A measurement framework for
evaluating model-based test
generation tools

This paper presents a measurement framework for evaluating model-based test
generation (MBTG) tools. The proposed framework is derived by using the Goal
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Question Metric methodology, which helps formulate the metrics of interest:
complexity, ease of learning, effectiveness, efficiency, and scalability. We demonstrate
the steps involved in evaluating MBTG tools by describing a case study designed for

this purpose. This case study involves the use of four MBTG tools that differ in their
modeling techniques, test specification techniques, and test generation algorithms.

INTRODUCTION

Testing ensures that software meets its requirements
and is thus a vital part of the software development
life cycle. Because testing—be it integration, system,
or acceptance testing—occurs late in the software
development life cycle and because it is time
consuming, the testing effort is often shortened in
order to compensate for schedule slippages during
earlier development activities. This results in in-
sufficient testing of products before their release.
Model-Based Test Generation (MBTG) has recently
emerged as a possible approach to alleviating this
problem by improving the effectiveness of the
testing effort.

According to the consensus prevalent at the Work-
shop on Advances in Model-Based Software Testing
(A-MOST 2005),1 in a model-based testing technique
the behavior of the application under test, as
specified by the user, is used exclusively for
generating a suite of tests for validating the
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application. The level of granularity of the input
information provided by the user can vary widely.
With this broad definition in mind, a number of
studies on model-based testing are found in the
recent literature.

Dalal et al.” highlight the advantages and challenges
associated with the use of the Automatic Efficient
Test Generator (AETG) technique on four industrial
products. Pretschner et al. present a case study
involving the use of AutoFocus” for testing an
“infotainment” network. This case study highlights
the model coverage, the implementation coverage,
and the error-detection capabilities of AutoFocus.
Veanes et al.” report on a case study that evaluates
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the effectiveness of the tool Asml/Spec# in an online
testing setup. Another related study by Paradkar’
presents a case study that seeks to identify fault
models for better fault detection effectiveness using
MBTG.

Although these studies provide insights into specific
MBTG techniques, to our knowledge there are no
publications that propose a measurement frame-
work for evaluating MBTG tools. Consulting com-

. 6 7
panies, such as Grove Consultants” or Ovum Inc.,
often publish reports analyzing the capabilities of

m In @ model-based testing
technique, the behavior of the
application under test, as
specified by the user, is used
to generate a suite of tests m

specific tools. Whereas these reports may serve well
for a particular MBTG tool, they lack a framework
for comparing tools.

When managers and other decision makers in the
information technology (IT) industry need to select
an MBTG tool for their software development
project, they are often at a loss, primarily because
there are no measurement frameworks to compare
the capabilities of various MBTG tools. In this paper,
we provide one such measurement framework that
is based on the Goal Question Metric (GQM)
methodology.8 Applying GQM in MBTG helps
formulate the metrics of interest: complexity, ease of
learning, effectiveness, efficiency, and scalability.
We demonstrate how to use our measurement
framework by describing a rudimentary case study
for comparing four MBTG tools. Although this case
study is not sufficiently extensive for reliable
comparison data, its purpose is to describe in detail
the steps involved in comparing MBTG tools. The
four tools chosen for this study (Archetest version
0.5,9 ASMLT version 2.0,10 TestMaster release
1.9.2,11_13 and HOTTest release 0.114) differ in their
modeling techniques, test-case specification tech-
niques, and test generation algorithms.

The rest of the paper is organized as follows. In the
next section, “Design of the measurement frame-
work,” we briefly describe the GQM approach, and
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we show how GQM-driven questions lead to the set
of metrics of interest: complexity, ease of learning,
effectiveness, efficiency, and scalability. In the
section “Case study,” we describe the four MBTG
tools used, the three target applications that are
tested, and the process we follow, and we discuss
possible pitfalls when analyzing measurement data.
In the section “Case study measurements,” we
describe and discuss the measurement data. The last
section contains a summary and final comments.

DESIGN OF THE MEASUREMENT FRAMEWORK
The measurement framework was designed follow-
ing the GQM methodology.8 GQM defines a mea-
surement model on three levels:

1. Conceptual (goal)—This defines the purpose of
the study. The goal is to analyze some object of
study (e.g., process, product) toward a specific
purpose (e.g., characterize, evaluate, predict,
motivate, improve) with respect to a focus (e.g.,
effectiveness) on behalf of (from the point of
view of) a stakeholder (e.g., customer, orga-
nization).

2. Operational (question)—Questions are formu-
lated to identify the information that is needed to
achieve the goal. The set of questions is used to
define models of the object of study and
characterize the way a specific goal is achieved.

3. Quantitative (metric)—This consists of sets of
metrics, where each set of metrics is based on the
models and is associated with a question that has
to be answered in a measurable way.

The purpose of the our framework is to compare
selected MBTG tools for test generation abilities. We
define the goal in accordance with the template
prescribed by the GQM methodology as follows:
“Analyze MBTG test generation tools to characterize
them with respect to their test generation ability from
the point of view of testers of IT systems.”

In using our measurement framework for evaluating
a set of MBTG tools, we do not consider specific
requirements that a project may have, as we want
the framework to be universally applicable, but the
framework can be easily adapted, following the
GQM methodology, to suit individual needs of
projects.

From questions to metrics

At the operational level, we ask the following
questions:
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. How complex is the tool to use?

. How easy is it to learn the tool?

. How effective is the tool?

. How much effort is needed to test applications?

. How does the test generation effort scale with
application size?

(&2 BN NE S U I (S I

It is understood that the higher the complexity of
using the tool, the lower its usability. A higher
complexity also means a higher investment in
human resources due to the higher skill level

required. Ease of learning is another vital issue that
governs applicability. Lower ease of learning implies

an increased effort in educating the testers on the
test generation technique. Complexity and ease of
learning determine directly the adoptability of the
technique.

Questions 3 and 4 determine the return-on-invest-

ment from using the test generation technique. The
effort needed for testing and the effectiveness of the
test technique jointly determine the productivity of
the tester. The gain in effectiveness should not be at

the cost of a heavy increase in effort.

The staff responsible for selecting a tool needs to
ascertain that the testing technique scales to large

applications. In other words, they need to make sure

that when the size of the application grows, the
effort required stays manageable.

Metrics and measurement models

At the quantitative level, GQM deals with metrics.
These metrics help answer the questions asked at
the operational level. The metrics that are part of
this study follow:

1. Complexity—The complexity of the test gener-
ation process is associated with the difficulty in

using the tool due to the number of concepts that
must be learned in order to produce a correct test
model. A concept may be an operator, a function,
or a modeling mechanism that must be learned in

order to use the tool. The complexity measure

CPLX is determined by using a graph that depicts

the dependencies between concepts. Such
graphs, which we refer to as semantic depen-

dency graphs, relate the various concepts, which

are represented as nodes. The nodes of a

semantic graph can represent any of the follow-

ing concepts:

a. Modeling concepts—These are concepts
related to test models; for example, for a
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model based on the Unified Modeling
Language** (UML**), these can be use case
diagrams, class diagrams, and activity dia-
grams.

b. Linguistic concepts—These are concepts
related to the specification language. These
include language-related constructs and
special functions and operators that must
be learned in order to use the tool; for
example, in ASML, the language constructs
supporting abstraction mechanisms are
linguistic concepts.

c. Technique concepts—These relate to the test
generation technique; for example, in Test-
Master, constraint-related concepts that
define the context of any state are technique
concepts.

The complexity of a concept is assigned one of
three values: 1 (easy), 2 (moderate), or 3
(difficult). The difficulty is viewed from the
perspective of the user of the tool. A concept is
assigned a complexity value of 3 if it is likely that
the user has no prior experience with the
concept. It is assigned a complexity value of 2

if it is likely that the user has some experience
with the concept or with a related concept. If it is
likely that the user has working experience with
the concept or with a related concept, then the
concept is assigned a complexity value of 1.

Complexity of any node in a semantic depend-
ency graph is calculated as follows:

CPLXpote = % CPLX; + CPLX concept - (1)

all child nodes

This metric represents the complexity of the
concepts involved in the use of each of the tools
and is not necessarily equivalent to ease of
learning. Although ease of learning depends on
conceptual complexity, it also depends on the
quality and amount of support available for
learning the tool.

. Ease of learning—Ease of learning is defined as

the time a user needs to achieve a specified
proficiency level with the tool. Measuring profi-
ciency in using any one concept involves count-
ing the number of correct uses of that concept
with two different applications: a “learning
application” (used only for learning) and the
target application (the one used for testing).
Thus, the proficiency in using concept i is
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calculated as

profy = 2)
where n. is the total number of correct uses of the
concept i by the user with the learning applica-
tion, and N; is the total number of times the
concept is used in the target application. The
proficiency with a tool is calculated as

> prof;

PROF = =L (3)
m

where m is the total number of concepts used.
Ease of learning is calculated as

PROF
Eask = PROE ()

Learn

The learning time ¢, , . is the time needed for the
user to achieve a given proficiency. Clearly, ease
of learning contributes positively toward
usability.

. Effectiveness—The effectiveness of a test tech-
nique is determined by its ability to uncover
faults. A fault can be viewed as the failure of the
application to satisfy a specified requirement.
Thus, the number of faults is equal to the number
of requirements that the application fails to
satisfy. Furthermore, effectiveness is calculated
as the fraction of requirements tested by the test
suite generated using the technique under
study.15 Thus, effectiveness for a test suite is
defined as:

Effectiveness=(Number of Requirements Covered)

/(Total Number of Requirements

inthe Application) = —-. (5)

|~

Both r and R refer to atomic requirements. An
atomic requirement is a requirement that de-
scribes a single nondecomposable feature of the
system. Atomic requirements do not subsume,
nor are they composed of other requirements. For
example, the requirement “On clicking the PLOT
button, DAT will generate the query results in
chart form” is implemented with the atomic

. Efficiency—Efficiency is a measure of the ease of

testing a system after a user’s learning is
complete. Efficiency is calculated as

) Testing Assi
EFF — Size of the Testing Assignment

, 6
Tons (6)
where T, ,,, is the net effort in the testing process.
The size of the testing assignment can be
measured as follows:

Size of the Testing Assignment
= Application Size * CCoverage * CComplexityv (7)

where Application Size is the size of the system
under test in lines of code or function points ;
Ceoverage 18 the coverage coefficient of the test
model as given in Equation 5; and C plexity 1S
the complexity of the application. The complexity
of the application can be measured by using
various metrics identified in the literature. In this
paper, however, we compute relative measures of

complexity in which this factor cancels out.

The effort in testing T,,,, is given by
Tum = Tm + Te + Ts + Tx, (8)

where T, is the time for test modeling, T, is the
time for test generation, T, is the time for setting
up the execution environment, and Ty is the time
for test execution. Efficiency contributes posi-
tively towards the usability of the tool. A high
efficiency enhances the usability of the test tool.

. Scalability—Scalability is defined as the property

of the tool that keeps the testing effort manage-
able when the size of the application increases. It
can be measured by the increase in application
size per unit increase in effort; therefore, we
define scalability as:

Increase in Application Size
S; = AT, . 9)
v

AT, is the increment in one of the components
Tyop Too Typ Too OF T, (see Equation 8).
Correspondingly, S, ,,, can be scalability with
regard to net effort, S can be scalability with
regard to test generation effort, S, can be
scalability with regard to modeling effort, and so
on. Thus, scalability of the tool with regard to

effort in modeling is defined as

_ Increasein Application Size

requirements “On clicking the PLOT button, DAT Su = ATy (10)
will generate a graph”; “On clicking the PLOT
button, DAT will open a window displaying the CASE STUDY

generated graph”; and “On clicking the PLOT
button, DAT will switch the active window.”

In this section we describe a case study in which the
framework was used to evaluate four tools: Arche-
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test, ASML, HOTTest, and TestMaster. The goal of
the case study was to demonstrate how one
evaluates a number of MBTG tools using the
framework. Because the study was not based on a
sufficiently large sample, the tool comparison data
can be viewed only as tentative and in need of
additional experimentation.

The four MBTG tools

Figure 1 shows the test generation process. As
shown in the figure, a natural language specification
of the requirement for the application under test is
the needed input to the application-modeling proc-
ess, whose outcome is the application model. In the
test-modeling phase that follows, the application
model is augmented with various testing objectives
provided by the test specification in order to derive a
test model. This model is then used for test
generation, the result of which is a test suite that can
be run on the executable code with results that can
be verified against application specifications.

The application model in Archetest consists of UML-
based high-level use cases and domain models. In
contrast, ASMLT uses application models specified
by using abstract state machine language (ASML).
TestMaster uses extended finite state machines
(EFSMs) to specify application models, whereas
HOTTest uses application models specified by using
a strongly typed domain-specific language (DSL),
such as HaskellDB."” When discussing the evalua-
tion of the four tools, we sometimes refer to them as
the four modeling techniques.

In Archetest, use cases are formalized by using a test
case specification that adds five key concepts to
standard use cases: preconditions, parameters, test
data, results and the execution template. Precondi-
tions state what must be true in the system for the
use case to be eligible for execution. Parameters
represent input to the use case from an actor.
Parameters may have partitions associated with
them. Partitions are logical values that testers
typically use to think about test data. Test data
associates physical values with partitions that can
be used in actual testing of the system. Results are
the named outcomes of executing the use case. They
are guarded by constraints that indicate the con-
ditions under which they occur, and also have
associated update statements that change the state
of the system. Finally, the execution template defines
how the use case is realized in terms of the APIs of
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Figure 1

The test generation process

the implemented system. To each use case in an
Archetest test model, fault modeling techniques are
first applied to determine interesting test variations.
Integer programming techniques are used to deter-
mine efficient ways to flow through the use cases as
test cases are generated. Finally, the test cases are
generated by using a series of graph traversal
techniques.

In ASMLT, the test specification consists of an
abstraction property that guides the tool to generate
a finite state machine (FSM) from an ASML model.
The tool triggers all possible transitions to determine
the available system states. Based on the abstraction
property, these states are abstracted into hyper-
states. The hyperstates are finite in number and are
used to form the states of the FSM. Then ASMLT
generates test cases by using a “Chinese Postman”
tour (the shortest closed path that goes through all
edges of a directed graph) to traverse the states of
the FSM. The traversal of the FSM produces paths
that represent a sequence of method calls.

For TestMaster, the test is specified by providing
context to transitions in the EFSM model. A
transition in an EFSM model has fields that can
specify events, state updates, enabling conditions,
and likelihood. A transition is triggered by an event,
provided that the enabling condition is satisfied.
Test case generation thus involves identifying input
sequences that enable the transitions and guide the
system through a path defined by EFSM states. Each
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input sequence so constructed signifies a test case
for the system under test. TestMaster can generate
test cases following user-specified path coverage
schemes, such as Full Cover, Transition Cover, and
Profile Cover. It uses a combination of basic graph-
coverage algorithms like depth-first search, breadth-
first search, and minimum spanning tree to derive
the paths through EFSMs.

HOTTest automatically identifies and extracts pos-
sible functional flows in the DSL specification and
then extracts variables from functions and associ-
ates type and value to each of them. Following a
translation scheme, a behavioral model based on an
EFSM representation of the system is created. The
type safeness of DSL functions allows derivation of
useful domain-specific system axioms. HOTTest
identifies the DSL operators in the model and, based
on the associated axioms, embeds new states in the
EFSM-based test model. The modified EFSM gen-
erates test cases following a technique similar to that
of TestMaster. The generated test cases check if the
application satisfies the axiomatic property. Because
each domain-specific axiom is related to a certain
domain-specific requirement, the test cases auto-
matically check for certain domain-specific require-
ments.

Case study instruments

The case study involves a human subject, a summer
intern working in software testing at the IBM
Thomas J. Watson Research Center. The intern had
previous formal training in software testing and
practical experience comparable to that of an
average tester in a software firm (2-3 years). The
subject was assigned the task of generating tests for
three applications: DAT (Data Analysis Tool), SSP,
and SearchPUBS. SSP was used as a learning
application, that is, the target application for the
learning phase. DAT and SearchPUBS were the
target applications for the case study; DAT was the
target application for all metrics; SearchPUBS was
used together with DAT for evaluating scalability.

DAT is an application that analyzes data on software
defects collected during software development and
maintenance. The tool, which is an essential tool for
IT organizations, is based on the Orthogonal Defect
Classification (ODClS) methodology for capturing
defect information. It is implemented in Java**, has
a graphical user interface, and generates and
executes Structured Query Language (SQL) queries
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for a database that contains defect reports collected
during various phases of the software-development
life cycle. The data set that results from the queries
is analyzed for possible leads on issues that face
most IT organizations, such as product stability, test
effectiveness, and customer usage.

SSP is a small application for generating queries for
PUBS, a Microsoft Access** database that contains
information on authors and their publications. The
information is stored in three tables: AUTHORS,
TITLES, and TITLEAUTHOR. SSP, which generates
and executes queries on PUBS, prompts the user for
search options. The user may search by first or last
name of the author, by location, or by book title.
The application returns either the name of the
author and the corresponding publication or the
message “No such entry.” SSP was modeled by the
subject while learning the tool. It was chosen
because it is a relational-database-based application,
similar to DAT.

SearchPUBS, which is also based on PUBS, is a
Visual C++** application (about 4200 lines of code)
that queries the database for author information.
The user can form queries by using a dialog-based
system that provides 12 criteria for searching.

The following are some artifacts that were part of
the case study:

1. DAT Product Description (A1)—A1l is a set of
documents that describe the features of DAT and
also contain screen captures and directives for
users.

2. DAT Requirements Documents (A2)—A2, the sole
basis for creating the test models, is a natural
language specification of the functional and
nonfunctional requirements of DAT, specified in
accordance to the IEEE format."” A2, which is
derived from A1, was created by the subject
under the supervision of an ODC expert.

3. Parsed Requirement List (A3)—A parsed re-
quirement list contains atomic requirements (as
previously defined). A3 is derived from A2 by an
ODC expert. Each requirement in A3 is classified
by an expert as either domain specific or generic.
For example, if a requirement is specific to the
domain of relational database applications, then
it is classified as domain specific.

Case study: process
The objective of the case study is to have the subject
learn to use the four tools and generate tests for DAT
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The case study process

by using these tools. We describe here the steps
involved. Figure 2 shows the process for carrying
out the case study.

First, the subject receives training in ODC and then
develops the natural language specification A2 for
DAT from Al.

Next, the subject learns to use the four tools in an
arbitrarily selected sequence. For practice, during
the learning process the subject uses SSP. The
subject reads the technical manuals and the user
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support documents available for each tool. A log is
maintained in order to record the learning time and
also to document any pertinent observations during
the learning phase. After perusal of the documents,
the subject uses each tool to generate tests for SSP.
The results of the test generation step are used to
evaluate the proficiency achieved in each tool by the
subject. The proficiency is assessed by an expert
tester who is not involved in the case study.

Modeling of DAT immediately follows the learning
phase. As in the learning phase, a log is maintained
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for recording the time and any observations of
interest made by the subject during the modeling
process.

The scalability of the tool is evaluated next, when
the subject models the target application, Search-
PUBS.

Test cases are derived independently for DAT and
SearchPUBS by using each test generation tool. The
test suite and results of the test execution are
recorded and analyzed. The test suites are assessed
against the independently prepared parsed require-
ments list (A3). The execution time and the test
generation times for each model are recorded. The
test results are also analyzed.

m The proposed framework is
derived by using the Goal
Question Metric methodology,
which helps formulate the
metrics of interest m

The final step in the case study consists of
measurement and analysis. The data recorded
during the test modeling phase, the test generation
phase, and the test execution phase are compiled for
the four techniques and are analyzed.

Threats to validity

Some factors that affect the validity of the results of
any experimental study can be viewed as threats to
validity. They can be classified as either internal or
external threats. Internal threats to validity refer
specifically to threats that determine whether an
experimental treatment or condition makes a dif-
ference and whether there is sufficient evidence to
support the claim.”® Internal threats to validity are
identified in Reference 20 as the following:

e History, which refers to the specific events that
occur between any two sets of measurement and
that may affect the outcome

e Maturation, which indicates the processes affect-
ing the subjects that are functions of time (e.g.,
hunger, aging)

e Testing, which refers to the effect that taking a test
before the experiment has on the outcome of the
experiment
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¢ Experimental mortality, which refers to the loss of
subjects during the experiment

* Instrumentation, which refers to the changes in
instruments, observers, or scorers that may affect
outcomes

Because the case study was not conducted in a
controlled environment, there was no threat due to
history or maturation. The effect of testing was
reduced by isolating the study of the system from
the study of the test design tools. The order in which
the tools were studied might cause some concern.
However, because proficiency is evaluated on the
correct usage of the concepts and not on the
correctness of the model itself, the effect of this
factor is null. Further, the test of proficiency for each
tool before modeling of DAT ascertained that the
measurement results were not biased because of the
continuous learning of the subject. The analysis and
measurements were performed after completion of
the modeling process; this was to ensure there was
no threat due to instrumentation on the results.

The subject was asked to develop a natural language
specification of the requirements of the application
to be tested before development of the test model.
This ensured that the subject’s rate of learning had
leveled off, that is, had reached an asymptotic level,
before the application modeling phase. An experi-
ment involving a single subject ensures minimal
variation due to personal bias and abilities.
Although experimental mortality was a major threat
to validity, the entire duration of the experiment was
about four months, which was manageably small.
Further, the subject was naturally motivated be-
cause the study was part of his summer project
requirements.

External validity means the results of the experiment
or case study can be applied directly to other similar
scenarios. The case study presented here has only
one subject performing the test generation activities.
This limits the applicability of the results to other
cases. Because the subject (as described in the
section “Case study instruments™) is a member of
the representative population, the results may
indicate possible trends. For a wider applicability of
the results, the experiment needs to be repeated
with a large number of subjects. This constitutes an
external threat to the validity of our results.
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Semantic dependency graph for Archetest (novice perspective)

CASE STUDY MEASUREMENTS

In this section we describe the way readings are
taken for each metric identified in the section
“Metrics and measurement models” and present the
numerical results obtained.

Complexity

Complexity measures can be calculated from the
perspective of either a novice or expert. A novice is
not familiar with any tool-related concepts but is
familiar with basic principles of test generation. An
expert is well-versed in the modeling principles
underlying the four tools (ASML for ASMLT, UML
for Archetest, Haskell for HOTTest, and FSMs for
TestMaster) and has experience in the design of test
cases.

Next, the semantic dependency graph for each tool
is constructed, where the nodes are the concepts and
the edges represent the dependency relationship
between concepts. Figure 3 for instance, shows the
semantic dependency graph for Archetest (novice
perspective). The graph for the expert perspective
differs only in the complexity values associated with
each node. The complexity is computed bottom up,
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Table 1 Complexity measures for MBTG tools

Archetest ASMLT TestMaster HOTTest
Complexity 64 68 79 68
(Novice)
Complexity 33 28 38 31
(Expert)

according to Equation 1: the complexity values of
the child nodes determine the complexity value of
the parent node. The complexity of the root is the
complexity of the test generation technique. The
complexity measures of the four tools are shown in
Table 1.

Ease of learning

Calculating ease of learning is based on proficiency
and learning time. The learning time consists of the
time to review the learning materials and the time
for exercise. Therefore, the learning time is calcu-
lated by summing the time spent during the learning
sessions and the time spent in developing the model
for the application SSP.
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Table 2 MBTG tools: major concepts and their proficiency measures

Archetest ASMLT TestMaster HOTTest
Concepts Prof. | Concepts Prof. | Concepts Prof. | Concepts Prof.
Prologue 0.9 | State variables 1 | States 1 | Function 0.9
Epilogue 1 | Stopping conditions 0.9 | Models 0.8 | Polymorphic types 1
Consistency 1 | Update procedures 0.9 | Randomizations 0.2 | User-defined types 0.9
Activity mirroring 1 | Partial updates 0.9 | Type 0.9 | Basic types 1
Parameter partitioning 0.9 | Methods 1 | Array I/O 0.2 | Records 1
Tofu combinations 1 | Values 0.9 | Scope 0.2 | Sequential flow 1
Result definitions 1 | Constraints 0.9 | Initialization 0.3 | Juxtaposition 1
Context updates 1 | Variables 1 | IMCF 0.2 | Composition 1
Execution templates 1 | Condition loops 1 | Table models 0.3 | Recursion 0.8
Test data 1 | Sets 0.9 | Context 0.3 | Pattern matching 0.95
Inheritance 0.9 | Variables 1 | Events 1 | Case constructs 1
Inclusion 0.9 | Constants 1 | Action 0.5 | If 1
Extension 0.9 | Hyperstates 0.8 | Predicate 0.3 | List comprehensions 0.9
Actors 1 | Abstraction 1 | Argument 0.5 | Relations 0.9
Associations 1 | FSM generator 0.9 | Parameters 0.4 | Attributes 0.8
Activity diagrams 1 | Types 0.8 | Constraints 0.3 | Expressions 1
Classes 1 | Instantiation 0.8 | Likelihood 0.5 | Query 0.9
Sequences 1 | Path constraints 0.2 | Restrict 0.9
Maps 0.9 | “@ constraints” 0.2 | Project 0.95
Non-determinism 1 | Test information 0.5 | Set operators 1
Enumerations 0.9 | Test file set up 0.3 | Logical operators 1
Classes 0.9 | Shallow paths 0.5 | Boolean connectors 1
Parameter generation 1 | Deep paths 0.5
Coverage scheme 0.5

Table 3 Ease of learning measures for MBTG tools

Total Learning Modeling Proficiency Ease Relative Ease

Learning Time Sessions of SSP of Learning of Learning
Archetest 14:44:00 3:56:00 10:48:00 0.97 1.58 91.23
ASMLT 22:21:00 13:18:00 9:03:00 0.93 1.00 57.78
TestMaster 8:21:00 5:00:00 3:21:00 0.44 1.27 73.51
HOTTest 13:10:00 5:00:00 8:10:00 0.95 1.73 100.00
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Table 4 Effectiveness and domain-specific effectiveness measures for MBTG tools

R r D d Effectiveness Domain-Specific
(percent) Effectiveness
(percent)
Technique Archetest 1260 1050 602 392 83.33 65.12
ASMLT 1260 965 602 307 76.59 51.00
TestMaster 1260 843 602 185 66.90 30.73
HOTTest 1260 1216 602 577 96.51 95.85

Calculating the complexity of the modeling process
for each tool first requires an examination of all the
concepts involved.

The proficiency calculations are based on the
concepts associated with each tool. For each
concept, we count the number of usages. A wrong
usage of a concept is defined as a usage instance that
creates a fault in the test model. Numbers of such
faulty instances are also counted. Table 2 lists the
major concepts of each modeling technique and the
proficiency measure Prof achieved in each concept
by the subject. The proficiency achieved by the
subject is calculated using Equation 2. Whereas
Table 2 logs the proficiency achieved by the subject
in individual concepts, Table 3 displays measure-
ments of proficiency and learning time. The measure
for ease of learning is calculated using Equation 4.
Table 3 depicts the ease of learning and related
values for the four techniques and includes a relative
ease of learning measure in which the highest ease
of learning value (for HOTTest) is assigned 100.

Effectiveness

The number of requirements covered by a test
model is calculated by examining the test suite
generated by using a given technique (following
transition coverage) and identifying the require-
ments tested by the test suite. A requirement is said
to be tested by the test suite if there are test cases in
the test suite that would fail if that particular
requirement were not satisfied by the application.
The number of requirements and the number of
domain-specific requirements covered by using each
technique, along with the corresponding effective-
ness measures, are presented in Table 4.

The effectiveness values for the test generation
techniques are calculated using Equation 5. The
coverage attained by the test models is measured by
using the parsed requirement list (A3), and it is
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computed by calculating the fraction of require-
ments in A3 covered by the test suites. The net
number of atomic requirements in A3 for DAT is R=
1260. The number of requirements covered by the
test models is given in the column with the heading
r. The number of domain-specific requirements in
A3 is D =602 (they were identified to be specific to
the domain of database applications). The number
of domain-specific requirements covered using the
technique is d. Of the 602 net domain-specific
requirements, 210 were not explicitly mentioned in
the original requirements document (A2). Some of
the 210 implicit requirements were identified by the
expert; others were identified during testing with
HOTTest.

Efficiency

The net effort in testing T,,,, is calculated using
Equation 8. The time to model T,,, which is
calculated from the user logs during test modeling,
includes the debugging time along with the actual
modeling time. The test cases were generated on a
Pentium** 4 1.6 GHz machine with 256 MB of RAM.
The time to generate test cases T, was recorded by
noting the machine time at the beginning and at the
end of the test generation activity. The time for
setting up the test environment T, included the time
to set up the test harness (Rational* Functional
Testerm) and the time to derive the test scripts from
the test cases. N is the number of test cases in the
test suite produced from the model allowing the
maximum coverage.

Efficiency of the tools is calculated using Equation 6.
The coverage attained by the test model is measured
by using the parsed requirement list (A3) and is
discussed in the section “Case study instruments.”
Because the target application (DAT) is the same for
all test models, we do not evaluate Coompiexity” AP-
plication Size. This factor eventually cancels out
when we calculate relative measures. Table 5
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Table 5 Efficiency measures for MBTG tools with DAT as target application

Ty Ug T U N TMM Coverage Efficiency Rglfltive

(mins) (mins) (mins) (mins) (mins) Efficiency

(percent)
Archetest 1554.00 62.00 80.00 940.00 3000 2636.00 83.33 0.032 100.00
ASML 1356.00 1584.00 1822.00 1309.73 4180 6071.73 76.59 0.013 39.90
TestMaster 3030.00 105.00 132.00 1322.89 4222 4589.89 66.90 0.015 46.11
HOTTest 1093.00 320.00 212.00 2052.96 6552 3677.96 96.51 0.026 83.00

Table 6 Efficiency measures for MBTG tools with
SearchPUBS as target application

T T Ts T N T

M G X MM
Archetest 518 2.00 15.00 10.03 32 545.03
ASMLT 546 17.00 95.00 23.50 75 681.50
TestMaster 201 0.70  45.00 6.89 22 253.59
HOTTest 490 12.00 50.00 26.63 85 578.63

presents the results of the efficiency calculations.
Relative efficiency measures are obtained by as-
signing the value 100 to Archetest.

Scalability

Scalability of the MBTG tools is measured by
comparing their efficiency on two target applica-
tions, DAT and SearchPUBS. The measurement
results for DAT are presented in Table 5; those for
SearchPUBS are shown in Table 6.

Scalability of effort is calculated for various con-
tributors to the test effort in accordance with
Equation 9. Relative scalability measures are ob-
tained by assigning the value 100 to the highest
scalability value among the four tools. Table 7
presents the scalability measures for the various
tools for different effort contributors and the net
effort.

CONCLUSION

In this paper we present a measurement framework
for evaluating MBTG tools. We describe a case study
in which the framework was used to compare four
MBTG tools. Although this case study is limited in
that the data are not statistically significant for the
purpose of comparing the tools involved, the
experiment is used as a vehicle to describe in detail
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the steps involved in applying our measurement
framework.

We found that the complexity of use is approx-
imately the same for the four tools. This probably
indicates that all MBTG tools face a similar barrier
for entry. There is roughly a twofold increase in
complexity when a novice, rather than an expert,
uses the tool. Thus, a person trained in the basics of
a testing technique is likely to perceive the
complexity to be half of that perceived by a person
who is new to testing.

Both ASML and HOTTest involve text-based mod-
eling, which usually results in higher modeling
efficiency when compared with graphic-based
modeling. It appears that the difference in modeling
time between these two modeling approaches
increases faster than linearly (perhaps even expo-
nentially) with the size of the system under test.
However, graphic-based models are easier to debug
than text-based models; therefore, it is important to
design the user interface to the specific needs within
the test environment. Whereas some tasks are easier
when performed with a text-based tool, others
benefit from the graphic-based approach. Other
factors like compactness of the representation and
quick and informative feedback to the user of the
tool may also play an important role.

We observed that graph-coverage-based test-gener-
ation techniques fail for larger state spaces. This
result, which is indeed expected, reasserts that it is
nearly impossible to scale up test generation
techniques based on graph-coverage algorithms.
Another important finding was that implicit re-
quirements, which are automatically uncovered by
HOTTest and which are not included in the
application requirement document, are quite nu-
merous: the ratio of known and implicit require-
ments was almost 10:3.
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Table 7 Absolute and relative scalability measures for MBTG tools

Absolute Scalability Relative Scalability
Sm Se Ss Sx Swm Sm Se Ss Sx Swm

Archetest | 9.65E-04 | 1.67E-02 | 1.54E-02 | 1.08E-03 | 4.78E-04 | 58.20 | 100.00 | 100.00 | 100.00 | 100

ASMLT 1.23E-03 | 6.38E-04 | 5.79E-04 | 7.77E-04 | 1.86E-04 | 74.44 3.83 3.76 | 7230 | 38.7919

TestMaster | 3.53E-04 | 9.59E-03 | 1.15E-02 | 7.60E-04 | 2.31E-04 | 21.31 | 57.53 | 7471 | 70.67 | 48.2202

HOTTest 1.66E-03 | 3.25E-03 | 6.17E-03 | 4.94E-04 | 3.23E-04 | 100.00 | 19.48 | 40.12 | 45.890 | 67.4654
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