
A measurement framework for
evaluating model-based test
generation tools

&

A. Sinha

C. E. Williams

P. Santhanam

This paper presents a measurement framework for evaluating model-based test

generation (MBTG) tools. The proposed framework is derived by using the Goal

Question Metric methodology, which helps formulate the metrics of interest:

complexity, ease of learning, effectiveness, efficiency, and scalability. We demonstrate

the steps involved in evaluating MBTG tools by describing a case study designed for

this purpose. This case study involves the use of four MBTG tools that differ in their

modeling techniques, test specification techniques, and test generation algorithms.

INTRODUCTION

Testing ensures that software meets its requirements

and is thus a vital part of the software development

life cycle. Because testing—be it integration, system,

or acceptance testing—occurs late in the software

development life cycle and because it is time

consuming, the testing effort is often shortened in

order to compensate for schedule slippages during

earlier development activities. This results in in-

sufficient testing of products before their release.

Model-Based Test Generation (MBTG) has recently

emerged as a possible approach to alleviating this

problem by improving the effectiveness of the

testing effort.

According to the consensus prevalent at the Work-

shop on Advances in Model-Based Software Testing

(A-MOST 2005),
1

in a model-based testing technique

the behavior of the application under test, as

specified by the user, is used exclusively for

generating a suite of tests for validating the

application. The level of granularity of the input

information provided by the user can vary widely.

With this broad definition in mind, a number of

studies on model-based testing are found in the

recent literature.

Dalal et al.
2

highlight the advantages and challenges

associated with the use of the Automatic Efficient

Test Generator (AETG) technique on four industrial

products. Pretschner et al. present a case study

involving the use of AutoFocus
3

for testing an

‘‘infotainment’’ network. This case study highlights

the model coverage, the implementation coverage,

and the error-detection capabilities of AutoFocus.

Veanes et al.
4

report on a case study that evaluates

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 SINHA ET AL. 501

the effectiveness of the tool Asml/Spec# in an online

testing setup. Another related study by Paradkar
5

presents a case study that seeks to identify fault

models for better fault detection effectiveness using

MBTG.

Although these studies provide insights into specific

MBTG techniques, to our knowledge there are no

publications that propose a measurement frame-

work for evaluating MBTG tools. Consulting com-

panies, such as Grove Consultants
6

or Ovum Inc.,
7

often publish reports analyzing the capabilities of

& In a model-based testing
technique, the behavior of the
application under test, as
specified by the user, is used
to generate a suite of tests &

specific tools. Whereas these reports may serve well

for a particular MBTG tool, they lack a framework

for comparing tools.

When managers and other decision makers in the

information technology (IT) industry need to select

an MBTG tool for their software development

project, they are often at a loss, primarily because

there are no measurement frameworks to compare

the capabilities of various MBTG tools. In this paper,

we provide one such measurement framework that

is based on the Goal Question Metric (GQM)

methodology.
8

Applying GQM in MBTG helps

formulate the metrics of interest: complexity, ease of

learning, effectiveness, efficiency, and scalability.

We demonstrate how to use our measurement

framework by describing a rudimentary case study

for comparing four MBTG tools. Although this case

study is not sufficiently extensive for reliable

comparison data, its purpose is to describe in detail

the steps involved in comparing MBTG tools. The

four tools chosen for this study (Archetest version

0.5,
9

ASMLT version 2.0,
10

TestMaster release

1.9.2,
11–13

and HOTTest release 0.1
14

) differ in their

modeling techniques, test-case specification tech-

niques, and test generation algorithms.

The rest of the paper is organized as follows. In the

next section, ‘‘Design of the measurement frame-

work,’’ we briefly describe the GQM approach, and

we show how GQM-driven questions lead to the set

of metrics of interest: complexity, ease of learning,

effectiveness, efficiency, and scalability. In the

section ‘‘Case study,’’ we describe the four MBTG

tools used, the three target applications that are

tested, and the process we follow, and we discuss

possible pitfalls when analyzing measurement data.

In the section ‘‘Case study measurements,’’ we

describe and discuss the measurement data. The last

section contains a summary and final comments.

DESIGN OF THE MEASUREMENT FRAMEWORK
The measurement framework was designed follow-

ing the GQM methodology.
8

GQM defines a mea-

surement model on three levels:

1. Conceptual (goal)—This defines the purpose of

the study. The goal is to analyze some object of

study (e.g., process, product) toward a specific

purpose (e.g., characterize, evaluate, predict,

motivate, improve) with respect to a focus (e.g.,

effectiveness) on behalf of (from the point of

view of) a stakeholder (e.g., customer, orga-

nization).

2. Operational (question)—Questions are formu-

lated to identify the information that is needed to

achieve the goal. The set of questions is used to

define models of the object of study and

characterize the way a specific goal is achieved.

3. Quantitative (metric)—This consists of sets of

metrics, where each set of metrics is based on the

models and is associated with a question that has

to be answered in a measurable way.

The purpose of the our framework is to compare

selected MBTG tools for test generation abilities. We

define the goal in accordance with the template

prescribed by the GQM methodology as follows:

‘‘Analyze MBTG test generation tools to characterize

them with respect to their test generation ability from

the point of view of testers of IT systems.’’

In using our measurement framework for evaluating

a set of MBTG tools, we do not consider specific

requirements that a project may have, as we want

the framework to be universally applicable, but the

framework can be easily adapted, following the

GQM methodology, to suit individual needs of

projects.

From questions to metrics
At the operational level, we ask the following

questions:

SINHA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006502

1. How complex is the tool to use?

2. How easy is it to learn the tool?

3. How effective is the tool?

4. How much effort is needed to test applications?

5. How does the test generation effort scale with

application size?

It is understood that the higher the complexity of

using the tool, the lower its usability. A higher

complexity also means a higher investment in
human resources due to the higher skill level
required. Ease of learning is another vital issue that
governs applicability. Lower ease of learning implies
an increased effort in educating the testers on the
test generation technique. Complexity and ease of
learning determine directly the adoptability of the
technique.

Questions 3 and 4 determine the return-on-invest-

ment from using the test generation technique. The

effort needed for testing and the effectiveness of the

test technique jointly determine the productivity of

the tester. The gain in effectiveness should not be at

the cost of a heavy increase in effort.

The staff responsible for selecting a tool needs to

ascertain that the testing technique scales to large

applications. In other words, they need to make sure

that when the size of the application grows, the

effort required stays manageable.

Metrics and measurement models
At the quantitative level, GQM deals with metrics.

These metrics help answer the questions asked at

the operational level. The metrics that are part of

this study follow:

1. Complexity—The complexity of the test gener-

ation process is associated with the difficulty in

using the tool due to the number of concepts that

must be learned in order to produce a correct test

model. A concept may be an operator, a function,

or a modeling mechanism that must be learned in

order to use the tool. The complexity measure

CPLX is determined by using a graph that depicts

the dependencies between concepts. Such

graphs, which we refer to as semantic depen-

dency graphs, relate the various concepts, which

are represented as nodes. The nodes of a

semantic graph can represent any of the follow-

ing concepts:

a. Modeling concepts—These are concepts

related to test models; for example, for a

model based on the Unified Modeling

Language** (UML**), these can be use case

diagrams, class diagrams, and activity dia-

grams.

b. Linguistic concepts—These are concepts

related to the specification language. These

include language-related constructs and

special functions and operators that must

be learned in order to use the tool; for

example, in ASML, the language constructs

supporting abstraction mechanisms are

linguistic concepts.

c. Technique concepts—These relate to the test

generation technique; for example, in Test-

Master, constraint-related concepts that

define the context of any state are technique

concepts.

The complexity of a concept is assigned one of

three values: 1 (easy), 2 (moderate), or 3

(difficult). The difficulty is viewed from the

perspective of the user of the tool. A concept is

assigned a complexity value of 3 if it is likely that

the user has no prior experience with the

concept. It is assigned a complexity value of 2

if it is likely that the user has some experience

with the concept or with a related concept. If it is

likely that the user has working experience with

the concept or with a related concept, then the

concept is assigned a complexity value of 1.

Complexity of any node in a semantic depend-

ency graph is calculated as follows:

CPLXnode ¼
X

all child nodes

CPLXi þ CPLXconcept : ð1Þ

This metric represents the complexity of the
concepts involved in the use of each of the tools
and is not necessarily equivalent to ease of
learning. Although ease of learning depends on
conceptual complexity, it also depends on the
quality and amount of support available for
learning the tool.

2. Ease of learning—Ease of learning is defined as

the time a user needs to achieve a specified

proficiency level with the tool. Measuring profi-

ciency in using any one concept involves count-

ing the number of correct uses of that concept

with two different applications: a ‘‘learning

application’’ (used only for learning) and the

target application (the one used for testing).

Thus, the proficiency in using concept i is

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 SINHA ET AL. 503

calculated as

profi ¼
ni

Ni
; ð2Þ

where n
i
is the total number of correct uses of the

concept i by the user with the learning applica-

tion, and N
i
is the total number of times the

concept is used in the target application. The

proficiency with a tool is calculated as

PROF ¼

Xm

i¼1

profi

m
; ð3Þ

where m is the total number of concepts used.

Ease of learning is calculated as

EASE ¼ PROF

tLearn
: ð4Þ

The learning time t
Learn

is the time needed for the

user to achieve a given proficiency. Clearly, ease

of learning contributes positively toward

usability.

3. Effectiveness—The effectiveness of a test tech-

nique is determined by its ability to uncover

faults. A fault can be viewed as the failure of the

application to satisfy a specified requirement.

Thus, the number of faults is equal to the number

of requirements that the application fails to

satisfy. Furthermore, effectiveness is calculated

as the fraction of requirements tested by the test

suite generated using the technique under

study.
15

Thus, effectiveness for a test suite is

defined as:

Ef fectiveness¼ðNumber of RequirementsCoveredÞ
=ðTotal Number of Requirements

in the ApplicationÞ ¼ r

R
: ð5Þ

Both r and R refer to atomic requirements. An

atomic requirement is a requirement that de-

scribes a single nondecomposable feature of the

system. Atomic requirements do not subsume,

nor are they composed of other requirements. For

example, the requirement ‘‘On clicking the PLOT

button, DAT will generate the query results in

chart form’’ is implemented with the atomic

requirements ‘‘On clicking the PLOT button, DAT

will generate a graph’’; ‘‘On clicking the PLOT

button, DAT will open a window displaying the

generated graph’’; and ‘‘On clicking the PLOT

button, DAT will switch the active window.’’

4. Efficiency—Efficiency is a measure of the ease of

testing a system after a user’s learning is

complete. Efficiency is calculated as

EFF ¼ Size of the Testing Assignment

TMM
; ð6Þ

where T
MM

is the net effort in the testing process.
The size of the testing assignment can be
measured as follows:

Size of the Testing Assignment
¼ Application Size �CCoverage �CComplexity; ð7Þ

where Application Size is the size of the system
under test in lines of code or function points

16
;

C
Coverage

is the coverage coefficient of the test
model as given in Equation 5; and C

Complexity
is

the complexity of the application. The complexity
of the application can be measured by using
various metrics identified in the literature. In this
paper, however, we compute relative measures of
complexity in which this factor cancels out.

The effort in testing T
MM

is given by

TMM ¼ TM þ TG þ TS þ TX ; ð8Þ

where T
M

is the time for test modeling, T
G

is the
time for test generation, T

S
is the time for setting

up the execution environment, and T
X

is the time
for test execution. Efficiency contributes posi-
tively towards the usability of the tool. A high
efficiency enhances the usability of the test tool.

5. Scalability—Scalability is defined as the property
of the tool that keeps the testing effort manage-
able when the size of the application increases. It
can be measured by the increase in application
size per unit increase in effort; therefore, we
define scalability as:

Si ¼
Increase in Application Size

DTi
: ð9Þ

DT
i
is the increment in one of the components

T
MM

, T
G
, T

M
, T

S
, or T

X
(see Equation 8).

Correspondingly, S
MM

can be scalability with
regard to net effort, S

G
can be scalability with

regard to test generation effort, S
M

can be
scalability with regard to modeling effort, and so
on. Thus, scalability of the tool with regard to
effort in modeling is defined as

SM ¼
Increase in Application Size

DTM
: ð10Þ

CASE STUDY
In this section we describe a case study in which the

framework was used to evaluate four tools: Arche-

SINHA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006504

test, ASML, HOTTest, and TestMaster. The goal of

the case study was to demonstrate how one

evaluates a number of MBTG tools using the

framework. Because the study was not based on a

sufficiently large sample, the tool comparison data

can be viewed only as tentative and in need of

additional experimentation.

The four MBTG tools

Figure 1 shows the test generation process. As

shown in the figure, a natural language specification

of the requirement for the application under test is

the needed input to the application-modeling proc-

ess, whose outcome is the application model. In the

test-modeling phase that follows, the application

model is augmented with various testing objectives

provided by the test specification in order to derive a

test model. This model is then used for test

generation, the result of which is a test suite that can

be run on the executable code with results that can

be verified against application specifications.

The application model in Archetest consists of UML-

based high-level use cases and domain models. In

contrast, ASMLT uses application models specified

by using abstract state machine language (ASML).

TestMaster uses extended finite state machines

(EFSMs) to specify application models, whereas

HOTTest uses application models specified by using

a strongly typed domain-specific language (DSL),

such as HaskellDB.
17

When discussing the evalua-

tion of the four tools, we sometimes refer to them as

the four modeling techniques.

In Archetest, use cases are formalized by using a test

case specification that adds five key concepts to

standard use cases: preconditions, parameters, test

data, results and the execution template. Precondi-

tions state what must be true in the system for the

use case to be eligible for execution. Parameters

represent input to the use case from an actor.

Parameters may have partitions associated with

them. Partitions are logical values that testers

typically use to think about test data. Test data

associates physical values with partitions that can

be used in actual testing of the system. Results are

the named outcomes of executing the use case. They

are guarded by constraints that indicate the con-

ditions under which they occur, and also have

associated update statements that change the state

of the system. Finally, the execution template defines

how the use case is realized in terms of the APIs of

the implemented system. To each use case in an

Archetest test model, fault modeling techniques are

first applied to determine interesting test variations.

Integer programming techniques are used to deter-

mine efficient ways to flow through the use cases as

test cases are generated. Finally, the test cases are

generated by using a series of graph traversal

techniques.

In ASMLT, the test specification consists of an

abstraction property that guides the tool to generate

a finite state machine (FSM) from an ASML model.

The tool triggers all possible transitions to determine

the available system states. Based on the abstraction

property, these states are abstracted into hyper-

states. The hyperstates are finite in number and are

used to form the states of the FSM. Then ASMLT

generates test cases by using a ‘‘Chinese Postman’’

tour (the shortest closed path that goes through all

edges of a directed graph) to traverse the states of

the FSM. The traversal of the FSM produces paths

that represent a sequence of method calls.

For TestMaster, the test is specified by providing

context to transitions in the EFSM model. A

transition in an EFSM model has fields that can

specify events, state updates, enabling conditions,

and likelihood. A transition is triggered by an event,

provided that the enabling condition is satisfied.

Test case generation thus involves identifying input

sequences that enable the transitions and guide the

system through a path defined by EFSM states. Each

Figure 1
The test generation process

Application
Requirements
(natural
language)

Test
Results

Executable
Code

Test
Suite

Application
Model

Test
Specification

Test
Model

Test
Modeling

Application
Modeling

Test
Execution

Test
Generation

Development

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 SINHA ET AL. 505

input sequence so constructed signifies a test case

for the system under test. TestMaster can generate

test cases following user-specified path coverage

schemes, such as Full Cover, Transition Cover, and

Profile Cover. It uses a combination of basic graph-

coverage algorithms like depth-first search, breadth-

first search, and minimum spanning tree to derive

the paths through EFSMs.

HOTTest automatically identifies and extracts pos-

sible functional flows in the DSL specification and

then extracts variables from functions and associ-

ates type and value to each of them. Following a

translation scheme, a behavioral model based on an

EFSM representation of the system is created. The

type safeness of DSL functions allows derivation of

useful domain-specific system axioms. HOTTest

identifies the DSL operators in the model and, based

on the associated axioms, embeds new states in the

EFSM-based test model. The modified EFSM gen-

erates test cases following a technique similar to that

of TestMaster. The generated test cases check if the

application satisfies the axiomatic property. Because

each domain-specific axiom is related to a certain

domain-specific requirement, the test cases auto-

matically check for certain domain-specific require-

ments.

Case study instruments

The case study involves a human subject, a summer

intern working in software testing at the IBM

Thomas J. Watson Research Center. The intern had

previous formal training in software testing and

practical experience comparable to that of an

average tester in a software firm (2–3 years). The

subject was assigned the task of generating tests for

three applications: DAT (Data Analysis Tool), SSP,

and SearchPUBS. SSP was used as a learning

application, that is, the target application for the

learning phase. DAT and SearchPUBS were the

target applications for the case study; DAT was the

target application for all metrics; SearchPUBS was

used together with DAT for evaluating scalability.

DAT is an application that analyzes data on software

defects collected during software development and

maintenance. The tool, which is an essential tool for

IT organizations, is based on the Orthogonal Defect

Classification (ODC
18

) methodology for capturing

defect information. It is implemented in Java**, has

a graphical user interface, and generates and

executes Structured Query Language (SQL) queries

for a database that contains defect reports collected

during various phases of the software-development

life cycle. The data set that results from the queries

is analyzed for possible leads on issues that face

most IT organizations, such as product stability, test

effectiveness, and customer usage.

SSP is a small application for generating queries for

PUBS, a Microsoft Access** database that contains

information on authors and their publications. The

information is stored in three tables: AUTHORS,

TITLES, and TITLEAUTHOR. SSP, which generates

and executes queries on PUBS, prompts the user for

search options. The user may search by first or last

name of the author, by location, or by book title.

The application returns either the name of the

author and the corresponding publication or the

message ‘‘No such entry.’’ SSP was modeled by the

subject while learning the tool. It was chosen

because it is a relational-database-based application,

similar to DAT.

SearchPUBS, which is also based on PUBS, is a

Visual Cþþ** application (about 4200 lines of code)

that queries the database for author information.

The user can form queries by using a dialog-based

system that provides 12 criteria for searching.

The following are some artifacts that were part of

the case study:

1. DAT Product Description (A1)—A1 is a set of

documents that describe the features of DAT and

also contain screen captures and directives for

users.

2. DAT Requirements Documents (A2)—A2, the sole

basis for creating the test models, is a natural

language specification of the functional and

nonfunctional requirements of DAT, specified in

accordance to the IEEE format.
19

A2, which is

derived from A1, was created by the subject

under the supervision of an ODC expert.

3. Parsed Requirement List (A3)—A parsed re-

quirement list contains atomic requirements (as

previously defined). A3 is derived from A2 by an

ODC expert. Each requirement in A3 is classified

by an expert as either domain specific or generic.

For example, if a requirement is specific to the

domain of relational database applications, then

it is classified as domain specific.

Case study: process
The objective of the case study is to have the subject

learn to use the four tools and generate tests for DAT

SINHA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006506

by using these tools. We describe here the steps

involved. Figure 2 shows the process for carrying

out the case study.

First, the subject receives training in ODC and then

develops the natural language specification A2 for

DAT from A1.

Next, the subject learns to use the four tools in an

arbitrarily selected sequence. For practice, during

the learning process the subject uses SSP. The

subject reads the technical manuals and the user

support documents available for each tool. A log is

maintained in order to record the learning time and

also to document any pertinent observations during

the learning phase. After perusal of the documents,

the subject uses each tool to generate tests for SSP.

The results of the test generation step are used to

evaluate the proficiency achieved in each tool by the

subject. The proficiency is assessed by an expert

tester who is not involved in the case study.

Modeling of DAT immediately follows the learning

phase. As in the learning phase, a log is maintained

Testing of
SearchPUBS

Test Model
TM1

Test Model
TM3

Study of DAT

Test Suite TS2Test Suite TS1 Test Suite TS3Test Suite TS0

Execution
Time

Setup
Time

Time to
Generate

Figure 2
The case study process

Test
Execution

Test Model
TM0

DAT Product Description and
Informal Requirements List
A1

Software Requirement
Specification for DAT
A2

Parsed Requirement List
A3

Measurement and Analysis

Modeling with Tools

Learning

Modeling
Time

Learning
Time

Document

Case study activity

Time log

Activity

Test model

Flow of activity

Flow of data

Detailed Analysis and
Requirement Elicitation
by an ODC Expert

Test Model
TM2

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 SINHA ET AL. 507

for recording the time and any observations of

interest made by the subject during the modeling

process.

The scalability of the tool is evaluated next, when

the subject models the target application, Search-

PUBS.

Test cases are derived independently for DAT and

SearchPUBS by using each test generation tool. The

test suite and results of the test execution are

recorded and analyzed. The test suites are assessed

against the independently prepared parsed require-

ments list (A3). The execution time and the test

generation times for each model are recorded. The

test results are also analyzed.

& The proposed framework is
derived by using the Goal
Question Metric methodology,
which helps formulate the
metrics of interest &

The final step in the case study consists of

measurement and analysis. The data recorded

during the test modeling phase, the test generation

phase, and the test execution phase are compiled for

the four techniques and are analyzed.

Threats to validity

Some factors that affect the validity of the results of

any experimental study can be viewed as threats to

validity. They can be classified as either internal or

external threats. Internal threats to validity refer

specifically to threats that determine whether an

experimental treatment or condition makes a dif-

ference and whether there is sufficient evidence to

support the claim.
20

Internal threats to validity are

identified in Reference 20 as the following:

� History, which refers to the specific events that

occur between any two sets of measurement and

that may affect the outcome
� Maturation, which indicates the processes affect-

ing the subjects that are functions of time (e.g.,

hunger, aging)
� Testing, which refers to the effect that taking a test

before the experiment has on the outcome of the

experiment

� Experimental mortality, which refers to the loss of

subjects during the experiment
� Instrumentation, which refers to the changes in

instruments, observers, or scorers that may affect

outcomes

Because the case study was not conducted in a

controlled environment, there was no threat due to

history or maturation. The effect of testing was

reduced by isolating the study of the system from

the study of the test design tools. The order in which

the tools were studied might cause some concern.

However, because proficiency is evaluated on the

correct usage of the concepts and not on the

correctness of the model itself, the effect of this

factor is null. Further, the test of proficiency for each

tool before modeling of DAT ascertained that the

measurement results were not biased because of the

continuous learning of the subject. The analysis and

measurements were performed after completion of

the modeling process; this was to ensure there was

no threat due to instrumentation on the results.

The subject was asked to develop a natural language

specification of the requirements of the application

to be tested before development of the test model.

This ensured that the subject’s rate of learning had

leveled off, that is, had reached an asymptotic level,

before the application modeling phase. An experi-

ment involving a single subject ensures minimal

variation due to personal bias and abilities.

Although experimental mortality was a major threat

to validity, the entire duration of the experiment was

about four months, which was manageably small.

Further, the subject was naturally motivated be-

cause the study was part of his summer project

requirements.

External validity means the results of the experiment

or case study can be applied directly to other similar

scenarios. The case study presented here has only

one subject performing the test generation activities.

This limits the applicability of the results to other

cases. Because the subject (as described in the

section ‘‘Case study instruments’’) is a member of

the representative population, the results may

indicate possible trends. For a wider applicability of

the results, the experiment needs to be repeated

with a large number of subjects. This constitutes an

external threat to the validity of our results.

SINHA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006508

CASE STUDY MEASUREMENTS

In this section we describe the way readings are

taken for each metric identified in the section

‘‘Metrics and measurement models’’ and present the

numerical results obtained.

Complexity

Complexity measures can be calculated from the

perspective of either a novice or expert. A novice is

not familiar with any tool-related concepts but is

familiar with basic principles of test generation. An

expert is well-versed in the modeling principles

underlying the four tools (ASML for ASMLT, UML

for Archetest, Haskell for HOTTest, and FSMs for

TestMaster) and has experience in the design of test

cases.

Next, the semantic dependency graph for each tool

is constructed, where the nodes are the concepts and

the edges represent the dependency relationship

between concepts. Figure 3 for instance, shows the

semantic dependency graph for Archetest (novice

perspective). The graph for the expert perspective

differs only in the complexity values associated with

each node. The complexity is computed bottom up,

according to Equation 1: the complexity values of

the child nodes determine the complexity value of

the parent node. The complexity of the root is the

complexity of the test generation technique. The

complexity measures of the four tools are shown in

Table 1.

Ease of learning

Calculating ease of learning is based on proficiency

and learning time. The learning time consists of the

time to review the learning materials and the time

for exercise. Therefore, the learning time is calcu-

lated by summing the time spent during the learning

sessions and the time spent in developing the model

for the application SSP.

Archetest
64

Prologue
1

Epilogue
1

Use Case Specification
21

Consistency
1

Activity Mirroring
1

Parameter
5

Context
4

Result
5

Execution Template
4

Test Data
2

Tofu Combinations
2

Classes
12

Figure 3
Semantic dependency graph for Archetest (novice perspective)

Tool Concepts
26

UML Concepts
37

Actors
12

Inheritance
3

Partitioning
2 Result Definition

2
Context Updates

2
Extends

3

Use Cases
23

Activity Diagrams
2

Associations
10

Inclusion
3

Table 1 Complexity measures for MBTG tools

Archetest ASMLT TestMaster HOTTest

Complexity
(Novice)

64 68 79 68

Complexity
(Expert)

33 28 38 31

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 SINHA ET AL. 509

Table 2 MBTG tools: major concepts and their proficiency measures

Archetest ASMLT TestMaster HOTTest

Concepts Prof. Concepts Prof. Concepts Prof. Concepts Prof.

Prologue 0.9 State variables 1 States 1 Function 0.9

Epilogue 1 Stopping conditions 0.9 Models 0.8 Polymorphic types 1

Consistency 1 Update procedures 0.9 Randomizations 0.2 User-defined types 0.9

Activity mirroring 1 Partial updates 0.9 Type 0.9 Basic types 1

Parameter partitioning 0.9 Methods 1 Array I/O 0.2 Records 1

Tofu combinations 1 Values 0.9 Scope 0.2 Sequential flow 1

Result definitions 1 Constraints 0.9 Initialization 0.3 Juxtaposition 1

Context updates 1 Variables 1 IMCF 0.2 Composition 1

Execution templates 1 Condition loops 1 Table models 0.3 Recursion 0.8

Test data 1 Sets 0.9 Context 0.3 Pattern matching 0.95

Inheritance 0.9 Variables 1 Events 1 Case constructs 1

Inclusion 0.9 Constants 1 Action 0.5 If 1

Extension 0.9 Hyperstates 0.8 Predicate 0.3 List comprehensions 0.9

Actors 1 Abstraction 1 Argument 0.5 Relations 0.9

Associations 1 FSM generator 0.9 Parameters 0.4 Attributes 0.8

Activity diagrams 1 Types 0.8 Constraints 0.3 Expressions 1

Classes 1 Instantiation 0.8 Likelihood 0.5 Query 0.9

Sequences 1 Path constraints 0.2 Restrict 0.9

Maps 0.9 ‘‘@ constraints’’ 0.2 Project 0.95

Non-determinism 1 Test information 0.5 Set operators 1

Enumerations 0.9 Test file set up 0.3 Logical operators 1

Classes 0.9 Shallow paths 0.5 Boolean connectors 1

Parameter generation 1 Deep paths 0.5

Coverage scheme 0.5

Table 3 Ease of learning measures for MBTG tools

Total
Learning Time

Learning
Sessions

Modeling
of SSP

Proficiency Ease
of Learning

Relative Ease
of Learning

Archetest 14:44:00 3:56:00 10:48:00 0.97 1.58 91.23

ASMLT 22:21:00 13:18:00 9:03:00 0.93 1.00 57.78

TestMaster 8:21:00 5:00:00 3:21:00 0.44 1.27 73.51

HOTTest 13:10:00 5:00:00 8:10:00 0.95 1.73 100.00

SINHA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006510

Calculating the complexity of the modeling process

for each tool first requires an examination of all the

concepts involved.

The proficiency calculations are based on the

concepts associated with each tool. For each

concept, we count the number of usages. A wrong

usage of a concept is defined as a usage instance that

creates a fault in the test model. Numbers of such

faulty instances are also counted. Table 2 lists the

major concepts of each modeling technique and the

proficiency measure Prof achieved in each concept

by the subject. The proficiency achieved by the

subject is calculated using Equation 2. Whereas

Table 2 logs the proficiency achieved by the subject

in individual concepts, Table 3 displays measure-

ments of proficiency and learning time. The measure

for ease of learning is calculated using Equation 4.

Table 3 depicts the ease of learning and related

values for the four techniques and includes a relative

ease of learning measure in which the highest ease

of learning value (for HOTTest) is assigned 100.

Effectiveness
The number of requirements covered by a test

model is calculated by examining the test suite

generated by using a given technique (following

transition coverage) and identifying the require-

ments tested by the test suite. A requirement is said

to be tested by the test suite if there are test cases in

the test suite that would fail if that particular

requirement were not satisfied by the application.

The number of requirements and the number of

domain-specific requirements covered by using each

technique, along with the corresponding effective-

ness measures, are presented in Table 4.

The effectiveness values for the test generation

techniques are calculated using Equation 5. The

coverage attained by the test models is measured by

using the parsed requirement list (A3), and it is

computed by calculating the fraction of require-

ments in A3 covered by the test suites. The net

number of atomic requirements in A3 for DAT is R¼
1260. The number of requirements covered by the

test models is given in the column with the heading

r. The number of domain-specific requirements in

A3 is D¼ 602 (they were identified to be specific to

the domain of database applications). The number

of domain-specific requirements covered using the

technique is d. Of the 602 net domain-specific

requirements, 210 were not explicitly mentioned in

the original requirements document (A2). Some of

the 210 implicit requirements were identified by the

expert; others were identified during testing with

HOTTest.

Efficiency
The net effort in testing T

MM
is calculated using

Equation 8. The time to model T
M

, which is

calculated from the user logs during test modeling,

includes the debugging time along with the actual

modeling time. The test cases were generated on a

Pentium** 4 1.6 GHz machine with 256 MB of RAM.

The time to generate test cases T
G

was recorded by

noting the machine time at the beginning and at the

end of the test generation activity. The time for

setting up the test environment T
S

included the time

to set up the test harness (Rational* Functional

Tester
21

) and the time to derive the test scripts from

the test cases. N is the number of test cases in the

test suite produced from the model allowing the

maximum coverage.

Efficiency of the tools is calculated using Equation 6.

The coverage attained by the test model is measured

by using the parsed requirement list (A3) and is

discussed in the section ‘‘Case study instruments.’’

Because the target application (DAT) is the same for

all test models, we do not evaluate C
Complexity

*Ap-

plication Size. This factor eventually cancels out

when we calculate relative measures. Table 5

Table 4 Effectiveness and domain-specific effectiveness measures for MBTG tools

R r D d Effectiveness
(percent)

Domain-Specific
Effectiveness

(percent)

Technique Archetest 1260 1050 602 392 83.33 65.12

ASMLT 1260 965 602 307 76.59 51.00

TestMaster 1260 843 602 185 66.90 30.73

HOTTest 1260 1216 602 577 96.51 95.85

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 SINHA ET AL. 511

presents the results of the efficiency calculations.

Relative efficiency measures are obtained by as-

signing the value 100 to Archetest.

Scalability

Scalability of the MBTG tools is measured by

comparing their efficiency on two target applica-

tions, DAT and SearchPUBS. The measurement

results for DAT are presented in Table 5; those for

SearchPUBS are shown in Table 6.

Scalability of effort is calculated for various con-

tributors to the test effort in accordance with

Equation 9. Relative scalability measures are ob-

tained by assigning the value 100 to the highest

scalability value among the four tools. Table 7

presents the scalability measures for the various

tools for different effort contributors and the net

effort.

CONCLUSION

In this paper we present a measurement framework

for evaluating MBTG tools. We describe a case study

in which the framework was used to compare four

MBTG tools. Although this case study is limited in

that the data are not statistically significant for the

purpose of comparing the tools involved, the

experiment is used as a vehicle to describe in detail

the steps involved in applying our measurement

framework.

We found that the complexity of use is approx-

imately the same for the four tools. This probably

indicates that all MBTG tools face a similar barrier

for entry. There is roughly a twofold increase in

complexity when a novice, rather than an expert,

uses the tool. Thus, a person trained in the basics of

a testing technique is likely to perceive the

complexity to be half of that perceived by a person

who is new to testing.

Both ASML and HOTTest involve text-based mod-

eling, which usually results in higher modeling

efficiency when compared with graphic-based

modeling. It appears that the difference in modeling

time between these two modeling approaches

increases faster than linearly (perhaps even expo-

nentially) with the size of the system under test.

However, graphic-based models are easier to debug

than text-based models; therefore, it is important to

design the user interface to the specific needs within

the test environment. Whereas some tasks are easier

when performed with a text-based tool, others

benefit from the graphic-based approach. Other

factors like compactness of the representation and

quick and informative feedback to the user of the

tool may also play an important role.

We observed that graph-coverage-based test-gener-

ation techniques fail for larger state spaces. This

result, which is indeed expected, reasserts that it is

nearly impossible to scale up test generation

techniques based on graph-coverage algorithms.

Another important finding was that implicit re-

quirements, which are automatically uncovered by

HOTTest and which are not included in the

application requirement document, are quite nu-

merous: the ratio of known and implicit require-

ments was almost 10:3.

Table 6 Efficiency measures for MBTG tools with

SearchPUBS as target application

T
M

T
G

T
S

T
X

N T
MM

Archetest 518 2.00 15.00 10.03 32 545.03

ASMLT 546 17.00 95.00 23.50 75 681.50

TestMaster 201 0.70 45.00 6.89 22 253.59

HOTTest 490 12.00 50.00 26.63 85 578.63

Table 5 Efficiency measures for MBTG tools with DAT as target application

T
M

(mins)
T

G

(mins)
T

S

(mins)
T

X

(mins)
N T

MM

(mins)
Coverage Efficiency Relative

Efficiency
(percent)

Archetest 1554.00 62.00 80.00 940.00 3000 2636.00 83.33 0.032 100.00

ASML 1356.00 1584.00 1822.00 1309.73 4180 6071.73 76.59 0.013 39.90

TestMaster 3030.00 105.00 132.00 1322.89 4222 4589.89 66.90 0.015 46.11

HOTTest 1093.00 320.00 212.00 2052.96 6552 3677.96 96.51 0.026 83.00

SINHA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006512

We believe that the future of model-based test

generation techniques lies in developing tools with

good user interfaces that use intelligent test-gener-

ation techniques, rather than brute-force graph-

coverage schemes, and that are able to automati-

cally use domain-specific knowledge when per-

forming test generation. We are working on a

release of Archetest that incorporates improvements

based on these findings.

ACKNOWLEDGMENT
We thank Ms. Theresa Kratschmer for her valuable

comments on an earlier version of this paper.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc., Sun Microsystems, Inc., Microsoft
Corporation, or Intel Corporation in the United States, other
countries, or both.

CITED REFERENCES AND NOTE
1. Workshop on Advances in Model-Based Software Testing

(A-MOST), 27th International Conference on Software
Engineering, St. Louis, Missouri, May 15–21, 2005 ACM,
New York (2005).

2. S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M.
Lott, G. C. Patton, and B. M. Horowitz, ‘‘Model-Based
Testing In Practice,’’ Proceedings of the Twenty-First
International Conference on Software Engineering, May
16–22, 1999, Los Angeles, CA, ACM, New York (1999),
pp. 285–294.

3. A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel,
M. Baumgartner, B. Sostawa, R. Zölch, and T. Stauner,
‘‘One Evaluation of Model-Based Testing and Its Auto-
mation,’’ Proceedings of the 27th International Conference
on Software Engineering, May 15–21, 2005, St. Louis,
Missouri, ACM, New York (2005), pp. 392–401.

4. M. Veanes, C. Campbell, W. Schulte, and N. Tillmann,
‘‘Online Testing with Model Programs,’’ Proceedings of
the 10th European Software Engineering Conference
(ESEC) and the 13th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (SIGSOFT FSE),

Lisbon, Portugal, September 5–9, 2005. ACM, New York
(2005), pp. 273–282.

5. A. Paradkar, ‘‘A Quest for Appropriate Software Fault
Models: Case Studies on Fault Detection Effectiveness of
Model Based Test Generation Techniques,’’ Proceedings
of the First International Workshop on Advances in
Model-Based Software Testing, 27th International Confer-
ence on Software Engineering, St. Louis, Missouri, May
15–21, 2005 ACM, New York (2005).

6. Grove Consultants, http://www.grove.co.uk/.

7. Ovum, http://www.ovum.com/.

8. V. R. Basili, ‘‘Goal Question Metrics Paradigm,’’ in
Encyclopedia of Software Engineering, J. Marciniak,
Editor, John Wiley and Sons (1994), pp. 528–532.

9. C. E. Williams, ‘‘Toward a Test-Ready Metamodel for Use
Cases,’’ Proceedings of the Workshop on Practical UML-
Based Rigorous Development Methods, October 1–5, 2001,
Toronto, CA (2001), pp. 270–287.

10. M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte,
N. Tillmann, and M. Veanes, ‘‘Model-Based Testing with
AsmL.NET,’’ Proceedings of the 1st European Conference
on Model-Driven Software Engineering (December 2003),
http://www.agedis.de/conference/presentation.shtml.

11. TestMaster User’s Guide, Release 1.9.5, Empirix Inc., New
Hampshire, 1999.

12. P. Savage, S. Walters, and M. Stephenson, ‘‘Automated
Test Methodology for Operational Flight Programs,’’
Proceedings of the IEEE Aerospace Conference 4, pp. 293–
305, IEEE, New York (1997).

13. R. Dssouli, K. Saleh, E. Aboulhamid, A. En-Nouaary, and
C. Bourhfir, ‘‘Test Development For Communication
Protocols: Towards Automation,’’ Computer Networks 31,
No. 17, 1835–1872 (1999).

14. A. Sinha, C. Smidts, and A. Moran, ‘‘Enhanced Testing of
Domain-Specific Applications by Automatic Extraction of
Axioms from Functional Specifications,’’ Proceedings of
the 14th International Symposium on Software Reliability
Engineering, November 17–20, 2003, Denver, CO, IEEE,
New York (2003), pp. 181–190.

15. Usually the effectiveness of a test process is measured as
the fraction of the total number of faults that are
uncovered by testing. This value is estimated by
embedding faults in the code to be tested and examining
the results of the testing process. Because we use the
target application in a black-box fashion, that is, without
modifying the code, we had to create an alternative
metric.

16. A. J. Albrecht, ‘‘Measuring Application Development
Productivity,’’ Proceedings of the Joint SHARE, GUIDE,
and IBM Application Development Symposium, Monte-

Table 7 Absolute and relative scalability measures for MBTG tools

Absolute Scalability Relative Scalability

S
M

S
G

S
S

S
X

S
MM

S
M

S
G

S
S

S
X

S
MM

Archetest 9.65E-04 1.67E-02 1.54E-02 1.08E-03 4.78E-04 58.20 100.00 100.00 100.00 100

ASMLT 1.23E-03 6.38E-04 5.79E-04 7.77E-04 1.86E-04 74.44 3.83 3.76 72.30 38.7919

TestMaster 3.53E-04 9.59E-03 1.15E-02 7.60E-04 2.31E-04 21.31 57.53 74.71 70.67 48.2202

HOTTest 1.66E-03 3.25E-03 6.17E-03 4.94E-04 3.23E-04 100.00 19.48 40.12 45.89 67.4654

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 SINHA ET AL. 513

rey, California, October 14–17, IBM Corporation (1979),
pp. 83–92.

17. D. Leijen and E. Meijer, ‘‘Domain-Specific Embedded
Compilers,’’ Proceedings of the Second Conference on
Domain-Specific Languages (DSL ’99), Austin, Texas,
USA, October 3–5, IEEE, New York (1999), 109–122.

18. K. Bassin, T. Kratschmer, and P. Santhanam, ‘‘Evaluating
Software Development Objectively,’’ IEEE Software 15,
No. 6, 66–74 (November/December 1998).

19. IEEE Guide to Software Requirements Specification,
ANSI/IEEE Standard 830, IEEE (1984).

20. D. T. Campbell and J. C. Stanley, Experimental and
Quasi-Experimental Designs for Research, Houghton
Mifflin, Boston, MA (1963).

21. IBM Rational Functional Tester, IBM Corporation.

Accepted for publication March 7, 2006.

Avik Sinha
IBM Thomas J. Watson Research Center, 19 Skyline Drive,
2NF07, Hawthorne, New York 10562 (avisinha@us.ibm.com).
Dr. Sinha is a post-doctoral researcher at the Watson Research
Center. He holds a B.Tech. degree from Indian Institute of
Technology, Kharagpur, and M.S. and Ph.D. degrees from the
University of Maryland at College Park. His areas of interest
include software engineering, model-driven software
development, software testing, and domain-specific test
generation.

Clay E. Williams
IBM Thomas J. Watson Research Center, 19 Skyline Drive,
2NB04, Hawthorne, New York 10562 (clayw@us.ibm.com).
Dr. Williams is a research staff member and manager of the
Software Quality and Testing group. He has a Ph.D. in
computer science from Texas A&M University. His areas of
interest include software engineering, model-driven software
development, software testing, and medical applications of
information systems. He is a member of the IEEE and ACM.

P. Santhanam
IBM Thomas J. Watson Research Center, 19 Skyline Drive,
GNB02, Hawthorne, New York 10562 (pasanth@us.ibm.com).
Dr. Santhanam has a B.Sc. degree from the University of
Madras, India, an M.Sc. degree from the Indian Institute of
Technology, Madras, an M.A. degree from Hunter College of
the City University of New York, and a Ph.D. from Yale
University. He joined IBM Research in 1985, where he is
currently Senior Manager in charge of the Software
Engineering department, whose mission is to develop tools
and methodologies in support of the software development
process. He has authored more than 40 technical papers on a
wide variety of topics in peer-reviewed journals and
conference proceedings. Dr. Santhanam is a member of the
ACM and a senior member of the IEEE. &

SINHA ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006514

Published online July 11, 2006.

