A. Cozzi

S. Farrell

T. Lau

B. A. Smith
C. Drews

J. Lin

B. Stachel
T. P. Moran

Activity management as a
Web service

In this paper, we present a new method for organizing collaborative work. This
method is based on the concept of “activities,” defined here as high-level structured
representations of the people, artifacts, and processes involved in work and their
relationships. We show how users and developers can leverage this representation to
enhance productivity, collaboration, and business applications. Central to our vision is
an interface to activity data which is lightweight, based on Web Services, and enables
activities to be easily integrated into the applications and tools people already use. We
describe the Wax system for activity management, which implements our model of
unified activity using both semantic Web and REST/XML (Representational State
Transfer/Extensible Markup Language) approaches. We describe several user inter-
faces that let users interact with activity data, and we discuss our experiences using the
Wax system for two case studies that involve coordinating a large event and managing

accommodations for new employees.

INTRODUCTION

This paper is a companion to “Business activity
patterns: A new model for collaborative business
applications,” which also appears in this issue of the
IBM Systems Journal.'

Today’s tools provide little support for team
members working together on a collaborative
process. E-mail is the predominant communication
tool used today, and it has been overused for
purposes other than simple communication, such as
exchanging files, scheduling meetings, and archiv-
ing data.” Using e-mail to manage activities has
many drawbacks. For example, it can be difficult to
determine the current status of an activity which is
managed by e-mail, and if people join an ongoing

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

activity, it can be difficult to bring them up to speed
with other team members.

At the other end of the spectrum are formal
business-process-workflow systems. These systems
direct processes and the people involved in them,
but are overly rigid for most everyday business
activities.”® A middle ground between e-mail and
workflow systems would better suit many collabo-
rative activities.

©Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 © 2006 IBM

COzzZI ET AL

695

The goal of the Unified Activity Management (UAM)
project at IBM Research is to define a new model for
collaborative work based on a shared semantic
representation of collaborative activities.” “Activ-
ities” as used here refers to a digital schema-based
representation that describes the properties of a
collaborative work project and semantically relates
the people, artifacts, tools, events, and other
elements which are involved in carrying out the
project. Examples of activities include organizing a
large event or conference, responding to a request
for proposals, and resolving a trouble ticket (mech-
anism used in an organization to detect, report, and
resolve a problem). The activity model and how it is
used to support business applications is described in
depth in a companion paper in this issue."

The UAM approach

The objective of the UAM project8 is to design a
system that supports collaborative work processes,
with multiple people coordinating their work in
order to accomplish a shared goal. Our work is
based on the assumption that there is a great
potential benefit in supporting the non-structured
aspects of everyday business activities, those that
are not managed by workflow processes and
existing corporate applications. These kinds of
activities are often managed by using handwritten
notes, e-mail, telephone conversations, and other
informal means. This objective has led to a number
of choices in how activities are represented.

First, we believe that activity representations should
have semantics and structure. For instance, each
activity has a creator, a title, a description, and a set
of people involved in its execution, each with a
potentially different role (participant, observer,
etc.). Activities may have resources associated with
them, such as Web pages or word-processing
documents; resources may be of different types,
such as a reference document or an output of the
activity. We hypothesize that formalizing the
activity structure explicitly enables the participants
in the activity to see how the different parts relate to
each other and to more easily track the current
status of the activity. In the section “Unified Activity
ontology,” we describe our representation of activ-
ities.

Second, we believe that activities are fundamentally
composed of metadata, as opposed to content.
Activities serve as the glue that joins individual
items of content created and managed in word

696 cozzi ET AL

processors, spreadsheets, e-mail, and Web applica-
tions. Rather than reinventing each of these business
applications in a new, monolithic application, we
take the position that activities should provide a
framework for collecting all of these items and
presenting them in a single, unified view. As a
result, we have developed a model that we call
“activities as service”: a lightweight Web service
infrastructure for creating, managing, and querying
activity data. We have used this infrastructure to
develop Web-based activity management systems.
More important, however, we believe that activity
data is most useful when presented within the
context of the tools and applications people already
use.

This paper describes our representation of activities
and presents the Wax system, a Web service
framework for activities that leverages a semantic
representation of activity. Wax takes advantage of
emerging technologies such as lightweight (REST
[Representational State Transfer]) Web services,
RSS (Rich Site Summary), and the semantic Web to
provide access to activity-related data as a service.
We present the results we obtained in using the Wax
system to manage two large business activities and
discuss which features of our design were most
helpful to the participants as they used the system.

Related work

Previous approaches to supporting collaborative
tasks generally fall within the categories of work-
flow systems or personal information managers
(PIMs).

Formal workflow systems are often rigid and
frequently assume fixed roles for users and a fixed
pattern for actions. One such system is the
Coordinator.” These systems are characterized by a
rigid specification of the processes to be executed.
Furthermore, workflows tend to work as indepen-
dent entities, having little integration with the rest of
the computing environment. A more flexible work-
flow is described in Reference 10, wherein end users
can modify the process. Our system goes even
further by dispensing with the process model
altogether.

The Task Manager11 is the earliest system of which
we are aware that is based on shared representation
of tasks that are malleable and that relate people and
resources. A later system that is even closer to our

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

approach in using an early semantic network
representation is described in Reference 12.

Shared workspaces provide shared access to docu-
ments (such as the Groove system13 and Lotus*
Notes* TeamRooms). These systems tend to be
difficult to use for simple, lightweight activities, and
it is unclear how they might integrate ad hoc activity
with more formal business processes or workflows.

PIMs aim at improving personal productivity by
organizing communications, contacts, and events
related to an individual. They do not support shared
entities, and external interaction is handled through
messaging. In contrast, our system is centered
around activities and uses them to organize docu-
ments, people, and events.

More details about the integration of our system
with business processes are described in Reference 1
and Reference 4.

The remainder of this paper is structured as follows.
We begin by introducing a semantic representation
of activity, based on the Resource Description
Framework (RDF), and we describe the ontology
used to represent activities and their properties. We
then present the Web service APIs (application
programming interfaces) that we have defined to
provide access to activity data from Web applica-
tions and third-party extensions. Next, we present
the user interfaces and client plug-ins that we have
developed, which let users interact with activities.
Finally, we report on the results of two case studies
in which the Wax system was used. Our results
indicate that the participants found having an
activity management system to be extremely useful
and confirm our hypothesis that a structured activity
representation brings value to activity management.
We conclude with a discussion of directions for
future work.

EXPLICITLY REPRESENTING ACTIVITIES

The goal of activity management is to help users be
more productive by organizing the work they do
around the concept of activities. In order to help
users manage activities, they must be represented in
a consistent way. This representation should cap-
ture the essential semantics of an activity: the links,
relationships, and resources that differentiate it from
other activities.

It is important to distinguish between the typical
representation of real-world activities in the minds

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

of the people involved and explicit activity repre-
sentations. Real-world activities are often implicit
(or tacit); people simply perform activities without
any representation of them. Real-world activities
can also be deliberately driven toward a more or less
well-articulated objective, as proposed by Activity
Theory.14 In contrast, real-world activities can also
have explicit representations, such as activity
descriptions in some medium, for example a plan
written on a whiteboard. We propose that explicit
computational representations of activities (i.e.,
representations enabling an activity to be processed
with computational tools) are useful for managing
them. Explicit representations can be more or less
elaborate; it is our intention to support fluid
transitions between various levels of elaboration,
based on people’s estimates of the costs and benefits
of creating them.

Explicit activity representations can be formal or
informal. Informal representations place no con-
straints on how the activity is represented; it may be
written down as a textual description or may consist
of scribbles on a Post-It** note. The goal of our
work is to provide a unified activity representation,
which captures the common properties of activities
in a standardized representation so that activities
can be shared and managed by different systems. In
order to achieve this goal, we require activity
representations to follow a formal vocabulary,
which captures the common characteristics of the
activity in a unified representation so that it can be
processed with computational tools.

In analyzing real world activities, we found a large
amount of variability in what is needed to represent
different kinds of activities. For example, an
independent consultant may want each of his
activities to include a property denoting the client
for which the work is being done and the billing rate
for each client. On the other hand, a programmer
might want to annotate each activity with a defect
report number and the sections of source code that
are relevant to the activity. As a result, activities
should be represented as objects with a large
number of optional fields that cannot be predicted.
This has several important implications for the
design of the API and the data model.

Increasing explicitness and formality puts a burden
on the user that must be counterbalanced by some
expected payoff. The first incentive to move to

explicit representation is sharing: a representation of

COzzZI ET AL

697

an activity becomes a communication artifact shared
by more than one person or group. The second
incentive is the automatic support provided by the
system. Our activity system strives to attain a
principle of incremental benefit where the more the
user invests in constructing a formal representation
of an activity, the more support that user can get
from the system, and this benefit is commensurate
with the additional effort invested by the user.

Activity representations in the mind of the user do
not require any support, and informal representa-
tions are not particularly problematic; but the formal
representation of activities is quite a challenging
problem. If we truly want to encompass the breadth
of human activities with an activity management
tool, it must deal with a difficult representation
problem. Different kinds of activities should be
represented in a common “language” when possi-
ble, but the representation must be extensible to
support new types of activities and functionalities. It
is not desirable that the user be required to specify
an activity “type” in advance—the user may not
have decided on an activity type, and the activity
may change considerably during its lifetime; for
example, starting as an e-mail or a “to do” entry and
evolving into a multi-person project. What is needed
is a fluid representation that enables activities to
change and acquire new properties.

The representation problem is further complicated
by the requirement to represent not just activities,
but potentially all kinds of domain-specific objects
related to them (people, documents, files, calendar
appointments, Web sites, orders, etc.). We came to
realize that the network of relationships that binds
other objects to an activity is one of the most
important features of an activity. We could use URLs
(Uniform Resource Locators) or other identifiers to
represent these objects, but then we would be
severely limited in what we could do with them or
the kind of queries that would be possible. Ideally,
we would like to associate selected metadata with
those objects in order to support queries within the
activity system, for example, displaying all activities
with a calendar appointment occurring today. The
challenge of the task is to represent highly variable
objects and their relationships to potentially any
other object.

We have investigated the use of semantic Web'®
technologies to provide a consistent, standards-
based environment for the representation of activ-

698 cozzi ET AL

ities. RDF,'® a key component of the semantic Web,
provides a representation flexible enough to support
our generalization of activities by enabling rela-
tionships from multiple ontologies and data sources
to be viewed as one coherent data structure: namely,
a graph. RDF comes with a data model to express
binary relationships, query languages (RDQL17 and
SPARQLIS), several implementations of storage
repositories, a file format (RDF/XML), an ontology
language (OWng), and an inference model. As part
of our investigation, we have developed a unified
activity ontology, based on OWL, that defines the
generic concept of collaborative activity and pro-
vides a common set of properties to ensure a level of
consistency and uniformity for all types of activities.
This ontology can be easily extended to new
relationships and properties, thus enabling activities
to be customized for particular end users without
necessitating a system redesign.

Unified Activity ontology

The Unified Activity ontology defines a few funda-
mental objects: (1) activities, (2) actors (people or
software agents), (3) events (calendar entries), and
(4) resources (files and URLs). The ontology builds
on the Dublin core,20 Friend-Of-A-Friend,21 and
iCalendar™ ontologies to describe standardized
properties such as titles, descriptions, and e-mail
addresses.

Table 1 summarizes the key properties of the
Unified Activity ontology. The basic entity is the
activity, characterized by a few descriptive proper-
ties (title, description, result) and several relational
properties that connect this activity to other objects,
such as actors and resources.

An actor represents a person in the activity system.
The basic description of an actor includes a name
and an e-mail address. An actor must be involved in
an activity with a particular role; we have defined
several roles, such as participant, observer, com-

. 23
mitted, and doer.

Events represent the time-centric features of an
activity. We use the iCalendar standard to represent
properties of events, such as the title, description,
and start and end dates.

Activities may include resources, which represent

external artifacts (Web pages, files) that are related
to the activity. Each resource is described by a

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

unique identifier (URI [Uniform Resource Identi-
fier]) and a label. Resources may be related to
activities in a variety of roles; for example, a
document may be a reference document (which is
consumed in the process of completing the activity)
or an output document (which is produced as a
result of the activity).

Activities may be decomposed into subactivities,
which are activities on which the “parent” activity
depends in some way. The subactivity relation
provides a way to organize the structure of an activity
and define the breakdown of the work involved in
completing it. In keeping with the RDF graph model,
the subactivity relationship is one that links a parent
activity and a child activity. Because the child activity
is not contained in a single parent activity, an activity
can be a child to multiple parent activities.

We also support the concept of an activity pattern,
which is a special type of activity that is designed for
reuse. Patterns are well-suited for capturing the best
practices for conducting an activity; if the activity
needs to be repeated, one can create an instance of
the pattern and customize it for the new activity.
Examples of activity patterns include planning a
meeting, running a software project, and hiring a
new employee. Patterns are explained more in the
companion paper by Moody et al.,l and one of the
case studies later in this paper illustrates the use of
an activity pattern.

RDF as a development environment

Our RDF environment uses the Jena toolkit from HP
Labs. Licensed under an Apache-like open-source
license, our project utilizes an RDF API, SPARQL
and RDQL query processors, an HTTP (Hypertext
Transfer Protocol) RDF API known as Joseki, and a
graph API for persistence. We have augmented the
Jena toolkit with a JSP** (Java L~’:erverPages*"‘)24 tag
library that facilitates Web development, and we
have augmented the graph API to enable integration
with remote data sources at the RDF level.

Activity data stored as RDF can be accessed through
the JSP tag library by using constructs such as:

<rdf:resource id="focus">

Title: <rdf:property name="dc:title"/>
</rdf:resource>
which retrieves the Dublin core “title” property from

a node identified as “focus” and prints it in a

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

Table 1 Unified Activity ontology in the Wax system

Subject Relation Object Description
Activity URI Unique identifier for this activity
Shortname Short human-readable
identifier for the activity,
such as an e-mail name
Title Short description of activity
Description Longer description of activity
Status Short description of the
status of the activity
Result Short description of the
outcome of the activity
Completed Whether the activity
has been completed
Involvements Set of actors involved in the
activity and how each is
involved
Subactivities Sequence of activities
representing a breakdown
of the work in this activity
Events Set of events related to the
activity and how they are
related
Resources Set of resources related to
the activity and how they
are related
Actor Name
E-mail
Resource URI Pointer to the actual resource
Label Description of the resource
Event Start date/time
End date/time
Description

dynamic Web page. Activity data can also be
accessed through the Jena Java** API using
constructs such as:

Resource focus=model.getResource(focusuri);
System.out.printin(“Title: ” +

focus.getProperty(DC.title).getString());

which performs the same function as the JSP
example. The other way to access activity data is by

COzzZI ET AL

699

using the Joseki HTTP API, which enables subsets of
the RDF graph to be queried. The results are
returned in an RDF serialization format such as
RDF/XML.

For modifying RDF data, we provide an abstraction
of a higher level than one which simply adds and
removes statements from the model. The Unified
Activity ontology specifies the data model but not
the set of operations that can be performed on that
data. Using the “raw” Java API to make changes can
result in data graphs that are inconsistent with the
activity ontology. To ensure consistency, we have
developed an abstraction called a “command” that
transforms the RDF data graph in a specific manner.
A command, which is executed in a logged,
reversible transaction, ensures that the resulting
model continues to be consistent with relevant
ontologies. While we have prototyped a scripting
language encoded in RDF for developing compound
commands, our deployed system uses plain Java
code to implement commands. Examples of com-
mands include creating a new activity, modifying a
person’s involvement, and deleting an event.

The Jena Graph API provides access to one of the
most compelling features of RDF: the ability to
create a composite graph from different data
sources, including virtual and logical ones. Because
nodes and relationships in the RDF graph are
identified by URIs, it is straightforward to build a
composite graph by overlaying multiple graphs on
top of each other. We have exploited this feature to
build a framework for dynamically integrating
external data sources into the core RDF model. For
example, we have integrated our enterprise direc-
tory into the activity model, which means that
activities can reference the name, e-mail address, or
job title of anyone involved in the activity auto-
matically, without having to explicitly add these
properties to the model. This mechanism is what
enables semantic-level integration, and theoretically
enables any data source to be mapped into the
Unified Activity schema while preserving its own
semantics or leveraging other ontologies.

Queries of the composite graph are known as
“federated queries” because they relate data from
different data sources without moving all of that
data into a central index. Our framework provides
some support, particularly caching and prefetching,
to improve the performance of these federated

700 cozzi ET AL

queries, but does not resolve all the performance
problems intrinsic to this configuration.

We have also built an access control model on top of
our graph framework. This model works by post-
filtering, based upon the identity of the user and the
policies encoded in the RDF data, the results of data
that is read. Users who do not have access to data
simply do not see it. Likewise, calls to modify the
repository can be checked at this level as well. As a
post-filtering approach, the performance of this
access control implementation is limited. In a
sample worst case scenario, someone may search
for all activities containing the term “the” in a
system with 100,000 activities; 50,000 activities may
contain that term, but the user may only have access
to 2 of them. The system will retrieve 50,000
activities and filter out 49,998 of them from the
display, resulting in potentially poor performance.

Discussion

We consider the role of RDF in activities an open
question. Beyond the superficial (but real) costs of
its unfamiliar representations and API, as well as
performance issues, we have found the lack of
support for complex relationships to be the largest
problem with RDF as the data model for activities.
RDF encodes binary assertions like activityl
hasCreator personl, which can be either present or
not. It does not have a simple way to express an
assertion like “activityl involves personl as of
January 15, 2006 according to person2 and with
involvement level of ‘responsible’.”

To express information about the relationship
between “activityl” and “personl”, RDF relies on
using three approaches, each having some varia-
tions. The first approach uses what we call a
“relationship node” in which an intermediate node
is interjected to express this relationship. All of the
extra information about the relationship can be
attached to the middle node “activityl-personl-
relationship”, which is between the nodes “activ-
ityl” and “personl”. This relationship node can be
either a blank node (meaning it has no identifying
URI) or a regular URI node. If it is blank, then it
must be referred to by the pair of “activityl” and
“personl”. Moreover, queries and retrievals require
traversing this extra node, which complicates
matters for developers and impacts performance.

The second approach is known as “reification”. This
is similar to the previous approach in that another

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

node is introduced to store the extra relationship
information, but differs in that the extra node in this
case is peripheral and the data can be accessed
without knowledge about its existence. There are
several ways to implement reification with different
implications for the API and performance. We have
observed that these implementations can become
complex and can significantly hinder performance.

The third approach is to use multiple relationships
to link together the same two nodes. For example,
one might have the assertions activityl involves
personl and activityl hasResponsible personl.
This approach can be used to encode ordering by
including in the model statements such as:
activityl hasInvolvementOrdering seql, followed
by seql _1 personl, seql _2 person2, etc. The
disadvantage of this approach is that the multiple
related assertions must be kept consistent, and
having many paths between two objects seems to
violate the principle of keeping a data model simple.

Rather than select a single approach, we use all
three of these approaches in our current ontology.
This state is confusing for developers. Worse,
however, is the fact that we intend the RDF
representation to be the logical and complete
representation for activities. As such, we cannot
conceal these approaches, but rather must expose
them in the API, query language, and activity
representation.

ACTIVITIES AS A WEB SERVICE

In order to realize our vision of having activities
integrate multiple applications, we have provided a
lightweight REST”’ interface to activity data. We
have designed two levels of REST APIs to interact
with the server.”® The lower-level interface (known
as the “RDF-level API”) operates directly on RDF
data structures. It is not activity-specific and gives
complete freedom to clients. The higher-level inter-
face (known as the “activity-specific API”") provides
simplified access for clients who simply want to
perform standard operations on activities.

While RDF provides a compelling set of features, the
activity-specific API has enabled us to explore
different ways of making activity data accessible in
the context of other applications such as e-mail
clients or Web browsers. In fact, we have found that
there is often a decision to be made when integrating
activities and other applications: namely, whether

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

(1) the application data should be mapped into the
activity model or (2) the activity service should
expose its data to a plug-in or extension for the other
application.

For example, in the past we have chosen the first of
these options when integrating e-mail into activities
by mapping e-mail into a messaging ontology and
implementing a limited e-mail client as part of an
activity-management user interface (UI). Later in
this paper we will present an alternative approach
that extends an open-source mail application with
activity data accessed through the Wax activity
service. Both approaches allow users to see activ-
ities and related messages alongside each other. The
advantage of the former approach is the uniform
data model; the advantage of the latter approach is
the reuse of an existing e-mail client application. As
e-mail clients are complex and heavily used and
have idiosyncrasies that users come to rely on, the
latter approach is much more effective in this case.
Moreover, when bringing activity data to client plug-
ins, we have also found that an XML-based syntax
appears easier and more familiar for plug-in devel-
opers than RDF, and that the need for flexibility in
this context is limited.

By providing both RDF and activity-specific inter-
faces, we can continue to explore the flexible data
model of RDF, while hiding the decisions we make
about representation from the particular XML
serializations that we expose to client applications.
We anticipate, however, that much of the innova-
tion with activity integration will be in the form of
bringing activity data into the context of existing
tools and applications, and that the activity-specific
API will be the most widely used for this purpose.
All of the client plug-ins we present later make use
of the activity-specific API.

RDF-level interface

The RDF-level interface provides access to the RDF
data model directly. The interface consists of three
methods. The first method enables the querying of
the RDF database by using the standard RDQL or
SPARQL protocols. We have currently implemented
the RDQL protocol and plan to implement the
SPARQL protocol in the near future.

The second method enables modification of the RDF

database by applying a “delta”, that is, a list of RDF-
triples (i.e. basic subject-predicate-object state-

COzzZI ET AL

701

Table 2 Unified Activity API calls in the Wax system

Create a new activity

Delete an activity

Edit an activity (change its title or description)
Set the shortname

Add/remove a note/attachment/resource from the
activity

Mark an activity as completed

Add/remove/edit a person in the activity with a
particular type of involvement

Add/download an artifact (which is then uploaded and
stored on the server)

Add/remove/edit an RSS or Atom feed

Add a new event (calendar entry with start/end times
and a description)

Add/remove/edit a subactivity in an activity
Retrieve the activity specified by the URI or shortname
Retrieve all activities involving a particular user

Retrieve all people involved with a particular activity and
all of its subactivities

ments) to be added and another list of triples to be
removed. It is necessary to support additions and
removals within a single transaction to ensure that
the database is always in a consistent state.

The third method allows a client to register with the
server in order to be notified when a change occurs
in the database. We have currently implemented a
simple triple-pattern-based notification mechanism,
but we are planning to extend this by using a
SPARQL query to specify the triples to be observed.
A notification is sent if the result of the query
changes in response to a database change; the
notification contains the change in query results due
to the database update.

One problem with the RDF-level interface is that it
does not use commands to encapsulate changes
made to the RDF data graph, and thus allows clients
to make changes that leave the graph in an
inconsistent state. Were this API to specify the
commands available, however, clients would be
restricted to using the functionality already encoded

702 cozzi ET AL

on the server. We continue to investigate trade-offs
between flexibility and reliability, such as this one.

Activity-level interface

In addition to the RDF-level interface, we also
provide a higher-level interface that is activity-
specific. This API provides three categories of
functionality: managing activities, managing prop-
erties of activities, and searching for activities that
match various parameters.

Each activity has a unique identifier which globally
identifies it. This enables multiple activities to have
the same title and not conflict with each other.
However, because activity URIs are machine-gen-
erated and difficult to remember, we have also
provided the ability to associate a human-specified
“shortname” for each activity, which can be used in
place of the full URL

The API calls at the activity level are shown in
Table 2. The API provides the ability to create,
delete, and edit activities and to set and retrieve
various activity properties and related entities, such
as resources, feeds, events, and subactivities. The
API also allows activities to be retrieved in various
ways, such as by URI, by the people involved, and
by related activities.

The retrieval queries currently return XML describ-
ing the activity by using a custom schema which we
designed. The Atom standard”’ defines an XML
format for data interchange that captures many of
the important features of activities. In future work,
we are planning to investigate the use of Atom for
representing activity data, in addition to participat-
ing in standards work that defines a common
interchange format for activities in order to enable
multiple activity systems to interoperate.

THE WAX ACTIVITY MANAGEMENT SYSTEM
While we expect that much of the interaction with
activities will take place with existing tools using
integration points enabled by the activity service, we
have found it useful to create a complete, Web-
based user interface. The Wax Web UI provides
access to all activity functions as a collaborative
Web application. With this interface, users can add
people to an activity, send e-mail to people involved
in the activity, add related resources (Web pages,
documents, RSS feeds, and other artifacts), schedule
events and deadlines, and define subactivities.

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

Welcome, Stephen P. Farrell [signout]

APODW
WAX Development

e Blue: Enki

: Supporting Activities

f Communication in

A

Resourcas Events

Mon Tue Wed Thu Fri

i [New] i
b+ Einlihsd % Thomas P. Moran — Lead 1 2 3 4 & & 7
e Robert J. Stachal 8 - 1 N P
b Mesting Support Servce | & Barton A. smith 51 7@ 18 0 N
b Support Open James Lin 2 W M /5 % W B
b Empirically Test Clemens Drews % 3 M ® W M 3B
B Misc stuff to doin UAM 21| O Paul B. Moody — Designer
. Stephen P. Farrell — Architect
P Pursue Lead JOHN C. TANG Hotes — [Add] —[+]
b Publich UAM papers Michael Muller - Activity; UAM 2006] - T :
« Content on prototvpe for U Daniel M. Gruen :::::::g m% {:; — Tom 12/12/05
Fringe Contacts Paper Tessa A, Lau System notes — [+
MENG MAD ZAERE |+ removed "Recent Shor... -1 100

&4 Ronald J. Barber — (access for meeting support)

& Laura Challman Anderson — (access for meeting support)
& John Janiak — (access for meeting support)

&d Jon D. Reinke — (access for maeting support)

* We are to expect an interactive session as we show
what we have on our design, plan and progress. []

« We are to expectan .., [¢] - T

&d Steve B. Cousins
&d PATRICK C. SHIH
&d JOHN J. BARTON
(@ Andreas Dieberger — Design

[+]

Figure 1
Wax system Web application

-UAM Discussion — [+]
+ LIAM People (DLs) (Thomas P Moran 01/13) - 1/1
= CEOQ Milestone (Thomas P Moran 01/13) — 1/13/04
+ Official Milestones (Thomas P Moran 01/13) -

User interface

The Wax Web application shown in Figure 1
provides a view of a single activity (the “focus”) and
the user’s personal context. The Ul is divided into
five panels. The toolbar panel (A) at the top
provides context-independent functions such as
search and help. The “My Activities” panel (B) at
the left is a hierarchical list of the user’s personal
activities. Activities in this list can be opened
dynamically, enabling the user to rapidly explore
them. The center panel (C) displays basic informa-
tion about the specific activity that is in focus,
including the title, status text and check box,
primary person, access policy, and description. It
also provides interactive elements to change the
status and to retrieve a form to edit other fields. The
details panel (D) provides detailed information
about people, documents, events, and other activ-
ities that are related to the focus activity and are
displayed as tabs. The temporal panel (E) shows
temporally organized information related to the
activity, including mailing lists and RSS feeds, a

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

system-generated log of actions, and a calendar that
highlights the days on which the most activity has
occurred.

Example

As an example, a user named Sally may want to
create an activity to plan for the “Acme Demo”. This
demo takes place on a particular date. There are
slides and applications to organize and prepare, and
there are other people who will be helping out. Sally
begins by selecting the “Acme” activity and creating
this demo as a subactivity of it, specifying the title,
description, access rights, and other properties of
the new subactivity. To add more detail to the
activity, Sally clicks on it, which makes it the focus
activity. The details and temporal panels (D and E)
are blank, so Sally sets about populating them. She
switches to the “People” tab and clicks on “[New]”
to add the other members, looking up her colleagues
in the corporate directory from the dialog that
appears, describing the role the person is playing in
the activity and his or her involvement in more

COzzZI ET AL

703

detail, and indicating whether the person should be
notified by e-mail of his or her involvement in the
activity. She then clicks on “Supporting Activities”
and creates new subactivities (sub-subactivities of
the “Acme” activity) for the various steps in
preparing for the demo.

Using similar steps, Sally associates with the
subactivity various resources such as Wiki pages or
mailing lists, deadlines, and milestones. As she adds
these resources and objects, some information is
automatically populated by hard-coded auto-dis-
covery heuristics. For example, after adding a Wiki
page, our heuristics automatically discover the
change log for the page, and recent changes are
added to the temporal panel (E). Similarly, recent
mailing-list entries are discovered. The auto-dis-
covery heuristics identify contributors to the Wiki
page who are not already listed as involved in the
activity, and display them at the bottom of the
“People” tab as possibly related people.

Sally’s colleagues will receive e-mail saying that
they have been added to the activity. When they
visit the link in this e-mail, they will see an inline
dialog box noting that they are part of this activity
and offering to add it to their own My Activities
panel. Because it is a shared activity, they all have
permission to make changes including adding other
members, resources, and deadlines. All changes are
logged and appear in the temporal panel.

After this activity is created, all of the members can
access it through the Wax Web interface and also
through other components, thus integrating it into
the tools they use routinely including e-mail,
calendar tools, Web browsers, and productivity
applications.

By creating this activity in Wax, Sally has not only
populated the Wax Web application; she has also
placed this activity in the context of the work
practices of her colleagues through these integration
components. The next section describes how activ-
ities can be interwoven into other tools using the
Wax APIs.

CLIENT INTEGRATION AND USER INTERFACES
Several applications and extensions to third-party
applications have been built with the activity-level

704 cozzi ET AL

interface, including those related to e-mail tools,
Web browsers and desktop search tools.

E-mail integration

An e-mail client can be modified to display an
activities pane. Each activity in this display can
contain a set of e-mail messages (notes) and the set
of people involved in the activity. Although only
notes are currently supported, we plan to extend the
plug-in to support the other types of resources that
can be associated with activities, such as attach-
ments, RSS feeds, and subactivity information.

The Activities pane of the e-mail client shows all the
activities that involve both the current user and the
sender of the currently selected e-mail message. The
activity list is prioritized by relevance, using the
SimOverlap metric described in Reference 28;
activities whose members are most similar to the set
of recipients in the message are displayed at top of
the list.

A new activity can be created by right-clicking on an
e-mail message. Activities created in this way are
automatically created on the Wax server as well.
One of the primary benefits of using this interface to
create activities is that the set of involved people is
automatically determined from the e-mail. New
messages can be associated with an activity by
dragging and dropping them onto the Activities
pane, and they are added to the activity as notes.

One of the primary benefits of this collaborative
approach to managing activities is increasing activ-
ity awareness. Every participant in an activity sees
the most up-to-date relevant activities displayed in
his or her activity pane. For example, if Sally creates
a new activity involving her and Bob, the next time
Bob receives an e-mail from her, he will see the new
activity displayed in the contextual activity pane,
thus making him aware that Sally created the
activity in which he is now involved.

Another benefit is collaborative activity manage-
ment. Shared activities are a collaborative artifact:
any changes to an activity are made visible to all
participants of the activity. Thus all participants
share responsibility for updating the activity, and all
members benefit from the organizational work of
other members. If Sally adds a particular message to

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

an activity because it is relevant, Bob benefits from
her organizational work.

Web browser integration

The Wax Web site provides RSS feeds for activities.
Using these feeds and Mozilla’s live bookmarks
feature, users can get one-click access to their
activities directly from the Web browser.

We also provide an activity bar plug-in for Mozilla
Firefox** browser that shows all activities which list
the Web page currently being viewed as a resource.
For example, a Web page can be added as a resource
for the Wax Development activity. Users visiting this
Web page would see the Wax Development activity
listed in the activity bar as a relevant activity. In
addition, users can associate a Web page with any of
their activities by navigating to it in a browser and
pressing the “Add page to activity” button. This
functionality is similar to that provided by social
bookmarking services such as the “del.icio.us” Web
site,”” where, instead of tagging a document, the
user is declaring a more formal relationship between
the current Web page and an activity.

The activity bar also is integrated with our online
enterprise directory. When a user’s profile page is
visited, the activity bar displays all activities in
which that user is a participant. The button on the
right also changes to “Add user to activity.” This
capability uses pages in the enterprise directory as
proxies for people in the organization, and makes it
easy to add people to activities by simply viewing
their page in the directory.

We have also considered the possibility of creating a
new activity from a Web page. The title and
summary of the Web page could be extracted as a
description of the activity, for example, in the same
way that the e-mail integration application extracts
them from an e-mail message. The list of people
involved in the activity could be extracted from the
people mentioned on the Web page, and a descrip-
tion of the steps involved in the activity could be
mined from the text of the Web page.

Google desktop integration

We also provide a client plug-in to integrate our
activity system with the desktop search product by
Google. This plug-in adds a content box to the
Google desktop display that shows the list of one’s

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

activities. Each item shows the title of the activity
and a check box with the completed status of the
activity. Clicking on an item brings up a popup
window showing the objective of the activity.
Double-clicking on an item brings up a Web browser
showing the Wax page for that activity.

Other applications

Activities can be integrated with other applications
such as word processors and spreadsheets by using
a similar approach. With these tools, users should
be able to save and store files directly as resources of
the activities in which they are involved, and they
can be made aware of activities that are related to
the document that they are currently viewing.

Because involvements are an integral part of
activities, any display of relevant activities can also
include a list of relevant people. The users should be
able to start an instant chat, for example, directly
from a related-activities display. The transcript from
that chat could optionally be saved as a resource of
the activity.

In similar ways, activities can provide context for
calendar use, project management, and video
conferencing. Other domain-specific tools can pro-
vide even richer levels of integration. For example, a
software development environment might associate
a source code repository with an activity, with
packages within that repository treated as subactiv-
ities and logs treated as resources. The activity could
serve as an integration point between the develop-
ment environment, source code management, re-
quirements documents, discussion tools, and team
members. Moreover, it can link to office tools,
enabling a person viewing the requirements docu-
ment, for example, to navigate to the source code,
developers, and defect reports through the activity.
The goal is for the activity service to support
activities as an essential concept linking related
information, tools, and resources in the context of
the tools people already use.

Discussion

While they have not yet been widely deployed, our
experience with these client plug-ins has led us to
conclude that integrating activity data into existing
applications has several benefits. Displaying activity
data within applications that people already use
(such as e-mail and Web browsers) enhances
activity awareness. Adding resources and people to

COzzZI ET AL

705

activities is significantly facilitated, as is the creation
of new activities that reuse existing context (such as
the currently viewed e-mail message or Web page).
These features make it more likely that people will
use the activity system.

EXPERIENCE AND TESTING

We built the Wax prototype service to explore a
unified activity representation and an integration
architecture to support activity management. Our
exploration of integrating Wax with other systems
was presented in the previous section. We were not
trying to build a robust system which was fully
integrated into IBM’s enterprise applications (such
as Lotus Notes); rather we gave the Wax system
enough functionality so that we could try it
ourselves, open it to colleagues in related projects,
and support targeted activities by selected non-
technical groups.

The Wax system was adequate for this level of
testing. The functionality, described in a previous
section, supported basic collaborative activity rep-
resentation and management. The user interface
employed AJAX (Asynchrous JavaScript** and
XML) techniques (e.g., reorganizing subactivity
order by “drag-and-drop”) to make its use easy and
intuitive. The response-time performance was sat-
isfactory, and continual debugging and enhance-
ments kept the system at a usable and useful level.
Finally, we were quick to restart the system when it
crashed, and we frequently backed up the data users
entered.

The Wax system was in use for 10 months, starting
in 2005. Over 2000 activities were created by almost
200 different users. Most users were simply trying
out the system, but many were doing real work with
it (roughly 40 users who had more than 15 activities
on their My Activities lists.) In addition, seven users
explored using the Wax system to organize their
personal activities. It is interesting that all but one of
these users included collaborative activities. Thus
the organization of the activities was personal, but
the activities organized were shared. Other kinds of
activities were also explored: planning (3), presen-
tation (14), small projects (12), and trips (3).

Our focus in testing Wax was to support the six
major activities listed in Table 3. The first three
were activities related to the UAM project. We
initially used the Wax system to keep track of

706 cozzi ET AL

defects and feature requests; Wax proved somewhat
useful for organizing these items into subactivity
structures. The defect tracking work was carried out
in SourceForge,so which is optimized to support a
commonly accepted schema for defect tracking that
is integrated with our code development in
Eclipse**. But Wax was still somewhat useful to
some users as a means for displaying an overview of
the main features as well as aggregated feeds from
the developers’ mailing lists and from the UAM
content database. Although there were only 10
people on the UAM project, we included several
people outside our project as observers of the
activity, because the activity structure itself served
as a way to communicate the range of our work with
them.

Case study: Organizing a complex event

We tested the Wax system by using it to manage a
significant activity; namely, organizing the Almaden
Research Center site-wide celebration event for IBM
Research’s 60th anniversary. This activity involved
a committee of 16-18 people, each with different
responsibilities (e.g., hiring caterers, rearranging the
cafeteria layout, inviting guest speakers). Eighteen
subactivities were created, mostly by the person in
charge of the event. However, of those 18, two
subactivities were created by a second user. Most of
the users modified one or more of the subactivities
during the course of the activity, by updating its
status or adding resources.

The Wax system was used as the primary orga-
nizational system for coordinating this event. The
group held weekly meetings, during which the
activity display in the Wax system was projected
onto a screen in order to see what needed to be done
and track the group’s progress. Before each meeting,
the organizer would send e-mail to the person
responsible for each subactivity, asking him or her
to update the status of the activity in the Wax
system. This practice made it unnecessary for the
committee members to prepare slides for the meet-
ing. During the meeting, additional information that
emerged was added directly to the activities so that
by the end of the meeting, everyone was able to see
the action items for which they were responsible.

A survey was distributed to the activity participants
afterwards in order to gauge their reactions to the
system. Users agreed that the system was useful.
They believed the primary value was that it

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

provided awareness of status and asynchronous
communication. The committee consisted of mem-
bers who did not normally work together; the
activity provided a way for these diverse members
to communicate with each other effectively, partic-
ularly by providing asynchronous communication.
For instance, someone working over the weekend
could check the status of an activity to see whether it
had been completed, without needing to e-mail or
call the person responsible for the activity. The
structured nature of activities also helped to
organize this status information in a way that made
it easier to find information, as compared with
searching through e-mail in order to find the most
recent update. Another useful aspect of the struc-
tured representation was the ability to express
responsibility by placing a name next to each part of
the activity. In addition, because much of the
coordination work of the activity could be done
using the Wax system, the group found that it was
not necessary to meet every week to maintain
progress.

One observation was that the field “description” in
the activity was overloaded to contain current
information about the status of the activity. (The
description field has since been renamed “objec-
tive”, in part due to this experience.) Our original
intent for the description field was to contain a
description of the goal or purpose of the activity.
However, we observed that users often placed an
ongoing status update of the work product into this
field, such as the master agenda for the event, or the
fact that a guest speaker had accepted an invitation
to participate. We believe this was because the
description field is prominently displayed at the top
of the activity page, so it provides a convenient
place for users to store information that they wish to
make immediately accessible to anyone looking at
the activity. In contrast, placing this information in
the “Resources” section of the activity would mean
having to click through a few screens before this
information could be viewed.

A further benefit to using the activity system was in
transferring knowledge from one person to another.
In the middle of the planning process, a committee
member was replaced. It was possible to make the
new member current because all the pertinent
information was recorded in the activity. If this
information had been disseminated via e-mail, it
would have been much more difficult to find all the

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

Table 3 Major activities supported by the Wax
system

Number of Number of
Activity People Subactivities
Wax development (defects 21 31
and features)
UAM year-end 2005 20 27
presentations
UAM project planning for 60 100
2006
Organizing a site-wide 23 20
anniversary event
Organizing the NPUC (New 7 22
Paradigms in User Computing)
2006 Workshop
Managing accommodation 111 918
of the Almaden student
interns for 2006

relevant information and forward it to the new
committee member.

The study also revealed some limitations that need
to be addressed in a future version of the system.
One common complaint was that the activity system
needs to have better integration with formal busi-
ness processes and external applications. For ex-
ample, the process for reimbursing a guest speaker’s
travel expenses involves filling out a form with the
speaker’s name and affiliation. Because this infor-
mation is already entered into the activity, it would
be helpful if the reimbursement process could
retrieve it from the activity so that it does not have
to be entered twice.

Another common request was the ability to generate
reports or summaries based on the information
entered into the activity system. For example, one
use would be to determine how much of the total
budget has been spent by extracting this information
from the subactivities. As another example, if the
Wax system had been used to organize a weekly
seminar, it would be useful to be able to print out a
summary of all the talks that had been scheduled
over the course of the past year. While generating
these reports is currently possible by navigating to
different screens in the system and copying and
pasting data into a new document, one of our goals
for future work is to explore mechanisms for

COzzZI ET AL

707

Supporting Activities
[New | Paste | Expand]

Offer email
Acceptance
Serial Number (95008
Mentor
Start Date
Office (B2-444
Phone | Request Phone
Received User IDs -- VM and Notes
Computer | Service Request for image build
Move Request | Move Request Form
Pick up after orientation
| First day lunch

Badge access | Badge Access Form

Keys | Key Request Form

Door / Cubicle name plate

Update Blue Pages | BluePages

Intranet User Password (Password Form

IREENEER

People
[New]
Barton A. Smith — Manager
Resources
[New | Paste]

» Instructions, Key contacts, Roles & Responsibilities

While the preceding list was common to the
Research Division, the Almaden laboratory needed
to have a local process that not only conformed to
the corporate requirements but also supported the
actual practices at the Almaden site. This situation
provided a good test of both the activity pattern
concept and the information-sharing capabilities of
the Wax system.

The activity pattern for managing intern accommo-
dation was created collaboratively. We met with the
Human Resources (HR) department to request their
cooperation and understand their requirements.
After this, we interviewed a group of managers and
department administrative assistants (AAs) and
technical assistants (TAs) who would be involved in
performing some of the steps. On the basis of this
input from potential users, we created an intern-
accommodation activity pattern, which included 17
subactivities, one for each of the steps. The goal of
the design was to provide, in a single view, the
checklist of items to be done, the status of each item,
and a resource for doing it if applicable. The AAs
and TAs also voiced the need for a summary view so
that they could check the status of certain items, for

Figure 2
Example of Wax system view of intern accommodation
activity pattern

example, office assignments, for the list of interns in
their departments. We built a special view that
pulled information from the individual activities for

enabling end users to do customized report gen-
eration.

Case study: Managing a business process

We explored how well the Wax system could
support a common business process by using it to
coordinate the process of setting up accommoda-
tions for 85 new summer interns at Almaden. The
existing process consisted of a list of steps that was
e-mailed to the manager of each intern, detailing
what needed to be completed before and shortly
after the arrival of each intern. These included
assigning a mentor, assigning office space, request-
ing a telephone and voice mail account, arranging
for a computer and making it ready, verifying
creation of computer accounts, requesting badge
access to appropriate rooms, and requesting keys.
Some of these items required the use of formal
corporate business processes or applications (e.g.,
badge access), and some required coordination
among two or more people (e.g., assignment of
office space).

708 cozzi ET AL

each intern and presented it in a table (the intern
summary table).

A hierarchy of activities was built to organize the
activities for individual interns by department. HR
personnel were involved at the top level, having
access to all entries. Managers, TAs, and AAs in
each department were involved in the subactivity
for their area, because users had told us that they
wanted to see a list of only the interns relevant to
them when they opened their view of the activity.
As a default, each subactivity inherited the in-
volvement of people from its parent, providing the
appropriate access control at each level.

Figure 2 shows the Wax system view of one
instance of the intern accommodation activity. The
name of the intern is used as the title of the activity,
and each of the supporting activities is one of the
steps in the process. For each item in the supporting
activities list, one or more of the following types of
information from the supporting activity is shown:
the status of the check box, the title of the step, the
name of the person responsible for the step, a text

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

WAX Welcome, Barton A. Smith [SignOut]
Computer Science Interns

Name Manager Mentor Start Date Office #

Computer Science Interns
Anthony Interns

A. Smith Barton A. Smith Tessa A. Laww 6/19/2006 B2-4231

B. Smith Theo Public Dr. Zee 6/5/2006

C. Smith Barton A. Smith Thomas P. Moran 06/05/2006 B2-423 Q
D. Smith Barton A. Smithw Allen Cpersonv 05/30/2006 B2-423 P
E. Smith Seldom Nuttyv Heather Citizenv ~ 06/19/06

E.Smith Jack B. Nimblew 5/15/06 B2-433

A. Smith Theo Publicw Theo Publicv

H. Smith Steven R. Publicw 5/11/2006

L Smith Theo Public¥ Thomas A. Edisonw May 15, 2006

J. Smith Jack B. Nimblew Sophia T. Oysterv

K. Smith Jack B. Nimble¥ Sophia T. Oyster v

Buffalo Bill Interns

L. Smith China How Lucy Publicw 6/19/2006 B1-255 (#6)
M. Smith Shivman Virtual v Raja Publicmanv 5/15/2006 B2-237 (#A)
N. Smith Shivman Virtual v Shivman Virtual v 6/12/2006 B2-249

O. Smith China Ho Mario Publicw 5/15/2006 B1-255 (#7)
P._Smith China How When-Saran Liv 05/08 B1-431

Q. Smith China Hovw Tanya Citizenv 05/22 B2-249

R. Smith China Hov When-Saran Liv 05/08 B1-431

S. Smith China Hov China Hov 05/15 B1-419

T. Smith China How China Hov 05/15 B1-419

U. Smith China Hovw Tanya Citizenv 05/22 B2-249

V. Smith Huey Longv Stephen Foster v B1-255 (#4)

Grandyman Interns

W. Smith Tyrone W. Grandymanv Alexa Eframv 05/22/06

X. Smith Catharine Hopefullw

Y. Smith Catharine Hopefullv

Figure 3

Example of intern summary table

Bug Reports Help Search I

Phone# s/n email computer allocated

4D4918 T30 99 5AZ9X

4D5940

4D6528 xyz@us.ibm.com T30 99-5BAIP

4D6236 xyz@us.ibm.com + T30 99-5AL1L

4D6203

3D0933 T30 KP-96BG7

953207

4D7052

3D0952 T30 78-ANBZ5

3D1763

4D5701

781953 v Intelli M Pro 78-G3245 clio0301.almaden.ibm.com
457-1146 4D6430 xyz@us.ibm.com + ThinkCenter KC-GX4C2 tphanl.almaden.ibm.com

4D6431 v Intelli M Pro 78-G3145
457-1002 4D6400 xyz@us.ibm.com + ThinkCenter KC-GG1D9 dpa.almaden.ibm.com
7-1734 4D6564 + ThinkCenter KC-FW0XP clio0601.almaden.ibm.com

4D6916 ~ ThinkCenter KC-FW0ZZ clio0602.almaden.ibm.com

~ Intelli M Pro 78-G3276
~ ThinkCenter KL-HAF34
4D6208

string describing the status or result of the step, and
a link to the resource, such as an online form, used
for accomplishing the task. For example, the badge
access form is the corporate application used to
request access to a specific laboratory.

In the “people” section of the onboarding checklist,
the person who was to be the intern’s manager was
listed as responsible. The “resources” section con-
tained a link to a document with instructions on
how to use the Wax system to coordinate the intern
orientation process and a link to general help.

Figure 3 is an example of the intern summary table
for one department. This table allowed the depart-

ment TA to view the status of preparations for each
intern in the department and to track the assignment
of office space. It also allowed the person respon-

sible for telephones to get the information needed

for each intern (office number, e-mail address, and
serial number) to set up the voice mail account and
assign the phone number. In the table, the name of
the intern is a link to the activity for that intern, into
which new data can be entered. The name of each

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

manager and mentor provides a link to their entry in
the corporate directory.

As of this writing, data for 54 interns and 38 mentors
has been entered into the system by 22 managers
and TAs. Our experience thus far has provided
several insights. The use of an activity pattern,
based on the actual practices of workers in addition
to business process requirements, can be a valuable
tool in coordinating repeated business activities.
Summary views are required to meet the needs of
users who play different roles in collaborative
processes. The pattern-creation process should
allow customization of page layout and organiza-
tion, labels and headings, and task-specific instruc-
tions to make the transfer of the practices embodied
in the pattern to new users easier.

SUMMARY AND FUTURE WORK

In this paper, we have presented an approach to
collaborative activity management based on a
shared, semantic representation of activity. We have
described how activities can be represented using
RDF and defined an ontology that captures the

COzzZI ET AL

709

common properties of activities. We have made the
case for activities as a service, enabling other
applications to make use of activity data and giving
users the ability to manage their activities from within
the context of the applications and tools they already
use. To support this vision, we have developed the
Wax platform that provides two lightweight Web
APIs for accessing activity data. We have presented
the Wax Web UI, which was built on top of the Wax
platform, and several client plug-ins that enhance
existing applications with activity data. Finally, we
have evaluated the Wax system by using it to manage
several large activities. Our experience with the
system demonstrated that it had concrete benefits for
the people collaborating on these activities, including
better communication, easier knowledge transfer for
people joining the project midstream, and a reduced
need for in-person meetings.

We have only begun to explore the problems of
supporting collaborative activity management, and
there are many directions for future work. On an
architectural level, we have not yet concluded that
RDF is the best representation for capturing the
flexible yet semantically coherent activity structures
we want to support. Future work will explore
alternatives to the RDF model and contrast them in
terms of expressive power, ease of authoring activity
applications, and robustness to changes in the
schema. We are currently exploring the use of an
activity vocabulary to organize work that can be
managed in the form of Atom feeds. On a user
experience level, we plan to conduct more user
evaluations of the system in order to determine
which aspects of an activity management system are
most important to users and how we should grow
the system to best meet users’ needs. Finally, we are
exploring how work supported by activity patterns
can be more productive.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of 3M
Corporation, Sun Microsystems, Inc., Mozilla Foundation, or
the Eclipse Foundation, Inc. in the United States, other
countries, or both.

CITED REFERENCES
1. P. Moody, D. Gruen, M. J. Muller, J. Tang, and T. P.
Moran, “Business Activity Patterns: A New Model for
Collaborative Business Applications,” IBM Systems Jour-
nal 45, No. 4, 683-694 (2006, this issue).

710 cozzi ET AL

10.

11.

12.

13.

14.

15.

16.

17.

S. Whittaker and C. Sidner, “Email overload: Exploring
Personal Information Management of email,” Proceedings
of the ACM Conference on Human Factors in Computing
Systems (CHI *96): Common Ground, ACM Press, New
York (1996) pp. 276-283.

C. Hill, R. Yates, C. Jones, and S. L. Kogan, “Beyond
Predictable Workflows: Enhancing Productivity in Artful
Business Processes,” IBM Systems Journal 45, No. 4, 663-
682 (2006, this issue).

T. P. Moran, A. Cozzi, and S. P. Farrell, “Unified Activity
Management: Supporting People in eBusiness,” Commu-
nications of the ACM 48, No. 12, special section on
Semantic eBusiness Vision, 67-70 (December 2005).

T. P. Moran, “Unified Activity Management: Explicitly
Representing Activity in Work-Support Systems.” Pro-
ceedings of the European Conference on Computer-
Supported Cooperative Work (ECSCW 2005), Workshop
on Activity: From Theoretical to a Computational Con-
struct (2005), http://www.daimi.au.dk/ ~ bardram/
ecscw2005/papers/moran.pdf.

T. P. Moran, “Activity: Analysis, Design, and Manage-
ment,” in Theories and Practice in Interaction Design, S.
Bagnara and G. Crampton Smith, Editors, Erlbaum Press,
Mahwah, NJ (2006).

M. Muller, W. Geyer, B. Brownholtz, E. Wilcox, and D.
Millen, “One Hundred Days in an Activity-Centric
Collaboration Environment Based on Shared Objects,”
Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems (CHI 2004), ACM Press,
New York (2004), pp. 375-382.

Unified Activity Management, IBM Research, http://
www.research.ibm.com/uam.

R. Medina-Mora, T. Winograd, R. Flores, and F. Flores,

“The Action Workflow Approach to Workflow Manage-

ment Technology,” Proceedings of the ACM Conference on
Computer-Supported Cooperative Work (CSCW *92), ACM
Press, New York (1992), pp. 281-288.

S. Dustdar, “Caramba—A Process-Aware Collaboration

System Supporting Ad Hoc and Collaborative Processes

in Virtual Teams,” Distributed and Parallel Databases 15,
No. 1, 45-66 (January 2004), http://dx.doi.org/10.1023/
B:DAPD.0000009431.20250.56.

T. Kreifelts, E. Hinrichs, and G. Woetzel, “Sharing To-Do
Lists with a Distributed Task Manager,” Proceedings of
the European Conference on Computer-Supported Coop-
erative Work (ECSCW ’93), Kluwer Academic Publishers,
Dordrecht, Netherlands (1993), pp. 31-46.

W. Wang and J. Haake, “Supporting User-Defined
Activity Spaces,” Proceedings of the Eighth ACM Confer-
ence on Hypertext (HYPERTEXT *97), ACM Press, New
York (1997), pp. 112-123.

Groove Virtual Office, Groove Networks, http://www.
groove.net/home/index.cfm.

Context and Consciousness: Activity Theory and Human-
Computer Interaction, B. Nardi, Editor, MIT Press, Cam-
bridge, Massachusetts (1996).

W3C Semantic Web Activity, Worldwide Web Consor-
tium, http://www.w3.0rg/2001/sw/.

Resource Description Framework, W3C Semantic Web
Activity, Worldwide Web Consortium, http://www.w3.
org/RDF/.

RDQL—A Query Language for RDF, Worldwide Web
Consortium, http://www.w3.0org/Submission/2004/
SUBM-RDQL-20040109/.

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

18. SPARQL Query Language for RDF, Worldwide Web
Consortium, http://www.w3.org/TR/rdf-sparql-query/.

19. Web Ontology Language (OWL), Worldwide Web Con-
sortium, http://www.w3.0rg/2004/OWL/.

20. Dublin Core Metadata Initative, http://dublincore.org/.

21. FOAF Vocabulary Specification, http://xmlns.com/foaf/
0.1/.

22. RDF Calendar Workspace, Worldwide Web Consortium,
http://www.w3.0rg/2002/12/cal/.

23. B. L. Harrison, A. Cozzi, and T. P. Moran, “Roles and
Relationships in a Unified Activity Management System,”
Proceedings of the ACM Conference on Supporting Group
Work (Group 2005), ACM Press, New York (2005), pp.
236-245.

24. Java ServerPages Technology, Sun Microsystems, http://
java.sun.com/products/jsp/.

25. R. T. Fielding, Architectural Styles and the Design of
Network-Based Software Architectures, Ph.D. dissertation,
University of California, Irvine, CA (2000).

26. E. M. Maximilien, A. Cozzi, and T. P. Moran, “Semantic
Web Services for Activity-Based Computing,” Proceedings
of the Third International Conference on Service-Oriented
Computing (ICSOC 2005), LNCS 3826, Springer-Verlag,
Berlin (2005), pp. 558-563.

27. AtomEnabled/Developers, http://www.atomenabled.
org/developers/.

28. M. Dredze, T. Lau, and N. Kushmerick, “Automatically
Classifying Emails into Activities,” Proceedings of the
ACM International Conference on Intelligent User Inter-
faces (IUI 2006), ACM Press, New York (2006), pp. 70-77.

29. del.icio.us, http://del.icio.us/.

30. SourceForge.net, http://sourceforge.net.

Accepted for publication May 22, 2006.
Published online October 24, 2006.

Alex Cozzi

IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (cozzi@almaden.ibm.com).
Dr. Cozzi is a research staff member at the IBM Almaden
Research Center in San Jose, California. He received an M.S.
degree in computer science from the University of Milan, Italy,
and a Ph.D. degree from the University of Dortmund,
Germany. He has worked on computer vision and social
network analysis. His research interests include human-
computer interaction and data mining.

Stephen Farrell

IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (sfarrell@almaden.ibm.com).
Mr. Farrell is a senior software engineer at the IBM Almaden
Research Center in San Jose, California. He has a B.A. degree
in the history and philosophy of science and an M.S. degree in
computer science from the University of Chicago. Mr. Farrell
joined IBM Research in 1999 to develop systems which
enhance the ability of people to work or collaborate. Some of
his research areas include personalization of the Web
experience, information programming, person-centric data
integration, and relationship-oriented computing. Some of his
projects include Fringe, which gives a person-centered view of
enterprise information, and Enki, which does the same for
personal information sources. He is also lead architect of the
Unified Activity Management project.

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

Tessa Lau

IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (tessalau@us.ibm.com). Dr.
Lau is a research staff member at the IBM Almaden Research
Center. She completed her Ph.D. degree in computer science
at the University of Washington in 2001. She is interested in
information management, particularly personal information,
and how people interact with and customize their working
environment. She has done significant work in the area of
programming by demonstration, giving end users the ability to
automate repetitive tasks simply by showing the system how
to perform the task a few times.

Barton A. Smith

IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (basmith@almaden.ibm.com).
Dr. Smith received a B.S. degree in chemistry from the
University of Texas at Austin in 1972, and a Ph.D. degree in
physical chemistry from Harvard University in 1977. After two
years at Stanford University, where he was a National Science
Foundation Post-Doctoral Fellow, he joined the IBM Research
Division in San Jose, California, in 1979. In his 26 years as a
research staff member in IBM Research, he has worked on
fundamental problems in polymers, materials, and computer
science, and on IBM products including magnetic disks,
optical disks, magnetic tape, typewriter ribbon, circuit boards,
integrated circuits, multichip ceramic circuit modules, optical
data transmission, displays, and ThinkPads®. His most recent
work centers on understanding how people use information
technology and improving the human-computer interaction
experience. Dr. Smith currently manages the Human Interface
Research group in the Computer Science department at the
Almaden Research Center.

Clemens Drews

IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (cdrews@us.ibm.com). Mr.
Drews is a software engineer and currently works on the
Unified Activity Management project. He has a B.S. degree in
technical computer science from the University of Applied
Sciences in Hamburg, Germany. He joined IBM Research in
1998. During his career at IBM, Mr. Drews has worked on
projects ranging from short-range wireless communication
gadgets to large multiuser collaboration tools.

James Lin

IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (jameslin@us.ibm.com). Dr.
Lin is a research staff member at the USER (User Sciences and
Experience Research) group at the IBM Almaden Research
Center. His research interests include user interfaces for
collaboration, end-user programming, and creating tools for
designing next-generation user interfaces. He received a Ph.D.
degree in computer science from the University of California at
Berkeley.

Bob Stachel

IBM Software Group, 1 Rogers Street, Lotus Development,
Cambridge, Massachusetts 02142 (bob_stachel@us.ibm.com).
Mr. Stachel is a software developer in the Collaborative User
Experience Research Group. Since joining IBM Research in
1998 as a senior software developer, he has worked on
projects in support of activity-centric computing, lightweight
collaboration, expertise location, and knowledge
management. Mr. Stachel joined Lotus in 1985, and was an
architect on development teams for the Domino™ Merchant
(electronic commerce), Lotus Notes Newsstand (electronic
publishing), and Lotus Improv (spreadsheet) products. He has
a B.A. degree from Brandeis University in computer science.

COzzZI ET AL

711

Thomas P. Moran

IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (tpmoran@us.ibm.com). Dr.
Moran is an IBM Distinguished Engineer and leads the Unified
Activity Management project. He was one of the pioneers
establishing the field of human-computer interaction (HCI)
within computer science, co-authoring (with Allen Newell and
Stuart Card) the seminal book The Psychology of Human-
Computer Interaction (1983). He was at Xerox PARC for 27
years as Principal Scientist and manager of User Interface and
the Collaborative Systems research and as the Director of
Xerox EuroPARC in Cambridge, England. Dr. Moran is
founder and editor of the journal Human-Computer
Interaction. He is an ACM Fellow and recipient of ACM
SIGCHI’s (special interest group in human-computer
interaction) Lifetime Achievement Award. M

712 cozzi ET AL IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006

