db2/
ddqb.html.

Accepted for publication August 9, 2006.

Thomas J. Eggebraaten
IBM Systems and Technology Group, 3605 HWY 52 N,
Rochester, MN 55901 (tegge@us.ibm.com). Mr. Eggebraaten is
a software engineer in the Healthcare and Life Sciences
development organization of the IBM Systems and
Technology Group. Soon after receiving a B.S. degree in
computer science from the University of North Dakota in
1999, he joined IBM in Rochester, Minnesota, where he
contributed to the testing of products for the iSeriest platform,
such as WebSpheret and DB2t. He is now developing tools
that support collaborative disease-specific research projects
involving multiple health-care providers. He is also involved
in the IBM Clinical Genomics Solution and various other life-
science projects. He is a member of the IBM invention review
board in Rochester.

Jeffrey W. Tenner
IBM Systems and Technology Group, 3605 HWY 52 N,
Rochester, MN 55901 (tenner@us.ibm.com). Mr. Tenner is a
Senior Technical Staff Member in the Healthcare and Life
Sciences development organization of the IBM Systems and
Technology Group. He is also Chief Architect for the IBM/
Mayo Clinic collaboration. He led the architecture and
development of the IBM Clinical Genomics Solution and Data
Discovery and Query Builder products. Previously, he held

IBM SYSTEMS JOURNAL, VOL 46, NO 1, 2007 EGGEBRAATEN, TENNER, AND DUBBELS 17

Published online December 12, 2006.

technical leadership roles in the development of DB2t for
iSeriest and was lead architect for the Dominot portfolio of
products for iSeries. He holds several patents in database
technology and is a member of the editorial board of the IBM
Systems Magazine.

Joel C. Dubbels
IBM Systems and Technology Group, 3605 HWY 52 N,
Rochester, MN 55901 (dubbels@us.ibm.com). Mr. Dubbels is a
senior software engineer in the Healthcare and Life Sciences
development organization of the IBM Systems and
Technology Group. In this role, he is responsible for
development of service-oriented software solutions applied to
e-business and the health-care industry. His current work is
focused on solutions for disease-specific research
collaboration across multiple enterprises. His previous work
included measurement, analysis, and modeling of systems
performance, operating system development, object-oriented-
software framework development, and management. &

EGGEBRAATEN, TENNER, AND DUBBELS IBM SYSTEMS JOURNAL, VOL 46, NO 1, 200718

