
Activity management as a
Web service

&

A. Cozzi

S. Farrell

T. Lau

B. A. Smith

C. Drews

J. Lin

B. Stachel

T. P. Moran

In this paper, we present a new method for organizing collaborative work. This

method is based on the concept of ‘‘activities,’’ defined here as high-level structured

representations of the people, artifacts, and processes involved in work and their

relationships. We show how users and developers can leverage this representation to

enhance productivity, collaboration, and business applications. Central to our vision is

an interface to activity data which is lightweight, based on Web Services, and enables

activities to be easily integrated into the applications and tools people already use. We

describe the Wax system for activity management, which implements our model of

unified activity using both semantic Web and REST/XML (Representational State

Transfer/Extensible Markup Language) approaches. We describe several user inter-

faces that let users interact with activity data, and we discuss our experiences using the

Wax system for two case studies that involve coordinating a large event and managing

accommodations for new employees.

INTRODUCTION

This paper is a companion to ‘‘Business activity

patterns: A new model for collaborative business

applications,’’ which also appears in this issue of the

IBM Systems Journal.
1

Today’s tools provide little support for team

members working together on a collaborative

process. E-mail is the predominant communication

tool used today, and it has been overused for

purposes other than simple communication, such as

exchanging files, scheduling meetings, and archiv-

ing data.
2

Using e-mail to manage activities has

many drawbacks. For example, it can be difficult to

determine the current status of an activity which is

managed by e-mail, and if people join an ongoing

activity, it can be difficult to bring them up to speed

with other team members.

At the other end of the spectrum are formal

business-process-workflow systems. These systems

direct processes and the people involved in them,

but are overly rigid for most everyday business

activities.
3,4

A middle ground between e-mail and

workflow systems would better suit many collabo-

rative activities.

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 COZZI ET AL. 695

The goal of the Unified Activity Management (UAM)

project at IBM Research is to define a new model for

collaborative work based on a shared semantic

representation of collaborative activities.
5–7

‘‘Activ-

ities’’ as used here refers to a digital schema-based

representation that describes the properties of a

collaborative work project and semantically relates

the people, artifacts, tools, events, and other

elements which are involved in carrying out the

project. Examples of activities include organizing a

large event or conference, responding to a request

for proposals, and resolving a trouble ticket (mech-

anism used in an organization to detect, report, and

resolve a problem). The activity model and how it is

used to support business applications is described in

depth in a companion paper in this issue.
1

The UAM approach
The objective of the UAM project

8
is to design a

system that supports collaborative work processes,

with multiple people coordinating their work in

order to accomplish a shared goal. Our work is

based on the assumption that there is a great

potential benefit in supporting the non-structured

aspects of everyday business activities, those that

are not managed by workflow processes and

existing corporate applications. These kinds of

activities are often managed by using handwritten

notes, e-mail, telephone conversations, and other

informal means. This objective has led to a number

of choices in how activities are represented.

First, we believe that activity representations should

have semantics and structure. For instance, each

activity has a creator, a title, a description, and a set

of people involved in its execution, each with a

potentially different role (participant, observer,

etc.). Activities may have resources associated with

them, such as Web pages or word-processing

documents; resources may be of different types,

such as a reference document or an output of the

activity. We hypothesize that formalizing the

activity structure explicitly enables the participants

in the activity to see how the different parts relate to

each other and to more easily track the current

status of the activity. In the section ‘‘Unified Activity

ontology,’’ we describe our representation of activ-

ities.

Second, we believe that activities are fundamentally

composed of metadata, as opposed to content.

Activities serve as the glue that joins individual

items of content created and managed in word

processors, spreadsheets, e-mail, and Web applica-

tions. Rather than reinventing each of these business

applications in a new, monolithic application, we

take the position that activities should provide a

framework for collecting all of these items and

presenting them in a single, unified view. As a

result, we have developed a model that we call

‘‘activities as service’’: a lightweight Web service

infrastructure for creating, managing, and querying

activity data. We have used this infrastructure to

develop Web-based activity management systems.

More important, however, we believe that activity

data is most useful when presented within the

context of the tools and applications people already

use.

This paper describes our representation of activities

and presents the Wax system, a Web service

framework for activities that leverages a semantic

representation of activity. Wax takes advantage of

emerging technologies such as lightweight (REST

[Representational State Transfer]) Web services,

RSS (Rich Site Summary), and the semantic Web to

provide access to activity-related data as a service.

We present the results we obtained in using the Wax

system to manage two large business activities and

discuss which features of our design were most

helpful to the participants as they used the system.

Related work

Previous approaches to supporting collaborative

tasks generally fall within the categories of work-

flow systems or personal information managers

(PIMs).

Formal workflow systems are often rigid and

frequently assume fixed roles for users and a fixed

pattern for actions. One such system is the

Coordinator.
9

These systems are characterized by a

rigid specification of the processes to be executed.

Furthermore, workflows tend to work as indepen-

dent entities, having little integration with the rest of

the computing environment. A more flexible work-

flow is described in Reference 10, wherein end users

can modify the process. Our system goes even

further by dispensing with the process model

altogether.

The Task Manager
11

is the earliest system of which

we are aware that is based on shared representation

of tasks that are malleable and that relate people and

resources. A later system that is even closer to our

COZZI ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006696

approach in using an early semantic network

representation is described in Reference 12.

Shared workspaces provide shared access to docu-

ments (such as the Groove system
13

and Lotus*

Notes* TeamRooms). These systems tend to be

difficult to use for simple, lightweight activities, and

it is unclear how they might integrate ad hoc activity

with more formal business processes or workflows.

PIMs aim at improving personal productivity by

organizing communications, contacts, and events

related to an individual. They do not support shared

entities, and external interaction is handled through

messaging. In contrast, our system is centered

around activities and uses them to organize docu-

ments, people, and events.

More details about the integration of our system

with business processes are described in Reference 1

and Reference 4.

The remainder of this paper is structured as follows.

We begin by introducing a semantic representation

of activity, based on the Resource Description

Framework (RDF), and we describe the ontology

used to represent activities and their properties. We

then present the Web service APIs (application

programming interfaces) that we have defined to

provide access to activity data from Web applica-

tions and third-party extensions. Next, we present

the user interfaces and client plug-ins that we have

developed, which let users interact with activities.

Finally, we report on the results of two case studies

in which the Wax system was used. Our results

indicate that the participants found having an

activity management system to be extremely useful

and confirm our hypothesis that a structured activity

representation brings value to activity management.

We conclude with a discussion of directions for

future work.

EXPLICITLY REPRESENTING ACTIVITIES
The goal of activity management is to help users be

more productive by organizing the work they do

around the concept of activities. In order to help

users manage activities, they must be represented in

a consistent way. This representation should cap-

ture the essential semantics of an activity: the links,

relationships, and resources that differentiate it from

other activities.

It is important to distinguish between the typical

representation of real-world activities in the minds

of the people involved and explicit activity repre-

sentations. Real-world activities are often implicit

(or tacit); people simply perform activities without

any representation of them. Real-world activities

can also be deliberately driven toward a more or less

well-articulated objective, as proposed by Activity

Theory.
14

In contrast, real-world activities can also

have explicit representations, such as activity

descriptions in some medium, for example a plan

written on a whiteboard. We propose that explicit

computational representations of activities (i.e.,

representations enabling an activity to be processed

with computational tools) are useful for managing

them. Explicit representations can be more or less

elaborate; it is our intention to support fluid

transitions between various levels of elaboration,

based on people’s estimates of the costs and benefits

of creating them.

Explicit activity representations can be formal or

informal. Informal representations place no con-

straints on how the activity is represented; it may be

written down as a textual description or may consist

of scribbles on a Post-It** note. The goal of our

work is to provide a unified activity representation,

which captures the common properties of activities

in a standardized representation so that activities

can be shared and managed by different systems. In

order to achieve this goal, we require activity

representations to follow a formal vocabulary,

which captures the common characteristics of the

activity in a unified representation so that it can be

processed with computational tools.

In analyzing real world activities, we found a large

amount of variability in what is needed to represent

different kinds of activities. For example, an

independent consultant may want each of his

activities to include a property denoting the client

for which the work is being done and the billing rate

for each client. On the other hand, a programmer

might want to annotate each activity with a defect

report number and the sections of source code that

are relevant to the activity. As a result, activities

should be represented as objects with a large

number of optional fields that cannot be predicted.

This has several important implications for the

design of the API and the data model.

Increasing explicitness and formality puts a burden

on the user that must be counterbalanced by some

expected payoff. The first incentive to move to

explicit representation is sharing: a representation of

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 COZZI ET AL. 697

an activity becomes a communication artifact shared

by more than one person or group. The second

incentive is the automatic support provided by the

system. Our activity system strives to attain a

principle of incremental benefit where the more the

user invests in constructing a formal representation

of an activity, the more support that user can get

from the system, and this benefit is commensurate

with the additional effort invested by the user.

Activity representations in the mind of the user do

not require any support, and informal representa-

tions are not particularly problematic; but the formal

representation of activities is quite a challenging

problem. If we truly want to encompass the breadth

of human activities with an activity management

tool, it must deal with a difficult representation

problem. Different kinds of activities should be

represented in a common ‘‘language’’ when possi-

ble, but the representation must be extensible to

support new types of activities and functionalities. It

is not desirable that the user be required to specify

an activity ‘‘type’’ in advance—the user may not

have decided on an activity type, and the activity

may change considerably during its lifetime; for

example, starting as an e-mail or a ‘‘to do’’ entry and

evolving into a multi-person project. What is needed

is a fluid representation that enables activities to

change and acquire new properties.

The representation problem is further complicated

by the requirement to represent not just activities,

but potentially all kinds of domain-specific objects

related to them (people, documents, files, calendar

appointments, Web sites, orders, etc.). We came to

realize that the network of relationships that binds

other objects to an activity is one of the most

important features of an activity. We could use URLs

(Uniform Resource Locators) or other identifiers to

represent these objects, but then we would be

severely limited in what we could do with them or

the kind of queries that would be possible. Ideally,

we would like to associate selected metadata with

those objects in order to support queries within the

activity system, for example, displaying all activities

with a calendar appointment occurring today. The

challenge of the task is to represent highly variable

objects and their relationships to potentially any

other object.

We have investigated the use of semantic Web
15

technologies to provide a consistent, standards-

based environment for the representation of activ-

ities. RDF,
16

a key component of the semantic Web,

provides a representation flexible enough to support

our generalization of activities by enabling rela-

tionships from multiple ontologies and data sources

to be viewed as one coherent data structure: namely,

a graph. RDF comes with a data model to express

binary relationships, query languages (RDQL
17

and

SPARQL
18

), several implementations of storage

repositories, a file format (RDF/XML), an ontology

language (OWL
19

), and an inference model. As part

of our investigation, we have developed a unified

activity ontology, based on OWL, that defines the

generic concept of collaborative activity and pro-

vides a common set of properties to ensure a level of

consistency and uniformity for all types of activities.

This ontology can be easily extended to new

relationships and properties, thus enabling activities

to be customized for particular end users without

necessitating a system redesign.

Unified Activity ontology

The Unified Activity ontology defines a few funda-

mental objects: (1) activities, (2) actors (people or

software agents), (3) events (calendar entries), and

(4) resources (files and URLs). The ontology builds

on the Dublin core,
20

Friend-Of-A-Friend,
21

and

iCalendar
22

ontologies to describe standardized

properties such as titles, descriptions, and e-mail

addresses.

Table 1 summarizes the key properties of the

Unified Activity ontology. The basic entity is the

activity, characterized by a few descriptive proper-

ties (title, description, result) and several relational

properties that connect this activity to other objects,

such as actors and resources.

An actor represents a person in the activity system.

The basic description of an actor includes a name

and an e-mail address. An actor must be involved in

an activity with a particular role; we have defined

several roles, such as participant, observer, com-

mitted, and doer.
23

Events represent the time-centric features of an

activity. We use the iCalendar standard to represent

properties of events, such as the title, description,

and start and end dates.

Activities may include resources, which represent

external artifacts (Web pages, files) that are related

to the activity. Each resource is described by a

COZZI ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006698

unique identifier (URI [Uniform Resource Identi-

fier]) and a label. Resources may be related to

activities in a variety of roles; for example, a

document may be a reference document (which is

consumed in the process of completing the activity)

or an output document (which is produced as a

result of the activity).

Activities may be decomposed into subactivities,

which are activities on which the ‘‘parent’’ activity

depends in some way. The subactivity relation

provides a way to organize the structure of an activity

and define the breakdown of the work involved in

completing it. In keeping with the RDF graph model,

the subactivity relationship is one that links a parent

activity and a child activity. Because the child activity

is not contained in a single parent activity, an activity

can be a child to multiple parent activities.

We also support the concept of an activity pattern,

which is a special type of activity that is designed for

reuse. Patterns are well-suited for capturing the best

practices for conducting an activity; if the activity

needs to be repeated, one can create an instance of

the pattern and customize it for the new activity.

Examples of activity patterns include planning a

meeting, running a software project, and hiring a

new employee. Patterns are explained more in the

companion paper by Moody et al.,
1

and one of the

case studies later in this paper illustrates the use of

an activity pattern.

RDF as a development environment
Our RDF environment uses the Jena toolkit from HP

Labs. Licensed under an Apache-like open-source

license, our project utilizes an RDF API, SPARQL

and RDQL query processors, an HTTP (Hypertext

Transfer Protocol) RDF API known as Joseki, and a

graph API for persistence. We have augmented the

Jena toolkit with a JSP** (Java ServerPages**)
24

tag

library that facilitates Web development, and we

have augmented the graph API to enable integration

with remote data sources at the RDF level.

Activity data stored as RDF can be accessed through

the JSP tag library by using constructs such as:

,rdf:resource id¼"focus".

Title: ,rdf:property name¼"dc:title"/.

,/rdf:resource.

which retrieves the Dublin core ‘‘title’’ property from

a node identified as ‘‘focus’’ and prints it in a

dynamic Web page. Activity data can also be

accessed through the Jena Java** API using

constructs such as:

Resourcefocus¼model.getResource(focusuri);
System.out.println(‘‘Title: ’’ þ

focus.getProperty(DC.title).getString());

which performs the same function as the JSP

example. The other way to access activity data is by

Table 1 Unified Activity ontology in the Wax system

Subject Relation Object Description

Activity URI Unique identifier for this activity

Shortname Short human-readable
identifier for the activity,
such as an e-mail name

Title Short description of activity

Description Longer description of activity

Status Short description of the
status of the activity

Result Short description of the
outcome of the activity

Completed Whether the activity
has been completed

Involvements Set of actors involved in the
activity and how each is
involved

Subactivities Sequence of activities
representing a breakdown
of the work in this activity

Events Set of events related to the
activity and how they are
related

Resources Set of resources related to
the activity and how they
are related

Actor Name

E-mail

Resource URI Pointer to the actual resource

Label Description of the resource

Event Start date/time

End date/time

Description

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 COZZI ET AL. 699

using the Joseki HTTP API, which enables subsets of

the RDF graph to be queried. The results are

returned in an RDF serialization format such as

RDF/XML.

For modifying RDF data, we provide an abstraction

of a higher level than one which simply adds and

removes statements from the model. The Unified

Activity ontology specifies the data model but not

the set of operations that can be performed on that

data. Using the ‘‘raw’’ Java API to make changes can

result in data graphs that are inconsistent with the

activity ontology. To ensure consistency, we have

developed an abstraction called a ‘‘command’’ that

transforms the RDF data graph in a specific manner.

A command, which is executed in a logged,

reversible transaction, ensures that the resulting

model continues to be consistent with relevant

ontologies. While we have prototyped a scripting

language encoded in RDF for developing compound

commands, our deployed system uses plain Java

code to implement commands. Examples of com-

mands include creating a new activity, modifying a

person’s involvement, and deleting an event.

The Jena Graph API provides access to one of the

most compelling features of RDF: the ability to

create a composite graph from different data

sources, including virtual and logical ones. Because

nodes and relationships in the RDF graph are

identified by URIs, it is straightforward to build a

composite graph by overlaying multiple graphs on

top of each other. We have exploited this feature to

build a framework for dynamically integrating

external data sources into the core RDF model. For

example, we have integrated our enterprise direc-

tory into the activity model, which means that

activities can reference the name, e-mail address, or

job title of anyone involved in the activity auto-

matically, without having to explicitly add these

properties to the model. This mechanism is what

enables semantic-level integration, and theoretically

enables any data source to be mapped into the

Unified Activity schema while preserving its own

semantics or leveraging other ontologies.

Queries of the composite graph are known as

‘‘federated queries’’ because they relate data from

different data sources without moving all of that

data into a central index. Our framework provides

some support, particularly caching and prefetching,

to improve the performance of these federated

queries, but does not resolve all the performance

problems intrinsic to this configuration.

We have also built an access control model on top of

our graph framework. This model works by post-

filtering, based upon the identity of the user and the

policies encoded in the RDF data, the results of data

that is read. Users who do not have access to data

simply do not see it. Likewise, calls to modify the

repository can be checked at this level as well. As a

post-filtering approach, the performance of this

access control implementation is limited. In a

sample worst case scenario, someone may search

for all activities containing the term ‘‘the’’ in a

system with 100,000 activities; 50,000 activities may

contain that term, but the user may only have access

to 2 of them. The system will retrieve 50,000

activities and filter out 49,998 of them from the

display, resulting in potentially poor performance.

Discussion
We consider the role of RDF in activities an open

question. Beyond the superficial (but real) costs of

its unfamiliar representations and API, as well as

performance issues, we have found the lack of

support for complex relationships to be the largest

problem with RDF as the data model for activities.

RDF encodes binary assertions like activity1

hasCreator person1, which can be either present or

not. It does not have a simple way to express an

assertion like ‘‘activity1 involves person1 as of

January 15, 2006 according to person2 and with

involvement level of ‘responsible’.’’

To express information about the relationship

between ‘‘activity1’’ and ‘‘person1’’, RDF relies on

using three approaches, each having some varia-

tions. The first approach uses what we call a

‘‘relationship node’’ in which an intermediate node

is interjected to express this relationship. All of the

extra information about the relationship can be

attached to the middle node ‘‘activity1-person1-

relationship’’, which is between the nodes ‘‘activ-

ity1’’ and ‘‘person1’’. This relationship node can be

either a blank node (meaning it has no identifying

URI) or a regular URI node. If it is blank, then it

must be referred to by the pair of ‘‘activity1’’ and

‘‘person1’’. Moreover, queries and retrievals require

traversing this extra node, which complicates

matters for developers and impacts performance.

The second approach is known as ‘‘reification’’. This

is similar to the previous approach in that another

COZZI ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006700

node is introduced to store the extra relationship

information, but differs in that the extra node in this

case is peripheral and the data can be accessed

without knowledge about its existence. There are

several ways to implement reification with different

implications for the API and performance. We have

observed that these implementations can become

complex and can significantly hinder performance.

The third approach is to use multiple relationships

to link together the same two nodes. For example,

one might have the assertions activity1 involves

person1 and activity1 hasResponsible person1.

This approach can be used to encode ordering by

including in the model statements such as:

activity1 hasInvolvementOrdering seq1, followed

by seq1 _1 person1, seq1 _2 person2, etc. The

disadvantage of this approach is that the multiple

related assertions must be kept consistent, and

having many paths between two objects seems to

violate the principle of keeping a data model simple.

Rather than select a single approach, we use all

three of these approaches in our current ontology.

This state is confusing for developers. Worse,

however, is the fact that we intend the RDF

representation to be the logical and complete

representation for activities. As such, we cannot

conceal these approaches, but rather must expose

them in the API, query language, and activity

representation.

ACTIVITIES AS A WEB SERVICE

In order to realize our vision of having activities

integrate multiple applications, we have provided a

lightweight REST
25

interface to activity data. We

have designed two levels of REST APIs to interact

with the server.
26

The lower-level interface (known

as the ‘‘RDF-level API’’) operates directly on RDF

data structures. It is not activity-specific and gives

complete freedom to clients. The higher-level inter-

face (known as the ‘‘activity-specific API’’) provides

simplified access for clients who simply want to

perform standard operations on activities.

While RDF provides a compelling set of features, the

activity-specific API has enabled us to explore

different ways of making activity data accessible in

the context of other applications such as e-mail

clients or Web browsers. In fact, we have found that

there is often a decision to be made when integrating

activities and other applications: namely, whether

(1) the application data should be mapped into the

activity model or (2) the activity service should

expose its data to a plug-in or extension for the other

application.

For example, in the past we have chosen the first of

these options when integrating e-mail into activities

by mapping e-mail into a messaging ontology and

implementing a limited e-mail client as part of an

activity-management user interface (UI). Later in

this paper we will present an alternative approach

that extends an open-source mail application with

activity data accessed through the Wax activity

service. Both approaches allow users to see activ-

ities and related messages alongside each other. The

advantage of the former approach is the uniform

data model; the advantage of the latter approach is

the reuse of an existing e-mail client application. As

e-mail clients are complex and heavily used and

have idiosyncrasies that users come to rely on, the

latter approach is much more effective in this case.

Moreover, when bringing activity data to client plug-

ins, we have also found that an XML-based syntax

appears easier and more familiar for plug-in devel-

opers than RDF, and that the need for flexibility in

this context is limited.

By providing both RDF and activity-specific inter-

faces, we can continue to explore the flexible data

model of RDF, while hiding the decisions we make

about representation from the particular XML

serializations that we expose to client applications.

We anticipate, however, that much of the innova-

tion with activity integration will be in the form of

bringing activity data into the context of existing

tools and applications, and that the activity-specific

API will be the most widely used for this purpose.

All of the client plug-ins we present later make use

of the activity-specific API.

RDF-level interface

The RDF-level interface provides access to the RDF

data model directly. The interface consists of three

methods. The first method enables the querying of

the RDF database by using the standard RDQL or

SPARQL protocols. We have currently implemented

the RDQL protocol and plan to implement the

SPARQL protocol in the near future.

The second method enables modification of the RDF

database by applying a ‘‘delta’’, that is, a list of RDF-

triples (i.e. basic subject-predicate-object state-

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 COZZI ET AL. 701

ments) to be added and another list of triples to be

removed. It is necessary to support additions and

removals within a single transaction to ensure that

the database is always in a consistent state.

The third method allows a client to register with the

server in order to be notified when a change occurs

in the database. We have currently implemented a

simple triple-pattern-based notification mechanism,

but we are planning to extend this by using a

SPARQL query to specify the triples to be observed.

A notification is sent if the result of the query

changes in response to a database change; the

notification contains the change in query results due

to the database update.

One problem with the RDF-level interface is that it

does not use commands to encapsulate changes

made to the RDF data graph, and thus allows clients

to make changes that leave the graph in an

inconsistent state. Were this API to specify the

commands available, however, clients would be

restricted to using the functionality already encoded

on the server. We continue to investigate trade-offs

between flexibility and reliability, such as this one.

Activity-level interface
In addition to the RDF-level interface, we also

provide a higher-level interface that is activity-

specific. This API provides three categories of

functionality: managing activities, managing prop-

erties of activities, and searching for activities that

match various parameters.

Each activity has a unique identifier which globally

identifies it. This enables multiple activities to have

the same title and not conflict with each other.

However, because activity URIs are machine-gen-

erated and difficult to remember, we have also

provided the ability to associate a human-specified

‘‘shortname’’ for each activity, which can be used in

place of the full URI.

The API calls at the activity level are shown in

Table 2. The API provides the ability to create,

delete, and edit activities and to set and retrieve

various activity properties and related entities, such

as resources, feeds, events, and subactivities. The

API also allows activities to be retrieved in various

ways, such as by URI, by the people involved, and

by related activities.

The retrieval queries currently return XML describ-

ing the activity by using a custom schema which we

designed. The Atom standard
27

defines an XML

format for data interchange that captures many of

the important features of activities. In future work,

we are planning to investigate the use of Atom for

representing activity data, in addition to participat-

ing in standards work that defines a common

interchange format for activities in order to enable

multiple activity systems to interoperate.

THE WAX ACTIVITY MANAGEMENT SYSTEM

While we expect that much of the interaction with

activities will take place with existing tools using

integration points enabled by the activity service, we

have found it useful to create a complete, Web-

based user interface. The Wax Web UI provides

access to all activity functions as a collaborative

Web application. With this interface, users can add

people to an activity, send e-mail to people involved

in the activity, add related resources (Web pages,

documents, RSS feeds, and other artifacts), schedule

events and deadlines, and define subactivities.

Table 2 Unified Activity API calls in the Wax system

Create a new activity

Delete an activity

Edit an activity (change its title or description)

Set the shortname

Add/remove a note/attachment/resource from the
activity

Mark an activity as completed

Add/remove/edit a person in the activity with a
particular type of involvement

Add/download an artifact (which is then uploaded and
stored on the server)

Add/remove/edit an RSS or Atom feed

Add a new event (calendar entry with start/end times
and a description)

Add/remove/edit a subactivity in an activity

Retrieve the activity specified by the URI or shortname

Retrieve all activities involving a particular user

Retrieve all people involved with a particular activity and
all of its subactivities

COZZI ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006702

User interface

The Wax Web application shown in Figure 1

provides a view of a single activity (the ‘‘focus’’) and

the user’s personal context. The UI is divided into

five panels. The toolbar panel (A) at the top

provides context-independent functions such as

search and help. The ‘‘My Activities’’ panel (B) at

the left is a hierarchical list of the user’s personal

activities. Activities in this list can be opened

dynamically, enabling the user to rapidly explore

them. The center panel (C) displays basic informa-

tion about the specific activity that is in focus,

including the title, status text and check box,

primary person, access policy, and description. It

also provides interactive elements to change the

status and to retrieve a form to edit other fields. The

details panel (D) provides detailed information

about people, documents, events, and other activ-

ities that are related to the focus activity and are

displayed as tabs. The temporal panel (E) shows

temporally organized information related to the

activity, including mailing lists and RSS feeds, a

system-generated log of actions, and a calendar that

highlights the days on which the most activity has

occurred.

Example

As an example, a user named Sally may want to

create an activity to plan for the ‘‘Acme Demo’’. This

demo takes place on a particular date. There are

slides and applications to organize and prepare, and

there are other people who will be helping out. Sally

begins by selecting the ‘‘Acme’’ activity and creating

this demo as a subactivity of it, specifying the title,

description, access rights, and other properties of

the new subactivity. To add more detail to the

activity, Sally clicks on it, which makes it the focus

activity. The details and temporal panels (D and E)

are blank, so Sally sets about populating them. She

switches to the ‘‘People’’ tab and clicks on ‘‘[New]’’

to add the other members, looking up her colleagues

in the corporate directory from the dialog that

appears, describing the role the person is playing in

the activity and his or her involvement in more

Figure 1
Wax system Web application

Welcome, Stephen P. Farrell [SignOut] Help Search

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 COZZI ET AL. 703

detail, and indicating whether the person should be

notified by e-mail of his or her involvement in the

activity. She then clicks on ‘‘Supporting Activities’’

and creates new subactivities (sub-subactivities of

the ‘‘Acme’’ activity) for the various steps in

preparing for the demo.

Using similar steps, Sally associates with the

subactivity various resources such as Wiki pages or

mailing lists, deadlines, and milestones. As she adds

these resources and objects, some information is

automatically populated by hard-coded auto-dis-

covery heuristics. For example, after adding a Wiki

page, our heuristics automatically discover the

change log for the page, and recent changes are

added to the temporal panel (E). Similarly, recent

mailing-list entries are discovered. The auto-dis-

covery heuristics identify contributors to the Wiki

page who are not already listed as involved in the

activity, and display them at the bottom of the

‘‘People’’ tab as possibly related people.

Sally’s colleagues will receive e-mail saying that

they have been added to the activity. When they

visit the link in this e-mail, they will see an inline

dialog box noting that they are part of this activity

and offering to add it to their own My Activities

panel. Because it is a shared activity, they all have

permission to make changes including adding other

members, resources, and deadlines. All changes are

logged and appear in the temporal panel.

After this activity is created, all of the members can

access it through the Wax Web interface and also

through other components, thus integrating it into

the tools they use routinely including e-mail,

calendar tools, Web browsers, and productivity

applications.

By creating this activity in Wax, Sally has not only

populated the Wax Web application; she has also

placed this activity in the context of the work

practices of her colleagues through these integration

components. The next section describes how activ-

ities can be interwoven into other tools using the

Wax APIs.

CLIENT INTEGRATION AND USER INTERFACES

Several applications and extensions to third-party

applications have been built with the activity-level

interface, including those related to e-mail tools,

Web browsers and desktop search tools.

E-mail integration

An e-mail client can be modified to display an

activities pane. Each activity in this display can

contain a set of e-mail messages (notes) and the set

of people involved in the activity. Although only

notes are currently supported, we plan to extend the

plug-in to support the other types of resources that

can be associated with activities, such as attach-

ments, RSS feeds, and subactivity information.

The Activities pane of the e-mail client shows all the

activities that involve both the current user and the

sender of the currently selected e-mail message. The

activity list is prioritized by relevance, using the

SimOverlap metric described in Reference 28;

activities whose members are most similar to the set

of recipients in the message are displayed at top of

the list.

A new activity can be created by right-clicking on an

e-mail message. Activities created in this way are

automatically created on the Wax server as well.

One of the primary benefits of using this interface to

create activities is that the set of involved people is

automatically determined from the e-mail. New

messages can be associated with an activity by

dragging and dropping them onto the Activities

pane, and they are added to the activity as notes.

One of the primary benefits of this collaborative

approach to managing activities is increasing activ-

ity awareness. Every participant in an activity sees

the most up-to-date relevant activities displayed in

his or her activity pane. For example, if Sally creates

a new activity involving her and Bob, the next time

Bob receives an e-mail from her, he will see the new

activity displayed in the contextual activity pane,

thus making him aware that Sally created the

activity in which he is now involved.

Another benefit is collaborative activity manage-

ment. Shared activities are a collaborative artifact:

any changes to an activity are made visible to all

participants of the activity. Thus all participants

share responsibility for updating the activity, and all

members benefit from the organizational work of

other members. If Sally adds a particular message to

COZZI ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006704

an activity because it is relevant, Bob benefits from

her organizational work.

Web browser integration
The Wax Web site provides RSS feeds for activities.

Using these feeds and Mozilla’s live bookmarks

feature, users can get one-click access to their

activities directly from the Web browser.

We also provide an activity bar plug-in for Mozilla

Firefox** browser that shows all activities which list

the Web page currently being viewed as a resource.

For example, a Web page can be added as a resource

for the Wax Development activity. Users visiting this

Web page would see the Wax Development activity

listed in the activity bar as a relevant activity. In

addition, users can associate a Web page with any of

their activities by navigating to it in a browser and

pressing the ‘‘Add page to activity’’ button. This

functionality is similar to that provided by social

bookmarking services such as the ‘‘del.icio.us’’ Web

site,
29

where, instead of tagging a document, the

user is declaring a more formal relationship between

the current Web page and an activity.

The activity bar also is integrated with our online

enterprise directory. When a user’s profile page is

visited, the activity bar displays all activities in

which that user is a participant. The button on the

right also changes to ‘‘Add user to activity.’’ This

capability uses pages in the enterprise directory as

proxies for people in the organization, and makes it

easy to add people to activities by simply viewing

their page in the directory.

We have also considered the possibility of creating a

new activity from a Web page. The title and

summary of the Web page could be extracted as a

description of the activity, for example, in the same

way that the e-mail integration application extracts

them from an e-mail message. The list of people

involved in the activity could be extracted from the

people mentioned on the Web page, and a descrip-

tion of the steps involved in the activity could be

mined from the text of the Web page.

Google desktop integration
We also provide a client plug-in to integrate our

activity system with the desktop search product by

Google. This plug-in adds a content box to the

Google desktop display that shows the list of one’s

activities. Each item shows the title of the activity

and a check box with the completed status of the

activity. Clicking on an item brings up a popup

window showing the objective of the activity.

Double-clicking on an item brings up a Web browser

showing the Wax page for that activity.

Other applications

Activities can be integrated with other applications

such as word processors and spreadsheets by using

a similar approach. With these tools, users should

be able to save and store files directly as resources of

the activities in which they are involved, and they

can be made aware of activities that are related to

the document that they are currently viewing.

Because involvements are an integral part of

activities, any display of relevant activities can also

include a list of relevant people. The users should be

able to start an instant chat, for example, directly

from a related-activities display. The transcript from

that chat could optionally be saved as a resource of

the activity.

In similar ways, activities can provide context for

calendar use, project management, and video

conferencing. Other domain-specific tools can pro-

vide even richer levels of integration. For example, a

software development environment might associate

a source code repository with an activity, with

packages within that repository treated as subactiv-

ities and logs treated as resources. The activity could

serve as an integration point between the develop-

ment environment, source code management, re-

quirements documents, discussion tools, and team

members. Moreover, it can link to office tools,

enabling a person viewing the requirements docu-

ment, for example, to navigate to the source code,

developers, and defect reports through the activity.

The goal is for the activity service to support

activities as an essential concept linking related

information, tools, and resources in the context of

the tools people already use.

Discussion
While they have not yet been widely deployed, our

experience with these client plug-ins has led us to

conclude that integrating activity data into existing

applications has several benefits. Displaying activity

data within applications that people already use

(such as e-mail and Web browsers) enhances

activity awareness. Adding resources and people to

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 COZZI ET AL. 705

activities is significantly facilitated, as is the creation

of new activities that reuse existing context (such as

the currently viewed e-mail message or Web page).

These features make it more likely that people will

use the activity system.

EXPERIENCE AND TESTING

We built the Wax prototype service to explore a

unified activity representation and an integration

architecture to support activity management. Our

exploration of integrating Wax with other systems

was presented in the previous section. We were not

trying to build a robust system which was fully

integrated into IBM’s enterprise applications (such

as Lotus Notes); rather we gave the Wax system

enough functionality so that we could try it

ourselves, open it to colleagues in related projects,

and support targeted activities by selected non-

technical groups.

The Wax system was adequate for this level of

testing. The functionality, described in a previous

section, supported basic collaborative activity rep-

resentation and management. The user interface

employed AJAX (Asynchrous JavaScript** and

XML) techniques (e.g., reorganizing subactivity

order by ‘‘drag-and-drop’’) to make its use easy and

intuitive. The response-time performance was sat-

isfactory, and continual debugging and enhance-

ments kept the system at a usable and useful level.

Finally, we were quick to restart the system when it

crashed, and we frequently backed up the data users

entered.

The Wax system was in use for 10 months, starting

in 2005. Over 2000 activities were created by almost

200 different users. Most users were simply trying

out the system, but many were doing real work with

it (roughly 40 users who had more than 15 activities

on their My Activities lists.) In addition, seven users

explored using the Wax system to organize their

personal activities. It is interesting that all but one of

these users included collaborative activities. Thus

the organization of the activities was personal, but

the activities organized were shared. Other kinds of

activities were also explored: planning (3), presen-

tation (14), small projects (12), and trips (3).

Our focus in testing Wax was to support the six

major activities listed in Table 3. The first three

were activities related to the UAM project. We

initially used the Wax system to keep track of

defects and feature requests; Wax proved somewhat

useful for organizing these items into subactivity

structures. The defect tracking work was carried out

in SourceForge,
30

which is optimized to support a

commonly accepted schema for defect tracking that

is integrated with our code development in

Eclipse**. But Wax was still somewhat useful to

some users as a means for displaying an overview of

the main features as well as aggregated feeds from

the developers’ mailing lists and from the UAM

content database. Although there were only 10

people on the UAM project, we included several

people outside our project as observers of the

activity, because the activity structure itself served

as a way to communicate the range of our work with

them.

Case study: Organizing a complex event

We tested the Wax system by using it to manage a

significant activity; namely, organizing the Almaden

Research Center site-wide celebration event for IBM

Research’s 60th anniversary. This activity involved

a committee of 16–18 people, each with different

responsibilities (e.g., hiring caterers, rearranging the

cafeteria layout, inviting guest speakers). Eighteen

subactivities were created, mostly by the person in

charge of the event. However, of those 18, two

subactivities were created by a second user. Most of

the users modified one or more of the subactivities

during the course of the activity, by updating its

status or adding resources.

The Wax system was used as the primary orga-

nizational system for coordinating this event. The

group held weekly meetings, during which the

activity display in the Wax system was projected

onto a screen in order to see what needed to be done

and track the group’s progress. Before each meeting,

the organizer would send e-mail to the person

responsible for each subactivity, asking him or her

to update the status of the activity in the Wax

system. This practice made it unnecessary for the

committee members to prepare slides for the meet-

ing. During the meeting, additional information that

emerged was added directly to the activities so that

by the end of the meeting, everyone was able to see

the action items for which they were responsible.

A survey was distributed to the activity participants

afterwards in order to gauge their reactions to the

system. Users agreed that the system was useful.

They believed the primary value was that it

COZZI ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006706

provided awareness of status and asynchronous

communication. The committee consisted of mem-

bers who did not normally work together; the

activity provided a way for these diverse members

to communicate with each other effectively, partic-

ularly by providing asynchronous communication.

For instance, someone working over the weekend

could check the status of an activity to see whether it

had been completed, without needing to e-mail or

call the person responsible for the activity. The

structured nature of activities also helped to

organize this status information in a way that made

it easier to find information, as compared with

searching through e-mail in order to find the most

recent update. Another useful aspect of the struc-

tured representation was the ability to express

responsibility by placing a name next to each part of

the activity. In addition, because much of the

coordination work of the activity could be done

using the Wax system, the group found that it was

not necessary to meet every week to maintain

progress.

One observation was that the field ‘‘description’’ in

the activity was overloaded to contain current

information about the status of the activity. (The

description field has since been renamed ‘‘objec-

tive’’, in part due to this experience.) Our original

intent for the description field was to contain a

description of the goal or purpose of the activity.

However, we observed that users often placed an

ongoing status update of the work product into this

field, such as the master agenda for the event, or the

fact that a guest speaker had accepted an invitation

to participate. We believe this was because the

description field is prominently displayed at the top

of the activity page, so it provides a convenient

place for users to store information that they wish to

make immediately accessible to anyone looking at

the activity. In contrast, placing this information in

the ‘‘Resources’’ section of the activity would mean

having to click through a few screens before this

information could be viewed.

A further benefit to using the activity system was in

transferring knowledge from one person to another.

In the middle of the planning process, a committee

member was replaced. It was possible to make the

new member current because all the pertinent

information was recorded in the activity. If this

information had been disseminated via e-mail, it

would have been much more difficult to find all the

relevant information and forward it to the new

committee member.

The study also revealed some limitations that need

to be addressed in a future version of the system.

One common complaint was that the activity system

needs to have better integration with formal busi-

ness processes and external applications. For ex-

ample, the process for reimbursing a guest speaker’s

travel expenses involves filling out a form with the

speaker’s name and affiliation. Because this infor-

mation is already entered into the activity, it would

be helpful if the reimbursement process could

retrieve it from the activity so that it does not have

to be entered twice.

Another common request was the ability to generate

reports or summaries based on the information

entered into the activity system. For example, one

use would be to determine how much of the total

budget has been spent by extracting this information

from the subactivities. As another example, if the

Wax system had been used to organize a weekly

seminar, it would be useful to be able to print out a

summary of all the talks that had been scheduled

over the course of the past year. While generating

these reports is currently possible by navigating to

different screens in the system and copying and

pasting data into a new document, one of our goals

for future work is to explore mechanisms for

Table 3 Major activities supported by the Wax

system

Activity
Number of
People

Number of
Subactivities

Wax development (defects
and features)

21 31

UAM year-end 2005
presentations

20 27

UAM project planning for
2006

60 100

Organizing a site-wide
anniversary event

23 20

Organizing the NPUC (New
Paradigms in User Computing)
2006 Workshop

7 22

Managing accommodation
of the Almaden student
interns for 2006

111 918

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 COZZI ET AL. 707

enabling end users to do customized report gen-

eration.

Case study: Managing a business process

We explored how well the Wax system could

support a common business process by using it to

coordinate the process of setting up accommoda-

tions for 85 new summer interns at Almaden. The

existing process consisted of a list of steps that was

e-mailed to the manager of each intern, detailing

what needed to be completed before and shortly

after the arrival of each intern. These included

assigning a mentor, assigning office space, request-

ing a telephone and voice mail account, arranging

for a computer and making it ready, verifying

creation of computer accounts, requesting badge

access to appropriate rooms, and requesting keys.

Some of these items required the use of formal

corporate business processes or applications (e.g.,

badge access), and some required coordination

among two or more people (e.g., assignment of

office space).

While the preceding list was common to the

Research Division, the Almaden laboratory needed

to have a local process that not only conformed to

the corporate requirements but also supported the

actual practices at the Almaden site. This situation

provided a good test of both the activity pattern

concept and the information-sharing capabilities of

the Wax system.

The activity pattern for managing intern accommo-

dation was created collaboratively. We met with the

Human Resources (HR) department to request their

cooperation and understand their requirements.

After this, we interviewed a group of managers and

department administrative assistants (AAs) and

technical assistants (TAs) who would be involved in

performing some of the steps. On the basis of this

input from potential users, we created an intern-

accommodation activity pattern, which included 17

subactivities, one for each of the steps. The goal of

the design was to provide, in a single view, the

checklist of items to be done, the status of each item,

and a resource for doing it if applicable. The AAs

and TAs also voiced the need for a summary view so

that they could check the status of certain items, for

example, office assignments, for the list of interns in

their departments. We built a special view that

pulled information from the individual activities for

each intern and presented it in a table (the intern

summary table).

A hierarchy of activities was built to organize the

activities for individual interns by department. HR

personnel were involved at the top level, having

access to all entries. Managers, TAs, and AAs in

each department were involved in the subactivity

for their area, because users had told us that they

wanted to see a list of only the interns relevant to

them when they opened their view of the activity.

As a default, each subactivity inherited the in-

volvement of people from its parent, providing the

appropriate access control at each level.

Figure 2 shows the Wax system view of one

instance of the intern accommodation activity. The

name of the intern is used as the title of the activity,

and each of the supporting activities is one of the

steps in the process. For each item in the supporting

activities list, one or more of the following types of

information from the supporting activity is shown:

the status of the check box, the title of the step, the

name of the person responsible for the step, a text

Figure 2
Example of Wax system view of intern accommodation
activity pattern

COZZI ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006708

string describing the status or result of the step, and

a link to the resource, such as an online form, used

for accomplishing the task. For example, the badge

access form is the corporate application used to

request access to a specific laboratory.

In the ‘‘people’’ section of the onboarding checklist,

the person who was to be the intern’s manager was

listed as responsible. The ‘‘resources’’ section con-

tained a link to a document with instructions on

how to use the Wax system to coordinate the intern

orientation process and a link to general help.

Figure 3 is an example of the intern summary table

for one department. This table allowed the depart-

ment TA to view the status of preparations for each

intern in the department and to track the assignment

of office space. It also allowed the person respon-

sible for telephones to get the information needed

for each intern (office number, e-mail address, and

serial number) to set up the voice mail account and

assign the phone number. In the table, the name of

the intern is a link to the activity for that intern, into

which new data can be entered. The name of each

manager and mentor provides a link to their entry in

the corporate directory.

As of this writing, data for 54 interns and 38 mentors

has been entered into the system by 22 managers

and TAs. Our experience thus far has provided

several insights. The use of an activity pattern,

based on the actual practices of workers in addition

to business process requirements, can be a valuable

tool in coordinating repeated business activities.

Summary views are required to meet the needs of

users who play different roles in collaborative

processes. The pattern-creation process should

allow customization of page layout and organiza-

tion, labels and headings, and task-specific instruc-

tions to make the transfer of the practices embodied

in the pattern to new users easier.

SUMMARY AND FUTURE WORK

In this paper, we have presented an approach to

collaborative activity management based on a

shared, semantic representation of activity. We have

described how activities can be represented using

RDF and defined an ontology that captures the

Figure 3
Example of intern summary table

Computer Science Interns
Name Manager Mentor Start Date Office # Phone # s/n email computer allocated

A. Smith
B. Smith
C. Smith
D. Smith
E. Smith
F. Smith
A. Smith
H. Smith
I. Smith
J. Smith
K. Smith

L. Smith
M. Smith
N. Smith
O. Smith
P. Smith
Q. Smith
R. Smith
S. Smith
T. Smith
U. Smith
V. Smith

W. Smith
X. Smith
Y. Smith

Barton A. Smith
Theo Public
Barton A. Smith
Barton A. Smith
Seldom Nutty
Jack B. Nimble
Theo Public
Steven R. Public
Theo Public
Jack B. Nimble
Jack B. Nimble

China Ho
Shivman Virtual
Shivman Virtual
China Ho
China Ho
China Ho
China Ho
China Ho
China Ho
China Ho
Huey Long

Tyrone W. Grandyman
Catharine Hopefull
Catharine Hopefull

Tessa A. Law
Dr. Zee
Thomas P. Moran
Allen Cperson
Heather Citizen

Theo Public

Thomas A. Edison
Sophia T. Oyster
Sophia T. Oyster

Lucy Public
Raja Publicman
Shivman Virtual
Mario Public
When-Saran Li
Tanya Citizen
When-Saran Li
China Ho
China Ho
Tanya Citizen
Stephen Foster

Alexa Efram

6/19/2006
6/5/2006
06/05/2006
05/30/2006
06/19/06
5/15/06

5/11/2006
May 15, 2006

6/19/2006
5/15/2006
6/12/2006
5/15/2006
05/08
05/22
05/08
05/15
05/15
05/22

05/22/06

B2-423 I

B2-423 Q
B2-423 P

B2-433

B1-255 (#6)
B2-237 (#A)
B2-249
B1-255 (#7)
B1-431
B2-249
B1-431
B1-419
B1-419
B2-249
B1-255 (#4)

457-1146

457-1002
7-1734

4D4918
4D5940
4D6528
4D6236
4D6203
3D0933

953207
4D7052

3D0952
3D1763
4D5701
781953
4D6430
4D6431
4D6400
4D6564
4D6916

4D6208

xyz@us.ibm.com
xyz@us.ibm.com

xyz@us.ibm.com

xyz@us.ibm.com

T30 99 5AZ9X

T30 99-5BA1P
T30 99-5AL1L

T30 KP-96BG7

T30 78-ANBZ5

Intelli M Pro 78-G3245 clio0301.almaden.ibm.com
ThinkCenter KC-GX4C2 tphan1.almaden.ibm.com
Intelli M Pro 78-G3145
ThinkCenter KC-GG1D9 dpa.almaden.ibm.com
ThinkCenter KC-FW0XP clio0601.almaden.ibm.com
ThinkCenter KC-FW0ZZ clio0602.almaden.ibm.com
Intelli M Pro 78-G3276
ThinkCenter KL-HAF34

Computer Science Interns
Anthony Interns

Buffalo Bill Interns

Grandyman Interns

wAx [SignOut]Welcome, Barton A. Smith Bug Reports Help Search

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 COZZI ET AL. 709

common properties of activities. We have made the

case for activities as a service, enabling other

applications to make use of activity data and giving

users the ability to manage their activities from within

the context of the applications and tools they already

use. To support this vision, we have developed the

Wax platform that provides two lightweight Web

APIs for accessing activity data. We have presented

the Wax Web UI, which was built on top of the Wax

platform, and several client plug-ins that enhance

existing applications with activity data. Finally, we

have evaluated the Wax system by using it to manage

several large activities. Our experience with the

system demonstrated that it had concrete benefits for

the people collaborating on these activities, including

better communication, easier knowledge transfer for

people joining the project midstream, and a reduced

need for in-person meetings.

We have only begun to explore the problems of

supporting collaborative activity management, and

there are many directions for future work. On an

architectural level, we have not yet concluded that

RDF is the best representation for capturing the

flexible yet semantically coherent activity structures

we want to support. Future work will explore

alternatives to the RDF model and contrast them in

terms of expressive power, ease of authoring activity

applications, and robustness to changes in the

schema. We are currently exploring the use of an

activity vocabulary to organize work that can be

managed in the form of Atom feeds. On a user

experience level, we plan to conduct more user

evaluations of the system in order to determine

which aspects of an activity management system are

most important to users and how we should grow

the system to best meet users’ needs. Finally, we are

exploring how work supported by activity patterns

can be more productive.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of 3M
Corporation, Sun Microsystems, Inc., Mozilla Foundation, or
the Eclipse Foundation, Inc. in the United States, other
countries, or both.

CITED REFERENCES
1. P. Moody, D. Gruen, M. J. Muller, J. Tang, and T. P.

Moran, ‘‘Business Activity Patterns: A New Model for
Collaborative Business Applications,’’ IBM Systems Jour-
nal 45, No. 4, 683–694 (2006, this issue).

2. S. Whittaker and C. Sidner, ‘‘Email overload: Exploring
Personal Information Management of email,’’ Proceedings
of the ACM Conference on Human Factors in Computing
Systems (CHI ’96): Common Ground, ACM Press, New
York (1996) pp. 276–283.

3. C. Hill, R. Yates, C. Jones, and S. L. Kogan, ‘‘Beyond
Predictable Workflows: Enhancing Productivity in Artful
Business Processes,’’ IBM Systems Journal 45, No. 4, 663–
682 (2006, this issue).

4. T. P. Moran, A. Cozzi, and S. P. Farrell, ‘‘Unified Activity
Management: Supporting People in eBusiness,’’ Commu-
nications of the ACM 48, No. 12, special section on
Semantic eBusiness Vision, 67–70 (December 2005).

5. T. P. Moran, ‘‘Unified Activity Management: Explicitly
Representing Activity in Work-Support Systems.’’ Pro-
ceedings of the European Conference on Computer-
Supported Cooperative Work (ECSCW 2005), Workshop
on Activity: From Theoretical to a Computational Con-
struct (2005), http://www.daimi.au.dk/~bardram/
ecscw2005/papers/moran.pdf.

6. T. P. Moran, ‘‘Activity: Analysis, Design, and Manage-
ment,’’ in Theories and Practice in Interaction Design, S.
Bagnara and G. Crampton Smith, Editors, Erlbaum Press,
Mahwah, NJ (2006).

7. M. Muller, W. Geyer, B. Brownholtz, E. Wilcox, and D.
Millen, ‘‘One Hundred Days in an Activity-Centric
Collaboration Environment Based on Shared Objects,’’
Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems (CHI 2004), ACM Press,
New York (2004), pp. 375–382.

8. Unified Activity Management, IBM Research, http://
www.research.ibm.com/uam.

9. R. Medina-Mora, T. Winograd, R. Flores, and F. Flores,
‘‘The Action Workflow Approach to Workflow Manage-
ment Technology,’’ Proceedings of the ACM Conference on
Computer-Supported Cooperative Work (CSCW ’92), ACM
Press, New York (1992), pp. 281–288.

10. S. Dustdar, ‘‘Caramba—A Process-Aware Collaboration
System Supporting Ad Hoc and Collaborative Processes
in Virtual Teams,’’ Distributed and Parallel Databases 15,
No. 1, 45–66 (January 2004), http://dx.doi.org/10.1023/
B:DAPD.0000009431.20250.56.

11. T. Kreifelts, E. Hinrichs, and G. Woetzel, ‘‘Sharing To-Do
Lists with a Distributed Task Manager,’’ Proceedings of
the European Conference on Computer-Supported Coop-
erative Work (ECSCW ’93), Kluwer Academic Publishers,
Dordrecht, Netherlands (1993), pp. 31–46.

12. W. Wang and J. Haake, ‘‘Supporting User-Defined
Activity Spaces,’’ Proceedings of the Eighth ACM Confer-
ence on Hypertext (HYPERTEXT ’97), ACM Press, New
York (1997), pp. 112–123.

13. Groove Virtual Office, Groove Networks, http://www.
groove.net/home/index.cfm.

14. Context and Consciousness: Activity Theory and Human-
Computer Interaction, B. Nardi, Editor, MIT Press, Cam-
bridge, Massachusetts (1996).

15. W3C Semantic Web Activity, Worldwide Web Consor-
tium, http://www.w3.org/2001/sw/.

16. Resource Description Framework, W3C Semantic Web
Activity, Worldwide Web Consortium, http://www.w3.
org/RDF/.

17. RDQL—A Query Language for RDF, Worldwide Web
Consortium, http://www.w3.org/Submission/2004/
SUBM-RDQL-20040109/.

COZZI ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006710

18. SPARQL Query Language for RDF, Worldwide Web
Consortium, http://www.w3.org/TR/rdf-sparql-query/.

19. Web Ontology Language (OWL), Worldwide Web Con-
sortium, http://www.w3.org/2004/OWL/.

20. Dublin Core Metadata Initative, http://dublincore.org/.

21. FOAF Vocabulary Specification, http://xmlns.com/foaf/
0.1/.

22. RDF Calendar Workspace, Worldwide Web Consortium,
http://www.w3.org/2002/12/cal/.

23. B. L. Harrison, A. Cozzi, and T. P. Moran, ‘‘Roles and
Relationships in a Unified Activity Management System,’’
Proceedings of the ACM Conference on Supporting Group
Work (Group 2005), ACM Press, New York (2005), pp.
236–245.

24. Java ServerPages Technology, Sun Microsystems, http://
java.sun.com/products/jsp/.

25. R. T. Fielding, Architectural Styles and the Design of
Network-Based Software Architectures, Ph.D. dissertation,
University of California, Irvine, CA (2000).

26. E. M. Maximilien, A. Cozzi, and T. P. Moran, ‘‘Semantic
Web Services for Activity-Based Computing,’’ Proceedings
of the Third International Conference on Service-Oriented
Computing (ICSOC 2005), LNCS 3826, Springer-Verlag,
Berlin (2005), pp. 558–563.

27. AtomEnabled/Developers, http://www.atomenabled.
org/developers/.

28. M. Dredze, T. Lau, and N. Kushmerick, ‘‘Automatically
Classifying Emails into Activities,’’ Proceedings of the
ACM International Conference on Intelligent User Inter-
faces (IUI 2006), ACM Press, New York (2006), pp. 70–77.

29. del.icio.us, http://del.icio.us/.

30. SourceForge.net, http://sourceforge.net.

Accepted for publication May 22, 2006.

Alex Cozzi
IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (cozzi@almaden.ibm.com).
Dr. Cozzi is a research staff member at the IBM Almaden
Research Center in San Jose, California. He received an M.S.
degree in computer science from the University of Milan, Italy,
and a Ph.D. degree from the University of Dortmund,
Germany. He has worked on computer vision and social
network analysis. His research interests include human-
computer interaction and data mining.

Stephen Farrell
IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (sfarrell@almaden.ibm.com).
Mr. Farrell is a senior software engineer at the IBM Almaden
Research Center in San Jose, California. He has a B.A. degree
in the history and philosophy of science and an M.S. degree in
computer science from the University of Chicago. Mr. Farrell
joined IBM Research in 1999 to develop systems which
enhance the ability of people to work or collaborate. Some of
his research areas include personalization of the Web
experience, information programming, person-centric data
integration, and relationship-oriented computing. Some of his
projects include Fringe, which gives a person-centered view of
enterprise information, and Enki, which does the same for
personal information sources. He is also lead architect of the
Unified Activity Management project.

Tessa Lau
IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (tessalau@us.ibm.com). Dr.
Lau is a research staff member at the IBM Almaden Research
Center. She completed her Ph.D. degree in computer science
at the University of Washington in 2001. She is interested in
information management, particularly personal information,
and how people interact with and customize their working
environment. She has done significant work in the area of
programming by demonstration, giving end users the ability to
automate repetitive tasks simply by showing the system how
to perform the task a few times.

Barton A. Smith
IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (basmith@almaden.ibm.com).
Dr. Smith received a B.S. degree in chemistry from the
University of Texas at Austin in 1972, and a Ph.D. degree in
physical chemistry from Harvard University in 1977. After two
years at Stanford University, where he was a National Science
Foundation Post-Doctoral Fellow, he joined the IBM Research
Division in San Jose, California, in 1979. In his 26 years as a
research staff member in IBM Research, he has worked on
fundamental problems in polymers, materials, and computer
science, and on IBM products including magnetic disks,
optical disks, magnetic tape, typewriter ribbon, circuit boards,
integrated circuits, multichip ceramic circuit modules, optical
data transmission, displays, and ThinkPadst. His most recent
work centers on understanding how people use information
technology and improving the human-computer interaction
experience. Dr. Smith currently manages the Human Interface
Research group in the Computer Science department at the
Almaden Research Center.

Clemens Drews
IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (cdrews@us.ibm.com). Mr.
Drews is a software engineer and currently works on the
Unified Activity Management project. He has a B.S. degree in
technical computer science from the University of Applied
Sciences in Hamburg, Germany. He joined IBM Research in
1998. During his career at IBM, Mr. Drews has worked on
projects ranging from short-range wireless communication
gadgets to large multiuser collaboration tools.

James Lin
IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (jameslin@us.ibm.com). Dr.
Lin is a research staff member at the USER (User Sciences and
Experience Research) group at the IBM Almaden Research
Center. His research interests include user interfaces for
collaboration, end-user programming, and creating tools for
designing next-generation user interfaces. He received a Ph.D.
degree in computer science from the University of California at
Berkeley.

Bob Stachel
IBM Software Group, 1 Rogers Street, Lotus Development,
Cambridge, Massachusetts 02142 (bob_stachel@us.ibm.com).
Mr. Stachel is a software developer in the Collaborative User
Experience Research Group. Since joining IBM Research in
1998 as a senior software developer, he has worked on
projects in support of activity-centric computing, lightweight
collaboration, expertise location, and knowledge
management. Mr. Stachel joined Lotus in 1985, and was an
architect on development teams for the Dominoe Merchant
(electronic commerce), Lotus Notes Newsstand (electronic
publishing), and Lotus Improv (spreadsheet) products. He has
a B.A. degree from Brandeis University in computer science.

IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006 COZZI ET AL. 711

Published online October 24, 2006.

Thomas P. Moran
IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, California 95120 (tpmoran@us.ibm.com). Dr.
Moran is an IBM Distinguished Engineer and leads the Unified
Activity Management project. He was one of the pioneers
establishing the field of human-computer interaction (HCI)
within computer science, co-authoring (with Allen Newell and
Stuart Card) the seminal book The Psychology of Human-
Computer Interaction (1983). He was at Xerox PARC for 27
years as Principal Scientist and manager of User Interface and
the Collaborative Systems research and as the Director of
Xerox EuroPARC in Cambridge, England. Dr. Moran is
founder and editor of the journal Human-Computer
Interaction. He is an ACM Fellow and recipient of ACM
SIGCHI’s (special interest group in human-computer
interaction) Lifetime Achievement Award. &

COZZI ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 4, 2006712

